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Abstract

Jéasberg, Ari

Flow behaviour of fibre suspensions in straight pipes: new experimental techniques and
multiphase modeling
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ISSN 0075-465X; 8/2007)

ISBN 978-951-39-2937-4

diss.

The work described in this thesis consists of two main topics. First, the hydrodynamic forces
acting on solid particles suspended in a flow of a Newtonian fluid were studied with direct
numerical simulations. Second, the flow behaviour of wood fibre suspensions in straight pipes

was studied.

The hydrodynamic forces acting on long solid cylinders suspended in a flow of Newtonian
liquid near a solid wall were studied with direct numerical simulations separately for a single
cylinder and a matrix of stationary cylinders with random positions. In the single-cylinder
case, it was found that the nondimensional hydrodynamic drag and lift forces mainly depend
on two nondimensional parameters, namely the dimensionless distance from the wall, and
the ratio of the slip Reynolds number to the shear Reynolds number. It was found that the
hydrodynamic force acting on a matrix of long cylinders is qualitatively similar both for
unidirectional cylinders and for cylinders with random orientation. The drag force is largest
near a moving wall and approaches zero monotonically with increasing distance from the
wall. Close to the moving wall the simulated drag force deviates considerably from the drag
force predicted by Darcy’s law. Strongly repulsive lift force was found near the moving wall,
and the maximum value of repulsion decreases as the the width of the gap between the

moving wall and the matrix is increased. The total lift force acting on the cylinders was
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found strongly repulsive when the gap width is small, and decreases monotonically with
increasing gap width. For unidirectional cylinders, the total lift force changes into attraction

at the distance that is of the order of the cylinder radius.

The flow behaviour of wood fibre suspensions in straight pipes exhibits a peculiar plug-
flow regime where frictional losses stay constant or even decrease with increasing flow rate.
Moreover, in the turbulent regime the losses are usually lower than those for pure water at
the same flow rate. New experimental methods were utilized in order to gain more detailed
understanding on the flow behaviour and the relevant rheological material properties of wood
fibre suspensions. The suspensions used in this study consisted of water and chemically
released pine or birch fibres. The experiments were carried out with consistency 0.5-2.0% by
weight in a flow loop with pipe diameter 40 mm. The thickness of a lubrication layer appearing
in the plug-flow regime was determined by measuring the intensity of laser light reflected by
fibres. An observable lubrication layer is found above the flow rate corresponding to the local
maximum in the loss curve (birch) or to the point where the loss curve levels off (pine). The
observed thickness of the layer decreases with increasing consistency, and the largest observed
thickness was 0.4 mm and 0.11 mm for the pine and birch fibre suspensions, respectively. The
transient behaviour of the flow after a sudden step that acted as a turbulence generator,
approach to steady state flow, and the main features of fully developed flow were studied.
The detailed time-dependent velocity profiles in such developing flow were measured with a
pulsed ultra-sound velocimetry technique. From these velocity profiles, the local intensity of
velocity fluctuations was calculated. Based on the results, it is proposed that the flow may be
divided into five different regimes according to flow rate, namely plug flow with wall contact,
plug flow with a lubrication layer, plug flow with a smearing annulus, mixed flow, and fully
turbulent flow. A semiempirical correlation formula for the loss was derived by utilizing the
modeled velocity profile in the plug flow regimes and the parametrized experimental velocity

profile in the mixed and turbulent regimes.

Keywords wood fibre suspension, friction loss, plug flow, drag reduction, lubrication layer
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Nomenclature

a,d particle radius and diameter

R, D pipe radius and diameter

c percentage consistency (by weight)

Cm consistency (by weight)

€05 Cmo threshold consistency for fibre network

Ch drag coefficient

Ch, lift coefficient

E, total energy per unit mass

F, external force density

Fp drag force

Fi, lift force

g gravitation vector

JEo heat source density

Jga heat flux into phase «

k permeability

K dimensionless permeability

M, averaged interfacial momentum source terms for phase «
W, averaged interfacial momentum source terms for phase «
D volumetric drag force density

L volumetric lift force density

n, outer unit normal vector of phase «

MR moisture ratio

MR, moisture ratio of bound water

Der pressure of pure phase «

Re, Re, particle Reynolds number based on slip velocity

X



Re, particle Reynolds number based on shear rate
Up particle velocity

u, velocity of pure phase «

1 second rank unit tensor

() volume /ensemble average of f

f phasic average of f

f de Favre average of f

s, f subscripts for solid and liquid phase

x,Y, 2 subscripts for x,y, and z components of vector (tensor)
Q volumetric flow rate

q mean flow velocity

P pressure

Greek symbols

I, rate of mass generation of phase a at phase interface
I ratio of shear Renolds number to slip Reynolds number
0 phase indicator characteristic function

Lo dynamic viscosity of phase «

Vg kinematic viscosity of phase «

Pa density of pure phase «

Oa total stress tensor of phase «

Ta shear stress tensor of phase «

Tsa pseudo-turbulent stress tensor

Tow wall shear stress

Oap interface surface tension between phases o and 3

o volume fraction of phase «

10} porosity

w fibre coarseness
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Chapter 1
Introduction

A central issue in many engineering problems involving fluid flow is estimating frictional
losses. For simple Newtonian fluids, loss in a fully developed flow in a straight pipe is relatively
accurately given by the famous Moody’s diagram, or the related correlation formulas, which
summarize the existing (yet incomplete) theoretical understanding on frictional flow in closed

channels and a vast amount of carefully measured and analyzed experimental data.

The flows found in many industrial processes are inherently multiphase flows, and their
behaviour is frequently much more complex than that of Newtonian liquids. For example,
the flow behaviour of wood fibre suspensions in straight pipes exhibits a peculiar flow regime
where frictional losses stay constant or even decrease with increasing flow rate. It has been
known for a long time that in this regime the (more or less) rigid plug formed by fibres slide
on top of a thin lubrication layer of pure water at pipe wall. Moreover, in the turbulent
regime the losses are usually lower than those for pure water at the same flow rate. Although
this flow behaviour is relatively well known, this general knowledge is not sufficient for
providing us with loss correlations that are similar to those of Newtonian fluids. The practical
design equations used in the industry are based on experimental correlations utilizing a large
amount of data but relatively vague theoretical reasoning. The design principles are thus

quite conservative and omit many fine details of the flow behaviour.

In this work, new experimental methods were utilized in order to gain more detailed un-
derstanding on the flow behaviour and the relevant rheological material properties of wood
fibre suspensions. These methods have only recently become available, and they were partly

developed during the experimental work described in this thesis. The suspensions used in
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this study consisted of water and chemically released pine or birch fibres. No fillers were used
and the amount of fines was very low. During the experiments the consistency was varied
between 0.5% and 2.0% by weight. Moreover, direct numerical simulation were performed
to get qualitative insight into the relevant force interaction occurring in flows of wood fibre
suspensions. The information extracted from these experiments and simulations was then
utilized in an effort to develop improved methods for predicting frictional losses in straight

pipe flow of fibre suspensions.

In the second chapter of this thesis equations are reviewed that govern the flows of multiphase
systems consisting of two or more insoluble materials. Such flows are frequently found in
various processes within, e.g., paper and pulp industry, chemical industry and petroleum
industry. At first the equations are stated in a general form that applies to a wide range of
multiphase systems that consist of insoluble materials, and then refine the equations into

specific form that can be used to solve flows of wood fibre suspensions.

The multi-phase equations that are recapitulated in the second chapter form a set of equa-
tions that are coupled with interaction terms. These interactions terms include, e.g., the
hydrodynamic forces acting between the phases. In the third chapter the hydrodynamic in-
teractions in liquid-particle systems are studied by direct numerical simulations. Specifically,
the hydrodynamic forces acting on stationary long cylinders suspended in a flow of New-
tonian liquid near a solid wall are studied. Emphasis will be on the so-called lift force that

is responsible for, e.g., the lubrication layer in the plug flow regime of fibre suspension flow.

In the fourth chapter the somewhat peculiar flow behaviour of wood fibre suspensions in
straight pipes is described at a qualitative level. Some characteristic features found in ex-
perimental frictional loss correlations are summarized after which various flow regimes are
studied, and the flow phenomena are shortly discussed that are known to produce the ob-
served loss correlation. Next the most relevant efforts on modeling the flow of wood fibre
suspension in straight pipes and on design equations and methods for determining friction

loss are reviewed.

In the fifth chapter the experimental work carried out in this study on the flow properties
of wood fibre suspensions on straight pipes are described. New experimental methods were
used to acquire better grasp on the flow phenomena responsible for the peculiar flow prop-
erties. The thickness of the lubrication layer in the plug-flow regime was measured with a
laser-optical device. The detailed time-dependent velocity profiles in a developing flow were

measured with a pulsed ultra-sound velocimetry techniques. The experimental results are



extensively analyzed, and based on the results, a plausibler explanation to the observed flow
behaviour is proposed. While still qualitative, this explanation contains more detailed physi-
cal reasoning than the previous studies on the phenomenon; it is based on direct and detailed

measurements of flow profiles.

In the sixth chapter the correlations are derived that can be used to estimate frictional losses
of wood fibre suspension flow in a straight pipe. This effort summarizes the work that has
been described in the previous chapters, and it utilizes multiphase modeling results from the
second chapter, numerical result of the third chapter, and the experimental results from the
fifth chapter.
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Chapter 2

Multiphase flow dynamics

2.1 Introduction

In this chapter the equations are presented that govern the flow of a multicomponent system
consisting of two or more insoluble materials. In such a system each point can be identified as
belonging to exactly one of the materials, thus the materials form distinct domains that are
separated by well-defined boundaries. Different physical states of one material (solid, liquid,
and gas) are usually treated as separate components of the system, thus a generic phase is

used to refer to each of the components and the system is called a multiphase system.

Flows of insoluble multiphase systems include a wide range of flows found in industrial
processes. Flows of insoluble liquids are common in oil extraction, while bubbly flows oc-
cur quite frequently in cooling systems and cavitation processes. Gas-particle suspensions
or liquid-particle suspensions are characteristic to combustion processes as well as many
processes in chemical industry. This work will concentrate on flows of liquid-particle suspen-
sions, and especially on liquid-fibre suspensions that are fundamental within paper and pulp

industry.

To start with, the generic equations governing the microscopic flow inside each phase are
shortly reviewed, and various boundary conditions are described that can be applied on in-
terphase boundaries and external boundaries of the system. In most of the practical cases
(and most definitely in liquid-fibre suspensions) inter-phase boundaries have very compli-

cated shape that may change with time, and one can not find an exact solution to the flow
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equations. The analytical studies are usually restricted to simple cases where there is, e.g.,
one stationary solid object immersed in a flow field. There are computational methods, e.g.
the lattice-Boltzmann method, that can be used to numerically solve flow fields in complex

geometries that may change with time.

In analytical studies one have to resort to averaged equations, in general. To that end, the
governing mesoscopic multiphase equations are derived by applying volume averaging on
the microscopic flow equations. These averaged equations are at first given in a generic form
that applies to many kinds of multiphase systems. These equations have to be equipped with
additional closure relations that bring the equations into a closed form by taking into account
specific features of the system under study. These relations include, e.g., the forces acting
between the phases. Basic principles are presented that have to be followed in inferring the
closure relations for any multiphase system. Following these general guidelines, the closure
relations are presented for liquid-particle suspensions, i.e. binary systems of solid particles
suspended in a Newtonian liquid. Finally, the closure relations for flow in porous media are
presented. These relations apply, e.g., for plug flow regime of fibre suspensions where fibres

form a rigid porous network through which water flows.

2.2 Microscopic flow equations

Consider a representative sample volume V' which contains distinct domains of each phase
such that V' =)V, where Vj, is the volume occupied by phase a within V' (see Fig. 2.1). It
is assumed that for each phase « the usual fluid mechanical equations for mass, momentum

and energy conservation are valid at any interior point of V,, namely

0
apa + V- (palla) =0 (21)
0
a(paua) + V: (pauguy) = +V -0, +F, (2.2)
0
a(paEa) + V- (paiaEa) = (2.3)

+V - (uy-04) + Uy -Fo = V- Jyo + JEa.
Here,

po = density of pure phase «
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Phase 3

Vs

Phase ~

v,

Figure 2.1: A control volume V including three phases «, (3, and ~.

u, = fow velocity

0, = Stress tensor

E, = total energy per unit mass
F., = external force density

Jgqo = heat flux into phase «
Jea = heat source density.

The energy equation (2.3) is necessary only in the presence of heat transfer. For simplicity,
the energy equation will be neglected from now on and only mass and momentum equations

will be considered.

For a fluid phase, the stress tensor is normally written in the form

Oaq = _paﬂ + Ta, (24)
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where

Do = pressure
1 = second rank unit tensor
T, = traceless shear stress tensor

Hence the momentum equation becomes

0
a(paua) + V- (paugu,) = —-Vp, + V-7, +F, (2.5)

Notice however, that the concept of 'pressure’ is, in general, not useful for a solid material.

In such cases it is preferable to use the total stress tensor o, and equation (2.2) instead.

In order to render the equations in closed form, constitutive relations stating the properties
of individual phases have to be given. These relations relate the stress tensor to strain (solids)
and /or rate of strain (fluids). For an incompressible fluid, this relation is commonly given in
the form

To = 2lba€a (2.6)

where the rate of strain tensor is given by

((Vua) + (Vug)") (2.7

N —

€a —

and i, is the dynamic viscosity of the liquid. For a Newtonian liquid, viscosity is constant
(may depend on temperature), while for a non-Newtonian liquid it may depend on, e.g., on

the local rate of strain e,.

2.2.1 Boundary conditions

Equations (2.1) and (2.2) for phase « are subject to the following jump conditions at the

interface A,, between phase a and any other phase 7 inside volume V' (see Fig. 2.2).

pa(Uy — ug) -y + py (0, —ug) -0, =0 (2.8)
Pala (U — ug) - Ny + pyuy (0, —ug) - 0y = (2.9)
20
O B+ 0 - By — Voo + 2R,

IR
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Figure 2.2: A portion of the interface between phases a and ~.

where

n, = unit outward normal vector of phase «
us = velocity of the interface

IA{s = RS/|RS‘

R, = interface curvature radius vector

0oy = interface surface tension

V., = V—R, V =surface gradient operator

Equations (2.8) and (2.9) express the conservation of mass and momentum at the interface,
respectively. Terms on the left hand side of Eq. (2.9) give the momentum carried by the
material crossing the interface due to phase change. The first two terms on the right side
give the momentum exchange due to mechanical stresses. The remaining terms give the
momentum transfer due to interface surface tension, and can usually be neglected at the

interface involving solid phase.

In principle, equations (2.1) and (2.2) can be solved for a selected phase to get a detailed
flow field. To pick up the specific solution, proper boundary conditions must be specified at
each point of the boundary of the phase. In addition to the boundaries with other phases,

this may also include parts of the external boundary of the entire system under study. In
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addition to the jump conditions (2.8) and (2.9) which are valid for all interfaces, boundary
conditions should take into account the material and case dependent special features of the
interface. Furthermore the interface A, = Uw A, may have a very complicated shape which

depends on time and which actually should be solved simultaneously with the low equations.

There are three general classes of boundary conditions. Dirichlet’s boundary condition spec-
ifies the value of an unknown quantity at the boundary. In the present case the unknown

quantity is flow velocity, and the boundary condition can be written as
u, = Uupj,. (2.10)

where up;, is the known flow velocity at the boundary. This condition is often used to set a
no-slip condition for a fluid phase at the solid boundary by setting up;. equal to the local
velocity of the solid surface. This condition can also be used to specify the flow velocity at

the inlet and outlet boundaries of the system.

Neumann’s boundary condition imposes a constraint on the derivatives of an unknown quan-
tity. The stress tensor depends on the gradient of the velocity field, thus a special case of

Neumann’s boundary condition can be written in the form
Oq " Mg = ONeu- (211)

where one, 1S the known stress at the boundary. In some cases the friction at the interface
can be neglected and the tangential shear stress set to zero. This may happen, e.g., at a
gas-liquid interface, where the shear stress of the liquid can be approximately neglected due

to relatively low viscosity of the gas phase.

Robin’s boundary condition is a combination of the two first types
Oq -ﬁa+AR0b~ua — ORob- (212)

This boundary condition is far less frequently used compared to Dirichlet’s and Neumann’s
boundary conditions. It has been used, e.g., for the outflow through the tube bank when

calculating the flow of dilute fibre suspension inside head box of paper machine|Him93|.

In the context of continuum fluid mechanics, the no-slip boundary condition at the solid-
fluid interface is quite often considered as an exact law of nature. However, it is only an

approximate result which breaks down when the Knudsen number becomes large. A practical
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case of such breakdown is gas flow in micron-sized channels in some modern Micro-Electro-
Mechanical-Systems (MEMS) [MRCO02|. The Knudsen number Kn is defined as the ratio of
the mean-free path of the fluid molecules A to the characteristic length scale of the flow field
L,

Kn = I (2.13)
For internal flows, L is the length scale associated with the volume available to the flow, e.g.
the diameter of the flow channel, while for external flows L is the characteristic scale of the
object immersed in the flow. The mean-free path for ideal gas at standard temperature and
pressure is approximately A = 10~7 m, hence the Knudsen number for a micron-sized channel
is Kn = 0.1. This is just at the limit where the continuum flow assumption begins to fail,
and the gas cannot be considered to be in a thermodynamic equilibrium anymore. Above
this limit the system must be solved by using kinetic theory and Boltzmann’s equation.
Moreover, even well below this limit, ¢.e. when the continuum approach is justified, the no-
slip condition may not be valid at the interface. This can be shown with a simple model
where the kinetic theory is used near the interface and continuum approach for the rest
of the flow [MRCO02|. The slip velocity vy, predicted by such a model is a special case of
Robin’s boundary condition (2.12):

2—0 A

— Twall (214)
0  |lUg

Vslip =

where 7. is the tangential shear stress at the interface, and o is the tangential accom-
modation coefficient. This dimensionless number gives the relative amount of the tangential
momentum lost by gas molecules as they collide with the solid phase. For an idealized inter-
face (perfectly smooth) the molecules conserve their tangential momentum (o = 0), whereas
in the case of an extremely rough surface, the molecules lose, on average, their entire tan-
gential momentum (o = 1). For very smooth interfaces, the slip velocity is thus large or,

putting it the other way round, tangential shear stress is small.
It is straightforward to show that for laminar flow in a pipe of circular cross-section, the
ratio of the slip velocity given by Eq. (2.14) to the average flow velocity ¢ is given by

Uslip
q

= 8Kn (2.15)

where the Knudsen number is defined with pipe diameter D, i.e. Kn = % As an example,
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consider the flow of oxygen at the normal temperature T' = 273.15 K and at the pressure
P = 750mmHg = 100.0kPa. The mean free path of oxygen in this state is A = 90.5nm
[Wea74|. In order to keep the velocity ratio given by Eq. (2.15) below 5%, the Knudsen
number should be less than 0.00625. Hence, the minimum pipe diameter would be D = 14 ym.

Due to many complicated features discussed above, it is not always possible to apply the
boundary conditions and to solve the microscopic equations (2.1) and (2.2) in the usual
manner. This is the basic reason why one have to resort to averaged equations, in general.

These averaged equations are reviewed in the next section.
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2.3 Multiphase equations

In this section the ’equations of multi-phase flow” appropriate within the Eulerian approach
are reviewed by closely following the approach used by Soo [So090|. First, suitable averaged
dynamic flow quantities are defined, and then the required flow equations are derived by
averaging the corresponding 'microscopic’ phasial equations (2.1), and (2.2). For derivation

of the energy equation for multi-phase flows see e.g. Refs. [S0090| and [Hwa89)|.

The averaging procedure can be carried out in several alternative ways. Perhaps the most
common approaches are time averaging [Ish75, Dre83|, volume averaging [Ish75, Dre83,
S0090, Dre71, DS71, Nig79| and ensemble averaging [Ish75, Dre83, Buy71, Hwa89, JLI0].
Various combinations of these basic methods can also been considered |Ish75]. Also, a ho-
mogenization method of multiple-scale asymptotic expansions has been used to derive the
governing equations at the mesoscopic level from the microscopic equations [BA98, CP07].
It appears, however, that irrespectively of the method used, the averaging procedure leads
to equations of the same generic form, namely the form of the original phasial equations
except for a few additional terms which include the interactions i.e. exchange of mass, mo-
mentum and energy between the phases. Each averaging procedure may, however, provide
a slightly different view in the physical interpretation of the interaction terms and, conse-
quently, may suggest different solutions to the closure problem that is invariably associated
with the solution of these equations. The manner, in which the various possible interac-
tion mechanisms are naturally divided between these additional terms, may also depend on
the averaging procedure being used. While ensemble averaging appears as the most elegant
approach from the theoretical point of view, volume averaging provides perhaps the most
intuitive and straightforward interpretation of the dynamic quantities and interaction terms
involved. Volume averaging also illustrates the potential problems and intricacies that are
common to all averaging methods. Thus the study is restricted to volume averaging method
which is based on the assumption that a length scale L. exists such that L,, << L. << Lg,
where L, is the 'mesoscopic’ length scale associated with the distribution of the various

phases within the mixture and Lg is the 'macroscopic’ length scale of the entire system.



14 CHAPTER 2. MULTIPHASE FLOW DYNAMICS

System Control volume

Molecular scale

Figure 2.3: Characteristic length scales in a multiphase flow system.

2.3.1 Volume Averaged Equations

For any quantity g, (scalar, vector or tensor) defined in phase « the following averages are
defined |Ish75, Hwa89|

1
« En——— adv 2.16
(qa) v Vaq (2.16)
i = = gedv = g (2.17)
qu Va Va [0 ¢a [0 -
0o, AV
o = i pote AV _ {pada) (2.18)

fVa padv B ¢ap~a7

where

¢o = Va/V. (2.19)



2.3. MULTIPHASE EQUATIONS 15

is the volume ratio of phase o and is subject to the constraint that
> ¢ =1. (2.20)

The quantities defined by Eqgs. (2.16), (2.17) and (2.18) are called the partial average, the
intrinsic or phasic average and the Favré or mass weighted average of ¢,, respectively. At
this point the decision is postponed of which particular average of each flow quantity one

should choose to appear as the final dynamic quantity of the averaged theory.

In order to derive the governing equations for the averaged quantities defined above, aver-
aging is applied to the microscopic equations (2.1) and (2.2). To this end, it is first noticed

that the following rules apply to the partial averages (and to the other two averages),

(f+9) =) +{9) (2.21)
((Frg) = (f){g) (2.22)
(C'y = C for constant C. (2.23)

It is also rather straightforward to show that the following rules hold for partial averages of

various derivatives of g, [S0090],

1 .
(V@) = V(%HV/ Gatin dA (2.24)
1 .
(V-qa) = V-<qa)+V/A Qo - 0, dA (2.25)
0 0 1
o) = 7;(¢a) — 3 -, dA. 2.2
<atqa> at<qa> V/Aa Qaus nadA ( 6)

Applying partial averaging on both sides of Egs. (2.1) and (2.2) and using Eqs. (2.21)-(2.26)

the following equations are obtained

%(pa> + V- {patta) =4 (2.27)
g(paua) +V - (patuquy) = =V(pa) + V- (Ta) + (Fo) + M,, (2.28)

ot
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where the ’transfer integrals’ I', and M, are defined by

r, - —1/ pa( — 1) - iy dA (2.29)
VJa,
1
M, = —/ (—pall +7,) - 1y dA
Vi Ja,
1
— Pals (U, — uy) - 11, dA. (2.30)
VJa,

Obviously, the flow equations (2.27) and (2.28) are not yet given in a closed form amenable for
solution. Firstly, the properties of each pure phase are not specified at this point. Secondly,
the transfer integrals (2.29) and (2.30), which include the interactions (mass and momentum
transfer) between phases, are still given in terms of integrals of the original microscopic
quantities over the unknown phase boundaries. The additional constitutive relations, which
are required to specify the material properties and to relate the transfer integrals with the
proper averaged quantities, are discussed in more detail below. Thirdly, averages of various
products of original variables that appear on the left side of the equations are, in principle,
independent of each other. Even in the case that all the necessary constitutive relations are
assumed to be known, one still has more independent variables than equations for each phase.
In order to reduce the number of independent variables, one must express averages of these
products in terms of products of suitable averages. This can be done in several alternative
ways which may lead to slightly different results. Here, Favré averaging is used for velocity
and, depending on which is more convenient, either partial or intrinsic averaging is used for

density and pressure. Defining the velocity fluctuation du, by
u, = U, + dug,, (2.31)

it is easy to see that the averages of products that appear in Eqs. (2.27) and (2.28) can be

written as

<pau06> = <pa>ﬁa = ¢ap~aﬁa (232)
(Ppaaly) = (pa)Un, + (padusduy,) (2.33)
= QaPalialy + <pa5ua6ua)
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The averaged equations now acquire the form

0. . -
a(ﬁﬁapa) +V- (¢apaua) - Fa (234)
0 . o
&(Qﬁapaua) +V- ((;bapauaua) =
~V(¢aba) + V + (Ta) + ¢oFo + Mo + V - 50, (2.35)
where
Téa = _<pa6ua6ua>' (236)

This tensor is sometimes called a pseudo-turbulent stress tensor since it is analogous to the
usual Reynolds stress tensor of turbulent one-phase flow. Notice however, that tensor 75, is
defined here as a volume average instead of a time average as in the case of the usual Reynolds
stress. It also contains momentum fluxes that arise both from the turbulent fluctuations of
the microscopic flow and from the fluctuations of the velocity of phase a due to the presence
of other phases. Consequently, tensor 75, does not necessarily vanish even in the case that

the microscopic flow is laminar.

Integrating the microscopic boundary conditions (2.8) and (2.9) over the interface A,,,

summing over « and « and using definitions (2.29) and (2.30), it is found that

» Ta=0 (2.37)

1 200~ 2
M, =—— — el A. 2.
aFy

Equation (2.37) ensures conservation of the total mass of the mixture, while the right side of
Eq. (2.38) gives rise to surface effects such as ’capillary’ pressure differences between various

phases.

Equations (2.34) and (2.35) together with constraints (2.20), (2.37) and (2.38) are the most
general averaged equations of multi-phase flow (with no heat transfer), which can be de-
rived without reference to the particular properties of the system (other than the general

continuum assumptions).

The basic dynamic variables of the averaged theory can be taken to be the three components

of the mass-averaged velocities @, and the volume fractions ¢, (or, alternatively, the averaged
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densities (p,)). Provided that all the other variables and terms that appear in Eqgs. (2.34)
and (2.35) can be related to these basic variables using definitions (2.16) through (2.18),
constraints (2.20), (2.37) and (2.38) and constitutive relations, one thus has a closed set of

four unknown variables and four independent equations for each phase a.
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2.3.2 Constitutive relations

Equations (2.34) and (2.35) are, in principle, exact equations for the averaged quantities. So
far, they do not contain much information about the dynamics of the particular system to
be described. That information must be provided by a set of system dependent constitutive
relations which specify the material properties of each phase, the interactions between differ-
ent phases and the (pseudo)turbulent stresses of each phase in the presence of other phases

- and which finally render the set of equations in a closed form where solution is feasible.

At this point we do not attempt to elaborate in detail the possible strategies for attaining
the constitutive relations in specific cases, but simply state the basic principles that may
be followed in inferring such relations. The unknown terms that appear in the averaged
equations (2.34) and (2.35), such as the transfer integrals and stress terms that still contain

microscopic quantities, should be replaced by new terms which |Dre83|

e depend only on the averaged dynamic quantities (and their derivatives),
e have the same physical content, tensorial form and dimension as the original terms,

e have the same symmetry properties as the original terms (isotropy, frame indifference
ete.),

e include the effects of all the physical processes or mechanisms that are considered to

be important in the system to be described.

Typically, constitutive relations are given in a form where these new terms include free pa-
rameters which are supposed to be determined experimentally. For more detailed discussion
on the constitutive relations and constitutive principles, see e.g. Refs. [DAL90, Dre83, DL79,
Dre76, Hwa89, HS89, HS91, BS78, Buy92a, Buy92b|.

In some cases constitutive laws can readily be derived from the microscopic properties of the
mixture, or from the properties of the pure phase. If e.g. the pure phase « is incompressible
i.€. po, — constant, that implies the constitutive relation p,—constant. Similarly, the equation
of state p, = Cp,, where C=constant for the pure phase, implies p, = Cp,. In most cases,
however, the constitutive relations must be extracted from experiments, derived analytically

under suitable simplifying assumptions, or postulated.
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Including a given physical mechanism in the model by imposing proper constitutive relations
is not, however, always very straightforward even in the case that adequate experimental and
theoretical information is available. Especially making specific assumptions concerning one
of the unknown quantities may induce constraints on other terms. For example, the transfer
integrals I', and M, contain the effect of exchange of mass and momentum between the
phases. According to Eq. (2.29), the quantity ', gives the rate of mass transfer per unit
volume through the phase boundary A, into phase « from the other phases. In a reactive
mixture, where phase « is changed into phase 7, the mass transfer term I', might be given
in terms of the experimental rate of the chemical reaction &« — ~ as correlated e.g. to
the volume fractions ¢, and ¢,, temperature of the mixture T'etc. Similarly, the quantity
M,, gives the rate of momentum transfer per unit volume into phase a through the phase
boundary A,. The second integral on the right side of Eq. (2.30) contains the transfer of
momentum carried by the mass exchanged between phases. It is obvious that this part of
the momentum transfer integral M, must be consistently correlated with the mass transfer
integral I',,. Similarly, the first integral on the right side of Eq. (2.30) contains the change of
momentum of phase o due to stresses imposed on the phase boundary by the other phases.
Physically, this term contains forces such as buoyancy which may be correlated to average
pressures and gradients of volume fractions, and viscous drag which might be correlated to
volume fractions and average velocity differences. For instance in a liquid-particle suspension,
the average stress inside solid particles depends on the hydrodynamic forces acting on the
surface of the particles. The choice of e.g. drag force correlation between fluid and particles
should therefore influence the choice of the stress correlation for the particulate phase. While
this particular problem can be solved exactly for idealized cases [DAL90], there seems to be

no algorithm available for accomplishing this in a general case.

Perhaps the most intricate term which is to be correlated to the averaged quantities through
constitutive relations is, however, the tensor 75, given by Eq. (2.36). It contains the momen-
tum transfer inside phase «, which arises from the genuine turbulence of phase a and from
the velocity fluctuations that arise due to presence of other phases, and that are also present
in the case that the microscopic flow is laminar. Moreover, the truly turbulent fluctuations of
phase o may be substantially modulated by the other phases. Bearing in mind the intricacies
that are encountered in modeling turbulence in single phase flows, it is evident that inferring
realistic constitutive relations for tensor 7y, remains as a considerable challenge. It may,
however, be attempted e.g. for fluid-particle suspensions by generalizing the corresponding

models for single phase flows, such as turbulence energy dissipation models, large-eddy sim-
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ulations or direct numerical simulations. A review on the topic is given by Crowe, Troutt

and Chung in Ref. [CTC96|.

It should be emphasized that no general set of equations exists that, as such, would be valid
and readily solvable for an arbitrary multi-phase flow, or even for an arbitrary two-phase
flow. Instead, for each particular system, the flow equations should be derived separately
starting from the general (but unclosed) set of equations given in section (2.3) and utilizing

all the specific assumptions and approximations that are plausible for that system.

Next two particular cases are discussed that are most relevant to this thesis, namely liquid-

particle suspension and flow in the porous medium.

Liquid-particle suspension

Consider a binary system of solid particles suspended in a Newtonian liquid. The continuous
fluid phase is denoted by subscript f and the dispersed particle phase by subscript s. It is
assumed that both phases are incompressible, that the suspension is non-reactive i.e. there
is no mass transfer between the two phases and that surface tension between solid and liquid

is negligible. Both the densities pr and ps are thus constants, and

I'e=Iy = 0 (2.39)
M+ M, = 0. (2.40)

The mutual momentum transfer integral can now be written as

1
MEMf:—MS = = (—pf]1+7f)'flfdA
V' Ja,
1
= ——/(—pf]l + Tf) . fldA, (241)
V' Ja
where A = Ay = A, and = ng = —n¢ . Introducing the fluid pressure fluctuation by

Ops = pr — Pr, the momentum transfer integral can be written in a form

MZﬁf(l/ﬁdA)JrW, (2.42)
Vi Ja
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where

v
Next, the characteristic function of the dispersed phase 6s(r) is defined such that it has the

1
W=—— / (—5pf]1 + Tf) -ndA. (2.43)
A

value 1 if r is in the dispersed phase and 0 otherwise. Denoting ¢ = ¢¢, whereby ¢s = (65) =
1 — ¢, and applying Eq. (2.24) with g, = 65(r), it is easy to see that

%/ fdA = V. (2.44)
A

From Eq. (2.42) one thus gets
M = 5 Ve + W. (2.45)

The averaged flow equations can now be written as

0 _
a 50+ VY (om) = 0 (2.46)
1=+ V- (1-9)m) = 0 (2.47)
P60 + V- (0nm)] = —0Vpe+ V- () + oF
+W + V- 75 (2.48)
m[%((l —¢)a,) + V- (1 —d)u)] = +V- (o) + (1 - ¢)F,
—W —ps Vo + V- 75, (2.49)

where (7¢) is the averaged viscous stress tensor of the fluid, and (o) is the averaged total
stress tensor of the dispersed phase. The first term on the right side of Eq. (2.45) is called
buoyancy. Despite of its name, this term is not the buoyancy acting on immersed bodies as
given by Archimedes’ principle. In fact, Archimedes’ buoyancy is proportional to the pressure
gradient and is included in the first term on the right side of Eq. (2.48).

In the Egs. (2.46)-(2.49) one has eight equations for the eight unknowns that can be taken
to be the volume fraction of the fluid ¢, fluid pressure p; and the three components of both
the velocities iy and 0. It remains to specify the constitutive relations for the viscous stress
tensor of the fluid (7¢), the total stress tensor of the particulate phase (og), the momentum

transfer integral W, and the turbulent stresses 755 and 7.
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The constitutive relation for the viscous stress tensor of the fluid (7¢) can be derived simply
by performing the volume averaging of the microscopic tensor 7t = p;((Vuy) + (Vug)T) and

using Eq. (2.24). The averaged surface velocity Uy is defined by

1 _ 1 _
— Ufﬁf dA = Usurf— / flf dA = —Usuer(b, (250)
V Af v Af

and postulate that Ug,s = bilg — (1 — b)uy, where b = b(¢) is a free parameter (the 'mobility’
of the dispersed phase) and acquires values between 0 and 1. It is then easy to see that the

viscous stress tensor of the fluid can be given as
(7e) = e (Vie) + (V) ") — b (Vo) (0 — @) + (85 — 1) (V) (2.51)

which is identical to the result that Ishii stated without a proof|Ish75].
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Flow in porous medium

Most porous materials of practical interest consist either of particles packed in a more or
less disordered manner or of a consolidated irregular porous structure. Examples of such
materials are numerous: sand, soil, fractured rock, ceramics, sponge, paper etc. Many im-
portant processes found in geophysics or in various industrial applications involve flow of
fluid through a porous medium. In some cases, such as in slow transport of ground water
through an aquifer, the porous material can be considered rigid so that the structure of the
solid matrix is not significantly deformed during the process. The basic equation for such a
flow is given by the famous Darcy’s law, which was originally inferred from purely empirical
results for a stationary creeping flow of Newtonian liquid through a homogeneous column of
sand |Bea72]. With processes such as removal of water from a sponge by squeezing it, the
porous structure appears soft and may thus be extensively deformed by external forces and

by hydrodynamic forces exerted on the solid matrix by the fluid flow.

In this section, Darcy’s experimental formula is utilized in the context of the multiphase flow
theory and derive the governing equations for time dependent creeping flow of Newtonian
liquid through a soft porous medium. Formally, the system of the highly deformable solid
matrix and the liquid flowing through the interstities of the matrix is treated as a binary
mixture of two fluids. It is assumed again that both phases are incompressible, that there is
no mass transfer between the two phases and that surface tension between the solid material
and the liquid is negligible. The situation is thus reminiscent to the liquid-particle suspension
discussed in Section (2.3.2), and Eqs. (2.46)-(2.49) and (2.51) are valid for the present system.
A few simplifications as compared to the liquid-particle suspension can, however, be made
in this case. By assuming creeping flow the inertial terms that appear on the left side of
Eqgs. (2.48) and (2.49) can be neglected. Furthermore, the pseudoturbulent stress term V - 75
vanishes in the solid phase and is expected to be very small also in the fluid phase in this
flow regime. According to Darcy’s early experiments and innumerable later experiments, the
dominant interaction mechanism in a flow through porous medium is viscous drag D. The
results of these experiments, as summarized by the Darcy’s law, indicate that the momentum

transfer integral W should be written in a form
W=D = —%(af — ). (2.52)

Here, k = k(¢) is the permeability of the porous material, which remains to be determined.
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Notice that permeability is, in general, a tensor of second rank and the momentum transfer
vector may point to a direction that is not aligned with the velocity difference between the
phases. However, in this monograph only isotropic materials will be considered for which the

permeability is fully described by one scalar value k, and thus Eq. (2.52) applies.

Several experimental correlations for k£ have been reported in literature for different types
of porous media (see e.g. ref. [Bea72|). Perhaps the most common formula which can be
derived analytically for simplified capillary models of porous materials and which at least
qualitatively grasps the correct behaviour for many materials, is the Kozeny-Carman relation

I 9

E=

Y iy (2.53)

Here, Sy is the specific pore surface area and c is the dimensionless Kozeny constant which
acquires values between 2 and 10, in practice. (Notice that due to the conventions used here,
Eq. (2.53) differs from its more usual form where ¢ instead of ¢ appears in the numerator,
see Eq. (2.67) below.) The Kozeny-Carman relation does not predict well the permeability
of fibrous porous materials with high porosity. There are several analytic results derived
especially for fibrous porous materials that can be used for relatively high porosities. These
results include,e. g., the correlations derived by Happel [Hap59|, by Kuwabara |[Kuwb9|, and
by Jackson and James [JJ86]:

k 2_

PR e <_ln P+ $§+1> (Happel) (2:54)
k

S = i (g — 3420 (Kuwabara) (2:55)
k

= = maiay (f’_¢ E (—Ings —0.931) (Jackson and James) (2.56)
a S S

where ¢, = 1 — ¢ is the volume fraction of fibres, and a is the characteristic length scale
of the permeability. All these results were derived for smooth uniradius cylinders, and a is
the radius of cylinders. Egs. (2.54) and (2.55) were derived for flow perpendicular to a rigid
array of randomly placed parallel cylinders, while Eq. (2.56) is a weighted average of the

permeabilities for flow parallel and perpendicular to an array of cylinders.

Ghaddar considered random porous media made of uniradius parallel cylinders and simulated
flow perpendicular to the cylinders|Gha95|. He used solid volume fractions in the range 0.05-

0.58 and found that the dependence on the volume fraction of the simulated permeability is
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described quite accurately by a simple exponential formula

K 4684 exp(—12.7366,). (2.57)

a2

Koponen et al simulated flow through fibrous porous material with the lattice-Boltzmann nu-
merical method [KKH"98]. They found the following interpolation formula for the simulated

permeability
1

B 555 (11— 6, exp(10.16,) — 1)) (2:58)

a2

The functional forms of the permeabilities given by Eqs. (2.54)-(2.56) and (2.58) are show
in Fig. 2.4. Also shown in the figure are numerical results by Ghaddar|Gha95|.

10 : :
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- -- Jackson and James |
— Happel |
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Figure 2.4: The permeabilities given by Eqs. (2.54) (2.56) and (2.58) as functions of solid
volume fraction ¢s. The open circles are the results corresponding to the lowest three solid
volume fractions used in Ref. |Gha95|.

If the porosity ¢ is not too close to unity, the viscous shear stress term V - (77) is small
compared to the viscous drag term and can be neglected. Taking gravitation to be the only

body force, the equations for a flow of liquid in a deformable porous medium can thus be
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written in a form

) _
a 50+ Vo (om) = 0 (2:59)
5 (1=0)+ V- (1-9)m) = 0 (2.60)
OVpr = —%(ﬁf — ) + dpeg (2.61)
V(o) = +E@—u) — Ve +(1-0)ie. (2.62)

Adding Egs. (2.59) and (2.60) and Eqgs. (2.61) and (2.62) one arrives at the mixture equations

V(g = 0 (2.63)
V-(T) = s (2.64)

where (q) = ¢ug + (1 — ¢)uy is the volume flux, (T) = —¢p¢ll + (0y) is the total stress, and
(p) = dpr + (1 — ¢)ps is the density of the mixture.

For linearly elastic materials, the stress tensor (o) is readily given as a function of local strain
by Hooke’s law. For viscoelastic materials instead, (o5) may depend both on the strain and
on the rate of strain (i.e. on ug). The fact that the solid phase is actually not a fluid in an
ordinary sense indicates that a finite stress implies finite strain on the solid matrix. It follows
that the velocity of the solid phase can be non-zero only in a transient state. In a stationary
state (and in the case of rigid porous material) one has uy = constant. The porosity ¢ is
then independent of time, and in the frame of reference attached to the porous material (i.e.

u; = 0) the flow equations are reduced to

V-qf = 0 (2.65)
koo
a = ——(Vir— prg), (2.66)
Mt
and one of equations (2.62) or (2.64). Here qf = ¢uy is the volume flux of the fluid (the
'seepage’ velocity), and
1 ?
cS§ (1= ¢)*

Eq. (2.66) is the Darcy’s formula in its conventional form.

k= (2.67)
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There are cases where the viscous shear stress term V - (77) is of comparable magnitude
with the viscous drag term and must be retained in the formulation. One example is the
flow in a channel partly filled with porous medium surrounded by an annulus of pure liquid.
It is evident that the shear field of pure liquid in the annulus penetrates the porous plug
for some depth, and in some cases the flow field in this transitional region may be essential
in analyzing the interactions, e.g. the lift force, between the phases. To solve the profile of
average liquid velocity in this transitional region, the shear stresses inside the annulus and
inside the plug must be matched at the plug surface. The viscous shear stress is given by
Eq. (2.51). In the current case ug; = constant, thereby the averaged surface velocity of the
fluid Uy defined by Eq. (2.50) equals 115, and the mobility parameter b is unity. Hence, the

averaged viscous shear stress tensor of the fluid can be written as

(1t) = dpe (V) + (V) ") — pe((Vo) s + us(V)). (2.68)

There are also cases where one has to consider the momentum transfer between the phases
in the direction perpendicular to the main flow, i.e. the hydrodynamic lift force. This force
quite often plays an important role in flows near solid walls. It may have a remarkable effect
on the flow properties of liquid-particle suspensions, and it is most likely responsible for a
lubrication layer in the flow of wood-fibre suspension in straight pipes. In these cases, Eq.
(2.52) is replaced with

W = —%(ﬁf — @) +L. (2.69)

where L is the volumetric lift force density acting on the fluid phase. This force points in the
direction perpendicular to the velocity difference uy — 1. Notice that the lift force density L
is solely due to the inertial effects in the flow, while the corresponding transverse component

of the momentum transfer integral M includes the effect of buoyancy, as well (see Eq. (2.45)).

Now a generic set of equations is introduced that applies to the wide range of flows in porous
medium with possible solid walls (exterior to porous medium) involved. To that end Eq.
(2.69) is substituted for the interaction term W in Eqs. (2.48) and (2.47), and the inertial
terms and the pseudoturbulent term of the solid phase are dropped. The resulting equations

are

oVpr = V(1) — %(ﬁf — ) + ¢prg + L+ V- 75 (2.70)

V(o) = +Lla—a) = i Vo + (1 - ¢)pg — L. (2.71)
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together with the Eqgs. (2.59) and (2.62) for the conservation of mass. Notice that the
pseudoturbulent stress term of the fluid phase has been included in Eq. (2.70). It will be
demonstrated in Sect. 3.4 that this term has a remarkable contribution to the hydrody-
namic lift force acting on the solid particles near a moving wall. If one considers the first
three terms of Eq. (2.70), they are quite similar to the famous equation that was derived
by Brinkman [Bri47] to describe flow through a rigid bed of randomly deposited spherical
particles. Brinkman extended the drag force on a sphere to include the effect of neighbouring
spheres by combining the Stokes equation (Eq. (2.5) without time dependent and nonlinear

terms and without external force) with Darcy’s law:

Vp = u;V>u + =ty (2.72)
K

where the viscosity p; may differ ps. Notice that while Brinkman’s derivation of Eq. (2.72)

is a heuristic one, Eq. (2.70) was derived from basic single-phase flow equations by applying

volume averaging.

To summarize, in this chapter the general multiphase flow equations were derived by volume
averaging the microscopic flow equations of each phase. General principles of constitutive
relations were discussed and the closure relations were reviewed for two cases that have
importance within the scope of this monograph, namely liquid-particle suspension and flow
in porous medium. These results will be utilized while studying the result of the direct
numerical simulations in Chap. 3, and in deriving a multiphase model for the plug flow of

wood fibre suspension in Chap. 6.
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Chapter 3

Hydrodynamic interactions between fluid

and solid particles

3.1 Introduction

In this chapter the hydrodynamic forces acting on stationary cylinders suspended in a shear
flow of Newtonian fluid near a solid wall are studied. The numerical simulations described
here were carried out in order to gain understanding on the dynamics of the lubrication layer

found in the flow wood fibre suspensions in straight pipe.

The first goal of this study is to learn the basic features of hydrodynamic interactions between
the fluid and a single stationary cylinder in a presence of a solid wall. This was achieved by
numerically computing the drag coefficient and the lift coefficient of the cylinder for various
flow conditions, and correlating the calculated coefficients with the relevant dimensionless
parameters that characterize the flow. In order to gain qualitative understanding on the flow
of fibre plug near a wall, a random rigid array of long cylinders suspended in a flow of a

Newtonian fluid between two walls is considered.

3.2 Drag and lift forces acting on a single particle

Hydrodynamic forces acting on solid particles suspended in a flow of a Newtonian fluid have

been studied for a long time. In middle 19’s Stokes studied creeping flow of unbounded fluid

31
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past a rigid sphere and derived the famous formula for the drag force acting on the sphere
|LL87],
Fp = 6mpsav. (3.1)

Here Fp is the drag force, pu is the dynamic viscosity of the fluid, a is the radius of the sphere,
and v is the velocity of the sphere. Since Stokes’ zeroth order approximation Eq. (3.1) the
concept of drag has been discussed by many authors and many higher order corrections to this
formula have been reported [LL87, Lam75]. In the meantime, drag has also been measured in
numerous experiments, and today one can find drag coefficients for various cases in standard
handbooks |[BT83|. From practical point of view, drag on submerged bodies is understood

adequately.

The force acting on an immersed body in the direction that is orthogonal to the flow, the
‘lift force’ (or ’side force’), is not understood at such a comprehensive level. Especially, the
lift force acting on a particle near a wall can have a remarkable effect on closed channel
flows of suspensions, since the migration of particles away from the walls due to such a lift
force can lead to a formation of a pure fluid layer next to the walls. This “lubrication layer”
affects the flow properties of the suspension considerably, and contributes to the so-called
drag reduction found in many suspension flows. A famous example of such a phenomenon is
the flow of blood in small vessels [SS62|. Another example with industrial relevance is the
pipe flow of paper pulp. It has also been reported that the lateral migration of particles may

affect the experimental results from Couette-viscometry [SS62].

The effect of the lift force was already reported by Poiseuille, although the phenomenon
was overlooked or misinterpreted at that time. It was the rigorous experiments deviced
by Segre and Silberberg [SS62| for over a century after Poiseuille’s work that undoubtedly
demonstrated the existence of the lift force. Their experiments showed that spherical particles
in laminar pipe flow migrate to a preferred radial position. This observation induced active
theoretical study of the subject including both analytical considerations using perturbation
theories, and direct numerical simulations (see Refs. [CM71, Lea80, Feu89, FHJ94| for a

comprehensive review of experimental and theoretical work on the subject).

Notice that fluid dynamics text books, usually, cite only the two most famous results, namely
the Saffman force and the Magnus force. These forces can be explained with the pressure
difference due to different flow velocities on the opposite sides of a particle. Saffman derived

the lift force acting on a sphere suspended in an unbounded shear flow |Saf65]. The Saffman
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force scales with the slip velocity between the fluid and the particle and with the square root
of the shear rate of the undisturbed flow field. The Magnus force is the lift force that acts
on a rotating cylinder suspended in a flow, and it scales with the angular velocity of the
cylinder and the slip velocity [Whi94|. Notice however, that there are cases where the lift
force appears much more complicated than the well-known Saffman force or Magnus force.
Especially, the presence of solid walls modifies the lift force considerably|CM94].

Based on the reversibility argument one can show that a spherical particle suspended in a
Stokes flow cannot experience any lift force [CMT71|. The lift force observed experimentally
thus arises due to inertial effects. In some cases one can estimate the magnitude of the lift
force using an iterative procedure where the inertial terms are calculated at each iterative
step using the next lower-order approximation of the flow field. In some specific occasions
however (called ’effectively unbounded cases’), Stokes’ solution can not be used as the ze-
roth order approximation throughout the flow domain. A famous example of such a case is
the two-dimensional flow past a cylinder. Neglecting the inertia of the far field in such a
flow leads in Whitehead’s paradox, where the proper boundary conditions of the first order
approximation can not be satisfied[PP57|. The reason for the discrepancy is that although
Stokes’ solution provides a good approximation to the flow velocity everywhere in the flow
field, the velocity gradients used to calculate the inertial terms in the next order are seri-
ously in error in the far field. One way to avoid Whitehead’s paradox is to use the method
of matched asymptotic expansions [PP57|. In this approach the flow in the viscous region
near the particle is calculated using Stokes’ equation while the flow in the inertial region far
from the particle is calculated using Oseen’s equation. The two solutions are matched in a
narrow overlapping region. Using this technique Saffman [Saf65| derived an expression for
the lift force acting on a sphere that moves and rotates in a linear shear field when the shear
rate is high compared to the velocity difference between the sphere and undisturbed fluid.
Later, McLaughlin [McL91| extended Saffman’s result to allow weaker shear rates. Brether-
ton |Bre62| studied the lift force in a two-dimensional case and derived an expression for the
lift force acting on a circular cylinder suspended in a simple shear flow v = (v, +7y)X + v, §
of unbounded fluid

Huv, + Kuv, \ . Ev, + Fu, \ .
et (B2 e (B

7—1n Rey 7—1n Re7

where R(z) is the real part of complex number z, and the complex constants are £ =
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—2.11i,F = —1 +0.289i, H = 1 + 0.289i, K = —0.513i, and 7 = 0.679 + 0.798i. The

Reynolds number based on the shear rate is

2
Re, = pea
Kt

where p¢ is the density of the fluid and a is the radius of the cylinder. All these effectively
unbounded theories predict a lift force that depends on viscosity and is linearly dependent

on the velocity difference between the particle and undisturbed fluid flow [FHJ94].

Cox and Brenner|CB68| studied the lift force on a particle of arbitrary shape in a wall-
bounded flow. As in most studies of wall-bounded flows, they assumed that the flow is
effectively bounded, i.e.the wall lies within the viscous region of the particle, and that Stokes’
equation alone is sufficient for calculating the lift force to the first order [CH77|. Effectively
bounded theories predict lift force that does not depend on viscosity and is quadratically
dependent on velocity |[FHJ94|. Cox and Hsu |[CH77| applied the theory developed by Cox
and Brenner in two cases: a sphere sedimenting in a stagnant fluid and a sphere moving in a
strong shear field. In the former case the particle was found to be always repelled away from

the walls by a lift force

Fi, = apsvp,Rep I = pfa2v§[ (3.3)
where 18
T
1= 3.4

and a is the radius of the sphere, v, is the velocity difference between the sphere and undis-

turbed fluid flow, and Re, is the corresponding Reynolds number:

PrUpa

Re, =
b fof

According to that result, the lift force does not depend on the distance from the wall, thus
the only equilibrium position of a particle sedimenting in a vertical cylindrical pipe would
be at the axis of the pipe. In the latter case, they found that the lift force depends on the
ratio of the shear rate v to the slip velocity v, [CH77, CM94]:

18t 667 ) 3667
[=—r — 206 (=) + 2252 3.5
32 64 G<a> T 56 e (8:5)

Re,

where [/a is the dimensionless distance from the wall, and Ag = {*
P

= % the ratio of the
p
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Reynolds numbers based on shear and slip:

peya?
Kt

Re, =

With this result, it is possible that the lift force is repulsive near the wall, but becomes
attractive at some distance from the wall. The equilibrium position of a particle moving in
a cylindrical pipe with a shear flow may thus be at some radial distance from the axis of the
pipe. This result is compatible with the experimental observations of Segre and Silberberg.
Vasseur and Cox [VC77| studied a case where a spherical particle is sedimenting in a stagnant
fluid bounded by a wall. They expressed [ in a closed form as an complex integral that
depends on the dimensionless distance from the wall I* = Repl/a = prvpa/ps. In a case

where [* << 1, i.e. particle is close to the wall, they found that
187 11
I=——(1—=(")+... :
5 ( 32(l) + ) (3.6)

For a large distance from the wall they found that

[ 1%”(1*)-2 + 54%(2@—%((%)@*)—5/2 b (3.7)

where K () is the complete elliptic integral of the first kind. Notice that the leading term of
this expression, when substituted in Eq. (3.3), gives a lift force
3

FL = pfa2’U§ X g(l*)_2

_ 3ps”

’ 3.8
3o (38)

that does not depend on sedimentation velocity v,. To obtain the solution for the entire range
of [*, a numerical integration of I must be undertaken. Vasseur and Cox gave the result as
a plot, but it can be also found that I can be approximated with reasonable accuracy with

an expression
187 1
I = . 3.9
32 (I*/15)?+1 (39)

where [ ~ 2.6 is the characteristic length scale of the lift force. For [* >> [§, i.e. case where

the wall lies in the inertial region, the lift force depends on viscosity (I* depends on viscosity).
At the other limit [* << [§, Eq. (3.4) is obtained even though Cox and Hsu used completely
different methods. At the distance [} the lift force is half of this maximum value. Drew [Dre88§]
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extended Saffmann’s work by including the lift force induced by a wall in the inertial region,
and found that such an effect cannot change the total lift force from attraction to repulsion.
For most wall-bounded cases it was assumed that the distance between the sphere and the
wall was large compared to the radius of the sphere and that the sphere can be treated as a
point force or point force doublet acting on the fluid. Leighton and Acrivos [LA85] studied
the case where the sphere was in contact with the wall, and they derived an expression for
the lift force

F, = 9.22ap5v,Re, (3.10)

where the slip velocity is v, = ya and the corresponding Reynolds number Re, = prav,/ps.
Cherukat and McLaughlin [CM94| studied the case where the distance from the wall and
the radius of the sphere may be of comparable magnitude. They ended up with the result

F, = apgv,RepI(l/a, Ag), (3.11)

and the function I was given in the form of tables. For stagnant fluid, their result agrees
with Eq. (3.4) for distances larger than [/a > 6. They also found that by setting Ag = 1.0
the lift approaches that given by Eq. (3.10) as {/a — 1.

The analytical results discussed above are all based on perturbation methods and have quite
a limited range of validity. The Reynolds numbers based on the slip velocity and on the
shear rate were assumed small. Furthermore, in effectively bounded cases it was assumed
that the Reynolds numbers are small compared to the dimensionless inverse distance from
the wall [VC76|. This is a very restrictive condition when the particle is far away from the
wall which, on the other hand, is a very common assumption in these theoretical approaches.
The present author is not aware of any analytical work on wall-bounded flow past a particle

in two-dimensional case.

3.3 Simulations: a single particle

The behaviour of hydrodynamic forces acting on a single particle suspended in a two-
dimensional flow of Newtonian fluid near a rigid wall will now be studied. The forces are
solved with direct numerical simulations in the flow regime where the Reynolds numbers

defined by the cylinder radius and the slip velocity or the shear rate may be of the order of
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Ay ,

wall

Figure 3.1: Infinitely long cylinder suspended in a semi-infinite plane Couette flow of a
Newtonian incompressible fluid near a moving wall.

unity, and analytical solutions are not known. The primary purpose here is to gain qualita-
tive understanding of the behaviour the relevant hydrodynamic forces rather than obtaining
precise numerical results for a specified physical case. The approach is similar to that of Feng
et al. [FHJ94| who studied the flow past a circular cylinder suspended in a Couette flow and
in a plane Poiseuille flow between two parallel walls. In that work, lateral movement and the
final equilibrium position of the particle were considered, whereas the present work addresses
the hydrodynamic forces acting on the particle that is translating with a constant velocity

parallel to the wall.

Let us consider a cylinder of infinite length and radius a suspended in a semi-infinite plane
Couette flow of a Newtonian incompressible fluid near a moving, flat wall (see Fig. 3.1).
The axis of the cylinder is parallel to the wall and perpendicular to the direction of flow.
Hence, the flow may be treated as two-dimensional in a plane perpendicular to the axis of

the cylinder. The cylinder is held at a fixed position. Undisturbed fluid velocity is given by
vi= (v, +7(y—1)é&, (3.12)

where v, is the undisturbed fluid velocity at the centre of the cylinder, v is the shear rate,
and [ is the distance between the axis of the cylinder and the wall. Here only positive values

of v, and v are considered.

In what follows the longitudinal (drag) and lateral (lift) forces applied on the cylinder by the
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fluid per unit length of the cylinder are denoted by Fp and Fy, respectively. The cylinder
radius a is chosen as the characteristic length scale, and the slip velocity v, as the character-
istic velocity scale of the problem. The drag and lift coefficients Cp and Cf, of the cylinder

are defined by
F,

=1 =D,L 3.13
T 2a % ppot/2 4 T (3.13)

where pr is the density of the fluid. The other relevant nondimensional parameters of the
problem can be chosen to be the inverse distance of the cylinder from the wall, and the two

Reynolds numbers based on the slip velocity and on the shear rate. These parameters are

defined by
; Rep, = —; Re, = —. (3.14)

_a
"

Here v¢ is the kinematic viscosity.

The dimensionless shear rate is defined by the ratio of the two Reynolds numbers as

Re, ~a

=—=— 3.15
“ Re, v ( )

Dimensional analysis results in the following relations between the coefficients:
Cy = Cy(k,Rey,Re,), ¢=D,L. (3.16)

In this work the scaling laws, Eqs. (3.16), are studied using numerical simulations and utiliz-
ing previous analytical results when appropriate. The simulations were done in the rest frame
of the particle using two commercial flow solvers (CFX |[CFX94| and FLUENT |FLU98|) that
are based on finite volume method. The length and the width of the simulation domain were
75a and 40a, respectively. The cylinder was positioned near the lower wall approximately
25a downstream from the inlet. Both walls were made to move with constant (but different)
velocities. The velocity field given by Eq. (3.12) was specified at the inlet and the flow was
assumed to be fully developed at the outlet, i.e.dynamic quantities do not depend on z.
No-slip condition was applied on all solid surfaces. The dimensionless inverse distance x was
varied from 0.111 to 0.84, the particle Reynolds number Re, from 0.0 to 3.3, and the shear
Reynolds number Re, from 0.0 to 0.25. The stationary flow field was found for all the 420

combinations of 14 values of Re,, 6 values of Re,, and 5 values of x. In each case the z and
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y components (i.e., the drag and lift forces, respectively) of the total force

F = }ia-dS (3.17)

acting on the unit length of the cylinder were found. Here S is the surface per unit length

of the cylinder and the total stress tensor of the fluid is given by
o=—pl+p (Vv+(Vv)") (3.18)

where p is the pressure, y¢ is the dynamic viscosity and v is the velocity of the fluid.

In Fig. 3.2 are shown all the calculated values of drag and lift coefficients as a function of the
particle Reynolds number Re, and for various values of the inverse distance x and the shear
Reynolds number Re, (values not indicated in the figure). Also shown is the Bretherton’s
analytical result (a cylinder in an infinite fluid) for the drag and lift coefficients and for a
fixed value of Re, (see Egs. (3.19) and (3.20) below). From Fig. 3.2 it is evident that the
data scatter is quite large and that all the three dimensionless parameters Rep, Re, and &
that appear in Eq. (3.16) indeed are essential in describing the behaviour of the drag and
lift coefficients. The dependence on the particle Reynolds number of the drag coefficient,
especially at small values of &, is roughly of the form 1/Re,, which is in accordance with
the Bretherton’s result. The drag coefficient increases strongly with increasing x, while its
dependence on Re, is relatively weak in this region of parameter values. At small values
of 1/Re,, the lift coefficient is positive corresponding to a repulsive lift force, and increases
strongly with increasing . In a certain region of parameter values, the lift coefficient is
negative corresponding to an attractive force towards the wall (see insert in Fig. 3.2 b). The

dependence on Re, of the lift coefficient is always relatively strong.

The scaling law for the drag and lift coefficients given by the present numerical analysis
is now studied. An appropriate analytic expressions is sought for that can be fitted to the
computed data with a good confidence level. Here, former analytical results by Bretherton
for unbounded flow are utilized [Bre62|. In the present case Bretherton’s result can be written

in an explicit form as

dmr 0.9096 — 1 InRe,
CD,B - R 1 2 ’
ep (0.679 — L InRe, )2 4 0.637

oA 1.684
“® 7 "Re, (0.679 — S InRe,)? + 0.637°

(3.19)

(3.20)
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Figure 3.2: a) drag force coefficient Cp and b) lift force coefficient Cf, vs slip Reynolds number
Re,,. Discrete points are the numerical results and the solid lines are the corresponding results
derived by Bretherton, Egs. (3.19) and (3.20), with Re, = 0.1.
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The behaviour of the coefficients Cy 5, ¢ = D,L are also shown in Fig. 3.2 in the case
that Re, = 0.1. Notice that Bretherton’s results are valid only for a limited range of the
two Reynolds numbers. In particular, Bretherton’s drag and lift coefficients both vanish as

Re, — 0.

It appears convenient to seek for a correlation separately for results with Re, > 0 (and
Ag > 0), and for results where Re, = Ag = 0. The latter case corresponds to a particle
sedimenting in a quiescent fluid where no analytical results for two-dimensional flow seem
to be available. For finite values of Re, relatively good data collapse is achieved by simply
scaling the numerical data by the corresponding Bretherton’s result. The ratio C,/|C, |
depends primarily on Ag and &, and only weakly on Re,. That residual dependence is well
approximated by a simple power law o Re;q, where ep =~ —0.15 and ¢, = 0.30. For the
results with Re, # 0 the scaled force coefficients Pp and P, are thus defined by

C
C qB‘ = Py(Ag, x)Re, ¢=D,L. (3.21)

According to the proposed scaling law given by Eq. (3.21), the scaled drag and lift coefficients
Pp and P, depend on only two variables instead of the three variables that appear in the
original force coefficients, Egs. (3.16). The calculated values of Pp and Py, for various values
of A¢ (# 0) and k are shown in Fig. 3.3. It is evident from Fig. 3.3 that the calculated
scaled coefficients Pp and F;, indeed collapse on a set of smooth curves as a function of
the dimensionless shear rate Ag, each curve corresponding to a distinct value of the inverse
distance k. The factorization given in Eqgs. (3.21) thus seems justified. For the results where
k is small and Ag is large, the data scatter is, however, quite large especially for Pp. In this
region the cylinder is far away from the nearest wall, the slip velocity is small and the shear
is strong. In this condition the calculated drag force is very small and the drag coefficient
is computed as a ratio of two small numbers and may thus involve large absolute errors
due to numerical fluctuations. The finite total width of the channel, that was ignored in the

dimensional analysis above, may also affect the numerical results in this region.
For values of Ag > 0.1 the numerical results can be fitted using the following functional

forms

PD(Ag, li) = [CLOlli/(l — Ii) + agpz + Clogli] (322)
+lank/(1 — k) + a9k + ayzx?]Ag.
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IIIIISI

Figure 3.3: Scaled a) drag force Pp and b) lift force P, vs dimensionless shear rate Ag for
various values of inverse dimensionless distance . Discrete points are the numerical results
and the solid lines are the corresponding fitted functions given by Eqs. (3.22) and (3.23).
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by
PL(Ag, k) =bo+ bt (3.23)
—(1 4 r)(1 +1g? Ag)[bslg Ag + bylg® Ag]. (3.24)

The values of the unknown coefficients that appear in Eqgs. (3.21), (3.22) and (3.23) were
found by using a standard least-squares fitting method, and are given in Table 3.1. The
fitted functions, also shown in Fig. 3.3, reproduce the numerical results quite accurately in
both cases, except for small values of Ag where the Bretherton’s result used in data scaling

becomes inappropriate.

It is noticed that the functional forms of Pp and P, given by Egs. (3.22) and (3.23) have no
physical justification other than giving a good fit to the numerical data in a quite broad range
of parameter values. They do, however, exhibit the following natural limiting behaviour: for
large distances (k — 0), the scaled drag force approaches a constant value agy ~ 0.55 (see
Eq. (3.22) and Table 3.1) for all values of the dimensionless shear rate. The fitted ratio
Cp/|Cp g, as given by Eq. (3.21) is then close to unity for all values of Re, used in the
present calculation (excluding the limit Re, — 0, which is discussed below). In this limit,
the fitted functions thus reproduce Bretherton’s analytical result for drag quite closely. The
ratio C1,/|Cy g| is also of the order of unity in the region where Bretherton’s result is assumed
to be valid, namely when Re, and Re,, are both small and A¢ is close to one. The deviation
from the Bretherton’s result of the present results is, however, larger for the lift than for the
drag. A plausible reason for this is that the presence of walls has a stronger relative influence
on lift force than on drag force. For all finite values of Re, the fitted values of the two forces,
as given by Eq. (3.13), both vanish when Re, — 0 (Ag — 00). Furthermore, for finite values
of Re, the drag force diverges as k — 1, i.e., as the width of the gap between the cylinder
and the wall approaches zero. This reflects the divergence of the shear rate in the narrow
gap as the cylinder is brought into contact with the wall. Irrespective of the value of k, the
lift force is repulsive when the shear rate Ag is low enough or high enough, but is attractive

at a region around Ag = 1. Increasing x increases lift force thus making it more repulsive.

Next, the results where Re, = Ag = 0 are studied, i.e., the case corresponding to a cylinder
sedimenting near a wall in a quiescent fluid. The calculated values of the drag and lift
coefficient for this case are shown in Figs. 3.4 a) and b), respectively. Also shown in Fig. 3.4
a) is the standard experimental drag coefficient for a long cylinder in an infinite fluid and in
the absence of shear (notice, that the particle Reynold’s number is defined here in terms of

the radius of the particle).
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Figure 3.4: Drag force coefficient Cp (a) and lift force coefficient Cp, (b) vs slip Reynolds
number Re,, for vanishing shear rate, i.e. Re, = 0. Discrete points are the numerical results
and the solid lines are the fits given by (3.27) and (3.26). Dashed line gives the experimental
values for the drag force with k = 0 and Re, = 0 (data reproduced from Fig. 7.16 a) of Ref.
[Whi94]).
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When the distance from the wall is small (& is close to unity), the calculated value of the drag
coefficient is roughly of an order of magnitude larger than the experimental drag coefficient,
but approaches the experimental value as the distance from the wall increases. With the
largest distances used in the calculation, the qualitative behaviour of the drag coefficient
is similar to the experimental result. The maximum deviation between the computed value
and the experimental value is then less than a factor of two. This deviation remains even in
the case of vanishing shear and arises most probably due to the closed channel used in the
calculation since the effect of walls decreases very slowly in this two-dimensional flow. (This

phenomenon is related to Whitehead’s paradox.)

The lift coefficient for a sedimenting cylinder is always positive indicating repulsive lift force.
At high values of Re, the lift coefficient depends strongly on the distance from the wall
increasing with x. At small values of Re,, Cf, becomes nearly independent on the distance
from the wall. This result, which may seem somewhat surprising is, in fact, in accordance

with former analytical results for a sphere sedimenting near a flat wall [CM94].

The behaviour of the calculated drag and lift coefficients at Re, = 0 can be quite accurately

fitted using the following simple functions.

Cp(Rep, k) = % [A(/f) +B Reg] (3.25)
log CL(Rep, k) = ag [1 — Rep(—log K,)m], (3.26)

where

A(k) = 6.1422.2x*7

B =19 (3.27)
n = 1.0

m = 1.7

ag = 0.50.

These functions are also shown in Figs. 3.4 a) and b). The limiting behaviour of the fitted drag
coefficient as k — 0 is close to the experimental result for a cylinder in an infinite fluid. Notice
that for values of Re, between 0.05 and 100, the experimental result for the drag coefficient

can be very accurately fitted with an equation of the form (3.25) with constant values
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Table 3.1: Fitted coefficients of drag and lift forces (see Egs. (3.22) and (3.23))

a;p = 0.140 192 = —0.38 a13 = 1.01
bp = —0.0050 | by = 0.067 by = —0.001
bs = —0.031 | by = —0.279

A~ 3.0, B~ 3.0and n~ 0.8. For small values of Re,, the fitted lift coefficient approaches
a constant value of approximately 3.5. This is to be compared with the corresponding value
achieved by Cherukat and McLaughlin for a sphere in a three-dimensional flow, namely

CL, ~ 1.1 (defined in a usual manner using the cross-sectional area of the sphere) [CM94|.

The primary variables that characterize drag and lift forces on the particle are the slip
velocity, the shear rate and the distance from the wall (made dimensionless in a usual manner
using the radius of the particle and the kinematic viscosity of the fluid). Both forces vanish
with vanishing slip velocity and are strongly modified by the vicinity of the wall. As the
distance from the moving wall approaches zero, the drag force diverges while the lift force
approaches a constant positive (repulsive) value. The drag force depends only weakly on shear
while the lift force is very sensitive to the shear rate. Depending on the flow parameters, the
lift force may be either repulsion from the wall, or attraction towards the wall. That feature
is of particular interest concerning the dynamics of the particle-free wall layer in the channel

flow of liquid-particle suspensions.



3.4. SIMULATIONS: A MATRIX OF STATIONARY CYLINDERS 47

3.4 Simulations: a matrix of stationary cylinders

In order to gain qualitative understanding on the flow of fibre plug near a wall a random rigid
array of cylinders suspended in a flow of a Newtonian fluid between two walls is considered.
The system consists of two parts, namely a suspension layer of width w and a fluid layer of
width A (see Fig. 3.5). The upper wall adjacent to the pure fluid layer moves with velocity
Uy in the direction of z-axis, and the lower wall adjacent to the suspension is stationary. The
set-up thus resembles the flow of a fibre plug in a direction of negative z-axis viewed in the

rest frame of the plug and considering only the boundary layer near the wall.

Moving wall Uy

e

! e
g7 1/ 1
3!\~ I‘

VAN S

Stationary wall

Figure 3.5: Random rigid particle matrix made of cylinders suspended in a shear flow of a
Newtonian fluid.

Two approaches are used: Analytic solution in terms of averaged flow quantities and direct
numerical simulations with the lattice-Boltzmann method. In the lattice-Boltzmann method,
viscous flow of a fluid is modeled by solving a special version of the Boltzmann equation that
has been discretized in space, time and momentum |[RSM92, QdL92|. In the continuum limit

the governing continuity and Navier-Stokes equations are recovered from this discretized
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equation. In practice, motion of fictitious fluid particles is simulated, and special particle-
particle collision models are applied in a way that automatically generates viscous flow
behaviour. The lattice-Boltzmann method appears to be particularly useful for complex
fluids and for solving flow in complex and irregular geometries such as the present one
[Lad94, FR95|.

The simulations were carried out separately in a two-dimensional case where the cylinders
are parallel and the flow is perpendicular to the cylinders, and in a three-dimensional case

with random orientation of the cylinders.

3.4.1 Analytic solution of the averaged flow velocity

The detailed microscopic flow field in a random system shown in Fig. 3.5 is complicated. It
would be quite difficult to analytically solve forces acting on individual particles. Instead,
a multiphase flow approach in terms of averaged quantities, e.g. the average drag force
acting on the cylinders at a given distance from the moving wall, will be considered. The
analytic results will then be compared with the numerical results achieved by first solving
the microscopic flow for an ensemble of macroscopically identical systems using the lattice-

Boltzmann method, and then computing the appropriate averaged quantities.

Now the average fluid velocity is derived by considering the suspension as a system of two
interacting continua, namely the fluid phase and the solid phase. The governing equation
for the average fluid velocity is derived by applying volume averaging to the microscopic
equations for the fluid flow through the particle matrix. To that end, the equations for a
flow of liquid in a porous medium that were derived in Sect. 2.3.2 are applied to the current
case. The conservation of mass is described by Egs. (2.59) and (2.60), and the conservation
of momentum of the solid phase is given by Eq. (2.62). Here the fluid flow is a shear flow
driven by the moving wall, thereby one has to retain the viscous shear stress of the fluid
phase, Eq. (2.68), in the formulation and use Eq. (2.70) for the conservation of momentum

of the fluid phase. In the present case gravity is neglected.

Here a stationary flow is assumed, hence all the partial derivatives with respect to time
vanish. Furthermore, a fully developed flow is considered, i.e. the averaged quantities of the
suspension do not depend on the position in the z-direction (notice that this applies also to
the hydrodynamic pressure, since the flow is not driven by a pressure gradient). Thus the

average fluid velocity is parallel to the walls everywhere, i.e. Gy = u¢(y)é,.
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The solid matrix is stationary, iy = 0. Thus, the averaged equation for the conservation of
mass of the solid phase, Eq. (2.60), is satisfied trivially. Notice that the equation for the
conservation of momentum of the solid phase, Eq. (2.70), is not needed for the solution.
This equation can be used to calculate the mechanical stress (oy) of the solid phase after the
solution for the fluid flow field has been found.

With the assumptions discussed above, the equation for the conservation of the longitudinal

momentum of the fluid phase can be written in the form

d2Uf d¢ de

—— —D,=0, 3.28
Dp a2 + pu 4y dy (3.28)

where p¢ is the dynamic viscosity of the fluid, y is the distance to the moving wall, ¢ is the
porosity of the suspension, and Ds = W, , is the volumetric density of the hydrodynamic
drag force acting on the solid matrix. Inside the fluid layer this force vanishes, and inside

the suspension layer it is given according to Darcy’s law:

0, 0<y<A
D, = 3.29
{ Bug, 0<y> A (3.29)

where k is the permeability of the solid matrix.

The average drag force per unit length of a cylinder, Fp, can be calculated by multiplying
the force density Dy by the average cross-sectional area occupied by a single cylinder, and

the results is
T pra’

(1—9¢)k

where a is the radius of the cylinder, and uy is the average fluid velocity at the same transverse

FD == (N (330)

position as the cylinder.

Let us assume that the porosity is constant ¢ = ¢, inside the suspension layer (y > \).

Equation (3.28) then reduces to the form

dQUf

—— =0, 0<y<A\ 3.31
T (3.31)
dQU/f 1

— ——u; =0, A<y<A . 3.32

The no-slip boundary condition is applied at both walls, i.e. u¢(0) = v,, and ug(A + w) = 0.
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The porosity has a discontinuous jump at the boundary y = A, and the general solutions to
Eqgs. (3.31) and (3.32) have to be matched at the boundary so that the fluid velocity and
the total shear stress are continuous. Notice that inside the suspension layer both phases
contribute to the total shear stress, and details of this process depend on the microscopic
flow field. It is expected, however, that the solid shear stress is relatively small due to low
solid concentration. Thus an approximation is made by imposing the continuity of the fluid

shear stress at the boundary y = A:

lim <Tf> = lim <7’f>7 (333)

y—A- y—A4

where the fluid shear stress tensor (7¢) is given by Eq. (2.68). In the current case this condition

(%) - ((3:1—1;) . (3.34)

where (d/dy)- and (d/dy)- denote the one-sided derivatives from positive and negative

simplifies to the form

side, respectively. Equations (3.31) and (3.32) are solved with the boundary conditions and
the matching conditions discussed above, and the solution for the fluid velocity (in the z-

direction) is found as

us(y) = —%vw + (1 + %) wo, 0<y <A (3.35)
urly) = SR =) mep(02w Z = M) oy o)y,

1 — exp(2wa)
where a = (¢ok) /2, and the velocity at the plug surface is given by

1 4 exp(2aw) ) -

1 — exp(2aw) (3:36)

Uy = Ugly=r = Uy (1 — o\

This result will be compared with the numerical results in the next two sections.

3.4.2 Lattice-Boltzmann solution: unidirectional cylinders

The hydrodynamic interactions in a flow perpendicular to a rigid matrix of parallel cylinders
were studied by solving the fluid flow between the suspended particles in a number of systems
similar to that shown in Fig. 3.6 using the lattice-Boltzmann (LB) method [QdL92, RSM92,
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Figure 3.6: Random rigid particle matrix made of parallel cylinders suspended in a shear
flow of a Newtonian fluid between parallel walls.

Sko93|. For each macroscopic configuration, i.e. wall velocity vy, bulk porosity ¢ and fluid
gap width A fixed, an ensemble of 80 — 100 random systems was used. The simulations were

done here using a particular version of the method, namely the 9-link lattice-Bhatnagar-
Gross-Krook (LBGK) model [Sko93].

The simulations were done using cylinders of radius a = 11.5 (in lattice units). Notice however
that due to the discreteness of the model the hydrodynamic radius a; of the obstacles differs
slightly from that value of a. The proper value of a; was defined by solving the fluid flow
through an infinite (periodic) array of cylinders arranged in a square lattice. The simulated
permeability at the porosity ¢ = 0.95 was found to be k& = 540 (in lattice units). The
analytical solution of the permeability is known and can be given in terms of the actual
radius of the cylinders [JJ86]:

k 1

— = — (—In(¢s) — 1.476 + 2¢, — 1.774¢2 + O(¢?)) , (3.37)

a;  8¢s
where ¢ = 1 — ¢ is the volume fraction of the solid phase. Substituting the simulated values
¢ = 0.95 and k = 540 in Eq. (3.37), and solving for the hydrodynamic radius leads to a
value a, = 11.56. This indicates that the discretization used here was dense enough and the

obstacles appear nearly as smooth cylinders.

Since the grid used by the present method is regular, the discretization of the gap between

the particle and the wall will be rough when particles are placed very close to the wall. The
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Figure 3.7: a) The drag force coefficient Cp for a cylinder near a moving wall as a function
of of dimensionless gap length \/a as given by the FV -simulation (solid line) and the LB
-simulation (open markers). b) The relative difference Rp between the drag forces given by
the two methods as a function of dimensionless gap length \/a.

accuracy of our LB simulations were checked in this respect by computing the lift and drag
forces acting on a single particle that was placed close to a moving wall, and compared the
results with those given by a standard finite volume methods with greatly densified grid in
the gap region. The size of the calculation area was L, x L, = 98 x 140 lattice spacings.
Periodic boundary conditions were applied in the x-direction. The upper wall was made to
move with velocity V,, = 0.05 (expressed in lattice units) using the method presented in
Ref. [Lad94]. The gap between the particle and the moving wall was 1, 2, 4, 8 and 16 lattice

spacings. The lower wall was stationary.

The drag force coefficients Cp given by the FV -method and the LB -method are shown in
Fig. 3.7 a) as a function of the dimensionless gap distance A/a. As shown by Fig. 3.7 a),
the calculated drag force increases rapidly with decreasing gap width. The relative difference
Rp = (Fprv — Fpis)/Fppv, where Fpp py and Fp g are the drag forces given by FV and
LB methods, respectively, is given in Fig. 3.7 b). The difference between the two results is
very small everywhere. Remarkably, Rp is less than 1% even in the case where the gap width

is only one lattice spacing.

The lift force coefficients Cp, given by the two methods are shown in Fig. 3.8 a.) The lift

force is seen to be repulsive (positive) at all distances in this case and it increases rapidly
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Figure 3.8: a) The lift force coefficient Cf, for a cylinder near a moving wall as a function of
dimensionless gap length A/a given by the FV simulations (solid line) and LB simulations
(open markers). Positive values indicate repulsive force. b) The relative difference Ry, between
the lift forces given by the FV and LB method as a function of dimensionless gap length
A a.

with decreasing gap width. As can be seen in Fig. 3.8 b), the relative deviation of the two
methods is now higher than in the case of the drag force. However, even in the worst case
it remains below 6%. The absolute value of the deviation is of the same order of magnitude
in both cases. Based on these results it is concluded that the results given by the lattice-
Boltzmann approach for the drag and lift forces acting on particles moving close to a wall

are in accordance with the results given by the conventional finite volume method used here.

The actual simulations of hydrodynamic forces acting on the random rigid array of suspended
particles were done in lattices of 300 330 x 780 lattice spacings depending on the gap width
A (see Fig. (3.6)). Two arbitrary values for the porosity were chosen to study the effect
on the hydrodynamic forces of the porosity. The simulations were done at bulk porosities
¢o = 0.88 and ¢y = 0.94 (corresponding to systems of 60 and 30 particles, respectively).
With ¢g = 0.94 two different wall velocities v,, were used, namely v,, = 0.025 and v,, = 0.05
(in lattice units). Periodic boundary conditions were applied in the z-direction. The system
was let to saturate for 20000 time steps. This resulted in the maximum relative error of

approximately 1% for both the lift and the drag forces.
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Figure 3.9: a) The dimensionless drag force D, acting on a cylinder near a moving wall vs.
dimensionless distance y/a for porosity ¢y = 0.88 and gap width A = 4. The numerical and
analytical results (see Eq. (3.30)) are given by open symbols and solid line, respectively. b)
The dimensionless velocity v, vs. dimensionless distance y/a. The porosity is ¢g = 0.90 and
the gap width is A = 4. The numerical and analytical results (see Eq. (3.35)) are given by
open symbols and solid line, respectively.

Next the dimensionless averaged drag force acting on a cylinder defined by

Fp

D, =
47TMwa

(3.38)

is considered. Combining this equation with Eq. (3.30) one gets the dimensionless drag force

as given by Darcy’s law
Uy

De=ta-or

(3.39)

where v, = ug/vy, is the dimensionless flow velocity and K = k:/a2 is the dimensionless
permeability. The dimensionless drag force D, as a function of the dimensionless distance
y/a from the moving wall is shown in Figs. 3.9 a) and 3.10 a) for porosities ¢y = 0.88 and
oo = 0.94, respectively. The gap width is A = 4 in both cases shown. The dimensionless
velocity v, as a function of the dimensionless distance is shown in Figs. 3.9 b) and 3.10
b). The dimensionless permeabilities for the given porous media are calculated using the
correlation derived by Kuwabara, Eq. (2.55), and they are K = 1.57 and K = 3.38 for
porosities ¢ = 0.88 and ¢ = 0.94, respectively.

The deviation of the results given by Darcy’s law from the numerical results is quite large
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Figure 3.10: Same as Fig. 3.9 but for higher porosity ¢y = 0.94

especially for the lower value of porosity. For the outermost particles the relative difference
between the two results is approximately 50% for both porosities. The reason for this devia-
tion can be found by considering the single particle results shown in Fig. 3.2 a). Keeping the
local flow conditions (Reynolds numbers) unchanged and decreasing the distance between
the particle and the wall (increasing k) increases the drag force. Below, it will be found out
that the same is true also for the average drag force acting on an array of particles. This
increase of drag force should thus reflect itself as a deviation from the usual Darcy’s law near

the walls.

The calculated average lift force Fy, per particle as a function of the dimensionless distance
y/a from the moving wall for a fixed gap width A/a = 0.35, is shown in Figs. 3.11 a) and b)
for the bulk porosities ¢g = 0.94 and ¢g = 0.88, respectively. The wall velocity is vy, = 0.05

in the both cases shown.

The lift force F, appears to be strongly repulsive close to the wall, but changes into weak
attraction at y/a ~ 2 — 3. Still further away from the wall the lift force decays rapidly as
the fluid velocity approaches zero. In this region the lift force may even oscillate between
attraction and repulsion. The attractive region becomes narrower and moves closer to the
wall as the porosity is lowered, which correlates with the steepening of the velocity profile
with decreasing porosity (see Figs. 3.9 b)) and 3.10 b)). The absolute statistical errors in the
simulated drag and lift force are of the same magnitude, but since the values of the lift force

are an order of magnitude smaller than the values of the drag force, the relative errors are
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Figure 3.11: The numerical results for lift force Fy, (in lattice units) vs. dimensionless distance
y/a for fluid gap width A = 4 and wall velocity v, = 0.05, for porosity ¢g = 0.94 (a) and
¢o = 0.88 (b).

much higher for the lift force.

Further calculations with increasing gap width show that the behaviour of the lift force Fy,
remains similar to that shown in Fig. 3.11 b) irrespective of the gap width, except that
the repulsive peak is truncated as the gap width increases. This phenomenon also explains
the decrease of the integrated lift force with increasing gap width and the negative values

achieved at relatively wide gap widths.

In what follows, the total drag and lift forces acting on the particle matrix are studied.
The total drag force acting on the cylinders, as given by Darcy’s law, can be calculated by

integrating Eq. (3.29) over the system,

Atw L Mf Atw
Y = Lw/ Ddy=—= / ug dy, (3.40)
0 A

where L, is the size of the system in the x-direction. The total drag and lift forces are given
in Fig. 3.12 a) and b) as a functions of the dimensionless fluid gap width A/a. As shown
in Fig. 3.12 a), the drag force is highest when the gap width is small (Fig. 3.12 a), and it
decreases monotonically with increasing gap width. This behaviour is due to the decreasing
average velocity difference between the particles and the fluid as the gap width is increased.
The corresponding results obtained using Darcy’s law deviate from the numerical results

especially at small gap widths. As expected, the deviation decreases with increasing gap
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Figure 3.12: a) Total drag force X Fp and b) total lift force X Fj, acting on the particle
matrix as a function of the dimensionless fluid gap width \/a. The forces are shown in
lattice units. Open markers are the simulation results and the lines are given by Eq. (3.40).
Set (1) is for ¢ = 0.94, v, = 0.05, set (2) is for ¢9 = 0.94, v, = 0.025, and set (3) is for
b0 = 0.88, v, = 0.05.

width as the effect of the walls gradually decays.

According to the results shown in Fig. 3.12 b), the total lift force is repulsive (positive)
when the gap width A is much smaller than the particle radius a and becomes attractive
as A increases. Consequently, the total lift force is close to zero when A is of the order of
the particle radius a. An analogous condition might be prevalent in the plug flow regime of
dense fibre suspension in the presence of a drag reducing lubrication layer. Notice, however,
that in the fibre suspension there are many different length scales that affect hydrodynamic
forces. The relevant size scale corresponding to the radius a used in these simulations may
be, e.g., the average floc size or the surface roughness of the fibre plug rather than the fibre

radius.

For the porosities used in this study, the ratio of the Reynolds numbers Ag is always near
unity, and the corresponding single-particle lift force is attractive (see Fig. 3.2 b)) even close
to the wall, where the lift force on the array is strongly repulsive. This is true irrespective of
whether the shear rate used in applying the single-particle result is calculated as the local
shear rate of the computed velocity field inside the particle array or as the global shear rate of
the linear velocity profile between the wall velocity and the slip velocity. Thus the simulated

averaged lift force on the particle array can not be reproduced by using the single-particle
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result. This is most likely due to complex many-particle interactions that affect the local

flow field and the hydrodynamic stress on particle surfaces.

3.4.3 Lattice-Boltzmann solution: random orientation of cylinders

The study is extended towards more realistic systems by considering the hydrodynamic
interactions in a flow perpendicular to a rigid matrix of randomly oriented cylinders. The
fluid flow between the cylinders in a number of systems similar to that shown in Fig. 3.5
is solved using the lattice-Boltzmann method. The simulations were carried out using the
19-link lattice-Bhatnagar-Gross-Krook model [RSM92].

The simulations were carried out at the bulk porosity ¢y = 0.95 and with the wall velocity
v, = 0.0821 (lattice units). Notice that the bulk porosities used in Chap. 3.4.2 were 0.88 and
0.94. The small change in porosity from a value 0.94 to a value 0.95 is due to a difference in
the generation of simulation geometry that was discovered only afterwards. Three different
gap widths were used, namely A = 1, A = 4, and A\ = 8 (lattice units). For each fluid gap
width an ensemble of 13 — 18 random systems was simulated. Periodic boundary conditions
were applied in the x and z-directions. The simulated flow field was saturated at least 15000

time steps.

The simulations were done in lattices of 800 x (102-109) x 780 lattice spacings depending on
the gap with. The cylinders used in the simulations had the radius of 3.5 and the length of 70
lattice spacings. They were placed in random positions with random orientations by allowing
overlapping with each other. The random positions for the centres of fibres were chosen inside
the suspensions layer y > A, and the fibre segments that fell out of the suspension layer were

cropped.

The averaged volumetric drag force density D, acting on the cylinder matrix is shown in
Figs. 3.13 3.15 a) as a function of the dimensionless distance y/a from the moving wall.
The simulation results are shown as open markers, while the curves are given by Eq. (3.29).
The dimensionless flow velocity v, = v/v,, is shown in Figs. 3.13- 3.15 b) as a function of
the dimensionless distance from the moving wall. The simulation results are shown as open
markers, while the curves are given by Eq. (3.28). The permeability correlations used here
were Eq. (2.55), Eq. (2.56), and Eq. (2.58) for curves (1), (2), and (3), respectively.

It is immediately evident from the velocity graphs, that the permeability correlation Eq.



3.4. SIMULATIONS: A MATRIX OF STATIONARY CYLINDERS

2,51

x10"

29

a)

o LB ||

W
— @

O

0.9

07} 3
0.6

=0.5F

0.8

b)

O LB
---@3)H
—
e (l) H

0.4
0.31

0.5F 0.2

0.1f R

15 0 5 10 15
yla

Figure 3.13: Results for a) the averaged drag force density acting on the solid matrix, D; ,,
and b) the dimensionless velocity v, (right) vs. the dimensionless distance y/a for the fluid
gap with A = 1. Open symbols are the numerical results, and curves are given by Eq. (3.29)
for the drag force and by Eq. (3.28) for the velocity. Permeability correlations used here are
Eq. (2.55) for curves (1), Eq. (2.56) for curves (2), and Eq. (2.58) for curves (3). The forces
are shown in lattice units.

(2.56) reproduces the simulated velocity profile with high accuracy. Equation (2.55) un-
derestimates the permeability (overestimates flow resistance) thereby predicting too steep
velocity profile, while Eq. (2.58) does the opposite. The same deviations can be seen in the
graphs for the local drag force, as well. For the best permeability correlation used in this
study, Eq. (2.56), the relative difference between the simulated and analytical drag force
densities at the surface of the cylinder matrix, y = X is approximately 50%, 40%, and 20%
for the gap widths A =1, 4, and 8, respectively. The reason for this deviation is most likely

the same wall effect that was discussed in the case of unidirectional cylinders already.

In order to gain some qualitative understanding of this behaviour of local lift force, the
average volumetric lift force density acting on the solid matrix was calculated from the
simulation results. The lift force may be calculated explicitly from the particle distributions
of the LB method during simulations or inferred afterwards from the simulated flow field. To
that end two quantities are considered, namely the momentum transfer integral Mg defined
by Eq. (2.41,) and the lift force density Ly = —L where L is defined by Eqgs. (2.45) and
(2.69). Combining Eqs. (2.45), (2.69) and (2.70), one gets the following expressions for lift
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Figure 3.14: Same as Fig. 3.13 but for gap width A = 4.
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Figure 3.15: Same as Fig. 3.13 but for gap width \ = 8.

force density acting on the solid matrix
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where the pseudoturbulent stress is defined in terms of velocity fluctuations as

Toyy =

—(pr (Bury)?).

15

(3.43)

Notice that the lift force density Ly arises solely due to inertial effects in the fluid flow, while
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Figure 3.16: The average volumetric lift force density M, vs. dimensionless distance y/a for
gap width A = 4. In the insert the vertical axis is magnified to reveal the fluctuations. The
force density is given in lattice units.

M, includes the effect of hydrostatic buoyancy as well (see Eq. (2.45)). The calculated
averaged lift force density Mj , is shown as a function of the dimensionless distance y/a from
the moving wall in Fig. 3.16 for gap with A = 4. There is a strong positive (negative) lift
force density at the surface of the cylinder matrix near the moving (stationary) wall that
repels the cylinders away from the wall. Between these two peaks, the average volumetric lift
force density fluctuates with zero mean value. One cannot find the same kind of behaviour
of the lift force as in the case of unidirectional cylinders. Besides, it may appear odd at the
first sight that there is a strong lift force at the matrix surface next to the stationary wall.
The explanation for this behaviour can be found by looking Eq. (3.42), where the interesting
term is the one containing the derivative of the local porosity, ¢.e.the buoyancy term. This
pressure driven term contributes to the total hydrodynamic force in the regions of local
porosity changes even in a case of constant average pressure. The local average porosity and
its derivative were calculated, and the results were plotted as a function of the dimensionless
distance from the moving wall y/a for gap width A = 4. The results are shown in Fig.
3.17. Comparing the graphs in Figs. 3.16 and 3.17, one may immediately conclude that the
dominant part of the lift force shown in Fig. 3.16 is due to step in the porosity at the surfaces

of the cylinder matrix, and the porosity fluctuations inside the matrix. The fluctuations in
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the porosity are due to limited number of systems used in ensemble averaging, and could be
made arbitrary small by increasing the number of simulated systems. The steps in porosity at
the surfaces of the solid matrix, and the corresponding peaks at the lift force, will, however,

stay intact irrespective of the size of the ensemble used in averaging.
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Figure 3.17: The porosity ¢ (left) and the derivative of the porosity d¢/dy as a function of
the dimensionless distance y/a for gap width A\ = 4.

The average volumetric lift force density was calculated from the simulated particle distribu-
tions of the LB method by subtracting the effect of the average pressure. Thus the gradients
in the local porosity do not contribute to the result, and one may expect the calculated lift
force to equal Lg. The calculated forces are shown in Figs. 3.18-3.20 as open symbols. The
lift force density Lg defined by Eq. (3.41) was also calculated. The results are shown in Figs.
3.18-3.20 as a solid line. The relative difference between the lift force calculated at the link
level with the effect of the average pressure subtracted, and the lift force calculated using

Eq. (3.41) is of the order 10% at most in the repulsive region near the moving wall.

The results shown in Figs. 3.18- 3.20 now reveal similar behaviour of lift force for the random
array of cylinders as was earlier found for the case of unidirectional cylinders (see Fig. 3.11).
There is a strong repulsive (positive) force near the moving wall, and the force approaches
zero near the stationary wall. Interestingly, the repulsive lift force is in maximum not at
the surface of the cylinder matrix, but inside the matrix at a small distance (a few lattice
spacings) from the surface. After the maximum, the repulsion decays with increasing distance
from the moving wall within a distance Ay/a ~ 5 — 10. This distance is larger than the

corresponding distance of Ay/a ~ 2 — 3 in the case of unidirectional cylinders. It should
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Figure 3.18: The volumetric inertial lift force density Lg vs. dimensionless distance y/a for
gap width A = 1. Open markers are calculated directly from the particle distributions of the
LB method, the solid line is given by Eq. (3.41), and the dashed line by Eq. (3.41) with the
pseudoturbulent term omitted. The force density is given in lattice units.

also be noticed that in the current case one cannot find any region of notable attractive
(negative) lift force next to the repulsive region, but the lift force approaches zero more or
less monotonically as the distance from the moving wall increases. On the other hand, there
seems to be a narrow region of attraction at the surface of the solid matrix in the case of the
gap with A = 8. The origin of this possible attraction is not known. As for the unidirectional
cylinders, the major effect of increasing the width of the fluid gap is to truncate the repulsive
peak as the gap widens.

In order to study the effect of the pseudoturbulent term, the lift force density was calculated
from Eq. (3.41) by omitting the pseudoturbulent stress. The results are shown in Figs. 3.18-
3.20 as dashed lines. Clearly, there is a large difference between the lift forces calculated
with and without the pseudoturbulent term. At the maximum of the repulsive lift force,
the difference is more than 100%. One may thus conclude that the pseudoturbulent velocity
fluctuations contribute substantially to lift force.

The total drag and lift force acting on the cylinders were also calculated by integrating the

corresponding force densities in the y-direction from the moving wall to the stationary wall:

Py = ["D,,dy (3.44)



64 CHAPTER 3. HYDRODYNAMIC INTERACTIONS

0 5 10 15 20 25 30
Figure 3.19: Same as Fig. 3.18 but for gap width \ = 4.

P, = [ Lydy. (3.45)

The integrated total drag and lift forces are shown in Fig. 3.21 as a function of the dimension-
less gap width A/a. The qualitative behaviour of these forces is quite similar to the case of
parallel cylinders (see Fig. 3.12). Both the total forces decrease monotonically as the gap with
increases. Notice however, that for the parameters used in the current study, the integrated
lift force remains nonnegative. Further simulations would be required to check whether the

total lift force will become attractive as the gap width is increased beyond A = 8.

3.5 Summary

It was found that hydrodynamic lift force, i.e. force perpendicular to the main flow direction,
do exist in the flows of liquid-particle suspensions. This force arises due to inertial effects,
and is thereby complicated and rather poorly known even for a case where a single particle

is suspended in the flow.

In the case where there is a single cylinder suspended in a flow near a solid wall, it was found
that the nondimensional hydrodynamic drag and lift forces mainly depend on two nondimen-

sional parameters, namely the dimensionless distance from the wall, and the ratio of the slip
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Figure 3.20: Same as Fig. 3.18 but for gap width \ = 8.

Reynolds number to the shear Reynolds number. It was also found an analytic expression of

these parameters that reproduce the simulation results with reasonable accuracy.

It was found that the hydrodynamic force acting on a rigid matrix of long cylinders is
qualitatively similar both for a matrix of unidirectional cylinders and for a matrix of cylinders
with random orientation. The drag force is largest near a moving wall and approaches zero
monotonically with increasing distance from the wall. Close to the moving wall the simulated
drag force deviates considerably from the drag force predicted by Darcy’s law. To account
for for this difference, the single particle results were referred to. These results involve an
increase in the drag force as the distance from the moving wall is decreased and the other
local flow conditions are kept constant. The total drag force acting on the cylinder matrix is

highest when the gap width is small, and decreases monotonically with increasing gap width.

Numerical simulations indicate strongly repulsive lift force near the moving wall, and the
maximum value of repulsion decreases as the gap width is increased. This strong repulsion
decays within a distance that is 2 — 3 times the cylinder radius and 5 — 10 times the cylinder
radius for unidirectional and random orientations of the cylinders, respectively. At that
distance, the lift force acting on unidirectional cylinders changes to weak attraction, which
decays rapidly with increasing distance as the fluid velocity approaches zero. For randomly
oriented cylinders no region of significant attraction was found. The total lift force acting on
the cylinders is strongly repulsive when the gap width is small, and decreases monotonically

with increasing gap width. For unidirectional cylinders, the total lift force changes into
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Figure 3.21: The total drag force (left) and lift force (right) acting on the cylinder matrix as
functions of the dimensionless fluid gap width \/a.

attraction at the distance that is of the order of the cylinder radius. For randomly oriented
cylinders, the total lift remained repulsive in all the simulations, and was close to zero for

the largest gap width used that was 2.3 times the cylinder radius.

The inertial lift force most likely accounts for a lubrication layer that is commonly believed
to be responsible for much of the peculiar flow behaviour of wood fibre suspensions. Real
wood fibre suspensions are, however, much more complex than the model systems used in
this study. The particular results quoted in this chapter may thus not be very helpful in
quantitative analysis of the flow of real suspensions. The result do, however, give some phys-
ical insight of the relevant phenomena in such flows, and this insight is utilized in interpreting
experimental results and in modeling the flow behaviour of wood fibre suspensions in next

chapters.



Chapter 4

Flow behaviour of wood fibre

suspensions 1n a straight pipe

In this chapter a summary of the well known qualitative features of fibre suspension flow in a
straight pipe is given. Efforts on modeling the flow of wood fibre suspension in straight pipes
and on design equations and methods for determining friction loss are reviewed. This chapter
is closed by studying the formation of fibre flocs and coherent fibre networks in various flow
regimes. The most relevant stochastic approaches to calculate the average number of fibre
contacts are shortly reviewed. Based on these results, the threshold consistency is estimated

above which a coherent and percolating fibre network may form.

4.1 Qualitative analysis of friction loss

Figure 4.1 shows measured friction loss for unbleached suplhite pulp in a copper pipe of
diameter 200 mm. According to Duffy [Duf97|, the flow behaviour can be roughly divided in
two main regimes: the plug flow regime that occurs at low flow rates and the drag reduction
regime that occurs at high flow rates [LD76]. Within the plug flow regime the fibre phase
moves as a continuous fibre network with solid like properties and with no shearing motion. In
this regime, the loss is high compared to that of the carrier fluid (usually water) at the same
flow rate. Furthermore, the dependence on flow rate of loss can be quite complicated. In some

cases the loss may decrease with increasing flow rate. In the drag reduction regime, the fibre
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Figure 4.1: Friction loss vs. flow velocity for unbleached sulphite pulp in a ¢ = 200 mm
copper pipe. The data is reproduced from Fig. 5 of Ref. |Bh50|.

network is partly or entirely broken into flocs that undergo turbulent and shearing motion.
Characteristic to this region is that the frictional loss may be below that of a pure carrier
fluid. These qualitatively different main regimes can be divided into several sub-regimes. If
the pressure gradient applied to the pipe is below some threshold value that depends on fibre
type and consistency, the fibre plug does not move at all and the motion of the carrier fluid
is described as a flow through porous medium. Above the threshold pressure gradient, also
the fibre plug is set into motion. The fibres are first in a direct contact with the wall inducing
high shear stress (high loss). As the flow rate is increased, a plug flow behaviour is preserved,
but a thin layer of pure water (a "lubrication’ layer) is created next to the wall. Characteristic
to this flow regime is that the wall friction is approximately constant, and may even decrease
with increasing flow velocity. As the flow rate increases further, turbulent flow appears near
the walls and the fibre plug begins to break from its outer surface. Thus, in this mixed flow
regime a turbulent fibre annulus surrounds a rigid fibre plug in the middle of the pipe. At
some point, frictional loss falls below that of the carrier liquid and drag reduction regime is
obtained. As the flow rate is still increased, the solid fibre core gradually vanishes indicating
fully turbulent or 'fluidized’ flow regime. Here, the loss typically approaches the pure fluid

curve asymptotically as the flow rate is increased. This quite generally accepted view on the
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different flow domains was originally based on loss measurements, visual observations of the
flow near the pipe wall and on velocity profile measurements made at turbulent region using

a specific annular-purge impact probe |Duf97, LD76].

4.2 Design methods and flow models

For the practical design purposes the results of extensive loss studies have traditionally been
published in a graphical form, see e.g. Ref. [Bh50|. These graphical correlations have been
used, e.g., to estimate the frictional losses for pipe diameters that were not included in the
original measurement. Later, specific design equations have been developed for the regime
before the maximum in the loss curve, see Ref. [Duf76] for a extensive review and evaluation

of these equations. These equations are usually expressed in a generic form

AP

— = K¢“fD, (4.1)
L

where AP/ L is the loss, ¢ is the average flow velocity, ¢ is the percentage consistency, D is

the pipe diameter. In addition, the numerical coefficient K, and the dimensionless indices

«, 3, are constant for a given pulp.

Notice that Eq. (4.1) is flawed in a way that the dimension of the coefficient K depends
on the values of the indices «, (3, and ~. This deficiency is an inevitable result of the fact
that the equation is just a numerical fit in the experimental data with little or no physical
reasoning. The fundamental reason for this shortcoming is that Eq. (4.1) does not include

all the relevant physical dimensional quantities.

As an example of dimensionally sound form of loss correlation, a plausible set of relevant
physical quantities is included in the analysis . The loss depends on the viscosity u; and the
density ps of the carrier fluid, in general. The extra shear stress (mechanical friction) 74 is
also taken into account that acts on the fibres at the pipe wall, and the permeability of the
fibre plug k. Solely based on dimensional analysis, one can write the following pressure loss

correlation

AP peq® , (prgD 7ok (49)
= —.c .
L _D Mf ) pfq27 D27 )

where the form of the function f is still unknown, and it may be inferred,e.g., from a adequate

set of experimental results. Notice that all the parameters of the function f are dimensionless,
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and the correct dimension result from the factor prg®/D. In a case where the function f can

be written as a power law of its parameters, one can write the loss correlation in the form

AP ,qu2 pqu a1 T as E O\ .
L D\ Piq? pz) " (43)

where o, s, as, and a4 are dimensionless constants. Notice that in Eq. (4.3), the dependence

analogous to Eq. (4.1):

on the flow rate of the loss is not isolated to any single power factor on the right side of the
equation, but the loss scales with the flow rate ¢ to the power 2 + oy — 2an. Likewise, the

loss scales with the diameter D to the power —1 4+ oy — 2as3.

Notice that Eq. (4.3) can be applied to flow of water by setting to zero the exponents s 4

of the unrelevant quantities 7, k, and c. Blasius found that for water a; ~ —1/4|Whi06]:

AP
—~ 0.1584p% ¢4y * D=/, (4.4)

In practical design tasks, the effect of drag reduction has traditionally been neglected, and
at the flow rates above the onset of drag reduction (where the loss curve of pulp intersect
that of water) the loss curve of water has been used as a conservative approach to be on the
safe side. Despite this common reluctance to adopt the concept of drag reduction, Mgller
and Duffy have derived an empirical loss correlation in the transitional regime [KD78|. They
assumed that the amount of the drag reduction scales with the area of the fluidized fibre

annulus and derived the following correlation

it (45)
TIIU = w 4.5
1 A)r2 + A

where 7, and 7/ are the wall shear stresses for the pulp suspension and for water for a given
flow rate, respectively, 7p is the wall shear stress at the onset of the drag reduction, and A is
the maximum fractional drag reduction. Equation (4.5) can be fit in the experimental data

between the onset of drag reduction and the maximum level of drag reduction.

There are design procedures that have been developed to cover a wide range of flow velocities
and consistencies. One of these procedures is documented in Ref. |TIS88|, and is depicted
in Fig. 4.2. In this procedure, the loss curve is partitioned into three regimes by distinct

velocities q; and gy. The velocity ¢ corresponds to the maximum in the loss curve, and ¢
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Figure 4.2: Schematic view of the design method proposed in Ref. [TIS88§]

corresponds to the onset of the drag reductions. These velocities are calculated from the
following correlations
q; = KZ'CUi,i = 1, 2 (46)

where K; and o; are constants for a given pulp. Equation (4.1) is used to calculate the loss in
the first regime ¢ < ¢;. The value of the loss at its maximum, i.e. the value given by Eq. (4.1)
with ¢ = ¢y, is used for the middle regime ¢; < g < ¢o. In the high velocity regime ¢ > ¢,

the loss is calculated from the standard correlation for water at the same flow conditions.

Even though the lubrication layer is known to be responsible for much of the peculiar flow
behaviour of wood fibre suspensions, there are only a few attempts to calculate or model the
thickness of the layer. In what follows, a very simple correlation between the thickness of the
lubrication layer and the loss data is derived by considering the fibre plug as porous material.
In that case, the plug moves with constant velocity and all the shearing takes place inside
the lubrication layer. The flow velocity inside the lubrication layer is given by the Poiseuille
parabolic profile, and the flow velocity inside the fibre plug is constant. Furthermore, the no-
slip condition is applied on the plug surface, thus the velocity of the plug equals the velocity

of the fluid at the surface. With these assumptions one can derive the following correlation

for the width of the layer
1/4
1o (1- 4peq
TwR

h=R , (4.7)
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where R is the pipe radius, 7, is the wall shear stress, and ¢ is the flow velocity. For very
small values of h, the velocity profile inside the lubrication layer can be approximated by

the linear Couette profile, and the correlation for the layer width simplifies into the form

h= =, (4.8)
Tw
which states the linear relationship between the shear stress 7, and the shear rate ¢/h. Stenuf
and Anumolu applied Eq. (4.8) on an extensive set of loss data for bleached softwood pulp at
consistencies between 1% and 3.4%, and derived the following correlation for the thickness
of the lubrication layer [SAT2]

h = KC_2'90q1'36(a/ao)_0'26(0/00)0'56, (4_9)

where K is a constant, « is the specific volume, and o is the specific surface. The variables

width subscript zero correspond to unbeaten pulp.

Moller et al. [MDT71| explained the formation of the lubrication layer in terms of elastic
deformation of the fibre plug caused by hydrodynamic shear stress. In this “linear elastic
solid” model, the local shear strain « of the fibre plug is a linear response to the local shear
stress 7

T=Go (4.10)

where GG is the shear modulus. The local shear stress varies linearly with radial distance r

= (A—LP) g (4.11)

The thickness h of the lubrication layer was found by integrating the local shear strain given
by Egs. (4.10) and (4.11) from the pipe axis to the pipe wall. Mgller et. al. derived the

following correlations

from the pipe axis:

7 = (%)3 48g;uf (4.12)
ho o= (AB) B (4.13)

Myréen modeled the flow of paper pulp as a non-Newtonian fibre core surrounded by an

annulus of Newtonian fluid [Myr98a, Myr98h|. The fibre core was considered as pseudoplastic
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fluid, and the local shear stress 7(r) was written as a power law of local shear rate dug/dr:

n

dug| ™ (4.14)

T(r) =K 4

where K is a dimensional constant, and n is a dimensionless constant. In the viscous flow
regime, that is in the low flow rate regime where the fibres are in contact with the pipe wall,

Myréen ended up with the following loss correlation:

)
L

AP (3" i 1) KR (4.15)

Comparing the exponents of Eq. (4.15) with those of Eq. (4.1), one may find the following
identities for the exponents: « =n and y = —n—1 = —a —1. As an example, the exponents
for the original data of Brecht and Heller are o = 0.36 and v = —1.33 [TIS88|, which meet
this equality quite accurately.

In the plug flow regime where the lubrication layer surrounds the fibre core, Myréen expressed

the flow velocity at the plug surface of the fluid as

Uf\r:R—h = 54, (4-16)

where s is a dimensionless slip factor. Moreover, he wrote the thickness of the lubrication

layer in the form
h = Thmax, (4.17)

where the factor x is in the range 0 < x < 1. The maximum layer thickness hy,., corresponds

to the value of 30 of the non-dimensional wall-layer variable y*, i.e.

L Gy L (4.18)
Kt ps

With these definitions, the following loss correlation was derived

AP 2 s 1 1

= _ = S - 2
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where the friction factor f is given by

2
f= 0.0089%. (4.20)

Skali Lami considered the plug flow regimes, and modelled the width of the lubrication layer
with the linear elastic model given by Eq. (4.10) [SI91]. In solving the velocity profile of the
fluid phase, he considered the fluid pseudoturbulence created by irregular surface of the fibre
plug. He wrote the presudoturbulent stress of the fluid phase in the form that is proportional

to the square of the local velocity gradient,

2
Toay = —(prous ,0Us ) = £? (ddL;y) , (4.21)
where the factor £ determines the magnitude of pseudoturbulent stress. In his model, Skali
Lami divided the flow into four domains according to the radial position. Next to the wall
there is a viscous domain, i.e. £ = 0, with linear velocity profile. In the next domain that
spans from the inner edge of the viscous domain to the outer edge of the fibre plug, the
pseudoturbulence factor increases linearly with distance from zero to the maximum value
of L = ke, where k is a constant and € is the surface roughness of the fibre plug. The next
domain is the layer corresponding to the surface roughness of the fibre plug. In this domain
the pseudoturbulence factor has a constant value £ = ke. Inside the core of the fibre plug
the velocity profile is assumed to be constant and equal to the velocity of fibre plug. Based

on these assumptions, Skali Lami derived the following correlation for the wall shear stress

R€ —1.35
Tw = ATw,water (W) ) (422)

where A is a nondimensional constant, 7, water is the wall shear stress for water (at the same
flow rate), Re = prqD/ ¢ is the pipe Reynolds number, and Sk is a constant that depends on
consistency, in general. Even though Skali Lami derived the correlation given by Eq. (4.22)

for the plug flow regime, he applied it successfully to the fully turbulent flow regime as well.

Hammarstrom considered wood fibre suspension as a single-component, fluid with non-

Newtonian viscosity, and modelled the effect of the lubrication layer with a slip velocity



4.3. FIBRE INTERACTIONS, FLOCCULATION AND COHERENT NETWORKS 75
that is proportional to the wall shear stress [Ham04]. He wrote the slip model in the form
Ty = Fugip, (4.23)

where F'is a constant and the slip velocity uqi, is the velocity at the surface of the fibre
plug. The parameters of the model were found by a direct least-squares fit in experimental
loss data for straight pipes. The modeled velocity profiles in straight pipes agreed with
good accuracy with experimental velocity profiles. Hammarstrém implemented the model
in a computational fluid dynamic solver as well, and applied it for flows in more complex

geometries, e.g. a flow past an abrupt contraction.

The models reviewed above range from simple numerical fits in experimental loss data to more
complex theoretical models that take into account some of the relevant physical properties of
the flow process. Some of the models are not in a closed form ready for the solution, but can
be used, e.g., to estimate the thickness of the lubrication layer based on experimental loss
data. The validity of the assumptions made in some of these models will be studied while

discussing the experimental results in Chapter 5.

4.3 Fibre interactions, flocculation and coherent networks

The unique behaviour of wood fibre suspensions relates to the elongated shape of wood fibres.
Due to the high aspect ratio and complicated surface structure of fibres, the non-uniformity
of spatial fibre distribution, i.e. fibre flocculation, and the mobility of fibres in a suspension
depend strongly on the consistency of the suspension. In this section the characterization of
fibre flocculation regimes is discussed, and how these regimes are related to the aspect ratio
of fibres and the consistency of the suspension. Next the nature of fibre contacts in fibre flocs
and percolating fibre networks is discussed. This section is closed by reviewing some basic
stochastic efforts to derive correlations between the suspension consistency and the average
number of persistent contacts that each fibre may have with other fibres. These correlations
will provide estimates for the minimum consistency at which coherent fibre networks can be

formed.
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4.3.1 Effect of consistency and fibre aspect ratio on the fibre floc-

culation

Let us consider a fibre that moves and rotates freely in a very dilute fibre suspension. One
may associate two volumes to such a fibre, namely the spherical volume swept by the fibre
as it rotates, and the average system volume available to the fibre (the volume of the system
divided by the number of fibres). The spherical volume covered by the fibre has a maximum
diameter equal to the length of the fibre. In a very dilute case this spherical volume is
much larger than the average volume available to the fibre, and the fibre can move relatively
freely without colliding with other fibres. Mason proposed that the interactions between
fibres become important as a critical consistency is exceeded |[Masb4|. He calculated this
consistency from a condition that there is exactly one fibre in a spherical volume that has

diameter equal to the length of a single fibre. The corresponding solid volume fraction is
3 o
Pscrie = 5 A7, (4.24)

where A = L/d is the aspect ratio of fibres, and L is the length and d the diameter of
fibres. For a typical value of the aspect ratio A = 70 for pine fibres, Eq. (4.24) predicts
¢s,crit = 003%

Kerekes and Schell extended the analysis and defined a new parameter N called "crowding
factor” that is the number of fibres in a spherical volume that has diameter equal to the
length of a single fibre [KS92|. They studied the degree of flocculation in a flow of decaying
turbulence, and based on the value of the crowding factor, they partitioned the flocculation
of suspensions into three regimes. Soszynski and Kerekes had found the same regimes in an
experiment they deviced with nylon fibres, but they did not provide any numerical criteria
for the regimes|SK88|.

In a dilute regime the crowding factor N < 1, i.e. below the critical limit given by Eq.
(4.24), fibres are free to move and they collide only occasionally due to translational motion.
In this regime the fibre distribution is relatively uniform as was reported by Soszynski and
Kerekes|SK88|.

The rate of collisions increases with the crowding factor, and in a semiconcentrated regime
1 < N < 60 collisions take place also due to rotational motion of fibres. In this regime

the fibre non-uniformity increases with increasing consistency, and in the local areas of high
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concentration, fibres may form small networks called flocs. The mechanical strength of these
flocs is very low, and they are easily torn apart by the hydrodynamic forces created by the
flow of suspending liquid. The flocculation reaches a dynamic equilibrium where flocs are in a
state of continuous dispersion and formation. Soszynski and Kerekes rediluted the suspension
in their experiment and found that flocs disappeared and the uniformity increased as the
consistency decreased, and the suspension returned to the uniform state if rediluted below
the critical limit N = 1.

As the crowding factor is increased further, the number of persistent contacts between fibres
increases, and in a concentrated regime N > 60 the mobility of fibres decreases significantly.
Fibres form local coherent networks that have sufficient strength to tolerate the hydrody-
namic forces created by a moderate flow of suspending liquid, and intensive agitation of the
suspension is needed to disperse the coherent flocs. Moreover, Soszynski and Kerekes found
in their experiment that the coherent flocs do not disperse even in the case where the sus-
pension is rediluted below the critical limit N = 1. Notice that there is no unique crowding
number associated with the formation of coherent flocs, but the limit depends on the fibre

type, and was found to be in the range 60 < N < 130.

Obviously further increase in the consistency will increase the number of coherent flocs, and
for high enough consistency these coherent flocs will come into contact with each other and

form a network percolating through the system.

So far the formation of fibre networks in a flow of decaying turbulence, which is the case in
many paper making processes, has been discussed. The other way of forming fibre networks
is by sedimenting, either due to gravity in quiescent fluid or in a uniform flow through a
filtrating device, e.g. a wire in a hand-sheet mould. Here the sedimentation by gravity will be
shortly discussed, as it is used to infer one parameter that is often used to characterize fibre
suspensions, namely sediment consistency. The average density of saturated wood fibres is
higher than that of water, thus free fibres will fall down in quiescent fluid under the influence
of the gravitational field. As the fibres fall down, the average consistency of the sedimenting
layer will increases and eventually it will enter the semi-concentrated regime. The fibres
will form flocs that will come into contact with each other as the consistency continues to
increase. The fibres will eventually settle down at the bottom of the container, where they
will form a network percolating between the walls of container. The average consistency
of this network is called sediment consistency. Notice however, that the consistency of the

sedimenting suspension will not reach a well-defined stationary value. On the contrary, the
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consistency continues to increase slowly for a very long period of time, and in practice a

stationary value is recorded after a certain time, e.g. 18 hours, of sedimentation.

In many cases the experimental sediment consistency corresponds approximately to the
crowding factor value N = 60. Yet there is a salient difference in the properties of the fibre
networks created in decaying turbulence or in sedimenting suspensions. As was discussed
above, in the concentrated regime the flocs created by decaying turbulence are coherent,
i.e. they can withstand moderate stresses and strong agitation of suspension is needed to
disintegrate the flocs. The network in the sediment has, by contrast, quite low mechanical
strength, and relatively small amount of stirring is enough to break the network and to make
the fibres whirl. This difference in network strengths relates to the difference in the contacts

between fibres. The nature of these contacts will be discussed next.

4.3.2 Mechanisms of fibre contacts

Three types of cohesion forces between fibres have been suggested, namely colloidal, surface
tension, and mechanical|[SK88|. The mechanical interaction can be further divided to hooking
of fibres and/or fibrilles, interlocking by elastic bending of fibres, and drawing and twisting
of fibres into threads. Depending on the pulping process, the shape of a fibre can become
tangled and distorted. Some processes, e.g. beating, roughens the fibre wall uncovering the
fibrillated wall structure. The resulting variety of fibre shapes and surface structure allows

various forms of mechanical interlocking and electro-mechanical coupling.

It has been proposed that the mechanical interlocking is the main mechanism for the for-
mation coherent flocs and coherent percolating networks |Mas54|. Soszynski and Kerekes
examined the elastic interlocking of fibres in an experiment where the other types of cohe-
sion were eliminated by using relatively straight and smooth nylon fibres [SK88|. The ranges
of fibre dimensions, apparent densities, and flexibility were carefully chosen to closely match
those of wood fibres. The fibres flowed in an inclined cylinder that rotated to produce mod-
erately unsteady flow. In an initial state the consistency of the suspension was in the dilute
regime, thus no flocs were visible and the fibre distribution was uniform. This state corre-
sponds to the dilute crowding factor regime N < 1. The consistency was increased, and at
some well-defined concentration the suspension shifted from the state of uniform dispersion
to a cloudy state where the clouds were temporary noncoherent flocs. Redilution of the sus-

pension broke these weak flocs and the suspension resumed the uniform state. This regime
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corresponds to the semi-concentrated crowding factor regime 1 < N < 60. The consistency
was increased further, and at some well-defined threshold consistency the suspension changed
from the cloudy state to a grainy state. In this state the fibres formed persistent flocs that
remained identifiable through the unsteady flow. Moreover, these coherent flocs remained
intact even though the suspension was rediluted to the point where the average consistency
was at the initial level. This regime corresponds to the concentrated crowding factor regime
N > 60.

Soszynski and Kerekes demonstrated the nature of the mechanical cohesion between the
fibres by picking up a few coherent flocs out of the cylinder and applying heat on them
to relax the elastic stresses. These heat-treated flocs were brought back into the rotating
cylinder where they dispersed immediately due to hydrodynamic stresses applied by the
unsteady flow. This indicates that the formation of the coherent flocs was by interlocking by
elastic bending. The experiment reviewed above was carried out with nylon fibres. However,
the fibre properties were closely matched with those of wood fibres, thus there is a strong
possibility that same kind of elastic bending is responsible for the formation of coherent fibre

networks in wood-fibre suspensions as well.

Soszynski and Kerekes found that coherent flocs are created only if the consistency of sus-
pension exceeds a well-defined threshold value that depend largely on the fibre aspect ratio
[SK88]. This supports the results reported by Thalén and Wahren that certain mechani-
cal properties of paper pulp can be measured only if the fibre content of the pulp is high
enough |TD64|. Thalén and Wahren measured the shear modulus G in an elasto-viscometer
for a number of paper pulps. They found that the shear modulus and the ultimate shear
strength can be measured only above a certain limiting consistency. The values of this lim-
iting consistency they detected were only slightly higher than the sediment consistency c.

They reported their result in the form

G =G (58) (4.25)
Ta =T (SE?VZ)]CT , (4.26)

where G and G’ (7, and 7') is the shear modulus (the ultimate shear strength) at the
consistency ¢ and ¢ = ¢, + 0.1%, respectively, and kg (k) is a dimensionless constant. The
limiting consistency measured by Thalén and Wahren |TD64|, the sediment and threshold

consistencies measured by Soszynski and Kerekes |[SK88|, and the consistency corresponding
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to he lower limit N = 60 of the concentrated regime coincide with moderate accuracy (see
Fig. 4.3).

4.3.3 Stochastic analysis and threshold consistency

The crowding factor can be expressed in the form (see Egs. (A.3) and (A.5))

Te, L2 2
N=_-" —Zp A% 4.97
T = SoA?, (4.27)

where ¢,, is the consistency of the suspension, L is the length of a fibre, and w is the fibre
coarseness (mass per unit length). Real wood fibres come in variety of lengths even for a
small sample of one species. Thus, the fibre length L in Eq. (A.3) is not uniquely defined.
Kerekes and Schell recommended that the average fibre length be used when calculating the
crowding factor. Huber et al extended the calculation of the crowding factor to the case of
general fibre-length distribution [HRGPO3].

The value of N = 60 for the crowding factor is used normally as the lower limit for the
concentrated regime, i.e. it corresponds to the lowest consistency at which fibres form a
coherent network. The corresponding volume fraction ¢y is calculated by setting N = 60 in

Eq. (4.27), and the result is
90
Gso = ek

The quantity ¢y is quite often referred to as the sediment solid (volume) fraction. Due

(4.28)

to vagueness of the definition for the sediment consistency that was discussed above, the

quantity ¢ from now on will be called the threshold volume fraction.

Meyer and Wahren examined the correlation between the volumetric concentration of fibres,
the average number of contacts per fibre, and the aspect ratio of fibres A [MD64|. They
took into account the fibre length distribution and the fibre diameter distribution. In a case
where all fibres are of the same length, they found the following correlation between the solid

volume fraction ¢s and the average number of contacts per fibre n:

16w A
(2A/n+n/(n — 1))3 (n— 1)'

¢s = (4.29)

They proposed that fibres may form a coherent network only if, on the average, every fibre

is locked in position by contact with at least three other fibres and in such a way as to be
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Figure 4.3: Sediment and threshold volume fraction as a function of fibre aspect ratio. Solid
line is given by Eq. (4.28), dashed line by Eq. (4.30), and dotted line by Eq. (4.32). Open tri-
angles and circles are the threshold and sediment volume fractions, respectively, as measured
by Soszynski and Kerekes (this data is reproduced from Fig. 7 of Ref. [SK88]).

able to transmit forces. Thus one can calculate an estimate for the threshold consistency by
setting n = 3 in Eq. (4.29):
8rA

(3 +9)°

Ps0 = (4.30)

Dodson considered fibres as circular cylinders, and with a simple geometrical analysis he
found that the average number of contacts per fibre scales with the crowding factor as|Dod96|
3N

n="r =25A (4.31)

By setting n = 3 in Eq. (4.31) the threshold volume fraction is solved as

Ps0 =571 (4.32)

In Fig. 4.3 is shown the threshold volume fraction ¢s given by Eqs. (4.28), (4.30), and
(4.32) as functions of fibre aspect ratio A. The scatter in this experimental data is due to

weak dependence of the threshold and sediment consistencies on the fibre diameter (the
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diameter varied in the experiment form 19.8 ym to 44.2 ym). All the threshold and sediment
volume fractions decrease with increasing aspect ratio. Equations (4.28) and (4.30) predict
threshold volume fractions that are quite close to each other over a wide range of fibre
aspect ratios. The difference is 25% at the aspect ratio A = 30 and decreases with increasing
aspect ratio. Equation (4.32), on the other hand, gives a threshold volume fraction that
is considerably lower for low aspect ratios and higher for high aspect ratios. The values
predicted by Eq. (4.32) match quite well with the measured threshold values up to aspect
ratio 100. The measured threshold volume fractions are in most cases higher than measured

sediment volume fractions.

4.3.4 Fibre analysis and threshold consistency

Species | # fibres analyzed | L [mm] | d[pm] | A—L/d | w[pug/m] | MR,
Pine 20000 2.04 27.7 71 147 3.5
Birch 45000 0.900 21.0 43 109 2.5

Table 4.1: Experimental results for the average fibre length L, the average fibre width d,
and the coarseness of fibres w. Also shown is the aspect ratio A = L/d calculated from the
physical dimensions, and the moisture ratio of bound water M R, calculated from eq. (A.10).

In the experimental work of this thesis suspensions consisting of water and chemically re-
leased pine or birch fibres were studied. The physical dimensions of fibres were measured
with a commercial fibre analyzer at Techinal Research Center of Finland[Haal. In the an-
alyzer fibres are aligned between two glass windows and imaged with a CCD camera. The
fibre dimensions are calculated with image analysis. The results include, e.g. distributions
for the fibre length and width, and the averages of these distributions. The total mass of dry
fibres is measured before the analysis, thus the coarseness of fibres can be calculated too.
The results for the average physical dimensions and coarseness are presented in Tab. 4.1.
Also shown in the table is the aspect ratio A = L/d calculated from the average physical
dimension. Also shown in the table is the moisture ratio MR, calculated using Eq. (A.10),
the density of eater p, = 1000kg/m?, the density of cellulose p. = 1500 kg/m?, and the

cross-sectional area of fibres Ay = 1/4 x wd? (here round fibres are assumed).

The threshold consistency can be estimated by using the fibre properties presented in Table
4.1, the result presented in Sect. 4.3, and the correlations derived in App. A.2. The threshold
solid volume fraction ¢y, calculated using Eqs. (4.28), (4.30), and (4.32), are shown in the
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¢s0 | cmo kg/m’] | co
Eq. (4.28) | 0.018 43 0.43%
Eq. (4.30) | 0.015 3.7 0.37%
Eq. (4.32) | 0.021 5.1 0.50%

Table 4.2: The threshold values for solid volume fraction and consistency for pine fibres. The
volume fraction ¢y is calculated from each of Eqgs. (4.28), (4.30) and (4.32). For each value
of ¢y, the consistency ¢, is calculated from Eq. (4.33), and the percentage consistency cq
from Eq. (4.34).

$s0 | cmo [kg/m’] | co
Eq. (4.28) | 0.049 15.3 1.5%
Eq. (4.30) | 0.039 124 1.2%
Eq. (4.32) | 0.035 10.1 1.0%

Table 4.3: Same as Table 4.2 but for birch fibres.

second columns of Tables 4.2 and 4.3 for the pine and birch fibre suspensions, respectively.

The corresponding values of the threshold consistency are calculated from Eq. (A.4), i.e.

4w
Cmo = WQSSOa (433)

and the results are shown in the third columns of Tables 4.2 and 4.3. Finally, the values of
the threshold percentage consistency are calculated from Eq. (A.20) by setting ¢ = ¢q and

Cm = Cmo;

(4.34)

2 -1 2
00:<MRb+r+(1—7‘)7rd Cmo) Wdcmo.

4w 4w
The results are shown in the third columns of Tables 4.2 and 4.3. Notice that in calculating
threshold consistencies average values are used for all fibre properties and, e.g., the coarse-
ness is assumed to be same for all fibres of one species. In the modeling effort (see Chap. 6),
the threshold values given by Eq. (4.32) will be used, as they are supported by the visual
observations of the suspension state at various consistencies during the experiments. In addi-
tion, the threshold values predicted by Eq. (4.32) are in better agreement with experimental
threshold values for A < 100 than those given by Eqs. (4.28) and (4.30), see Fig. 4.3.
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Chapter 5

Experimental work

This chapter is started by describing the methods used in the experimental part of this work.
Pulsed ultrasound Doppler method was used for measuring momentary velocity profiles, and
a laser-optical method for measuring the thickness of the lubrication layer. These methods
were applied to study the transient behaviour of the flow after a turbulence generator (sudden
step), the approach to steady state flow, and the main features of fully developed flow.
In particular, the various flow regimes are sought to be identified on the basis of direct
measurements. The properties of the fibres used in the experiments were also measured.
The results of the experiments are shortly reported after which each flow regime that was

identified based on these results is studied in detail.

5.1 Measurement setup

The experiments were made in an laboratory-scale acrylic flow loop for birch and pine fibre
suspensions. The flow was driven by a centrifugal pump, and the flow rate was measured using
a magnetic flow meter. The flow loop was equipped with a differential pressure transducer for
loss measurement. The velocity profile across the pipe was measured using pulsed ultrasound
velocimetry. In a separate experiment, the thickness of the lubrication layer in the plug-flow
regime was measured optically using a collimated laser beam guided inside the flow channel,

and measuring the light scattered by fibres.
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5.1.1 Ultrasound velocimetry

Az

v

Figure 5.1: Left: The principle of the pulsed ultrasound Doppler velocimeter (PUDV). Right:
One momentary velocity profile (dashed line) and the average of 3000 momentary velocity
profiles (solid line).

The velocity profile across the pipe was measured using pulsed ultrasound velocimeter
(PUDV) techniques, see Fig. 5.1. The measurement is based on using a transmitter to send
short ultrasound pulses through the pipe wall and into the flow. Target particles (fibres)
moving with the flow reflect the sound which is detected by the transmitter. The distance
of the particle is found by the time-of-flight method using the known velocity of sound, and
the velocity of the particle is calculated from the cross-correlation between the echoes from
consequent, pulses. Notice that the device thus measures the velocity component in the di-
rection of the ultrasound beam. Within the present measurement, an ultrasound transmitter
with the emitting frequency of 4 MHz was used. The angle between the axis of the probe
(the direction of ultrasound beam) and the pipe wall was set to # = 85°. The duration of
a single ultrasound pulse was selected as 4 wavelengths corresponding to a length 1.5 mm
in water with the velocity of sound 1500 m/s. The repeating frequency of pulses was set to
15.6 kHz, thus the time delay between the emissions of two consequent pulses was 64.0 us
while a single pulse lasted only for 1.0 us. The echo signal was sampled in 54 gates (windows)
corresponding to 54 depth values with spacing 0.75 mm in the direction of ultrasound beam.
A series of 32 pulse emissions was used to construct a single velocity profile wu,s(zys, ), and

3000 profiles were collected during 20 seconds. Here u,s is the velocity component in the
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direction of the ultrasound beam and z, is the distance along the beam axis from the front
wall of the flow channel. Velocity profiles u(z,t) were calculated, where u = w,s/ cosf is the
velocity component in the direction of the pipe axis and z = sin 6z, is the perpendicular dis-
tance from the front wall of the flow channel. The mean velocity profile @(z) was calculated

as the average of these 3000 individual profiles
u(z) =< u(z,t) >, (5.1)

where <> denotes average over 3000 separate velocity profiles, i.e. average over time. The
fluctuating velocity component was determined as the deviation of each individual velocity

value from the mean velocity at a given position across the pipe:
du(z,t) = u(z,t) — u(z). (5.2)

In order to characterize the turbulent state of the flow the local intensity of the velocity

fluctuations is calculated as the correlation
Ir(2) =< dul(z, t)ou(z,t) > . (5.3)

The individual velocity profiles given by the PUDV method suffer, however, from a noise
intrinsic to the measuring principle. This noise contributes to the intensity given by Eq. (5.3),
and for weak fluctuations it dominates the intensity totally obscuring the actual fluctuations
of the flow. It appears however that one can eliminate the noise from the results by using
spatial velocity correlations. To that end, the time averaged spatial pair correlation function

of the measured velocity fluctuations is defined as
g(z,2') =< du(z,t)ou(z',t) > . (5.4)

This pair correlation function is shown in Fig. 5.2 for pine fibre suspension at consistency
¢ = 1.0% and flow rate @@ = 1.31/s at the distance 0.5m downstream from a turbulence
generator (see Fig. 5.8). Since the intrinsic noise is highly uncorrelated, it only affects the
values of correlation function near main diagonal. As an example, the fluctuations at the
distance zy = 20 mm from the front wall, that is at the pipe axis, are considered. A cross-
section of the correlation of Fig. 5.2 is taken along the line z + 2’ = 22y = 40 mm, this cut is

shown in Fig. 5.3 with open markers as a function of coordinate 0z = z — zy5. The shape of
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<du(z)du(z’)>
p o

Figure 5.2: The spatial correlation function < du(z)du(z’) > of the fluctuating velocity
component measured with the PUDV method for the pine fibre suspension at the consistency
¢ = 1.0% and flow rate ) = 1.31/s at the distance 0.5 m downstream from a sudden expansion
with the area ratio 1:4. The intrinsic noise caused by PUDV-method is visible as a sharp
ridge along the main diagonal.

the function g(z9 — 9z, z0+0z) is almost Gaussian except for the center where there are a few
points of large values due to the intrinsic noise. These points at the centre (in Fig. 5.3 the

three points at the centre) are excluded and fit in the rest of the data a Gaussian function

f(62) = Iyexp(—(d2/Asu)?) (5.5)

The fitted Gaussian function is shown in Fig. 5.3 with solid line, and the fitted values of the
Gaussian parameters are in this case Iy = 0.15 and A5, = 7mm. The parameter [, gives the
corrected intensity for the velocity fluctuations at the point z, thus the local intensity of

the velocity fluctuations is defined as

Ir(z0) = 1o(20) (5.6)

5.1.2 Laser-optical lubrication layer measurement

The thickness of the lubrication layer was measured optically using a collimated laser beam

guided inside the acrylic flow channel (see Fig. 5.4). This method is quite analogous to that
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Figure 5.3: An example of the removal of the intrinsic noise. The cross-section of the original
spatial correlation function in Fig. 5.2 along the line z + 2’ = 20 mm is shown by the open
markers, high values at the centre are due to intrinsic noise. The noise is removed by fitting

a Gaussian function (solid line) to the original data excluding a few points at the centre. In
this case the final value of the correlation at the center is 0.15.

Fibreless lubrication
layer near tube wall

Detector

Focussed laser beam

Figure 5.4: The principle of the laser-optical measurement of the lubrication layer thickness.
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one used by Salmela[Sal97]. However, a few enhancement were included in the measurement
setup used in the current study. First, the horizontal position of the vertical beam could
be controlled so that the focal point remained at the horizontal pipe diameter. Second, the
accuracy of the beam position as well as the diameter of the focal waist of the beam were
approximately 10 ym, while in the setup used by Salmela the diameter of the focal waist was
approximately 90 ym. The light scattered from fibres traversing the beam was detected by
an optical sensor placed just outside the pipe wall, and having a narrow horizontal field of

view through the pipe wall into the focal point of the beam.

The optical setup is shown in more detail in Fig. 5.5. The device was build as a separate
optical table that has its own section of flow channel attached firmly to it. This section of
flow channel is made of two semi-circular channels cut to separate acrylic prisms that are
firmly bolted together to form a full circular flow channel. Only the front side prism was
attached to the table while the rear prism stayed attached to the front part. This two-prism
construction was chosen for two reasons. The first one is the possibility to drill the holes for
the pressure taps starting from the inside of the channel wall while the prisms are detached.
This way distortion of the channel wall next to the hole is reduced, which decreases velocity
fluctuations near the holes and the error they generate in the loss measurement. The second
advantage is the ability to replace the rear prism while keeping the front prism firmly attached
to the table. This feature is utilized while calibrating the optical setup with a special device
attached to a third prism that is used as a temporary rear prism during the calibration, see

below.

The laser beam is generated with a 5mW helium-neon laser (wave length A = 623nm),
and guided via a mirror through an beam expander that increases the beam diameter from
Imm to 10 mm. The expanded beam is collimated with a focussing lens (f = 100 mm) and
guided by a mirror driven by a rotational stage into the flow channel. The positions of the
mechanical stages were calculated using geometrical optics. At first the position of the lower
linear stage and the rotation angle of the rotational stage were determined such that the
central ray passed through the flow channel vertically at the desired distance from the wall.
Next the position of the upper linear stage driving the collimating element was calculated

from the condition that the point of focus is at the horizontal diameter of the flow channel.

The path of the laser beam is sensitive to various imperfections in the optical system. These
imperfections include, e.q., errors in the positions and alignment of both the optical elements

(lenses, mirrors) and the mechanical stages driving those elements. In addition, various com-
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Figure 5.5: View of the laser-optical table from top (a) and side (b).
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plications arise for very small values of the beam depth, since the angle of incidence of the
laser beam entering the flow channel approaches that of total reflection as the depth of the
beam goes to zero. Thus the positions calculated from geometrical optics can only be used

as estimates for actual positions, and calibration of the optical setup is necessary.

Acrylic prism

Micrometer
gauge

Figure 5.6: The device used for the calibration of the laser-optical setup.

A special calibration device was used to verify the exact depth of the laser beam as it is
guided through the flow channel, see Fig. 5.6. A separate rear acrylic prism was used that
had a hole in its side through which a rod with a light scattering blade at its tip was operated.
The blade is driven along the horizontal diameter by the rod, which is attached to a manual
micrometer gauge. During the calibration the flow channel was filled with clear water. For an
initial value of distance from the pipe wall, the mechanical stages were driven to the positions
given by the geometrical optics equations. The path of the laser beam was observed visually,
and where necessary, tiny corrections to the positions of the mechanical stages were made
to make the laser beam pass vertically through the flow channel. The beam was judged to
pass the channel vertically when the bright spots visible at the points were the beam entered
and left the flow channel were positioned symmetrically below and above the horizontal
diameter. After the beam had a correct path, the edge of the calibration blade was driven

close to the beam. As the blade was driven into the beam, the intensity of the light scattered
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by the blade increased from zero to some maximum value within a distance that was of the
order of the beam width. The position of the half-value in this step was chosen to give the
position of the beam. In the next phase the focal point of the laser beam was driven to the
horizontal diameter of the pipe. In this process, the intensity of the light scattered from the
blade was maximized by making small changes to the position of the linear stage driving the
collimating element. After all necessary adjustments were made, the distance of the beam
from the pipe wall was read from the micrometer gauge, and this value together with the
positions of the mechanical stages were recorded. This procedure was repeated for distances

15 — 1270 pm from the wall with 10 ym steps.

14
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Figure 5.7: Calculated and calibrated positions vs. distance from the pipe wall for the base
linear stage (L1), rotational stage (¢) and collimating stage (L2). Solid lines are calculated
from geometrical optics, and the open markers are the calibrated positions.

The positions of the mechanical stages as functions of the beam distance from the wall are
shown in Fig. 5.7. Solid lines are the positions calculated from geometrical optics, while the
open markers are the values given by the calibration procedure. As can be seen, the values
calculated from optical equations are quite accurate at the distances over 0.2 mm, but fail

for shorter distances.
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5.2 Measurements

The experimental work carried out in this study divides into three parts. First, pulsed ul-
trasound Doppler method was used to study the transient behaviour of the flow after a
turbulence generator (sudden step), the approach to steady state flow, and the main fea-
tures of fully developed flow. Secondly, the thickness of the lubrication layer was measured in
a fully developed state with the laser-optical device. The properties of the fibres used in our
experiments were also measured with a commercial fibre analyzer. Based on the measured

properties, the threshold consistency is estimated above which a fibre plug may form.

5.2.1 Transient phenomena in developing flow

Turbulence 92 Developing i Fully developed

generator i flow | flow

Profile measurement Optical wall layer
at various locations measurement

&

Pressure loss measurement
(Wall shear stress)

Figure 5.8: Schematic illustration of the experimental arrangement for fibre suspension flow
in a straight pipe after a turbulence generator.

The PUDV -method was applied to study the flow in a straight pipe of diameter is D = 40 mm
and length L = 3m with a constriction block of inner diameter 20 mm and length 0.25 m
placed inside the entrance part of the pipe, see Fig. 5.8. The resulting backward facing
sudden step provided by the exit end of the constriction block generates a recirculation
zone and a strong turbulent field in the downstream part of the pipe. The velocity and
fluctuation profiles through the pipe diameter were measured at 18 fixed locations after the
constriction block for different flow rates varied between 0.7 and 3.51/s. The first measuring
point was located at distance 0.2m and the last point at distance 2.6 m from the step. The
measurement zone thus includes portion of the pipe, downstream of the recirculation zone,

where the flow is already reattached to the pipe walls, takes place in a decaying turbulent field
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and approaches a fully developed condition towards the end of the pipe. In this experiment

birch fibre suspension at consistency 1.0% was used.

Figures 5.9- 5.11 show the mean velocity and turbulent intensity profiles at various locations
along the pipe for flow rates 0.71/s, 1.91/s and 3.51/s, respectively. The turbulent intensity is
calculated from Egs. (5.4)- (5.6). At all flow rates used, the turbulent intensity immediately
after the sudden expansion is very high indicating that the suspension is in a fluidized state
where the fibre phase is broken into small flocs that undergo turbulent motion. The turbulent
intensity is highest in the middle of the pipe and decreases rapidly with distance = as the
fluctuations of the fibre phase cease. At low flow rate (see Fig. 5.9), the fibre phase finally
forms a continuous network that spans through the pipe, except of a thin fibre free lubrication
layer that may be formed at the walls (but can not be observed with the PUDV techniques).
The shape of the mean velocity profile undergoes only minor change along the pipe, being
plug-like turbulent profile immediately after the recirculation zone and turning into a plug-
like steady profile further downstream where the flow approaches fully developed condition.
The developed profiles shown in Fig. 5.9 are typical to plug flow regime. At moderate flow
rate (see Fig. 5.10) the behaviour is similar to that shown in Fig. 5.9. However, the overall
turbulent intensity is higher and the high intensity region extends further downstream. In
addition, the increased wall friction now prevents fibres from forming continuous network
near the walls. Instead, a turbulent annulus remains near the walls and a continuous network
is formed only at the core. This is seen as the turbulent intensity maxima near the walls and
a slightly more rounded mean flow profile in the developed flow region. Here, the developed

flow is typical to the mixed flow regime.

At the highest flow rate (see Fig. 5.11), the initial turbulent intensity is still higher and
extends still further downstream. The turbulence induced by strong wall friction now prevents
formation of continuous fibre network throughout the pipe. The suspension remains fully
fluidized also in the developed flow and is thus in the turbulent flow regime. Although
the mean velocity and turbulent intensity profiles in the developed flow region appear quite
similar to those for ordinary turbulent flow of simple fluids, a closer examination of the mean
velocity profile reveals marked differences to the conventional logarithmic law behaviour (see
Sect. 6.1).

In this experiment a forward facing step was used to induce transient flow in decaying
turbulence field and the resulting approach to fully developed flow. In practical applications,

turbulent flow may be generated by other devices such as pumps, mixers and valves. One
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z/D

x/D

Figure 5.9: The measured mean velocity profile (top) and turbulent intensity profile (bottom)
for birch fibre suspension at the consistency ¢ = 1.0% (by weight) after the recirculation
zone created by a sudden expansion with area ratio 1:4. Flow rate is @ = 0.71/s, and the
corresponding Reynolds number calculated with the properties of water is Re,, = 22000. The
insert in bottom figure shows the measured turbulent intensity multiplied by a factor 100
for clarity in the latter part of the pipe. Here, x is the downstream distance from the sudden
expansion, z is the distance from the inner surface of the pipe wall along the horizontal pipe
diameter, ¢ is the average flow velocity, and D is the pipe diameter. The axis of the pipe is
located at z = 20 mm.
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Fig. 5.9 but for flow rate @

Figure 5.10: Same as
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Figure 5.11: Same as Fig. 5.9 but for flow rate Q) = 3.51/s, Re,, = 110000.
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can, however, expect the qualitative features of the flow remain the same irrespective of the

way in which the turbulence was generated.

5.2.2 Thickness of the lubrication layer

The thickness of the lubrication layer was measured in a fully developed flow with the laser-
optical device described above. The straight pipe sections upstream and downstream of the
measuring point were approximately 2.7m and 0.5 m, respectively. For each flow rate, 10000
light intensity values were collected at a sampling rate adjusted according to the mean flow
velocity such that the distance between consequent measuring points in the moving fibre
plug was approximately 1 mm. Thus a length 10 m of the suspension flowing in the pipe was
measured to give an adequate and statistically similar set of measurements for all flow rates.
Notice that this method is applicable in the plug flow regimes, where the velocity of the
fibre plug is very close to the measured mean velocity. The frictional loss in the pipe was

measured simultaneously with the lubrication layer thickness.

Figure 5.12 shows an example of results obtained by the laser optical lubrication layer thick-
ness measuring device discussed above. In the figure, shown is the mean intensity of scattered
light as a function of the laser beam position inside the pipe of diameter 40 mm near the
pipe wall. The measurement is for pine fibre suspension at consistency 0.5% and flow rates
0.141/s and 0.541/s, where the flow is well in the plug flow regime in both cases. The layer
of pure water is indicated by a region next to the wall of nearly constant intensity. As the
beam enters the fibre plug, the intensity starts to increase with the beam position more or
less linearly. The thickness of the lubrication layer is defined as the crossing point of the two
straight lines fitted to the data points in the constant intensity region and in the increasing
intensity region as indicated in Fig. 5.12. In the flow condition shown, the thickness of the
lubrication layer is thus estimated to be 0.037mm at the flow rate 0.141/s and 0.38 mm at
flow rate 0.541/s.

In Figs. 5.13 and 5.14 shown are the measured values of layer thickness as a function of mean
flow velocity for various consistencies. The measured layer thickness is shown only for those
flow velocities at which a well defined finite thickness value could be found. Especially with
the present measuring techniques, the lubrication layer could not be observed at very low
flow rates. It appears that in each case, the regime where the lubrication layer was not found

coincides with the low flow rate domain where the loss increases with flow rate. This domain
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Figure 5.12: The measured intensity of the laser light scattered by fibres as a function of
distance from the pipe wall at flow rates @ = 0.141/s (top) and @ = 0.541/s (bottom). For
each flow rate, the crossing point of two fitted lines defines the thickness of the fibre free

lubrication layer.
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Figure 5.13: Measured pressure drop (small dots) and wall layer thickness (open circles)
versus flow rate for pine suspension at consistencies 0.5% — 2.0% (by weight). Solid line is
the pressure drop of water calculated using Eq. (4.4), and stars give the thickness of the
viscous sublayer (y™ = 5) for water at each value of loss.
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Figure 5.14: As Fig. 5.13, but for birch suspension at consistencies 1.0%
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is naturally identified as the plug flow regime with direct fibre-wall contact. An observable
lubrication layer appears at the flow rate corresponding to the local maximum in the loss
curve (birch) or to the point where the loss curve levels off (pine). Above that flow rate,
the measured value of the lubrication layer thickness first grows with flow rate, reaches a
maximum and then starts to decrease. In general, the thickness decreases with consistency
and the location of maximum point becomes less definite. The flow rate corresponding to
the maximum layer thickness (where observable in the data) falls approximately at the
same point, where the loss curve again starts to grow. This domain is identified as the plug
flow regime with lubrication layer. The observed decrease of the layer thickness after the
maximum is most likely due to incipient turbulence, i.e. turbulence in the fluid phase (that
was not observed with the present methods). This turbulence is not yet strong enough to
cause macroscopic breakage of the fibre network, but only to bend and dislodge individual
fibres that are loosely bound to the fibre plug surface. These fibres can then be randomly
displaced towards the pipe wall by fluctuations of fluid velocity, and thereby cause increased
light scattering as they traverse the laser beam. The apparent decrease of lubrication layer
thickness may thus be explained by dispersion of the fibre plug surface layer due to fluid phase
turbulence. In this region the measured lubrication layer thickness decreases and pressure

loss increases but macroscopic rupture of fibre plug is not yet observed.

5.3 Flow regimes of wood fibre suspension in a straight
pipe

Based on the experimental results discussed above, the main qualitative features of flow of
wood fibre suspensions in straight pipe are now summarized. Direct observation using var-
ious experimental methods suggests that one can divide the flow into five different regimes
according to flow rate. These regimes are shown in Fig. 5.15, where the measured loss curves
as a function of flow rate for pine fibre suspension at different consistencies are plotted.
Figure 5.16 illustrates the five qualitatively different flow regimes discussed below. The num-
bering coincides with that shown in the context of loss data, Fig. 5.15. Below, the relevant

phenomena taking place in each of these regimes will be shortly discussed.
Regime I: plug flow with wall contact

In this regime the intensity of turbulence is high immediately after the source (constriction,
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pump, etc. ), and the suspension is in a fluidized state where the fibre phase is broken into
flocs. The intensity of the turbulence decays rapidly downstream from the source, and the
fibre phase forms into a continuous network. In this process, the turbulent energy of fibres is
partly captured as the elastic energy of the network. This elastic energy manifests itself as
an elastic force that pushes fibres towards the pipe wall. Notice that the quantitative details
of this elastic force may depend on the initial turbulent intensity and the way the turbulence
decays, i.e. the history of the suspension. The inertial lift force, on the other hand, repels
fibres from the wall. In this regime of low flow velocity, the elastic force is, however, large
enough to keep the fibre plug in a contact with the wall. Thus the fibre network forms into
a state that spans through the pipe, and no observable lubrication layer is found. The radial
force balance of the fibre plug is maintained between the elastic force, the lift force, and a
support force by the wall. The support force give rise to mechanical friction between the

fibre plug and the pipe wall, increasing the loss.
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Figure 5.15: Measured loss vs. flow rate for pine fibre suspension in a D = 40mm flow
channel for various consistencies (by weight). Dashed line is the standard curve for pure
water in a hydraulically smooth pipe, and solid lines divide the flow domain into five main
regimes (labeled I - V) based on the flow behaviour (see Fig. 5.16)

Regime II: plug flow with lubrication layer

This regime is quite similar to the regime I, with the exception that the lift force is large

enough to keep the fibres away from the pipe wall, on the average. Thus the fibre network
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Figure 5.16: The main regimes of fully developed flow of fibre suspensions. (I) Plug flow
regime with direct fibre-wall contact, (II) plug flow regime with lubrication layer, (III) plug
flow regime with incipient (fluid phase) turbulence, (IV) mixed flow regime and (V) fully
turbulent flow regime

forms into a state where there is a fibreless lubrication layer next to the pipe wall. The
thickness of this layer increases with flow rate. Due to the lubrication layer, the loss saturates

of may even decrease with increasing flow rate.
Regime III: plug flow with smearing annulus

In this regime the loss increases approximately linearly with flow rate, and the behaviour
of the lubrication layer thickness is ambiguous. Fluctuations in the fluid phase (incipient
turbulence) deform and disengage individual fibres on the surface of the fibre plug. These
fibres are randomly displaced towards the wall into the lubrication layer by the fluctuations

in the fluid velocity, which eventually renders the lubrication layer unobservable.
Regime I'V: Mixed flow

In this regime the dependence on the flow rate of the loss is approximately quadratic. The
turbulence induced by the high flow velocity and the strong wall friction prevents fibres from
forming a continuous network near the walls. Thus the fibre plug is only formed at the core

and a turbulent annulus remains at the walls.
Regime V: Full turbulence

In this regime the turbulence created by strong wall friction prevents the formation of the
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fibre plug throughout the pipe, and the suspensions remains in a fluidized state. The transi-
tion from mixed flow regime IV into fully turbulent regime V is gradual and no sharp change
in loss behaviour can be observed. The dependence on the flow rate of the loss remains close
to quadratic in the transition, thus the exact flow rate at which the fibre plug core disappears
can not be identified from loss data. This topic will be discussed in greater detail in Sect.
6.1 utilizing the results from velocity profile measurements. At very high flow rates, the loss

behaviour approaches that of pure carrier fluid.

Although the classification discussed above and depicted in Figs. 5.15 and 5.16 is very similar
to those presented previously (see e.g. Ref. [Duf97|), there are some subtle differences. In par-
ticular, the existence and nature of regime III and identification of the different flow regimes
in the loss data are now more precisely defined. Notice also, that the present classification

is based on direct experimental evidence on various features of the flow.

The results reported in this chapter may not seem to add much to the qualitative under-
standing of the developing flow of fibre suspension in decaying turbulence. They do, however,
indicate that the new experimental method utilized here can be used to gain much more de-
tailed information on the flow behaviour as has been previously possible. Based on already
these results, even the qualitative behaviour of the pipe flow can be further specified at least
in two respects. Firstly, unlike often phrased, for a pipe flow in mixed or turbulent flow
regions (after a pump, say) the wall friction does not break the continuous fibre network.
Instead, wall friction prevents such a network from ever forming within an annulus of some
thickness or in the entire pipe. (Actual breaking of fibre network would only take place if the
flow was first stopped to allow the continuous network to form, and then resumed.) Even
though this difference may appear quite superficial, it can have some significance, e.g., when
using the measured values of disruptive shear stress of the fibre network in predicting pipe
flow behaviour. It is not clear, without further investigation, that the value of disruptive
shear stress measured by actually breaking an existing network by applied shear stress is
the proper value to be used, e.g., in predicting the transition from plug flow to mixed and
turbulent flow regions in conventional pipe flows. Secondly, the appearance of the fibre free
lubrication layer in the plug flow regime is often explained by mechanical models based on
shear deformation of the network induced by the wall stress, and the resulting reduction of
plug diameter [MDT71|. For a pipe flow brought about by a pump, such a model is unphys-
ical simply because the undeformed state of the network never existed. Instead, the fibre

plug formes from the fluidized state in decaying turbulence after a pump or any fluidizing
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device is originally of diameter slightly less than that of the pipe. The existence of lubrication
layer is more likely due to inertial lift force that acts on particles moving near the wall. This
phenomenon leads to a tubular pinch effect where the fibres are repelled from the wall and
the fibre plug is formed in a state where the lift force is balanced by the elastic force of the
network. The elastic force, in turn, is affected by the turbulent energy of fibres, partially

stored as the elastic energy of the forming network.

In the next chapter this qualitative depiction of the flow behaviour will be utilized in a more
detailed theoretical and semiempirical analysis of the flow dynamics. This analysis, in turn,
is then used in deriving new physically justified loss correlation formulas for the flow of wood

fibre suspension in straight, smooth pipes.
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Chapter 6
Velocity profiles and loss correlation

In this chapter correlations for frictional losses of wood fibre suspension flow in a straight pipe
are derived. These correlations cover a large range of flow rates from the plug-flow regimes
to the fully turbulent regime. The approach used here is based on detailed information on
flow profiles and is thus analogous to that used to derive the conventional loss correlations
of Newtonian liquids. In the plug-flow regimes, the velocity profile is found by analytically
solving a set of two-phase equations of the flow, while in the mixed and turbulent regimes
a suitable parameterization of the measured profiles discussed in Chapter 5 is utilized. The
loss correlations are then found by integrating these velocity profiles over the cross section

of the pipe.

6.1 Velocity profiles in the plug flow regimes

In the plug-flow regimes all the relevant phenomena take place in a very narrow annulus next
to the pipe wall. Typically the width of this annulus is less than 1 mm, i.e. below the spatial
resolution of the pulsed ultrasound Doppler device used to measure the velocity profiles.
On the other hand, flow is non-turbulent and one can resort to modeling of the flow field.
Based on earlier knowledge and the experimental results presented in this monograph, a
novel approach to the dynamics of the lubrication layer was introduced (see chapter 5). Here
a simple two-phase model for closed-channel flow of wood-fibre suspension in this regime is

considered. This model includes all the dynamical features of the flow discussed in chapter

109
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5 for the plug-flow regimes. The model is based on the averaged flow equations that were
derived in chapter 2, and it will be presented in a closed form ready for solution. In the model,
the lubrication layer is modeled as a response to the inertial transverse lift force acting on
the fibres near the pipe wall. The form of the lift force used in the model is qualitatively

supported by the numerical simulations described in sections 3.3 and 3.4.

Thus the plug-flow regimes I and II shown in Fig. 5.16 are considered, and a laminar two-
phase flow model for the regimes is derived. The model takes into account the direct contact
friction between fibres and pipe wall at low flow rates and existence of lubrication layer at
higher flow rates (see Fig. 6.1). The lubrication layer is formed due to repulsive inertial lift
force that is known to act on fibres moving near the wall. The averaged fluid flow is assumed

to be steady and fully developed, 7.e. fluid velocity is longitudinal
ur = ug(r)é,. (6.1)
Fibres move as a rigid plug with a constant velocity
Ug = U€,. (6.2)

At very low flow rates the fibre plug is indirect contact with the pipe wall. As the flow rate
increases, a lubrication layer of pure carrier fluid occurs next to the pipe wall. The width
of the lubrication layer is small compared to the pipe radius. In the case where lubrication
layer exists, the velocity of the fluid within the thin layer is given approximately by the linear

profile .

() =~ (R ) = Ty (6:3)
where r and z are the radial and axial coordinates, respectively, p¢ is the dynamic viscosity
of the fluid, p¢ is the fluid pressure, R is the radius of the pipe, y is the distance from the
wall and 7, is the wall shear stress. The fluid velocity at the surface of the fibre plug is thus
given by

Tw
ug = —h, 6.4
’ g (6.4)

where h is the thickness of the lubrication layer.

Inside the fibre core, the system is modeled as two interacting continua, and the governing
two-phase equations for momentum are obtained by (volume) averaging the corresponding

equation for each phase. The flow inside the core is described by the equations that have
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Figure 6.1: Schematic view of the plug flow of fibre suspension. A close up view at the wall
with the fibre plug in a contact with the wall (bottom left) and with a lubrication layer
(bottom right).
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been derived in section 2.3.2. The porosity of the fibre plug ¢ is assumed to be constant,
hence the equations for the conservation of mass, Egs. (2.59) and (2.60), are satisfied for the
longitudinal flow field of Egs. (6.1) and (6.2). The conservation of momentum is described
by Egs. (2.70) and (2.62), namely

OVR = V- (r) = (0 -0 - Lé, (6.5)
~V (o)) = +%(ﬁf — @) + Lé,. (6.6)

were Lg is the lift force applied on the unit volume of the fibre plug by the carrier fluid. It
is assumed in Eqs. (6.5) and (6.6) that the effect of gravity can be neglected. The average

stress tensor of the fluid phase given by Eq. (2.68) simplifies in the current case in the form
<Tf> = qb,uf ((Vﬁf) + (Vﬁf>T) . (67)

The longitudinal component of the equation for the carrier fluid, Eq. (6.5), can be written

in the form

op d? 1d
—¢a—; + ous (@Uf + ;Euf) - %(Uf - Us) = 0. (6-8)

The proper boundary conditions for this equation are the velocity at the plug surface given
by Eq. (6.4), and zero velocity gradient at the pipe axis. With these boundary conditions,
the exact solution of Eq. (6.8) is

. [0(’/’*)
us (1) = ugo {1 IO(R*)} + uo, (6.9)
where ok O
Uy = Us — Uy — E%, (6.10)

Ip(x) is the modified Bessel function of the first kind of order zero, r* = r//¢k is a dimen-
sionless radial coordinate, and R* = (R — h)/+/¢k is a dimensionless plug radius.

The length scale /@k of the velocity profile is typically of the order of 107> m to 10~ m so
that the arguments of the Bessel functions in Eq. (6.9) are large. The velocity profile can

thus be approximated by an exponential function

ue(r) = ugo [1 — exp(—y™)] + uo, (6.11)



6.1. VELOCITY PROFILES IN THE PLUG FLOW REGIMES 113
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Figure 6.2: The calculated scaled velocity profiles for various values of dimensionless plug
radius R*. Solid lines are the exact solutions given by Eq. (6.9), while dashed lines show the
approximations given by Eq. (6.11).

where y* = R* — r* is the nondimensional distance from the plug surface. The reduced flow
velocity (us — ug)/ugo is shown in Fig. 6.2 as a function of nondimensional radial distance
r*/R* =r/(R — h) for selected values of R* in the range 1-100. The difference between the
exact solution and the approximation is large with small nondimensional plug radius, but
decreases with increasing radius (decreasing permeability). The relative difference is below
2% for R* = 10, and for R* = 100 the absolute difference is below the line thickness of the
graph.

The velocity of the fibre plug can be solved from the condition that the sum of the forces
acting on the plug is zero in the steady state. The forces acting on the plug can be identified
by integrating the longitudinal component of the momentum equation (6.6) over the cross-
section of the fibre core. The resulting equation manifests a balance between two forces,
namely the total Darcy’s drag applied by the carrier fluid and the extra mechanical friction
with the pipe wall (present in the case where lubrication layer does not exist, i.e. h = 0).
Darcy’s drag can be obtained by integrating the velocity profile for the carrier fluid, Eq.

(6.11). Combining these two results and replacing wall shear stress for pressure gradient



114 CHAPTER 6. VELOCITY PROFILES AND LOSS CORRELATION

yields the plug velocity in a form

Ug = i g ((1 - ﬁ)Tw - 7'5> — %Tw -+ Ug. (6.12)

Here the shear stress at the plug surface 75 is the (yet unknown) mechanical wall friction per
unit area. Finally, combining Eqs. (6.11) and (6.12) gives the velocity profile of the carrier

fluid in the form

ug(r) = i g ((1 _ %)Tw _ TS) {1 _ exp(——)] o, (6.13)

where wug is given by Eq. (6.4).

Notice that equations (6.12) and (6.13) are valid for both plug-flow regimes I and IT shown
in Fig. 5.16, and even for the percolating regime, where the fibre plug is stagnant and only
fluid flow occurs. It now remains to develop an appropriate model for the shear stress at the
plug surface 7, and for the thickness of the lubrication layer h. Clearly, 74 must depend on
the radial structural stress of the fibre network at pipe wall. Thus the radial stress balance
equation of the fibre plug is considered, i.e. the radial component of Eq. (6.6)

0

—— P +L,=0. (6.14)
or

Here, Ls(< 0) is the inertial lift force per unit volume acting on the fibres and P, is the radial
normal stress of the fibre network. In what follows it will be called simply the structural
stress. (Notice that the structural stress arises originally from turbulent energy partially
converted into elastic energy of the network that forms in the decaying turbulent flow field).
According to the numerical results presented in Chapter 3, the lift force decays rapidly with
the distance from the wall - typically within a few particle diameters. Notice that the length
scale associated with this decay is not known in the current case. It may be, e.g., the average
fibre length or the surface roughness of the fibre plug rather than the fibre radius.

Since the length scale associated with the lift force is not known, a global balance equation

for the structural stress of the fibre network is considered instead. Integration of Eq. (6.14)
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gives the structural stress at the surface of the fibre plug
R—h
PR —h) :PS(O)|h+/ Lydr = Ps(0)|, — P, (6.15)
0

where P(0)], is the structural stress at the centre of the pipe. (The notation is chosen to
emphasize that the stress in the centre may depend on the lubrication layer thickness h.)
The quantity Pp(> 0) gives the integrated contribution of lift force on structural stress and

depends on flow rate. The integrated lift force is chosen to be modeled as

1
PL == éprSCL, (6.16)
where pr is the density of the carrier fluid, CY, is the lift force coefficient and Reg = pfus\/E/uf

is the fibre-network Reynolds number.

At low values of flow rate, fibres are in contact with the wall (h = 0) and the structural
stress at the surface of the fibre plug is positive, i.e. Py(R) > 0. The radial force balance is
then maintained between structural stress, lift force and the support force by the wall. The
latter is proportional to P, and automatically adjusts itself so that there is no macroscopic
deformation of the plug. Consequently, the structural stress at the centre of the plug is
constant; Py(0)|,—0 = Ps. Furthermore, it is assumed that the mechanical friction stress is

then proportional to Py(R):
Ts :CSPS(R> :Os (PSO_PL)7 (617)

where C5 is a friction coefficient. As the flow rate is increased, P, increases, and Pi(R)
and 7, decrease and eventually become zero. As the flow rate is increased beyond this point,
lubrication layer develops. Consequently, fibre consistency and structural pressure well inside
the plug increase by a small but finite amount. The structural pressure at the plug boundary
P,(R — h) vanishes for all h > 0. The excess stress AP; at pipe centre for a finite value of

lubrication layer thickness h is now defined by
Py(0)|, = Py + AP(h). (6.18)

For small values of h, it is postulated that AP, = %h where ' is a constant. This relation
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gives a natural constitutive model for lubrication layer thickness, namely
h=TAP, =T(Fs(0)|p, — Py) =T'(PL — Py), (6.19)

where the latter equality follows from Eq. (6.15) since P;(R—h) = 0. Reorganizing the equa-
tions given above, one can now rewrite the final results for frictional stress and lubrication

layer thickness in a compact form as

{ 7. = max(0, Cs(Py — PL)) (6.20)

h = maX(O, F(PL — Pso))

Notice that the constants Py, and I', related to elastic stress in the fibre plug as h = 0 and to
rate of change of that stress with respect to h, may depend on flow conditions and not only
on fibre properties. In particular, they may depend on the initial turbulent intensity and on
the details of turbulence decay and formation of the fibre plug in the developing flow region

downstream of the turbulence generator (see Sect. 5.2.1).

There is still some degeneracy in this set of parameters, and the number parameters can be
reduced by combining Eqs. (6.20) and (6.16). The frictional stress at the plug surface and

the width of the lubrication layer can now be written in the form

TS:maX{O,PSB—CE;( 1orul} (6.21)
h =max {0,I" (C} x spsu? — P)}
where a set of reduced parameters is defined by
Py = CiPy (6.22)
CcLr = OOy (6.23)
- = T/Cs (6.24)

The velocity profiles in the plug flow regime are governed by Eqgs. (6.4), (6.12), (6.13), and
(6.21), which include four free material parameters k, Pk, Cf, and I'*. Notice that these
parameters depend, in general, on the suspension consistency. The permeability k£ is the
only one of these parameters that explicitly influences the flow of the carrier fluid, see Eq.
(6.13). The remaining three parameters govern the dynamics of the lubrication layer via Eqs.

(6.21). The evaluation of the material parameters will be postponed until Sect. 6.3 where
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the parameters are determined by a least-squares fit in the experimental loss data.

Given these basic results one can now find the limiting values of wall stress (pressure gradient)
where the fibre plug is first set to motion and where the lubrication layer is first formed.
The value 7,9 at which the fibre plug starts to move can be solved by setting us = 0,
7s = CsPy = P and h =0 in Eq. (6.12), and solving for the wall stress. The result is

-1
Tuo = (1 - %W&) Py, (6.25)

When the wall stress is below this limit, the fibre plug is stationary, and the mechanical
friction 7, must be calculated from Eq. (6.12) by setting us = 0 and A = 0. The value 7, at
which the lubrication layer is created can be found by setting P, = 0 in Eq. (6.15) to solve
for the corresponding plug velocity, and then applying Eq. (6.12). The result is

i = (1= 7V/5F) B (o) B k). (6.26)

Ciui/(pck

6.2 Velocity profile in the mixed and turbulent flow regimes

For the turbulent flow regimes I1I - V, illustrated in Fig. 5.15, one have to rely on the exper-
imental profile correlations that were obtained using pulsed ultrasound Doppler velocimetry,
see chapter 5. Figure. 6.3 shows the mean velocity profiles of pine fibre suspension of con-
sistency 1% for flow rate ranging from 1.51/s to 51/s. Due to noise caused by the wall-fluid
interface, the velocity measurement by the PUDV method is not accurate below 1 mm from
the wall, and those results are excluded from the profiles shown. A peculiar feature of the
measured mean velocity at high flow rates is the S -shaped profile near the wall. (A similar
result was obtained recently also by Xu and Aidun for rectangular channels [XA05].) As
in the case of Newtonian flows, parameterization of turbulent velocity profiles of fibre sus-
pensions is best done by utilizing the standard non-dimensional wall-layer variables defined
by

ut =u/u (6.27)

yt o= yut/ug (6.28)
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Figure 6.3: Mean velocity profiles of pine fibre suspension at consistency 1% as a function
of distance from the pipe wall. The flow rate is varied from 1.51/s to 51/s where the flow
is in the mixed or turbulent flow regimes. The centre line of the acrylic pipe is located at
y = 20 mm.

where u* = \/T/pf is the friction velocity, pr and v; are the density and the kinematic viscos-
ity of the fluid and 7, is the wall shear stress obtained from the pressure drop measurements.
Figure 6.4 shows the same velocity profiles as Fig. 6.3 but redrawn in the dimensionless vari-
ables. Also shown is the standard logarithmic velocity profile for turbulent Newtonian flow,

namely:

1
vt =—In(y")+ B (6.29)
K

where the constants k and B have the standard values 0.41 and 5.5, respectively [Whi94|.
A remarkable feature of the profiles shown in Fig. 6.4 is that there seems to exist a unique
(approximate) envelope curve that corresponds to a limiting velocity profile shape as the flow
rate approaches infinity. That envelope curve consists of a logarithmic near wall region where
the profile coincides with that of Newtonian flow, a yield region where velocity gradient is
higher than that of Newtonian flow, and a core region where the profile again is of the form

given by Eq. (6.29) but with a value of constant B above that of Newtonian flows (i.e. B ~ 5).
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Figure 6.4: Same as Fig. 6.3 but for dimensionless velocity and distance from the pipe wall
(see Eq. (6.27). The dashed line is the standard logarithmic profile of turbulent Newtonian
flow, Eq. (6.29).

The near wall region extends up to a distance scale y; ~ 10%. Correspondingly, the core region
starts at a distance scale y;; ~ 10® and extends up to pipe entry at y© = RT = Ru*/v;. The

yield region (in very high flow rate limit) is located between y; and y3.

At finite flow rates the dimensionless velocity profiles seem to be approximately independent
of flow rate in the region near the pipe wall. At distances y* < y; the velocity profiles thus
approximately coincide with that of Newtonian flow. Above that point in the yield region,
the profiles follow the envelope curve up to a certain point y/, < yj; that depends on flow
rate. From that point on, the velocity profiles again become approximately logarithmic with
varying slope such that at low flow rates, the slope is zero and approaches the Newtonian
profile value (1/x in the logarithmic y*-scale) as the flow rate increases. The measured

profiles can be approximated by a piecewise logarithmic profile of the form.

1
v =—In(y")+ B+ Au” (6.30)
K
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where
0 0<yt <yf

Aut =< 2In(y*/y)) yi <yt <yd(< ufh) (6.31)
Aup—EIn(y"/yf)  wb <yt <RF

Here, o and [ give the slope (relative to Newtonian profile value) of the envelope curve in the
yield region and the core region, respectively. Figure 6.5 illustrates the simplified profile and
the meaning of various parameters. Notice that the quantities y; , y}; and « are constants
for a given suspension. Instead, § and y/; depend on flow rate (on 7,) in a manner that

remains to be found. Within the present parameterization for each velocity profile at a finite
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Figure 6.5: The piecewise logarithmic approximation of measured velocity profiles shown in
Fig. 6.3. The parameters are as in Eqs. (6.30) and (6.31).

flow rate, y} denotes the point where the profile departs from the high flow rate envelope
curve, and the upper limit of the yield region. (At very low flow rates, that point may appear
already at the near wall region in which case the yield region does not exist.) Obviously, the
flow is turbulent and the fibre phase is fluidized in the near wall and yield regions. The
existence of the yield region is most likely related to quenching of wall induced turbulence
due to presence of fibres. As a consequence, the rate of turbulent transfer of longitudinal
momentum from the core region towards the wall (and thus, the effective eddy viscosity of

the suspension) is reduced. The existence of the yield region is thus identified as the primary
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phenomenon underlying the drag reduction found in the mixed and turbulent flow regions.
Indeed, according to the present results, set up of the drag reduction regime takes place at

the flow rate regime where the yield region in the velocity profile first appears.

At relatively low flow rates, the velocity profile in the core region is flat indicating existence
of a central fibre plug and y/; denotes the position of the plug surface. According to the
conventional reasoning, plug rupture takes place at the position where the total stress equals
the disruptive shear stress 7p which, in turn, is a material property of the fibre network.

This suggests a correlation for y/, in the form
yt =RY'(1—1p/T0) (6.32)

It appears, however, that this correlation is not in accordance with the observed profiles
and loss behaviour (see below). As discussed above, the concept of disruptive shear stress as
the criterion of plug rupture is somewhat questionable in the case where no actual rupture
of once formed fibre network takes place. It is assumed here, instead, that the existence
of fluidized annulus and fibre plug is controlled by a critical turbulent intensity that can
prevail in the suspension. Lacking the possibility to measure the absolute values of turbulent
intensity the assumption is made that the turbulent intensity is correlated with the mean
flow velocity gradient, instead of total shear stress level. In other words, we conjecture that
the upper limit of the yield region is set by the requirement that the mean velocity gradient
is a (material) constant at that location, i.e. that

3—; = ['c = constant (6.33)

Yyc

Converting this equation in dimensionless form, solving for y/, in the yield region and taking
into account the limitation y/; < y3; set by the present quite rough parameterization of the

profile, leads to the correlation

y& = min (yg, (u*/ug)?) | (6.34)

vekl'c
x = ) 6.35
Uc =1/ I+ ( )

Notice that according to Eq. (6.34), yg does not depend on pipe radius, as it would according

where
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to Eq. (6.32). If necessary, this result can be generalized to other parts of the profile and
to more refined profile parameterizations. Finally, examination of the profile data suggests
correlating the core region slope parameter 3 with y/, as

8=1-(yt/vh)’ (6.36)

To summarize, the velocity profiles in mixed and fully turbulent flow regimes are parame-
trized by Eqgs. (6.30) and (6.31) that include four free parameters: y;, yj;, @ and uf (or
alternatively, I'c ). Figure 6.6 shows the measured and fitted profiles for 1% pine and 2%
birch at several flow rates in the mixed and turbulent regions. The fitted parameter values
are given in Table 6.1. Notice however, that for birch suspension, the yield layer seems to
be located too close to the wall to be reliably measured by PUDV method for all but the
highest flow rates (i.e. within the range 1 mm from the wall). This feature gives rise to
some additional uncertainty in the fitted values of profile parameters for 2% birch suspen-
sion. A reliable estimation of the uncertainty in the fitted values of the parameters is not
possible with the limited set of experimental data used in the present study. For the same
reason, the dependence on the consistency and on fibre properties of the parameters cannot

be determined based on the current results.

Parameter | Pine 1% | Birch 2%
uT 120 50
Vi 830 320
o 1.8 2.4
ugm/s 0.0047 0.0125

Table 6.1: Fitted values of profile parameters for 1% pine and 2% birch fibre suspension.

Given the new profile information obtained by the PUDV method, the dynamics of the
transition from the incipient turbulent regime via mixed flow regime to the fully turbulent
regime (regimes III, IV and V in Fig. 5.15 can now been discussed in more detail.” The
incipient turbulence region most likely arises due to growth of the lubrication layer thickness
until turbulent fluctuations of the fluid phase can exist between the wall and the fibre plug.
The edge of the fibre plug is not sharp, however. Instead, a surface layer exists where the
average fibre consistency increases from zero to some constant value within a distance scale
set by a structural correlation length of the fibre network (that is left unspecified in this

work but can be expected to be of the order of fibre length, but may depend on consistency).
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ent flow rates in mixed and turbulent flow regimes for 1% pine (top) and 2% birch (bottom).
Also shown are the logarithmic Newtonian profiles (dashed lines) corresponding to same
values of wall stress (loss) as the measured profiles.
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Due to low fibre consistency near the surface, the fluid phase turbulence is not effectively
damped until well inside the plug. Consequently, the flow behaviour is dominated by fluid
phase turbulence in a region that starts from the outer edge of the viscous sub-layer well
inside the fibre free lubrication layer, and extends inside the fibre core a distance of the
order of correlation length. This explains the observed behaviour that the velocity profile of
fibres approach that of turbulent Newtonian fluid near the wall. Remember that the PUDV
techniques could not be applied close enough to the wall such that the linear viscous sub-layer

could be resolved.

As the flow rate is increased, turbulence production at the wall increases and fluctuations
can prevail deeper in the fibre phase core preventing fibres from forming continuous network
within some annular region. Well inside the core, fibre consistency is high leading to effective
attenuation of turbulent fluctuations. The attenuation is most effective in the size scale of
correlation length. On the other hand, the size scale of the largest eddies, that contain most
of the turbulent energy and that are most effective in momentum transfer (i.e. in generating
turbulent friction) is set by the distance from the wall. An immediate consequence of the
arguments given above is that at a distance of the order of correlation length from the
wall, the largest eddies possible at that distance, are effectively attenuated by the fibres.
Consequently, the turbulent friction is attenuated leading to the yield layer characterized
by increasing velocity gradient and the S-shaped profile shown in Fig. 6.4. (Obviously, this
conclusion is based on an assumption that the friction is dominated by turbulence.) The
existence of the yield layer, located between y; and y/, in the schematic illustration of the
profile parameterization shown in Fig. 6.5, is the origin of the drag reduction phenomenon
- although within the present reasoning that region could more accurately be described as

the ‘region of flow enhancement’.

As the flow rate is further increased, the turbulent production still increases and the turbulent
annulus can diffuse deeper in the fibre core. Entering further away from the wall leaves space
to larger eddies that are not anymore attenuated very effectively. As a consequence, the core
region can finally remain turbulent due to eddies larger than correlation length. Furthermore,
the large scale end of the turbulent spectrum near the pipe centre can become similar to that
of pure fluid. At very high flow rates the turbulent momentum transfer and consequently the
mean velocity gradient approaches that of turbulent Newtonian flow. That would explain

the limiting value of slope in the logarithmic -scale in the core region (see Figs. 6.4 and 6.5).



6.3. LOSS CORRELATIONS 125

6.3 Loss correlations

In this section the frictional loss will be studied in detail. The aim is to utilize the modeled
velocity profile in the plug flow regime and the parametrized experimental velocity profile
in the mixed and turbulent regimes, and thereby derive a semiempirical correlation formula
for the loss. The flow rate corresponding to a given friction velocity /wall stress (that yields

the loss) is found simply by integrating the velocity profile over the pipe cross section.

6.3.1 Plug flow regimes

For the plug flow regimes, integration of the average bulk velocity ¢us + (1 — ¢)ug over the
cross-section of the pipe using Eqgs. (6.12) and (6.13) yields
k TR
Q= 27rR¢— (s — (1 = ¢)7) + TR?ug + — 7, (6.37)
Mt Mt
Further investigation of Eq. (6.37) reveals that the dominant term on the right side is the
second one for all values of wall shear within the plug flow regimes, except of those very close
to 7,0 where the fibre plug starts to move. As a good approximation valid for most practical

cases in the plug flow regimes, one can thus write

0 = 7R, (6.38)

The permeability is chosen here to be modeled with Eq. (2.56), the result derived by Jackson
and James [JJ86]. It should be noticed that the results in Eqgs. (2.54) - (2.56) were derived for
smooth circular cylinders. Real wood fibres, on the other hand, may have non-circular cross-
section, and a rich surface structure. Especially fibrillation due to mechanical processing
(beating) increases the specific surface area of fibres, thus the drag on fibres increases and
the permeability decreases. Thereby, the effective radius a in Eqgs. (2.54) - (2.56) should be

considered as a free material parameter that gives the specific permeability scale ko = a.

The values of the material parameters ko, P, C7, and I'* were found by a least-squares fit
of Eq. (6.38) in the experimental loss data separately for each suspension consistency. The
results are shown in Figs. 6.7 (pine) and 6.8 (birch). Notice that in the figures shown is the
permeability & as is given by Eq. (2.56), and not the specific permeability k.



126 CHAPTER 6. VELOCITY PROFILES AND LOSS CORRELATION

In what follows, the reduced material parameters Py, Cp*, and I'* are expressed as functions
of consistency (the permeability & is given by Eq. (2.56)). To that end, the expected qual-
itative dependence on the consistency of the material parameters is shortly discussed, and

simple analytic expressions are proposed that have these qualitative features.

According to Eq. (6.21), the shear stress at the plug surface, 75, is in the percolating flow
regime (fibre plug is stationary) equal to the reduced parameter PJ. This stress corresponds
to the loss that is obtained by extrapolating the loss curve to zero flow rate. Equation (6.26)
states that the wall shear stress at the local maximum of the loss curve, 7,1, increases with
the parameter PJ. Further analysis of the governing equations show that the overall level
of the loss increases with this parameter, as expected. The experimental loss data clearly
demonstrates, on the other hand, that loss increases with consistency. One may thus conclude
that the value of parameter P}, should increase with consistency. This is clearly the case with
the values that were inferred from the fitting procedure described above, these values are

shown as open markers in Figs. 6.7 and 6.8.

It may be also seen that the dependence on the consistency of the parameter P is nonlinear,
in general. Moreover, the value of the parameter tends to zero as the consistency approaches
the lowest value used in the analysis. This lowest consistency coincides with the threshold
value shown on the last line of table 4.2 and 4.3 for pine and birch fibre suspension, respec-
tively. Thus the dependence on the consistency of PJ is quite analogous to that of the shear
modulus given by Eq. (4.25) and the ultimate shear strength given by Eq. (4.26), and the
parameter P is chosen to be modeled with a similar expression:

P = mo(max(c, cg)/co — 1), (6.39)

S

where c¢ is the percentage consistency, ¢ is the threshold consistency for the plug formation,

and 75 and «, are free material parameters.

As can be seen from the experimental results shown in Figs. 5.13 and 5.14, the thickness
of the lubrication layer decreases with increasing consistency. Equation (6.19) states, on the
other hand, that the thickness of the layer increases with the parameter I'*. Thus one may
conclude that I'* decreases with increasing consistency. The parameter I'* is chosen to be
written in a power-law form

[ =TT, (6.40)

'y and ar are free material parameters. One expects ['* to decrease with increasing consis-
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tency, thus the exponent ar should be negative. The material parameter C} is expressed in
the form

OL* = CL()C, (641)

where Cp is a free material parameter. Notice that the formulas given in Eqgs. (6.39)- (6.41)
do not have direct physical justification, but were chosen merely as they have the correct

qualitative behaviour and reproduce the experimental results with reasonable accuracy.

At this point our model contains six material parameters defined by Eqs. (6.39)- (6.41)
and (2.56), namely ko, 79, ClLo, [0, @, and ar. Tt is tempting to evaluate the values of these
parameters by fitting Eqgs. (6.39)- (6.41) and (2.56) into values of the material parameters ko,
P}, Ci, and I'* that are shown as open markers in Figs. 6.7 and 6.8. It was found, however,
that this does not reproduce good approximation to the observed loss data. Instead, the
values of these parameters were found for each wood species by fitting the model in all the
experimental loss data at all consistencies in one go. The results are shown in Table 6.2. The
fitted functions are shown as solid lines in Figs. 6.7 and 6.8. Notice that a reliable estimation
of the uncertainty in the fitted values of the parameters is not possible with the limited set

of experimental data. The measured loss data and the loss predicted by the model are

Species | ko [1072m?| | 7p[Pa] | Cro | [o[107°m/Pa] | o, | ar
Pine 1.0 0.12 0.0012 93 3.1 -3.7
Birch 0.58 3.6 0.0008 310 20| -4.8

Table 6.2: Fitted parameters for pine and birch fibre suspensions

shown in Figs. 6.9 and 6.10 for pine and birch fibre suspensions, respectively. The model
reproduces the loss data with moderate accuracy, the difference between the calculated and
the experimental losses is of the same order as the scatter in the experimental data itself.
At the point where the lubrication layer is formed, the model produces a sharp corner in the
loss curve. This is a consequence of the simplification made in the model. The fibre network
is considered as a sharp-edged plug that undergoes an abrupt transition from the state with
wall contact to the sate with lubrication layer. In this transition the number of fibres in
contact with the wall has a discontinuous jump to zero. In reality the surface of the fibre
plug has a complicated floc structure that one expects to change as the fibre plug is lifted
off the pipe wall. Especially the average number of fibres in contact with the wall decreases
smoothly, and there is a gradual rather than sudden transition to the next flow regime with

lubrication layer.
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Figure 6.9: Measured (small markers) and calculated (solid line) loss as a function of flow
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The measured width of the lubrication layer and the width predicted by the model are
shown in Figs. 6.11 and 6.12 for pine and birch fibre suspensions, respectively. Even though
the model predicts layer widths that are larger than the measured values, the qualitative
behaviour of the modeled results is quite similar to the experimental results. The difference
between the results is most likely due to the fact that in the model the fibre plug is considered
as a sharp-edged object, while in reality the plug surface has an irregular floc structure and
individual fibres are protruding out of the plug as well. The intensity of the light reflected
from the fibres increases substantially as the incoming beam hits the outermost fibre flocs.
Thus the location of the plug surface as given by the laser-optical measurement is close to
this depth. From modeling point of view, on the other hand, the effective surface of the plug
seen by the fluid flow is deeper inside the roughness layer of the plug, and the layer thickness
predicted by the model is larger than observed thickness.

6.3.2 Mixed and turbulent flow regimes

For mixed and turbulent regions, integration of the velocity profile given by Egs. (6.30) and
(6.31) yields

Q7 =Qf +AQT + AQs, (6.42)

where

O
%
I
;:I»—*

Bﬁ—§} (6.43)

o
oo b (8 ()

—2<<R—5> ()
s sz o () ((6) ) () )] o

Here, the first term Qg is the contribution of the standard Newtonian profile, the second

AQT =

EIQ

<

term AQ7 gives the additional flow contribution due to yield region and the constant velocity
contribution in the core region. The third term AQj includes the effect of the non-zero slope

in the core region (that becomes significant at high flow rates, see Fig. 6.5). Finally the flow
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rate () in physical dimensions is given in terms of the dimensionless flow rate as

Q= V—fiQ+. (6.46)
u

This equation gives the required correlation between the flow rate and loss. Figure 6.13 shows
the measured loss for 1% pine and 2% birch suspensions together with the correlations given
by Eqgs. (6.42) - (6.45). For the turbulent regime, the loss is calculated using the parameter
values given in Table 6.1 as obtained from a fit to profile data. Notice that while knowing
the profile parameters y,", y};, @ and u}, immediately yields an accurate loss correlation, the
inverse is not true: knowledge of loss behaviour alone does not yield unique values of profile
parameters. Consequently, a direct fit of Eqs. (6.42) - (6.45) in the turbulent regime would
lead to even closer agreement with the loss data as the one shown in Fig. 6.13, but with
parameter values that do not reproduce good approximation to the measured profiles through
Egs. (6.30) and (6.31).

As shown by Fig. 6.13, the agreement between measured and calculated loss behaviour is
very good in the present cases. At the relatively low consistencies considered here, the mixed
and turbulent flow regimes are obviously the most important regimes from practical point of
view. At those domains, the loss correlation discussed above is based on a somewhat arbitrary
and suggestive parameterization of the flow profile, the generality of which can not be assured
given the rather small amount of data yet available. However, even more important than the
explicit functional form of the loss correlation given by Eqs. (6.42)- (6.46), these formulas

suggest a certain scaling law of the correlation, namely that

Q" = QN (BT, v /ug), (6.47)

i.e. that the dimensionless flow rate of suspension depends only on two quantities, the dimen-
sionless pipe radius R* and the ratio u*/uf, , where uf, is a material parameter related to the
critical turbulent intensity that is sufficient to keep the fibre phase fluidized. Furthermore, it
appears that the primary variable here is RT. Instead, the dependence on u*/uf, is relatively
weak and limited to low flow rate end of the mixed flow region. As a good approximation
one can then drop the dependence on u*/uf, in Eq. (6.47). In particular, using Eqs. (6.42)-
(6.45) in the high shear stress limit, and using the approximation valid for large pipes that
Y,y << RT one gets

QF ~Qf +AQL (6.48)
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Figure 6.13: Measured (symbols) and calculated loss for plug flow (dashed line) and turbulent
regime (solid line) as a function of flow rate for 1% pine (top) and 2% birch (bottom). Also
shown is the Newtonian correlation for smooth pipe turbulent flow (dash-dotted line).
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where @ is given by Eq. (6.43) and
AQL = M RY 4+ \(RT)? (6.49)

Instead of four material parameters for the velocity profiles (see Table 6.1), one is now
left with only two material parameters \; and A\, that are related to the original profile

parameters as

Moo=272 (v — ) (6.50)
Ay =2 (i /vf) (6.51)

In order to test the scaling law Eq. (6.47), in Fig. 6.14 is shown the loss data measured at the
flow laboratory of Techinal Research Center of Finland for 1% commercial fine, LWC and
SC pulps in three different standard steel pipe sizes DN100, DN200 and DN300 |[Luu|. The
measurement was done only in mixed and turbulent regimes where the three pulps show very
similar loss behaviour. No profile information is available. Also shown in Fig. 6.14 are the
results obtained by fitting Eqs. (6.48) and (6.49) using only the data for the smallest pipe
size, DN100. The curves for the two larger pipes then ensue purely from the proposed scaling
law. The fitted values of the two parameters are A\; = 96600 and Ay = 7.33. As discussed
above, knowledge of loss behaviour alone does not yield unique values of profile parameters.
It was, however verified that plausible values of profile parameters can be chosen such that
the loss behaviour shown in Fig. 6.14 is reproduced also by Eqs. (6.42)- (6.45).

6.4 Summary

Velocity profiles were studied in detail both in the plug-flow and the turbulent regimes. In
the plug-flow regimes, velocity profiles were inferred from a simple two-phase model that
is based on the averaged flow equations. In the model, the lubrication layer is modeled as
a response to the inertial transverse lift force acting on the fibres near the pipe wall. The
model contains four material parameters that describe the flow resistance of fibre network
and the dynamics of the formation of the lubrication layer. The velocity profiles predicted
by the model are typical to plug flow, and all the shearing occurs in a narrow wall layer the

width of which is less than 1 mm.
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Figure 6.14: Measured loss as a function of flow rate for 1% commercial fine paper (O), LWC
(O) and SC (+) pulps [Luu|. The measurement was done for three different standard steel
pipes, DN100 (¢ = 110.3 mm), DN200 (¢ = 215.1 mm) and DN300 (¢ = 300 mm). Solid lines
show the fitted behaviour according to Eqs. (6.48) and (6.49). The fit was done using the
data for DN100 pipe only.
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In the mixed and turbulent regimes the measured profiles were utilized. There seems to exist
a unique envelope curve that corresponds to a limiting velocity profile shape as the flow rate
approaches infinity. That envelope curve consists of a logarithmic near wall region where
the profile coincides with that of Newtonian flow, a yield region where velocity gradient
is higher than that of Newtonian flow, and a core region where the profile again is of the
logarithmic form. The measured profiles were approximated by a piecewise logarithmic profile
that contains four free material parameters that depend on consistency, in general. These

parameters were determined by a direct least-squares fit in the experimental velocity profiles.

A semiempirical correlation formula for the loss was derived by utilizing the modeled velocity
profile in the plug flow regime and the parametrized experimental velocity profile in the mixed
and turbulent regimes. The flow rate corresponding to a given wall shear stress was found

simply by integrating the velocity profile over the pipe cross section.

In the plug flow regimes, the values of the material parameters of the two-phase model were
found by fitting the loss correlation predicted by the model in the observed loss. The modeled
thickness of the lubrication layer behaves qualitatively in the same way as the observed one,
yet the modeled values are in all cases larger than the experimental values. This difference
is most likely due to the fact that in the model the fibre plug is considered as a sharp-edged
object, while in reality the plug surface has a irregular floc structure and and individual

fibres protruding out of the plug.

In the mixed and turbulent regimes, integration of the parametrized profiles yielded a loss
correlation that agrees with high accuracy with the observed loss behaviour. Moreover, the
derived loss correlation suggests a certain scaling law that can be used to predict loss in a
pipe that has different diameter as the pipe that is used to fix the material parameters. The
scaling law was tested in a case where the material parameters were fitted in loss data for a
DN100 pipe. The loss predicted by the scaling law for a DN200 and A DN300 pipe agreed

with the observed loss with high accuracy.

The existence of the yield region in the mixed and turbulent regimes is most likely related
to quenching of wall induced turbulence due to presence of fibres. As a consequence, the
rate of turbulent transfer of longitudinal momentum from the core region towards the wall
is reduced. The existence of the yield region is thus identified as the primary phenomenon

underlying the drag reduction found in the mixed and turbulent flow regions.

According to the measured velocity profiles in the mixed and turbulent regimes, two mech-



6.4. SUMMARY 137

anisms are effective in the transition from mixed to fully turbulent flow. First, increase of
turbulent intensity near the wall leads to annulus of disrupted fibre phase and a central
fibre plug, the radius of which slowly decreases with flow rate. Second, at high enough flow
rates, large scale fluctuations can persist throughout the core and the 'degree of fluidization’
gradually increases with flow rate in the entire central core. At very high flow rates the large
scale turbulent structure of the core region is similar to that of pure fluid (at the same wall

shear stress) indicating 'fully fluidized’ state of flow.
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Chapter 7
Conclusions

In the second chapter of this monograph the multiphase equations were recapitulated that
can be used to model flows of liquid-particle suspensions, and flows in porous medium.
Derivation of a generic set of multiphase equations was first reviewed using the method of
volume averaging. A plausible set of constitutive relations was then applied to render the
equations applicable to liquid-particle suspensions, to flows in porous medium, and to the

flow of wood fibre suspension in the plug flow regime, in particular.

In the third chapter the interaction forces between the phases were studied with direct
numerical simulations, and the emphasis was on the forces acting on solid particles in a flow
near a solid wall. Specifically, the hydrodynamic forces acting on stationary solid cylinders
were studied. It was found that hydrodynamic lift forces, i.e. forces perpendicular to the
main flow direction, do exist in the flows of liquid-particle suspensions. These forces arise
due to inertial effects, and are thereby complicated and rather poorly understood even for
a case where a single particle is suspended in the flow. In the single-cylinder case, it was
found that the nondimensional hydrodynamic drag and lift forces mainly depend on two
nondimensional parameters, namely the dimensionless distance from the wall, and the ratio of
the slip Reynolds number to the shear Reynolds number. It was found that the hydrodynamic
force acting on a rigid matrix of long cylinders is qualitatively similar both for a matrix of
unidirectional cylinders and for a matrix of cylinders with random orientation. The drag force
is largest near a moving wall and approaches zero monotonically with increasing distance
from the wall. Close to the moving wall the simulated drag force deviates considerably from

the drag force predicted by Darcy’s law. Numerical simulations indicate strongly repulsive lift
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force near the moving wall, and the maximum value of repulsion decreases as the gap width
is increased. This strong repulsion decays within a distance that is 2 — 3 times the cylinder
radius and 5 — 10 times the cylinder radius for unidirectional and random orientations of
the cylinders, respectively. At that distance, the lift force acting on unidirectional cylinders
changes to weak attraction, which decays rapidly with increasing distance as the fluid velocity
approaches zero. For randomly oriented cylinders no region of significant attraction was
found. The total lift force acting on the cylinders is strongly repulsive when the width of the
gap between the moving wall and the fibre matrix is small, and decreases monotonically with
increasing gap width. For unidirectional cylinders, the total lift force changes into attraction
at the distance that is of the order of the cylinder radius. For randomly oriented cylinders,
the total lift remained repulsive in all the simulations, and was close to zero for the largest

gap width used that was 2.3 times the cylinder radius.

In the fourth chapter the unique flow behaviour of wood fibre suspensions was described at
a qualitative level. Some characteristic features found in experimental frictional loss corre-
lations were summarized, various flow regimes were studied, and the flow phenomena that
are known to produce the observed loss correlation were discussed shortly. Next the most
relevant efforts on modeling the flow of wood fibre suspension in straight pipes and on design
equations and methods for determining friction loss were reviewed. The methods to char-
acterize the various regimes of fibre flocculation and formation of coherent fibre networks
were also reviewed. A few estimates of the threshold consistency above which coherent fibre

networks may form were recorded.

In the fifth chapter the experimental work was described that was carried out on the flow
properties of wood fibre suspensions on straight pipes. New experimental methods were used
to acquire better grasp on the flow phenomena responsible for the peculiar flow properties.
The thickness of the lubrication layer in the plug-flow regimes was inferred for fully developed
flow with a novel technique that is based on measuring the intensity of laser light reflected
by fibres. The transient behaviour of the flow after a sudden step that acted as a turbulence
generator was also studied. The detailed time-dependent velocity profiles in such developing
flow were measured with a pulsed ultra-sound velocimetry technique. From these velocity
profiles, the local intensity of velocity fluctuations was calculated. Based on the results of

these experiments, the flow was divided into five different regimes according to flow rate.

With the measuring techniques used in this study, the lubrication layer could not be observed

at very low flow rates. The regime where the lubrication layer was not found coincides with
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the low flow rate domain where the loss increases with flow rate. This domain is identified as
the plug flow regime with direct fibre-wall contact. In this regime the intensity of turbulence
is high immediately after the source (constriction, pump, etc. ), and the suspension is in
a fluidized state where the fibre phase is broken into flocs. The intensity of the turbulence
decays rapidly downstream from the source, and the fibre phase forms into a continuous
network. In this process, the turbulent energy of fibres is partly captured as the elastic
energy of the network. This elastic energy manifests itself as an elastic force that pushes
fibres towards the pipe wall. The inertial lift force, on the other hand, repels fibres from the
wall. In this regime of low flow velocity, the elastic force is, however, large enough to keep
the fibre plug in a contact with the wall. Thus the fibre network forms into a state that spans
through the pipe, and no observable lubrication layer is found. The radial force balance of
the fibre plug is maintained between the elastic force, the lift force, and a support force by
the wall. The support force gives rise to mechanical friction between the fibre plug and the

pipe wall, increasing the loss.

An observable lubrication layer appears at the flow rate corresponding to the local maximum
in the loss curve (birch) or to the point where the loss curve levels off (pine). Above that
flow rate, the measured value of the lubrication layer thickness grows with flow rate until it
reaches a maximum. This domain is identified as the plug flow regime with lubrication layer.
In this regime the lift force is large enough to keep the fibres away from the pipe wall, on
the average. Thus the fibre network forms into a state where there is a fibreless lubrication
layer next to the pipe wall. The fibre plug slides on top of this lubrication layer, and the loss

saturates or may even decrease with increasing flow rate.

In the next domain the measured thickness of the lubrication layer decreases with increasing
flow rate. The observed decrease of the layer thickness is most likely due to incipient turbu-
lence, i.e. turbulence in the fluid phase (that was not observe with the present methods). This
turbulence is not yet strong enough to cause macroscopic breakage of the fibre network, but
only to bend and dislodge individual fibres that are loosely bound to the fibre plug surface.
These fibres can then be randomly displaced towards the pipe wall by fluctuations of fluid
velocity, and thereby cause increased light scattering as they traverse the laser beam. The
apparent decrease of lubrication layer thickness may thus be explained by dispersion of the
fibre plug surface layer due to fluid phase turbulence. This domain is identified as the plug
flow regime with smearing annulus. In this regime, the loss increases approximately linearly

with flow rate.
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As the flow rate increases, the overall turbulent intensity increases and the high intensity
region extends further downstream. Above a certain flow rate, the increased wall friction
now prevents fibres from forming continuous network near the walls. Instead, a turbulent
annulus remains near the walls and a continuous network is formed only at the core. This
is seen as the turbulent intensity maxima near the walls and a slightly more rounded mean
flow profile in the developed flow region. This regime is identified as mixed flow regime. In

this regime the dependence on the flow rate of the loss is approximately quadratic.

When the flow rate is high enough, the turbulence created by strong wall friction prevents the
formation of the fibre plug throughout the pipe, and the suspensions remains in a fluidized
state. This domain is identified as a fully turbulent regime. The dependence on the flow rate
of the loss remains close to quadratic in the transition, thus the exact flow rate at which the
fibre plug core disappears can not be identified from loss data. At very high flow rates, the

loss behaviour approaches that of pure carrier fluid.

In the sixth chapter velocity profiles were studied in detail both in the plug-flow and the
turbulent regimes. In the plug-flow regimes, velocity profiles were inferred from a simple
two-phase model that is based on the averaged flow equations. In the model, the lubrication
layer is modeled as a response to the inertial transverse lift force acting on the fibres near
the pipe wall. The model contains four material parameters that describe the flow resistance
of fibre network and the dynamics of the formation of the lubrication layer. The velocity
profiles predicted by the model are typical to plug flow, and all the shearing occurs in a

narrow wall layer the width of which is less than 1 mm.

In the mixed and turbulent regimes the measured profiles were utilized. There seems to exist
a unique envelope curve that corresponds to a limiting velocity profile shape as the flow rate
approaches infinity. That envelope curve consists of a logarithmic near wall region where
the profile coincides with that of Newtonian flow, a yield region where velocity gradient
is higher than that of Newtonian flow, and a core region where the profile again is of the
logarithmic form. The measured profiles were approximated by a piecewise logarithmic profile
that contains four free material parameters that depend on consistency, in general. These

parameters were determined by a direct least-squares fit in the experimental velocity profiles.

A semiempirical correlation formula for the loss was derived by utilizing the modeled velocity
profile in the plug flow regimes and the parametrized experimental velocity profile in the
mixed and turbulent regimes. The flow rate corresponding to a given wall shear stress was

found simply by integrating the velocity profile over the pipe cross section.
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In the plug flow regimes, the values of the material parameters of the two-phase model were
found by fitting the loss correlation predicted by the model in the observed loss. The modelled
thickness of the lubrication layer behaves qualitatively in the same way as the observed one,
yet the modelled values are in all cases larger than the experimental values. This difference
is most likely due to the fact that in the model the fibre plug is considered as a sharp-edged
object, while in reality the plug surface has a irregular floc structure and and individual

fibres protruding out of the plug.

In the mixed and turbulent regimes, integration of the parametrized profiles yielded a loss
correlation that agrees with high accuracy with the observed loss behaviour. Moreover, the
derived loss correlation suggests a certain scaling law that can be used to predict loss in a
pipe that has different diameter as the pipe that is used to fix the material parameters. The
scaling law was tested in a case where the material parameters were fitted in loss data for a
DN100 pipe. The loss predicted by the scaling law for a DN200 and A DN300 pipe agreed

with the observed loss with high accuracy.

The experimental results reported in this monograph may not seem to add much to the
qualitative understanding of the flow behaviour of wood fibre suspension in straight pipes.
They do, however, indicate that the new experimental methods utilized here can be used to
gain much more detailed information on the flow behaviour as has been previously possible.
Based on already these results, even the qualitative behaviour of the pipe flow can be further

specified to some extent.

Unlike often phrased, for a pipe flow in mixed or turbulent flow regions the wall friction does
not break the continuous fibre network. Instead, wall friction prevents such a network from

ever forming within an annulus of some thickness or in the entire pipe.

The appearance of the fibre free lubrication layer in the plug flow regime is often explained
by mechanical models based on shear deformation of the network induced by the wall stress,
and the resulting reduction of plug diameter. For a pipe flow brought about by a pump, such
a model is unphysical simply because the undeformed state of the network never existed.
Instead, the fibre plug forms from the fluidized state in decaying turbulence after a pump or

any fluidizing device is originally of diameter slightly less than that of the pipe.

The drag reduction found in the mixed and turbulent flow regimes is due to a yield region
in the velocity profile. The existence of this region is most likely related to quenching of wall

induced turbulence due to presence of fibres. As a consequence, the rate of turbulent transfer



144 CHAPTER 7. CONCLUSIONS

of longitudinal momentum from the core region towards the wall is reduced.

According to the measured velocity profiles, two mechanisms are effective in the transition
from mixed to fully turbulent flow. First, increase of turbulent intensity near the wall leads
to annulus of disrupted fibre phase and a central fibre plug, the radius of which slowly
decreases with flow rate. Second, at high enough flow rates, large scale fluctuations can
persist throughout the core and the ’degree of fluidization’ gradually increases with flow rate
in the entire central core. At very high flow rates the large scale turbulent structure of the
core region is similar to that of pure fluid (at the same wall shear stress) indicating ’fully
fluidized’ state of flow.

With the novel experimental methods used in this work, new information was inferred about
the flow behaviour of wood fibre suspension in straight pipes. However, there are a few
aspects that have to be considered further. Probably the most important thing that should be
studied is the scaling of loss with pipe diameter. Within the present study, it was only tested
in the turbulent flow regime in a single case. Further experiments are necessary for proper
validation of the derived loss correlations. On the other hand, the experimental methods
used in this study and the results reported here make possible new experimental works on

related phenomena, e.g. mixing of chemicals by turbulence in paper making processes.
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Appendix

A.1 The crowding factor

The crowding factor N is the average number of fibres in a spherical volume that has diameter
equal to the length of a fibre [KS92|. The average mass of fibres in such volume, mgpes, can

be calculated by multiplying the volume of the sphere by the consistency of suspension:

4 (L\°
Mfibres = gﬂ— (5) Cm, (Al)

where L is the average length of a fibre and c¢,, is the consistency of the suspension. The
average total length of the fibres in the volume is

3
Mfibres o ECmL

ELﬁbres = (AQ)

w 6w’
where w is the fibre coarseness (mass per unit length). Notice that in writin Eq. (A.1)

coarseness is assumed to be constant, while in reality it usually depends, e.g., on fibre length.

The crowding factor can now be expressed in the form

o ZLﬁbres o 7TCmL2
L 6w

N (A.3)

The total length of fibres in a unit volume of suspension equals ¢,,/w. The volume fraction

of fibres is calculated by multiplying the total length with the average cross-sectional area
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of a fibre. For cylindrical fibres the volume fraction can be expressed in the form

c d\? 7d%
™ enlZ) =222 A4
P x <2) 4 w ( )

w

By combining Egs. (A.4) and (A.3), the crowding factor can be expressed in an alternative

form as

N = §¢SA2. (A.5)

A.2 The solid volume fraction versus the consistency

Figure A.1: Schematic view of the fibre structure, A, is the fibre wall made of cellulose, and
A; is the lumen.

In this appendix correlations between the solid volume fraction and the solid mass fraction
are derived for fully saturated fibres. To that end, fibres are considered as tubes that have

wall made of cellulose, and a cavity, a lumen, at the centre, see Fig. A.1.

First the ratio of the cross-sectional area of the lumen to the cross-sectional area of the fibre
wall is solved by considering a case where the lumen is filled by air. The mass of a fibre is
Meapre = Lw and the volume of the fibre is Vge = LAy where Ag = A; + A, is the area of
the fibre cross-section and A; and A,, are the cross-sectional areas of the lumen and the fibre

wall, respectively. Thus the bulk density of the fibre can be given as

Mgbre  Lw w

. e v A6
piib Virre  LAo Ao (4.6)
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On the other hand, the mass of the air inside the lumen is negligible compared to the mass
of the fibre wall, which can be calculated by multiplying the volume of the fibre wall LA,
by the density of cellulose pe, i.e. mgpe = LAype. Thus the bulk density can be expressed

in an alternative form ~ ~
Mfbre o LAwpc - Ach

o = = = , A7
P Vﬁbre LAO Aw + Al ( )
Combining Eqgs. (A.6) and (A.7), and solving for the ratio A;/A,, one gets

Al AOﬁc

— = — 1. A8

1 . (A-8)

Now saturated fibres are considered that have their lumens filled by water. The water inside
the lumen is forced to move with the fibre and is thus considered as bound water. The
moisture ratio of bound water of a fibre MR, is defined as the ratio of the mass of bound

water to the mass of the fibre wall:

MR, = 2 (A.9)
p

Using Eq. (A.8), the moisture ratio of bound water can be given as

Msz(AZ%—1)ﬁ (A.10)

where r is the density ratio of water and cellulose:

— (A.11)

The overall moisture ratio of a suspension is defined as the ratio of the total mass of water
to the mass of oven-dried fibres (the mass of cellulose in the fibre walls). Notice that here the
mass of water includes both the bound water inside the lumens and the free carrier water
outside the fibres. A sample volume of suspension is considered here that has the total mass
of m = m. 4+ m,,, where m,. is the mass of cellulose and m,, is the total mass of bound and

free water. Thus the moisture ratio MR is:

_ 1—
MR = o M= Me 27 F (A.12)

me My c
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where c is the percentage consistency of the suspension, ¢.e. the ratio of the mass of cellulose
to the total mass:
Mme
c=—. (A.13)
m
The total volume of the sample V' can be written in the form V' =V,, + V. where V,, and V,
is the total volume occupied by water and cellulose (fibre walls), respectively. In addition,
the total volume occupied by water can be written as V,, = Vi,5 + Vi, where V,,r and V,, is
the volume filled by free water and bound water, respectively. Now the moisture ratio can

be written in the form

Vipe Vi

My wPw V. wrFEw

MR = = —— = < — A.14
me ‘/cpc (V — wa)pc ( )

The following identity holds for the volumes:

(V= Vo)V = (V = Vig = V)V + Vi Ve = ViV + Vi Ve (A.15)
Inserting Eq. (A.15) into Eq. (A.14) results in

~ ~ Vw ~W V’w ~W
V\/%bva + wapw _ V:g; + Tfpﬁ_c
(V - wa)ﬁc 1— %

MR = (A.16)

The first term in the numerator of Eq. (A.16) equals the moisture ratio of bound water MRy,

and ¢ = V,,s/V is the porosity of the suspension. Thus the moisture ratio can be written as

B MRb + ¢7“

MR =%

(A17)
Combining Eqs. (A.17) and (A.12) one can write the following correlation between the volume
fraction of fibres ¢ and the consistency of the suspension,
(MRb + T)C
e A.18
¢ 1—(1—-r)c ( )
Furthermore, combining Eqs. (A.4) and (A.18) one gets the following expression for the

consistency, 4w (MR )
w b+ 7)e

Comd21— (1 —r)c

(A.19)

Cm
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Equation (A.19) can be inverted to get the following expression for the consistency,

(A.20)

wd%c,, -1 rd%c,,
4w 4w

c= (MRb+7’+(1—r)

Notice that it has been assumed in Eqs. (A.4), (A.19), and (A.20) that the fibres have circular

cross-section.
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