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Abstract
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Experimental realization of KPZ dynamics: Slow combustion of paper
Jyväskylä: University of Jyväskylä, 2003, 114 p.
(Research report/Department of Physics, University of Jyväskylä,
ISSN 0075-465X; 5/2003)
ISBN 951-39-1575-1
diss.

There have been many recent advances in the theoretical understanding of kinetic
roughening of interfaces. However, in very few experimental systems have these
processes been studied in great detail and with good statistics. With our high res-
olution experimental set-up, described in this Thesis, we were able to gain a lot of
information about slow-combustion fronts propagating in sheets of paper. The data
gathered by us total to those of about a thousand individual burns, and involve
experiments on four different paper grades. Temporal and spatial properties of the
roughening interfaces were thoroughly studied by monitoring the interface width,
correlation functions, structure factor, amplitudes of the correlation functions, and
by determining the relevant parameters by an inverse method. Our results indicate
that smouldering fronts in paper sheets asymptotically obey KPZ dynamics with
roughening exponent χ ' 1/2 and growth exponent β ' 1/3. A direct demon-
stration of the existence of the KPZ type of nonlinear term in the effective evolu-
tion equation for smouldering fronts was also provided by observing the effects of
a columnar defect on the front shape. Below sample dependent crossover scales,
higher ’apparent’ temporal and spatial scaling exponents, and nontrivial effective
noise, were observed. A natural source for this noise is the local mass fluctuations
in paper sheets, and therefore also the correlations and distributions of these fluc-
tuations were carefully investigated. Many but not all features of the short-range
behaviour were qualitatively shown to be a consequence of these short-range cor-
relations by direct numerical integration of the KPZ equation, where a real paper
structure was used as the input noise.

Keywords slow combustion, scaling, noise, KPZ equation, non-equilibrium phe-
nomena
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Chapter 1

Introduction

Better understanding of interface roughening has long excited the minds of physi-
cists. Roughening of interfaces is often dominated by processes of stochastic nature
and has many realizations both in the nature and in the laboratory, such as crystal
growth, dielectric breakdown, fluid displacement in porous media, bacterial colony
growth, fire front motion, vapour deposition, motion of magnetic flux lines in a
superconductor etc. [17, 7]. Theoretical work has been focussed on stochastic dif-
ferential equations that describe the essential features of the roughening processes.
Because microscopical details have been removed by coarse graining, a single equa-
tion can describe a wide variety of phenomena. At the same time only relatively few
reliable experiments have been done. The purpose of this Thesis is to review our ex-
perimental work [34,37,36,41,40] on slow-combustion fronts, the difficulties related
to measurements in noisy systems, and to show that experimental evidence can in-
deed be found to support the idea of describing roughening processes by a stochas-
tic differential equation. The work has been done in the Department of Physics at
the University of Jyväskylä by Markko Myllys, Jussi Maunuksela, Juha Merikoski,
Jussi Timonen and, at the initial phase of the work, also by Olli-Pekka Kähkönen, in
collaboration with Mikko Alava and Tapio Ala-Nissilä from Helsinki University of
Technology, and at the last phase of the work also with Meesoon Ha and Marcel den
Nijs from the University of Washington.

Typically interfaces generated by a roughening process have fluctuations at
many length scales and display within a certain, often rather short interval, a scale
invariant structure, see e.g. the slow combustion fronts in Fig. 1.1. For a quantita-
tive characterization of such structures Mandelbrot developed the concept of fractal
geometry [32]. As a fundamental reason for why Nature produces scale invariant
structures Bak, Tang and Wiesenfeld [4] proposed self-organized criticality (SOC).
Roughening processes in Nature are typically far from equilibrium, and do not
always comply with the assumptions behind SOC behaviour. There are however
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FIGURE 1.1 Digitised slow-combustion fronts with 10 s intervals.

well-established connections between SOC processes and rough interfaces [8, 51].
Noise can as such lead to scale invariant structures [26] which are often analysed by
stochastic Langevin equations. Typically roughening processes can be classified into
well-defined universality classes according to a few essential factors, i.e., the nature
of the local interface dynamics, and symmetries or conservation laws. Interfaces in
each universality class display unique scaling properties which can be measured,
for example, via interface width w,

w2(L, t) ≡ 〈(h(x, t)− h̄(t))2〉, (1.1)

where h = h(x, t) is a single-valued function, the position (or ’height’) of the inter-
face at point x and time t, h̄(t) is the average height at time t, and brackets denote
ensemble averaging. In this Thesis we concentrate on one-dimensional interfaces
propagating in a two-dimensional medium. The system size in the x direction is
denoted by L.
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If the interface evolves from an initially flat configuration, the scaling behaviour
of its width can be described by the Family-Vicsek scaling relation [10],

w2(t) ∼ t2βf(t/Lz) ∼

{
t2β , for ξ � L

L2χ , for ξ � L
. (1.2)

Here, at early times, when the correlation length grows as ξ ∼ t1/z, the dynamics of
the process are characterized by the growth exponent β. When the correlation length
reaches the system size, the interface width w saturates. The roughness exponent χ

describes the spatial scaling properties of the saturated interfaces. The values of the
scaling exponents naturally depend also on the dimensionality of the interface.

Perhaps the most studied universality class is that of the nonlinear stochastic
differential equation proposed by Kardar, Parisi and Zhang [22]. The famous KPZ
equation is assumed to generically describe roughening processes with local prop-
agation of the interface along the outward normal, and to be applicable in a wide
variety of problems extending from propagating fire fronts to growth of bacterial
colonies. Derivation of the KPZ equation from microscopic principles is tedious [17].
The terms included in this equation can, however, be justified by investigating the
symmetry principles of the given roughening process, and by taking into account
propagation along the local normal of the interface. To do this we first divide the
continuum evolution equation into two parts,

∂h(x, t)

∂t
= G[h(x, t)] + η(x, h(x, t), t). (1.3)

Here G[h(x, t)] is the deterministic part of the growth equation, which depends on
the interface height, position and time. The relevant noise is denoted by the function
η(x, h(x, t), t). The first step in forming the deterministic part of the growth equation
is to list the basic symmetries of the problem and to exclude terms that do not sat-
isfy a necessary symmetry. The first symmetry, invariance under translation in time,
rules out an explicit time dependence of G. The second symmetry, translation invari-
ance along the growth direction, rules out an explicit height dependence of G. The
third symmetry, translation invariance in the direction perpendicular to the growth
direction, rules out an explicit x dependence of G. Rotation and inversion symme-
tries around the growth direction rule out odd-order derivatives in the coordinates.
The up-down symmetry of h would rule out even powers of h, but this symmetry is
often broken in non-equilibrium processes.

Terms that satisfy the relevant symmetry principles are thus the even deriva-
tives∇2nh, nonlinear terms like (∇h)2n, and terms including both of them. Here n is
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an integer. By including only the lowest order derivatives in the description of the
asymptotic behaviour of the growth processes, we can write the KPZ equation in
the form [7]

∂h(x, t)

∂t
= ν∇2h(x, t) +

λ

2
[∇h(x, t)]2 + F + η(x, h(x, t), t). (1.4)

The first term on the right hand side describes the ’bending stiffness’ of the interface
and ν is the related ’surface tension’. A diffusive relaxation of the interface would
be described by a fourth-order derivative [53].

The second, nonlinear term does not satisfy the up-down symmetry, but its ex-
istence follows from propagation along the local normal of the interface. The actual
form of this term follows from [7]

δh = [(vδt)2 + (vδt∇h)2]1/2 = vδt[1 + (∇h)2]1/2, (1.5)

where vδt is the infinitesimal propagation distance along the local normal of the
interface, and its contribution in the vertical direction is ∇h. By assuming small
slopes, |∇h| << 1, we can expand the local velocity from Eq. (1.5) as v + v(∇h)2/2.
The small-slope assumption is discussed in more detail later in Chapter 5 where
the KPZ equation is solved numerically. The third term in Eq. (1.4) is the (vertical)
driving force F . Due to the nonlinear nature of the growth equation h(x, t) cannot
as such be analytically solved in closed form, but many of its asymptotic scaling
properties in 1 + 1 dimensions can be obtained exactly [15, 24, 9, 44], and also by
dynamic renormalization group methods [17], when η is uncorrelated white noise.

The form of the noise term η(x, h(x, t), t) has a big influence on the scaling
properties of the KPZ equation, and warrants therefore a more detailed discus-
sion. We shall concentrate on the (1 + 1)-dimensional case. If the noise is Gaussian
white noise and both spatially and temporally uncorrelated, (i.e.), η = η(x, t) with
〈η(x, t)〉 = 0 and 〈η(x, t)η(x′, t′)〉 = 2Dδ(x − x′)δ(t − t′), the KPZ equation has [22]
scaling exponents β = 1/3 and χ = 1/2. In the saturated regime the spatial fluctua-
tions of this ’normal’ or annealed KPZ with Gaussian white noise are congruent to
random walk, and the width of the interface depends on D, ν and L. If λ=0, Eq. (1.4)
reduces to the linear Edwards-Wilkinson (EW) equation, which describes fluctua-
tions of equilibrium interfaces. For this kind of noise the EW equation can be solved
exactly, with the result χ = 1/2 and β = 1/4.

Uncorrelated annealed noise may also be distributed by a power law instead
of a Gaussian, P (η) ∼ η−(µ+1), where µ now characterizes the decay of noise ampli-
tudes [17]. In this case rare events with large amplitude dominate the roughening as
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the dynamics of the process is too slow to suppress these events. The nonlinearity of
the KPZ equation amplifies the rare large events, and spreads their effects laterally.
Below a critical value, µ < µc, the slower than Gaussian decay of noise amplitudes is
relevant, and the roughness exponent χ is proportional to µ. Power-law distributed
noise does not break the Galilean invariance, which leads to an additional scaling
relation for the KPZ exponents, χ + χ/β = 2. Power-law distributed noise usually
breaks the simple self-affine morphology of the interfaces, and their ’multi-affine’
properties are reflected in an infinite series of exponents instead of one [7].

Yet another possibility is long-range correlated annealed noise [17]. If noise is
only spatially correlated, 〈η(x, t)η(x′, t′)〉 ∼ |x − x′|2ρ−1δ(t − t′), Galilean invariance
holds, and χ = (1 + 2ρ)/3 for 1/4 < ρ < 1. For smaller values, ρ < 1/4, the normal
KPZ scaling is recovered. Temporal correlations break the Galilean invariance and
induce additional complications, but relations for both scaling exponents can still be
found [38].

In the case of spatially quenched noise, η = η(x, h(x, t)), the KPZ equation
displays a depinning transition at a critical value of the driving force Fc [3, 38]. De-
pinning of the interface can be considered as a critical phenomenon, where the av-
erage velocity vanishes with a power law v ∼ (F − Fc)

θ. For F < Fc the interface is
pinned to one of the many locally stable configurations. At F = Fc the scaling prop-
erties of the pinned interface depend on the behaviour of the nonlinear term mean-
ing that two new universality classes are formed. In the QKPZ universality class
the coefficient λ diverges at the pinning transition and interface roughening can be
mapped onto the directed percolation depinning (DPD) problem, by which the scal-
ing properties of the interface are determined by the spanning directed percolation
cluster [31, 43]. The scaling exponents for the pinned interfaces are χ = β ≈ 0.63. If
the nonlinearity vanishes at F = Fc, λ = 0, roughening is described by the linear
’quenched’ EW equation (QEW) with exponents χ ≈ 1 and β ≈ 0.88 for both the
pinned and the moving interfaces just above Fc [3]. Quenched noise together with
nonlinearity leads naturally to power-law distributed noise, and therefore interfaces
then typically have ’multi-affine’ scaling properties [7]. This means that in the QKPZ
case moving interfaces just above Fc are not self-affine, but the second moments of
the height-height correlation functions (Eqs.4.3 and 4.2) scale with exponents χ ≈
β ≈ 0.75 [30]. With a strong enough driving force, F > Fc, the interface no longer
gets pinned by the local disorder, and the normal KPZ case is recovered asymptoti-
cally [30].

In several experimental studies, c.f. Chapter 2, no clear asymptotic KPZ scal-
ing was however found. Also, there were many open questions related to the ob-
tained anomalous scaling exponents, from both experiments and numerical studies.
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Therefore, in 1995 we started to construct an experimental set-up to study the ex-
pected KPZ-type behaviour of slow-combustion fronts in sheets of paper [46]. The
task turned out to be quite challenging and demanding. After careful design and
construction of the experimental set-up, which took the best part of a year, we could
do our first experiment, and since then we have burned hundreds of samples and
gained quite a lot of insight in the kinetic roughening of interfaces, as will be seen
from the rest of this Thesis.

The outline of the Thesis is the following. Above we have briefly described the
theoretical motivation for our work. Chapter 2 includes a short description of other
experimental work on roughening interfaces. Chapter 3 is a detailed description of
our experimental set-up and the measuring procedure. Our main results are pre-
sented in Chapter 4, and numerical simulations of the KPZ equation with real noise
in Chapter 5. Chapter 6 comprises a brief conclusion and a discussion of possible
future work.



Chapter 2

Results from other experiments

Various experiments on kinetic roughening in systems such as surface growth, ero-
sion, imbibition (paper wetting), and fluid invasion have mostly failed to demon-
strate the ’normal’ KPZ scaling. To better appreciate this fact, some of these experi-
ments are briefly discussed in this Chapter.

J. Zhang et al. performed in 1992 the first reported experiment on the kinetic
roughening of slow-combustion fronts in paper. They used a thin (9.1 g/m2) lens
paper manufactured by Whatman. Paper samples of size (460 × 1100) mm2 where
treated with potassium nitrate (KNO3) to facilitate the propagation of slow-com-
bustion fronts. They found the appropriate range for the KNO3 concentration to be
(0.87-1.6) g/m2, yielding mean front velocities between 5.5 and 8.2 mm/s. Results
were reported for a KNO3 concentration of 0.95 g/m2. Paper samples were placed
vertically between metallic holders and ignited from the bottom. Experiments where
done under normal room conditions without any forced ventilation. A photograph
of a front was taken for 15 individual burns at a fixed time after the ignition. These
photographs were then digitised with the number of pixels 3000 × 512. The front
was defined as the boundary between the burning and intact areas of the sample.
The scaling properties of the fronts were analysed from the behaviour of the front
width w(L, t) as a function of front length L. They found good scaling of the surface
width, w ∼ Lχ, over nearly two decades, with an anomalous value for the roughness
exponent χ=0.71(5) [56].

Another recent (2001) paper burning experiment, by Balankin and Matamoros,
also displayed anomalous scaling of fire fronts (roughness exponent χ ∼ 0.83). They
burned with flames 400 mm long samples of Secant paper (200 g/m2) with sam-
ple widths of 12 to 80 mm. After the propagating flame front line (v=3.0(1) mm/s)
reached the middle of the sample, it was quenched, and the resulting ’post-mortem’
front was scanned for later analysis. The front position was determined from both
the leading and the trailing edge of the burned area. The spatial scaling properties

7
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of the fronts such determined were analysed using the sample averaged interface
position, a variogram and power spectrum methods [5].

Several experiments have been done on displacement of a fluid by another in
a porous medium. The interface between the two fluids also displays scaling be-
haviour for certain ranges of properties of the fluids and the porous medium. Rubio
et al. [49] made experiments on the water-air interface driven through effectively
two-dimensional systems of tightly packed glass beads in 1989. They found the
value β=0.73(3) for the growth exponent from the time-dependent interface width
w(L, t). Horvath et al. [19] made a similar kind of experiment in the following year.
They used glyserol instead of water, and the system size was (24 × 100) cm2, to be
compared with the size (15 × 55) cm2 used in Rubio’s experiments. Horvath et al.
determined both roughness and growth exponents by studying the height-height
correlations. For the growth exponent they found β ' 0.65, which again is higher
than the KPZ value. For the roughness exponent χ they found two regimes, with
χSR ' 0.81 at short range and χ ' 0.49 at long range. In both these experiments
fluid was injected through a system of glass beads. A different situation can be ar-
ranged by using capillary forces instead of a constant pressure as the driving force.
These imbibition experiments were also found to produce anomalously high values
for the scaling exponents, and their results were explained by the DPD model [2,20].

Another observation of two scaling regimes with a crossover to asymptotic
KPZ scaling was that by R. Surdeanu et. al. [50] in 1999. They studied kinetic rough-
ening of magnetic flux fronts penetrating a high-Tc thin-film superconductor. A
magnetic field was applied between the short sides of a Y Ba2Cu3O7−x film on
NdGaO3 substrate of size (1.5 × 8) mm2. High resolution magneto-optic techniques
were used to obtain a two-dimensional image of the local magnetic field at the sur-
face of the sample. Pictures of the local magnetic field were recorded at 1mT inter-
vals, and the front line was determined as the borderline between the region where
vortices are present and the flux-free region. The scaling properties of the fronts
were analysed using both the interface width w(L, t) and the two-point correla-
tion function. Both the roughness exponent χ and the growth exponent β displayed
crossover from anomalous scaling to KPZ scaling. The measured short-range scaling
exponents were βSR=0.65 below a field strength of∼ 10 mT (time can be measured in
terms of the continuously varying field strength), and χSR=0.64, below a crossover
length scale of 0.06 mm. The long-range scaling behaviour was found to be of KPZ
type with χ=0.46 [50].

In order to gain the true scaling properties of the roughening interfaces, a
proper averaging over noise should be done. For example, we found it necessary
to average over at least ten different samples with a few thousand front images for
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each sample to obtain reliable scaling behaviour for slow-combustion fronts in pa-
per. J. Zhang et al. took one photograph of each burn at a fixed time after the ignition,
and the results were averaged over 15 individual burns. Balankin and Matamoros
scanned the ’post-mortum’ fire front for at least 50 experiments. Rubio et al. obtained
30 images from each fluid-displacement experiment, and they used 10 different cap-
illary numbers (Ca) and three different bead sizes. Horvath et al. [19] used a CCD-
video camera with a sampling rate of 0.28 s to produce several thousand fronts for
one fluid-displacement experiment with fixed Ca and bead size. Surdeanu et. al. [50]
used two different samples and they recorded over one hundred fronts for both sam-
ples. Based on our experience, the averaging performed in Refs. [19, 50] approaches
an appropriate level, while in all the other quoted experiments limited averaging
may have affected the results. On the other hand, we found it necessary to extend
the averaging even much beyond the level of Refs. [19, 50].

All the experiments described above have produced short-range scaling expo-
nents significantly higher than those for the KPZ equation, with or without crossover
to KPZ values at long range. Various explanations have been suggested as for why
the KPZ scaling has generally not been found, and most of them are concerned
with the characteristics of the noise. In addition, when studying the universality
classes describing only the most essential factors of the process, the asymptotic scal-
ing regime should be reached, and it depends on both the dynamics and the noise
characteristics. Therefore, experiments should involve long enough time and length
scales and proper (extensive) averaging over noise to obtain reliable estimates, e.g.,
for the scaling exponents χ, β and z. There are also other quantities and distribution
functions that can be used to probe the scaling properties. These properties will as
well be considered in this Thesis.



Chapter 3

Measuring procedures

The goal of our measurements was to analyse in detail the scaling properties of
propagating interfaces at long enough time and length scales, and to produce enough
of data for extensive averaging over noise. To this end we considered slow-combus-
tion (smouldering) fronts moving in sheets of paper which was shown to asymptot-
ically obey the KPZ dynamics [47]. Paper is a common inhomogeneous material and
the propagation speed of slow-combustion fronts in them can be made conveniently
slow (v=0.5-10 mm/s; see Fig. 1.1). This Chapter is divided into three sections ac-
cording to how the measuring process proceeds in practice. The first section deals
with the properties of the paper samples and how the samples were prepared to ex-
hibit slow flameless burning. The experimental set-up and some essential mechani-
cal details are introduced in the second section, while the recording of the fronts is
discussed in the third section.

3.1 Properties of the samples

At the early stage of this work, propagation of smouldering fronts was tested in
many paper grades including cigarette paper, filtering paper, light weight coated
paper (LWC), other coated paper grades and copier papers of basis weights 70 g/m2

to 200 g/m2. For more detailed studies [34,36,41,40], four paper grades were chosen
based on a suitable span of properties to check the universality of the results and on
easy availability. The first samples burned by smouldering were made of cigarette
paper of basic weight 28 g/m2, manufactured by UPM-Kymmene (Tervakoski Pa-
per Mill). Another two of them were ordinary copier papers of basic weights 70
g/m2 and 80 g/m2, manufactured by UPM-Kymmene (Tervakoski Paper Mill) and
Metsä-Serla (now M-real, Kangas Paper Mill), respectively. The fourth paper grade
was thin lens paper of a basis weight of only 9.1 g/m2, manufactured by Whatman

10
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copier paper 80 g/m2

copier paper 70 g/m2

cigarette paper 28 g/m2

lens paper 9.1 g/m2

FIGURE 3.1 β-radiographs of paper samples of size (30×30) mm2. The image of the
lens paper is made by optical scanning.

Paper Ltd. An essential property of the samples was the variation in the local mass,
which naturally affects the local velocity of the front and is therefore one source for
the noise discussed in Chapter 1 above. The local mass distributions and their corre-
lations were analysed from β-radiographs like the ones shown in Fig. 3.1. The mea-
surement is based on the transmission of β radiation, whose attenuation coefficient
is inversely proportional to the local mass, but is not sensitive to the composition of
the samples, e.g. fibres and mineral fillers. β-radiographs for the copier papers were
taken from paper samples of size (177×455) mm2 using a spatial resolution of 0.085
mm, and for the cigarette paper the sample size was (385×500) mm2. For the lens
paper we used optically scanned images of size (210×540) mm2, which provide an
approximative description of the local mass variations.
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FIGURE 3.2 Spatial correlation functions for the paper samples shown in Fig. 3.1

Correlations were analysed by using the two-point mass fluctuation correla-
tion function defined by

Cm(~r) = 〈[m(~x)−m][m(~x + ~r)−m]〉, (3.1)

where m(~x) is the local mass, m its overall average, and brackets denote spatial
averaging. Correlation functions Cm for four paper grades with the best statistics
available are shown in Fig 3.2. Evident short range correlations for thin grades of
paper arise from the highly asymmetric shape of the cellulose fibres and from the
flocculated structure of the fibre network, and typically extend to somewhat beyond
the fibre length, i.e., to a few millimetres [48]. The periodic structure of the cigarette
paper (Fig. 3.1) is also seen in the correlation function of Fig. 3.2, and because of this
unwanted property we did not use cigarette paper in later studies. Some results on
cigarette paper are given in Ref. [34]. Another essential feature of the samples was
the ability to sustain the propagation of smouldering fronts. In cigarette paper a se-
cret recipe of chemicals was already added in the manufacturing process to avoid
flames when ignited. For the same purpose we used potassium nitrate (KNO3) as in
Ref. [56] earlier. Potassium nitrate, normally used as a component in fertilizers and
explosives, releases oxygen when its temperature exceeds about 400 ◦C, which en-
ables slow flameless combustion in paper when added by a sufficient amount. For
thick paper grades made of pure cellulose, such as filter papers, even addition of
KNO3 was not enough to initiate slow combustion. Calcium carbonate (CaCO3) and
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other mineral fillers with high heat capacity and conductivity, used e.g. in copier pa-
pers, improve slow combustion by reducing the dissipation of heat from the burning
paper through improved heat storage and conduction.

The KNO3 treatment was done by using several techniques. Copier paper sam-
ples (450×530) mm2 were embedded in an aqueous solution of KNO3 for 5 minutes.
The amount of the solution taken in by the samples, in a typical concentration of
about 5 g/l, was measured to estimate the final amount of KNO3 in the samples.
After embedding, the samples were placed on a table until most of the water was
evaporated, after which they were dried under a heated press to maintain their pla-
nar shape. After a day the relative moisture contents of the samples was saturated
to the level of humidity in laboratory air, and samples of specified size were cut out
of these larger sheets to avoid a higher absorbed amount of KNO3 at the bound-
aries. The appropriate amount of KNO3 in copier papers was approximately 0.8
g/m2. Due to the lower basis weight and much more porous structure, drying of
the KNO3 solution from lens paper was not homogeneous over the sample, leading
to an inhomogeneous concentration distribution of KNO3. Food dye, patent blue,
was used as an indicator to find ways to add KNO3 uniformly to the lens paper
samples. The most uniform KNO3 distribution was achieved by spraying both sides
of the samples on a hot metal plate with a KNO3 solution of concentration 20 g/l.
The metal plate was heated up to 100 ◦C so that the fine spray of the KNO3 solu-
tion was immediately dried from the sample. The amount of the added KNO3 was
measured by weighing four plastic plates (placed on each side of the paper sample
during spraying) before and after spraying, with an accurate analytical balance. For
lens paper, the amount of KNO3 sufficient for slow combustion was (0.2-0.9) g/m2,
leading to front velocities (6.5-10.5) mm/s. In Fig (4.8) the average velocity of the
lens paper fronts is shown as a function of the KNO3 concentration.

The distributions of fillers (CaCO3) and added KNO3 were measured with the
laser ablation method [16] on several thin layers of both lens and copier paper sam-
ples. Within the spatial resolution of the method (0.2 mm), we found no correlations
in the variations of the KNO3 or CaCO3 concentrations in any layers. The mean level
of the emitted potassium intensity in the laser ablation measurements was found to
be greater in lighter papers, and therefore stronger aqueous solutions of KNO3 were
used for heavier paper grades. In addition, β-radiographs were taken from copier-
paper samples after and before a 5 min soaking in a KNO3 solution to ensure that
the mass distribution did not change detectably in this process.

To summarize, we found no spatial correlations in the filler concentration, the
local variations in the mass, or the potassium nitrate distributions, beyond a few
millimetres, except for the cigarette paper.
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3.2 Combustion chamber

The experimental set-up, shown as a schematic diagram in Fig. 3.3, consists of a
combustion chamber, a sample holder and a camera system with a necessary com-
puter hardware and software. The framework of the combustion chamber, of size
(1000 × 1000 × 500) mm3, is made of aluminium L-profile. One side of the chamber
is covered by a detachable aluminium plate for installing the paper samples, and
the opposite side is made of glass to visually observe the experiments. Other sides
are covered by aluminium plates with movable inlets and outlets for air. Ventilator
ducts are formed between the outer covering and a combination of an aluminium
screen plate and a filtering matt, which make the incoming air flow more laminar.
Combustion gases are removed by a controllable fan and filtered electrostatically. In

FIGURE 3.3 A schematic diagram of the experimental set-up.

the middle of the chamber there is a detachable paper holder, designed for a maxi-
mum paper size of (400×600) mm2 (Fig. 3.4). The sample holder is an open metallic
frame, where the paper samples are attached from both sides to keep them planar
during combustion (Fig. 3.4 ). The copier paper samples were attached to the paper
holder with thin needles to minimize the heat loss from the burning front. Needles
are forced through the edges of the paper samples to ensure steady fixing. Extra
heat loss from the boundaries was first compensated with heat filaments that fol-
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FIGURE 3.4 The detachable paper holder with a lens paper sample.

lowed the combustion front. The filament shown in Fig. 3.5 was moved by rotating
a threaded bar by a DC motor. A typical heating power for one filament was about 10
watts. Later the edges of the samples were folded (see Fig. 3.5 ) to achieve a better
heat loss compensation. Copier paper samples had to be placed the right face to-
wards the cameras, because ashes predominantly bend only to one side of the sheet.
Thin lens papers were attached to the same holder but between two aluminium
bars. This arrangement was not an ideal way to deal with boundary conditions, but
our aim was to repeat the experiments reported in [56] and furthermore, lens paper
was not so sensitive to the boundary conditions. In both cases paper tension was
controlled by turning the bar shown in Fig. 3.4. Ignition of the samples was done
by heating a tungsten wire (Fig. 3.4) with a DC power supply. To attain a straight
smouldering front, the ignition temperature must be carefully adjusted. Too high a
temperature caused the sample to burst into flames, and with too low a temperature
the sample was ignited unevenly. The proper temperature range, red-hot (600-700)
◦C, for the tungsten wire of diameter 0.38 mm and length 400 mm, was achieved
with a power of 80 W. The tungsten wire was attached at both ends to springs to
keep it straight despite of its expansion while heated. The paper holder can be ro-
tated with respect to the adjustable air flow so that convective transfer of heat ahead
of the propagating front can be regulated, and other flow-dependent features of the
process can be optimized. Air flows in the chamber were simulated with a compu-
tational fluid dynamics software CFX 4, to ensure the conditions remained similar
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FIGURE 3.5 A close view of the fastening of copier paper. Both methods for compen-
sating the heat losses at the boundaries are also shown: the heating filament and the
folds at the sides of the sample.

for the whole sample, although simple visual observation of the combustion gases
gave even more accurate information about the flow conditions in the chamber. Sim-
ulated flow velocities in the chamber are shown in the Fig. 3.3. The typical flow rate
for the copier paper samples was (10-15) l/s, while lens paper samples were burnt
without forced ventilation.

3.3 Recording of the fronts

The data recording system was developed during the work along with advance-
ments in both the computer system and the charge-coupled device (CCD) cameras.
In the initial set-up the procedure started by recording the fronts with a CCD camera
and an SVHS video recorder. Afterwards, accurate front positions were determined
from the recorded images for detailed analyses.

The present camera system is based on three black and white CCD cameras
(Pulnix TM-6EX), which are moved with regular intervals along with the moving
front. Cameras with overlapping image fields were attached to a stand that was op-
erated with a pneumatic cylinder (Fig. 3.6). The control of the camera movements,
boundary heating filaments and forced ventilation was carried out with a multifunc-
tion I/0-board (National Instruments: AT-MIO-16DE-10) installed on the attached
computer. The control programs were written with the LabVIEW measurement and
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FIGURE 3.6 The moveable camera system.

automation software. Three parallel cameras, with a resolution of (758×581) pix-
els, were synchronized to take simultaneous images with a maximum frequency of
ten images per second. The images were transferred to the attached computer with
a frame grabber board (IC-COMP) manufactured by Coreco Imaging. Because ex-
periments where done in darkness, the only visible objects in the images were the
combustion fronts. By omitting the dark background we were able to compress the
size of each individual frame file from 431 kB to approximately 15 kB. Compression
was done on line and the compressed images were stored on the hard disk. After
the experiment the front line was determined from each frame by first finding the
pixels brighter than a given gray-scale value. A single-valued front line was then
fitted into the brightness profile. For the intervals, in which a front line could not
be identified, a straight line was fitted by interpolation (see Fig. 3.7). Cylindrical
image distortions caused by the lenses were corrected by using nonlinear warping.
The method requires a collection of 2D landmark points, whose true locations are
known together with their distorted images. These were then used to define a global
warping function. Using this warping function, corrections were made into the posi-
tion data of the individual cameras before joining the images. Typical defects in the
recorded images are shown in Fig. 3.7. Sparks and other rare defects were moved
out afterwards from the data files by using a robust filtering method based on min-
imising a cost function of the local and temporal gradients [33].
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FIGURE 3.7 A sequence of three digitised fronts with a time step of 0.2 s. Occasional
defects in the front detection, a spark and a pinning site, are clearly visible.

Because of many potential sources for failure in the experiments, the total
amount of acquired burns was around one thousand. The first problem was an ac-
curate control of the KNO3 concentration: too high an amount caused the sample to
burst into flames, and too small an amount caused fronts to quench or pin. In addi-
tion, recording and detecting of the actual front positions failed occasionally because
of uneven paper tightness (wrinkles in samples), ash formation which obscured the
fronts from the cameras, wrong camera placements, or too rough an interface which
caused some parts of the front to be out of camera view. Also, an even ignition
turned out to be quite a challenging task. Successful experiments required accurate
sample preparation, careful mounting of the paper sample, even ignition, correctly
calibrated camera system (movements, 2D landmarks for distortion correction), and
a lot of time spent in the dark laboratory.



Chapter 4

Experimental results

A great amount of data gathered over several years have been studied from many
perspectives. The surface width w(L, t), correlation functions C(r, t), and the struc-
ture factor S(k) were used to estimate the scaling exponents χ and β. The ampli-
tudes of the correlation functions and an inverse method, e.g., were also used to
determine the parameters of the KPZ equation. Distributions and correlations of the
surface height and velocity fluctuations were used to analyse the effective noise.
First return probabilities of surface fluctuations provided an independent way to
characterize the scaling properties [35]. A more detailed description of how these
quantities were determined can be found in the Thesis of Jussi Maunuksela [33].
Therefore, only the main results are presented in the present Thesis. Most of the
results are reported in the included publications except for the results in the last
section on the pinning transition and avalanches. These phenomena need a more
detailed analysis, but a preliminary account of them is given here for a more com-
prehensive view of the properties of smouldering fronts.

Our results for three different paper grades are presented in this Chapter. The
first two grades are copier papers with basic weights of 70 g/m2 and 80 g/m2, and
with a KNO3 concentration of approximately 0.8 g/m2. The samples of both copier
paper grades were placed at a 20◦ angle from the vertical direction and ignited at the
top of the sample. A slight air flow (∼ 10 l/s) was applied opposite to the propaga-
tion direction of the fronts to minimize convective heat transfer ahead of the front.
Both boundary heating methods described in Chapter 3, the heating filaments and
folding of the edges were used. The size of the copier paper samples was (390×500)
mm2. The width of the recorded area was 310 mm and the width of the area used in
the analyses of this Chapter was 270 mm with a pixel resolution of 0.135 mm. The
time step in front recording was 4.2 seconds for the 70 g/m2 samples, and 0.2–1.25
seconds for the 80 g/m2 samples, and the results were averaged over 10 and 8 dif-
ferent samples, respectively. Averages were thus taken over 2000 fronts for the 70
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g/m2 paper and over 40000 fronts for the 80 g/m2 paper.
The measurement set-up for the lens paper (9.1 g/m2) was similar to that used

if Ref. [56]. There was no forced ventilation and the samples were ignited from the
bottom. A typical KNO3 concentration was around 0.8 g/m2 and it was applied by
spraying. For samples with size (400× 550) mm2, the saturated region (see Eq. (1.2))
was not reached, and therefore the sample size was reduced in this case to (225× 550)
mm2. Ten fronts were recorded during every second with a pixel size of 0.138 mm,
and the results were averaged over 32 different samples. Averages were thus taken
over 20000 fronts. Lens paper was not very sensitive to the boundary conditions so
that there was no need for boundary heating, and the whole widths of the samples
were used in the analyses below.

4.1 Scaling properties

A straightforward way to estimate the growth exponent β is to use the scaling prop-
erties of the front width w(L, t) as defined in Eq. (1.2). In Fig. 4.1 the front width w(t)

is shown in a log-log plot as a function of time for the three paper grades. Uneven
ignition disturbs the early time dynamics of the roughening process and therefore
the KPZ type scaling of the front width is seen only after a short interval after ig-
nition. Front widths w for individual lens paper samples indicate large fluctuations
between different burns. For copier paper samples fluctuations are smaller leading
also to the lower saturation width despite the fact that the system size L was almost
double for the copier papers. The symbols used in the figures for different paper
grades are the same throughout this Chapter, F = lens paper (9.1 g/m2), ◦ = copier
paper (70 g/m2) and � = copier paper (80 g/m2). Also the roughness exponent χ can
be determined from the front width w. The results for χ are given in the enclosed
publication [40]. In measurements where only one system size L is used, like in our
set-up, the front width is determined for and averaged over subsystems of sizes ` so
that w2(`, t) = 〈〈[h(x, t)− 〈h(x, t)〉`]2〉`〉.

In addition to front width, especially when there are large fluctuations in the
data as in the case of lens paper (see Fig. 4.1 ), useful information can also be gained
from the qth order two-point height-difference correlation functions

Cq(r, t) = 〈[δh(x′, t′)− δh(x′ + r, t′ + t)]q〉x′,t′ , (4.1)

where q is a positive integer, h(x, t) is the height of the front at point x and time t,
δh(x, t) ≡ h(x, t)− h(t), the bar denotes an average over a front and the brackets an
average over all configurations (fronts and burns). For this quantity, one can define
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FIGURE 4.1 Time evolution of the front width for three paper grades. The slope of
both solid lines is the KPZ value for the growth exponent, β = 1/3. The symbols used
in the figures of this Chapter are: F = lens paper (9.1 g/m2), ◦ = copier paper (70
g/m2) and � = copier paper (80 g/m2). Individual lens paper burns are denoted by
dotted lines and the average of them by stars.

two scaling limits,
Gq(r) ≡ Cq(r, 0) ∼ Arχq , (4.2)

and
Cq(t) ≡ Cq(0, t) ∼ Btβq , (4.3)

which can be used to estimate the roughness and growth exponents, respectively.
In the saturated regime the functions Gq(r) can be averaged over all times (steady-
state configurations), and Cq(t) over all spatial points. The saturation time tsat was
estimated from the averaged surface width w(t). For copier papers the saturated
regime was approximately the last two thirds and for the lens paper the last half of
the data. For simply self-affine fronts χq = qχ and βq = qβ, with χ and β the desired
scaling exponents. The second moment of the spatial correlation function G2(r) is
shown in Fig. 4.2(a), and the temporal correlation function C2(t) in Fig. 4.3(a). In
both correlation functions (Figs. 4.2 and 4.3 ) two separate regimes of possible scal-
ing were found. The asymptotic behaviours of the correlation functions show clear
KPZ-type scaling for all paper grades, while at short time and length scales anoma-
lously large exponents were found. Accurate determination of the scaling exponents
was complicated by the “intrinsic” width of the fronts caused mainly by structural
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FIGURE 4.2 (a) Spatial correlation functions G2(r) for three paper grades, and (b) the
resulting effective exponents. Crossover scales from the short-range regimes to the
asymptotic scaling regimes are marked with dotted lines.
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FIGURE 4.3 (a) Temporal correlation functions C2(t) for three paper grades, and (b)
the resulting effective exponents. Crossover scales from the short-range regimes to the
asymptotic scaling regimes are marked with dotted lines.
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inhomogeneities of the samples. Therefore, we assumed the usual convolution ansatz
[54, 23, 12], and performed linear least-squares analyses of log10[Gq(2r) − Gq(r)] =

qχ log10(r) + const., and of log10[Cs,q(2t) − Cs,q(t)] = qβ log10(t) + const. The results
given in Table 4.1 were obtained after the intrinsic width was subtracted. In log-log
plots the short-range regimes seem quite long. Figure 4.2(b), in which the running
exponents of G(r) are shown in linear scale, proves however that no well-defined
scaling exists in the short-range regime. Also in a semilog plot (not shown) of effec-
tive exponents, no evidence of short range scaling can be found. Similar conclusion
can be drawn for the temporal correlation function C2(t) in Figs. 4.3(a),(b). The ’ap-
parent’ values of these exponents for short length and time scales were χSR ' 0.90
and βSR ' 0.75, respectively. Especially χ is well above the DPD value for moving
fronts, χ ≈ β ≈ 0.75. This indicates that quenched noise in the KPZ equation alone
cannot explain the observed short-range behaviour. In the short-range regime the
fronts also exhibit apparent multiscaling, i.e., fronts are no longer simply self affine,
and have different apparent exponents for different moments in the correlation func-
tion Eq.(4.1). The observed multiscaling properties of the fronts are presented in the
enclosed Ref. [41]. The short-range behaviour is expected to result from the effective
noise at short length scales, and the properties of this noise are studied in Section 4.3.
More extensive and precise data analyses for the scaling exponents are presented in
the enclosed publications [34, 37, 36, 41, 40].

Another specific property of the KPZ equation is the behaviour of the scal-
ing function f(t/Lz) in Eq. (1.2). In the stationary state KPZ fronts are equivalent
to random walks, since a fluctuation-dissipation theorem exists in 1 + 1 dimen-
sions [17]. The spatial fluctuations of the fronts depend only on the noise strength
D and the surface tension ν, but not on λ. On the other hand, temporal fluctua-
tions at short time scales, and transient phenomena, do depend on the nonlinearity,
and thus the crossover function f and its properties are an important indication of
KPZ roughening. Likewise one can use to this end the amplitudes of the correlation
functions (Eqs. 4.2, 4.3), A = D/ν and B = |λ|2βAβ+1Rg, where Rg is a universal
constant [13,22,38,21,11,45]. The theoretical value of Rg has recently been estimated
exactly [45], with the result Rg = 0.7247031092. For another universal number in the
KPZ theory, the ’strong-coupling fixed point’ given by g∗ = 1/2λ

[
A/Bz/2

]1/χ, the
exact [45] result is g∗ ' 0.8104567.., which does not appreciably deviate from the
various approximate results that had been achieved earlier [21, 14, 11, 27, 1]. Notice
that in this case of (1 + 1) dimensions, the two universal numbers are not indepen-
dent, 2g∗ = R

−3/2
g . Experimental values for both universal numbers are shown in

Table 4.1.
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TABLE 4.1 Results for the scaling exponents, amplitudes and universal constants. The
two latter quantities were determined for β = 1/3 and χ = 1/2. The scaling exponents
β and χ were obtained by first subtracting the intrinsic widths from the data.

χSR χLR βSR βLR A B Rg g∗

70 g/m2 0.90(3) 0.50(4) 0.36(3) 0.52(2) 0.186(12) 0.74(6) 0.79(9)
80 g/m2 0.90(4) 0.47(4) 0.75(5) 0.34(4) 0.475(7) 0.14(1) 0.73(5) 0.76(8)
9.1 g/m2 0.85(1) 0.50(6) 0.64(3) 0.43(6) 3.4(1) 8.0(8) 0.62(8) 1.0(2)

In addition to the asymptotic scaling exponents, the universal coupling con-
stant g∗ and the universal amplitude ratio Rg were found to be consistent with KPZ
behaviour, especially for the two copier papers (80 g/m2 and 70 g/m2). For the lens
paper agreement was not so good as the shortness of the saturated regime did not
allow adequate averaging. A detailed discussion of the universal coupling constant
and the universal amplitude ratio is presented in the enclosed publication [40]. For
the copier papers in particular, the measured values are indeed very close to the
exact results quoted above.

4.2 Demonstrating the existence of the nonlinear term

The different terms in the KPZ equation Eq. (1.4) have a physical meaning and their
coefficients can be determined from the recorded fronts. The nonlinear term, for
example, arises from propagation in the direction of the local outward normal of the
front, and the coefficient λ can thus be determined from the dependence of the local
velocity on the local slope. In a KPZ system the velocity v of a segment of length ` is
v = v0+(λ/`)

∫ `

0
dx

√
1 + (∇h)2. If the local slopes of the front are small, the slope (m)

dependent velocity can be expressed in the form v(m) ≈ c+(λ/2)m2, when only the
highest-order term from the expansion of the square-root term is included [17]. The
values determined for λ were 0.37(3) and 5.1(2) mm/s for the copier- and lens-paper
fronts, respectively, determined for a length scale of `=10 mm.

Another way to study effects of various terms in the (presumably KPZ type)
evolution equation is to use a specifically prepared sample. The existence of the
nonlinear term can be demonstrated, and the value of λ estimated, from the effect a
columnar defect has on the front profile as suggested by Wolf and Tang [55]. Based
on a mean-field calculation, and simulations on a lattice model that belongs to the
KPZ universality class, they concluded that the effect of the nonlinear term can be
seen from the difference in the front profile between defects with a higher and cor-
respondingly lower front velocity in the defect. Despite of its apparent simplicity,
this kind of experiment has never been performed before. This may be due to the
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FIGURE 4.4 Averaged front profiles for an advancing and a retarding defect in the
middle of the sample, for ∆C = 0.33 g/m2 (black line) and ∆C = -0.33 g/m2 (grey
line).

fact that it turns out to be rather difficult to perform such an experiment (both cases
included) in a controlled way.

In this experiment we used lens paper of size (200×550) mm2 and the colum-
nar defect was a 10 mm wide stripe in the middle of the sample. The velocity of
slow-combustion fronts was again controlled by varying the KNO3 concentration.
The front velocity in lens paper is shown in Fig. 4.8 a) as a function of KNO3 con-
centration. The samples were prepared by spraying KNO3 first to the area of the
lower concentration, which was then masked and another spraying was done to
get a higher amount of KNO3 in the remaining part of the sample. The amount of
the applied KNO3 was measured as described in Chapter 3. The control parameter
of the problem is the difference in the KNO3 concentration between the columnar
defect (C) and the rest of the sample (C0), ∆C ≡ C − C0.

According to the mean-field solution of Wolf and Tang, for a positive coef-
ficient of the nonlinear term (applicable for smouldering fronts), the propagating
fronts should asymptotically assume a forward pointing triangular shape (ampli-
tude ∆H+) around an advancing (faster front velocity, ∆C > 0) defect. In the case
of a retarding defect (∆C > 0), the sides of the stationary profile should not be lin-
ear asymptotically, and the amplitude ∆H− of the deformation should be clearly
smaller. This kind of difference between the front amplitudes is clearly seen in Fig.
4.4. For an advancing defect the amplitude of the triangular profile depends on ∆C,
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FIGURE 4.5 The absolute value of the amplitude (∆H ≡ |∆H±|) of the deformed
front profile around a columnar defect, scaled with L/2, as a function of difference in
the KNO3 concentration between the defect and the rest of the sample (o). The full
line is a fit by the mean-field solution.

system size L, coefficient of the nonlinear term λ and an effective (’renormalized’ by
noise induced fluctuations) surface tension νe. By fitting our data of 44 burns with
the mean-field solution as a function of ∆C, see Fig. 4.5, we found that νe ' 144

mm2/s and λ ' 5.6 mm/s. In these estimates we have used an ’effective’ sample
width Leff ' 180 mm, smaller than the 202 mm of the actual sample due to the
width of the defect stripe and to allowing for some boundary effects. It is evident
that ’renormalization’ of the surface tension is substantial, although it is rather diffi-
cult to estimate the value of the ’bare’ surface tension because of other ’renormaliza-
tion’ effects. The value for λ is a bit higher than those determined by other methods
(4.1 - 5.1 mm/s), but is reasonable in view of the rather large fluctuations in the data
used here.

In addition to the stationary profiles analysed above, it is possible to study the
transient profiles, i.e., how the defect induced profiles grow at the initial phases of
the process (∆H±(t)). The transient behaviour of the profile around an advancing
column is particularly simple. The Burgers equation (mean-field solution) admits,
[55] in this case a solution of exactly the same shape as the stationary solution, which
grows linearly in time until its baseline reaches the width of the sample. Such a
’self-similar’ transient does not exist in the case of negative ∆C, so analytical results
for transient behaviour are then difficult to find. We found that the initial transient
behaviour was clearly linear in time especially for ∆C > 0. In this case the trend
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FIGURE 4.6 Scaled velocity change of slow-combustion fronts due to a columnar
defect as a function of (C −C0)/C0 (?), and scaled current change in the totally asym-
metric ASEP model due to a defect bond as a function of (p−rp)/p = 1−r (◦). The full
line connects the latter data points. V0(J0) is the average velocity (current) without the
defect column (bond).

continued nearly linear until the baseline of the defect profile reached the sample
size L. For ∆C < 0 the behaviour was quite similar except that saturation took place
earlier. There was also some indication that in this case the growth of ∆H− became
nonlinear in time already before saturation, but because of the large fluctuations in
the velocity of the smouldering fronts in lens paper, it was difficult to determine the
detailed behaviour for small negative concentration differences ∆C. We expect that
the nearly linear behaviour initially of ∆H− is due to the system not being in a fully
asymptotic regime.

According to the mean-field solution an advancing defect causes a net increase
in the interface velocity, while there is no effect in the infinite size limit in the case
of a retarding defect. By this theory a transition in the average interface velocity
thus occurs at zero concentration difference, i.e., ∆Ccr = 0. There is a related phase
change in the shape of the interface: it is faceted for ∆C > 0, and rounded (flat in
the thermodynamic limit) for ∆C < 0. This faceting transition can be analysed in
more detail by mapping the problem to a totally asymmetric exclusion process with
a fast or slow bond in the middle of the system [25]. This model describes particles
hopping with a rate p to the next lattice site on the right (e.g.), except for the defect
bond where the hopping rate is rp. Free boundaries correspond to the experimental
system used for slow-combustion fronts. This problem admits an accurate numeri-
cal solution for the effect on the average current (J) (average front velocity (V )) of a
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defect bond. The results of the numerical solution of this model together with exper-
imental results for slow-combustion fronts in paper, shown in Fig. 4.6, indicate that
the expected transition indeed appears but at a non-zero positive value ∆Ccr > 0.
The numerical results indicate that the transition is continuous, and that there is a
deformation of power-law type in the faceted interface profile near the defect, but
so far the experimental accuracy has not allowed us to accurately characterize these
predictions.

The strength of the surface tension term was also tested by igniting fronts
with a sine-wave initial conditions with different wave numbers. The decay rate
of the amplitudes should be proportional to the surface tension ν. Because of time-
consuming sample preparation, this approach was only tested, and the results have
not yet been published. With some extra effort, it seems to be possible to get another
independent estimate for ν with this set-up. With the limited statistics so far, only
an order of magnitude estimate was possible.

4.3 Effective noise

As already discussed above, an evolution equation appropriate for the description
of the dynamics of slow-combustion fronts includes a noise term η, which takes care
of the fluctuating forces that affect the front propagation, and has been suspected to
be responsible for the anomalous short-range behaviour of the fronts. The effective
noise ηeff can be assumed to be well approximated by the velocity fluctuations of
the fronts in the steady-state regime [18]. Equivalently one can consider the velocity
fluctuations scaled by the time difference used to define the velocity, i.e., the height
fluctuations

ηeff(x, t) ≡ δh(x, t + τ)− δh(x, t), (4.4)

where δh(x, t) = h(x, t) − h(t). The noise amplitude distributions defined in this
way for time steps below and above the crossover time scale (3.7 s) for lens paper
are shown in Fig. 4.7. For short time steps the distributions show a power-law tail of
the form P (ηeff) = cη

−(µ+1)
eff , with µ ' 1.7. For higher τ the power-law tail of P (ηeff)

becomes less visible, the exponent µ increases towards µ = 5, and the distribution
approaches a Gaussian. Results for both copier papers showed a similar vanishing
power-law tail for increasing time difference in the noise amplitudes P (ηeff) [40].

Correlations in the effective noise were studied by using the two-point corre-
lation function of the velocity fluctuations,

Cu(x, t) = 〈δu(x0 + x, t0 + t)δu(x0, t0)〉, (4.5)
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FIGURE 4.7 The noise amplitude distribution P(ηeff ) for slow-combustion fronts in
lens paper determined for time steps τ = 0.5, 1.0, 2.0, 4.0, and 8.0 s. The inset shows
the spatial correlations of the velocity fluctuations in the same samples.

with δu(x, t) = u(x, t)−u(t), and u(x, t) = [h(x, t+τ)−h(x, t)]/τ . The spatial correla-
tions for lens paper are shown in the inset of Fig. 4.7. Correlations for all time steps
τ decay at about the crossover scale found from the correlation function G(r). The
effective noise ηeff(x, t) has a power-law distributed amplitude and is correlated in
the range where anomalous apparent exponents were found, and becomes Gaussian
white noise above the crossover scales where KPZ scaling was found. Non-Gaussian
amplitude distribution and correlations are both expected to affect the apparent scal-
ing exponents, so we expect these features of noise to explain the observed short-
range behaviour of smouldering fronts.

4.4 Determination of KPZ parameters by an inverse
method

The existence of the nonlinear and surface tension terms in the evolution equation
for smouldering fronts is evident from the experimental results described above,
and the scaling properties and the other observed features of these fronts also show
them to asymptotically obey the KPZ dynamics. Nevertheless, it is instructive to de-
termine the coefficients of KPZ equation directly from the space- and time-dependent
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fronts, and to this end we used the inverse method introduced by Lam and Sander
[28]. In this method the coefficients of the discretized KPZ equation are calculated
as functions of coarse graining. The continuum KPZ equation (Eq. 1.4) is discretized
such that

∆hi(t)

τ
' a · Hi(t) + ηi(t), (4.6)

where τ is the discretization time step (a multiple of the recording time step), a is
a vector of the coefficients of the KPZ equation a = [c, ν, λ/2], the vector Hi(t) =

[1,∇2h, (∇h)2] contains the coarse-grained derivatives of the surface height, and
ηi(t) is here assumed to be Gaussian white noise. Spatial coarse graining is done by
truncating the Fourier components with wavelengths smaller than ` for the recorded
front heights h(x, t). The vector Hi(t) is calculated from the coarse-grained front
heights for different time steps τ , and the vector of the coefficients a is determined
by minimizing the function J (a) = 〈[∆hi(t)/τ − a · Hi(t)]

2〉i,t. The noise correlator
D is determined from the relation D = (`τ/2)J (amin) with amin the solution of the
minimizing problem. The ’measured’ values for the coefficients for a copier paper
(80 g/m2) and the lens paper are given in Table 4.4. The renormalization of the co-
efficients as function of the coarse graining parameters τ and ` for lens paper is
shown in Fig. 5.1. The quoted values are averages over coarse-graining lengths `

∈ [15,20] mm, and determined for the longest coarse-graining times τ used. For c

and λ, smaller values for τ can, and have been, used in Ref. [35]. The consistency

Paper grade c [mm/s] λ [mm/s] ν( τ
∆t

)−1/3 [mm2/s] D/ν [mm]
Copier paper 0.49(2) 0.40(2) 0.49(3) 0.83(5)
Lens paper 9.2(5) 4.1(2) 2.0(1) 4.6(11)

TABLE 4.2 Measured values of the coefficients for a copier paper and the lens paper.

of the inverse-method results was tested with direct numerical simulations of the
KPZ equation to be described in the next Chapter 5. For better numerical accuracy
of the results a new robust filtering method was also used to remove erratic features
(effects of sparks) in the recorded front lines [35]. A more complete description of
the inverse method and its results are given in the Thesis of Jussi Maunuksela [33]
and in the enclosed publications [42, 35].

4.5 Pinning transition and avalanches

For untreated paper samples the velocity of the propagating slow-combustion fronts
would in principle depend on the properties of the paper, (i.e.), its density, moisture
and the amount and type of fillers, if they would propagate. Cellulose fibres have
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FIGURE 4.8 Velocity v and λ for lens-paper fronts as functions of the KNO3 concen-
tration. The ’well-propagating’ regime in the concentration is denoted by the dotted
lines.

such a low conductivity of heat with respect to the amount of heat produced in the
slow-combustion process that the latter process cannot sustain propagating fronts.
The heat produced per unit time can however be increased by providing additional
oxygen, so that eventually slow-combustion fronts do indeed propagate. This addi-
tional oxygen we provide with absorbed KNO3, whose concentration will thus serve
as the control parameter of the process. Below a critical value of the KNO3 concen-
tration (0.15 g/m2), slow-combustion fronts do not propagate, and slightly above
this value a few separated segments of the fronts can propagate for a while until
they eventually die out. Examples of quenched fronts are shown in Chapter 6, Fig.
6.1. Even a small further addition of KNO3 produces then an unbroken propagating
front, and this kind of ’well-propagating’ fronts with concentrations of (0.36-0.65)
g/m2 were used in the analyses reported above and in the enclosed publications.
Increasing still further the amount of KNO3 will produce avalanche type behaviour
in the propagating fronts, until after some value of the KNO3 concentration, the pa-
per will burst into flames. The velocity of fronts in lens paper samples is presented
in Fig. 4.8 as a function of the KNO3 concentration. When the average front ve-
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locity approaches zero, KPZ type models can be divided into different universality
classes depending on the behaviour of the coefficient λ of the nonlinear term. For
anisotropic models, like directed percolation depinning (DPD), λ diverges when the
reduced force f = (F − Fc)/Fc approaches zero. For isotropic models λ vanishes in
this limit [52]. As seen from Fig. 4.8, λ more likely decreases than diverges as the
front velocity, or the KNO3 concentration, decreases. Moreover, the scaling expo-
nents (χ ≈ β ≈ 0.75) for the DPD model in the case of moving fronts differ from
the exponents measured here. To obtain more reliable data in the presence of pin-
ning, the front detection algorithm and the analysis software should however be
modified.

For higher KNO3 concentrations occasional avalanches evolve, typically in the
centimetre range. If a relatively large forward fluctuation appears in the front, a non-
linear term of KPZ type will spread the defect in the lateral direction as seen in Fig.
4.9. These moving ’kinks’ appear as local avalanches in the fronts, and obviously
give rise to apparent multiscaling [6]. Areas of fronts with steep slope are increas-
ingly magnified by increasing the power of the correlation function. The effect of the
avalanches was tested by calculating qth order correlation functions (Eq. 4.2 and Eq.
4.3) for different sets of burns depending on the abundance of avalanches. It was
evident that multiscaling was more pronounced when there were more avalanches
present.

To conclude, our results indicate a clear asymptotic scaling behaviour of the
KPZ universality class. This is evident from the asymptotic behaviour of the spatial
and the temporal qth order correlation functions (Eqs. 4.3 and 4.2), and from the
scaling exponents determined from the local width. In addition to the KPZ scaling
exponents, we found consistent values for the universal coupling constant g∗ and
for the universal amplitude ratio Rg. We also have demonstrated the existence of
the nonlinear term from the propagating fronts and determined coefficients of the
KPZ equation by an inverse method [28]. For short temporal and spatial scales we
find higher apparent scaling exponents with apparent multiscaling. We also find
that the effective noise ηeff(x, t) is both correlated and power law distributed below
the crossover scales, which explains the observed non-trivial scaling behaviour.
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FIGURE 4.9 Map of the highest local velocities (avalanches) for a single lens paper
burn with a KNO3 concentration of 0.7 g/m2. White areas in the figure correspond to
velocities below the average velocity (vave=10 mm/s).



Chapter 5

Numerical solution of the KPZ
equation

Numerical work on interfaces has often been focussed on the asymptotic behaviour
of driven interfaces with uncorrelated Gaussian (white) noise, but experimental sys-
tems are always restricted in size and often dominated by anomalous noise. There-
fore, we used direct numerical solution of the KPZ equation with real noise to un-
derstand the short-range behaviour observed in our experiments. The noise was
obtained from real paper samples and it thus included inherent correlations. We
concentrate here on the connection between the experimental (the main focus of
this Thesis) system and the simulations. A more detailed account of the results of
the numerical work can be found in the enclosed publication [42].

The numerical solution of the KPZ equation (Eq. 1.4) was achieved by using
the Euler’s method solution of the finite difference equation

hn+1
i = hn

i +
∆t

∆x2

[
ν0(h

n
i+1 + hn

i−1 − 2hn
i ) + (λ0/6)[(hn

i+1 − hn
i )2

+(hn
i+1 − hn

i )(hn
i − hn

i−1) + (hn
i − hn

i−1)
2]

]
+ ∆t c0 +

√
2D0∆t

∆x
ξ(i, hn

i ), (5.1)

where hn
i is the front position h(xi, tn) at the i’th lattice point at the n’th time step.

The nominal values of the parameters ν0 and λ0 were obtained by an inverse method
[33] from our experimental data as described above. The effective values of the KPZ
parameters for the experimental data and for the ’best simulation model’ are shown
in Fig. 5.1. For the lens paper ν0=5 mm3/s and λ0=2 mm/s, and for both copier
papers ν0=0.10 mm3/s and λ0=0.3 mm/s, were thus used. The nominal values for
c0 and D0 were fixed by comparing the velocity distributions from simulations and
experiments.
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FIGURE 5.1 The effective parameters for τ= 0.2(.), 0.4(◦), 0.8(×), 1.6(?), 3.2(*) and
6.4(�) s of the KPZ equation as determined by the inverse method. On the left are
the experimental values and on the right the effective values determined from the
simulated fronts produced by our ’best simulation model’. The nominal values λ0 and
ν0 are indicated by the horizontal lines.

The two-dimensional noise matrices ξ(i, hn
i ) were obtained from β -radiographs

of copier papers (two samples of 70 g/m2 and three samples of 80 g/m2), and from
ten scanned images of lens paper (Fig. 3.1). A set of simulations was also done with
uncorrelated noise generated by disordering the pixels in the scanned images of
lens paper, i.e., by scrambling that noise. This scrambled noise was used as both
quenched and annealed noise in Eq. 5.1. In the simulation the value of the noise for
a given, not discrete, value of hn

i , was obtained from the noise matrix ξ(i, hn
i ) as a

linear extrapolation, except in the case of annealed noise when the noise matrix was
scrambled at every simulation step. For the nonlinear term we used an improved
discretization introduced by Lam and Shin [29] to produce the correct renormaliza-
tion of the KPZ parameters under coarse graining. To model the experiments, free
boundary conditions were naturally used, but we also studied possible effects of pe-
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riodic boundary conditions. The spatial resolution ∆x of the simulations was set to
be the same as the resolution in our experiments, ∆x =0.102 mm. The temporal reso-
lution ∆t was set small enough to ensure the numerical accuracy of the integration.
For too small values of ∆t the simulated fronts reached a pinned, not propagating,
configuration of h(x, t), where the deterministic terms of Eq. (5.1) and the noise con-
tribution locally had exactly opposite values. This happens because for increasing
the temporal resolution ∆t the noise term vanishes more slowly than e.g. the driving
force c0. For the value ∆t=0.001 pinning was observed for c0 ' 4.5, which was well
below the value c0 ' 10 used in our ’best simulation model’.

We also tested other possible discretizations of the nonlinear term. The most
simple version was the standard discretization ∆t

∆x2 (λ0/8)(hn
i+1 + hn

i−1)
2 [39]. We also

tested nonlinearity without the small-slope approximation, i.e., the nonlinear term
above was replaced by λ0∆t

√
1 + (hn

i+1 + hn
i−1)

2/4∆x2 − λ0∆t, where the last term
is needed to compensate for the exclusion of the constant term in the Taylor expan-
sion of

√
1 + (dh/dx)2 in Eq. (1.4). In our simulations (with rather limited statistics

because of the availability of input noise data) we found no noticeable differences
between results produced by different discretizations, or by different boundary con-
ditions.

A data analysis similar to the one of our experimental results was then per-
formed for all simulation data. Unlike in the case of experimental data, there was no
reason to remove a global tilt from the fronts because scanner errors were corrected
by normalizing the average of each column of the noise matrices to zero. The evolu-
tion of the front width in the lens-paper simulations is shown in Fig. 5.2. The solid
line denotes the front width w2(t) averaged over ten independent simulations start-
ing from flat initial conditions. The dashed line is the evolution of ten simulations
with the same noise but with different rough initial conditions. The guideline in Fig.
5.2 corresponds to the theoretical value for the growth exponent in the asymptotic
regime, β = 1/3. The inset shows the magnitude of the fluctuations for ten indepen-
dent simulations.

In Fig. 5.3(a) we show the spatial correlation function G(r) for simulations,
where as the input noise we used an optically scanned image of lens paper [de-
noted by (I)], β- radiographs of copier papers [(II) and (III)], disordered annealed
[A(IV)] and quenched [Q(IV)] noise (with the amplitude distribution of the lens pa-
per) . Like in the experiments (see Figs. 4.2, 4.3), distinct crossovers to asymptotic
scaling are evident, except in the result for noise A(IV). The slopes of the guidelines
in the figure are taken from the experimental results and match well the simulated
results. For the short-range regime we find χSR ∼ 0.9 and for the long-range (asymp-
totic) regime χLR ∼ 0.5. We note that G(r) displays quite a short asymptotic scaling
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FIGURE 5.2 The average front widths w2 as functions of time for ten lens-paper
simulations. The result for a flat initial condition is plotted with a thick solid line, and
with a dashed line for rough initial conditions. The inset displays the magnitude of
fluctuations, showing the individual results for ten realizations of noise.

regime if the simulations are started from flat initial conditions. This is because of
the limited size of the ’paper’ (scanned noise matrix) in the simulations. Increasing
the nonlinearity and starting from a rough initial configuration speeds up roughen-
ing, and facilitates a more accurate determination for χLR. The temporal correlation
functions C(t) for the same simulations are shown in Fig.5.3(b). Again, the slopes
of the guidelines are taken from experiments [40], and correspond to βSR = 0.7 and
βLR = 0.33. Like in the experimental results, the short range ’apparent’ rougheness
exponent exponent is above the reported DPD value [17]. In Table 2 of Article VI
we show the locations of the crossover points rc and tc for spatial and temporal
correlation functions, respectively. First, the values rc and tc produced by the sim-
ulation models are reasonably close to those measured in the experiments [40]. As
expected, simulations with randomized annealed noise A(IV), display no crossover,
and for randomized but quenched noise Q(IV), crossover-like behaviour occurs only
at a scale of a few discretization steps. The second question concerns the origin of
the crossovers. By comparing different simulations we observe that, for the given
noise correlations, the spatial crossover scale rc is not very strongly dependent on
the simulation parameters or on 〈v〉. We conclude that rc is mainly determined by
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FIGURE 5.3 (a) Correlation functions G(r) for five different noises (see text). The
solid lines correspond to the experimentally observed scaling exponents (χSR=0.9 and
χLR=0.5). (b) Correlation functions C(t) for the same noises. The solid lines corre-
spond to the experimentally observed scaling exponents (βSR=0.7 and βLR=0.33). For
comparison, we whow for lens-paper noise the correlation functions for three differ-
ent values of the driving velocity, curves from top to bottom have c0 = 8.4, 11.4, and
13.4 mm/s, respectively. Of these c0 = 11.4 mm/s is the ’best simulation model’ for
the lens paper.
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the correlations in the input noise. Within the accuracy of the crossover values, we
find that rc ∼ tc〈v〉, where the constant of proportionality is close to unity. This result
is in agreement with rc being mainly determined by the input-noise correlations, as
asymptotic scaling would in this case be expected for times t > rc/〈v〉.

The effective noise was determined for the simulated fronts exactly as for the
experimental data. An interesting feature concerning the effective-noise correlations
C(r) becomes evident from the inset of Fig. 5.4, where these correlations for simu-
lations with real and randomized input noise are shown. For both simulations, the
effective-noise correlations were rather similar, despite the totally different nature
of the input noises. We can conclude that the correlation function C(r, t) calculated
from the local velocities, Eq. (4.5), includes a significant contribution from the deter-
ministic part of the dynamics. The amplitude distributions P (ηeff), shown in Fig. 5.4,
of these effective noises had no power-law tails for any time step τ , in contrast with
the experimental results of Fig. 4.7, and also no multiscaling was found in the cor-
relation functions Cq(t) and Gq(r). Thus, as expected, the present KPZ simulations
can not include all features of the real burning process, e.g., the dynamical features
of noise.



Chapter 6

Conclusions

In this Thesis I have presented a detailed description of a high-resolution well-
controlled experimental set-up for studies on the dynamics of slow-combustion
fronts. Specially prepared paper samples of varying size were ’burned’ in the com-
bustion chamber, and the propagation of the smouldering fronts was recorded with
high spatial and temporal resolution. Several different measurement configurations
were used to obtain more detailed information about the roughening process.

A large amount of data for different paper grades, measured with different
set-ups, was carefully analysed, and two separate regimes were found. The asymp-
totic scaling behaviour of the fronts is clearly that of the KPZ universality class,
and their apparent short-range scaling is dominated by nontrivial noise leading to
anomalous higher ’effective’ exponents and apparent multiscaling. Other proofs of
the KPZ universality class were achieved by determining the universal coupling
constant and amplitude ratio, by determining the parameters of the applicable KPZ
equation, and by studying the first-return probabilities of front fluctuations. The ex-
istence of the nonlinear term in the evolution (KPZ) equation was independently
shown by analysing the effect of columnar defects on the front profile.

For reliable results we performed extensive averaging of the data and care-
fully analysed the noise characteristics. Simulations of the KPZ equation confirmed
qualitatively that our results for anomalous short-range behaviour can be explained
by KPZ-type dynamics with appropriate nontrivial noise. We observed no appar-
ent multiscaling properties in the simulations, most probably because of lack of
avalanche-type dynamics as seen in the experiments.

Several questions still remain open and will be subjects of further studies. Our
preliminary results for the distribution of height fluctuations display interesting
non-trivial properties [44]. Furthermore, there are parts of the phase space of the
system which have not been analysed in any detail, like the pinning transition, an
example of which is shown in Fig. 6.1. This transition, and how it is approached,
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FIGURE 6.1 Pinned interfaces. The lower configurations are for copier paper samples
and the uppermost configuration for a lens paper sample with a low KNO3 concen-
tration.

should be studied in more detail. To conclude, it has been a privilege to work in a
challenging field of noisy systems and to see how a process with a large number
of parameters and randomness can be described by a relatively simple stochastic
evolution equation.
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