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Abstract

Semiconductor quantum dots have established their position as testing laboratories for
many-body quantum effects. Artificial tuning of external parameters makes the physics
of quantum dots particularly interesting. The number of confined electrons or the
strength of the confining potential can be varied and, consequently, the characteristics
of the quantum mechanical state can be changed.

In this Thesis, we employ the density-functional theory to examine the electronic and
magnetic properties of coupled quantum dot structures. We develop an exchange-
correlation energy functional to be used in the density-functional calculations of cou-
pled systems. We study vertical electron-hole quantum dot molecules, one-dimensional
quantum dot arrays and multicomponent quantum dots in which the carriers could
belong to the different bands of the semiconductor material.

Computational studies of complex coupled quantum dot structures call for efficient
numerical methods. To be used as the computational tool, we chose the Kohn-Sham
formulation of the density-functional theory in which the exchange and correlation
effects are treated within local approximation. We believe that the density-functional
theory gives a satisfactory qualitative picture of the many-body effects governing the
physics of coupled quantum dots.
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1 Semiconductor Quantum Dots

1.1 Introduction

Since their discovery in the 1970s the low-dimensional semiconductor nanostructures
have evolved from scientific curiosities to means of probing the quantum mechanical
many-body effects and to modern devices with an exciting application potential. The
many-body quantum effects are regularly studied in heterostructured nanodevices
that act as electron traps or wave-guides. Experiments as well as theoretical studies
have revealed the microscopic nature of these devices and active research brings along
also commercially interesting innovations.

Despite the giant leaps in the progress of fabrication and measuring techniques in the
nanometer-sized devices the inter-particle correlations make the physics and the ex-
periments challenging. Numerical modelling can give some insight into the many-body
effects observed in experiments. However, due to the complexity of nanostructures,
modelling requires well-justified simplifications in order to make the problem tractable.
Often the problem is reduced to finding the eigenspectrum of the many-body Hamil-
tonian, which can only be done numerically for a relatively small number of particles.
Paul Dirac, one of the pioneers in the many-body quantum mechanics, has commented
on the difficulty of this task:

"The underlying physical laws necessary for the mathematical theory of
a large part of physics and the whole of chemistry are thus completely
known, and the difficulty is only that the exact application of these laws
leads to equations much too complicated to be soluble.”

Since Dirac’s days methods and computers have evolved to a level where problems of
several electrons can be solved. One milestone in this development has been the Kohn-
Sham formulation of the density-functional theory, which can be used in ground-state
calculations of systems containing up to hundreds of electrons.

Quantum dots are ideal candidates for probing many-body effects theoretically and
experimentally. With modern fabrication methods one can confine a tunable number
of electrons into a small island. The size of the island can be made comparable to
the de Broglie wavelength of an electron so that a true quantum confinement can be



2 Semiconductor Quantum Dots

achieved. Consequently, quantum dots have a microscopic shell structure that can be
revealed in transport measurements. Due to this similarity to real atoms, quantum
dots are often called artificial atoms.

Trend in the studies of quantum dot structures has been to prepare evermore complex
devices using, for example, self-assembly [3, 9|. Coupled quantum dots are interesting
also in studies of quantum computing in which two-state systems are needed for
realisation of qubit [10, 11]. Investigation of these structures with numerical methods
involves solving rather large problems accurately and yet in a reasonable time-span.
The density functional theory has proven its quality in studies of large atomic clusters
and has also constantly been used in quantum dot modelling.

In this thesis, we employ the Kohn-Sham method to view the many-body ground-state
effects in different quantum dot structures. In this chapter, we review the fabrication
and experimental methods of quantum dots and discuss the approximations needed
for quantum dot models. In Chapter 2, we present the basics of the Kohn-Sham
formulation of the density-functional theory, discuss numerical methods and review
briefly other methods used in electron structure calculations. Chapters 3-5 deal with
the results presented in publications [I}-[TV].

1.2 Fabrication and Experiments

Two-Dimensional Electron Gas

Two-dimensional electron gas can be formed in the heterojunction between two dis-
similar semiconductor alloys [12]. A prototypical heterojunction can be prepared by
depositing a thin layer of AlGaAs alloy on a GaAs layer with molecular beam epitaxy
technique, which allows an atomic scale precision in layer composition. There are no
appreciable lattice distortions on the junction since the lattice constants and struc-
tures of GaAs and AlAs are identical, but the band gaps of AlGaAs and GaAs alloys
are different. Charge transfer across the junction interface will adjust the chemical
potential constant throughout the junction. Consequently, the band edges bend giv-
ing rise to a potential barrier on the GaAs side. By sufficient doping, the chemical
potential reaches this potential well, and the conduction electrons will be trapped
on the vicinity of the interface. The motion of the electrons parallel to the interface
will remain free and the resulting electron gas is dynamically two-dimensional if only
the lowest perpendicular state is occupied. Due to the shallowness of the confine-
ment well, the experiments on two-dimensional electron gas are usually performed at
temperatures of few kelvins down to millikelvins.
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Lateral Quantum Dots in Heterostructures

The motion of electrons in two-dimensional electron gas can be restricted further by
etching and gate patterning techniques. Lithographic patterning of metallic gates or
electrodes on top of the heterostructure can be used to define lateral quantum dots
containing several hundred electrons. The electrons in the two-dimensional electron
gas are repelled by the negative voltage applied to the gate electrodes and, with
suitable geometry, the electrons can be clenched into a small island [13|. The number
of confined electrons can be tuned by changing the gate voltage. Earlier the lower
bound for the number of confined electrons was limited to few tens of electrons,
but the modern techniques in gate patterning allow also few-electron confinement.
Recently, Elzerman et al. have reported a realization of a gate patterned few-electron
double quantum dot in AlGaAs/GaAs heterostructure [10].

Microscopic Shell Structure of Vertical Quantum Dots

Etching techniques are well-suited for fabricating pillar shaped few-electron quantum
dots. In the very first devices, electron beam lithography was used for defining pillars
in AlGaAs/GaAs heterostructure. By attaching electric contacts at the ends of the
pillar, Reed et al. were able to measure electron transport oscillations in a vertical
quantum dot caused by Coulomb blockade effect [14]. Tarucha et al. were the first
to reveal the microscopic shell structure of vertical quantum dots in electron trans-
port measurement [15]. The quantum dot setup they used is shown in Figure 1.1.
A double-barrier heterostructured pillar is surrounded by a metallic voltage-biased
Schottky gate, which allows a full control over the lateral confinement and enables
single-electron charging of the dot. By measuring current through the pillar as a func-
tion of gate voltage V}; Tarucha et al. observed Coulomb oscillations resulting from one
by one addition of electrons to the dot. The conductance peaks were not equidistant
but their spacing depended on the electron number N. The voltage spacing between
the current peaks is proportional to the addition energy, which measures the changes
of electrochemical potential as a function of the electron number. Addition energy
spectrum shows pronounced maxima at N = 2,6 and 12. These "magic” electron
numbers are related to the microscopic shell structure of the quantum dot.
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Figure 1.1: Schematic view of a vertical quantum dot. The dot is located between two heterostruc-
ture barriers and is surrounded by a Schottky gate. The number of confined electrons can be tuned
by varying gate voltage V.

1.3 Modelling Vertical Quantum Dots

Successful modelling of a quantum dot involves few well-justified approximations to
make the model tractable. The simplifications lead to the fundamental problem of
condensed matter physics, that is, the problem of solving the many-body Schrodinger
equation.

Approximations

The pillar shaped vertical quantum dot described in the previous section has a diam-
eter ten times longer than its thickness, and the experiments are performed at around
50 mK. Therefore, one can assume that the confined electrons occupy only the lowest
state in the z-direction (along the pillar) and the dot is a smoothly confined circular
electron island in two-dimensional plane. The "magic” electron numbers coincide with
the closed shells of the circular two-dimensional harmonic oscillator giving a hint that
the confinement is parabolic to a good approximation.

The confined electrons originate from the conduction band of the semiconductor, and
only the bottom of the band is populated by the conduction electrons. In the effec-
tive mass approrimation, the minimum is approximated with a parabolic dispersion
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Figure 1.2: Upper: Coulomb oscillations in the linear transport through a vertical quantum dot.
Peak separation depends on the electron number N, and it is especially long for N = 2,6, and 12.
Lower: Addition spectrum of a vertical quantum dot. The addition energy spectrum computed from

the spin density-functional theory (solid line) compares well to the measured spectrum (dashed line)
[16].

relation with curvature determined by the effective mass m*. The screening of the

Coulomb interaction by the ions of the lattice is taken into account in the dielectric
constant e.
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Hamiltonian for a Quantum Dot

In the approximations described above, parameters m* and € include the complicated
bandstructure effects of the underlying lattice. In the resulting model, the quantum
dot is treated as a two-dimensional electron system confined into external potential
Vegt(T), where 7 = (z, y). In the absence of an external magnetic field, the Hamiltonian
for the quantum dot with N electrons reads

N/ p? 1 e?
H = iy (1 N 1.1
> (S ruatr) + S el = (1)

o]

The first of the two terms consists of the kinetic energy and the external harmonic
confinement,
1

Vegt(T) = ém*w2r2, (1.2)
while the second two-body term incorporates Coulomb interaction between the elec-
trons. The Hamiltonian is often written in terms of effective atomic units, where
h = 4meeg = m* = e = 1. Then, the units of energy and length are effective Hartree
Ha* = m*e!/h?(4meey)? and effective Bohr radius ajy = h?(4meey) /m*e?, respectively.

The complications in solving the many-body problem arise from the correlations
caused by the electrostatic repulsion between the particles and the antisymmetry
requirement of the wave function. There are several methods available for attacking
the correlated few-electron problem. We will discuss those in the following chapter.

The analytically soluble single-particle part of the Hamiltonian (1.1) is the starting
point of quantum dot modelling and it also yields some qualitative features of the in-
teracting system. The single-particle wave functions in the two-dimensional harmonic
potential are

n! r\ ™ ,
Grm(1,0) = it \'m])! \/%lo (E) exp(_rQ/QZS)Llf”(7"2/[8)6“”9. (1.3)

Here L,‘nm‘ is a Laguerre polynomial and |y = y/h/m*w is the oscillator length. In the
presence of magnetic field perpendicular to the plane, the oscillator length is replaced
by Ig = v/h/m*Q, where Q? = w? +w?/4 and w, = eB/m* is the cyclotron frequency.

Due to the circular symmetry of the potential, the orbital angular momentum m is
a good quantum number. As the motion is restricted to two dimensional plane, the
angular momentum will concur with its z-component, thus m = 0,4+1,+2,... The
principal quantum number n tells the number of nodes of the radial part of the wave
function and, therefore, takes values n = 0,1,2,... The corresponding single-particle
energies are

Enm = hw(2n + |m| + 1). (1.4)
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The single-particle spectrum is visualised in Figure 1.3, in which we see that the
degeneracy of the [th shell is 2/, where [ = 1,2,..., and factor 2 stems from spin.
If we occupy the 2D oscillator levels with non-interacting electrons, we notice that
shell closures occur at electron numbers N = 2,6,12, ..., and they coincide with the
"magic numbers” in the addition energy spectrum of Figure 1.2. The main effect of
the Coulomb interaction is to maximise spin due to Hund’s first rule at open shell
electron numbers N = 4,9,16... These numbers correspond to the maxima in the
addition spectrum.

8nm
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2
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1 -
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Figure 1.3: Lowest s,p, sd and fp shells of the two-dimensional harmonic potential. The quantum
numbers for each state are shown in parentheses (n,m)



2 Density-functional Theory in
Quantum Dot Modelling

Density-functional theory (DFT) in its self-consistent formulation by Kohn and Sham
is one of the most frequently used methods in quantum dot modelling and in electronic
structure studies of condensed matter in general. The strength of the theory resides
in the observation of Hohenberg and Kohn that the electron density can be used to
determine the ground state instead of the many-electron wave function. The quantum
mechanical N-electron wave function needs N spatial and spin variables for its com-
plete description while the density is a real valued function of a single spatial variable.
This huge reduction in the degrees of freedom makes the many-body problem solu-
ble at least in principle. In practice the accuracy of the method is dependent on the
approximations needed to take into account the exchange and correlation effects that
become all-important in the description of few-electron low-density quantum dots.

2.1 Principles

The Hohenberg-Kohn Theorem

The many-body Hamiltonian (1.1) incorporates operators for the kinetic energy, the
external potential and the pair interaction between the electrons, that is,

H =T+ Vi + U (2.1)

The energy of the electron system in state ¥ is given by the expectation value of
the Hamiltonian, E[¥] = (V|H|¥), when the wave function is normalised, that is,
(U|¥) = 1. According to the variational principle, the ground state ¥, yields the
lowest energy. Thus, the variational minimisation of E[¥] with respect to all the
allowed N-electron wave functions will yield the exact ground state W,

Instead of searching the whole Hilbert space of wave functions in order to find the
ground state, we may as well search for the ground state density [8]. This is justified
by the Hohenberg-Kohn theorem stating that the energy of the interacting electrons
can be written as a functional of the electron density n, and that the minimisation of
the resulting functional with respect to the density yields the nondegenerate ground
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state density which has a one-to-one correspondence to the external potential ve, [17].
The densities qualifying this Hohenberg-Kohn criterion are called v-representable and
the functional to be minimised is

Eln] = (U[n)|T + Viws + U |[n]) = Fln] + / () Vg () (2.2)

where F[n| = (U[n]|T + U..|¥[n]) is independent of the external potential and, thus,
forms an universal functional for all the N-electron systems. Clearly, the exact form of
the F'[n] is unknown and approximations are needed. The very first density-functional
method is called Thomas-Fermi theory, in which the interaction energy is approxi-
mated by the Hartree energy of the electron charge distribution and, for the kinetic
energy, a local approximation is used [1|. The results of Thomas-Fermi theory are
seldom satisfactory and, therefore, more elaborate approximations and methods have
been developed.

The formulation of the DF'T by Hohenberg and Kohn restricts to the nondegenerate
ground states and to v-representable densities that must be in one-to-one relation to
the external potential. The constrained search formulation of the original Hohenberg-
Kohn theorem by Levy [18] and Lieb [19] relieves these restrictions. Levy showed that
it is in fact sufficient to constrain the search for the (possibly degenerate) ground state
to the N-representable densities that result from square-integrable, antisymmetric
wave functions.

2.2 The Kohn-Sham Method

Kohn and Sham turned the density-functional theory into a widely-used tool in com-
putational condensed matter physics. The original idea is to examine a non-interacting
reference system for which the density is exactly the ground state density n(r) [20]. By
introducing the exchange-correlation functional, the many-electron problem reduces
to a set of single-electron equations, describing an individual electron moving in an
effective potential created by all the others.

Non-interacting reference system

The Hamiltonian for a system where all the interactions are turned off is simply a
sum of one-body operators, that is,

5 W ol (et ewen | 23)
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where vy(r) is a single-particle potential. The wave function is a Slater determinant
constructed from the N lowest one-electron states ¢; satisfying equation hy; = g;1;.
The density of the Slater determinant is simply a sum of the densities of the one-
electron orbitals. The resulting functional for the energy of the non-interacting system
is

E.[n] = Tu[n] + Viln] = sz i) + / v(r)n(r)dr.  (2.4)

Minimisation of the above functional leads to Euler-Lagrange equation

0T [n]
= s(r) + on(r)’
where the Lagrange multiplier u is needed for conservation of the electron number.

Kohn and Sham used these features of the non-interacting system to reduce the in-
teracting many-body problem into a set of one-body equations.

(2.5)

Kohn-Sham equations

In the Kohn-Sham method, the exact kinetic energy is replaced by the non-interacting
kinetic energy T,. Furthermore, the main contribution to the interaction energy is
contained in the electrostatic Hartree energy,

/dr/d /47T€60\'r—r)’| (2.6)

In order to produce the desired separation into Ti[n] and U[n], the universal functional
is written in the form

Fin] = T[n] + Un] + Ey.n], (2.7)
where the exchange-correlation functional E,.[n| = T'[n|—T[n]+Ue.[n|—U[n] contains
the difference between the true kinetic energy and non-interacting kinetic energy and
the non-classical part of interaction energy. Using these definitions, the Euler-Lagrange
equations for the non-interacting reference system (2.5) and for the true interacting
system become identical if we identify v as

e*n(r)

Vs =: Vesf (1) = Ve (T) +/ dr’ + ve(r), (2.8)

dmeey|r — 7|
where v,. = dE,./dn(r) is the exchange-correlation potential. This similarity between
the reference system and the true system allows us to use the one-body tools to solve
the interacting system: For a given v.sf, one obtains n(r) that satisfies the Euler-
Lagrange equation simply by solving the N one-body equations

{ Qij (r )} Yi(r) = enbi(r) (2.9)
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and setting
N
n(r) = [i(r) (2.10)
i=1

The Kohn-Sham energies ¢; and eigenfunctions ;(r) do not have a direct physical
interpretation, but are more or less mathematical auxiliaries. Nevertheless, they are
used to determine bandstructures for lattices, and they give useful information about
the internal electronic structure of quantum dots. The equations (2.9) are coupled
together via the effective potential (2.8) making solving the ground state density
(2.10) an iterative process.

Extensions of DFT to Magnetic Systems

Initially, the DFT was developed in spin-independent formalism. Studies of systems
in an external magnetic field, however, call for inclusion of the spin degree of freedom.
Spin effects are essential also in the absence of external magnetic fields, for example
in open-shell quantum dots [16] and lattices with broken spin symmetry (such as
ferromagnets).

The spin polarization effects are included in spin-density-functional theory (SDFT)
introduced by von Barth and Hedin |21]. In the SDFT, the total electron density
comprises of spin-up and spin-down densities, that is, n = n; +n|, where

1o(r) = 3 ) 2.1)

for N, electrons with spin ¢ = (T, |). Consequently, there are now two sets of Kohn-
Sham equations with orbitals 1, (7) and energies ,,, one for each spin. The effective
potential (2.8) becomes spin-dependent, as the exchange-correlation potential is spin-
dependent, that is, v7, = 0E,./dn,(r). In the presence of magnetic field, there is also
a spin-dependent Zeeman term as the field couples to the electron spin.

The contribution of electronic currents to the energy functional are neglected in the
SDFT, although magnetic field couples to the physical (gauge-invariant) current den-
sity that consists of paramagnetic and diamagnetic current densities. At high magnetic
fields this coupling cannot be ignored and, therefore, Vignale and Rasolt constructed
so-called current-spin-density-functional theory (CSDFT) [22], where the basic vari-
ables are the paramagnetic current density j,(r) and the spin densities n; and n;.
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Local density approximation for the exchange-correlation en-
ergy

Formally, the Kohn-Sham method is an exact method for finding the ground state.
However, the exact form of exchange-correlation energy is unknown, and one must re-
sort to approximations. For two- and three-dimensional systems, the simplest approxi-
mation is local (spin) density approximation (LSDA), which assumes electron density
to be locally homogenous in an infinitesimal volume-element. The total exchange-
correlation energy is obtained by integrating over the elements,

ngCDA[n] = /n(r)exc(n)dr. (2.12)

Here £,.(n) is the exchange-correlation energy per particle in an uniform electron
gas of density n. An alternative measure of density is given by the density parame-
ter (Wigner-Seitz radius) rg, which is r; = 1/y/7n for two-dimensional gas. Despite
the raggedness of the local approximation, it works surprisingly well also for atomic
systems [23].

The exchange-correlation energy of the uniform electron gas (also called jellium in
the literature) can be divided into exchange and correlation parts, e, = €, + &..
The exchange part is obtained by calculating the exchange energy of the uniform gas
using the Hartree-Fock theory [1|. However, an analytic expression for the correlation
energy of the uniform gas is known only in extreme limits. At high densities (r; — 0),
the interaction part of the jellium Hamiltonian can be treated as a perturbation and,
consequently, the correlation energy can be obtained from many-body perturbation
theory [24, 2|. At low density (rs — 00), the uniform liquid phase becomes unstable
against the formation of a close-packed Wigner lattice of localised electrons. Since the
Coulomb interaction gives the dominant part of the total energy at low densities, the
correlation energy can be approximated from the Madelung electrostatic and zero-
point vibrational energies of the Wigner lattice.

For a local approximation in the SDFT, one needs spin-resolved exchange-correlation
energy c,.(n,§) for arbitrary relative spin polarisation £ = (ny — n;)/n. A standard
practice is to assume that the polarisation dependence of €,.(n, ) follows that of the
pure exchange energy |21|. Then

E2e(Nn, &) = €4¢(n,0) + f(&)[€nc(n, 1) — £4e(n, 0)], (2.13)

where the polarisation dependence f(£) interpolates between the fully polarised (£ =
1) and the unpolarised (£ = 0) limits. Another representation for the electron gas
is provided by Perdew and Wang [25], and similar forms are used also for two-
dimensional electron gas. We shall discuss these in detail later on.
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The various representations of the correlation energy interpolate between the exactly
known high-density and low-density limits. At intermediate densities, they are fit-
ted to correlation energy data obtained from quantum Monte Carlo simulations of
homogenous electron gas.

2.3 Numerics: Plane Wave Technique

The uppermost benefits of the Kohn-Sham method are its flexibility and easy imple-
mentation for computations. There are several approaches to the numerical solution
of the Kohn-Sham equations. One branch uses real-space methods based on finite
differences or finite elements where the values of the Kohn-Sham orbitals ;,(r) are
solved directly in a mesh inside the computing region |26|. Heiskanen et al. intro-
duced a real-space multigrid method where the eigenvalues are solved by minimising
the Rayleigh quotient and the error reduction rate of the solution is accelerated by
using cycles of coarse and fine grids [27].

Plane Waves

A conventional approach is to expand the orbitals 1,(7) in a complete set of func-
tions and diagonalise the subsequent matrix of the Kohn-Sham Hamiltonian. In our
model for quantum dots a reasonable choice could be the single-particle basis (1.3).
Particularly, it is used in Kohn-Sham calculations with circularly symmetric effective
potential. We do not impose symmetry restrictions but choose plane wave basis for
which we can use efficient fast Fourier algorithms. In order to solve the coupled set
of one-electron equations (2.9), we expand the states in a finite set of plane waves by
writing

¢w \/— Z Ck: GXp Zk? : 7’), (214)

where k = 27r(L—, %) with integers n; ranging from —n"* to nf. To describe the
densities and other quantities in the real-space, the rectangular calculation box of area
V = L,L, is divided into a mesh of (4n$** 4 1) x (4n5" +1) equidistant points. Typical
values used for the plane wave cut-offs nf* are 8 and 11 giving a total of 17-17 = 289

to 23 - 23 = 529 plane waves.

By using the expansion (2.14) in the equations (2.9), we get a matrix equation

s i\
Z { o 5k K V,:k/ } CZ = Eio k:' (215)
k
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Figure 2.1: Flow chart of the iteration step s in the self-consistent solution of the Kohn-Sham
equations

where ve//, = vi/4 s the Fourier component of the effective potential (2.8).

Figure 2.1 shows a flow chart for the self-consistent solution of the Kohn-Sham equa-
tions. Iterations are started from an initial guess of the effective potential for both
spins. Usually, calculations are performed with several different initial guesses with
small random perturbations added in order to avoid convergence into the local min-
ima of the potential surface. The Fourier components of the effective potential are
computed with the fast Fourier transformation and the Hamiltonian matrix is diag-
onalised giving the lowest eigenenergies ¢;, and the corresponding eigenvectors C™.
Inverse fast Fourier transformation computes the real-space eigenfunctions through
equation (2.14) after which the density and the new effective potential can be ob-
tained. This process is repeated until self-consistency is achieved, in other words,
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when the effective potential does not change anymore. For a better convergence, new
potential is mixed with the old one through v7fy = (1 —a)vgﬁc +av/Fy with o ranging
from 0.01 to 0.1.

2.4 Other Approaches

Despite the evident benefits of the local density KS-method, there are well-justified
doubts whether a method with a mean-field flavour can give a full account of the
many-body effects in quantum dots. These issues become increasingly important in
the studies of strongly correlated low-density quantum dots that deviate significantly
from a uniform system, whereupon the local approximation for correlation is expected
to fail.

Exact Diagonalization

A straightforward way to solve few-electron correlated states in a quantum dot is to use
exact diagonalization of the many-body Hamiltonian matrix [4]. In quantum chemistry
the exact diagonalization is known as the configuration interaction method [5] and it
is also used in the shell model calculations of nuclear physics |6]. The basic idea is to
construct a Hamiltonian matrix of operator (1.1) and to diagonalise it. The matrix
elements are calculated between Slater determinants (or Fock states in the occupation
number representation) built up of different configurations of single-particle states.
Suitable choice for the basis in the model Hamiltonian would be the basis (1.3). By
increasing the number of configurations, the lowest eigenvalue converges practically
to the exact ground state energy and, without any extra cost, the whole excitation
spectrum is obtained. Furthermore, very accurate many-body wave functions with
correct correlations are obtained.

The applicability of this seemingly unbeatable method breaks down with increasing
electron number and decreasing density because the number of configurations needed
for convergence grows rapidly. Computation becomes slightly easier when symmetries
of the problem are used to reduce the dimension of the configuration space. For exam-
ple, in studies of circular quantum dots we may do the diagonalization for a fixed total
angular momentum, and in strong magnetic fields we may truncate the single-particle
basis to the lowest Landau levels. Despite these facilitations, the maximum number
of electrons is limited to around ten [30].
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Quantum Monte Carlo

Another group of many-body methods for correlated systems is formed by the quan-
tum Monte Carlo methods that include variational Monte Carlo (VMC), diffusion
Monte Carlo (DMC) and path integral Monte Carlo (PIMC) among others (for re-
views, see [28| and [29]). These methods can be used to calculate quantum dot ground
states even at low densities and for a large number (> 10) of electrons with a good
accuracy. A common problem in using quantum Monte Carlo techniques for fermions
is to preserve the correct antisymmetry of the wave function.

In the variational Monte Carlo method, the wave function is approximated with a
suitable trial function having a set of variational parameters. Monte Carlo integration
is used to calculate the many-dimensional integrals, and the parameters in the wave
function can be varied to minimise the energy. The accuracy of the VMC is naturally
conditional on the choice of the trial wave function and the energy given by it is an
upper bound on the ground state energy due to the variational principle. A usual
form for the trial wave function is ¥ = exp(J)¥g, where Ug is an antisymmetric
Slater determinant or a linear combination of Slater determinants, and exp(J) is a
symmetric Jastrow factor that describes the correlations among particles. A usual
form of Jastrow factor is

N

J = Zx(ri) - %Zu(ri, r;), (2.16)

i=1 i#j
where functions y and u include one- and two-body correlations, respectively.

The fixed-node diffusion Monte Carlo method is a stochastic projector method that
maps out the lowest energy state from a trial wave function. This probabilistic algo-
rithm can handle only positive distributions, but the fermion wave functions will take
also negative values as a result of antisymmetry in particle exchange. To circumvent
this drawback, the DMC algorithms often resort to fixed-node approximation, where
the nodal surface of the wave function is fixed to be the same as that of an antisym-
metric trial function but no assumptions are made about the functional form between
the nodes. Fixed-node DMC algorithm may therefore be regarded as a variational
method that gives exact results if the trial nodal surface is exact.

Comparisons of the Methods in Quantum Dot Modelling

Both the exact diagonalization and the quantum Monte Carlo method have been used
in quantum dot modelling. the QMC methods are used by several authors to calculate
the electronic structures of vertical quantum dots. The obtained addition energies
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agree nicely with the measured data and with the LSDA calculations. However, for
four-electron dots some DMC and PIMC calculations predict ground state spin S =
0 that violates Hund’s first rule [61]. The S = 0 and S = 1 states obtained by
Pederiva et al. in DMC calculations [31] were nearly degenerate, and in a recent
erratum they found S = 1 to be the ground state in agreement with Hund’s rule [32].
Exact diagonalization gives ground state spin S = 1 obeying Hund’s rule.

At lowered densities, the electrons in the harmonic confinement are expected to lo-
calise into a Wigner molecule, a finite-size counterpart of Wigner lattice. Monte Carlo
simulations of classical point-charges in harmonic potential indicate that the electrons
arrange themselves into specific geometric configurations. Exact diagonalization [33]
and PIMC [34] calculations show that signals from Wigner crystallisation for small
number of electrons can be observed already at relatively high density (rs ~ 4 af).
Localisation in LSDA calculations is hindered by the spurious self-interaction effect
arising from the local approximation for the exchange-correlation energy. However,
we will see that in quantum dot systems with increased degrees of freedom, such as
double-layer dots, the localisation can be seen also in LSDA calculations.

Broken symmetries in the DFT

The Hamiltonian (1.1) preserves orbital angular momentum due to the circular sym-
metry of the confining potential. Consequently, the density obtained from the exact
wave function retains circular symmetry. Despite this, the mean field of the density-
functional theory can be deformed in the case of orbital degeneracy or at low densities
where the electrons localise into a Wigner molecule. The broken symmetry is directly
revealed in the density calculated from the Kohn-Sham orbitals. The question whether
this phenomenon is an artifact of the mean field theory or a reflection of the internal
structure of the exact wave function is under continuous debate [61].

Broken symmetries are identified by analyzing rotational and vibrational spectra of
circular quantum dots [35], quantum rings [36] and nuclei [37]. Deformations are
also found to be an universal feature of small alkali-metal clusters and nuclei |38].
Furthermore, an arbitrary rotation of the deformed mean field solution yields an
equivalent solution. Therefore, the symmetry-violating mean-field can be viewed as
an intrinsic state of the system.

On the other hand, Harju et al. have addressed the problem of ensemble v-representability
in the case of rectangular quantum dots [39]. They compared Kohn-Sham densities to
the exact densities and found that the mean-field spin density wave solution was in
fact a superposition of the ground state singlet and the excited triplet states.

The above arguments suggest that the deformed solutions are not merely artifacts of
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the Kohn-Sham mean field, but they must still be examined carefully and critically.
Despite these possible pitfalls of the density-functional methods, they give good insight
to the qualitative features of the electronic structure and are applicable also to large
systems.



3 Vertical Quantum Dot Molecules

Both lateral and vertical quantum dots can be coupled to form "artificial molecules”
[40, 41]. Coupling brings forth new degrees of freedom to the quantum dot structure
leading to new features in electronic properties. For example, the inter-dot separation
and the type of carriers can be varied and, thus, the inter-dot coupling can be tuned
at will. In a vertical quantum dot molecule in strongly coupled (quantum mechanical)
regime, the electrons delocalise over both dots leading to a splitting between bonding
and anti-bonding states. The splitting diminishes approximately exponentially with
increasing inter-dot spacing until the isolated dots are only electrostatically coupled
[43]. The splitting leads to formation of molecule-type phases [44] and, depending on
applied magnetic field, to specific "magic” orbital and spin angular momenta [45].

In publication [I] we examine electronic structure of vertical quantum dot molecules
containing electrons and holes. By tuning the external parameters such as the con-
finement strength and inter-dot separation, the ground state characteristics can be
varied. There are two competing mechanisms to resolve degenerate states, namely
Hund’s rule and Jahn-Teller deformation. Furthermore, at longer inter-dot distances
the Coulomb attraction localises the electron-hole pairs.

3.1 Electron-Hole Quantum Dot Molecules

Vertical electron-hole quantum dot molecules can be realised in bipolar heterostruc-
tures with separated electron and hole layers in equilibrium. Such heterostructures
are, for example, biased GaAs/AlGaAs or InAs/GaSb alloys [46, 47|. The inset of
figure 3.1 shows schematically a double layer quantum dot where a two-dimensional
quantum dot with electrons is separated by distance zy from another dot confining an
equal number of holes.

In order to study the double dot with the Kohn-Sham method in the local spin density
approximation, we need a set of four coupled equations for the electron and hole spin
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densities n¢ and n”. The effective potential for, say, electrons is then given by

dr’

1 e2ne(r’
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Here the first term is the external harmonic confinement and the next two terms are
the repulsive in-layer and attractive inter-layer Hartree potentials, respectively. For the
exchange-correlation potential, we used the von Barth and Hedin formulation of the
local exchange-correlation energy (2.13) for both the electron and hole densities. The
inter-layer electron-hole correlation is neglected, which is a reasonable approximation
for large inter-dot separations and strong external confinements.

In our model, the quantum dots are assumed to be identical so that the harmonic
confinements and the effective masses of holes and electrons are the same, that is,
m} =m; =m* and wi = wl! = wy. Furthermore, the number of electrons is assumed
to be the same as the number of holes, that is, N, = N, = N. Owing to the fact that
the dots are identical, the ground state densities of electrons and holes are necessarily

identical.

3.2 Ground State Properties

Phase Diagram

Electronic properties of vertical double quantum dots are determined by three pa-
rameters: the inter-dot separation zy, the confinement wy and the number of electrons
and holes N. Figure 3.1 shows ground state phases as a function of the inter-dot sep-
aration zg and the confinement wy for a double quantum dot confining four electrons
and four holes. The different ground state spin structures are separated by a line,
and a contour plot of typical particle density in each phase is shown. In the case of
four electrons and holes, there are two particles in the degenerate p-state of each dot.
This degeneracy is lifted either by deformation of the mean-field or by magnetisation
according to Hund’s first rule.

When both z; and wqg tend to zero, the electrons and the holes form a plasma droplet.
The Kohn-Sham Hamiltonian includes only kinetic and exchange-correlation energies
as the Hartree potentials of the electrons and the holes cancel each other. At this
"ultimate jellium” limit, the orbital degeneracies of the finite droplets are removed
by deforming the mean-field, which leads to Jahn-Teller deformations of the density.
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Figure 3.1: Phase diagram of an electron-hole double dot with 4 electrons and 4 holes as a function
of confinement wy and inter-dot distance zg. Estimated phase boundary separates the different spin
structures, and a characteristic particle density is shown in each phase. The inset shows a schematic
picture of the bipolar quantum dot molecule with electrons e and holes A harmonically confined in
two layers separated by distance zg.

By increasing wy the confinement becomes stiffer forcing the density to azimuthal
symmetry. In this case, the degeneracy is resolved by maximising spin according to
Hund’s rule. At the ultimate jellium limit, that is, when 2y = 0.0 af, the deformed
ground state persists up to a relatively strong confinement of Awg = 1.3 Ha*.

With small wy and increasing inter-dot separation the particle density in the dots de-
creases and, eventually, the particles localise into a Wigner molecule. The formation
of a Wigner molecule is favoured despite the self-interaction error in the local ap-
proximation because the localisation is supported by the attraction between electrons
and holes: particles localise on top of each other forming tightly bound electron-hole
dipoles (localised excitons). The in-layer correlations lead to antiferromagnetic order-
ing of spins, however, since there is no inter-layer correlation, the spins between the
layers do not couple.

A similar phase diagram is also obtained in the closed shell N = 6 case. At the
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ultimate jellium limit, the density assumes a triangular deformation and it undergoes
a transition to the azimuthally symmetric phase as wy increases. Furthermore, the
electrons and holes localise into an antiferromagnetic ring of excitons. We believe that
the classical configuration of five particles in a ring with one particle at the center is
not favoured because of possible frustration of such a spin arrangement.

2 3 4 5 6
N

Figure 3.2: Addition energy spectrum for different inter-dot separations zy. The mid-shell maximum
for zp = 0.0 af is caused by the Jahn-Teller deformation

Addition energies

As was discussed in Section 1.2, measurement of addition energies is an easy way of
probing the shell structure of quantum dots. We define the addition energy as the
difference in the electrochemical potentials of a bipolar double dot molecule confining
N + 1 and N electrons and holes, that is, A(N) = E(N +1) — 2E(N) + E(N — 1),
where F(N) is the total energy of the system. The addition energy spectrum of Figure
3.2 shows the closed shell maxima at N = 2 and 6. Furthermore, for z; > 0.0 a, the
mid-shell N = 4 maximum results from spin alignment. At the limit of plasma droplet,
the Jahn-Teller deformation is strongest at N = 4 leading also to a maximum in the
spectrum.



4 Multicomponent Quantum Dots

In the previous chapter, we studied electron-hole bilayer quantum dots using the Kohn-
Sham method in the local spin density approximation. The electron-hole correlation
was neglected altogether. The inter-layer correlation is usually neglected also in the
DFT studies of electronic quantum dot molecules [44]. However, a proper treatment
of layered systems should include the inter-layer correlations between the two dots.

Electrons or holes in a quantum dot can originate from different bands of semiconduc-
tor. For example, silicon layer has four equivalent conduction electron pockets with
anisotropic transverse and longitudinal effective masses. Alternatively, the carriers in
a hole inversion layer might originate from heavy and light hole bands that are degen-
erate at the top of the valence band. As an approximation, the different carriers in the
quantum dot could be treated as different species of fermions. Therefore, we make a
straightforward generalisation of the SDFT and treat the species as different isospin
states of an electron. Consequently, there is one set of orbitals for each component in
the Kohn-Sham description.

Non-adiabatic atomic clusters or molecules are yet another example of multicompo-
nent systems. If the adiabatic Born-Oppenheimer approximation fails to disrobe the
motion of atomic nuclei, both the nuclear and electronic degrees of freedom must be
incorporated in the density-functional theory [8].

In publication [IT] we develop a multicomponent density-functional theory to treat
two-dimensional systems made of mutually interacting but different kinds of fermions.
For a local approximation for the exchange-correlation potential, we extend an existing
exchange-correlation energy functional to the multicomponent case. In publication
[TTT] we study the electronic properties of multicomponent quantum dots. We assume
an effective mass approximation where the band structure effects of the different
components are put into single parameter m*. However, each component may have a
mass of its own.

4.1 Two-dimensional Multicomponent Fermion Gas

We estimate the exchange-correlation energy of a multicomponent two-dimensional
electron gas to be used in the local density approximation of density-functional cal-
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culations of systems with multiple internal degrees of freedom. We call the different
degrees of freedom as components. For example, the conventional electron gas will be
a two-component electron gas with spin up and spin down electrons being the com-
ponents. Polarised electrons form in turn a one-component system. First, we derive
the Hartree-Fock energy of two-dimensional multicomponent gas. Then, we extend an
existing two-component correlation energy function by Attaccalite et al. |49] to the
multicomponent case.

Exchange-correlation Energy

We consider a homogenous gas consisting of I' different components. Then I' = 2
corresponds to the normal electron gas and T' = 1 to the fully polarised ("spinless”)
gas. The total density of the gas is a sum of the densities of the different components,

that is,
r r
n:Zni:nZw, (4.1)
i=1 i=1

where n; is the density and v; = n;/n is the dimensionless concentration of component
1. The Hartree-Fock energy of the multicomponent gas can be calculated in a similar
fashion as that of the two-component gas [7, 1|, only now the spin index is gener-
alised to a component index taking I' different values. Instead of going through the
Hartree-Fock algebra, we will take a short-cut and use the fact that, for a homogenous
system, the local density approximation for the exchange energy will give the exact

result. Exchange energy per particle for component i is !, = —4:660 %;nilm. The total
exchange energy per particle is then

r
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Here, we have used the definition of the two-dimensional density parameter, n'/? =

1/\/7rs.

The total kinetic energy is the sum of the kinetic energies of the different components,
that is,

h2k? v h2k? Vh?
By, = L=y ——tdk; = s 4.
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where m; is the mass of component i. By inserting the radius of the Fermi-disk of the
ith component, kr, = v/4mn,;, we find the total kinetic energy per particle to be

cr = BN = ZVme Z 7(ny;)? _ Z— (4.4)

The correlation energy per particle is given by the residual energy that is not included
in the Hartree-Fock energy, thus, e. = €1t — (e + €;). We note that the exchange
energy is independent, of the masses of the components, but the correlation and kinetic
energies depend on them and, for the exchange-correlation energy per particle, we then

have ¢,. = 6@(7“3, {Vz‘}, {mz})

A reasonable first approximation for the mass dependence is given by a simple scaling
of the exchange-correlation energy. In order to deduce the suitable relation, let us first
introduce dimensionless quantities Z, = ZF . Then, by defining an average total

7 1
mass M via
1 1 v?

T 4.5
N7 (4.5)

we may write the kinetic energy as hQZQ/TgM. By dividing the Hartree-Fock energy
by the average mass, we have

EHF _ €k | Ex _ h2Z, B e 873
M M M  (Mr,)? A4reey 3n(Mr,)’

(4.6)

Thus, the average mass M scales the density parameter r,. As an approximation, we
expect the correlation energy to follow this same scaling and, for the mass dependence
of the exchange-correlation energy, we adopt formula

eoclre (i}, {ma}) = m%egxc(Mrs, (v}, {ms = me}), (47)

where m, is the bare electron mass. Finally, we note that at low densities when r, — oo
the homogenous multicomponent gas approaches the Wigner crystal limit, where the
correlation is dominated by the electrostatic repulsion between the localised particles
and, thereby, the masses of the components do not play an important role.

Extension of the Two-component Function

Attaccalite et al. [49] parametrised the exchange-correlation energy of the two-dimensional
two-component electron gas by fitting an appropriate function to their fixed-node dif-
fusion quantum Monte Carlo calculations. For the exchange-correlation function, they
generalised a functional form introduced by Perdew-Wang [25] to the two-dimensional
case. The function encompasses the known high and low density limits.
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The parametrisation by Attaccalite et al. can be written in terms of numbers Z,. For
a two-component gas we have £ = v — 15 and v; + 15 = 1. By squaring them, we
find €2 = 2(v? + v3) — 1 = 27, — 1. The exchange-correlation energy function then
becomes

€vc(Ts, Zoy Z3 o) = e Prafe, — 8;6)] + 6566)
+ ap(rs) +aq(rs) (22 — 1) + aa(rs) (272, — 1)2, (4.8)

where £ = —4V2[1 + 3(2Z5 — 1) 4+ 3:(2Z5 — 1)?]/37r,. The functions oy(r,) are
parametrised by Attaccalite et al., who calculated total energies also for intermediate
polarisations £ = (n; — na)/n = v; — 1n € [0,1] corresponding to Z, € [0.5,1].
Extension to higher number of components means an extrapolation of €,. to range
Zy €0, 1], where extreme Zy = 0 corresponds to a situation where all the particles in
the gas belong to different components, and at Zy = 1 there is only one component.

Figure 4.1: Exchange-correlation energy of the multicomponent fermion gas as a function of Zs.
The lines correspond to the extended interpolation function of Eq. (4.8) for different values of rs,
and the points correspond to many-body calculations.

In order to test the extension (4.8), we compared it with the existing many-body calcu-
lations. Unfortunately, we found that the available data was scarce. Results are shown
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in Figure 4.1, where the lines correspond to the parametrised exchange-correlation
energies for different values of r; and Z5, and the dots correspond to calculated many-
body data. The extended exchange-correlation energy (4.8) reduces exactly to the
form of Attaccalite et al. in the two-component range Z, € [0.5,1]. For the four-
component case, Conti and Senatore [50| presented results for several values of r
with fixed concentrations, v, = vy = v3 = vy = 1/4 corresponding to Zy = 0.25. Fur-
thermore, we estimated the curious "infinite component” Z, = 0 limit from the energy
of charged Bose gas [51]. Effectively, there is no Pauli exclusion if all the particles
belong to different components, since they can be put into different internal "isospin”
states. It should be noted, however, that this estimation is only suggestive since the
true many-body wave function of the multicomponent fermion system is still anti-
symmetric while for bosons it is symmetric. Figure 4.1 shows that the above extended
exchange-correlation energy (4.8) fits surprisingly well to the existing data even in
the extreme Zy = 0. Nonetheless, more many-body results in the region Z; < 0.5 are
needed in order to construct a better interpolation function for the multicomponent
fermion gas.

Mass ratio
w

0 5 10 15 20 25
Density parameter

Figure 4.2: Phase diagram for the four-component gas as a function of density parameter ry and
mass ratio m = my/my.
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Mass Dependence

The mass difference between the carriers in heterostructures can arise from the dif-
ferent effective masses of materials used in double layer systems or, in hole systems,
simply from the effective mass difference between heavy and light hole bands. As dis-
cussed in chapter 1, in order to construct a two-dimensional gas from the different
components, only the lowest state perpendicular to the 2D plane must be occupied.
There can be a constant energy difference between the different components aris-
ing from the reduction of kinetic energy of heavier constituents. Therefore, the mass
difference and the consequent energy shift should be small enough so that all the
components occupy only the lowest perpendicular state allowing the formation of
two-dimensional multicomponent gas.

We studied a four-component gas with varying masses at different densities. We fixed
the masses to be pairwise equal so that two components are heavier than the other
two, that is, m; = msy = m; and mz = my = my. Due to the spin degeneracy, there will
always be an even number of components, and all pairs of components will have equal
masses. Figure 4.2 shows a phase diagram for the four-component gas as a function of
density parameter 5 and mass ratio m = my, /m; between heavy and light components.
For m = 1, the concentrations are equal up to r, &~ 26.2 after which there is only one-
component present. When increasing m, the kinetic energy and the concentrations of
the heavier components decrease and, eventually, the four-component gas goes through
the two-component phase down to the polarised one-component phase. Polarisation
occurs at smaller 75 as m increases due to the scaling equation (4.7).

4.2 Multicomponent Quantum Dots

The exchange-correlation energy function constructed in the previous section is used
in Kohn-Sham density-functional calculations of multicomponent quantum dots. The
results are reported in publication [ITI]. Quantum dots fabricated in multilayer het-
erostructures, or of multivalley materials are possible realisations of multicomponent
nanostructures. For example, in a vertical quantum dot molecule the bonding and anti-
bonding states can be approximated as different components, or as different "isospin”
states of an electron. The isospin together with the spin makes the system a four-
component quantum dot. In silicon quantum dots, the electrons originate from four
(equivalent) valleys of conduction band. As an approximation, we can treat this as
an eight component system, where the different valleys and the spin form the compo-
nents. In addition, the quantum dots made of hole inversion layers will have carriers
originating from the light and heavy hole bands.
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Multicomponent Kohn-Sham Method

We study a quantum dot containing particles belonging to I' different components. The
generalisation of the standard spin-dependent Kohn-Sham method to multicomponent
case is straightforward: There are now I' coupled equations of form (2.9) that are
solved self-consistently. The effective potential for the components ¢« = 1,2,.... T
consists of external harmonic confinement that is assumed to be the same for all the
components, of the repulsive Hartree potential and of exchange-correlation potential
Vgei = OnEye/On; derived from equation (4.8). Thus, the effective potential is given
by ,
1 e“n(r’
Veffi = §KT2 + / W’l(“—)’r‘"dr, + UaEC,i(TS(T)a {vi(r)}, {ma}), (4.9)

where K is the strength of the external confinement. The total density of a system
containing N = Nj + ...+ Nr electrons is given by the Kohn-Sham orbitals through
equation

r N
n(r) =Y > (). (4.10)
i=1 k=1
The ground-state is found by varying numbers /NV; and choosing the combination giving
the lowest energy. Otherwise the solution procedure follows the discussion of Section
2.3.

Shell structure

The filling of shells in high-density quantum dots is easily observed from the addition
energy spectrum [61]. We studied the addition energy spectrum of an ideal four-
component quantum dot at density rs = 2.0 aj. The degeneracy of the (th shell is now
4[, which leads to shell closures at N =4,12,24, ... corresponding to maxima in the
addition spectrum of Figure 4.3. There are smaller maxima at even electron numbers
up to 12 electrons and at every third electron number between 12 and 24. These peaks
manifest Hund’s first rule generalised to the multicomponent case. Exchange energy
favors polarisation and, therefore, the degenerate levels are occupied one component
at a time to minimise the total energy.

Wigner Molecules

At lowered densities electrons localise into geometric configurations determined by
the strong electrostatic repulsion and the external confinement. The localisation in
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Figure 4.3: Addition energy spectrum of a four-component quantum dot. Electron density corre-
sponds approximately to rs = 2 af. The inset shows schematically the filling of levels in the case of
10 electrons.

conventional LSDA calculations is hindered by self-interaction but, in the multicom-
ponent systems, the electrons can access more than two internal states, which eases the
localisation. Althought the localisation is not complete in the sense that the densities
of individual electrons still overlap, the classically predicted geometric configurations
are well visible as is shown in the upper panel of Figure 4.4 for 7, 8 and 9 electrons. In
7 and 8 electron Wigner molecules, one electron sits at the center while all the others
reside in a ring around the center. In the nine electron case, there are two electrons
in the middle and seven in a ring.

We computed addition spectrum shown in the lower panel of Figure 4.4 at low densities
for an eight-component system in fixed external confinement with K = 2 - 107
The spectrum does not show any features of shell structure but merely decreases
monotonously due to the capacitive charging of the dot. However, a small kink at
N = T is observed as a precursor of geometric magic configuration, in agreement with
the purely classical addition energy spectrum calculated by Bedanov and Peeters |52].
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Figure 4.4: Upper: Total electron densities of an eight-component quantum dot having 7, 8 and
9 electrons, respectively, in fixed confinement K = 2-107%. Lower: Addition energies for an eight-
component quantum dot in fixed confinement K = 2-10~%. A weak kink at N = 7 is a precursor
of geometrically magic structure. The addition spectrum of classical point charges is also shown for
comparison.

Figure 4.5 shows total densities for a four-component quantum dot with eight electrons
at selected values of r;. At vy < 4 af, density is circular and the ground state is
determined by Hund’s rule leading to configuration (3,3,1,1). The localisation sets on
already at ry = 6.0 a; whereupon a Wigner molecule-like state appears. Six electrons
reside on the outer circumference with two non-localised in the middle. At ry = 14 a,
all the electrons are localised and they are distributed spatially so that each electron
has neighbours belonging to different components as shown in the contour plot in
Figure 4.5.
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Figure 4.5: Electron densities of a four-component quantum dot for ry = 2 af,6 aj and 14 aj.
The localisation is eased by the fact that the neighbouring localised electrons belong to different
components as shown in the contour plot at the left.

>

Mass Dependence

The effect of varying mass was tested in a four-component dot with r; = 2.0 a§ and
N = 24. The mass m of two components was varied while the other two were fixed.
Thus, m; = my = m and m3 = my = 1.0. For m = 1.0, the sd shell is filled giving the
magic configuration (6,6,6,6). The mass increase shifts the heavier components down
in energy due to decreasing kinetic energy as shown in Figure 4.6. At m = 1.2, the
sd orbitals of the light components are empty and heavier fp orbitals are occupied
according to Hund’s rule leading to occupation (10,8,3,3). Already at m = 1.8 only
two electrons occupy the light component while the heavier components obey Hund'’s
rule with occupation (12,10,1,1).
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Figure 4.6: Kohn-Sham levels in a four component, 24 electron system with varying effective mass.
Light components have mass m = 1.0 and heavy mass is indicated in the figure.



5 One-dimensional Quantum Dot
Arrays

The intrinsic magnetic properties of nanostructures have drawn much attention due to
their potential applicability in spintronics devices [53]. Spontaneous polarisation has
been found in one-dimensional quantum point contact constrictions formed in gate-
patterned heterostructure |54, 55|. Quantum point contacts |56 and single quantum
dots |57| have also spin filtering capabilities, with a possibility to use them for either
generating or detecting spin-polarised currents.

Arranging quantum dots in a lattice, one can build artificial crystals with designed
band structure, which can be manipulated by tuning the inter-dot coupling and the
number of electrons in a unit cell. Experimentally, finite one-dimensional artificial
crystals have been fabricated by Kouwenhoven et al. |58| already back in 1990. They
found conductance oscillations as a function of gate voltage, arising from the mini-
band structure of the periodic array. Another interesting artificial array is the Kagome
lattice with possible flat-band ferromagnetism [59).

In paper [IV] we study quasi one-dimensional periodic arrays of few-electron quantum
dots. We use the standard SDFT without the multicomponent extension. The nearly
parabolic confinement for two-dimensional electron gas is provided by a Gaussian-
shaped rigid positive background charge distribution. The magnetic and electronic
properties depend on the shell filling of the individual quantum dots (electron number
per dot V) and on the inter-dot distance (lattice parameter a).

Bloch-Kohn-Sham Method

In order to model the one-dimensional quantum dot array, we consider interacting
electrons moving in two dimensions in a rigid periodic background charge distribution
eng. The background charge number per unit cell matches the electronic charge to
ensure overall charge neutrality. The Kohn-Sham orbitals are of Bloch form, that is,
Unko (r) = exp(ik - r)u,,(r), where n labels the band, o = ([, 1) is the spin index
and the wave vector k is confined into the first Brillouin zone. The periodic functions

34
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Unko (1) satisfy the Bloch-Kohn-Sham equations

2 | ]
_2—77”L*(v + Zk)2unk0(r) + Ueff(r)unkcr(r) - 5nkaunka(r)a (51)

where the periodic effective potential is

izpgtr) = [ S g oz ). o) (5.2)

dmege|r — 1|

n is the electron density and & = (ny — n|)/n is the polarization. In the local spin-
density approximation, we use the form (2.13), parametrised by Tanatar-Ceperley
[60], for the polarization-dependent exchange-correlation potential v7.[n(r),&(r)]. In
the band structure calculation, the functions wu,i,(r) are expanded in a basis with
11x 11 plane waves. Again, the self-consistent solution follows the procedure explained
in section 2.3. Iterations are started with anti-ferromagnetic and ferromagnetic initial
potentials. In addition, we use an artificial temperature to allow fractional occupation
numbers for nearly degenerate states at the Fermi level. The temperature is low enough
not to affect the ground-state so the statistical occupations merely help occupying
degenerate levels to ensure convergence.

5.1 Magnetism in 1D Quantum Dot Arrays

The confining potential is modelled by a periodic positive background charge dis-
tribution described by a sum of Gaussians centered at lattice sites R = a(n,,0),
n, =0,1,2,... Thus, we have

o) = 3 pale = R); pule) = — s exp(—r/Ni), (53

s

where r = (x,y) is a two-dimensional position vector. A single Gaussian carries pos-
itive charge Ne with density 1/7r2 at the center. For the density parameter, we use
value ry = 2 aj. Examples of densities and spin densities in the unit cell are given in
Figure 5.1.

The bottom of the confining potential provided by the background charge distribution
is harmonic to a good approximation. Studying magnetism in a one-dimensional array,
the simplest geometry to choose for the unit cell is a rectangle with two quantum dots
per cell. These dots lie in a row along the z axis of the cell, one in the center and
one crossing periodically the edge of the cell. In a one-dimensional quantum dot array
one can have a smooth transition from the tight-binding description to the nearly-free
electron picture simply by varying the lattice constant a.
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Figure 5.2: Lowest bands at selected values of the lattice constant a for a quantum dot array with
three electrons per quantum dot (in atomic units, see text). The spin-down bands are plotted with
blue dashed lines, and the spin-up bands correspond to red solid lines. The dotted green line indicates
the Fermi-level fixed at zero energy.
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Figure 5.2 shows the bands for N = 3 at different inter-dot separations. The spin-up
and spin-down bands are shown as red solid line and blue dashed line, respectively,
and the Fermi-level is fixed at zero energy.

For large values of the lattice parameter a, the electron densities of the individual dots
hardly overlap, and the dots are isolated. The bands are flat with band gap energies
approximately equal to the single dot level spacings. In this tightly bound extreme the
dot array becomes insulating as the hopping probability diminishes with increasing a.

By bringing the quantum dots closer to one another (by decreasing a), the band
dispersion increases. Eventually, the band gaps between the tight-binding bands close
and the dispersion becomes parabolic. The single quantum dots overlap strongly lead-
ing to an essentially homogenous quantum wire with a Gaussian cross-section. In this
nearly free limit, the transverse motion of an electron separates from the longitudinal
one. The transverse states are quantised by the Gaussian shaped well, while the lon-
gitudinal states remain "free” with parabolic dispersion. This is reflected in the band
structure, showing nearly equidistant sub-band parabolas. In Figure 5.2 we see that
the second transverse sub-band is occupied at a = 5.0625 af; while at a = 3.14 af the
Fermi-level reaches the third sub-band.

Shell Filling and Magnetism

The upper panel of Figure 5.3 shows the magnetism of a quasi one-dimensional quan-
tum dot array as a function of electron number per quantum dot and lattice parameter
a. The colours indicate regions where the array is conducting (blue) or insulating (yel-
low). Green corresponds to regions where the Fermi-level resides solely on a single spin
band and the arrows indicate the spin arrangement in the array.

For a single electron per quantum dot, N = 1, the lowest bonding s-band is filled. Due
to the exchange splitting of single dot levels, the bonding and anti-bonding bands are
separated by an energy gap and the array shows antiferromagnetic order. The lower
panel of Figure 5.3 shows that the spin per dot drops gradually from 1/2 to 0 as the
lattice parameter is decreased and the band gap and the antiferromagnetism persists
down to very small values of a. At the closed shell, N = 2, both the bonding and
anti-bonding 1s bands are full leading to a non-magnetic insulator.

For N = 3 and 4, the p-bands are occupied. There are two bonding and two anti-
bonding bands for both the spins. The bands with higher dispersion correspond to
orbitals with density lobes oriented along the wire. For N = 3, there is one p-electron
per dot, which triggers ferromagnetism. The bands with majority spin are lower than
the ones with minority spin as a result of exchange splitting of the energy bands. The
density in the array increases with decreasing a, and at high densities at a = 5.0625 ag,
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Figure 5.4: p-bands and lowest sd-bands for (a) N = 3 at a = 13.05 o and (b) N =5 at a = 15.3 a§.
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solid lines.

the spin degeneracy is restored as kinetic energy contribution becomes dominant.
However, a small spin-splitting is regained at a = 3.14 qa{, as shown in Figure 5.2.

Figure 5.4 shows that the bands of minority spin are pushed up in energy by exchange
splitting and, at an appropriate value of lattice parameter, the Fermi-level resides
solely on a single spin band suggesting that only one spin contributes to conductivity.
A similar behaviour is observed with N = 5. There are now three p-electrons with
almost full shell. This spin-dependent conductivity of linear quantum dot chains might
be used as a spin filter.

At half-filled p-shell (N = 4) Hund’s rule leads to maximised spin in an isolated dot.
In an array, the spin is at its maximum at a ~ 18 aj and it decreases gradually with
a. The array is an anti-ferromagnetic insulator due to the Fermi-gap induced by the
exchange-splitting. For N = 6, the p-shell is full and the array remains non-magnetic
at all values of a.
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Figure 5.5: Lowest bands at selected values of width parameter Cp for a quantum wire with four
electrons per unit cell. The dashed green line indicates the Fermi-level fixed at zero energy.

5.2 Spin-Peierls Transition in Homogenous Quantum
Wires

At small values of lattice parameter a, a quantum dot array forms a nearly homogenous
quantum wire with a Gaussian cross-section. The background charge distribution for
a homogenous wire is chosen to be

1 1 y?

pB(ZB,y) = 2/]~1D e eXp(—T.éQ), (54)

where 717 is the one-dimensional density parameter. The wire lies along the z-axis,
and its width is measured by the full width at half maximum, that is, 2v/21n2a.
Since there is no definite lattice parameter for the wire, the length L of the unit cell
is chosen in such a way that pg integrates to the desired charge Ne. Thus, we have
L = 2r'P N. We have chosen four electrons to be in the unit cell (N = 4) and we have
fixed r!P = 2 a%. In addition, we define parameter Cp as follows: Cyp = 2rlP /a. It
describe the ratio of the average inter-electron separation and the width of the wire:
when Cp increases, the wire becomes narrower.

Figure 5.5 shows band structures of a homogenous quantum wire for selected widths.



5.2 Spin-Peierls Transition in Homogenous Quantum Wires 41

For Cip = 2, the dispersion is parabolic and the Fermi-level lies close to the second
transverse sub-band. In this case, the wire shows no magnetism. Antiferromagnetism
sets on at C'jp = 4, as the spin-Peierls transition occurs. The ground state is a spin
density wave with wave length of L/2 = r!PN = 8 a%. The spin-Peierls transition
opens a gap at the Fermi-level and turns the wire into an insulator. The amplitude of
the spin density wave increases when C'p increases.



6 Summary and Conclusions

The subject of this thesis was to study the electronic and magnetic properties of cou-
pled quantum dot structures and to develop exchange-correlation energy functional
for homogenous fermion gas containing interacting particles with different internal
degrees of freedom. The choice for computational method was the Kohn-Sham for-
mulation of the density-functional theory, which is flexible enough for the coupled
systems and yet describes correlation effects reasonably well.

In publication |I| we studied the properties of an electron-hole double quantum dot.
We constructed a ground state phase diagram as a function of the inter-dot separation
and confinement strength. The main aspect of the phase diagram is the competition
between Jahn-Teller deformation and Hund’s rule as the parameters are varied. Both
mechanisms resolve degeneracies when the dots have half-filled shells. In addition, the
Coulomb attraction localises electrons and holes into bound dipoles or excitons as the
density is lowered.

An extension of the exchange-correlation energy to multicomponent electron gas is
introduced in publication |II| and this extension is applied to a quantum dot in pub-
lication [ITI]. Multicomponent electron (or hole) gas could be formed in multilayered
heterostructures such as double quantum dots or in systems where the carriers origi-
nate from several bands. Examples of such heterostructures are the multivalley silicon
quantum dots and hole quantum dots where the holes belong to bands with heavy
and light effective mass.

The proposed exchange-correlation energy parametrisation agrees well with the ex-
isting quantum Monte Carlo data. However, there is a need for more total energy
calculations of multicomponent systems in order to construct more accurate interpo-
lation formulas.

For multicomponent quantum dots, the fact that electrons can access more than one
internal state eases the localisation at low densities. At higher densities the shell struc-
ture is revealed in the addition energy spectrum. The degenerate levels are occupied
in accordance to Hund’s rule. The degeneracies are lifted as the components have
different masses and even a rather small mass difference pushes the levels of heavier
mass down in energy leaving lighter components unoccupied.

Publication [IV] presents magnetic and electronic properties of linear one-dimensional

42
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few-electron quantum dot arrays. These properties depend on the inter-dot separation
and the number of electrons per unit cell. When the dots are close to each another,
the electron densities overlap strongly leading to nearly homogenous quantum wire.
The wires are non-magnetic, but they undergo spin-Peierls transition as they are
squeezed narrower to become more one-dimensional. At larger dot separations the
spin arrangement follows the shell filling of the individual quantum dots. For cases
where there is odd number of electrons per quantum dot, the exchange splitting lifts
the spin degeneracy, and at certain inter-dot separations the Fermi-level resides solely
on a single spin band. This opens an interesting possibility to use a linear dot chain
as a spin filter.
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