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Abstract

Aaltosalmi, Urpo
Fluid flow in porous media with the lattice-Boltzmann method
Jyväskylä: University of Jyväskylä, 2005, 158 p.
(Research report/Department of Physics, University of Jyväskylä,
ISSN 0075-465X; 3/2005)
ISBN 951-39-2222-7
Diss.
The lattice-Boltzmann method has recently become a useful approach for compu-
tational fluid dynamics. Simple implementation of boundary conditions together
with inherent grid generation makes the method geometrically very versatile, and
it is thus convenient for simulating complex systems such as fluid flow in porous
media. Solving realistic flow problems has become feasible because of increased
computing capabilities and parallel processing, for which the spatially local updat-
ing rules of the lattice-Boltzmann method are particularly suitable. In this thesis,
fluid dynamics in porous media and the basic principles of the lattice-Boltzmann
method are first introduced. Application of the method to flow simulations is then
discussed in terms of some practical problems, such as boundary conditions, dis-
cretization errors and numerical stability, and benchmark studies are carried out to
validate the method. Finally, several single-fluid flow problems in irregular 3D ge-
ometries are analyzed numerically. The lattice-Boltzmann simulations are used to
find out the quality of tomographic imaging techniques and numerical models of
porous media. Dependence of permeability on porosity and other structural prop-
erties such as specific surface area, tortuosity, and shape and orientation of particles
in the medium, are demonstrated and compared to those given by other methods,
theory and experiment. The effects of size and resolution of tomographic images of
several paper grades are examined by simulating fluid flow through the images and
by image analysis. The lattice-Boltzmann, image analysis and experimental results
for the permeability of tomographic images of hand sheets with different refining
levels are reported. Models and a tomographic image of sandstone are analyzed by
comparing the lattice-Boltzmann and finite-difference results also with experiment.
The effect of specific surface area, via fines content and shape of fibres, is demon-
strated by the lattice-Boltzman flow simulations through fibre-web-model samples.

Keywords lattice-Boltzmann method, fluid dynamics, porous media, permeability.
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Chapter 1

Introduction

Fluid flow in a porous medium is a common phenomenon in nature, and in many
fields of science and engineering. Important everyday flow phenomena include
transport of water in living plants and trees, and fertilizers or wastes in soil. More-
over, there is a wide variety of technical processes that involve fluid dynamics in
various branches of process industry. The importance of improving our understand-
ing of such processes arises from the high amount of energy consumed by them. In
oil recovery, for example, a typical problem is the amount of unrecovered oil left in
oil reservoirs by traditional recovery techniques [1]. In many cases the porous struc-
ture of the medium and the related fluid flow are very complex, and detailed studies
of these flows pose demanding tasks even in the case of stationary single-fluid flow.

In experimental and theoretical work on fluid flow in porous materials it is typ-
ically relevant to find correlations between material characteristics, such as porosity
and specific surface area, and flow properties. The most important phenomenolog-
ical law governing the flow properties, first discovered by Darcy [2], defines the
permeability as a conductivity to fluid flow of the porous material. Permeability is
given by the coefficient of linear response of the fluid to a non-zero pressure gradient
in terms of the flux induced [3, 4].

Some of the material properties that affect the permeability, e.g. tortuosity, are
difficult to determine accurately with experimental techniques, which have been,
for a long time, the only practical way to study many fluid-dynamical problems. Im-
provement of computers and the subsequent development of methods of computa-
tional fluid dynamics (CFD) have gradually made it possible to directly solve many
complex fluid-dynamical problems. Flow is determined by its velocity and pressure
fields, and the CFD methods typically solve these in a discrete computational grid
generated in the fluid phases of the system. Traditionally CFD has concentrated on
finding solution to differential continuum equations that govern the fluid flow. The
results of many conventional methods are sensitive to grid generation which most
often can be the main effort in the application. A successfully generated grid is typ-
ically an irregular mesh including knotty details that follow the expected stream-
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lines [5]. Streamlines are not, however, always ab initio easily known. Lattice-based
methods with a regular computational grid could be well suited for complex fluid
flows found especially in porous media.

The dynamics of fluid flows are generated at the microscopic level and could
be, in principle, modelled with direct molecular-dynamics simulations. Obviously,
in practice it is unreasonable to solve real macroscopic systems with this approach.
Fluid can also be modelled with simplified (more macroscopic) models, just as many
other dynamical systems. One of such simplified approaches to CFD is the meso-
scopic lattice-Boltzmann method (LBM) [6–11]. It can be considered as a special
finite-difference form of the continuum Boltzmann equation [12], but historically it
is a pre-averaged improvement to its predecessor, the lattice-gas method [8, 13, 14].
The evolution of lattice-gas methods started after discovering that fluid could in-
deed be simulated with simple discrete models [15]. In these methods the fluid is
modelled by particles that move on a regular lattice which often must be chosen in a
special way. The particles propagate to their adjacent lattice points and re-distribute
their momenta in the subsequent collisions. Many different lattice-gas and Boltz-
mann models have been developed for various kinds of two- and three-dimensional
lattices, with different connectivities and collision rules [6–8, 16].

The early lattice-gas methods had some deficiencies, and to improve the sit-
uation several lattice-Boltzmann models were formulated. The first of them was
the so-called nonlinear lattice-Boltzmann model [17] in which a mean-value rep-
resentation of particles eliminated the problem of statistical noise. In order to over-
come the complexity of the lattice-gas collision operator used also in the lattice-
Boltzmann models, a linearized enhanced-collision method was developed [18].
Furthermore, Galilean invariant macroscopic behaviour was achieved by including
so-called rest particles and by using a Maxwellian velocity distribution for the parti-
cles [19]. The simplest and a very widely used lattice-Boltzmann model is the lattice-
BGK (Bhatnagar-Gross-Krook) model in which the collision operator is based on the
single-relaxation-time approximation to the local equilibrium distribution [6]. No-
ticeable are also the multiple-relaxation-time (MRT) lattice-Boltzmann models [20]
that can be tuned e.g. to offer increased numerical stability [21], especially in the
high-Reynolds number simulations [22].

When the lattice-gas method, and a bit later, the lattice-Boltzmann method
were introduced, they were found to be very useful for simulating fluid flow in
porous media. One of the earliest studies, reported in Ref. [23] in 1987, was con-
cerned with the validity of Darcy’s law for a 2D system constructed of randomly
placed solid points. The results of fluid-flow simulations in a complex 2D medium
were reported in a classical paper [24] that appeared in the following year. One of the
first 3D studies, that of Ref. [25], demonstrated the validity of the lattice-Boltzmann
model for simulations of fluid flow in complex 3D geometries. The validity of the
Kozeny law was demostrated in Ref. [26] for an array of randomly placed spheres.



3

Fluid-flow simulations were performed in a fractal 3D medium in Ref. [27], and in a
digital image of Fointainebleau sandstone in Ref. [28]. In addition to flows in porous
media the most successful applications of the lattice-Boltzmann method have been
multiphase flows [14, 28] and suspension flows [29, 30].

Realistic computer simulations of fluid flow in porous media necessitate an
adequate description of the pore structure, which is modelled or found experimen-
tally [31]. Recently, improved techniques of X-ray microtomography [32] have been
used to describe the three-dimensional structure of various porous materials. Com-
bining tomographic imaging with LBM makes realistic flow simulations feasible,
and provides effective tools for studying various transport and structural proper-
ties of these materials. Realistic simulations of fluid flow in complex geometries can
however be very demanding in terms of computational resources, also when lattice-
Boltzmann methods are used.

The main objective of this thesis was to get new insight into fluid flow in
porous media by using advanced lattice-Boltzmann methods in combination with
realistic tomographic or numerical reconstructions of these media. The ambition
was to understand in particular the permeability of porous materials and its de-
pendence on other macroscopic material parameters.

We begin by discussing in Chapter 2 the basic concepts and properties of fluid
flow, especially in porous media. In Chapter 3 we introduce the lattice-Boltzmann
method. We show how the flow equations are obtained from microscopic dynam-
ics of the system and introduce several variations of the lattice-Boltzmann method.
We discuss the error sources and present benchmark studies and samples of porous
media. In Chapter 4 we present our simulation results for saturated flow through
numerical model structures, tomographic images of various paper grades, paper-
machine wires and sandstone. We compare the simulation results with those given
by theoretical predictions, other numerical methods and experiments. Special atten-
tion is given to permeability that is, as a rule, explained with other material and flow
properties.
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Chapter 2

Fluid flow in porous media

2.1 Concept of fluid

Fluid dynamics (also called fluid mechanics) is the study of moving (deformable)
matter, and includes liquids and gases, plasmas and, to some extent, plastic solids.
From a ’fluid-mechanical’ point of view, matter can, in a broad sense, be considered
to consist of fluid and solid, in a one-fluid system the difference between these two
states being that a solid can resist shear stress by a static deformation, but a fluid can
not [4, 33]. Notice also that thermodynamically a distinction between the gas and
liquid states of matter cannot be made if temperature is above that of the so-called
critical point, and below that temperature the only essential differences between
these two phases are their differing equilibrium densities and compressibilities.

2.1.1 Fluid as a continuum

Gases consist of molecules that have a very large mean distance between them as
compared with the molecular size, while in liquids this mean distance is not much
bigger than in the solid phase, at most a few times the size of the molecule. Espe-
cially in the gas phase molecules move almost freely relative to each other, and in
a given control volume the number of molecules changes continuously. Because of
this microscopic uncertainty, fluid density has no precise meaning unless the control
volume is large in comparison with the intermolecular spacing. However, if the cho-
sen volume is too large, there could be variation in the bulk density of the molecules
due to other effects. A reasonable value for such a volume is thus about 10−9 mm3 for
all liquids and for gases at atmospheric pressure [33]. Most practical problems have
physical dimensions much larger than this size so that they display fluid properties
with practically continuous spatial variation. Such a fluid can be called a continuum,
and well-defined derivatives (of needed order) of the relevant variables can be used
to describe its dynamics.

The local equilibrium of such a fluid is produced and maintained by collisions
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between molecules, which occur in a characteristic time scale τ . In classical fluids,
τ is of the order of 10−10 to 10−14 seconds [34]. The mean free path λmfp between
collisions of the molecules is the related length scale.

In systems with macroscopic motion, the equilibrium states are not homoge-
neous. Disturbances from the equilibrium states vary in time and length scales set
by τ and λmfp, and the macroscopic variables of the system have slow temporal
variations at long wavelengths. For these variables, there is a large amount of equi-
librating collisions, and dynamical disturbances are small in space at all times.

In order to determine whether the above conditions for conventional fluid dy-
namics are satisfied, the Knudsen number should be evaluated for the problem. The
Knudsen number Kn is the ratio of the molecular mean free path λmfp to a represen-
tative physical length scale λ0 of the obstacles and flow channels,

Kn = λmfp/λ0. (2.1)

Flow fields cannot be described by conventional fluid dynamics as described in the
following sections unless this ratio is small.

2.2 Basic flow relations

The motion of a fluid is described by the basic hydrodynamic equations, the conti-
nuity equation

∂tρ +∇ · (ρu) = 0, (2.2)

which expresses the conservation of mass, and the momentum equation

∂t(ρu) +∇ · (ρuu) = −∇p +∇ · τ + ρg, (2.3)

which expresses the conservation of momentum [33, 35]. Here ρ is the fluid density,
u the fluid velocity, p the hydrostatic pressure, τ the fluid stress tensor, and g the
acceleration due to external forces including e.g. the effect of gravity on the fluid.
The equation for energy conservation can be written as [33]

ρ
dû

dt
+ p(∇ · u) = ∇ · (k∇T ) + Φ, (2.4)

where T is temperature, k the coefficient of thermal conductivity of the fluid, Φ the
viscous dissipation function, and the density of thermal energy û = û(p, T ) is often
approximated such that dû ≈ cvdT , where cv is the specific heat.

In Newtonian fluids viscous stresses are directly proportional to velocity deriva-
tives, τij = ∂iuj , and for them Eq. (2.3) reduces to the Navier-Stokes equation [33,35]

∂t(ρu) +∇ · (ρuu) = −∇p + µ∇2u + ρg, (2.5)
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where µ is the dynamic viscosity of the fluid. For incompressible fluids this equation
can also be written in the form

∂tu + (u ·∇)u = −1

ρ
∇p + ν∇2u + g, (2.6)

where ν = µ/ρ is the kinematic viscosity of the fluid. Continuity and momentum
equations are usually independent of T and they can be solved separately from the
energy equation. Equation (2.5) comprises three second-order nonlinear partial dif-
ferential equations for four unknown variables, i.e. pressure and the three compo-
nents of velocity, to be solved in space and time. The system is closed by combining
it with Eq. (2.2) and using appropriate boundary conditions, such as known pres-
sure or velocity at the inlet and outlet, or at free surfaces. At solid-fluid interfaces the
so-called no-slip boundary condition is characteristic of all viscous fluid flows [33].
This means that at a solid wall the fluid velocity is zero with respect to the wall.

Sometimes the fluid-flow equations above can be simplified. The simplest as-
sumption is frictionless flow, for which Eq. (2.5) reduces to the Euler equation

g − 1

ρ
∇p = ∂tu + (u ·∇)u. (2.7)

Integrating Eq. (2.7) along a streamline in a gravitational field g = gêz produces a
relation between pressure, velocity, and elevation of the flow, the Bernoulli equation,
which for incompressible steady flow is reduced to

p +
1

2
ρu2 + ρgz = C, (2.8)

where C is a constant for each streamline, g the gravitational acceleration and z the
elevation. The Bernoulli equation is closely related to the steady-flow energy equa-
tion and is widely used, but has many restrictions. For example, on the streamline
no shaft work or heat transfer is accepted [33].

In the case of stationary flow with very low inertial forces, the left-hand side
of Eq. (2.5) is negligible, and it is reduced to the Stokes equation

∇p− ρg = µ∇2u. (2.9)

This relation has great value in theoretical and experimental work related to e.g.
fluid flows in porous media, where fluid velocities are low. In the flow systems de-
scribed by the Stokes equation, the pressure drop is directly proportional to the fluid
velocity, and only one experiment or simulation is needed to cover this linear range.
As a consequence the flow is symmetric: if the force is reversed, the streamlines re-
main unchanged. In the Stokes flow the fluid motion is also smooth and regular, i.e.
the flow is laminar. When inertial forces become comparable to viscous forces, e.g.
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by increasing the flow velocity, the flow begins to have instabilities and enters the
’transition’ regime. Still increasing the flow velocity finally turns the flow turbulent,
in which case it is dominated by inertial forces that produce eddies, vortices and
other dynamical fluctuations.

The ratio of inertial and viscous forces is thus a primary parameter for the be-
haviour of all Newtonian fluids, and this ratio is the dimensionless Reynolds num-
ber [33]

Re =
ρV L

µ
=

V L

ν
, (2.10)

where V and L are the characteristic velocity and length scales of the flow, respec-
tively. Reynolds number provides a criterion for dynamic similarity. If two geomet-
rically similar flow systems of possibly different sizes, fluids or flow rates have the
same Reynolds number, they will have a similar flow pattern. There are also many
other dimensionless numbers that are very important when simulation results or
model experiments are applied to real systems.

In many cases it is advantageous to express the relevant quantities and equa-
tions in dimensionless form. For example, the dimensionless form of the Navier-
Stokes equation Eq. (2.5) is [35]

∂t∗u
∗ + (u∗ ·∇∗)u∗ = −∇∗p∗ +

1

Re
∇∗2u∗. (2.11)

2.3 Permeability

2.3.1 Darcy’s law

At low Reynolds numbers, the most important relation describing fluid transport
through porous media is Darcy’s law [3],

q = −k

µ
∇p, (2.12)

where q is the volumetric fluid flow through the (homogeneous) medium and k

is the permeability coefficient that measures the conductivity to fluid flow of the
porous material.

Darcy’s law was introduced originally as an empirical relationship based on
experiments on steady flow in a vertical homogeneous sand filter [2], and Eq. (2.12)
has been found to work very well with a wide variety of natural porous media from
sand to granite rocks [1, 3, 4]. Darcy’s law may be presented also as a particular,
simplified form of the averaged Stokes equation, Eq. (2.9), within its assumptions.
The importance of Eq. (2.12) is thus obvious as it governs a Stokesian flow though a
porous material and the permeability coefficient k contains all the material depen-
dencies.
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When components of volumetric fluid flow exist perpendicular to the applied
pressure gradient, then permeability can be expressed as a tensor in Darcy’s law Eq.
(2.12), while q is a row vector and ∇p a column vector. For given three principal
directions of the pressure gradient, the diagonal elements of the permeability tensor
give the fluid conductivity in these three directions and the other elements indicate
the conductivity in cross directions.

Many attempts have been made to analytically derive Darcy’s law, or more
generally, the equations of motion in porous media. In most cases, model media
have been employed including e.g. the capillary-tube model [3,4,36]. By solving the
Navier-Stokes or Stokes equation in these models, one obtains equations of motion
and permeability. They involve material properties in terms of ab initio unknown co-
efficients. It is thus understandable that functional correlations between the perme-
ability and other macroscopic properties of the medium are attempted to find also
experimentally. Among the most important of such material properties are porosity
φ and specific surface area S0, i.e. the pore surface area in a unit volume of the solid
material. In practice, for real fluids and materials, these can sometimes be ambigu-
ous. The pore volume of the material can include non-percolating pores, and also
some other non-conducting parts, reducing the geometrical porosity to effective
porosity [37]. Usually, the difference between these two porosities becomes more
pronounced near the percolation threshold, defined as a point where the medium
becomes completely blocked. Yet another useful characteristics of porous media is
tortuosity τ , which is a measure of the complexity of the flow paths, and a possible
definition for it is the ratio of the average length of the flow paths to the thickness
of the sample (see Section 2.3.3).

2.3.2 Expressions for permeability

The most widely used expressions, the Kozeny law and the Kozeny–Carman law,
that relate permeability to the structural characteristics of the medium have been
derived analytically for capillary tube models [3, 4, 38]. The Kozeny law expresses
the permeability of the medium in the form

k =
φ3

cτ 2S2
, (2.13)

where S is the pore surface area in unit volume and c is the so called Kozeny con-
stant that depends on the geometry of the porous sample. For simple capillary-tube
models, e.g. for cylindrical capillaries, c = 2. Tortuosity τ is sometimes embedded
into the Kozeny constant, in which case the Kozeny law becomes

k =
φ3

cS2
. (2.14)



10

In terms of the specific surface area S0 = S/(1 − φ), Eq. (2.14) can be written in the
form of the Kozeny–Carman law,

k =
1

cS2
0

φ3

(1− φ)2
. (2.15)

Equations (2.13) – (2.15) can be used to predict the qualitative permeable behaviour
of many porous media, but the accuracy of these relations is generally not very good
over an extended interval in φ. A number of similar formulae, derived especially for
fibrous porous materials, can be found in the literature [39]. An example of such a
formula, derived by Happel for an array of parallel cylindrical rods perpendicular
to the flow, is given by [40]

k =
a2

8ϕ
(−lnϕ +

ϕ2 − 1

ϕ2 + 1
). (2.16)

Here a is the average radius of the rods and ϕ = 1− φ the solid-volume fraction.

2.3.3 Tortuosity

The path of the fluid that flows in a porous medium can be microscopically very
tortuous and complicated. This phenomenon is present not only in the case of fluid
flow but also in the case e.g. of electric currents. Tortuosity has been defined in vari-
ous ways. In the case of capillary models, in Eq. (2.13), tortuosity is introduced as the
relation τ = 1/ cos θ, where θ is the (fixed) angle formed by the capillaries with the
normal of the surface of the material (the azimuthal angles of the capillaries are ran-
domly distributed). In terms of the tube length Le and the thickness of the medium
L, tortuosity is thus τ = Le/L. Some authors prefer however to define the tortuosity
as τ = (Le/L)2, or as inverses of these two definitions [4, 41].

In general, the flow tortuosity is defined as the ratio of the mean length of
flow paths to the thickness of the sample (the direction of mean flow). As shown in
Ref. [42], a numerical estimate of tortuosity can be conveniently determined from

τ ≡ 〈|v|〉
〈vx〉

, (2.17)

where |v| is the absolute value of local flow velocity, vx is the x component of ve-
locity in the direction of mean flow, and 〈 〉 denotes spatial average over the pore
space. Notice that tortuosity for an arbitrary porous medium is very difficult to mea-
sure experimentally. Lately, in addition to the flow tortuosity determined above, also
other quantities have been introduced, such as e.g. diffusive tortuosity [43] based on
random-walk simulations for path lengths in the pore space under consideration.
Tortuosity can also be defined without reference to a specific transport mechanism,
for example by considering the shortest continuous paths between any two points
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within the pore space [44]. Within such a definition tortuosity is just a geometric
parameter characteristic of the pore space. In the context of transport phenomena, it
is however natural to use a definition like that of Eq. (2.17).

2.3.4 Experiments

Theoretical methods typically rely on analytical models based on simplified pore
geometries, in which the structural complexity is often taken into account only sta-
tistically [1,4]. In order to make the models mathematically reasonable, many simpli-
fications in the flow dynamics or pore structure are necessary, which usually weak-
ens the ability of the models to describe real systems. Due to these simplifications,
theoretical expressions typically include parameters that can be determined by ex-
periments, or lately also by numerical simulations.

The experimental methods used to analyze fluid transport through porous
substances vary from quite straightforward measurements [39, 45, 46] to more com-
plicated approaches, which utilize e.g. mercury porosimetry [47], electrical conduc-
tivity [48], nuclear magnetic resonance [49], or acoustic properties of the medium
[50]. In many practical problems fluid flow is Stokesian, and permeability is always
an important quantity. In principle, a permeability experiment with a given fluid
comprises the determination of the averaged fluid flux for a given pressure gradient
in the Stokes-flow regime. However, these experiments typically suffer from many
uncertainties, and the permeabilities measured in this way often depend noticeably
on minute experimental details. Also, time consumption may be a problem as, for
example, in water-flow experiments through low-porosity rock samples. In addi-
tion to the permeability itself, many material characteristics on which the measured
permeability depends, can be difficult to determine accurately.

In paper, for example, fibres are hollow and contain fibrils, and the solid phase
also includes varying amounts of fines and fillers. The macroscopic porosity that
takes part in fluid transport is thus difficult to determine. Wood fibres have also mi-
croscopic porosity, which can change the transport properties of paper indirectly as
water is absorbed in the fibres and causes their swelling. Moreover, under pressure
the structure of paper changes and thereby also its permeability. These structural
features of paper may also mean that its permeability could depend on the fluid
used in the measurements, in particular gas permeability can be higher than water
permeability [51].

One experimental technique applied to transverse and in-plane flow in poly-
meric fabrics is a Liquid/Air Displacement Analyzer [52], originally developed by
TRI/Princeton. In particular, the technique can be used to determine the in-plane
water-flow characteristics of paper samples. In this case both paper surfaces are cov-
ered with an impermeable plastic tape to prevent liquid from penetrating through
the surface, and a hole is punched in the cover tape to apply a pressure difference.
The sample can be e.g. circular or rectangular, in which case three edges are typically
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sealed with glue. The sample is then mounted on a fixture and placed under water.
Different vacuum levels are applied through the hole, and the volumetric rate of
penetration of water, at a given applied pressure difference, is measured as a func-
tion of time by measuring the weight loss of the whole system. From the volumetric
rate of penetration, the relative permeability is determined. Due to the heteroge-
neous nature of paperboard, liquid front propagation during a test may appear un-
even [I, 53], but in general the flow follows the form of Darcy’s law over a wide
range of driving pressures [I, 52].



Chapter 3

Lattice-Boltzmann hydrodynamics

The lattice-Boltzmann method [6–11] is a mesoscopic approach to computational
fluid dynamics in which the basic idea is to solve a discretized Boltzmann equation.
The macroscopic dynamics of the system can be shown to obey the Navier-Stokes
equation. In this method the fluid is modelled by particle distributions that move
on a lattice divided to solid and fluid points. During one lattice time step, particles
propagate to their adjacent lattice points and redistribute their momenta in the sub-
sequent collisions. Each time step involves also the action e.g. of the external forces
on the fluid and the boundary conditions at the solid-fluid interfaces.

3.1 From microdynamics
to macroscopic hydrodynamics

We denote by fi(r, t) the particle density entering at site r at time t with a velocity
pointing in direction ci, where i labels the lattice directions. For a lattice time step η

and lattice spacing λ, the possible particle velocities are

vi =
λ

η
ci. (3.1)

The evolution equation for fi is

fi(r + λci, t + η) = fi(r, t) + Ωi(r, t), (3.2)

where Ωi(r, t) is a model-dependent collision term that decreases or increases the
density of type i particles.

In analogy with the kinetic theory of gases, hydrodynamic quantities like den-
sity ρ, velocity u and momentum tensor Π, are obtained from the velocity moments

13
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of distribution fi [29, 54],

ρ(r, t) =
I∑

i=1

fi(r, t), (3.3)

ρ(r, t)u(r, t) =
I∑

i=1

vifi(r, t) (3.4)

and

Παβ(r, t) =
I∑

i=1

viαviβfi(r, t). (3.5)

Here greek letters α and β label the spatial components of the velocity vectors and
I is the number of possible directions ci.

In its simplest form, lattice-Boltzmann dynamics is governed by the collision
operator of the lattice-BGK model, Ωi = 1

ξ
(f

(0)
i (r, t) − fi(r, t)), based on a single-

collision relaxation to the local equilibrium distribution [6]. The evolution equation
for a lattice-BGK system is thus

fi(r + λci, t + η) = fi(r, t) +
1

ξ
(f

(0)
i (r, t)− fi(r, t)), (3.6)

where fi(r, t) is the particle density on link i at (r, t), ξ is a relaxation parameter, and
f

(0)
i is the equilibrium distribution which can be chosen to produce the required be-

haviour of the fluid. This involves not only the mass and momentum conservation,
but also many other properties can be obtained with a suitable choice of f

(0)
i .

A solution to Eq. (3.6) is found by using the Chapman-Enskog expansion,
which is commonly used in statistical mechanics for deriving macroscopic laws for
relevant physical quantities when the Boltzmann equation is known [9]. Equation
(3.6) is discrete in space and time, and it is necessary to assume that the lattice spac-
ing λ and timestep η are small compared to the characteristic length and time scales
in the system, L and T . Under these conditions fi are smoothly varying functions in
time and space, and Eq. (3.6) can be expanded around r and t. Retaining the terms
up to second order, we find that

η∂tfi + λ(ci ·∇)fi +
η2

2
∂2

t fi +
λ2

2
(ci ·∇)2fi

+λη(ci ·∇)∂tfi = Ωi, (3.7)

where Ωi is the collision operator defined above. In the Chapman-Enskog method a
perturbation expansion for fi is introduced,

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + . . . , (3.8)

where ε is a small parameter. In order to determine the f
(l)
i , l = 0, 1, . . . , uniquely
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and consistently, it is necessary to assume that the macroscopic quantities ρ and ρu

are entirely given by the zeroth order terms of the expansion [9]. We thus find

ρ =
I∑

i=1

f
(0)
i and ρu =

I∑
i=1

vif
(0)
i , (3.9)

and moreover
I∑

i=1

f
(l)
i = 0,

I∑
i=1

vif
(l)
i = 0, for l ≥ 1. (3.10)

With respect to λ and η, different phenomena are related to different forms of scaling
factors. For instance, fluid convection is related to a coefficient of the order η/λ, and
dissipative forces to one of the order λ2/η [9, 13]. Therefore, no single scaling form
comprising λ and η exists, and it is appropriate to consider two macroscopic time
scales, T1 and T2, satisfying

η

T1

= O(ε),
η

T2

= O(ε2), (3.11)

and one macroscopic length scale L1 satisfying

λ

L1

= O(ε). (3.12)

Two time variables t1 and t2 are thus defined such that

t =
t1
ε

+
t2
ε2

, (3.13)

and also a macroscopic space variable r1 such that r = r1/ε. The differentials ∂t and
∂α become

∂t = ε∂t1 + ε2∂t2 (3.14)

and
∂α = ε∂1α. (3.15)

With these time and space derivatives, we can now identify the various orders of
ε that appear on the left-hand side of Eq. (3.7), whereas the right-hand side, Ωi =
1
ξ
(f

(0)
i − fi), still needs to be expressed in terms of the equilibrium distribution f

(0)
i .

3.2 A two-dimensional model

For solution of Eq. (3.6) by the Chapman-Enskog expansion Eq. (3.8), we need to
specify the lattice and the equilibrium distribution f

(0)
i , for which there are several

constraints to fulfill. A fluid-flow model has to be independent of the choice of the
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FIGURE 3.1 Left: In the D2Q8 model the particles at each lattice point can propagate
to their eight neighbours with two different speeds. Right: The masses associated with
the fluid particles propagating in different directions.

coordinate system, i.e. isotropic. Furthermore, within the lattice-Boltzmann method,
in additition to mass and momentum conservation, we must require Galilean in-
variance [9].

Here we concider for simplicity the lattice-BGK D2Q8 model (D2 denotes the
dimensions of the lattice (2), and Q8 denotes the number of links per lattice point (8)
[6]). In the D2Q8 model, each lattice point is connected to its nearest and next-nearest
neighbours. Thus there are eight different direction for the particles to propagate
with two different particle speeds vi: 1 · λ

η
and

√
2 · λ

η
. All velocities do not have the

same weight (mass) mi, and an isotropic model is obtained with the choice mi = 4

for the links to the nearest neighbours (odd i), and mi = 1 for the links to the next-
nearest neighbours (even i) as shown in Fig. 3.1 [9]. With this choice the following
properties [9] are fulfilled:

8∑
i=1

miciα = 0, (3.16)

8∑
i=1

miciαciβ = 12v2δαβ, (3.17)

8∑
i=1

miciαciβciγ = 0, (3.18)

8∑
i=1

miciαciβciγciδ = 4v4(δαβδγδ + δαγδβδ + δαδδβγ), (3.19)

where v = λ/η is the modulus of ~vi for odd i.
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3.2.1 Local equilibrium

A natural choice for the equilibrium distribution f
(0)
i as a function of quantities ρ

and ρu is now [9]

f
(0)
i = miF

(0)
i

≡ mi

(
aρ +

b

v2
ρvi · u + ρe

u2

v2
+ ρ

h

v4
(vi · u)2

)
. (3.20)

Here a, b, e and h are constants to be determined so that the required properties of the
fluid are obtained. The collision operator Ωi must conserve mass and momentum,
i.e.

8∑
i=1

Ωi = 0,
8∑

i=1

viΩi = 0, (3.21)

which actually implies Eqs. (3.9). Using in addition the fact that
∑8

i=1 mi = 20, and
Eqs. (3.16) and (3.17), we obtain [9]

a =
1

20
, b =

1

12
, 12h + 20e = 0. (3.22)

Moreover, in zeroth order we find [9] for the momentum tensor Eq. (3.5),

Π
(0)
αβ =

8∑
i=1

miviαviβF
(0)
i (3.23)

= 12v2

(
a + (e +

h

3
)
u2

v2

)
ρδαβ + 8hρuαuβ. (3.24)

In order to satisfy Galilean invariance, we choose

h =
1

8
, (3.25)

which implies

e = − 3

40
. (3.26)

The expression for Π
(0)
αβ now reads

Π
(0)
αβ = pδαβ + ρuαuβ, (3.27)

where the hydrostatic pressure p is given by

p = 12v2

(
a + (e +

h

3
)
u2

v2

)
ρ =

3

5
v2

(
1− 2

3

u2

v2

)
ρ. (3.28)
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We can now write
Π

(0)
αβ = c2

sρδαβ + O(u2), (3.29)

where the speed of sound cs is

c2
s =

3

5
v2. (3.30)

In Eq. (3.28), pressure is velocity dependent, which is an unphysical artifact. To re-
move this contribution, rest particles are included in the lattice-BGK D2Q9 model
[55] (see Eq. (3.44) in Sec. 3.3). The velocity of the rest particles is zero, and they do
not propagate to adjacent lattice sites, but take part in the collisions.

3.2.2 Navier-Stokes equation

The derivation of the Navier-Stokes equation begins with expanding the Boltzmann
equation Eq. (3.6), and involves the use of Eqs. (3.11), (3.12) and (3.21). After some
algebra one obtains [9]

∂tρuα + ∂β

[
Παβ +

η

2
(ε∂t1Π

(0)
αβ + ∂γS

(0)
αβγ)

]
= 0, (3.31)

where ∂t = ε∂t1 + ε2∂t2 and ∂α = ε∂1α (Eqs. (3.14) and (3.15)) take into account the
different time scales of the problem. Above, S

(0)
αβγ is defined as

S
(0)
αβγ =

8∑
i=1

miviαviβviγF
(0)
i . (3.32)

Derivation of S
(0)
αβγ , and the momentum tensor Παβ , is now needed. Π

(0)
αβ in the mo-

mentum tensor Παβ = Π
(0)
αβ +Π

(1)
αβ + . . . was obtained in the previous section, but now

also the first-order term Π
(1)
αβ is needed. The first-order correction to the velocity dis-

tribution Fi can be derived by solving Eq. (3.7) using Eqs. (3.8), (3.14) and (3.15) in
terms of ε. We find that

Ωi(F ) = Ωi(F
(0)) + ε

6∑
j=1

(
∂Ωi(F

(0))

∂Fj

)
F

(1)
j + O(ε2). (3.33)

The collision operator must be at least of order ε1 [9], but the right-hand side of Eq.
(3.33) has a contribution of order O(ε0), which means that Ω(F (0)) = 0. A vanishing
collision term is in accordance with the fact that the equilibrium solutions F

(0)
i are lo-

cal, corresponding to a situation where the rate of each type of collision equilibrates.
The first-order equation is obtained from Eqs. (3.7) and (3.33) [9]:

∂t1F
(0)
i + ∂1αviαF

(0)
i =

1

η

6∑
j=1

(
∂Ωi(F

(0))

∂Fj

)
F

(1)
j . (3.34)
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Once the equilibrium solutions F
(0)
i are known, the first order terms F

(1)
i are ob-

tained from Eq. (3.34). After some calculations we find [9]

F
(1)
i = −ηξ

b

v2
(viαviβ −

av2

b
δαβ)∂1αρuβ. (3.35)

F
(1)
i can be substituted into the first order term Π

(1)
αβ of the momentum tensor using

ε∂1γ = ∂γ [9]:

εΠ
(1)
αβ = ε

8∑
i=1

miviαviβF
(1)
i (3.36)

= ηv2ξ[(12a− 4b)δαβ∇ · (ρu)

−4b(∂βρuα + ∂αρuβ)]. (3.37)

By using the F
(0)
i of Eq. (3.20), we can express S

(0)
αβγ in the form [9]

S
(0)
αβγ =

8∑
i=1

mivαvβvγF
(0)
i (3.38)

=
v2

3
ρ(uγδαβ + uβδαγ + uαδβγ). (3.39)

Now, Eqs. (3.27), (3.37) and (3.39) can be substituted into Eq. (3.31) and, after
some algebra, we find [9] that

∂tρuα + ρuβ∂βuα + uα∇ · (ρu) =

−∂αp + ηv2

(
ξ

3
− 1

6

)
∇2ρuα +

ηv2

[
ξ(

2

3
− 12a)− (

1

3
− 6a)

]
∂α∇ · ρu. (3.40)

In the case of incompressible fluid, ∇ · (ρu) = 0, we now find the usual Navier-
Stokes equation,

∂tu + (u ·∇)u = −1

ρ
∇p + νlb∇2u, (3.41)

where
νlb = ηv2 2ξ − 1

6
(3.42)

is the kinematic viscosity of the lattice-Boltzmann fluid. According to Eq. (3.42) the
kinematic viscosity ν is independent of fluid density. In addition ξ is a free param-
eter which can be used to adjust the viscosity within some range. We get arbitrarily
small viscosities when ξ → 1

2
, but in practice viscosity must not be too small, as the

dissipation length scale should always be much bigger than the lattice spacing λ [9].
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The lattice-Boltzmann algorithm may become unstable with very small values of ξ.
From Eq. (3.6) it is evident that relaxation of fi towards f

(0)
i depends on ξ [6]. For

ξ > 1 relaxation is called subrelaxation, as fi relaxes monotoneously towards f
(0)
i .

For ξ = 1, the velocity distribution is immediately relaxed, and for 1/2 < ξ < 1,
relaxation is called over-relaxation, and fi fluctuates around f

(0)
i with exponentially

diminishing amplitude of fluctuation. The values ξ ≤ 1/2 cannot be used since the
algorithm would diverge or a negative viscosity would be implied.

3.3 Other lattice-Boltzmann models

Various different formulations of lattice-Boltzmann models can be found in the liter-
ature. In the simplest of them, the lattice-BGK models, the differences are in e.g. the
connectivity of the lattice, the use of rest particles, and the realizations of the equi-
librium distributions or the collision operator. In two dimensions the most common
model is the D2Q9 model, which is the D2Q8 model with the rest particles included.
A hexagonal lattice with six moving populations and one rest-particle population
leads to the D2Q7 model [19].

The lattice-Boltzmann method was originally developed from the lattice-gas
method, for which there is no three-dimensional lattice that would yield isotropy.
Hence a 3D projection of a 4D face-centered hyper-cubic (fchc) lattice [8] is regularly
used, and this D3Q19 lattice was also the first lattice used in 3D lattice-Boltzmann
simulations [7]. In this model each lattice point is connected to its six nearest and
twelve next-nearest neighbours in a cubic lattice (see Fig. 3.2). The D3Q15 model [6]
was developed as a result of relative freedom in choosing the lattice-Boltzmann
equilibrium distribution, and the subsequent freedom in choosing the structure of
the simulation lattice. In the D3Q15 model each lattice point is connected to its six
nearest and eight second-next-nearest neighbours (see Fig. 3.2). In both these 3D
models rest particles are included, which improves the accuracy of the models, re-
moves the unphysical velocity dependence of pressure [56], and stabilizes the sys-
tem for small relaxation times ξ [57]. By excluding the rest particles from the D3Q15
and D3Q19 models, the D3Q14 and D3Q18 models are obtained, respectively. In the
D3Q13 model [16] each lattice point is connected to its twelve next-nearest neigh-
bours and rest particles are included.

In addition to Eq. (3.20), the lattice-Boltzmann equilibrium distribution of these
models can be chosen in many other ways [6, 30, 58, 59]. A common choice is [6]

f
(0)
i = miρ

(
1 +

1

c2
s

(ci · v) +
1

2c4
s

(ci · v)2 − 1

2c2
s

v2

)
, (3.43)

where the mi are the weight factors that depend on the model and the length of
the link vectors ci, and cs = 1/

√
3 is the speed of sound. For the D2Q9 model,

the weights mi are 4
9
, 1

9
and 1

36
for the rest particle and the particles moving to the
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FIGURE 3.2 Lattice structures of the D3Q19 (left) and D3Q15 (right) models.

nearest and next-nearest neighbour sites, respectively. The corresponding numbers
for the D3Q19 model are 1

3
, 1

18
and 1

36
. For the D3Q15 model, the weights mi are

2
9
, 1

9
and 1

72
for the rest particle and the particles moving to the nearest and second-

next-nearest neighbour sites, respectively. In these models, the kinematic viscosity
is ν = (2ξ − 1)/6 [6], and the fluid pressure is

p(r, t) = c2
s(ρ(r, t)− ρ̄) ≡ c2

s∆ρ, (3.44)

where ρ̄ is the mean density of the fluid.
The assumption that ξ = 1 simplifies the evaluation of the lattice-Boltzmann

equations so that models with only four real numbers, namely the density and the
three components of velocity [60], are needed in this case.

3.3.1 The multiple-relaxation-time lattice-Boltzmann model

Because of its simplicity, the lattice-BGK equation model has become the most popu-
lar lattice-Boltzmann model in spite of its deficiences. The multiple-relaxation-time
(MRT) lattice-Boltzmann equation overcomes some problems of the LBGK model,
such as a fixed Prandtl number Pr≡ ν/κ, where κ is the thermal diffusivity (Pr = 1

for the BGK model), and a fixed ratio of the kinematic to the bulk viscosity. Success-
full applications of the MRT lattice-Boltzmann model include formulation of opti-
mal boundary conditions [29,61], interface conditions for multi-phase flows [62] and
free surfaces [63,64], thermal and viscoelastic models [65], and models with reduced
lattice symmetries [16, 66].

Instead of the single-collision equilibration of the LBGK model the MRT model
has a collision matrix S and multiple relaxation times, and its evolution equation is
given by [22]

|fi(r + λci, t + η)〉 − |fi(r, t)〉 = −S(|fi(r, t)〉 − |f (eq)
i (r, t)〉). (3.45)
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Here bra 〈| and ket |〉 vectors are used to denote row and column vectors, respec-
tively. The number Q of different velocities of the model defines the dimensions of
the vectors (Q) and the matrix S (Q×Q). The LBGK models appear as special cases
when the relaxation times are all equal and the collision matrix is S = (1/ξ)I with I

the identity matrix.
The general MRT collision process is accomplished in the space spanned by

the eigenvectors of the collision matrix S, and the corresponding eigenvalues are
the inverses of the relaxation times. Q moments mj of distribution functions fi can
be obtained as [22]

mj = 〈φj|f〉 = 〈f |φj〉, (3.46)

where |φj〉 are eigenvectors of S. The velocity and moment spaces are related by a
linear mapping M : |m〉 = M |f〉 and |f〉 = M−1|m〉 The evolution equation Eq. (3.45)
of the MRT model becomes [20–22]

|fi(r + λci, t + η)〉 − |fi(r, t)〉 = −M−1Ŝ(|mi(r, t)〉 − |m(eq)
i (r, t)〉), (3.47)

where we have introduced a diagonal collision matrix Ŝ = M · S · M−1 and the equi-
librium value m

(eq)
i of the moment mi. Using the fact that (M · MT ) is a diagonal

matrix with diagonal elements 〈φj|φj〉, Eq. (3.47) can now be written as [22]

|fi(r + λci, t + η)〉 − |fi(r, t)〉 = −
∑

j

sj

〈φj|φj〉
[mj(r, t)−m

(eq)
j (r, t)]|φj〉. (3.48)

A set of values for the vectors |φj〉 and matrices Ŝ, M and M (eq) are given in
Ref. [22] for the three-dimensional models D3Q15 and D3Q19. Both these models
have common moments corresponding to physical quantities like mass density, mo-
mentum, the part of kinetic energy independent of density, the energy flux indepen-
dent of mass flux and the symmetric traceless viscous stress tensor. In addition, in
the D3Q15 model there is an antisymmetric third-order moment, while in the D3Q19
model, there are five additional conserved vectors [22].

An important consequence of the MRT model is the maximum number of ad-
justable relaxation times, one for each class of kinetic modes invariant under the
symmetry group of the underlying lattice. Also, there is some freedom in the con-
struction of the equilibrium functions of these non-conserved moments. One result
of using MRT instead of LBGK appears to be improved numerical stability [21, 67],
which together with the other advanced features, is important in e.g. high Reynolds-
number simulations. In simulations of fluid flow in porous materials, however, the
improvements the MRT model provides, do not usually play a very important role,
because even the relatively simple realizations of the LBGK model have been found
to produce adequate hydrodynamics in simulations of creeping flow in complex
structures, where the interest is usually to find averaged quantities like the perme-
ability. The LBGK models have some features that need special attention, and on the
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other hand, at least one of these can be also beneficial: the dependence of permeabil-
ity on the relaxation parameter of the LBGK model can be used to reduce finite-size
errors (see Secs. 3.4.1 and 3.5.1). A corresponding dependence does not exist in the
MRT model.

3.4 Boundary conditions and forcing terms

3.4.1 No-slip condition

The physical boundary condition at solid-fluid interfaces is the no-slip condition,
which in lattice-Boltzmann simulations is usually realized by the so-called bounce-
back rule [68,69]. In this approach the momenta of the particles that meet a solid wall
are simply reversed. Bounce back can be applied either at wall points or at halfway
of the links between the fluid and solid points. In stationary flow these approaches
are equivalent, though in bounce back at the wall points, the particles need to travel
a double distance and spend a double time during the bounce-back event in com-
parison with the bounce back in the links. On the other hand, this property can be
used to enhance the numerical stability by decreasing fluctuations caused by parity
invariance [70].

The quality of the bounce-back condition for the lattice-Boltzmann method has
been discussed e.g. in Refs. [68, 71–73]. In a simple shear flow the bounce-back con-
dition assumes that the location of the wall is exactly at halfway between the last
fluid point and the first wall point. In more complicated cases the no-slip bound-
ary lies somewhere in between these two points, the exact place depending on the
geometry of the system, the relaxation parameter ξ of the LBGK model [69, 71] and
the realization of forcing term [74, 75]. In Poiseuille flow, e.g., the bounce-back rule
with body-force (Sec. 3.4.2) gives velocity fields that deviate from the exact solution
by [76]

∆u = umax
48ν2 − 4ν − 1

W 2
, (3.49)

where umax is the velocity at the center of the channel, and W is the channel width
(in lattice units). Hence the flow simulated with the LBGK model will in this case
depend somewhat on viscosity, especially at low discretization levels.

In addition to the bounce-back condition, several authors have proposed more
sophisticated, so-called second-order boundaries, which model a no-slip bound-
ary exactly at the wall nodes. Many of these are restricted to regular geometries,
like octagonal objects and flat walls [59, 73], but there are also general boundary-
fitted models [77, 78] available. For practical simulations the bounce-back bound-
ary is however very attractive, because it is a simple and computationally efficient
method for imposing no-slip conditions on irregularly shaped walls. Also, the er-
ror created by the bounce-back boundary does not destroy the spatial second-order
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convergence of the method [71, 79].

3.4.2 Body force

In simulating fluid flow it is important that the velocity and pressure boundary con-
ditions of the system have been imposed in a consistent way. Proper velocity and
pressure boundaries have been proposed e.g. in Refs. [79–81]. As for an incompress-
ible fluid an external force and a pressure gradient have an equal contribution in
the Navier-Stokes equation Eq. (2.6), it is often possible to use in this case a uniform
body force [24, 28, 71, 82, 83] instead of pressure or velocity boundaries. The use of
body force is based on the assumption that the pressure gradient induced by an ex-
ternal pressure difference is approximately constant in the system. Conditions that
are very close to pressure boundaries can be obtained by averaging the velocity and
pressure fields over the planes of the inlet and outlet of the simulated system [71].
The pressure field generated by the body force can be obtained from the effective
pressure peff ,

peff(r, t) = c2
s∆ρ(r, t)− ρ̄gx, (3.50)

where x is the distance from the inlet of the system measured in the flow direction,
and g is the acceleration the body force gives to the fluid.

In the lattice-Boltzmann method body force is simulated by adding at each
time step a fixed amount of momentum to all lattice points within the void space.
This can be done in several ways, e.g. by adding the momentum to links with non-
zero projection in the direction of the force, taking into account the weights mi of the
links. The momentum oscillates during one time step because of applying bounce
back and body force, which needs to be considered also in determining the actual
hydrodynamic quantities. One simple treatment is to add half of the momentum
before and half after the collision phase. The body force approach is exact in sim-
ple tube flow, and in more complicated geometries it is supposed to work best for
small Reynolds numbers, when nonlinear effects in the flow are small. However, for
high Reynolds-number flows, and for more complicated boundary conditions, ex-
plicit velocity and pressure boundaries or improved versions of forcing term may be
needed. Due to discrete-lattice effects, the second-order spatial convergence may be
violated close to the solid boundaries, which could be taken into account when in-
troducing a force in the lattice-Boltzmann equation. Several techniques for properly
dealing with this problem were reported in Refs. [74, 75, 84]. Notice that improved
versions of body force and sub-grid scale boundary conditions cause e.g. changes in
Eq. (3.49).
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3.4.3 Moving fluid-solid boundaries

If solid particles are suspended in the lattice-Boltzmann flow, they are obviously
defined by a boundary surface, which cuts some of the links between lattice nodes.
The fluid particles moving along these links interact with the solid surface at the
boundary nodes, which can be realized in several different ways [29, 30, 85]. The
no-slip boundary condition can be realized on the boundary nodes with respect to
the velocity, determined by the velocity, angular velocity, and centre of mass (or
mass distribution) of the particle. In addition to the bounce-back rule the velocity
distributions that meet the wall experience a change of momentum [29],

∆fi = 2biρ̄uw · ci, (3.51)

where ρ̄ is the mean density of the fluid, uw is the velocity of the particle, and
bi = mi/c

2
s is a coefficient in the equilibrium distribution (Eq. (3.43)). A simple

special case of a moving fluid-solid boundary is a moving wall, in which the only
additional condition is given by Eq. (3.51). If the boundary surfaces change their
places, fluid must be removed from ahead of and created behind the particles [30].
Another approach that has been found to work as well uses particles which in-
clude fluid [29, 84]. The effects caused by fluctuating shape of the moving parti-
cles have dealt with applying various boundary conditions, such as relaxed bounce-
back rule [85], continuous bounce-back rule [86] or second-order boundary condi-
tions [87].

3.5 Error sources

In addition to the unavoidable errors, as in all numerical methods, related to the dis-
creteness of the computational grid, the numerical quality of lattice-Boltzmann sim-
ulations is mainly affected by finite-size effects, compressibility errors and boundary
effects [8, 59, 71–73, 79]. Moreover, elimination of staggered invariants may some-
times need extra care, and if there are diagonal leak flows in the lattice used, they
may cause a detectable effect near the percolation threshold in the case of flow in a
porous medium. The leak flows can however be removed by applying an appropri-
ate bounce-back rule, if necessary. In practice it is not always easy to separate the
errors caused by these various effects, but the total error can often be estimated by
simulating the problem for several system sizes.

3.5.1 Finite-size effects and shift of the boundary

Finite-size effects are caused by the limited number of grid points in the calcula-
tional lattice. They are often the main error source in lattice-Boltzmann simulations.
With respect to these effects, the largest possible size of lattice spacing is determined
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by the needed accuracy of the simulations. The magnitude of these effects can be es-
timated by simulating the system for several system sizes, but occasionally it can
be difficult to distinguish the finite-size effects from other sources of numerical er-
ror. These effects restrict to some extent the use of the lattice-Boltzmann method.
In porous media close to the percolation threshold, e.g., many pores are very small,
and very big lattices may be needed for realistic simulations. Also, it is not always
clear whether the finite-size effects are dominated by the minimum pore size, or
could sometimes the average pore size be more important. Some improvement in
this respect would be provided by refined, non-uniform grids [12, 71, 76, 88].

Practice has shown [28,89] that smaller values of the BGK relaxation parameter
ξ tend to decrease the finite-size effects because of the shift of the no-slip boundary.
Equation (3.49) can be used to explain this: low-discretization simulations regularly
give too high flow velocities, whereas decreasing ξ has the opposite effect down to
ξ = 0.625, at least for tube flows. On the other hand, as discussed above, too small
values of ξ may introduce some error in the lattice-Boltzmann simulations [9].

3.5.2 Lattice discreteness

A regular lattice used in simple lattice-Boltzmann models leads to quite rough sur-
faces for non-flat fluid-solid boundaries. Fluid, however, tends to “smooth out”
rough surfaces [71, 90]. In lattice-Boltzmann simulations this smoothing out can e.g.
be seen in the values of the hydrodynamic radii of various obstacles. The hydrody-
namic radius of an obstacle can be derived by simulating fluid flow in an infinite
array of such obstacles [29, 71]. For example, flow past a cubic array of spheres has
become a reference system for hydrodynamic algorithms because accurate reference
values for the permeability, and the drag coefficient, are available over a wide range
of porosities [91, 92]. When describing a sphere in a lattice, there is a range of radii
which correspond to the same discretized object, for instance radius values between√

2 and
√

3. Thus a reasonable and well-defined measure of the size of the object is
its volume, and the radius of the equal-volume sphere, i.e. the hydraulic radius [33],
which for spheres has actually found to be very close to the measured hydrody-
namic radius [29]. The apparent roughness of the surface does not necessarily have
a big effect on the accuracy of the simulations, but hydrodynamic radius may de-
pend quite strongly on ξ in the LBGK models.

3.5.3 Staggered invariants

Unphysical conserved quantities, i.e. spurious invariants, can create unphysical hy-
drodynamic modes in the simulated system, and they should usually be eliminated
from the model [8]. In all lattice-Boltzmann models the discrete nature of the sys-
tem creates a class of spurious invariants, called the staggered invariants [9, 29, 93].
They depend on the parity of space and time, and may play an important role in
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the physical behaviour of the lattice-Boltzmann models because they are coupled
to the nonlinear terms in the Navier-Stokes equation [9, 93]. Due to the staggered
invariants, e.g. the fluid momentum may oscillate in a time scale of a few time steps
even in a stationary state [II, 9]. In open areas this effect is usually unimportant, but
in flows generated by a body force this effect may become visible in closed pores,
as the fluid momentum may oscillate around zero with a magnitude determined by
the body force. The influence of staggered invariants can, however, be minimized by
properly choosing the initial condition of the fluid particles [9, 93]. Spatial or tem-
poral averaging can also be used to reduce them [29], and, especially in a stationary
state, staggered momenta can be eliminated by averaging the quantities over a few
time steps.

Due to the discreteness of the models, there are also other spurious invariants
that are characteristic for particular models. For example, in the D3Q14 and D3Q15
models fluid points are not directly connected to their next-nearest neighbours, and
fluid momentum may form unphysical regular patterns (checkerboard effect [22,
71]). Similar spurious invariants are also found in other lattice-based methods, e.g.
in the HPP lattice-gas model [15].

3.5.4 Compressibility errors

Compressibility errors are caused by the dependence of pressure on density (Eq.
3.44), which violates the assumption of incompressible fluid in the lattice-Boltzmann
method. Simulating incompressible fluid with a compressible lattice-Boltzmann fluid
necessitates the use of low Mach numbers (i.e. the ratio of the mean speed of fluid to
the speed of sound). The compressibility errors in the lattice-Boltzmann methods are
typically small fluctuations in the density associated with variations in the pressure.
Many fluid flows computed by the LBGK sceme may have pressure oscillations of a
wavelength of a few lattice spacings. With increasing Reynolds and Mach numbers
they can become pronounced and even prevent the flow to converge. The practical
upper limit for speed is about 0.1 in the LBGK models, and about 0.2 [22] in the MRT
models for which pressure oscillations can also be reduced [21, 22, 67]. Notice that
in applying the body force or moving particles (see Sections 3.4.2 and 3.4.3), use of
the average fluid density instead of the local density tends to decrease the fluctua-
tions in the pressure [94]. In two dimensions the compressibility of the fluid can be
eliminated for stationary flows [95].

In simulations the compressibility of the fluid can also cause large-scale fluctu-
ations that appear e.g. as pressure waves that become noticeable especially in large
void spaces. To some extent they are often present in typical porous-material simu-
lations that use the body force. The effective pressure depends on the fluid density
according to Eq. (3.50), and if the initial state has a constant density, pressure waves
are generated in large pores in the direction of the body force. Very large void spaces
may exist at an uneven surface of the material sample and pressure waves created
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there may considerably slow down the saturation. To reduce this effect in practice,
the flow problem can be solved by applying the body force only in the inner points
of the sample.

3.6 Implementation of the lattice-Boltzmann method

3.6.1 Practical computational requirements

In practice, it is convenient to represent the computational lattice by floating-point
numbers that are responsible for the main memory usage of the method. For exam-
ple, when 32-bit floating-point numbers are used in the D3Q19 model, one lattice site
requires 76 bytes. Realistic simulations thus require large amounts of computational
resources, and are often executed on parallel systems. Continuous development of
computers has however made it possible to perform quite realistic 3D simulations
that typically require gigabytes of core memory, even in workstations and personal
computers.

Large simulation lattices require tens of gigabytes of core memory, and such
memory is still available only in supercomputers. These large simulation lattices
may also require weeks of simulation time in terms of single-processor hours. Tech-
niques to optimize the single-processor performance of lattice-Boltzmann codes are
reported e.g. in Refs. [96, 97]. Fortunately, the inherent spatial locality of the lattice-
Boltzmann updating rules makes these methods ideal for parallel processing, and
simulation times can be reduced by nearly inversely proportional to the number of
processors used.

3.6.2 Saturation time

The time used by lattice-Boltzmann simulations is usually taken up mainly by re-
peated identical timesteps. After a timestep is optimized, the speed of a simulation
can still be increased by decreasing the amount of the necessary timesteps.

In permeability simulations, a dimensional analysis shows that, with a con-
stant body force, the saturation time tsat needed to reach the steady state is of the
form [73]

tsat ∝ R2
pore/ν, (3.52)

where Rpore is the characteristic length of the void pores in the system and ν is the
kinematic viscosity of the fluid. With a constant body force, saturation times can be
very long for systems of high porosity. In practical simulations sometimes tens of
thousands of time steps may be needed. Reaching the steady-state solution with a
constant body force may thus be computationally inefficient.

Accurate initial conditions are needed in time-dependent flows [59], whereas
in time-independent flows properly chosen initial conditions may be used to speed-
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up the saturation. Such a condition can sometimes be found by keeping constant an
essential dimensionless number, like the Reynolds number. Simulation time will be
smaller than in the original system, if, e.g., the simulation is carried out first on a
smaller lattice, or at a clearly higher viscosity.

The saturation time can also be reduced by using the iterative momentum-
relaxation (IMR) method, where the applied body force is adjusted during the it-
eration in a definite relation to the change of the fluid momentum during iteration
steps [71]. Several other approaches have also been introduced to efficiently find
the steady-state solution of the lattice-Boltzmann method [98]. In some methods
of computational fluid dynamics this problem can be overcome by solving a time-
independent flow instead of the complete Navier-Stokes equation.

3.6.3 Sample boundaries

In fluid-flow simulations the boundary conditions on the sample boundaries may
have significant effect on results. The problem is similar as in experiments, but in
the simulations the boundaries can be implemented accurately and consistently, as
far as the used algorithms are adequate. Often the boundary conditions are chosen
to mimic the experiments to gain comparability, and for this purpose the no-slip,
slip [11] or periodic boundary conditions are usually applied on the lateral bound-
aries parallel to mean flow. These all can be implemented reliably in the lattice-
Boltzmann method, and also e.g. open boundaries for hydrodynamic models have
been proposed [99].

In permeability experiments typical boundary conditions at the inlet and outlet
of the sample is that they are in contact with free fluid under the given pressures,
i.e. the actual pressure boundaries lay relatively far from the sample surfaces. In
numerical simulations a corresponding condition is obtained by adding free fluid
layers next to the inlet and outlet.

3.7 Benchmark studies

Various benchmark tests can be used to estimate the accuracy of lattice-Boltzmann
simulations. In this section we introduce selected studies in which the error sources
(see Sec. 3.5), at least to some extent, can be considered independent of each other.
We show the boundary effects in a Poiseuille flow and demonstrate in simple cases
the importance of the effects of discrete lattice. Finally we show, with examples of
porous materials, how discretization level and thickness of free fluid layer appear
in practical permeability simulations. Especially we point out the necessity of simu-
lations for several voxel sizes to estimate the error caused by discretization.
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FIGURE 3.3 Relative error of the numerical solution of the Stokesian velocity field for
a Poiseuille flow through a tube with quadratic cross section of size 32 lattice points.
The surfaces from down to up show the solutions from ξ = 0.7 to ξ = 1.0. The refer-
ence values are calculated from the analytical solution given in Ref. [100].

3.7.1 Poiseuille flow: Tube with square cross section

One of the few cases for which an analytical solution of the the basic hydrodynamic
equations is known is Poiseuille flow, flow through a linear tube with constant cross
section. We used here a tube with square cross section because then the geometry
can be discretized on a cubic lattice without discretization error. We considered a
tube directed along the x direction with a square cross section of a side length of 32

lattice points, and compared the velocity component vx(y, z) with its exactly known
reference value vref

x (y, z) given in Ref. [100].
Figure 3.3 shows the relative error (vx − vref

x )/vref
x for the LBGK solution with

a varying relaxation parameter ξ. Around the center of the tube the analytical flow
profile is very well recovered in terms of the relative error. Near the boundaries we
find deviations which are biggest in the corners. The solution with ξ = 0.7 under-
estimates the reference value vref while the solution with ξ = 1.0 overestimates the
true value. Hence, the relaxation parameter ξ or equivalently the viscosity ν could be
used to fit the numerical results to the analytical velocity field. From Fig. 3.3 one ex-
pects to find a value 0.8 < ξ < 0.9 for which the numerical solution closely matches
the analytical velocity profile for this flow system. We find that these relative error
result mainly from boundary effects that extend to a few lattice spacings away from
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the boundaries.

3.7.2 Cubic array of spheres

FIGURE 3.4 Numerical results for the dimensionless permeability (k − kref )/kref of
a cubic array of spheres for different values of dimensionless system width L/λ with
λ the lattice spacing, and for various relaxation parameters ξ. The porosity is constant
for all systems, φ = 0.15. The reference value kref is taken from Ref. [91].

To test the accuracy of the LBGK method in a more complicated geometry with
narrow constrictions, we computed flow past a cubic array of spheres. This problem
has become a reference system for checking hydrodynamic algorithms because ac-
curate reference values for the permeability and the drag coefficient are available
over a wide range of porosities [91, 92].

The solution of this problem proceeds by solving the problem in a single unit
cell of the cubic lattice. We generated six different unit cells of sizes (L) 20, 36, 56, 63, 71

and 89 lattice spacings λ. A sphere is placed at the center of the cell with radius
chosen such that the porosity matches as close as possible to φ = 0.15. Thus, the
porosity is close to that of the sandstone investigated below. Once the velocity field
was known, the permeability was calculated from Eq. (2.12), and the expression [91]

k

R2
=

1

6πCD

(
L

R

)3

(3.53)

was utilized to obtain a reference value kref for the permeability from the drag coef-
ficient CD given in Ref. [91]. The radius R(φ, L) of the sphere is given implicitly by
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the expression

φ =
8π

3

(
R

L

)3

− 3π

(
R

L

)2

+
π

4
+ 1 . (3.54)

To calculate the reference value kref we solve this equation, and find (L/R) ≈ 1.6011

for φ = 0.15. Using the drag coefficient CD = 1.020 × 103 [91], we find kref/R
2 ≈

0.0002135. In Fig. 3.4, which display results of the lattice-Boltzmann simulations,
the relative error (k − kref)/kref of the permeability k is plotted as a function of the
linear dimensionless system size L/λ. With increasing resolution the results con-
verge and the error predominantly decreases. The curves in Fig. 3.4 do not behave
monotonously, and we would expect the discrepancy between the simulation results
and the reference value to result mainly from discretization errors. The curve that
displays the discretized cross-sectional area of the smallest voids in the structure as
a function of L/λ shows a similar nonmonotonic behaviour.

3.7.3 Randomly placed spheres

If the fluid-solid boundaries move, as is the case in suspension simulations, the lat-
tice description of the particle varies. In such cases the discreteness can be taken
into account by averaging the hydrodynamic radius over a large sample of ran-
domly placed particles. Examples of the averaged hydrodynamic radii a0 for 2D
spheres with ξ = 1.0 [29] are shown in Table 3.1, and corresponding values for 3D
spheres [29] are shown in Table 3.2.

TABLE 3.1 The actual radii a0 and the averaged hydrodynamic radii a for randomly
placed 2D spheres; ξ = 1.0.

a0 1.5 2.5 4.5 8.5 16.5
a 1.36 2.43 4.49 8.53 16.54

TABLE 3.2 The actual radii a0, the radii of the equal-volume spheres av, and the
averaged hydrodynamic radii a for randomly placed 3D spheres; ξ = 1.0.

a0 1.5 2.5 4.5 8.5
av 1.66 2.68 4.53 8.48
a 1.54 2.61 4.53 8.47
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a) b)

FIGURE 3.5 a) Permeability k of a tomographic image of the Fontainebleau sandstone
for different values of lattice spacing λ and different relaxation parameters ξ. The res-
olution of the original sample is 7.5 µm. b) Dimensionless permeability k∗ = k/r2 of
a modelled wire for different values of yarn radius r (in lattice units) and different
relaxation parameters ξ.

3.7.4 Fine graining

In order to get rid of the discretization errors, such as seen e.g. in Fig. 3.4, we inves-
tigate the permeability of samples with a fine graining algorithm that replaces each
lattice point by n × n × n lattice points of the same phase with n = 2, 3, 4, . . . . With
this algorithm e.g. the porosity and specific surface area are conserved. Fig. 3.5 a)
shows permeability k(n) for a small sample of a tomographic image of Fontainebleau
sandstone [II] (porosity φ ≈ 0.15), and Fig. 3.5 b) shows permeability of a modelled
wire [101] (porosity φ ≈ 0.5). The dependence of permeability on the LBGK relax-
ation parameter ξ (see Sec. 3.5.1) is pronounced at low resolutions, and the effect is
stronger with sandstone than with wire. Generally this dependence is pronounced
if there is a lot of small pores and narrow flow channels in the sample. Usually, for
given type of material, higher discretization level is needed for low-porosity sam-
ples. Occasionally there are also other case-specific factors than porosity for different
types of media. At least for regular homogeneous materials, such as wires, the rep-
resentative length scale of flow channels should be over about five lattice spacings
to gain a reliable hydrodynamical behaviour (cf. Knudsen flow effects of real fluid,
Eq. (2.1)). This kind of test is thus needed in practical permeability simulations to
estimate the effect of resolution for used relaxation parameter ξ.
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FIGURE 3.6 The effect of the thickness of free fluid layer on simulated permeability.
Shown are scaled permeability as a function of the thickness of free fluid layer di-
vided by the thickness of sample. Used samples are a modelled wire, a PAKKA-model
sample and a tomographic image and of Fontainebleau sandstone.

3.7.5 Effect of free fluid layer

As discussed in Sec. 3.6.3 an undisturbed fluid flow at the inlet and outlet is ob-
tained by adding free fluid layers next to these sample boundaries. The effect of
the thickness of this fluid layer is shown in Fig. 3.6 for several different samples.
Used samples are a modelled wire [101], early PAKKA-model sample (shown on
the left in Fig. 4.6 [102]) and a tomographic image and of Fontainebleau sandstone
(Fig. 4.11 [103]). In these simulations a body force and periodic boundary conditions
were used, and the LBGK-relaxation parameter was ξ = 1.0.

For thin layers of free fluid the simulated permeabilities are reduced as a re-
sult of additional resistance present at the narrow inlet and outlet. For increasing
layer thickness permeability saturates depending on properties like porosity, rela-
tive thickness of the porous sample and structure of the inlet and outlet. In this con-
text the relative thickness is the ratio of thickness to a representative size of pores
and obstacles in the sample. The modelled wires had quite a small relative thick-
ness, but they had high porosity and consisted of round yarns, which made the flow
resistance at the inlet and outlet fairly small. Therefore the effect of thickness of the
fluid layer was not very big. On the other hand, in the sandstone the porosity was
φ = 0.15 and the evenly cut inlet and outlet induced a fairly high flow resistance.
Therefore the relative permeability of the sandstone sample was reduced more than
that of the other test samples for decreasing free fluid layer (cf. Fig. 3.6). The effect
of the thickness of the free fluid layer on the permeability was found to be typically
of the order of a few per cent.
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FIGURE 3.7 Diagenesis model (left) and simulated annealing model (right) con-
structed of a tomographic image of Fontainebleau sandstone shown in Fig. 4.11.

3.8 Samples of porous media

3.8.1 Modelling

One often needs to model samples of porous media to be used in fluid-flow simula-
tions. For example, in oil recovery an important problem is to deduce the pore-space
structure of sandstone by indirect methods, as obviously it is not always possible to
directly measure the three-dimensional structure. Small samples of a linear size of
one millimeter can be measured by tomographic imaging using x-rays. These sam-
ples can then be used to test e.g. pore structures constructed based on measured
properties such as porosity, specific surface area and two-point correlation func-
tions. The basic problem then is to evaluate in some way the quality of the con-
structed pore structures with respect to the real measured structure.

In sandstone modelling e.g. the main geological sandstone-forming processes
[104] have been numerically modelled by the diagenesis model [103]. This model
uses some properties of the original sandstone obtained by analyzing backscattered
electrons/cathodo-luminescence images. They provide input data such as porosity,
grain size distribution, a visual estimate of the degree of compaction, the amount
of quartz cement, clay contents and texture. Diagenesis modelling of sandstone is
carried out in three main steps: grain sedimentation, compaction and diagenesis.

Another approach for sandstone modelling is the simulated annealing algo-
rithm [103] that has been employed to generate a stochastic model for Berea and
Fontainebleau sandstone. These models have acquired the status of a reference stan-
dard for modelling and analysis of sedimentary rocks [41,44,105]. The simulated an-
nealing algorithm uses for each sample a prescribed two-point probability function,
linear-path function and pore-size distribution function [31, 103, 106]. In Fig. 3.7 we
show samples generated with these models.
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Similarly models are used in simulating various aspects of paper material, e.g.
the numerical PAKKA model [102,107]. It is used to produce three-dimensional ran-
dom networks of fibres, which can be considered as a model of paper-like materials.
In this model fibre webs are grown by randomly depositing flexible fibres of rect-
angular cross section on a flat substrate. These webs are periodic in the in-plane
directions. The surfaces in the perpendicular direction have a somewhat different
structure from that in the bulk of the material due to boundary effects in the depo-
sition process, and are therefore usually removed in order to obtain homogeneous
structures. The porosity of the samples appears [102] to only depend on and can thus
be controlled by varying the flexibility of the deposited fibres. Utilization [I, V, 89]
of PAKKA model is reviewed in Sec. 4.4. Other examples of the models of fibrous
porous structures, which can also be used to analyze the elastic properties of these
structures, are given e.g. in Refs. [101, 108].

3.8.2 Tomographic imaging

X-ray computed microtomography (X − µCT ) is a fairly novel technique used for
three-dimensional imaging of materials. This method has been applied e.g. in analys-
ing the structure of paper and sandstone. X − µCT consists of obtaining a large
set of images while passing radiation through the sample at different angles. The
projected images can be combined so as to reconstruct the geometry of the interior
structure. In practice, the equipment involves at least a microfocus x-ray source, a
CCD camera and a computer to unload the CCD array.

The quality and resolution of the obtained images depend e.g. on the size of
the focus of the x-ray beam, the amount of pixels in the CCD camera, and the image
reconstruction techniques. The resolution can be adjusted to some extent by mov-
ing the object between the x-ray source and the camera. In general, high-resolution
images are obtained by keeping the object close to the source and far from the cam-
era. They represent small volumes physically, limited by the amount of pixels in the
camera and computational requirements. The wavelengths of the available x-rays
are not usually a limiting factor in the resolution. In the construction of a 3D image,
the amount of separate 2D images needed is typically of the order of a couple of
hundred, and the time consumption per one image can be from a few seconds to
tens of minutes.

Recent research in this area has produced different applications and modifica-
tions of the x-ray microtomography techniques providing images of varying quality
and resolution [IV, 43, 109]. The traditional image reconstruction technique is the
absorptive-contrast method [43] used e.g. in medical applications. The density sen-
sitivity of this method can be used to distinguish different material components and
thus to analyze them separately.

For paper in which cellulose and other material components have very simi-
lar absorptivities for x-rays, instead of the absorptive-contrast method, the phase-
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contrast method is preferred [109–112]. In this method images are produced by low-
energy monochromatic radiation, and the resolutions obtained have now reached
the sub-micrometer regime [IV].
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Chapter 4

Fluid-flow simulations
in porous media with
the lattice-Boltzmann method

4.1 Resolution and size of tomographic
images of paper

X-ray microtomography combined with suitable numerical tools allows visualisa-
tion and characterisation of structural properties of paper and board in three di-
mensions. One of the most important questions here is whether the recent imaging
techniques are capable of giving images of sufficient quality and resolution to enable
a reasonable quantification of 3D structural characteristics.

Samples of different paper grades were imaged using both high- and low-
resolution X − µCT techniques. 3D structural characteristics and fluid-transport
properties of these images were measured with image analysis techniques and the
lattice-Boltzmann method. Of particular interest were the effects on the computed
results of the finite size of the samples and of the image resolution, the latter of
which also specifies the computational grid used in the numerical simulations.

4.1.1 Materials and methods

Three different paper samples, namely filter paper, newsprint and hand sheets, were
chosen to test the applicability of X − µCT techniques. The hand sheet was made
of bleached softwood kraft pulp of spruce. The newsprint was made of thermo-
mechanical pulp of spruce in a commercial paper machine, and the paper was not
calendered. The filter paper was a commercial circular black ribbon filter paper
made of cotton linters. In Table 4.1 we show the thickness, density and basis weight
of the imaged paper samples. The accuracies of these quantities are typically of
the order of a few per cent, and hence the chosen samples have clearly different
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TABLE 4.1 Bulk properties of the imaged paper samples.

Sample Thickness (µm) Density (kg/m3) Basis weight (g/m2)
Hand sheet 98 647 63.4
Newsprint 109 403 44.1
Filter paper 158 486 76.7

FIGURE 4.1 High- (left) and and low-resolution (right) images of newsprint paper.

characteristics and are expected to give distinct results in image analysis and fluid-
transport simulations.

In order to identify the necessary level of structural details for a reliable char-
acterisation of different paper grades, the samples were imaged using high- and
low-resolution X − µCT techniques. In Fig. 4.1 we show high- and low-resolution
images of newsprint paper. Due to the limited computational resources, relatively
small image sizes, below 0.1 mm2, were used in the high-resolution and several
low-resolution images. Also a set with a larger image size, about 1 mm2, was taken
with the low-resolution technique. The low-resolution images were obtained using
polychromatic radiation [43] (resolution ≈ 5 µm, voxel size 2 µm3) and the high-
resolution images were obtained using monochromatic synchrotron radiation in the
phase-contrast mode [109] (resolution ≈ 1 µm, voxel size 0.35 µm3). The low and
high-resolution images were reconstructed and processed according to the routines
given in Refs. [43] and [113], respectively. Small detached volumes of fibrous and
porous phases were removed by a 3D filtering technique, and the surfaces of the
samples were defined using the rolling-ball algorithm [114, 115]. According to this
algorithm surface is defined by the route of a ball with a suitable radius that rolls
along the surface. This method allows the detection of the main structures of uneven
surfaces, the interior pores excluded.

Image analysis techniques [32, 43] were used to measure 3D structural charac-
teristics such as porosity, specific surface area, hydraulic pore-radius distribution
and diffusive tortuosity in the principal directions [IV]. The diffusive tortuosity
measurements were based on 1000 successful paths of a random-walk simulation
through the paper volume with a random starting point on an appropriate volume
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TABLE 4.2 Some material properties obtained from the 3D images of the samples:
Thickness T, density ρ, basis weight Bw, porosity φ and specific surface area SSA.

Sample Image Reso- T ρ Bw φ SSA
size lution (µm) (kg/m3) (g/m2) (%) (×103/m)

Hand sheet Small High 90.1 829 74.9 46.4 303
Small Low 88.5 857 75.5 44.9 179
Large Low 101.5 796 79.6 49.0 176

Newsprint Small High 99.3 655 65.1 57.7 387
Small Low 119.2 651 76.1 58.2 179
Large Low 115.7 655 74.3 58.0 181

Filter paper Small High 190.9 550 105.5 64.3 234
Small Low 181.6 641 116.2 58.7 164
Large Low 179.4 570 101.8 63.4 157

edge. The values were measured in the principal directions. Moreover, such flow-
related material parameters as the tortuosity of the flow paths and the flow per-
meability in the transverse direction, defined by Eqs. (2.17) and (2.12), respectively,
were computed using direct numerical simulations with the lattice-Boltzmann method.
We used a specific 19-link LBGK model with a uniform external body force and the
bounce-back boundary condition at the solid-fluid interfaces (see Secs. 3.3, 3.4.1 and
3.4.2). In order to ensure an unrestricted fluid flow at the inlet and outlet (see Sec.
3.7.5), a free fluid layer with a thickness of about 10 % of the sample thickness was
added on top of the sample, and periodic boundary conditions were implemented
in all outer boundaries of the rectangular computation volume.

4.1.2 Detection of solid material

In order to compare the ability of the imaging techniques to detect the correct amount
of material in the imaged volumes, the quantities of Table 4.1 (thickness, density and
basis weight) were also estimated by image analysis. We show the results in Table
4.2 together with porosity and specific surface area. Here and in the following, the
values of low-resolution samples are mean values obtained for available replicate
samples.

The slight differences between the bulk properties and the image analysis re-
sults arise in part from normal variation, i.e. are related to the so-called formation of
the samples used, but also from the difference between the standard thickness (ISO
534:1988) and the rolling-ball-defined thickness, and from a probable overestima-
tion of the density of fibres (1550 kg/m3) used in Table 4.2 for all paper grades [IV].
In addition, the used techniques may overestimate the volume of the solid material
in the images. The specific surface area for the low-resolution images is consistently
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TABLE 4.3 Tortuosity and permeability determined for various paper grades and
imaging techniques. Here, τDX , τDY and τDZ are the diffusive tortuosity values in the
machine direction, cross direction and transverse direction, respectively, determined
from the random walk simulations. Furthermore, given are the flow tortuosity τFZ

and permeability kFZ in the transverse direction, determined using direct numerical
simulation by the lattice-Boltzmann method.

Sample Image size Resolution τDX τDY τDZ τFZ kFZ

Hand sheet Small High 2.69 3.47 16.0 3.78 0.0363
Small Low 1.21 1.36 2.93 1.98 0.343
Large Low 1.25 1.36 3.25 2.11 0.325

Newsprint Small High 1.43 3.50 6.76 2.32 0.117
Small Low 1.12 1.56 3.57 2.04 0.524
Large Low 1.07 1.36 2.96 2.24 0.548

Filter paper Small High 1.23 1.33 4.69 1.58 1.95
Small Low 1.16 1.23 1.99 1.52 1.62
Large Low 1.10 1.17 1.61 1.55 2.78

lower than that for the high-resolution images. The observed differences are most
likely caused by the differences in the level of detail. It is clear from visual compar-
ison that the high-resolution technique preserves the topology of the fibrous and
porous structure better than the low-resolution technique.

Although the large-volume images are up to 34 times larger than the small-
volume images, there are no significant differences between the respective charac-
teristics. This indicates that even small volumes are sufficient for a good estimation
of porosity and specific surface area.

4.1.3 Tortuosity and permeability

To gain a better understanding of the transport resistance of the samples, their tor-
tuosities and permeabilities were measured, and the results are shown in Table 4.3.
The largest differences between the tortuosities, in different paper grades as well as
of different principal directions, were found in the high-resolution images, due to
their higher level of detail. The smallest differences were found in the small, low-
resolution images. Increased resolution will thus increase the differences in the mea-
sured tortuosity, and will thus improve the possibility to detect the effects of paper
structure on the tortuosity and other transport properties. The low-resolution im-
ages will mostly provide correct trends in these properties, and are thus useful for
comparative studies. Their applicability is limited by their lower ability to detect
small particles such as fines, fillers and/or fibrils, and fibre-orientation anisotropy.

The flow tortuosity τFZ was found to be systematically lower than the diffu-
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sive transverse tortuosity τDZ . This is expected since the streamlined hydrodynamic
paths through the pore space are typically smoother than the winding random-walk
paths of diffusive particles. However, the dependence of the flow tortuosity on var-
ious structural properties of the samples is qualitatively quite similar to that of the
diffusive tortuosity, and the same qualitative analysis is valid for both. In the results
for permeability and flow tortuosity, there is no significant difference between the
values obtained for small and large samples (with low-resolution imaging). How-
ever, the permeabilities of the low-resolution images are systematically higher than
those of the high-resolution images. The difference is moderate at high porosities
but becomes significant at lower porosities. Obviously the poor resolution of the
low-resolution images makes dense, complex structures more open for transport,
while already open and relatively simple structures are affected less. In particu-
lar, the high-resolution results seem to be in qualitative agreement with the known
limiting behaviour of flow tortuosity: it should approach unity as the porosity ap-
proaches unity, and diverge at some small but non-zero value of porosity (i.e. at the
porosity corresponding to the percolation threshold). In general, results obtained for
the high-resolution samples can be considered more reliable.

4.1.4 Reduced resolution and divided samples

Even though the results discussed above are qualitatively quite plausible, they are
subject to uncertainty arising from the limited statistics available. In order to esti-
mate the order of magnitude of purely numerical errors arising from the different
discretizations used, we created a set of test samples by reducing the resolution of
the original high-resolution images to that of the low-resolution images. The maxi-
mum difference between the tortuosities and permeabilities obtained for the original
high-resolution samples and the reduced-resolution samples was about 20 %.

The error due to the resolution should be compared against that due to sample
size. The latter was estimated by dividing the original large images to several subim-
ages, the size of which approximately coincided with that of the original smaller
tomographic images. The maximum difference between the values calculated for
the original large image and the mean value of the corresponding subimages was
about 5 % for tortuosity and 20 % for permeability, and these values agreed very
well with the Kozeny’s law 2.13. We can thus conclude that numerical uncertainties
are not very significant for the qualitative results obtained above. Instead, the natu-
ral variation intrinsic to paper material (the formation of paper) can be a much more
important source of uncertainty for the results based on tomographic images. Based
on the results for replicate tomographic samples and individual cropped subsam-
ples, we estimate the uncertainty in the present results arising from the formation
effect to be of the order of a factor two, both in the permeability and in the tortuosity.
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FIGURE 4.2 Tomographic images of paper samples CSF 670 (left) and CSF 460 (right).

4.2 Numerical analysis of fluid flow
through tomographic images of paper

Hand sheets of a basis weight of 300 g/m2 were prepared from bleached softwood
kraft pulp, that was beaten to different refining levels between 220 and 670 CSF
in a laboratory beater. Three-dimensional X − µCT images of the samples were
made using the phase-contrast method [111, 112]. The resolution and the size of the
images were about 2 µm and 1 mm2, respectively. Uneven paper surface layers were
removed in the direction of the transverse (z) axis, whereby the thicknesses of the
final samples varied between 120 µm and 200 µm. Examples of structures generated
by tomographic imaging of the paper samples are shown in Fig. 4.2.

The images of these samples were analyzed for the transverse and in-plane
permeability, porosity, specific surface area, and tortuosity, using image-analysis
techniques [32, 112] and lattice-Boltzmann flow simulations in these two orthogo-
nal directions. Also, a reasonable comparison with conventional mercury-intrusion-
porosimetry data from the same samples was obtained [32].

4.2.1 Lattice-Boltzmann and image-analysis results

In Fig. 4.3 we show the tortuosities given by the LB simulations and image analysis.
The transverse and in-plane tortuosities were determined by LB flow simulations,
and by image analysis that uses the chord-length distribution algorithm [32]. Inter-
estingly, paper sheets formed as strictly layered structures in the laboratory sheet
mold show little change in tortuosity with changing porosity (when the fibres were
refined the density of the sheet was increased). However, the transverse tortuos-
ity seems to undergo a significant change as a result of refining and densification,
indicating a more complex, less permeable structure. Notice that the chord-length
method tends to give higher values for tortuosity since the hydrodynamic tortuos-
ity of Eq. (2.17) by the LB method gives more weight to paths of least resistance,
whereas the chord-length method does not prefer any particular fluid path or chord
length.



45

FIGURE 4.3 Transverse and in-plane tortuosities of paper samples given by LB sim-
ulations and image analysis.

In Fig. 4.4 we show the transverse and in-plane permeabilities of the paper
samples. We compare the LB results with two fitting functions, the results of image-
analysis techniques and some experiments [I, 116]. Darcy’s permeability from Eq.
(2.12) is determined directly by the LB method, whereas the image-analysis results
are based on using the Kozeny law Eq. (2.13). The computed permeabilities of paper
seem physically plausible, and, with the selected value of Kozeny’s constant, c = 2,
the results obtained from image analysis are quite close to those of LB simulations.

4.2.2 Experiments

For comparison, we also carried out experiments with the same paper grades as
used in tomographic imaging. In this investigation, the in-plane water-flow char-
acteristics of the paper samples were determined using a liquid/air displacement
analyzer [I, 52] (see Sec. 2.3.4). Furthermore, the transverse air permeability of the
CSF 670 sample was measured with the Polat method. Both lattice-Boltzmann and
image-analysis results in Fig. 4.4 a) agree very well with the experimental value for
this transverse air permeability. Comparing the computed and experimental values
for the in-plane permeability shown in Fig. 4.4 b), a clear discrepancy can be seen. A
plausible reason for this is that these experimental results were obtained using wa-
ter, whereas dry samples were used in tomographic imaging. Due to swelling, the
structure of the samples used in the experiments may not have been equivalent to
those in the tomographic images. Another reason could be the limited resolution in
tomographic imaging, which may be insufficient to resolve the complex microstruc-
ture of fibre surfaces. The specific surface obtained from the image analysis, and the
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a) b)

FIGURE 4.4 a) Transverse permeabilities of paper samples given by LB simulations,
image analysis and one experimental point for air. b) In-plane permeabilities of paper
samples given by LB simulations, image analysis and experimental values for water.

flow resistance given by the LB simulations, may be underestimated, which may
have caused the computed permeability values to be above the experimental ones.

4.2.3 Fitting functions

The curves shown in Figs. 4.4 a) and b) are obtained by fitting two expressions us-
ing fibre radius a as the fitting parameter. The Happel formula Eq. (2.16) [39,40] is a
theoretical construction for a regular array of rods, and the Koponen formula [I, 89]
is based on LB simulations and is proposed to explain the transverse permeabil-
ity of PAKKA-model samples. They are relatively simple expressions and able to
adequately describe the permeability of at least some materials, though not specifi-
cally that of real paper. The Kozeny equation Eq. (2.14) is not shown here, because
its qualitative behaviour is very similar to that of Eq. (2.16), and the fitted curves
would nearly overlap.

For the transverse permeability, Fig. 4.4 a), the fitted values of a are 5.05 µm

and 2.25 µm for the Happel and Koponen formulae, respectively. For the in-plane
permeability, Fig. 4.4 b), the corresponding values are 8.67 µm and 3.86 µm. Both
permeability formulae fit reasonably well the simulated results, but the Happel for-
mula, Eq. (2.16), leads to a more realistic radius of the fibres, which can also be
estimated from the images.



47

4.2.4 Quality review

The computed characteristic properties of paper seem physically convincing and the
results obtained by different methods are consistent with each other. However, the
absolute accuracy of the computed results for paper may still suffer from the quality
of the tomographic imaging techniques used here.

As we saw in the comparison of the imaging techniques in Table 4.3, the per-
meabilities can be up to 10 times higher with the low resolution technique than with
high-resolution technique. Resolution may also be a factor in the difference between
the computed and experimental values in Fig. 4.4.

4.3 Fluid transport through woven fabrics

Polymeric carrier fabrics are commonly used in many industrial processes includ-
ing manufacture of paper and board. The three-dimensional structure of the fabrics
plays a critical role in deciding the manufacturing and energy efficiency of the pro-
cess, as well as end-use properties of the product. Here, we used X-ray µCT to visu-
alize the three-dimensional structure of polymeric fabrics commonly used in paper
manufacture. 3D structural characteristics and fluid transport properties of the ob-
tained tomographic images were measured with image-analysis techniques and the
lattice-Boltzmann method.

4.3.1 Tomographic images

X-ray tomographic images were taken of two different types of paper-machine form-
ing fabrics. Two samples of each wire type were imaged. We refer to these im-
ages/samples here by A1, A2, B1 and B2.

The resolution of the images was 4.41 µm and 4.34 µm for the A- and B-type
samples, respectively. A typical yarn diameter was thus of the order of 40 pixels,
so that the resolution of the images was very good, as for the level of discreteness
effects. The lateral sizes of the rectangular images were about one unit cell of the
wires, that were about 2.3× 2.2 mm2 and 3.0× 2.6 mm2 for the A- and B-type wires,
respectively. Figure 4.5 shows the images of two of the wire samples.

Unlike disordered materials like paper, wires can be used to some extent to
estimate the quality of the tomographic images used, as one can expect to obtain a
regular interior structure. In this respect, one finds from the images that the surface
of the wires seems somewhat ’rough’, and spurious small solid obstacles seem to
be created by the imaging procedure within the pore space. Correspondingly, the
solid phase seems to contain incidental small voids. However, the error created by
the small irregularities can be estimated to be very small - most likely of the order
of a few per cent. We also tested the effect on simulation results of variations in
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FIGURE 4.5 3D tomographic images of two types of wire samples, type A (left) and
type B (right).

the boundary conditions and the viscosity of the fluid. All these effects were also
found to be negligible as compared, e.g., to the difference between the two ’identical’
samples for both wire types.

4.3.2 Lattice-Boltzmann results

Table 4.4 contains the simulated values for the four samples. Notice that these re-
sults are applicable only if flow rates are low, which is not always the case in the
paper-making processes. For reference, given in the table is also the theoretical per-
meability derived by Happel (Eq. (2.16)) for fibrous porous media with high poros-
ity. The pressure loss ∆p across the wire of thickness T can be given optionally in
terms of permeability k or pressure-loss coefficient K0, such that

∆p = T
µ

k
q = K0

µ

D
q, (4.1)

where q is the flow velocity, µ is the dynamic viscosity of the fluid and D is the
diameter of the yarn. The average radius a of the yarn is taken to be 0.08 mm for all
the samples.

In general, the simulated porosities and permeabilities are higher for the B-
type samples than for the A-type samples. In accordance with this, the simulated
value for the pressure-loss coefficient is lower for the B-type samples. All the values
simulated for the B1 and B2 samples are close to each other. Somewhat surprisingly,
the values for thickness, porosity, permeability and pressure-loss coefficient differ
significantly for the two A-type samples. The reason for this is that the tomographic
image of the A2 sample, shown on left in Fig. 4.5, does not contain the entire wire in
the thickness direction. This may also lead to differences in the permeability and the
pressure-loss coefficient. The detected image of the A2 sample results from prob-
lems in tomographic imaging, but it actually corresponds to a worn wire in a paper
machine. The permeability and pressure loss coefficient results suggest that water
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TABLE 4.4 Structural parameters and Simulated quantities. The columns contain the
following quantities: sample identifier, thickness (T ), porosity (φ), Darcy permeability
(k), theoretical permeability by Happel (kth), pressure loss coefficient (K0), specific
surface (S, pore surface area/volume of the sample) and tortuosity (τ ).

Sample T (mm) φ k(10−10m2) kth(10−10m2) K0 S(103/m)] τ
A1 0.66 0.530 0.937 2.0 2590 20.5 1.174
A2 0.58 0.479 0.510 1.2 1253 20.2 1.190
B1 0.87 0.526 1.47 3.5 1130 16.6 1.171
B2 0.87 0.560 1.61 4.0 1037 15.4 1.166

removal is impaired when the wire is worn. The theoretical values based on the
Happel formula Eq. (2.16) are systematically higher than, but nevertheless of the
same order of magnitude as the simulated values. This is as expected since the the-
oretical result is based on independent fibres and may be considered as a theoretical
upper bound for real fibrous porous media.

Another error source evident in the images is that the samples used in the
imaging have obviously been too small so that the images do not always contain an
entire waving unit. Periodicity is thus not complete. The edges of the samples seem
to contain some irregularities, which may have been created by cutting the samples
for imaging. Cutting may have affected the contacts between wires and the overall
density of the wire near the edges.

Comparison of the average yarn diameters as produced by X − µCT together
with image analysis and a direct measurement using light microscopy, agreed to
within 3 %, indicating good accuracy of the X-ray technique [III].

4.4 Fluid flow through PAKKA-model structures

Within the numerical PAKKA model (see Sec. 3.8) [102,107], fibre webs are grown by
randomly depositing flexible fibres of rectangular cross section on a flat substrate.
These webs are periodic in the in-plane (x and y) directions. In order to make the
structures homogeneous, surface layers perpendicular to the z axis were removed.
The porosity of the samples is controlled by varying the flexibility of the deposited
fibres. In the earliest version of the model, fibres were randomly oriented in two
perpendicular directions. The fibre width to length ratio used here was 1:20, and
the size of the samples was four fibre lengths in the x and y directions and ten fibre
widths in the z direction. Later versions of the model include random orientation,
flattened fibres, and fines. Examples of structures generated by the model are shown
in Fig. 4.6.

The structures were discretized for the lattice-Boltzmann simulations based on



50

FIGURE 4.6 PAKKA-model samples: A sample with fibres oriented in two perpen-
dicular directions (left) and a sample with fines and randomly oriented fibres (right).

previous rigorous studies [89] of discretization effects (see Sec. 3.7.4) in samples of
different porosities. The final structures used in the simulations were constructed
with fibre widths of 5, 10 and 20 lattice units, so that the low-porosity samples had
the finest discretization.

4.4.1 Transverse and in-plane fluid flow

Lattice-Boltzmann simulations were done for Stokesian fluid flow through samples
of the earliest version (on the left in Fig. 4.6) of the PAKKA model. Simulations
were carried out both in the in-plane and transverse directions to determine the
anisotropy of permeability, which is an important quantity in many processes such
as wet pressing.

The boundary conditions imposed in the simulations were selected so as to
utilize the structural symmetry inherent in the model and to minimize the effects of
the finite size of the samples. In the transverse-flow simulations, free fluid layers of
at least 10 % of the thickness of the sample were added above and below the sample,
and periodic boundary conditions were imposed in the z direction. Periodic bound-
ary conditions were imposed also in the x and y directions as the PAKKA model
structures are periodic in these lateral directions. For the in-plane flow simulations
the frictionless slip condition was used at the boundaries perpendicular to the z di-
rection, corresponding to reflection symmetry across these boundaries (to minimize
the finite-size effects). The numerical accuracy of the flow-simulation results was
dominated by discretization effects, and they were estimated with multiplied grids
(see Sec. 3.7.4) to be less than 15 % for the simulated permeability values.

In Fig. 4.7 a) we show the simulated transverse [I, 89] and in-plane [I] per-
meabilities of the PAKKA samples together with various experimental results for
the transverse permeability of different materials made of artificial and natural fi-
bres [39]. The simulated values are seen to agree very well with the experimen-
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a) b)

FIGURE 4.7 a) Transverse and in-plane dimensionless permeability k∗ = k/a2 vs.
porosity φ for PAKKA-model samples. Here, a is the hydraulic radius of the rectan-
gular fibres. The experimental data is for transverse permeability of various fibrous
filters [39]. b) Transverse and in-plane tortuosity τ vs. porosity φ for PAKKA-model
samples.

tal ones in a broad range of porosity. We also see that the in-plane and transverse
permeabilities of the PAKKA samples are approximately equal down to φ ≈ 0.6,
whereas for low porosities the in-plane permeabilities are significantly smaller. This
is contrary to our simulation results for the paper samples (Sec. 4.2) and to earlier
experimental results for paper [108, 117]. The reason for this behaviour is the rect-
angular cross-sectional shape and the fibre-bending mechanism used in the PAKKA
model. For high values of the bending parameter (which leads to low-porosity struc-
tures) the fibres become strongly bended in the z direction. As a consequence, fibres
disperse the fluid flow much more efficiently in the transverse direction making
the pathlines more tortuous in the in-plane directions. In Fig. 4.7 b) we show the
simulated transverse and in-plane tortuosities. The difference between the trans-
verse and in-plane permeabilities was indeed found to result mostly of the assumed
k ∝ 1/τ 2-behaviour of permeability in Eq. (2.13), i.e., substitution of the values of
permeability, porosity, pore surface area and tortuosity in Eq. (2.13) gave relatively
small variation in the Kozeny’s constants c thus obtained.

At high porosities the tortuosity effects are not dominant, and according to
the theoretical results given e.g. in Ref. [39], the ratio of permeabilities of cylindrical
rods perpendicular and parallel to the flow is 1 : 2. In the PAKKA model, all fibres
are perpendicular to the flow in the transverse-flow simulations, whereas half of the
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FIGURE 4.8 The dimensionless transverse permeability k∗ = k/a2 vs. dimensionless
specific surface area S∗0 = S0a at a constant porosity φ = 0.60 for fibres with cross-
sectional height to width ratios of 1 : 1 and 1 : 2. Here, a is the hydraulic radius of
the rectangular fibres. For both shapes of fibres, the four points shown correspond to
relative fines contents of 0, 10, 30 and 50 % (increasing with increasing S∗0 ). Also shown
are fitted curves with k ∝ 1/S2

0 .

fibres are perpendicular and half parallel to the flow in the in-plane simulations. At
high porosities, the value of the in-plane permeability given by our simulations is
about 1.5 times that of the transverse permeability, which is very much as expected.
This small difference is not clearly visible in Fig. 4.7 a) due to the logarithmic scale.

4.4.2 Effect of flattened fibres and the fines content

In paper, fibres may be flat and contain fibrils, and the solid phase includes varying
amounts of fines and fillers. In order to study the qualitative effect of these proper-
ties on transverse permeability, samples of the later version (on right in Fig. 4.6) of
the PAKKA model were created with fibres of square cross section, and with fibres
of flat rectangular cross section (height to width ratios of 1 : 1 and 1 : 2, respectively).
Furthermore, small cubic particles with the side length 1/4 of the width of the fibres
were randomly deposited on fibre surfaces. The amount of these ’fines’ particles
varied from 0 to 50 % of the total solid volume fraction which was kept close to a
constant value ϕ = 0.40. The transverse LB fluid flow simulations were done, and
all the permeabilities were adjusted with the Kozeny law Eq. (2.14) to correspond
to the porosity value φ = 0.60. The resulting dimensionless permeabilities, scaled
with the hydraulic radii of the square-shape and flattened fibres, are shown in Fig.
4.8 [V, I]. The flatteness of the fibres decreases the permeabilities of the fibre webs.
Moreover, the permeability decreases rapidly with increasing fines content, and this
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FIGURE 4.9 2D horizontal sections in the middle of the simulated flow fields in
PAKKA samples of 0 % (left) and 50 % (right) of fines content. Black colour indicates
solid area, and white and dark colours in the pore area indicate low and high veloci-
ties, respectively.

behaviour is very well explained by its dependence on the specific surface area, as
given by the Kozeny equation, namely k ∝ 1/S2

0 .

4.4.3 Local variation of flow field

There are many ways to consider local variations of the flow field in a sample, and
one approach is to divide the sample into smaller parts [4], and then to simulate
fluid flow separately in each part [IV, 118]. A slightly different approach would be
to use the flow field of the whole sample and to consider the local variations of flow
and structural characteristics in it. We adopt here the latter approach.

In these simulations the force is applied in the z (thickness) direction, and local
variations in the flow field are considered in the xy plane. The x- and y-boundary
effects are not present since the PAKKA samples are periodic. We present results
for the finest possible division of the sample into discrete local units in which the
dimensions of the local units are one lattice spacing in the x and y directions, while
having the thickness of the sample in the z direction. We study in particular the re-
lation between some structural characteristics of the sample and the local transverse
flux that is related to local permeability. In Fig. 4.9 we show two cross sections per-
pendicular to main flow of simulated velocity fields in PAKKA samples of 0 % and
50 % of fines content. Fines tend to disperse the flow field more efficiently than mere
fibres.

For the analysis, the flux is divided into ten classes by its magnitude, and the
structural characteristics considered are averaged separately over the units that are
in each flux class. In Fig. 4.10 shown are four network characteristics as a function
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a) b)

FIGURE 4.10 a) Relative pore height and porosity, and b) thickness and coverage as
a function of local flux QL/Q for PAKKA-model samples. The results are shown for
the samples of 0 % (filled markers) and 50 % (open markers) of fines content.

of flux. Results are shown for samples that have 0 % and 50 % fines content. The
values for the other concentrations lay between the shown ones. Each characteristics
is divided by its average value for the whole sample, the flux values are divided by
the total flux.

In Fig. 4.10 a) shown are the pore height, i.e. the average height of unbroken
void space, and porosity. As expected, both these quantities increase with increasing
flux. The increase in porosity is clearly non-linear, in accordance with the typical
dependence of permeability on porosity (see Sec. 2.3.2). The latter dependence is
approximately logarithmic in this porosity range [89]. In Fig. 4.10 b) shown are the
thickness, i.e. the distance between the first and last solid points in the z direction,
and the coverage, i.e. the solid fraction of the thickness. These quantities decrease,
as one can expect, with increasing flux. Clearly higher local flux values are found in
the case of no fines particles. This is also expected since in this case larger and less
tortuous pores through the sample can appear.

The large differences between the highest flux values in the division into ten
equal-sized classes is related to the shape of fluid-speed distribution which, in this
case of PAKKA-model samples, is very similar to that formed to Fontainebleau
sandstone (cf. Fig. 4.13). Division of the fluid-speed distribution into ten classes of
equal size would result in a similar difference between the classes of highest speeds.
The differences between flux classes in Fig. 4.10 are most pronounced for the sam-
ple without fines, which indicates that flow is in this case channelled more through
a few largest pores than in samples that include fines.
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FIGURE 4.11 Tomographic image of Fontainebleau sandstone (left) and fluid flow
(right) in the pore space simulated with the lattice-Boltzmann method. Light and dark
colours indicate high and low velocity, respectively.

4.5 Fluid flow in sandstone models

We simulated, with the lattice-Boltzmann method and the finite-difference method
[II], the permeability of a tomographic image of a sample of Fontainebleau sand-
stone, and of three different constructions of this sample based on its correlation
properties. The linear size of the sample was approximately 3 mm, and the image
resolution was 7.5 µm. The accuracies of the two methods are discussed and the
results are compared also with experiment.

4.5.1 Samples

Fontainebleau sandstone is a popular reference standard because of its exceptional
chemical, crystallographic and microstructural simplicity [119, 120]. Intergranular
porosity of this sandstone ranges from 0.03 to roughly 0.3 [120]. A computed micro-
tomographic image was taken of a micro-plug from a larger original core of porosity
φ∗ = 0.1484 and permeability k∗ = 1.3 D (1 D=0.987 µm2). The microtomographic
image had the dimension 299×300×300 voxels, and a porosity of φ = 0.1355. In the
following we denote by EX this microtomographic image of Fontainebleau sand-
stone. In Fig. 4.11 we show the visualizations of the sample EX and the flow field
through it.

The three constructed samples are physical and stochastic reconstruction mod-
els for sample EX. All have the same lattice resolution, a = 7.5 µm, and approxi-
mately the same porosity and specific surface area. The diagenesis model (DM) [103]
is a physical model that mimics the processes of sedimentation, compaction and di-
agenesis of sandstone. The DM sample had the dimension 255 × 255 × 255 voxels.
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TABLE 4.5 Geometrical characteristics of the four samples: φ is the porosity, SV the
specific surface area, fp the fraction of percolating pore lattice points and p3(60a) (a =
lattice spacing) the probability of finding a cubic subblock of size L = 60a of the
sample, which is percolating in all three directions.

EX DM GF SA
φ 0.1355 0.1356 0.1421 0.1354

SV [mm−1] 9.99 10.30 14.53 11.04
fp [%] 99.35 99.23 79.16 62.73
p3(60a) 0.9561 0.9647 0.3255 0.1695

The simulated-annealing (SA) and gaussian-field (GF) samples were stochastic re-
constructions [31,103,106] for sample EX with the dimension 256×256×256 voxels.
They had about the same porosity, specific surface area and two-point correlation
function as the Fontainebleau sample. In Table 4.5 we give some geometrical char-
acteristics of the samples. The models for DM and SA are introduced in Sec. 3.8.1
and the samples are shown in Fig. 3.7.

4.5.2 Permeability

We applied BGK lattice-Boltzmann (LB) and finite-difference (FD) algorithms [II]
to the solution of Stokes flow through the experimental sample EX and the model
samples DM, GF, and SA. In Table 4.6 are given the components of the permeability
tensors for all four samples and for both algorithms. The diagonal elements describe
the flow resistance in the applied force directions, and the other elements are due to
sideflows that are expected to become nebligible if the samples were isotropic and
large.

The permeabilities are strongly correlated with the geometrical connectivity of
the pore space, as measured by the total fraction of percolating cells p3(L). We find
that the permeability of the original sandstone EX and that of the process model
DM are in good agreement, while the permeabilities of the stochastic models GF
and SA are an order of magnitude smaller. It seems as if the stochastic reconstruc-
tion models cannot reproduce the high degree of geometrical connectivity present in
the original sandstone. The reconstructed two-point correlation function lacks infor-
mation about the geometrical connectivity of the pore space. A correct description of
the geometrical connectivity is however important for reliable transport properties.
The permeability results confirm the predictions from a previous purely geometri-
cal analysis based on local porosity theory [103], in which the importance of local
connectivity is emphasized.
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TABLE 4.6 Permeability tensors of the Fontainebleau sandstone and its models. The
values are given in mD (1 D=0.987 µm2).

FD LB
ki1 ki2 ki3 ki1 ki2 ki3

EX 692 47 −15 621 40 −15
15 911 50 14 808 47

−103 21 789 −85 15 687
DM 923 40 16 766 31 10

27 581 25 19 482 22
21 35 623 14 32 528

GF 34 1 4 43 3 6
0 35 2 1 50 6
8 1 36 7 4 57

SA 35 0 5 56 −2 7
−7 22 −1 −5 46 13

3 −7 20 8 1 50

4.5.3 Comparison with experiment

We compared the numerically obtained value of the permeability kEX of sample
EX with the experimental value k∗ = 1.3 D, which requires a correction due to the
difference between the porosity of the EX sample and the porosity φ∗ = 0.1484 of
the original core sample. To this end we used an experimental correlation between
porosity and permeability [II, 120],

k = Aφb, (4.2)

in which A and b are constants. In the porosity range of interest, φ ≈ 0.13− 0.15, this
correlation has b ≈ 4, with however a large uncertainty due to scatter in the mea-
sured results. Hence, we can extrapolate the numerically determined permeabilities
k̄ = (k11 + k22 + k33)/3 into the prediction

k̄∗ = k̄

(
φ∗

φ

)b

, (4.3)

where φ∗ is the previously defined porosity of the core sample. From Eq. (4.3) we
obtain k̄∗ = 1150 mD for the FD method and k̄∗ = 1015 mD for the LB algorithm.
These values are quite close to the experimental value k∗ = 1300 mD.

4.5.4 Comparison of the methods

An accurate, quantitative comparison of the two numerical methods is difficult due
to the different approaches underlying these methods. The memory requirements of
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FIGURE 4.12 Time evolution of the numerical solution of the permeability k for flow
through a cubic array of spheres with porosity φ = 0.15. The relaxation parameter was
ξ = 0.688 for the LB simulations. The horizontal line gives the reference value kref .

the algorithms used in this study differ by roughly a factor of 4. The FD algorithm
requires to store 5 real numbers per lattice node, while the LB algorithm used needs
19 real numbers per node.

To test the efficiency of these two algorithms we used the same samples of cu-
bic arrays of spheres as in Sec. 3.7.2. In Fig. 4.12 [II] we compare the time evolution
of the numerical value of the permeability k for different system sizes. Plotted on
the x axis is the total time in seconds needed on two processors. For L = 20a and
L = 36a, both methods reach the final value of k in approximately the same time.
For large L the LB method seems to be faster. Notice that the results of the LB simu-
lations shown in Fig. 4.12 were performed for ξ = 0.688. As given by the Eq. (3.52),
higher ν ∝ ξ gives smaller saturation time, and for ξ = 1.0 the simulations were
about 45 % faster.

The convergence of k(t) towards its asymptotic value is monotonic for the FD
method, while in the LB case k(t) shows oscillations for all L. The reason for these os-
cillations is probably the slight compressibility error inherent in the model [8,9]. The
horizontal line in Fig. 4.12 gives the reference value kref towards which the asymp-
totic values of both algorithms converge with L.

Figure 4.13 [II] shows the scaled distributions of the magnitude of the fluid ve-
locity |~v| for samples EX and SA. The higher permeability of the original sandstone
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FIGURE 4.13 Velocity distribution function P (|~v|) of the Fontainebleau sandstone
(EX) and the SA model sampled over the pore space. The distributions are scaled with
the mean velocity 〈|~v|〉. The inset shows a magnification of the distribution of EX for
small velocities.

EX is reflected by a higher probability density of regions with average flow velocity.
The distribution of sample SA on the other hand exhibits a higher peak at |~v| = 0,
and it extends to higher velocities. The former observation indicates large stagnant
areas where no transport is taking place. The increased probability at high velocities
may be related to a large number of narrow pore throats through which the fluid
has to move. The velocity results for sample GF resemble closely to those of sample
SA while those for sample DM resemble those for EX.

The distributions obtained from the LB solution exhibit a maximum at small
velocities which is not present in the distributions obtained from the FD solution.
The differences could perhaps be attributed to the slip velocities due, e.g., to the
bounce-back boundary condition and the diagonal leak flows in the LB algorithm,
which could lead to a systematic deficit of zero velocities near the boundary.

For SA there is an additional spurious peak at |~v|/〈|~v|〉 ≈ 1.5. Similar, although
smaller peaks were also found for GF and EX. The locations of these peaks were
found to be ∆p/2ρ〈|~v|〉, where ∆p is the body force. We attribute these peaks to the
staggered momenta found in small closed pores, the number of which is very high
for SA and GF. The spurious peaks could have been eliminated by time averaging
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the velocities.
As discussed earlier, there are some features in the standard application of the

LB method, which need special attention. In this comparison the most significant
ones are the finite-size effect coupled to the ξ dependence of the no-slip boundary,
and diagonal leak flows (see Sec. 3.5). The latter becomes noticeable for rough sur-
faces especially near the percolation threshold, and limit only there the accuracy of
the method. If needed, they can also be eliminated by fairly straightforward means,
applying the bounce-back on the leaking links.



Chapter 5

Conclusions

We used the lattice-Boltzmann method to solve 3D Newtonian fluid-flow problems
in porous media obtained by tomographic imaging and by numerical modelling.
By lattice-Boltzmann simulations we examined the quality of numerical models
of porous media and present-day tomographic imaging techniques. Models were
found to give a qualitatively plausible dependence of permeability on porosity, but
also effects of other structural properties were demonstrated. These involve spe-
cific surface area, tortuosity, and shape and orientation of particles in the medium.
Generally, all the simulated permeabilities were consistent, and in each case they
complied with well-known formulae such as the Kozeny law. Deviations from the
Kozeny law were well explained by the determined tortuosities and specific surface
areas.

We found that tomographic imaging is capable of producing representative
structures of sandstone, woven fabrics and many paper grades. Transverse and in-
plane flow simulations in paper images and PAKKA-model samples augmented the
characteristics of the samples and revealed e.g. the effect of fibre flexibility. Further-
more, the simulations show that results on paper can be sensitive to imaging tech-
niques, since the permeability differences between low- and high-resolution images
can be noticeable, though the results within each technique were consistent. Our
results also show that fluid-flow simulations for PAKKA-model samples and tomo-
graphic images of some paper grades, can produce results that are similar to those
found in experiments. There are obviously also experimental factors, such as e.g.
swelling of fibres in water, which are not included in the present simulations. The
fluid flow simulation results of various paper grades could increase the reliability of
modelling the paper-making processes, and those of wires the possibilities to exam-
ine and develope the paper-machine clothing.

Our simulations of fluid flow through sandstone models show that a tomo-
graphic image of sandstone, and to some extent also the physical diagenesis model,
reproduce the experimental permeability of the real sandstone quite accurately, while
the permeabilities of the stochastic reconstructions deviate from the latter by at least

61



62

an order of magnitude. We demonstrated also that the performances of the lattice-
Boltzmann method and conventional finite-difference method are quite similar in
terms of accuracy and computational resources when solving the Stokes equation.

The rapidly developing lattice-Boltzmann method is a flexible and convenient
tool. As we have demonstrated here, one of the successful applications of the method
is simulating fluid flow in porous media. Among its benefits are the simplicity of a
uniform grid and of realizing the no-slip boundary condition by the bounce-back
rule. These features are advantageous for fluid-flow problems in complex geome-
tries. The LB method is also well suited for parallel computing because of the spatial
locality of the updating rules. In many cases of flow in porous media, even the sim-
plest realization of the LB method can be used to obtain quantitatively good results.

A shortcoming of the LB method is the difficulty, as also in other numerical
methods, to simulate flows at high Reynolds numbers. In practical applications very
large computational lattices are also required, which means that high-performance
computing is needed. Continuously developing computing power improves the sit-
uation, but compromises between system size and resolution will still be needed.
Improving resolution of tomographic images into the sub-micrometer regime means
that system sizes tend to stay more or less constant while the number of voxels they
contain is increased.

In conclusion, the large-scale simulations with realistic images of porous ma-
terials carried out in this work, have indeed given us new insight into the classic
problem of the dependence of permeability on other macroscopic characteristics of
the material. Obviously unsolved problems still remain, but the approach chosen
here to this problem has proved to be very promising.
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