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AbstratSemiondutor quantum dots have established their position as testing laboratories formany-body quantum e�ets. Arti�ial tuning of external parameters makes the physisof quantum dots partiularly interesting. The number of on�ned eletrons or thestrength of the on�ning potential an be varied and, onsequently, the harateristisof the quantum mehanial state an be hanged.In this Thesis, we employ the density-funtional theory to examine the eletroni andmagneti properties of oupled quantum dot strutures. We develop an exhange-orrelation energy funtional to be used in the density-funtional alulations of ou-pled systems. We study vertial eletron-hole quantum dot moleules, one-dimensionalquantum dot arrays and multiomponent quantum dots in whih the arriers ouldbelong to the di�erent bands of the semiondutor material.Computational studies of omplex oupled quantum dot strutures all for e�ientnumerial methods. To be used as the omputational tool, we hose the Kohn-Shamformulation of the density-funtional theory in whih the exhange and orrelatione�ets are treated within loal approximation. We believe that the density-funtionaltheory gives a satisfatory qualitative piture of the many-body e�ets governing thephysis of oupled quantum dots.
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1 Semiondutor Quantum Dots
1.1 IntrodutionSine their disovery in the 1970s the low-dimensional semiondutor nanostrutureshave evolved from sienti� uriosities to means of probing the quantum mehanialmany-body e�ets and to modern devies with an exiting appliation potential. Themany-body quantum e�ets are regularly studied in heterostrutured nanodeviesthat at as eletron traps or wave-guides. Experiments as well as theoretial studieshave revealed the mirosopi nature of these devies and ative researh brings alongalso ommerially interesting innovations.Despite the giant leaps in the progress of fabriation and measuring tehniques in thenanometer-sized devies the inter-partile orrelations make the physis and the ex-periments hallenging. Numerial modelling an give some insight into the many-bodye�ets observed in experiments. However, due to the omplexity of nanostrutures,modelling requires well-justi�ed simpli�ations in order to make the problem tratable.Often the problem is redued to �nding the eigenspetrum of the many-body Hamil-tonian, whih an only be done numerially for a relatively small number of partiles.Paul Dira, one of the pioneers in the many-body quantum mehanis, has ommentedon the di�ulty of this task:�The underlying physial laws neessary for the mathematial theory ofa large part of physis and the whole of hemistry are thus ompletelyknown, and the di�ulty is only that the exat appliation of these lawsleads to equations muh too ompliated to be soluble.�Sine Dira's days methods and omputers have evolved to a level where problems ofseveral eletrons an be solved. One milestone in this development has been the Kohn-Sham formulation of the density-funtional theory, whih an be used in ground-statealulations of systems ontaining up to hundreds of eletrons.Quantum dots are ideal andidates for probing many-body e�ets theoretially andexperimentally. With modern fabriation methods one an on�ne a tunable numberof eletrons into a small island. The size of the island an be made omparable tothe de Broglie wavelength of an eletron so that a true quantum on�nement an be1



2 Semiondutor Quantum Dotsahieved. Consequently, quantum dots have a mirosopi shell struture that an berevealed in transport measurements. Due to this similarity to real atoms, quantumdots are often alled arti�ial atoms.Trend in the studies of quantum dot strutures has been to prepare evermore omplexdevies using, for example, self-assembly [3, 9℄. Coupled quantum dots are interestingalso in studies of quantum omputing in whih two-state systems are needed forrealisation of qubit [10, 11℄. Investigation of these strutures with numerial methodsinvolves solving rather large problems aurately and yet in a reasonable time-span.The density funtional theory has proven its quality in studies of large atomi lustersand has also onstantly been used in quantum dot modelling.In this thesis, we employ the Kohn-Sham method to view the many-body ground-statee�ets in di�erent quantum dot strutures. In this hapter, we review the fabriationand experimental methods of quantum dots and disuss the approximations neededfor quantum dot models. In Chapter 2, we present the basis of the Kohn-Shamformulation of the density-funtional theory, disuss numerial methods and reviewbrie�y other methods used in eletron struture alulations. Chapters 3-5 deal withthe results presented in publiations [I℄-[IV℄.1.2 Fabriation and ExperimentsTwo-Dimensional Eletron GasTwo-dimensional eletron gas an be formed in the heterojuntion between two dis-similar semiondutor alloys [12℄. A prototypial heterojuntion an be prepared bydepositing a thin layer of AlGaAs alloy on a GaAs layer with moleular beam epitaxytehnique, whih allows an atomi sale preision in layer omposition. There are noappreiable lattie distortions on the juntion sine the lattie onstants and stru-tures of GaAs and AlAs are idential, but the band gaps of AlGaAs and GaAs alloysare di�erent. Charge transfer aross the juntion interfae will adjust the hemialpotential onstant throughout the juntion. Consequently, the band edges bend giv-ing rise to a potential barrier on the GaAs side. By su�ient doping, the hemialpotential reahes this potential well, and the ondution eletrons will be trappedon the viinity of the interfae. The motion of the eletrons parallel to the interfaewill remain free and the resulting eletron gas is dynamially two-dimensional if onlythe lowest perpendiular state is oupied. Due to the shallowness of the on�ne-ment well, the experiments on two-dimensional eletron gas are usually performed attemperatures of few kelvins down to millikelvins.



1.2 Fabriation and Experiments 3Lateral Quantum Dots in HeterostruturesThe motion of eletrons in two-dimensional eletron gas an be restrited further byething and gate patterning tehniques. Lithographi patterning of metalli gates oreletrodes on top of the heterostruture an be used to de�ne lateral quantum dotsontaining several hundred eletrons. The eletrons in the two-dimensional eletrongas are repelled by the negative voltage applied to the gate eletrodes and, withsuitable geometry, the eletrons an be lenhed into a small island [13℄. The numberof on�ned eletrons an be tuned by hanging the gate voltage. Earlier the lowerbound for the number of on�ned eletrons was limited to few tens of eletrons,but the modern tehniques in gate patterning allow also few-eletron on�nement.Reently, Elzerman et al. have reported a realization of a gate patterned few-eletrondouble quantum dot in AlGaAs/GaAs heterostruture [10℄.Mirosopi Shell Struture of Vertial Quantum DotsEthing tehniques are well-suited for fabriating pillar shaped few-eletron quantumdots. In the very �rst devies, eletron beam lithography was used for de�ning pillarsin AlGaAs/GaAs heterostruture. By attahing eletri ontats at the ends of thepillar, Reed et al. were able to measure eletron transport osillations in a vertialquantum dot aused by Coulomb blokade e�et [14℄. Taruha et al. were the �rstto reveal the mirosopi shell struture of vertial quantum dots in eletron trans-port measurement [15℄. The quantum dot setup they used is shown in Figure 1.1.A double-barrier heterostrutured pillar is surrounded by a metalli voltage-biasedShottky gate, whih allows a full ontrol over the lateral on�nement and enablessingle-eletron harging of the dot. By measuring urrent through the pillar as a fun-tion of gate voltage Vg Taruha et al. observed Coulomb osillations resulting from oneby one addition of eletrons to the dot. The ondutane peaks were not equidistantbut their spaing depended on the eletron number N . The voltage spaing betweenthe urrent peaks is proportional to the addition energy, whih measures the hangesof eletrohemial potential as a funtion of the eletron number. Addition energyspetrum shows pronouned maxima at N = 2, 6 and 12. These �magi� eletronnumbers are related to the mirosopi shell struture of the quantum dot.



4 Semiondutor Quantum Dots

Figure 1.1: Shemati view of a vertial quantum dot. The dot is loated between two heterostru-ture barriers and is surrounded by a Shottky gate. The number of on�ned eletrons an be tunedby varying gate voltage Vg.1.3 Modelling Vertial Quantum DotsSuessful modelling of a quantum dot involves few well-justi�ed approximations tomake the model tratable. The simpli�ations lead to the fundamental problem ofondensed matter physis, that is, the problem of solving the many-body Shrödingerequation.ApproximationsThe pillar shaped vertial quantum dot desribed in the previous setion has a diam-eter ten times longer than its thikness, and the experiments are performed at around50 mK. Therefore, one an assume that the on�ned eletrons oupy only the loweststate in the z-diretion (along the pillar) and the dot is a smoothly on�ned irulareletron island in two-dimensional plane. The �magi� eletron numbers oinide withthe losed shells of the irular two-dimensional harmoni osillator giving a hint thatthe on�nement is paraboli to a good approximation.The on�ned eletrons originate from the ondution band of the semiondutor, andonly the bottom of the band is populated by the ondution eletrons. In the e�e-tive mass approximation, the minimum is approximated with a paraboli dispersion



1.3 Modelling Vertial Quantum Dots 5

Figure 1.2: Upper: Coulomb osillations in the linear transport through a vertial quantum dot.Peak separation depends on the eletron number N , and it is espeially long for N = 2, 6, and 12.Lower: Addition spetrum of a vertial quantum dot. The addition energy spetrum omputed fromthe spin density-funtional theory (solid line) ompares well to the measured spetrum (dashed line)[16℄.relation with urvature determined by the e�etive mass m∗. The sreening of theCoulomb interation by the ions of the lattie is taken into aount in the dieletrionstant ǫ.



6 Semiondutor Quantum DotsHamiltonian for a Quantum DotIn the approximations desribed above, parameters m∗ and ǫ inlude the ompliatedbandstruture e�ets of the underlying lattie. In the resulting model, the quantumdot is treated as a two-dimensional eletron system on�ned into external potential
vext(r), where r = (x, y). In the absene of an external magneti �eld, the Hamiltonianfor the quantum dot with N eletrons reads

H =

N
∑

i=1

(

p2
i

2m∗ + vext(ri)

)

+
1

2

∑

i6=j

e2

4πǫ0ǫ|ri − rj|
. (1.1)The �rst of the two terms onsists of the kineti energy and the external harmonion�nement,

vext(r) =
1

2
m∗ω2r2, (1.2)while the seond two-body term inorporates Coulomb interation between the ele-trons. The Hamiltonian is often written in terms of e�etive atomi units, where

~ = 4πǫǫ0 = m∗ = e = 1. Then, the units of energy and length are e�etive Hartree
Ha∗ = m∗e4/~2(4πǫǫ0)

2 and e�etive Bohr radius a∗0 = ~
2(4πǫǫ0)/m

∗e2, respetively.The ompliations in solving the many-body problem arise from the orrelationsaused by the eletrostati repulsion between the partiles and the antisymmetryrequirement of the wave funtion. There are several methods available for attakingthe orrelated few-eletron problem. We will disuss those in the following hapter.The analytially soluble single-partile part of the Hamiltonian (1.1) is the startingpoint of quantum dot modelling and it also yields some qualitative features of the in-terating system. The single-partile wave funtions in the two-dimensional harmonipotential are
φnm(r, θ) =

√

n!

(n+ |m|)!
1√
πl0

(

r

l0

)|m|
exp(−r2/2l20)L

|m|
n (r2/l20)e

imθ. (1.3)Here L|m|
n is a Laguerre polynomial and l0 =

√

~/m∗ω is the osillator length. In thepresene of magneti �eld perpendiular to the plane, the osillator length is replaedby lB =
√

~/m∗Ω, where Ω2 = ω2 +ω2
c/4 and ωc = eB/m∗ is the ylotron frequeny.Due to the irular symmetry of the potential, the orbital angular momentum m isa good quantum number. As the motion is restrited to two dimensional plane, theangular momentum will onur with its z-omponent, thus m = 0,±1,±2, . . . Theprinipal quantum number n tells the number of nodes of the radial part of the wavefuntion and, therefore, takes values n = 0, 1, 2, . . . The orresponding single-partileenergies are

εnm = ~ω(2n+ |m| + 1). (1.4)



1.3 Modelling Vertial Quantum Dots 7The single-partile spetrum is visualised in Figure 1.3, in whih we see that thedegeneray of the lth shell is 2l, where l = 1, 2, . . ., and fator 2 stems from spin.If we oupy the 2D osillator levels with non-interating eletrons, we notie thatshell losures our at eletron numbers N = 2, 6, 12, . . ., and they oinide with the�magi numbers� in the addition energy spetrum of Figure 1.2. The main e�et ofthe Coulomb interation is to maximise spin due to Hund's �rst rule at open shelleletron numbers N = 4, 9, 16 . . . These numbers orrespond to the maxima in theaddition spetrum.
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Figure 1.3: Lowest s, p, sd and fp shells of the two-dimensional harmoni potential. The quantumnumbers for eah state are shown in parentheses (n, m)



2 Density-funtional Theory inQuantum Dot ModellingDensity-funtional theory (DFT) in its self-onsistent formulation by Kohn and Shamis one of the most frequently used methods in quantum dot modelling and in eletronistruture studies of ondensed matter in general. The strength of the theory residesin the observation of Hohenberg and Kohn that the eletron density an be used todetermine the ground state instead of the many-eletron wave funtion. The quantummehanial N-eletron wave funtion needs N spatial and spin variables for its om-plete desription while the density is a real valued funtion of a single spatial variable.This huge redution in the degrees of freedom makes the many-body problem solu-ble at least in priniple. In pratie the auray of the method is dependent on theapproximations needed to take into aount the exhange and orrelation e�ets thatbeome all-important in the desription of few-eletron low-density quantum dots.2.1 PriniplesThe Hohenberg-Kohn TheoremThe many-body Hamiltonian (1.1) inorporates operators for the kineti energy, theexternal potential and the pair interation between the eletrons, that is,
H = T + Vext + Uee. (2.1)The energy of the eletron system in state Ψ is given by the expetation value ofthe Hamiltonian, E[Ψ] = 〈Ψ|H|Ψ〉, when the wave funtion is normalised, that is,

〈Ψ|Ψ〉 = 1. Aording to the variational priniple, the ground state Ψ0 yields thelowest energy. Thus, the variational minimisation of E[Ψ] with respet to all theallowed N-eletron wave funtions will yield the exat ground state Ψ0.Instead of searhing the whole Hilbert spae of wave funtions in order to �nd theground state, we may as well searh for the ground state density [8℄. This is justi�edby the Hohenberg-Kohn theorem stating that the energy of the interating eletronsan be written as a funtional of the eletron density n, and that the minimisation ofthe resulting funtional with respet to the density yields the nondegenerate ground8



2.2 The Kohn-Sham Method 9state density whih has a one-to-one orrespondene to the external potential vext [17℄.The densities qualifying this Hohenberg-Kohn riterion are alled v-representable andthe funtional to be minimised is
E[n] = 〈Ψ[n]|T + Vext + Uee|Ψ[n]〉 = F [n] +

∫

n(r)vext(r)dr, (2.2)where F [n] = 〈Ψ[n]|T + Uee|Ψ[n]〉 is independent of the external potential and, thus,forms an universal funtional for all the N-eletron systems. Clearly, the exat form ofthe F [n] is unknown and approximations are needed. The very �rst density-funtionalmethod is alled Thomas-Fermi theory, in whih the interation energy is approxi-mated by the Hartree energy of the eletron harge distribution and, for the kinetienergy, a loal approximation is used [1℄. The results of Thomas-Fermi theory areseldom satisfatory and, therefore, more elaborate approximations and methods havebeen developed.The formulation of the DFT by Hohenberg and Kohn restrits to the nondegenerateground states and to v-representable densities that must be in one-to-one relation tothe external potential. The onstrained searh formulation of the original Hohenberg-Kohn theorem by Levy [18℄ and Lieb [19℄ relieves these restritions. Levy showed thatit is in fat su�ient to onstrain the searh for the (possibly degenerate) ground stateto the N-representable densities that result from square-integrable, antisymmetriwave funtions.2.2 The Kohn-Sham MethodKohn and Sham turned the density-funtional theory into a widely-used tool in om-putational ondensed matter physis. The original idea is to examine a non-interatingreferene system for whih the density is exatly the ground state density n(r) [20℄. Byintroduing the exhange-orrelation funtional, the many-eletron problem reduesto a set of single-eletron equations, desribing an individual eletron moving in ane�etive potential reated by all the others.Non-interating referene systemThe Hamiltonian for a system where all the interations are turned o� is simply asum of one-body operators, that is,
Hs =

N
∑

i=1

hi =

N
∑

i=1

(

− ~
2

2m∗∇
2
i + vs(ri)

)

, (2.3)



10 Density-funtional Theory in Quantum Dot Modellingwhere vs(r) is a single-partile potential. The wave funtion is a Slater determinantonstruted from the N lowest one-eletron states ψi satisfying equation hψi = εiψi.The density of the Slater determinant is simply a sum of the densities of the one-eletron orbitals. The resulting funtional for the energy of the non-interating systemis
Es[n] = Ts[n] + Vs[n] =

∑

i

〈ψi| −
~

2

2m∗∇
2|ψi〉 +

∫

vs(r)n(r)dr. (2.4)Minimisation of the above funtional leads to Euler-Lagrange equation
µ = vs(r) +

δTs[n]

δn(r)
, (2.5)where the Lagrange multiplier µ is needed for onservation of the eletron number.Kohn and Sham used these features of the non-interating system to redue the in-terating many-body problem into a set of one-body equations.Kohn-Sham equationsIn the Kohn-Sham method, the exat kineti energy is replaed by the non-interatingkineti energy Ts. Furthermore, the main ontribution to the interation energy isontained in the eletrostati Hartree energy,

U [n] =
1

2

∫

dr

∫

dr′ e
2n(r)n(r′)

4πǫǫ0|r − r′| . (2.6)In order to produe the desired separation into Ts[n] and U [n], the universal funtionalis written in the form
F [n] = Ts[n] + U [n] + Exc[n], (2.7)where the exhange-orrelation funtional Exc[n] = T [n]−Ts[n]+Uee[n]−U [n] ontainsthe di�erene between the true kineti energy and non-interating kineti energy andthe non-lassial part of interation energy. Using these de�nitions, the Euler-Lagrangeequations for the non-interating referene system (2.5) and for the true interatingsystem beome idential if we identify vs as

vs =: veff(r) = vext(r) +

∫

e2n(r)

4πǫǫ0|r − r′|dr′ + vxc(r), (2.8)where vxc = δExc/δn(r) is the exhange-orrelation potential. This similarity betweenthe referene system and the true system allows us to use the one-body tools to solvethe interating system: For a given veff , one obtains n(r) that satis�es the Euler-Lagrange equation simply by solving the N one-body equations
{

− ~
2

2m∗∇
2 + veff(r)

}

ψi(r) = εiψi(r) (2.9)



2.2 The Kohn-Sham Method 11and setting
n(r) =

N
∑

i=1

|ψi(r)|2. (2.10)The Kohn-Sham energies εi and eigenfuntions ψi(r) do not have a diret physialinterpretation, but are more or less mathematial auxiliaries. Nevertheless, they areused to determine bandstrutures for latties, and they give useful information aboutthe internal eletroni struture of quantum dots. The equations (2.9) are oupledtogether via the e�etive potential (2.8) making solving the ground state density(2.10) an iterative proess.Extensions of DFT to Magneti SystemsInitially, the DFT was developed in spin-independent formalism. Studies of systemsin an external magneti �eld, however, all for inlusion of the spin degree of freedom.Spin e�ets are essential also in the absene of external magneti �elds, for examplein open-shell quantum dots [16℄ and latties with broken spin symmetry (suh asferromagnets).The spin polarization e�ets are inluded in spin-density-funtional theory (SDFT)introdued by von Barth and Hedin [21℄. In the SDFT, the total eletron densityomprises of spin-up and spin-down densities, that is, n = n↑ + n↓, where
nσ(r) =

Nσ
∑

i=1

|ψiσ(r)|2 (2.11)for Nσ eletrons with spin σ = (↑, ↓). Consequently, there are now two sets of Kohn-Sham equations with orbitals ψiσ(r) and energies εiσ, one for eah spin. The e�etivepotential (2.8) beomes spin-dependent, as the exhange-orrelation potential is spin-dependent, that is, vσ
xc = δExc/δnσ(r). In the presene of magneti �eld, there is alsoa spin-dependent Zeeman term as the �eld ouples to the eletron spin.The ontribution of eletroni urrents to the energy funtional are negleted in theSDFT, although magneti �eld ouples to the physial (gauge-invariant) urrent den-sity that onsists of paramagneti and diamagneti urrent densities. At high magneti�elds this oupling annot be ignored and, therefore, Vignale and Rasolt onstrutedso-alled urrent-spin-density-funtional theory (CSDFT) [22℄, where the basi vari-ables are the paramagneti urrent density jp(r) and the spin densities n↑ and n↓.



12 Density-funtional Theory in Quantum Dot ModellingLoal density approximation for the exhange-orrelation en-ergyFormally, the Kohn-Sham method is an exat method for �nding the ground state.However, the exat form of exhange-orrelation energy is unknown, and one must re-sort to approximations. For two- and three-dimensional systems, the simplest approxi-mation is loal (spin) density approximation (LSDA), whih assumes eletron densityto be loally homogenous in an in�nitesimal volume-element. The total exhange-orrelation energy is obtained by integrating over the elements,
ELDA

xc [n] =

∫

n(r)εxc(n)dr. (2.12)Here εxc(n) is the exhange-orrelation energy per partile in an uniform eletrongas of density n. An alternative measure of density is given by the density parame-ter (Wigner-Seitz radius) rs, whih is rs = 1/
√
πn for two-dimensional gas. Despitethe raggedness of the loal approximation, it works surprisingly well also for atomisystems [23℄.The exhange-orrelation energy of the uniform eletron gas (also alled jellium inthe literature) an be divided into exhange and orrelation parts, εxc = εx + εc.The exhange part is obtained by alulating the exhange energy of the uniform gasusing the Hartree-Fok theory [1℄. However, an analyti expression for the orrelationenergy of the uniform gas is known only in extreme limits. At high densities (rs → 0),the interation part of the jellium Hamiltonian an be treated as a perturbation and,onsequently, the orrelation energy an be obtained from many-body perturbationtheory [24, 2℄. At low density (rs → ∞), the uniform liquid phase beomes unstableagainst the formation of a lose-paked Wigner lattie of loalised eletrons. Sine theCoulomb interation gives the dominant part of the total energy at low densities, theorrelation energy an be approximated from the Madelung eletrostati and zero-point vibrational energies of the Wigner lattie.For a loal approximation in the SDFT, one needs spin-resolved exhange-orrelationenergy εxc(n, ξ) for arbitrary relative spin polarisation ξ = (n↑ − n↓)/n. A standardpratie is to assume that the polarisation dependene of εxc(n, ξ) follows that of thepure exhange energy [21℄. Then

εxc(n, ξ) = εxc(n, 0) + f(ξ)[εxc(n, 1) − εxc(n, 0)], (2.13)where the polarisation dependene f(ξ) interpolates between the fully polarised (ξ =
1) and the unpolarised (ξ = 0) limits. Another representation for the eletron gasis provided by Perdew and Wang [25℄, and similar forms are used also for two-dimensional eletron gas. We shall disuss these in detail later on.



2.3 Numeris: Plane Wave Tehnique 13The various representations of the orrelation energy interpolate between the exatlyknown high-density and low-density limits. At intermediate densities, they are �t-ted to orrelation energy data obtained from quantum Monte Carlo simulations ofhomogenous eletron gas.2.3 Numeris: Plane Wave TehniqueThe uppermost bene�ts of the Kohn-Sham method are its �exibility and easy imple-mentation for omputations. There are several approahes to the numerial solutionof the Kohn-Sham equations. One branh uses real-spae methods based on �nitedi�erenes or �nite elements where the values of the Kohn-Sham orbitals ψiσ(r) aresolved diretly in a mesh inside the omputing region [26℄. Heiskanen et al. intro-dued a real-spae multigrid method where the eigenvalues are solved by minimisingthe Rayleigh quotient and the error redution rate of the solution is aelerated byusing yles of oarse and �ne grids [27℄.Plane WavesA onventional approah is to expand the orbitals ψiσ(r) in a omplete set of fun-tions and diagonalise the subsequent matrix of the Kohn-Sham Hamiltonian. In ourmodel for quantum dots a reasonable hoie ould be the single-partile basis (1.3).Partiularly, it is used in Kohn-Sham alulations with irularly symmetri e�etivepotential. We do not impose symmetry restritions but hoose plane wave basis forwhih we an use e�ient fast Fourier algorithms. In order to solve the oupled setof one-eletron equations (2.9), we expand the states in a �nite set of plane waves bywriting
ψiσ(r) =

1√
V

∑

k

Ciσ
k

exp(ik · r), (2.14)where k = 2π( n1

Lx
, n2

Ly
) with integers ni ranging from −ncut

i to ncut
i . To desribe thedensities and other quantities in the real-spae, the retangular alulation box of area

V = LxLy is divided into a mesh of (4ncut
1 +1)×(4ncut

2 +1) equidistant points. Typialvalues used for the plane wave ut-o�s ncut
i are 8 and 11 giving a total of 17 · 17 = 289to 23 · 23 = 529 plane waves.By using the expansion (2.14) in the equations (2.9), we get a matrix equation

∑

k

{

~
2k2

2m∗ δk,k′ + V eff
k,k′

}

Ciσ
k

= εiσC
iσ
k
′ , (2.15)
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is the Fourier omponent of the e�etive potential (2.8).Figure 2.1 shows a �ow hart for the self-onsistent solution of the Kohn-Sham equa-tions. Iterations are started from an initial guess of the e�etive potential for bothspins. Usually, alulations are performed with several di�erent initial guesses withsmall random perturbations added in order to avoid onvergene into the loal min-ima of the potential surfae. The Fourier omponents of the e�etive potential areomputed with the fast Fourier transformation and the Hamiltonian matrix is diag-onalised giving the lowest eigenenergies εiσ and the orresponding eigenvetors Ciσ.Inverse fast Fourier transformation omputes the real-spae eigenfuntions throughequation (2.14) after whih the density and the new e�etive potential an be ob-tained. This proess is repeated until self-onsisteny is ahieved, in other words,



2.4 Other Approahes 15when the e�etive potential does not hange anymore. For a better onvergene, newpotential is mixed with the old one through vnew
eff = (1−α)vold

eff +αvnew
eff with α rangingfrom 0.01 to 0.1.2.4 Other ApproahesDespite the evident bene�ts of the loal density KS-method, there are well-justi�eddoubts whether a method with a mean-�eld �avour an give a full aount of themany-body e�ets in quantum dots. These issues beome inreasingly important inthe studies of strongly orrelated low-density quantum dots that deviate signi�antlyfrom a uniform system, whereupon the loal approximation for orrelation is expetedto fail.Exat DiagonalizationA straightforward way to solve few-eletron orrelated states in a quantum dot is to useexat diagonalization of the many-body Hamiltonianmatrix [4℄. In quantum hemistrythe exat diagonalization is known as the on�guration interation method [5℄ and itis also used in the shell model alulations of nulear physis [6℄. The basi idea is toonstrut a Hamiltonian matrix of operator (1.1) and to diagonalise it. The matrixelements are alulated between Slater determinants (or Fok states in the oupationnumber representation) built up of di�erent on�gurations of single-partile states.Suitable hoie for the basis in the model Hamiltonian would be the basis (1.3). Byinreasing the number of on�gurations, the lowest eigenvalue onverges pratiallyto the exat ground state energy and, without any extra ost, the whole exitationspetrum is obtained. Furthermore, very aurate many-body wave funtions withorret orrelations are obtained.The appliability of this seemingly unbeatable method breaks down with inreasingeletron number and dereasing density beause the number of on�gurations neededfor onvergene grows rapidly. Computation beomes slightly easier when symmetriesof the problem are used to redue the dimension of the on�guration spae. For exam-ple, in studies of irular quantum dots we may do the diagonalization for a �xed totalangular momentum, and in strong magneti �elds we may trunate the single-partilebasis to the lowest Landau levels. Despite these failitations, the maximum numberof eletrons is limited to around ten [30℄.



16 Density-funtional Theory in Quantum Dot ModellingQuantum Monte CarloAnother group of many-body methods for orrelated systems is formed by the quan-tum Monte Carlo methods that inlude variational Monte Carlo (VMC), di�usionMonte Carlo (DMC) and path integral Monte Carlo (PIMC) among others (for re-views, see [28℄ and [29℄). These methods an be used to alulate quantum dot groundstates even at low densities and for a large number (> 10) of eletrons with a goodauray. A ommon problem in using quantum Monte Carlo tehniques for fermionsis to preserve the orret antisymmetry of the wave funtion.In the variational Monte Carlo method, the wave funtion is approximated with asuitable trial funtion having a set of variational parameters. Monte Carlo integrationis used to alulate the many-dimensional integrals, and the parameters in the wavefuntion an be varied to minimise the energy. The auray of the VMC is naturallyonditional on the hoie of the trial wave funtion and the energy given by it is anupper bound on the ground state energy due to the variational priniple. A usualform for the trial wave funtion is Ψ = exp(J)ΨS, where ΨS is an antisymmetriSlater determinant or a linear ombination of Slater determinants, and exp(J) is asymmetri Jastrow fator that desribes the orrelations among partiles. A usualform of Jastrow fator is
J =

N
∑

i=1

χ(ri) −
1

2

∑

i6=j

u(ri, rj), (2.16)where funtions χ and u inlude one- and two-body orrelations, respetively.The �xed-node di�usion Monte Carlo method is a stohasti projetor method thatmaps out the lowest energy state from a trial wave funtion. This probabilisti algo-rithm an handle only positive distributions, but the fermion wave funtions will takealso negative values as a result of antisymmetry in partile exhange. To irumventthis drawbak, the DMC algorithms often resort to �xed-node approximation, wherethe nodal surfae of the wave funtion is �xed to be the same as that of an antisym-metri trial funtion but no assumptions are made about the funtional form betweenthe nodes. Fixed-node DMC algorithm may therefore be regarded as a variationalmethod that gives exat results if the trial nodal surfae is exat.Comparisons of the Methods in Quantum Dot ModellingBoth the exat diagonalization and the quantum Monte Carlo method have been usedin quantum dot modelling. the QMC methods are used by several authors to alulatethe eletroni strutures of vertial quantum dots. The obtained addition energies



2.4 Other Approahes 17agree niely with the measured data and with the LSDA alulations. However, forfour-eletron dots some DMC and PIMC alulations predit ground state spin S =
0 that violates Hund's �rst rule [61℄. The S = 0 and S = 1 states obtained byPederiva et al. in DMC alulations [31℄ were nearly degenerate, and in a reenterratum they found S = 1 to be the ground state in agreement with Hund's rule [32℄.Exat diagonalization gives ground state spin S = 1 obeying Hund's rule.At lowered densities, the eletrons in the harmoni on�nement are expeted to lo-alise into a Wigner moleule, a �nite-size ounterpart of Wigner lattie. Monte Carlosimulations of lassial point-harges in harmoni potential indiate that the eletronsarrange themselves into spei� geometri on�gurations. Exat diagonalization [33℄and PIMC [34℄ alulations show that signals from Wigner rystallisation for smallnumber of eletrons an be observed already at relatively high density (rs ≈ 4 a∗0).Loalisation in LSDA alulations is hindered by the spurious self-interation e�etarising from the loal approximation for the exhange-orrelation energy. However,we will see that in quantum dot systems with inreased degrees of freedom, suh asdouble-layer dots, the loalisation an be seen also in LSDA alulations.Broken symmetries in the DFTThe Hamiltonian (1.1) preserves orbital angular momentum due to the irular sym-metry of the on�ning potential. Consequently, the density obtained from the exatwave funtion retains irular symmetry. Despite this, the mean �eld of the density-funtional theory an be deformed in the ase of orbital degeneray or at low densitieswhere the eletrons loalise into a Wigner moleule. The broken symmetry is diretlyrevealed in the density alulated from the Kohn-Sham orbitals. The question whetherthis phenomenon is an artifat of the mean �eld theory or a re�etion of the internalstruture of the exat wave funtion is under ontinuous debate [61℄.Broken symmetries are identi�ed by analyzing rotational and vibrational spetra ofirular quantum dots [35℄, quantum rings [36℄ and nulei [37℄. Deformations arealso found to be an universal feature of small alkali-metal lusters and nulei [38℄.Furthermore, an arbitrary rotation of the deformed mean �eld solution yields anequivalent solution. Therefore, the symmetry-violating mean-�eld an be viewed asan intrinsi state of the system.On the other hand, Harju et al. have addressed the problem of ensemble v-representabilityin the ase of retangular quantum dots [39℄. They ompared Kohn-Sham densities tothe exat densities and found that the mean-�eld spin density wave solution was infat a superposition of the ground state singlet and the exited triplet states.The above arguments suggest that the deformed solutions are not merely artifats of



18 Density-funtional Theory in Quantum Dot Modellingthe Kohn-Sham mean �eld, but they must still be examined arefully and ritially.Despite these possible pitfalls of the density-funtional methods, they give good insightto the qualitative features of the eletroni struture and are appliable also to largesystems.



3 Vertial Quantum Dot MoleulesBoth lateral and vertial quantum dots an be oupled to form �arti�ial moleules�[40, 41℄. Coupling brings forth new degrees of freedom to the quantum dot strutureleading to new features in eletroni properties. For example, the inter-dot separationand the type of arriers an be varied and, thus, the inter-dot oupling an be tunedat will. In a vertial quantum dot moleule in strongly oupled (quantum mehanial)regime, the eletrons deloalise over both dots leading to a splitting between bondingand anti-bonding states. The splitting diminishes approximately exponentially withinreasing inter-dot spaing until the isolated dots are only eletrostatially oupled[43℄. The splitting leads to formation of moleule-type phases [44℄ and, depending onapplied magneti �eld, to spei� �magi� orbital and spin angular momenta [45℄.In publiation [I℄ we examine eletroni struture of vertial quantum dot moleulesontaining eletrons and holes. By tuning the external parameters suh as the on-�nement strength and inter-dot separation, the ground state harateristis an bevaried. There are two ompeting mehanisms to resolve degenerate states, namelyHund's rule and Jahn-Teller deformation. Furthermore, at longer inter-dot distanesthe Coulomb attration loalises the eletron-hole pairs.3.1 Eletron-Hole Quantum Dot MoleulesVertial eletron-hole quantum dot moleules an be realised in bipolar heterostru-tures with separated eletron and hole layers in equilibrium. Suh heterostruturesare, for example, biased GaAs/AlGaAs or InAs/GaSb alloys [46, 47℄. The inset of�gure 3.1 shows shematially a double layer quantum dot where a two-dimensionalquantum dot with eletrons is separated by distane z0 from another dot on�ning anequal number of holes.In order to study the double dot with the Kohn-Sham method in the loal spin densityapproximation, we need a set of four oupled equations for the eletron and hole spin
19



20 Vertial Quantum Dot Moleulesdensities ne
σ and nh

σ. The e�etive potential for, say, eletrons is then given by
ve

eff,σ =
1

2
m∗ω2

0r
2 +

∫

e2ne(r′)

4πǫǫ0|r − r′|dr′

−
∫

e2nh(r′)

4πǫǫ0
√

|r − r′|2 + z2
0

dr′ + vxc,σ(n
e(r), ξe(r)). (3.1)Here the �rst term is the external harmoni on�nement and the next two terms arethe repulsive in-layer and attrative inter-layer Hartree potentials, respetively. For theexhange-orrelation potential, we used the von Barth and Hedin formulation of theloal exhange-orrelation energy (2.13) for both the eletron and hole densities. Theinter-layer eletron-hole orrelation is negleted, whih is a reasonable approximationfor large inter-dot separations and strong external on�nements.In our model, the quantum dots are assumed to be idential so that the harmonion�nements and the e�etive masses of holes and eletrons are the same, that is,

m∗
h = m∗

e = m∗ and ωe
0 = ωh

0 = ω0. Furthermore, the number of eletrons is assumedto be the same as the number of holes, that is, Ne = Nh = N . Owing to the fat thatthe dots are idential, the ground state densities of eletrons and holes are neessarilyidential.3.2 Ground State PropertiesPhase DiagramEletroni properties of vertial double quantum dots are determined by three pa-rameters: the inter-dot separation z0, the on�nement ω0 and the number of eletronsand holes N . Figure 3.1 shows ground state phases as a funtion of the inter-dot sep-aration z0 and the on�nement ω0 for a double quantum dot on�ning four eletronsand four holes. The di�erent ground state spin strutures are separated by a line,and a ontour plot of typial partile density in eah phase is shown. In the ase offour eletrons and holes, there are two partiles in the degenerate p-state of eah dot.This degeneray is lifted either by deformation of the mean-�eld or by magnetisationaording to Hund's �rst rule.When both z0 and ω0 tend to zero, the eletrons and the holes form a plasma droplet.The Kohn-Sham Hamiltonian inludes only kineti and exhange-orrelation energiesas the Hartree potentials of the eletrons and the holes anel eah other. At this�ultimate jellium� limit, the orbital degeneraies of the �nite droplets are removedby deforming the mean-�eld, whih leads to Jahn-Teller deformations of the density.
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22 Vertial Quantum Dot Moleulesultimate jellium limit, the density assumes a triangular deformation and it undergoesa transition to the azimuthally symmetri phase as ω0 inreases. Furthermore, theeletrons and holes loalise into an antiferromagneti ring of exitons. We believe thatthe lassial on�guration of �ve partiles in a ring with one partile at the enter isnot favoured beause of possible frustration of suh a spin arrangement.
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0
is aused by the Jahn-Teller deformation

Addition energiesAs was disussed in Setion 1.2, measurement of addition energies is an easy way ofprobing the shell struture of quantum dots. We de�ne the addition energy as thedi�erene in the eletrohemial potentials of a bipolar double dot moleule on�ning
N + 1 and N eletrons and holes, that is, ∆(N) = E(N + 1) − 2E(N) + E(N − 1),where E(N) is the total energy of the system. The addition energy spetrum of Figure3.2 shows the losed shell maxima at N = 2 and 6. Furthermore, for z0 > 0.0 a∗0, themid-shellN = 4 maximum results from spin alignment. At the limit of plasma droplet,the Jahn-Teller deformation is strongest at N = 4 leading also to a maximum in thespetrum.



4 Multiomponent Quantum DotsIn the previous hapter, we studied eletron-hole bilayer quantum dots using the Kohn-Sham method in the loal spin density approximation. The eletron-hole orrelationwas negleted altogether. The inter-layer orrelation is usually negleted also in theDFT studies of eletroni quantum dot moleules [44℄. However, a proper treatmentof layered systems should inlude the inter-layer orrelations between the two dots.Eletrons or holes in a quantum dot an originate from di�erent bands of semiondu-tor. For example, silion layer has four equivalent ondution eletron pokets withanisotropi transverse and longitudinal e�etive masses. Alternatively, the arriers ina hole inversion layer might originate from heavy and light hole bands that are degen-erate at the top of the valene band. As an approximation, the di�erent arriers in thequantum dot ould be treated as di�erent speies of fermions. Therefore, we make astraightforward generalisation of the SDFT and treat the speies as di�erent isospinstates of an eletron. Consequently, there is one set of orbitals for eah omponent inthe Kohn-Sham desription.Non-adiabati atomi lusters or moleules are yet another example of multiompo-nent systems. If the adiabati Born-Oppenheimer approximation fails to disrobe themotion of atomi nulei, both the nulear and eletroni degrees of freedom must beinorporated in the density-funtional theory [8℄.In publiation [II℄ we develop a multiomponent density-funtional theory to treattwo-dimensional systems made of mutually interating but di�erent kinds of fermions.For a loal approximation for the exhange-orrelation potential, we extend an existingexhange-orrelation energy funtional to the multiomponent ase. In publiation[III℄ we study the eletroni properties of multiomponent quantum dots. We assumean e�etive mass approximation where the band struture e�ets of the di�erentomponents are put into single parameter m∗. However, eah omponent may have amass of its own.4.1 Two-dimensional Multiomponent Fermion GasWe estimate the exhange-orrelation energy of a multiomponent two-dimensionaleletron gas to be used in the loal density approximation of density-funtional al-23



24 Multiomponent Quantum Dotsulations of systems with multiple internal degrees of freedom. We all the di�erentdegrees of freedom as omponents. For example, the onventional eletron gas will bea two-omponent eletron gas with spin up and spin down eletrons being the om-ponents. Polarised eletrons form in turn a one-omponent system. First, we derivethe Hartree-Fok energy of two-dimensional multiomponent gas. Then, we extend anexisting two-omponent orrelation energy funtion by Attaalite et al. [49℄ to themultiomponent ase.Exhange-orrelation EnergyWe onsider a homogenous gas onsisting of Γ di�erent omponents. Then Γ = 2orresponds to the normal eletron gas and Γ = 1 to the fully polarised (�spinless�)gas. The total density of the gas is a sum of the densities of the di�erent omponents,that is,
n =

Γ
∑

i=1

ni = n

Γ
∑

i=1

νi, (4.1)where ni is the density and νi = ni/n is the dimensionless onentration of omponent
i. The Hartree-Fok energy of the multiomponent gas an be alulated in a similarfashion as that of the two-omponent gas [7, 1℄, only now the spin index is gener-alised to a omponent index taking Γ di�erent values. Instead of going through theHartree-Fok algebra, we will take a short-ut and use the fat that, for a homogenoussystem, the loal density approximation for the exhange energy will give the exatresult. Exhange energy per partile for omponent i is εi
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i . (4.2)Here, we have used the de�nition of the two-dimensional density parameter, n1/2 =
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√
πrs.The total kineti energy is the sum of the kineti energies of the di�erent omponents,that is,
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4.1 Two-dimensional Multiomponent Fermion Gas 25where mi is the mass of omponent i. By inserting the radius of the Fermi-disk of the
ith omponent, kF,i =

√
4πni, we �nd the total kineti energy per partile to be
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. (4.4)The orrelation energy per partile is given by the residual energy that is not inludedin the Hartree-Fok energy, thus, εc = εtot − (εk + εx). We note that the exhangeenergy is independent of the masses of the omponents, but the orrelation and kinetienergies depend on them and, for the exhange-orrelation energy per partile, we thenhave εxc = εxc(rs, {νi}, {mi}).A reasonable �rst approximation for the mass dependene is given by a simple salingof the exhange-orrelation energy. In order to dedue the suitable relation, let us �rstintrodue dimensionless quantities Zγ =

∑Γ
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i . Then, by de�ning an average totalmass M via
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, (4.5)we may write the kineti energy as ~
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sM . By dividing the Hartree-Fok energyby the average mass, we have
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. (4.6)Thus, the average mass M sales the density parameter rs. As an approximation, weexpet the orrelation energy to follow this same saling and, for the mass dependeneof the exhange-orrelation energy, we adopt formula

εxc(rs, {νi}, {mi}) =
M

me

εxc(Mrs, {νi}, {mi = me}), (4.7)whereme is the bare eletron mass. Finally, we note that at low densities when rs → ∞the homogenous multiomponent gas approahes the Wigner rystal limit, where theorrelation is dominated by the eletrostati repulsion between the loalised partilesand, thereby, the masses of the omponents do not play an important role.Extension of the Two-omponent FuntionAttaalite et al. [49℄ parametrised the exhange-orrelation energy of the two-dimensionaltwo-omponent eletron gas by �tting an appropriate funtion to their �xed-node dif-fusion quantum Monte Carlo alulations. For the exhange-orrelation funtion, theygeneralised a funtional form introdued by Perdew-Wang [25℄ to the two-dimensionalase. The funtion enompasses the known high and low density limits.



26 Multiomponent Quantum DotsThe parametrisation by Attaalite et al. an be written in terms of numbers Zγ. Fora two-omponent gas we have ξ = ν1 − ν2 and ν1 + ν2 = 1. By squaring them, we�nd ξ2 = 2(ν2
1 + ν2

2) − 1 = 2Z2 − 1. The exhange-orrelation energy funtion thenbeomes
εxc(rs, Z2, Z3/2) = e−βrs [εx − ε(6)

x ] + ε(6)
x

+ α0(rs) + α1(rs)(2Z2 − 1) + α2(rs)(2Z2 − 1)2, (4.8)where ε(6)
x = −4

√
2[1 + 3

8
(2Z2 − 1) + 3

128
(2Z2 − 1)2]/3πrs. The funtions αi(rs) areparametrised by Attaalite et al., who alulated total energies also for intermediatepolarisations ξ = (n1 − n2)/n = ν1 − ν2 ∈ [0, 1] orresponding to Z2 ∈ [0.5, 1].Extension to higher number of omponents means an extrapolation of εxc to range

Z2 ∈ [0, 1], where extreme Z2 = 0 orresponds to a situation where all the partiles inthe gas belong to di�erent omponents, and at Z2 = 1 there is only one omponent.
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Figure 4.1: Exhange-orrelation energy of the multiomponent fermion gas as a funtion of Z2.The lines orrespond to the extended interpolation funtion of Eq. (4.8) for di�erent values of rs,and the points orrespond to many-body alulations.In order to test the extension (4.8), we ompared it with the existing many-body alu-lations. Unfortunately, we found that the available data was sare. Results are shown



4.1 Two-dimensional Multiomponent Fermion Gas 27in Figure 4.1, where the lines orrespond to the parametrised exhange-orrelationenergies for di�erent values of rs and Z2, and the dots orrespond to alulated many-body data. The extended exhange-orrelation energy (4.8) redues exatly to theform of Attaalite et al. in the two-omponent range Z2 ∈ [0.5, 1]. For the four-omponent ase, Conti and Senatore [50℄ presented results for several values of rswith �xed onentrations, ν1 = ν2 = ν3 = ν4 = 1/4 orresponding to Z2 = 0.25. Fur-thermore, we estimated the urious �in�nite omponent� Z2 = 0 limit from the energyof harged Bose gas [51℄. E�etively, there is no Pauli exlusion if all the partilesbelong to di�erent omponents, sine they an be put into di�erent internal �isospin�states. It should be noted, however, that this estimation is only suggestive sine thetrue many-body wave funtion of the multiomponent fermion system is still anti-symmetri while for bosons it is symmetri. Figure 4.1 shows that the above extendedexhange-orrelation energy (4.8) �ts surprisingly well to the existing data even inthe extreme Z2 = 0. Nonetheless, more many-body results in the region Z2 < 0.5 areneeded in order to onstrut a better interpolation funtion for the multiomponentfermion gas.
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Figure 4.2: Phase diagram for the four-omponent gas as a funtion of density parameter rs andmass ratio m = mh/ml.



28 Multiomponent Quantum DotsMass DependeneThe mass di�erene between the arriers in heterostrutures an arise from the dif-ferent e�etive masses of materials used in double layer systems or, in hole systems,simply from the e�etive mass di�erene between heavy and light hole bands. As dis-ussed in hapter 1, in order to onstrut a two-dimensional gas from the di�erentomponents, only the lowest state perpendiular to the 2D plane must be oupied.There an be a onstant energy di�erene between the di�erent omponents aris-ing from the redution of kineti energy of heavier onstituents. Therefore, the massdi�erene and the onsequent energy shift should be small enough so that all theomponents oupy only the lowest perpendiular state allowing the formation oftwo-dimensional multiomponent gas.We studied a four-omponent gas with varying masses at di�erent densities. We �xedthe masses to be pairwise equal so that two omponents are heavier than the othertwo, that is,m1 = m2 = ml andm3 = m4 = mh. Due to the spin degeneray, there willalways be an even number of omponents, and all pairs of omponents will have equalmasses. Figure 4.2 shows a phase diagram for the four-omponent gas as a funtion ofdensity parameter rs and mass ratiom = mh/ml between heavy and light omponents.For m = 1, the onentrations are equal up to rs ≈ 26.2 after whih there is only one-omponent present. When inreasing m, the kineti energy and the onentrations ofthe heavier omponents derease and, eventually, the four-omponent gas goes throughthe two-omponent phase down to the polarised one-omponent phase. Polarisationours at smaller rs as m inreases due to the saling equation (4.7).4.2 Multiomponent Quantum DotsThe exhange-orrelation energy funtion onstruted in the previous setion is usedin Kohn-Sham density-funtional alulations of multiomponent quantum dots. Theresults are reported in publiation [III℄. Quantum dots fabriated in multilayer het-erostrutures, or of multivalley materials are possible realisations of multiomponentnanostrutures. For example, in a vertial quantum dot moleule the bonding and anti-bonding states an be approximated as di�erent omponents, or as di�erent �isospin�states of an eletron. The isospin together with the spin makes the system a four-omponent quantum dot. In silion quantum dots, the eletrons originate from four(equivalent) valleys of ondution band. As an approximation, we an treat this asan eight omponent system, where the di�erent valleys and the spin form the ompo-nents. In addition, the quantum dots made of hole inversion layers will have arriersoriginating from the light and heavy hole bands.



4.2 Multiomponent Quantum Dots 29Multiomponent Kohn-Sham MethodWe study a quantum dot ontaining partiles belonging to Γ di�erent omponents. Thegeneralisation of the standard spin-dependent Kohn-Sham method to multiomponentase is straightforward: There are now Γ oupled equations of form (2.9) that aresolved self-onsistently. The e�etive potential for the omponents i = 1, 2, . . . ,Γonsists of external harmoni on�nement that is assumed to be the same for all theomponents, of the repulsive Hartree potential and of exhange-orrelation potential
vxc,i = ∂nεxc/∂ni derived from equation (4.8). Thus, the e�etive potential is givenby

veff,i =
1

2
Kr2 +

∫

e2n(r′)

4πǫǫ0|r − r′|dr′ + vxc,i(rs(r), {νi(r)}, {mi}), (4.9)where K is the strength of the external on�nement. The total density of a systemontaining N = N1 + . . .+NΓ eletrons is given by the Kohn-Sham orbitals throughequation
n(r) =

Γ
∑

i=1

Ni
∑

k=1

|ψi,k(r)|2. (4.10)The ground-state is found by varying numbers Ni and hoosing the ombination givingthe lowest energy. Otherwise the solution proedure follows the disussion of Setion2.3.Shell strutureThe �lling of shells in high-density quantum dots is easily observed from the additionenergy spetrum [61℄. We studied the addition energy spetrum of an ideal four-omponent quantum dot at density rs = 2.0 a∗0. The degeneray of the lth shell is now
4l, whih leads to shell losures at N = 4, 12, 24, . . . orresponding to maxima in theaddition spetrum of Figure 4.3. There are smaller maxima at even eletron numbersup to 12 eletrons and at every third eletron number between 12 and 24. These peaksmanifest Hund's �rst rule generalised to the multiomponent ase. Exhange energyfavors polarisation and, therefore, the degenerate levels are oupied one omponentat a time to minimise the total energy.Wigner MoleulesAt lowered densities eletrons loalise into geometri on�gurations determined bythe strong eletrostati repulsion and the external on�nement. The loalisation in
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Figure 4.3: Addition energy spetrum of a four-omponent quantum dot. Eletron density orre-sponds approximately to rs ≈ 2 a∗

0
. The inset shows shematially the �lling of levels in the ase of10 eletrons.onventional LSDA alulations is hindered by self-interation but, in the multiom-ponent systems, the eletrons an aess more than two internal states, whih eases theloalisation. Althought the loalisation is not omplete in the sense that the densitiesof individual eletrons still overlap, the lassially predited geometri on�gurationsare well visible as is shown in the upper panel of Figure 4.4 for 7, 8 and 9 eletrons. In7 and 8 eletron Wigner moleules, one eletron sits at the enter while all the othersreside in a ring around the enter. In the nine eletron ase, there are two eletronsin the middle and seven in a ring.We omputed addition spetrum shown in the lower panel of Figure 4.4 at low densitiesfor an eight-omponent system in �xed external on�nement with K = 2 · 10−4.The spetrum does not show any features of shell struture but merely dereasesmonotonously due to the apaitive harging of the dot. However, a small kink at

N = 7 is observed as a preursor of geometri magi on�guration, in agreement withthe purely lassial addition energy spetrum alulated by Bedanov and Peeters [52℄.
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Figure 4.4: Upper: Total eletron densities of an eight-omponent quantum dot having 7, 8 and9 eletrons, respetively, in �xed on�nement K = 2 · 10
−4. Lower: Addition energies for an eight-omponent quantum dot in �xed on�nement K = 2 · 10
−4. A weak kink at N = 7 is a preursorof geometrially magi struture. The addition spetrum of lassial point harges is also shown foromparison.Figure 4.5 shows total densities for a four-omponent quantum dot with eight eletronsat seleted values of rs. At rs . 4 a∗0, density is irular and the ground state isdetermined by Hund's rule leading to on�guration (3,3,1,1). The loalisation sets onalready at rs = 6.0 a∗0 whereupon a Wigner moleule-like state appears. Six eletronsreside on the outer irumferene with two non-loalised in the middle. At rs = 14 a∗0,all the eletrons are loalised and they are distributed spatially so that eah eletronhas neighbours belonging to di�erent omponents as shown in the ontour plot inFigure 4.5.
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N = 24. The mass m of two omponents was varied while the other two were �xed.Thus, m1 = m2 = m and m3 = m4 = 1.0. For m = 1.0, the sd shell is �lled giving themagi on�guration (6,6,6,6). The mass inrease shifts the heavier omponents downin energy due to dereasing kineti energy as shown in Figure 4.6. At m = 1.2, the
sd orbitals of the light omponents are empty and heavier fp orbitals are oupiedaording to Hund's rule leading to oupation (10,8,3,3). Already at m = 1.8 onlytwo eletrons oupy the light omponent while the heavier omponents obey Hund'srule with oupation (12,10,1,1).
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5 One-dimensional Quantum DotArraysThe intrinsi magneti properties of nanostrutures have drawn muh attention due totheir potential appliability in spintronis devies [53℄. Spontaneous polarisation hasbeen found in one-dimensional quantum point ontat onstritions formed in gate-patterned heterostruture [54, 55℄. Quantum point ontats [56℄ and single quantumdots [57℄ have also spin �ltering apabilities, with a possibility to use them for eithergenerating or deteting spin-polarised urrents.Arranging quantum dots in a lattie, one an build arti�ial rystals with designedband struture, whih an be manipulated by tuning the inter-dot oupling and thenumber of eletrons in a unit ell. Experimentally, �nite one-dimensional arti�ialrystals have been fabriated by Kouwenhoven et al. [58℄ already bak in 1990. Theyfound ondutane osillations as a funtion of gate voltage, arising from the mini-band struture of the periodi array. Another interesting arti�ial array is the Kagomelattie with possible �at-band ferromagnetism [59℄.In paper [IV℄ we study quasi one-dimensional periodi arrays of few-eletron quantumdots. We use the standard SDFT without the multiomponent extension. The nearlyparaboli on�nement for two-dimensional eletron gas is provided by a Gaussian-shaped rigid positive bakground harge distribution. The magneti and eletroniproperties depend on the shell �lling of the individual quantum dots (eletron numberper dot N) and on the inter-dot distane (lattie parameter a).Bloh-Kohn-Sham MethodIn order to model the one-dimensional quantum dot array, we onsider interatingeletrons moving in two dimensions in a rigid periodi bakground harge distribution
enB. The bakground harge number per unit ell mathes the eletroni harge toensure overall harge neutrality. The Kohn-Sham orbitals are of Bloh form, that is,
ψnkσ(r) = exp(ik · r)unkσ(r), where n labels the band, σ = (↓, ↑) is the spin indexand the wave vetor k is on�ned into the �rst Brillouin zone. The periodi funtions

34
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unkσ(r) satisfy the Bloh-Kohn-Sham equations

− ~
2

2m∗ (∇ + ik)2unkσ(r) + vσ
eff(r)unkσ(r) = εnkσunkσ(r), (5.1)where the periodi e�etive potential is

vσ
eff(r) =

∫

e2(n(r′) − nB(r′))

4πǫ0ǫ|r − r′| dr′ + vσ
xc[n(r), ξ(r)], (5.2)

n is the eletron density and ξ = (n↑ − n↓)/n is the polarization. In the loal spin-density approximation, we use the form (2.13), parametrised by Tanatar-Ceperley[60℄, for the polarization-dependent exhange-orrelation potential vσ
xc[n(r), ξ(r)]. Inthe band struture alulation, the funtions unkσ(r) are expanded in a basis with

11×11 plane waves. Again, the self-onsistent solution follows the proedure explainedin setion 2.3. Iterations are started with anti-ferromagneti and ferromagneti initialpotentials. In addition, we use an arti�ial temperature to allow frational oupationnumbers for nearly degenerate states at the Fermi level. The temperature is low enoughnot to a�et the ground-state so the statistial oupations merely help oupyingdegenerate levels to ensure onvergene.5.1 Magnetism in 1D Quantum Dot ArraysThe on�ning potential is modelled by a periodi positive bakground harge dis-tribution desribed by a sum of Gaussians entered at lattie sites R = a(nx, 0),
nx = 0, 1, 2, . . . Thus, we have

ρB(r) =
∑

R

ρd(r −R); ρd(r) =
1

πr2
s

exp(−r2/Nr2
s), (5.3)where r = (x, y) is a two-dimensional position vetor. A single Gaussian arries pos-itive harge Ne with density 1/πr2

s at the enter. For the density parameter, we usevalue rs = 2 a∗0. Examples of densities and spin densities in the unit ell are given inFigure 5.1.The bottom of the on�ning potential provided by the bakground harge distributionis harmoni to a good approximation. Studying magnetism in a one-dimensional array,the simplest geometry to hoose for the unit ell is a retangle with two quantum dotsper ell. These dots lie in a row along the x axis of the ell, one in the enter andone rossing periodially the edge of the ell. In a one-dimensional quantum dot arrayone an have a smooth transition from the tight-binding desription to the nearly-freeeletron piture simply by varying the lattie onstant a.
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Figure 5.1: Total density and spin density for N = 3 at lattie onstant a = 13.05 a∗
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5.1 Magnetism in 1D Quantum Dot Arrays 37Figure 5.2 shows the bands for N = 3 at di�erent inter-dot separations. The spin-upand spin-down bands are shown as red solid line and blue dashed line, respetively,and the Fermi-level is �xed at zero energy.For large values of the lattie parameter a, the eletron densities of the individual dotshardly overlap, and the dots are isolated. The bands are �at with band gap energiesapproximately equal to the single dot level spaings. In this tightly bound extreme thedot array beomes insulating as the hopping probability diminishes with inreasing a.By bringing the quantum dots loser to one another (by dereasing a), the banddispersion inreases. Eventually, the band gaps between the tight-binding bands loseand the dispersion beomes paraboli. The single quantum dots overlap strongly lead-ing to an essentially homogenous quantum wire with a Gaussian ross-setion. In thisnearly free limit, the transverse motion of an eletron separates from the longitudinalone. The transverse states are quantised by the Gaussian shaped well, while the lon-gitudinal states remain �free� with paraboli dispersion. This is re�eted in the bandstruture, showing nearly equidistant sub-band parabolas. In Figure 5.2 we see thatthe seond transverse sub-band is oupied at a = 5.0625 a∗0 while at a = 3.14 a∗0 theFermi-level reahes the third sub-band.Shell Filling and MagnetismThe upper panel of Figure 5.3 shows the magnetism of a quasi one-dimensional quan-tum dot array as a funtion of eletron number per quantum dot and lattie parameter
a. The olours indiate regions where the array is onduting (blue) or insulating (yel-low). Green orresponds to regions where the Fermi-level resides solely on a single spinband and the arrows indiate the spin arrangement in the array.For a single eletron per quantum dot, N = 1, the lowest bonding s-band is �lled. Dueto the exhange splitting of single dot levels, the bonding and anti-bonding bands areseparated by an energy gap and the array shows antiferromagneti order. The lowerpanel of Figure 5.3 shows that the spin per dot drops gradually from 1/2 to 0 as thelattie parameter is dereased and the band gap and the antiferromagnetism persistsdown to very small values of a. At the losed shell, N = 2, both the bonding andanti-bonding 1s bands are full leading to a non-magneti insulator.For N = 3 and 4, the p-bands are oupied. There are two bonding and two anti-bonding bands for both the spins. The bands with higher dispersion orrespond toorbitals with density lobes oriented along the wire. For N = 3, there is one p-eletronper dot, whih triggers ferromagnetism. The bands with majority spin are lower thanthe ones with minority spin as a result of exhange splitting of the energy bands. Thedensity in the array inreases with dereasing a, and at high densities at a = 5.0625 a∗0
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0.The spin-down bands are plotted with blue dashed lines, and the spin-up bands orrespond to redsolid lines.the spin degeneray is restored as kineti energy ontribution beomes dominant.However, a small spin-splitting is regained at a = 3.14 a∗0 as shown in Figure 5.2.Figure 5.4 shows that the bands of minority spin are pushed up in energy by exhangesplitting and, at an appropriate value of lattie parameter, the Fermi-level residessolely on a single spin band suggesting that only one spin ontributes to ondutivity.A similar behaviour is observed with N = 5. There are now three p-eletrons withalmost full shell. This spin-dependent ondutivity of linear quantum dot hains mightbe used as a spin �lter.At half-�lled p-shell (N = 4) Hund's rule leads to maximised spin in an isolated dot.In an array, the spin is at its maximum at a ≈ 18 a∗0 and it dereases gradually with
a. The array is an anti-ferromagneti insulator due to the Fermi-gap indued by theexhange-splitting. For N = 6, the p-shell is full and the array remains non-magnetiat all values of a.
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=6.0Figure 5.5: Lowest bands at seleted values of width parameter C1D for a quantum wire with foureletrons per unit ell. The dashed green line indiates the Fermi-level �xed at zero energy.5.2 Spin-Peierls Transition in Homogenous QuantumWiresAt small values of lattie parameter a, a quantum dot array forms a nearly homogenousquantum wire with a Gaussian ross-setion. The bakground harge distribution fora homogenous wire is hosen to be
ρB(x, y) =

1

2r1D
s

1√
2πα

exp(− y2

2α2
), (5.4)where r1D

s is the one-dimensional density parameter. The wire lies along the x-axis,and its width is measured by the full width at half maximum, that is, 2
√

2 ln 2α.Sine there is no de�nite lattie parameter for the wire, the length L of the unit ellis hosen in suh a way that ρB integrates to the desired harge Ne. Thus, we have
L = 2r1D

s N . We have hosen four eletrons to be in the unit ell (N = 4) and we have�xed r1D
s = 2 a∗B. In addition, we de�ne parameter C1D as follows: C1D = 2r1D

s /α. Itdesribe the ratio of the average inter-eletron separation and the width of the wire:when C1D inreases, the wire beomes narrower.Figure 5.5 shows band strutures of a homogenous quantum wire for seleted widths.



5.2 Spin-Peierls Transition in Homogenous Quantum Wires 41For C1D = 2, the dispersion is paraboli and the Fermi-level lies lose to the seondtransverse sub-band. In this ase, the wire shows no magnetism. Antiferromagnetismsets on at C1D = 4, as the spin-Peierls transition ours. The ground state is a spindensity wave with wave length of L/2 = r1D
s N = 8 a∗B. The spin-Peierls transitionopens a gap at the Fermi-level and turns the wire into an insulator. The amplitude ofthe spin density wave inreases when C1D inreases.



6 Summary and ConlusionsThe subjet of this thesis was to study the eletroni and magneti properties of ou-pled quantum dot strutures and to develop exhange-orrelation energy funtionalfor homogenous fermion gas ontaining interating partiles with di�erent internaldegrees of freedom. The hoie for omputational method was the Kohn-Sham for-mulation of the density-funtional theory, whih is �exible enough for the oupledsystems and yet desribes orrelation e�ets reasonably well.In publiation [I℄ we studied the properties of an eletron-hole double quantum dot.We onstruted a ground state phase diagram as a funtion of the inter-dot separationand on�nement strength. The main aspet of the phase diagram is the ompetitionbetween Jahn-Teller deformation and Hund's rule as the parameters are varied. Bothmehanisms resolve degeneraies when the dots have half-�lled shells. In addition, theCoulomb attration loalises eletrons and holes into bound dipoles or exitons as thedensity is lowered.An extension of the exhange-orrelation energy to multiomponent eletron gas isintrodued in publiation [II℄ and this extension is applied to a quantum dot in pub-liation [III℄. Multiomponent eletron (or hole) gas ould be formed in multilayeredheterostrutures suh as double quantum dots or in systems where the arriers origi-nate from several bands. Examples of suh heterostrutures are the multivalley silionquantum dots and hole quantum dots where the holes belong to bands with heavyand light e�etive mass.The proposed exhange-orrelation energy parametrisation agrees well with the ex-isting quantum Monte Carlo data. However, there is a need for more total energyalulations of multiomponent systems in order to onstrut more aurate interpo-lation formulas.For multiomponent quantum dots, the fat that eletrons an aess more than oneinternal state eases the loalisation at low densities. At higher densities the shell stru-ture is revealed in the addition energy spetrum. The degenerate levels are oupiedin aordane to Hund's rule. The degeneraies are lifted as the omponents havedi�erent masses and even a rather small mass di�erene pushes the levels of heaviermass down in energy leaving lighter omponents unoupied.Publiation [IV℄ presents magneti and eletroni properties of linear one-dimensional42



onlusions 43few-eletron quantum dot arrays. These properties depend on the inter-dot separationand the number of eletrons per unit ell. When the dots are lose to eah another,the eletron densities overlap strongly leading to nearly homogenous quantum wire.The wires are non-magneti, but they undergo spin-Peierls transition as they aresqueezed narrower to beome more one-dimensional. At larger dot separations thespin arrangement follows the shell �lling of the individual quantum dots. For aseswhere there is odd number of eletrons per quantum dot, the exhange splitting liftsthe spin degeneray, and at ertain inter-dot separations the Fermi-level resides solelyon a single spin band. This opens an interesting possibility to use a linear dot hainas a spin �lter.
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