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Abstra
tSemi
ondu
tor quantum dots have established their position as testing laboratories formany-body quantum e�e
ts. Arti�
ial tuning of external parameters makes the physi
sof quantum dots parti
ularly interesting. The number of 
on�ned ele
trons or thestrength of the 
on�ning potential 
an be varied and, 
onsequently, the 
hara
teristi
sof the quantum me
hani
al state 
an be 
hanged.In this Thesis, we employ the density-fun
tional theory to examine the ele
troni
 andmagneti
 properties of 
oupled quantum dot stru
tures. We develop an ex
hange-
orrelation energy fun
tional to be used in the density-fun
tional 
al
ulations of 
ou-pled systems. We study verti
al ele
tron-hole quantum dot mole
ules, one-dimensionalquantum dot arrays and multi
omponent quantum dots in whi
h the 
arriers 
ouldbelong to the di�erent bands of the semi
ondu
tor material.Computational studies of 
omplex 
oupled quantum dot stru
tures 
all for e�
ientnumeri
al methods. To be used as the 
omputational tool, we 
hose the Kohn-Shamformulation of the density-fun
tional theory in whi
h the ex
hange and 
orrelatione�e
ts are treated within lo
al approximation. We believe that the density-fun
tionaltheory gives a satisfa
tory qualitative pi
ture of the many-body e�e
ts governing thephysi
s of 
oupled quantum dots.
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1 Semi
ondu
tor Quantum Dots
1.1 Introdu
tionSin
e their dis
overy in the 1970s the low-dimensional semi
ondu
tor nanostru
tureshave evolved from s
ienti�
 
uriosities to means of probing the quantum me
hani
almany-body e�e
ts and to modern devi
es with an ex
iting appli
ation potential. Themany-body quantum e�e
ts are regularly studied in heterostru
tured nanodevi
esthat a
t as ele
tron traps or wave-guides. Experiments as well as theoreti
al studieshave revealed the mi
ros
opi
 nature of these devi
es and a
tive resear
h brings alongalso 
ommer
ially interesting innovations.Despite the giant leaps in the progress of fabri
ation and measuring te
hniques in thenanometer-sized devi
es the inter-parti
le 
orrelations make the physi
s and the ex-periments 
hallenging. Numeri
al modelling 
an give some insight into the many-bodye�e
ts observed in experiments. However, due to the 
omplexity of nanostru
tures,modelling requires well-justi�ed simpli�
ations in order to make the problem tra
table.Often the problem is redu
ed to �nding the eigenspe
trum of the many-body Hamil-tonian, whi
h 
an only be done numeri
ally for a relatively small number of parti
les.Paul Dira
, one of the pioneers in the many-body quantum me
hani
s, has 
ommentedon the di�
ulty of this task:�The underlying physi
al laws ne
essary for the mathemati
al theory ofa large part of physi
s and the whole of 
hemistry are thus 
ompletelyknown, and the di�
ulty is only that the exa
t appli
ation of these lawsleads to equations mu
h too 
ompli
ated to be soluble.�Sin
e Dira
's days methods and 
omputers have evolved to a level where problems ofseveral ele
trons 
an be solved. One milestone in this development has been the Kohn-Sham formulation of the density-fun
tional theory, whi
h 
an be used in ground-state
al
ulations of systems 
ontaining up to hundreds of ele
trons.Quantum dots are ideal 
andidates for probing many-body e�e
ts theoreti
ally andexperimentally. With modern fabri
ation methods one 
an 
on�ne a tunable numberof ele
trons into a small island. The size of the island 
an be made 
omparable tothe de Broglie wavelength of an ele
tron so that a true quantum 
on�nement 
an be1



2 Semi
ondu
tor Quantum Dotsa
hieved. Consequently, quantum dots have a mi
ros
opi
 shell stru
ture that 
an berevealed in transport measurements. Due to this similarity to real atoms, quantumdots are often 
alled arti�
ial atoms.Trend in the studies of quantum dot stru
tures has been to prepare evermore 
omplexdevi
es using, for example, self-assembly [3, 9℄. Coupled quantum dots are interestingalso in studies of quantum 
omputing in whi
h two-state systems are needed forrealisation of qubit [10, 11℄. Investigation of these stru
tures with numeri
al methodsinvolves solving rather large problems a

urately and yet in a reasonable time-span.The density fun
tional theory has proven its quality in studies of large atomi
 
lustersand has also 
onstantly been used in quantum dot modelling.In this thesis, we employ the Kohn-Sham method to view the many-body ground-statee�e
ts in di�erent quantum dot stru
tures. In this 
hapter, we review the fabri
ationand experimental methods of quantum dots and dis
uss the approximations neededfor quantum dot models. In Chapter 2, we present the basi
s of the Kohn-Shamformulation of the density-fun
tional theory, dis
uss numeri
al methods and reviewbrie�y other methods used in ele
tron stru
ture 
al
ulations. Chapters 3-5 deal withthe results presented in publi
ations [I℄-[IV℄.1.2 Fabri
ation and ExperimentsTwo-Dimensional Ele
tron GasTwo-dimensional ele
tron gas 
an be formed in the heterojun
tion between two dis-similar semi
ondu
tor alloys [12℄. A prototypi
al heterojun
tion 
an be prepared bydepositing a thin layer of AlGaAs alloy on a GaAs layer with mole
ular beam epitaxyte
hnique, whi
h allows an atomi
 s
ale pre
ision in layer 
omposition. There are noappre
iable latti
e distortions on the jun
tion sin
e the latti
e 
onstants and stru
-tures of GaAs and AlAs are identi
al, but the band gaps of AlGaAs and GaAs alloysare di�erent. Charge transfer a
ross the jun
tion interfa
e will adjust the 
hemi
alpotential 
onstant throughout the jun
tion. Consequently, the band edges bend giv-ing rise to a potential barrier on the GaAs side. By su�
ient doping, the 
hemi
alpotential rea
hes this potential well, and the 
ondu
tion ele
trons will be trappedon the vi
inity of the interfa
e. The motion of the ele
trons parallel to the interfa
ewill remain free and the resulting ele
tron gas is dynami
ally two-dimensional if onlythe lowest perpendi
ular state is o

upied. Due to the shallowness of the 
on�ne-ment well, the experiments on two-dimensional ele
tron gas are usually performed attemperatures of few kelvins down to millikelvins.



1.2 Fabri
ation and Experiments 3Lateral Quantum Dots in Heterostru
turesThe motion of ele
trons in two-dimensional ele
tron gas 
an be restri
ted further byet
hing and gate patterning te
hniques. Lithographi
 patterning of metalli
 gates orele
trodes on top of the heterostru
ture 
an be used to de�ne lateral quantum dots
ontaining several hundred ele
trons. The ele
trons in the two-dimensional ele
trongas are repelled by the negative voltage applied to the gate ele
trodes and, withsuitable geometry, the ele
trons 
an be 
len
hed into a small island [13℄. The numberof 
on�ned ele
trons 
an be tuned by 
hanging the gate voltage. Earlier the lowerbound for the number of 
on�ned ele
trons was limited to few tens of ele
trons,but the modern te
hniques in gate patterning allow also few-ele
tron 
on�nement.Re
ently, Elzerman et al. have reported a realization of a gate patterned few-ele
trondouble quantum dot in AlGaAs/GaAs heterostru
ture [10℄.Mi
ros
opi
 Shell Stru
ture of Verti
al Quantum DotsEt
hing te
hniques are well-suited for fabri
ating pillar shaped few-ele
tron quantumdots. In the very �rst devi
es, ele
tron beam lithography was used for de�ning pillarsin AlGaAs/GaAs heterostru
ture. By atta
hing ele
tri
 
onta
ts at the ends of thepillar, Reed et al. were able to measure ele
tron transport os
illations in a verti
alquantum dot 
aused by Coulomb blo
kade e�e
t [14℄. Taru
ha et al. were the �rstto reveal the mi
ros
opi
 shell stru
ture of verti
al quantum dots in ele
tron trans-port measurement [15℄. The quantum dot setup they used is shown in Figure 1.1.A double-barrier heterostru
tured pillar is surrounded by a metalli
 voltage-biasedS
hottky gate, whi
h allows a full 
ontrol over the lateral 
on�nement and enablessingle-ele
tron 
harging of the dot. By measuring 
urrent through the pillar as a fun
-tion of gate voltage Vg Taru
ha et al. observed Coulomb os
illations resulting from oneby one addition of ele
trons to the dot. The 
ondu
tan
e peaks were not equidistantbut their spa
ing depended on the ele
tron number N . The voltage spa
ing betweenthe 
urrent peaks is proportional to the addition energy, whi
h measures the 
hangesof ele
tro
hemi
al potential as a fun
tion of the ele
tron number. Addition energyspe
trum shows pronoun
ed maxima at N = 2, 6 and 12. These �magi
� ele
tronnumbers are related to the mi
ros
opi
 shell stru
ture of the quantum dot.



4 Semi
ondu
tor Quantum Dots

Figure 1.1: S
hemati
 view of a verti
al quantum dot. The dot is lo
ated between two heterostru
-ture barriers and is surrounded by a S
hottky gate. The number of 
on�ned ele
trons 
an be tunedby varying gate voltage Vg.1.3 Modelling Verti
al Quantum DotsSu

essful modelling of a quantum dot involves few well-justi�ed approximations tomake the model tra
table. The simpli�
ations lead to the fundamental problem of
ondensed matter physi
s, that is, the problem of solving the many-body S
hrödingerequation.ApproximationsThe pillar shaped verti
al quantum dot des
ribed in the previous se
tion has a diam-eter ten times longer than its thi
kness, and the experiments are performed at around50 mK. Therefore, one 
an assume that the 
on�ned ele
trons o

upy only the loweststate in the z-dire
tion (along the pillar) and the dot is a smoothly 
on�ned 
ir
ularele
tron island in two-dimensional plane. The �magi
� ele
tron numbers 
oin
ide withthe 
losed shells of the 
ir
ular two-dimensional harmoni
 os
illator giving a hint thatthe 
on�nement is paraboli
 to a good approximation.The 
on�ned ele
trons originate from the 
ondu
tion band of the semi
ondu
tor, andonly the bottom of the band is populated by the 
ondu
tion ele
trons. In the e�e
-tive mass approximation, the minimum is approximated with a paraboli
 dispersion
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al Quantum Dots 5

Figure 1.2: Upper: Coulomb os
illations in the linear transport through a verti
al quantum dot.Peak separation depends on the ele
tron number N , and it is espe
ially long for N = 2, 6, and 12.Lower: Addition spe
trum of a verti
al quantum dot. The addition energy spe
trum 
omputed fromthe spin density-fun
tional theory (solid line) 
ompares well to the measured spe
trum (dashed line)[16℄.relation with 
urvature determined by the e�e
tive mass m∗. The s
reening of theCoulomb intera
tion by the ions of the latti
e is taken into a

ount in the diele
tri

onstant ǫ.



6 Semi
ondu
tor Quantum DotsHamiltonian for a Quantum DotIn the approximations des
ribed above, parameters m∗ and ǫ in
lude the 
ompli
atedbandstru
ture e�e
ts of the underlying latti
e. In the resulting model, the quantumdot is treated as a two-dimensional ele
tron system 
on�ned into external potential
vext(r), where r = (x, y). In the absen
e of an external magneti
 �eld, the Hamiltonianfor the quantum dot with N ele
trons reads

H =

N
∑

i=1

(

p2
i

2m∗ + vext(ri)

)

+
1

2

∑

i6=j

e2

4πǫ0ǫ|ri − rj|
. (1.1)The �rst of the two terms 
onsists of the kineti
 energy and the external harmoni

on�nement,

vext(r) =
1

2
m∗ω2r2, (1.2)while the se
ond two-body term in
orporates Coulomb intera
tion between the ele
-trons. The Hamiltonian is often written in terms of e�e
tive atomi
 units, where

~ = 4πǫǫ0 = m∗ = e = 1. Then, the units of energy and length are e�e
tive Hartree
Ha∗ = m∗e4/~2(4πǫǫ0)

2 and e�e
tive Bohr radius a∗0 = ~
2(4πǫǫ0)/m

∗e2, respe
tively.The 
ompli
ations in solving the many-body problem arise from the 
orrelations
aused by the ele
trostati
 repulsion between the parti
les and the antisymmetryrequirement of the wave fun
tion. There are several methods available for atta
kingthe 
orrelated few-ele
tron problem. We will dis
uss those in the following 
hapter.The analyti
ally soluble single-parti
le part of the Hamiltonian (1.1) is the startingpoint of quantum dot modelling and it also yields some qualitative features of the in-tera
ting system. The single-parti
le wave fun
tions in the two-dimensional harmoni
potential are
φnm(r, θ) =

√

n!

(n+ |m|)!
1√
πl0

(

r

l0

)|m|
exp(−r2/2l20)L

|m|
n (r2/l20)e

imθ. (1.3)Here L|m|
n is a Laguerre polynomial and l0 =

√

~/m∗ω is the os
illator length. In thepresen
e of magneti
 �eld perpendi
ular to the plane, the os
illator length is repla
edby lB =
√

~/m∗Ω, where Ω2 = ω2 +ω2
c/4 and ωc = eB/m∗ is the 
y
lotron frequen
y.Due to the 
ir
ular symmetry of the potential, the orbital angular momentum m isa good quantum number. As the motion is restri
ted to two dimensional plane, theangular momentum will 
on
ur with its z-
omponent, thus m = 0,±1,±2, . . . Theprin
ipal quantum number n tells the number of nodes of the radial part of the wavefun
tion and, therefore, takes values n = 0, 1, 2, . . . The 
orresponding single-parti
leenergies are

εnm = ~ω(2n+ |m| + 1). (1.4)



1.3 Modelling Verti
al Quantum Dots 7The single-parti
le spe
trum is visualised in Figure 1.3, in whi
h we see that thedegenera
y of the lth shell is 2l, where l = 1, 2, . . ., and fa
tor 2 stems from spin.If we o

upy the 2D os
illator levels with non-intera
ting ele
trons, we noti
e thatshell 
losures o

ur at ele
tron numbers N = 2, 6, 12, . . ., and they 
oin
ide with the�magi
 numbers� in the addition energy spe
trum of Figure 1.2. The main e�e
t ofthe Coulomb intera
tion is to maximise spin due to Hund's �rst rule at open shellele
tron numbers N = 4, 9, 16 . . . These numbers 
orrespond to the maxima in theaddition spe
trum.
(0,−2)

(0,−3)

(0,0)

(0,−1) (0,1)

(1,0) (0,2)

(1,1) (0,3)(1,−1)

1

2

3

4

ε nm

Figure 1.3: Lowest s, p, sd and fp shells of the two-dimensional harmoni
 potential. The quantumnumbers for ea
h state are shown in parentheses (n, m)



2 Density-fun
tional Theory inQuantum Dot ModellingDensity-fun
tional theory (DFT) in its self-
onsistent formulation by Kohn and Shamis one of the most frequently used methods in quantum dot modelling and in ele
troni
stru
ture studies of 
ondensed matter in general. The strength of the theory residesin the observation of Hohenberg and Kohn that the ele
tron density 
an be used todetermine the ground state instead of the many-ele
tron wave fun
tion. The quantumme
hani
al N-ele
tron wave fun
tion needs N spatial and spin variables for its 
om-plete des
ription while the density is a real valued fun
tion of a single spatial variable.This huge redu
tion in the degrees of freedom makes the many-body problem solu-ble at least in prin
iple. In pra
ti
e the a

ura
y of the method is dependent on theapproximations needed to take into a

ount the ex
hange and 
orrelation e�e
ts thatbe
ome all-important in the des
ription of few-ele
tron low-density quantum dots.2.1 Prin
iplesThe Hohenberg-Kohn TheoremThe many-body Hamiltonian (1.1) in
orporates operators for the kineti
 energy, theexternal potential and the pair intera
tion between the ele
trons, that is,
H = T + Vext + Uee. (2.1)The energy of the ele
tron system in state Ψ is given by the expe
tation value ofthe Hamiltonian, E[Ψ] = 〈Ψ|H|Ψ〉, when the wave fun
tion is normalised, that is,

〈Ψ|Ψ〉 = 1. A

ording to the variational prin
iple, the ground state Ψ0 yields thelowest energy. Thus, the variational minimisation of E[Ψ] with respe
t to all theallowed N-ele
tron wave fun
tions will yield the exa
t ground state Ψ0.Instead of sear
hing the whole Hilbert spa
e of wave fun
tions in order to �nd theground state, we may as well sear
h for the ground state density [8℄. This is justi�edby the Hohenberg-Kohn theorem stating that the energy of the intera
ting ele
trons
an be written as a fun
tional of the ele
tron density n, and that the minimisation ofthe resulting fun
tional with respe
t to the density yields the nondegenerate ground8



2.2 The Kohn-Sham Method 9state density whi
h has a one-to-one 
orresponden
e to the external potential vext [17℄.The densities qualifying this Hohenberg-Kohn 
riterion are 
alled v-representable andthe fun
tional to be minimised is
E[n] = 〈Ψ[n]|T + Vext + Uee|Ψ[n]〉 = F [n] +

∫

n(r)vext(r)dr, (2.2)where F [n] = 〈Ψ[n]|T + Uee|Ψ[n]〉 is independent of the external potential and, thus,forms an universal fun
tional for all the N-ele
tron systems. Clearly, the exa
t form ofthe F [n] is unknown and approximations are needed. The very �rst density-fun
tionalmethod is 
alled Thomas-Fermi theory, in whi
h the intera
tion energy is approxi-mated by the Hartree energy of the ele
tron 
harge distribution and, for the kineti
energy, a lo
al approximation is used [1℄. The results of Thomas-Fermi theory areseldom satisfa
tory and, therefore, more elaborate approximations and methods havebeen developed.The formulation of the DFT by Hohenberg and Kohn restri
ts to the nondegenerateground states and to v-representable densities that must be in one-to-one relation tothe external potential. The 
onstrained sear
h formulation of the original Hohenberg-Kohn theorem by Levy [18℄ and Lieb [19℄ relieves these restri
tions. Levy showed thatit is in fa
t su�
ient to 
onstrain the sear
h for the (possibly degenerate) ground stateto the N-representable densities that result from square-integrable, antisymmetri
wave fun
tions.2.2 The Kohn-Sham MethodKohn and Sham turned the density-fun
tional theory into a widely-used tool in 
om-putational 
ondensed matter physi
s. The original idea is to examine a non-intera
tingreferen
e system for whi
h the density is exa
tly the ground state density n(r) [20℄. Byintrodu
ing the ex
hange-
orrelation fun
tional, the many-ele
tron problem redu
esto a set of single-ele
tron equations, des
ribing an individual ele
tron moving in ane�e
tive potential 
reated by all the others.Non-intera
ting referen
e systemThe Hamiltonian for a system where all the intera
tions are turned o� is simply asum of one-body operators, that is,
Hs =

N
∑

i=1

hi =

N
∑

i=1

(

− ~
2

2m∗∇
2
i + vs(ri)

)

, (2.3)



10 Density-fun
tional Theory in Quantum Dot Modellingwhere vs(r) is a single-parti
le potential. The wave fun
tion is a Slater determinant
onstru
ted from the N lowest one-ele
tron states ψi satisfying equation hψi = εiψi.The density of the Slater determinant is simply a sum of the densities of the one-ele
tron orbitals. The resulting fun
tional for the energy of the non-intera
ting systemis
Es[n] = Ts[n] + Vs[n] =

∑

i

〈ψi| −
~

2

2m∗∇
2|ψi〉 +

∫

vs(r)n(r)dr. (2.4)Minimisation of the above fun
tional leads to Euler-Lagrange equation
µ = vs(r) +

δTs[n]

δn(r)
, (2.5)where the Lagrange multiplier µ is needed for 
onservation of the ele
tron number.Kohn and Sham used these features of the non-intera
ting system to redu
e the in-tera
ting many-body problem into a set of one-body equations.Kohn-Sham equationsIn the Kohn-Sham method, the exa
t kineti
 energy is repla
ed by the non-intera
tingkineti
 energy Ts. Furthermore, the main 
ontribution to the intera
tion energy is
ontained in the ele
trostati
 Hartree energy,

U [n] =
1

2

∫

dr

∫

dr′ e
2n(r)n(r′)

4πǫǫ0|r − r′| . (2.6)In order to produ
e the desired separation into Ts[n] and U [n], the universal fun
tionalis written in the form
F [n] = Ts[n] + U [n] + Exc[n], (2.7)where the ex
hange-
orrelation fun
tional Exc[n] = T [n]−Ts[n]+Uee[n]−U [n] 
ontainsthe di�eren
e between the true kineti
 energy and non-intera
ting kineti
 energy andthe non-
lassi
al part of intera
tion energy. Using these de�nitions, the Euler-Lagrangeequations for the non-intera
ting referen
e system (2.5) and for the true intera
tingsystem be
ome identi
al if we identify vs as

vs =: veff(r) = vext(r) +

∫

e2n(r)

4πǫǫ0|r − r′|dr′ + vxc(r), (2.8)where vxc = δExc/δn(r) is the ex
hange-
orrelation potential. This similarity betweenthe referen
e system and the true system allows us to use the one-body tools to solvethe intera
ting system: For a given veff , one obtains n(r) that satis�es the Euler-Lagrange equation simply by solving the N one-body equations
{

− ~
2

2m∗∇
2 + veff(r)

}

ψi(r) = εiψi(r) (2.9)



2.2 The Kohn-Sham Method 11and setting
n(r) =

N
∑

i=1

|ψi(r)|2. (2.10)The Kohn-Sham energies εi and eigenfun
tions ψi(r) do not have a dire
t physi
alinterpretation, but are more or less mathemati
al auxiliaries. Nevertheless, they areused to determine bandstru
tures for latti
es, and they give useful information aboutthe internal ele
troni
 stru
ture of quantum dots. The equations (2.9) are 
oupledtogether via the e�e
tive potential (2.8) making solving the ground state density(2.10) an iterative pro
ess.Extensions of DFT to Magneti
 SystemsInitially, the DFT was developed in spin-independent formalism. Studies of systemsin an external magneti
 �eld, however, 
all for in
lusion of the spin degree of freedom.Spin e�e
ts are essential also in the absen
e of external magneti
 �elds, for examplein open-shell quantum dots [16℄ and latti
es with broken spin symmetry (su
h asferromagnets).The spin polarization e�e
ts are in
luded in spin-density-fun
tional theory (SDFT)introdu
ed by von Barth and Hedin [21℄. In the SDFT, the total ele
tron density
omprises of spin-up and spin-down densities, that is, n = n↑ + n↓, where
nσ(r) =

Nσ
∑

i=1

|ψiσ(r)|2 (2.11)for Nσ ele
trons with spin σ = (↑, ↓). Consequently, there are now two sets of Kohn-Sham equations with orbitals ψiσ(r) and energies εiσ, one for ea
h spin. The e�e
tivepotential (2.8) be
omes spin-dependent, as the ex
hange-
orrelation potential is spin-dependent, that is, vσ
xc = δExc/δnσ(r). In the presen
e of magneti
 �eld, there is alsoa spin-dependent Zeeman term as the �eld 
ouples to the ele
tron spin.The 
ontribution of ele
troni
 
urrents to the energy fun
tional are negle
ted in theSDFT, although magneti
 �eld 
ouples to the physi
al (gauge-invariant) 
urrent den-sity that 
onsists of paramagneti
 and diamagneti
 
urrent densities. At high magneti
�elds this 
oupling 
annot be ignored and, therefore, Vignale and Rasolt 
onstru
tedso-
alled 
urrent-spin-density-fun
tional theory (CSDFT) [22℄, where the basi
 vari-ables are the paramagneti
 
urrent density jp(r) and the spin densities n↑ and n↓.



12 Density-fun
tional Theory in Quantum Dot ModellingLo
al density approximation for the ex
hange-
orrelation en-ergyFormally, the Kohn-Sham method is an exa
t method for �nding the ground state.However, the exa
t form of ex
hange-
orrelation energy is unknown, and one must re-sort to approximations. For two- and three-dimensional systems, the simplest approxi-mation is lo
al (spin) density approximation (LSDA), whi
h assumes ele
tron densityto be lo
ally homogenous in an in�nitesimal volume-element. The total ex
hange-
orrelation energy is obtained by integrating over the elements,
ELDA

xc [n] =

∫

n(r)εxc(n)dr. (2.12)Here εxc(n) is the ex
hange-
orrelation energy per parti
le in an uniform ele
trongas of density n. An alternative measure of density is given by the density parame-ter (Wigner-Seitz radius) rs, whi
h is rs = 1/
√
πn for two-dimensional gas. Despitethe raggedness of the lo
al approximation, it works surprisingly well also for atomi
systems [23℄.The ex
hange-
orrelation energy of the uniform ele
tron gas (also 
alled jellium inthe literature) 
an be divided into ex
hange and 
orrelation parts, εxc = εx + εc.The ex
hange part is obtained by 
al
ulating the ex
hange energy of the uniform gasusing the Hartree-Fo
k theory [1℄. However, an analyti
 expression for the 
orrelationenergy of the uniform gas is known only in extreme limits. At high densities (rs → 0),the intera
tion part of the jellium Hamiltonian 
an be treated as a perturbation and,
onsequently, the 
orrelation energy 
an be obtained from many-body perturbationtheory [24, 2℄. At low density (rs → ∞), the uniform liquid phase be
omes unstableagainst the formation of a 
lose-pa
ked Wigner latti
e of lo
alised ele
trons. Sin
e theCoulomb intera
tion gives the dominant part of the total energy at low densities, the
orrelation energy 
an be approximated from the Madelung ele
trostati
 and zero-point vibrational energies of the Wigner latti
e.For a lo
al approximation in the SDFT, one needs spin-resolved ex
hange-
orrelationenergy εxc(n, ξ) for arbitrary relative spin polarisation ξ = (n↑ − n↓)/n. A standardpra
ti
e is to assume that the polarisation dependen
e of εxc(n, ξ) follows that of thepure ex
hange energy [21℄. Then

εxc(n, ξ) = εxc(n, 0) + f(ξ)[εxc(n, 1) − εxc(n, 0)], (2.13)where the polarisation dependen
e f(ξ) interpolates between the fully polarised (ξ =
1) and the unpolarised (ξ = 0) limits. Another representation for the ele
tron gasis provided by Perdew and Wang [25℄, and similar forms are used also for two-dimensional ele
tron gas. We shall dis
uss these in detail later on.



2.3 Numeri
s: Plane Wave Te
hnique 13The various representations of the 
orrelation energy interpolate between the exa
tlyknown high-density and low-density limits. At intermediate densities, they are �t-ted to 
orrelation energy data obtained from quantum Monte Carlo simulations ofhomogenous ele
tron gas.2.3 Numeri
s: Plane Wave Te
hniqueThe uppermost bene�ts of the Kohn-Sham method are its �exibility and easy imple-mentation for 
omputations. There are several approa
hes to the numeri
al solutionof the Kohn-Sham equations. One bran
h uses real-spa
e methods based on �nitedi�eren
es or �nite elements where the values of the Kohn-Sham orbitals ψiσ(r) aresolved dire
tly in a mesh inside the 
omputing region [26℄. Heiskanen et al. intro-du
ed a real-spa
e multigrid method where the eigenvalues are solved by minimisingthe Rayleigh quotient and the error redu
tion rate of the solution is a

elerated byusing 
y
les of 
oarse and �ne grids [27℄.Plane WavesA 
onventional approa
h is to expand the orbitals ψiσ(r) in a 
omplete set of fun
-tions and diagonalise the subsequent matrix of the Kohn-Sham Hamiltonian. In ourmodel for quantum dots a reasonable 
hoi
e 
ould be the single-parti
le basis (1.3).Parti
ularly, it is used in Kohn-Sham 
al
ulations with 
ir
ularly symmetri
 e�e
tivepotential. We do not impose symmetry restri
tions but 
hoose plane wave basis forwhi
h we 
an use e�
ient fast Fourier algorithms. In order to solve the 
oupled setof one-ele
tron equations (2.9), we expand the states in a �nite set of plane waves bywriting
ψiσ(r) =

1√
V

∑

k

Ciσ
k

exp(ik · r), (2.14)where k = 2π( n1

Lx
, n2

Ly
) with integers ni ranging from −ncut

i to ncut
i . To des
ribe thedensities and other quantities in the real-spa
e, the re
tangular 
al
ulation box of area

V = LxLy is divided into a mesh of (4ncut
1 +1)×(4ncut

2 +1) equidistant points. Typi
alvalues used for the plane wave 
ut-o�s ncut
i are 8 and 11 giving a total of 17 · 17 = 289to 23 · 23 = 529 plane waves.By using the expansion (2.14) in the equations (2.9), we get a matrix equation

∑

k

{

~
2k2

2m∗ δk,k′ + V eff
k,k′

}

Ciσ
k

= εiσC
iσ
k
′ , (2.15)
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YesFigure 2.1: Flow 
hart of the iteration step s in the self-
onsistent solution of the Kohn-Shamequationswhere V eff

k,k
′
= V eff

k−k
′
is the Fourier 
omponent of the e�e
tive potential (2.8).Figure 2.1 shows a �ow 
hart for the self-
onsistent solution of the Kohn-Sham equa-tions. Iterations are started from an initial guess of the e�e
tive potential for bothspins. Usually, 
al
ulations are performed with several di�erent initial guesses withsmall random perturbations added in order to avoid 
onvergen
e into the lo
al min-ima of the potential surfa
e. The Fourier 
omponents of the e�e
tive potential are
omputed with the fast Fourier transformation and the Hamiltonian matrix is diag-onalised giving the lowest eigenenergies εiσ and the 
orresponding eigenve
tors Ciσ.Inverse fast Fourier transformation 
omputes the real-spa
e eigenfun
tions throughequation (2.14) after whi
h the density and the new e�e
tive potential 
an be ob-tained. This pro
ess is repeated until self-
onsisten
y is a
hieved, in other words,



2.4 Other Approa
hes 15when the e�e
tive potential does not 
hange anymore. For a better 
onvergen
e, newpotential is mixed with the old one through vnew
eff = (1−α)vold

eff +αvnew
eff with α rangingfrom 0.01 to 0.1.2.4 Other Approa
hesDespite the evident bene�ts of the lo
al density KS-method, there are well-justi�eddoubts whether a method with a mean-�eld �avour 
an give a full a

ount of themany-body e�e
ts in quantum dots. These issues be
ome in
reasingly important inthe studies of strongly 
orrelated low-density quantum dots that deviate signi�
antlyfrom a uniform system, whereupon the lo
al approximation for 
orrelation is expe
tedto fail.Exa
t DiagonalizationA straightforward way to solve few-ele
tron 
orrelated states in a quantum dot is to useexa
t diagonalization of the many-body Hamiltonianmatrix [4℄. In quantum 
hemistrythe exa
t diagonalization is known as the 
on�guration intera
tion method [5℄ and itis also used in the shell model 
al
ulations of nu
lear physi
s [6℄. The basi
 idea is to
onstru
t a Hamiltonian matrix of operator (1.1) and to diagonalise it. The matrixelements are 
al
ulated between Slater determinants (or Fo
k states in the o

upationnumber representation) built up of di�erent 
on�gurations of single-parti
le states.Suitable 
hoi
e for the basis in the model Hamiltonian would be the basis (1.3). Byin
reasing the number of 
on�gurations, the lowest eigenvalue 
onverges pra
ti
allyto the exa
t ground state energy and, without any extra 
ost, the whole ex
itationspe
trum is obtained. Furthermore, very a

urate many-body wave fun
tions with
orre
t 
orrelations are obtained.The appli
ability of this seemingly unbeatable method breaks down with in
reasingele
tron number and de
reasing density be
ause the number of 
on�gurations neededfor 
onvergen
e grows rapidly. Computation be
omes slightly easier when symmetriesof the problem are used to redu
e the dimension of the 
on�guration spa
e. For exam-ple, in studies of 
ir
ular quantum dots we may do the diagonalization for a �xed totalangular momentum, and in strong magneti
 �elds we may trun
ate the single-parti
lebasis to the lowest Landau levels. Despite these fa
ilitations, the maximum numberof ele
trons is limited to around ten [30℄.



16 Density-fun
tional Theory in Quantum Dot ModellingQuantum Monte CarloAnother group of many-body methods for 
orrelated systems is formed by the quan-tum Monte Carlo methods that in
lude variational Monte Carlo (VMC), di�usionMonte Carlo (DMC) and path integral Monte Carlo (PIMC) among others (for re-views, see [28℄ and [29℄). These methods 
an be used to 
al
ulate quantum dot groundstates even at low densities and for a large number (> 10) of ele
trons with a gooda

ura
y. A 
ommon problem in using quantum Monte Carlo te
hniques for fermionsis to preserve the 
orre
t antisymmetry of the wave fun
tion.In the variational Monte Carlo method, the wave fun
tion is approximated with asuitable trial fun
tion having a set of variational parameters. Monte Carlo integrationis used to 
al
ulate the many-dimensional integrals, and the parameters in the wavefun
tion 
an be varied to minimise the energy. The a

ura
y of the VMC is naturally
onditional on the 
hoi
e of the trial wave fun
tion and the energy given by it is anupper bound on the ground state energy due to the variational prin
iple. A usualform for the trial wave fun
tion is Ψ = exp(J)ΨS, where ΨS is an antisymmetri
Slater determinant or a linear 
ombination of Slater determinants, and exp(J) is asymmetri
 Jastrow fa
tor that des
ribes the 
orrelations among parti
les. A usualform of Jastrow fa
tor is
J =

N
∑

i=1

χ(ri) −
1

2

∑

i6=j

u(ri, rj), (2.16)where fun
tions χ and u in
lude one- and two-body 
orrelations, respe
tively.The �xed-node di�usion Monte Carlo method is a sto
hasti
 proje
tor method thatmaps out the lowest energy state from a trial wave fun
tion. This probabilisti
 algo-rithm 
an handle only positive distributions, but the fermion wave fun
tions will takealso negative values as a result of antisymmetry in parti
le ex
hange. To 
ir
umventthis drawba
k, the DMC algorithms often resort to �xed-node approximation, wherethe nodal surfa
e of the wave fun
tion is �xed to be the same as that of an antisym-metri
 trial fun
tion but no assumptions are made about the fun
tional form betweenthe nodes. Fixed-node DMC algorithm may therefore be regarded as a variationalmethod that gives exa
t results if the trial nodal surfa
e is exa
t.Comparisons of the Methods in Quantum Dot ModellingBoth the exa
t diagonalization and the quantum Monte Carlo method have been usedin quantum dot modelling. the QMC methods are used by several authors to 
al
ulatethe ele
troni
 stru
tures of verti
al quantum dots. The obtained addition energies



2.4 Other Approa
hes 17agree ni
ely with the measured data and with the LSDA 
al
ulations. However, forfour-ele
tron dots some DMC and PIMC 
al
ulations predi
t ground state spin S =
0 that violates Hund's �rst rule [61℄. The S = 0 and S = 1 states obtained byPederiva et al. in DMC 
al
ulations [31℄ were nearly degenerate, and in a re
enterratum they found S = 1 to be the ground state in agreement with Hund's rule [32℄.Exa
t diagonalization gives ground state spin S = 1 obeying Hund's rule.At lowered densities, the ele
trons in the harmoni
 
on�nement are expe
ted to lo-
alise into a Wigner mole
ule, a �nite-size 
ounterpart of Wigner latti
e. Monte Carlosimulations of 
lassi
al point-
harges in harmoni
 potential indi
ate that the ele
tronsarrange themselves into spe
i�
 geometri
 
on�gurations. Exa
t diagonalization [33℄and PIMC [34℄ 
al
ulations show that signals from Wigner 
rystallisation for smallnumber of ele
trons 
an be observed already at relatively high density (rs ≈ 4 a∗0).Lo
alisation in LSDA 
al
ulations is hindered by the spurious self-intera
tion e�e
tarising from the lo
al approximation for the ex
hange-
orrelation energy. However,we will see that in quantum dot systems with in
reased degrees of freedom, su
h asdouble-layer dots, the lo
alisation 
an be seen also in LSDA 
al
ulations.Broken symmetries in the DFTThe Hamiltonian (1.1) preserves orbital angular momentum due to the 
ir
ular sym-metry of the 
on�ning potential. Consequently, the density obtained from the exa
twave fun
tion retains 
ir
ular symmetry. Despite this, the mean �eld of the density-fun
tional theory 
an be deformed in the 
ase of orbital degenera
y or at low densitieswhere the ele
trons lo
alise into a Wigner mole
ule. The broken symmetry is dire
tlyrevealed in the density 
al
ulated from the Kohn-Sham orbitals. The question whetherthis phenomenon is an artifa
t of the mean �eld theory or a re�e
tion of the internalstru
ture of the exa
t wave fun
tion is under 
ontinuous debate [61℄.Broken symmetries are identi�ed by analyzing rotational and vibrational spe
tra of
ir
ular quantum dots [35℄, quantum rings [36℄ and nu
lei [37℄. Deformations arealso found to be an universal feature of small alkali-metal 
lusters and nu
lei [38℄.Furthermore, an arbitrary rotation of the deformed mean �eld solution yields anequivalent solution. Therefore, the symmetry-violating mean-�eld 
an be viewed asan intrinsi
 state of the system.On the other hand, Harju et al. have addressed the problem of ensemble v-representabilityin the 
ase of re
tangular quantum dots [39℄. They 
ompared Kohn-Sham densities tothe exa
t densities and found that the mean-�eld spin density wave solution was infa
t a superposition of the ground state singlet and the ex
ited triplet states.The above arguments suggest that the deformed solutions are not merely artifa
ts of
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tional Theory in Quantum Dot Modellingthe Kohn-Sham mean �eld, but they must still be examined 
arefully and 
riti
ally.Despite these possible pitfalls of the density-fun
tional methods, they give good insightto the qualitative features of the ele
troni
 stru
ture and are appli
able also to largesystems.



3 Verti
al Quantum Dot Mole
ulesBoth lateral and verti
al quantum dots 
an be 
oupled to form �arti�
ial mole
ules�[40, 41℄. Coupling brings forth new degrees of freedom to the quantum dot stru
tureleading to new features in ele
troni
 properties. For example, the inter-dot separationand the type of 
arriers 
an be varied and, thus, the inter-dot 
oupling 
an be tunedat will. In a verti
al quantum dot mole
ule in strongly 
oupled (quantum me
hani
al)regime, the ele
trons delo
alise over both dots leading to a splitting between bondingand anti-bonding states. The splitting diminishes approximately exponentially within
reasing inter-dot spa
ing until the isolated dots are only ele
trostati
ally 
oupled[43℄. The splitting leads to formation of mole
ule-type phases [44℄ and, depending onapplied magneti
 �eld, to spe
i�
 �magi
� orbital and spin angular momenta [45℄.In publi
ation [I℄ we examine ele
troni
 stru
ture of verti
al quantum dot mole
ules
ontaining ele
trons and holes. By tuning the external parameters su
h as the 
on-�nement strength and inter-dot separation, the ground state 
hara
teristi
s 
an bevaried. There are two 
ompeting me
hanisms to resolve degenerate states, namelyHund's rule and Jahn-Teller deformation. Furthermore, at longer inter-dot distan
esthe Coulomb attra
tion lo
alises the ele
tron-hole pairs.3.1 Ele
tron-Hole Quantum Dot Mole
ulesVerti
al ele
tron-hole quantum dot mole
ules 
an be realised in bipolar heterostru
-tures with separated ele
tron and hole layers in equilibrium. Su
h heterostru
turesare, for example, biased GaAs/AlGaAs or InAs/GaSb alloys [46, 47℄. The inset of�gure 3.1 shows s
hemati
ally a double layer quantum dot where a two-dimensionalquantum dot with ele
trons is separated by distan
e z0 from another dot 
on�ning anequal number of holes.In order to study the double dot with the Kohn-Sham method in the lo
al spin densityapproximation, we need a set of four 
oupled equations for the ele
tron and hole spin
19



20 Verti
al Quantum Dot Mole
ulesdensities ne
σ and nh

σ. The e�e
tive potential for, say, ele
trons is then given by
ve

eff,σ =
1

2
m∗ω2

0r
2 +

∫

e2ne(r′)

4πǫǫ0|r − r′|dr′

−
∫

e2nh(r′)

4πǫǫ0
√

|r − r′|2 + z2
0

dr′ + vxc,σ(n
e(r), ξe(r)). (3.1)Here the �rst term is the external harmoni
 
on�nement and the next two terms arethe repulsive in-layer and attra
tive inter-layer Hartree potentials, respe
tively. For theex
hange-
orrelation potential, we used the von Barth and Hedin formulation of thelo
al ex
hange-
orrelation energy (2.13) for both the ele
tron and hole densities. Theinter-layer ele
tron-hole 
orrelation is negle
ted, whi
h is a reasonable approximationfor large inter-dot separations and strong external 
on�nements.In our model, the quantum dots are assumed to be identi
al so that the harmoni

on�nements and the e�e
tive masses of holes and ele
trons are the same, that is,

m∗
h = m∗

e = m∗ and ωe
0 = ωh

0 = ω0. Furthermore, the number of ele
trons is assumedto be the same as the number of holes, that is, Ne = Nh = N . Owing to the fa
t thatthe dots are identi
al, the ground state densities of ele
trons and holes are ne
essarilyidenti
al.3.2 Ground State PropertiesPhase DiagramEle
troni
 properties of verti
al double quantum dots are determined by three pa-rameters: the inter-dot separation z0, the 
on�nement ω0 and the number of ele
tronsand holes N . Figure 3.1 shows ground state phases as a fun
tion of the inter-dot sep-aration z0 and the 
on�nement ω0 for a double quantum dot 
on�ning four ele
tronsand four holes. The di�erent ground state spin stru
tures are separated by a line,and a 
ontour plot of typi
al parti
le density in ea
h phase is shown. In the 
ase offour ele
trons and holes, there are two parti
les in the degenerate p-state of ea
h dot.This degenera
y is lifted either by deformation of the mean-�eld or by magnetisationa

ording to Hund's �rst rule.When both z0 and ω0 tend to zero, the ele
trons and the holes form a plasma droplet.The Kohn-Sham Hamiltonian in
ludes only kineti
 and ex
hange-
orrelation energiesas the Hartree potentials of the ele
trons and the holes 
an
el ea
h other. At this�ultimate jellium� limit, the orbital degenera
ies of the �nite droplets are removedby deforming the mean-�eld, whi
h leads to Jahn-Teller deformations of the density.
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Oscillator Confinement ω0Figure 3.1: Phase diagram of an ele
tron-hole double dot with 4 ele
trons and 4 holes as a fun
tionof 
on�nement ω0 and inter-dot distan
e z0. Estimated phase boundary separates the di�erent spinstru
tures, and a 
hara
teristi
 parti
le density is shown in ea
h phase. The inset shows a s
hemati
pi
ture of the bipolar quantum dot mole
ule with ele
trons e and holes h harmoni
ally 
on�ned intwo layers separated by distan
e z0.By in
reasing ω0 the 
on�nement be
omes sti�er for
ing the density to azimuthalsymmetry. In this 
ase, the degenera
y is resolved by maximising spin a

ording toHund's rule. At the ultimate jellium limit, that is, when z0 = 0.0 a∗0, the deformedground state persists up to a relatively strong 
on�nement of ~ω0 = 1.3 Ha∗.With small ω0 and in
reasing inter-dot separation the parti
le density in the dots de-
reases and, eventually, the parti
les lo
alise into a Wigner mole
ule. The formationof a Wigner mole
ule is favoured despite the self-intera
tion error in the lo
al ap-proximation be
ause the lo
alisation is supported by the attra
tion between ele
tronsand holes: parti
les lo
alise on top of ea
h other forming tightly bound ele
tron-holedipoles (lo
alised ex
itons). The in-layer 
orrelations lead to antiferromagneti
 order-ing of spins, however, sin
e there is no inter-layer 
orrelation, the spins between thelayers do not 
ouple.A similar phase diagram is also obtained in the 
losed shell N = 6 
ase. At the



22 Verti
al Quantum Dot Mole
ulesultimate jellium limit, the density assumes a triangular deformation and it undergoesa transition to the azimuthally symmetri
 phase as ω0 in
reases. Furthermore, theele
trons and holes lo
alise into an antiferromagneti
 ring of ex
itons. We believe thatthe 
lassi
al 
on�guration of �ve parti
les in a ring with one parti
le at the 
enter isnot favoured be
ause of possible frustration of su
h a spin arrangement.
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Figure 3.2: Addition energy spe
trum for di�erent inter-dot separations z0. The mid-shell maximumfor z0 = 0.0 a∗

0
is 
aused by the Jahn-Teller deformation

Addition energiesAs was dis
ussed in Se
tion 1.2, measurement of addition energies is an easy way ofprobing the shell stru
ture of quantum dots. We de�ne the addition energy as thedi�eren
e in the ele
tro
hemi
al potentials of a bipolar double dot mole
ule 
on�ning
N + 1 and N ele
trons and holes, that is, ∆(N) = E(N + 1) − 2E(N) + E(N − 1),where E(N) is the total energy of the system. The addition energy spe
trum of Figure3.2 shows the 
losed shell maxima at N = 2 and 6. Furthermore, for z0 > 0.0 a∗0, themid-shellN = 4 maximum results from spin alignment. At the limit of plasma droplet,the Jahn-Teller deformation is strongest at N = 4 leading also to a maximum in thespe
trum.



4 Multi
omponent Quantum DotsIn the previous 
hapter, we studied ele
tron-hole bilayer quantum dots using the Kohn-Sham method in the lo
al spin density approximation. The ele
tron-hole 
orrelationwas negle
ted altogether. The inter-layer 
orrelation is usually negle
ted also in theDFT studies of ele
troni
 quantum dot mole
ules [44℄. However, a proper treatmentof layered systems should in
lude the inter-layer 
orrelations between the two dots.Ele
trons or holes in a quantum dot 
an originate from di�erent bands of semi
ondu
-tor. For example, sili
on layer has four equivalent 
ondu
tion ele
tron po
kets withanisotropi
 transverse and longitudinal e�e
tive masses. Alternatively, the 
arriers ina hole inversion layer might originate from heavy and light hole bands that are degen-erate at the top of the valen
e band. As an approximation, the di�erent 
arriers in thequantum dot 
ould be treated as di�erent spe
ies of fermions. Therefore, we make astraightforward generalisation of the SDFT and treat the spe
ies as di�erent isospinstates of an ele
tron. Consequently, there is one set of orbitals for ea
h 
omponent inthe Kohn-Sham des
ription.Non-adiabati
 atomi
 
lusters or mole
ules are yet another example of multi
ompo-nent systems. If the adiabati
 Born-Oppenheimer approximation fails to disrobe themotion of atomi
 nu
lei, both the nu
lear and ele
troni
 degrees of freedom must bein
orporated in the density-fun
tional theory [8℄.In publi
ation [II℄ we develop a multi
omponent density-fun
tional theory to treattwo-dimensional systems made of mutually intera
ting but di�erent kinds of fermions.For a lo
al approximation for the ex
hange-
orrelation potential, we extend an existingex
hange-
orrelation energy fun
tional to the multi
omponent 
ase. In publi
ation[III℄ we study the ele
troni
 properties of multi
omponent quantum dots. We assumean e�e
tive mass approximation where the band stru
ture e�e
ts of the di�erent
omponents are put into single parameter m∗. However, ea
h 
omponent may have amass of its own.4.1 Two-dimensional Multi
omponent Fermion GasWe estimate the ex
hange-
orrelation energy of a multi
omponent two-dimensionalele
tron gas to be used in the lo
al density approximation of density-fun
tional 
al-23
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omponent Quantum Dots
ulations of systems with multiple internal degrees of freedom. We 
all the di�erentdegrees of freedom as 
omponents. For example, the 
onventional ele
tron gas will bea two-
omponent ele
tron gas with spin up and spin down ele
trons being the 
om-ponents. Polarised ele
trons form in turn a one-
omponent system. First, we derivethe Hartree-Fo
k energy of two-dimensional multi
omponent gas. Then, we extend anexisting two-
omponent 
orrelation energy fun
tion by Atta

alite et al. [49℄ to themulti
omponent 
ase.Ex
hange-
orrelation EnergyWe 
onsider a homogenous gas 
onsisting of Γ di�erent 
omponents. Then Γ = 2
orresponds to the normal ele
tron gas and Γ = 1 to the fully polarised (�spinless�)gas. The total density of the gas is a sum of the densities of the di�erent 
omponents,that is,
n =

Γ
∑

i=1

ni = n

Γ
∑

i=1

νi, (4.1)where ni is the density and νi = ni/n is the dimensionless 
on
entration of 
omponent
i. The Hartree-Fo
k energy of the multi
omponent gas 
an be 
al
ulated in a similarfashion as that of the two-
omponent gas [7, 1℄, only now the spin index is gener-alised to a 
omponent index taking Γ di�erent values. Instead of going through theHartree-Fo
k algebra, we will take a short-
ut and use the fa
t that, for a homogenoussystem, the lo
al density approximation for the ex
hange energy will give the exa
tresult. Ex
hange energy per parti
le for 
omponent i is εi

x = − e2

4πǫǫ0

8
√

π
3π
n

1/2
i . The totalex
hange energy per parti
le is then

εx = Ex/N =
1

N

Γ
∑

i=1

∫

εi
xnidr = − e2

4πǫǫ0

8
√
π

3π
n1/2

∑

i

(ni

n

)3/2

= − e2

4πǫǫ0

8

3πrs

∑

i

ν
3/2
i . (4.2)Here, we have used the de�nition of the two-dimensional density parameter, n1/2 =

1/
√
πrs.The total kineti
 energy is the sum of the kineti
 energies of the di�erent 
omponents,that is,

Ek =

Γ
∑

i=1

∑

ki

~
2k2

i

2mi
=

∑

i

V

(2π)2

∫

ki≤kF,i

~
2k2

i

2mi
dki =

∑

i

V ~
2

16πmi
k4

F,i, (4.3)



4.1 Two-dimensional Multi
omponent Fermion Gas 25where mi is the mass of 
omponent i. By inserting the radius of the Fermi-disk of the
ith 
omponent, kF,i =

√
4πni, we �nd the total kineti
 energy per parti
le to be

εk = Ek/N =
∑

i

V

N

~
2πn2

i

mi
=

∑

i

~
2π(nνi)

2

nmi
=

~
2

r2
s

∑

i

ν2
i

mi
. (4.4)The 
orrelation energy per parti
le is given by the residual energy that is not in
ludedin the Hartree-Fo
k energy, thus, εc = εtot − (εk + εx). We note that the ex
hangeenergy is independent of the masses of the 
omponents, but the 
orrelation and kineti
energies depend on them and, for the ex
hange-
orrelation energy per parti
le, we thenhave εxc = εxc(rs, {νi}, {mi}).A reasonable �rst approximation for the mass dependen
e is given by a simple s
alingof the ex
hange-
orrelation energy. In order to dedu
e the suitable relation, let us �rstintrodu
e dimensionless quantities Zγ =

∑Γ
i=1 ν

γ
i . Then, by de�ning an average totalmass M via

1

M
=

1

Z2

∑

i

ν2
i

mi

, (4.5)we may write the kineti
 energy as ~
2Z2/r

2
sM . By dividing the Hartree-Fo
k energyby the average mass, we have

εHF

M
=
εk

M
+
εx

M
=

~
2Z2

(Mrs)2
− e2

4πǫǫ0

8Z3/2

3π(Mrs)
. (4.6)Thus, the average mass M s
ales the density parameter rs. As an approximation, weexpe
t the 
orrelation energy to follow this same s
aling and, for the mass dependen
eof the ex
hange-
orrelation energy, we adopt formula

εxc(rs, {νi}, {mi}) =
M

me

εxc(Mrs, {νi}, {mi = me}), (4.7)whereme is the bare ele
tron mass. Finally, we note that at low densities when rs → ∞the homogenous multi
omponent gas approa
hes the Wigner 
rystal limit, where the
orrelation is dominated by the ele
trostati
 repulsion between the lo
alised parti
lesand, thereby, the masses of the 
omponents do not play an important role.Extension of the Two-
omponent Fun
tionAtta

alite et al. [49℄ parametrised the ex
hange-
orrelation energy of the two-dimensionaltwo-
omponent ele
tron gas by �tting an appropriate fun
tion to their �xed-node dif-fusion quantum Monte Carlo 
al
ulations. For the ex
hange-
orrelation fun
tion, theygeneralised a fun
tional form introdu
ed by Perdew-Wang [25℄ to the two-dimensional
ase. The fun
tion en
ompasses the known high and low density limits.



26 Multi
omponent Quantum DotsThe parametrisation by Atta

alite et al. 
an be written in terms of numbers Zγ. Fora two-
omponent gas we have ξ = ν1 − ν2 and ν1 + ν2 = 1. By squaring them, we�nd ξ2 = 2(ν2
1 + ν2

2) − 1 = 2Z2 − 1. The ex
hange-
orrelation energy fun
tion thenbe
omes
εxc(rs, Z2, Z3/2) = e−βrs [εx − ε(6)

x ] + ε(6)
x

+ α0(rs) + α1(rs)(2Z2 − 1) + α2(rs)(2Z2 − 1)2, (4.8)where ε(6)
x = −4

√
2[1 + 3

8
(2Z2 − 1) + 3

128
(2Z2 − 1)2]/3πrs. The fun
tions αi(rs) areparametrised by Atta

alite et al., who 
al
ulated total energies also for intermediatepolarisations ξ = (n1 − n2)/n = ν1 − ν2 ∈ [0, 1] 
orresponding to Z2 ∈ [0.5, 1].Extension to higher number of 
omponents means an extrapolation of εxc to range

Z2 ∈ [0, 1], where extreme Z2 = 0 
orresponds to a situation where all the parti
les inthe gas belong to di�erent 
omponents, and at Z2 = 1 there is only one 
omponent.
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Figure 4.1: Ex
hange-
orrelation energy of the multi
omponent fermion gas as a fun
tion of Z2.The lines 
orrespond to the extended interpolation fun
tion of Eq. (4.8) for di�erent values of rs,and the points 
orrespond to many-body 
al
ulations.In order to test the extension (4.8), we 
ompared it with the existing many-body 
al
u-lations. Unfortunately, we found that the available data was s
ar
e. Results are shown



4.1 Two-dimensional Multi
omponent Fermion Gas 27in Figure 4.1, where the lines 
orrespond to the parametrised ex
hange-
orrelationenergies for di�erent values of rs and Z2, and the dots 
orrespond to 
al
ulated many-body data. The extended ex
hange-
orrelation energy (4.8) redu
es exa
tly to theform of Atta

alite et al. in the two-
omponent range Z2 ∈ [0.5, 1]. For the four-
omponent 
ase, Conti and Senatore [50℄ presented results for several values of rswith �xed 
on
entrations, ν1 = ν2 = ν3 = ν4 = 1/4 
orresponding to Z2 = 0.25. Fur-thermore, we estimated the 
urious �in�nite 
omponent� Z2 = 0 limit from the energyof 
harged Bose gas [51℄. E�e
tively, there is no Pauli ex
lusion if all the parti
lesbelong to di�erent 
omponents, sin
e they 
an be put into di�erent internal �isospin�states. It should be noted, however, that this estimation is only suggestive sin
e thetrue many-body wave fun
tion of the multi
omponent fermion system is still anti-symmetri
 while for bosons it is symmetri
. Figure 4.1 shows that the above extendedex
hange-
orrelation energy (4.8) �ts surprisingly well to the existing data even inthe extreme Z2 = 0. Nonetheless, more many-body results in the region Z2 < 0.5 areneeded in order to 
onstru
t a better interpolation fun
tion for the multi
omponentfermion gas.
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Figure 4.2: Phase diagram for the four-
omponent gas as a fun
tion of density parameter rs andmass ratio m = mh/ml.



28 Multi
omponent Quantum DotsMass Dependen
eThe mass di�eren
e between the 
arriers in heterostru
tures 
an arise from the dif-ferent e�e
tive masses of materials used in double layer systems or, in hole systems,simply from the e�e
tive mass di�eren
e between heavy and light hole bands. As dis-
ussed in 
hapter 1, in order to 
onstru
t a two-dimensional gas from the di�erent
omponents, only the lowest state perpendi
ular to the 2D plane must be o

upied.There 
an be a 
onstant energy di�eren
e between the di�erent 
omponents aris-ing from the redu
tion of kineti
 energy of heavier 
onstituents. Therefore, the massdi�eren
e and the 
onsequent energy shift should be small enough so that all the
omponents o

upy only the lowest perpendi
ular state allowing the formation oftwo-dimensional multi
omponent gas.We studied a four-
omponent gas with varying masses at di�erent densities. We �xedthe masses to be pairwise equal so that two 
omponents are heavier than the othertwo, that is,m1 = m2 = ml andm3 = m4 = mh. Due to the spin degenera
y, there willalways be an even number of 
omponents, and all pairs of 
omponents will have equalmasses. Figure 4.2 shows a phase diagram for the four-
omponent gas as a fun
tion ofdensity parameter rs and mass ratiom = mh/ml between heavy and light 
omponents.For m = 1, the 
on
entrations are equal up to rs ≈ 26.2 after whi
h there is only one-
omponent present. When in
reasing m, the kineti
 energy and the 
on
entrations ofthe heavier 
omponents de
rease and, eventually, the four-
omponent gas goes throughthe two-
omponent phase down to the polarised one-
omponent phase. Polarisationo

urs at smaller rs as m in
reases due to the s
aling equation (4.7).4.2 Multi
omponent Quantum DotsThe ex
hange-
orrelation energy fun
tion 
onstru
ted in the previous se
tion is usedin Kohn-Sham density-fun
tional 
al
ulations of multi
omponent quantum dots. Theresults are reported in publi
ation [III℄. Quantum dots fabri
ated in multilayer het-erostru
tures, or of multivalley materials are possible realisations of multi
omponentnanostru
tures. For example, in a verti
al quantum dot mole
ule the bonding and anti-bonding states 
an be approximated as di�erent 
omponents, or as di�erent �isospin�states of an ele
tron. The isospin together with the spin makes the system a four-
omponent quantum dot. In sili
on quantum dots, the ele
trons originate from four(equivalent) valleys of 
ondu
tion band. As an approximation, we 
an treat this asan eight 
omponent system, where the di�erent valleys and the spin form the 
ompo-nents. In addition, the quantum dots made of hole inversion layers will have 
arriersoriginating from the light and heavy hole bands.



4.2 Multi
omponent Quantum Dots 29Multi
omponent Kohn-Sham MethodWe study a quantum dot 
ontaining parti
les belonging to Γ di�erent 
omponents. Thegeneralisation of the standard spin-dependent Kohn-Sham method to multi
omponent
ase is straightforward: There are now Γ 
oupled equations of form (2.9) that aresolved self-
onsistently. The e�e
tive potential for the 
omponents i = 1, 2, . . . ,Γ
onsists of external harmoni
 
on�nement that is assumed to be the same for all the
omponents, of the repulsive Hartree potential and of ex
hange-
orrelation potential
vxc,i = ∂nεxc/∂ni derived from equation (4.8). Thus, the e�e
tive potential is givenby

veff,i =
1

2
Kr2 +

∫

e2n(r′)

4πǫǫ0|r − r′|dr′ + vxc,i(rs(r), {νi(r)}, {mi}), (4.9)where K is the strength of the external 
on�nement. The total density of a system
ontaining N = N1 + . . .+NΓ ele
trons is given by the Kohn-Sham orbitals throughequation
n(r) =

Γ
∑

i=1

Ni
∑

k=1

|ψi,k(r)|2. (4.10)The ground-state is found by varying numbers Ni and 
hoosing the 
ombination givingthe lowest energy. Otherwise the solution pro
edure follows the dis
ussion of Se
tion2.3.Shell stru
tureThe �lling of shells in high-density quantum dots is easily observed from the additionenergy spe
trum [61℄. We studied the addition energy spe
trum of an ideal four-
omponent quantum dot at density rs = 2.0 a∗0. The degenera
y of the lth shell is now
4l, whi
h leads to shell 
losures at N = 4, 12, 24, . . . 
orresponding to maxima in theaddition spe
trum of Figure 4.3. There are smaller maxima at even ele
tron numbersup to 12 ele
trons and at every third ele
tron number between 12 and 24. These peaksmanifest Hund's �rst rule generalised to the multi
omponent 
ase. Ex
hange energyfavors polarisation and, therefore, the degenerate levels are o

upied one 
omponentat a time to minimise the total energy.Wigner Mole
ulesAt lowered densities ele
trons lo
alise into geometri
 
on�gurations determined bythe strong ele
trostati
 repulsion and the external 
on�nement. The lo
alisation in
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Figure 4.3: Addition energy spe
trum of a four-
omponent quantum dot. Ele
tron density 
orre-sponds approximately to rs ≈ 2 a∗

0
. The inset shows s
hemati
ally the �lling of levels in the 
ase of10 ele
trons.
onventional LSDA 
al
ulations is hindered by self-intera
tion but, in the multi
om-ponent systems, the ele
trons 
an a

ess more than two internal states, whi
h eases thelo
alisation. Althought the lo
alisation is not 
omplete in the sense that the densitiesof individual ele
trons still overlap, the 
lassi
ally predi
ted geometri
 
on�gurationsare well visible as is shown in the upper panel of Figure 4.4 for 7, 8 and 9 ele
trons. In7 and 8 ele
tron Wigner mole
ules, one ele
tron sits at the 
enter while all the othersreside in a ring around the 
enter. In the nine ele
tron 
ase, there are two ele
tronsin the middle and seven in a ring.We 
omputed addition spe
trum shown in the lower panel of Figure 4.4 at low densitiesfor an eight-
omponent system in �xed external 
on�nement with K = 2 · 10−4.The spe
trum does not show any features of shell stru
ture but merely de
reasesmonotonously due to the 
apa
itive 
harging of the dot. However, a small kink at

N = 7 is observed as a pre
ursor of geometri
 magi
 
on�guration, in agreement withthe purely 
lassi
al addition energy spe
trum 
al
ulated by Bedanov and Peeters [52℄.



4.2 Multi
omponent Quantum Dots 31

2 3 4 5 6 7 8

Number of electrons

0.7

0.75

0.8

0.85

0.9

0.95

1.0

A
d

d
it

io
n

en
er

g
y

(P
o

in
t

ch
ar

g
es

)

2 3 4 5 6 7 8

Number of electrons

0.032

0.034

0.036

0.038

0.04

0.042

0.044

0.046

0.048

0.05

A
d

d
it

io
n

en
er

g
y

(D
F

T
)

DFT
Point charges

Figure 4.4: Upper: Total ele
tron densities of an eight-
omponent quantum dot having 7, 8 and9 ele
trons, respe
tively, in �xed 
on�nement K = 2 · 10
−4. Lower: Addition energies for an eight-
omponent quantum dot in �xed 
on�nement K = 2 · 10
−4. A weak kink at N = 7 is a pre
ursorof geometri
ally magi
 stru
ture. The addition spe
trum of 
lassi
al point 
harges is also shown for
omparison.Figure 4.5 shows total densities for a four-
omponent quantum dot with eight ele
tronsat sele
ted values of rs. At rs . 4 a∗0, density is 
ir
ular and the ground state isdetermined by Hund's rule leading to 
on�guration (3,3,1,1). The lo
alisation sets onalready at rs = 6.0 a∗0 whereupon a Wigner mole
ule-like state appears. Six ele
tronsreside on the outer 
ir
umferen
e with two non-lo
alised in the middle. At rs = 14 a∗0,all the ele
trons are lo
alised and they are distributed spatially so that ea
h ele
tronhas neighbours belonging to di�erent 
omponents as shown in the 
ontour plot inFigure 4.5.
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4Figure 4.5: Ele
tron densities of a four-
omponent quantum dot for rs = 2 a∗

0
, 6 a∗

0
and 14 a∗

0
.The lo
alisation is eased by the fa
t that the neighbouring lo
alised ele
trons belong to di�erent
omponents as shown in the 
ontour plot at the left.Mass Dependen
eThe e�e
t of varying mass was tested in a four-
omponent dot with rs = 2.0 a∗0 and

N = 24. The mass m of two 
omponents was varied while the other two were �xed.Thus, m1 = m2 = m and m3 = m4 = 1.0. For m = 1.0, the sd shell is �lled giving themagi
 
on�guration (6,6,6,6). The mass in
rease shifts the heavier 
omponents downin energy due to de
reasing kineti
 energy as shown in Figure 4.6. At m = 1.2, the
sd orbitals of the light 
omponents are empty and heavier fp orbitals are o

upieda

ording to Hund's rule leading to o

upation (10,8,3,3). Already at m = 1.8 onlytwo ele
trons o

upy the light 
omponent while the heavier 
omponents obey Hund'srule with o

upation (12,10,1,1).
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tron system with varying e�e
tive mass.Light 
omponents have mass m = 1.0 and heavy mass is indi
ated in the �gure.



5 One-dimensional Quantum DotArraysThe intrinsi
 magneti
 properties of nanostru
tures have drawn mu
h attention due totheir potential appli
ability in spintroni
s devi
es [53℄. Spontaneous polarisation hasbeen found in one-dimensional quantum point 
onta
t 
onstri
tions formed in gate-patterned heterostru
ture [54, 55℄. Quantum point 
onta
ts [56℄ and single quantumdots [57℄ have also spin �ltering 
apabilities, with a possibility to use them for eithergenerating or dete
ting spin-polarised 
urrents.Arranging quantum dots in a latti
e, one 
an build arti�
ial 
rystals with designedband stru
ture, whi
h 
an be manipulated by tuning the inter-dot 
oupling and thenumber of ele
trons in a unit 
ell. Experimentally, �nite one-dimensional arti�
ial
rystals have been fabri
ated by Kouwenhoven et al. [58℄ already ba
k in 1990. Theyfound 
ondu
tan
e os
illations as a fun
tion of gate voltage, arising from the mini-band stru
ture of the periodi
 array. Another interesting arti�
ial array is the Kagomelatti
e with possible �at-band ferromagnetism [59℄.In paper [IV℄ we study quasi one-dimensional periodi
 arrays of few-ele
tron quantumdots. We use the standard SDFT without the multi
omponent extension. The nearlyparaboli
 
on�nement for two-dimensional ele
tron gas is provided by a Gaussian-shaped rigid positive ba
kground 
harge distribution. The magneti
 and ele
troni
properties depend on the shell �lling of the individual quantum dots (ele
tron numberper dot N) and on the inter-dot distan
e (latti
e parameter a).Blo
h-Kohn-Sham MethodIn order to model the one-dimensional quantum dot array, we 
onsider intera
tingele
trons moving in two dimensions in a rigid periodi
 ba
kground 
harge distribution
enB. The ba
kground 
harge number per unit 
ell mat
hes the ele
troni
 
harge toensure overall 
harge neutrality. The Kohn-Sham orbitals are of Blo
h form, that is,
ψnkσ(r) = exp(ik · r)unkσ(r), where n labels the band, σ = (↓, ↑) is the spin indexand the wave ve
tor k is 
on�ned into the �rst Brillouin zone. The periodi
 fun
tions

34
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unkσ(r) satisfy the Blo
h-Kohn-Sham equations

− ~
2

2m∗ (∇ + ik)2unkσ(r) + vσ
eff(r)unkσ(r) = εnkσunkσ(r), (5.1)where the periodi
 e�e
tive potential is

vσ
eff(r) =

∫

e2(n(r′) − nB(r′))

4πǫ0ǫ|r − r′| dr′ + vσ
xc[n(r), ξ(r)], (5.2)

n is the ele
tron density and ξ = (n↑ − n↓)/n is the polarization. In the lo
al spin-density approximation, we use the form (2.13), parametrised by Tanatar-Ceperley[60℄, for the polarization-dependent ex
hange-
orrelation potential vσ
xc[n(r), ξ(r)]. Inthe band stru
ture 
al
ulation, the fun
tions unkσ(r) are expanded in a basis with

11×11 plane waves. Again, the self-
onsistent solution follows the pro
edure explainedin se
tion 2.3. Iterations are started with anti-ferromagneti
 and ferromagneti
 initialpotentials. In addition, we use an arti�
ial temperature to allow fra
tional o

upationnumbers for nearly degenerate states at the Fermi level. The temperature is low enoughnot to a�e
t the ground-state so the statisti
al o

upations merely help o

upyingdegenerate levels to ensure 
onvergen
e.5.1 Magnetism in 1D Quantum Dot ArraysThe 
on�ning potential is modelled by a periodi
 positive ba
kground 
harge dis-tribution des
ribed by a sum of Gaussians 
entered at latti
e sites R = a(nx, 0),
nx = 0, 1, 2, . . . Thus, we have

ρB(r) =
∑

R

ρd(r −R); ρd(r) =
1

πr2
s

exp(−r2/Nr2
s), (5.3)where r = (x, y) is a two-dimensional position ve
tor. A single Gaussian 
arries pos-itive 
harge Ne with density 1/πr2

s at the 
enter. For the density parameter, we usevalue rs = 2 a∗0. Examples of densities and spin densities in the unit 
ell are given inFigure 5.1.The bottom of the 
on�ning potential provided by the ba
kground 
harge distributionis harmoni
 to a good approximation. Studying magnetism in a one-dimensional array,the simplest geometry to 
hoose for the unit 
ell is a re
tangle with two quantum dotsper 
ell. These dots lie in a row along the x axis of the 
ell, one in the 
enter andone 
rossing periodi
ally the edge of the 
ell. In a one-dimensional quantum dot arrayone 
an have a smooth transition from the tight-binding des
ription to the nearly-freeele
tron pi
ture simply by varying the latti
e 
onstant a.
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Figure 5.1: Total density and spin density for N = 3 at latti
e 
onstant a = 13.05 a∗

0.

   
−0.2

−0.1

0

0.1

E
ne

rg
y 

 ε
(k

)−
ε F

a=3.14
   

 

 

 

 

a=5.0625
   

 

 

 

 

a=6.97
   

 

 

 

 

a=8.55
   

 

 

 

 

a=10.125Figure 5.2: Lowest bands at sele
ted values of the latti
e 
onstant a for a quantum dot array withthree ele
trons per quantum dot (in atomi
 units, see text). The spin-down bands are plotted withblue dashed lines, and the spin-up bands 
orrespond to red solid lines. The dotted green line indi
atesthe Fermi-level �xed at zero energy.



5.1 Magnetism in 1D Quantum Dot Arrays 37Figure 5.2 shows the bands for N = 3 at di�erent inter-dot separations. The spin-upand spin-down bands are shown as red solid line and blue dashed line, respe
tively,and the Fermi-level is �xed at zero energy.For large values of the latti
e parameter a, the ele
tron densities of the individual dotshardly overlap, and the dots are isolated. The bands are �at with band gap energiesapproximately equal to the single dot level spa
ings. In this tightly bound extreme thedot array be
omes insulating as the hopping probability diminishes with in
reasing a.By bringing the quantum dots 
loser to one another (by de
reasing a), the banddispersion in
reases. Eventually, the band gaps between the tight-binding bands 
loseand the dispersion be
omes paraboli
. The single quantum dots overlap strongly lead-ing to an essentially homogenous quantum wire with a Gaussian 
ross-se
tion. In thisnearly free limit, the transverse motion of an ele
tron separates from the longitudinalone. The transverse states are quantised by the Gaussian shaped well, while the lon-gitudinal states remain �free� with paraboli
 dispersion. This is re�e
ted in the bandstru
ture, showing nearly equidistant sub-band parabolas. In Figure 5.2 we see thatthe se
ond transverse sub-band is o

upied at a = 5.0625 a∗0 while at a = 3.14 a∗0 theFermi-level rea
hes the third sub-band.Shell Filling and MagnetismThe upper panel of Figure 5.3 shows the magnetism of a quasi one-dimensional quan-tum dot array as a fun
tion of ele
tron number per quantum dot and latti
e parameter
a. The 
olours indi
ate regions where the array is 
ondu
ting (blue) or insulating (yel-low). Green 
orresponds to regions where the Fermi-level resides solely on a single spinband and the arrows indi
ate the spin arrangement in the array.For a single ele
tron per quantum dot, N = 1, the lowest bonding s-band is �lled. Dueto the ex
hange splitting of single dot levels, the bonding and anti-bonding bands areseparated by an energy gap and the array shows antiferromagneti
 order. The lowerpanel of Figure 5.3 shows that the spin per dot drops gradually from 1/2 to 0 as thelatti
e parameter is de
reased and the band gap and the antiferromagnetism persistsdown to very small values of a. At the 
losed shell, N = 2, both the bonding andanti-bonding 1s bands are full leading to a non-magneti
 insulator.For N = 3 and 4, the p-bands are o

upied. There are two bonding and two anti-bonding bands for both the spins. The bands with higher dispersion 
orrespond toorbitals with density lobes oriented along the wire. For N = 3, there is one p-ele
tronper dot, whi
h triggers ferromagnetism. The bands with majority spin are lower thanthe ones with minority spin as a result of ex
hange splitting of the energy bands. Thedensity in the array in
reases with de
reasing a, and at high densities at a = 5.0625 a∗0
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Figure 5.3: Upper: Magnetism in a linear 
hain of quantum dots as a fun
tion of the number ofele
trons per dot and the latti
e parameter. Blue 
olour (darkest grey in bla
k and white printing)
orresponds to the 
ondu
ting and yellow (lightest grey) to the insulating phase. Green (light grey)indi
ates the phase where only one spin is 
ondu
tive. Lower: Spin per dot for N = 1, 3, 4 and 5 asa fun
tion of latti
e parameter.
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0.The spin-down bands are plotted with blue dashed lines, and the spin-up bands 
orrespond to redsolid lines.the spin degenera
y is restored as kineti
 energy 
ontribution be
omes dominant.However, a small spin-splitting is regained at a = 3.14 a∗0 as shown in Figure 5.2.Figure 5.4 shows that the bands of minority spin are pushed up in energy by ex
hangesplitting and, at an appropriate value of latti
e parameter, the Fermi-level residessolely on a single spin band suggesting that only one spin 
ontributes to 
ondu
tivity.A similar behaviour is observed with N = 5. There are now three p-ele
trons withalmost full shell. This spin-dependent 
ondu
tivity of linear quantum dot 
hains mightbe used as a spin �lter.At half-�lled p-shell (N = 4) Hund's rule leads to maximised spin in an isolated dot.In an array, the spin is at its maximum at a ≈ 18 a∗0 and it de
reases gradually with
a. The array is an anti-ferromagneti
 insulator due to the Fermi-gap indu
ed by theex
hange-splitting. For N = 6, the p-shell is full and the array remains non-magneti
at all values of a.
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=6.0Figure 5.5: Lowest bands at sele
ted values of width parameter C1D for a quantum wire with fourele
trons per unit 
ell. The dashed green line indi
ates the Fermi-level �xed at zero energy.5.2 Spin-Peierls Transition in Homogenous QuantumWiresAt small values of latti
e parameter a, a quantum dot array forms a nearly homogenousquantum wire with a Gaussian 
ross-se
tion. The ba
kground 
harge distribution fora homogenous wire is 
hosen to be
ρB(x, y) =

1

2r1D
s

1√
2πα

exp(− y2

2α2
), (5.4)where r1D

s is the one-dimensional density parameter. The wire lies along the x-axis,and its width is measured by the full width at half maximum, that is, 2
√

2 ln 2α.Sin
e there is no de�nite latti
e parameter for the wire, the length L of the unit 
ellis 
hosen in su
h a way that ρB integrates to the desired 
harge Ne. Thus, we have
L = 2r1D

s N . We have 
hosen four ele
trons to be in the unit 
ell (N = 4) and we have�xed r1D
s = 2 a∗B. In addition, we de�ne parameter C1D as follows: C1D = 2r1D

s /α. Itdes
ribe the ratio of the average inter-ele
tron separation and the width of the wire:when C1D in
reases, the wire be
omes narrower.Figure 5.5 shows band stru
tures of a homogenous quantum wire for sele
ted widths.



5.2 Spin-Peierls Transition in Homogenous Quantum Wires 41For C1D = 2, the dispersion is paraboli
 and the Fermi-level lies 
lose to the se
ondtransverse sub-band. In this 
ase, the wire shows no magnetism. Antiferromagnetismsets on at C1D = 4, as the spin-Peierls transition o

urs. The ground state is a spindensity wave with wave length of L/2 = r1D
s N = 8 a∗B. The spin-Peierls transitionopens a gap at the Fermi-level and turns the wire into an insulator. The amplitude ofthe spin density wave in
reases when C1D in
reases.



6 Summary and Con
lusionsThe subje
t of this thesis was to study the ele
troni
 and magneti
 properties of 
ou-pled quantum dot stru
tures and to develop ex
hange-
orrelation energy fun
tionalfor homogenous fermion gas 
ontaining intera
ting parti
les with di�erent internaldegrees of freedom. The 
hoi
e for 
omputational method was the Kohn-Sham for-mulation of the density-fun
tional theory, whi
h is �exible enough for the 
oupledsystems and yet des
ribes 
orrelation e�e
ts reasonably well.In publi
ation [I℄ we studied the properties of an ele
tron-hole double quantum dot.We 
onstru
ted a ground state phase diagram as a fun
tion of the inter-dot separationand 
on�nement strength. The main aspe
t of the phase diagram is the 
ompetitionbetween Jahn-Teller deformation and Hund's rule as the parameters are varied. Bothme
hanisms resolve degenera
ies when the dots have half-�lled shells. In addition, theCoulomb attra
tion lo
alises ele
trons and holes into bound dipoles or ex
itons as thedensity is lowered.An extension of the ex
hange-
orrelation energy to multi
omponent ele
tron gas isintrodu
ed in publi
ation [II℄ and this extension is applied to a quantum dot in pub-li
ation [III℄. Multi
omponent ele
tron (or hole) gas 
ould be formed in multilayeredheterostru
tures su
h as double quantum dots or in systems where the 
arriers origi-nate from several bands. Examples of su
h heterostru
tures are the multivalley sili
onquantum dots and hole quantum dots where the holes belong to bands with heavyand light e�e
tive mass.The proposed ex
hange-
orrelation energy parametrisation agrees well with the ex-isting quantum Monte Carlo data. However, there is a need for more total energy
al
ulations of multi
omponent systems in order to 
onstru
t more a

urate interpo-lation formulas.For multi
omponent quantum dots, the fa
t that ele
trons 
an a

ess more than oneinternal state eases the lo
alisation at low densities. At higher densities the shell stru
-ture is revealed in the addition energy spe
trum. The degenerate levels are o

upiedin a

ordan
e to Hund's rule. The degenera
ies are lifted as the 
omponents havedi�erent masses and even a rather small mass di�eren
e pushes the levels of heaviermass down in energy leaving lighter 
omponents uno

upied.Publi
ation [IV℄ presents magneti
 and ele
troni
 properties of linear one-dimensional42




on
lusions 43few-ele
tron quantum dot arrays. These properties depend on the inter-dot separationand the number of ele
trons per unit 
ell. When the dots are 
lose to ea
h another,the ele
tron densities overlap strongly leading to nearly homogenous quantum wire.The wires are non-magneti
, but they undergo spin-Peierls transition as they aresqueezed narrower to be
ome more one-dimensional. At larger dot separations thespin arrangement follows the shell �lling of the individual quantum dots. For 
aseswhere there is odd number of ele
trons per quantum dot, the ex
hange splitting liftsthe spin degenera
y, and at 
ertain inter-dot separations the Fermi-level resides solelyon a single spin band. This opens an interesting possibility to use a linear dot 
hainas a spin �lter.
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