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AbstractJäsberg, AriFlow behaviour of �bre suspensions in straight pipes: new experimental techniques andmultiphase modelingJyväskylä: University of Jyväskylä, 2007, 171 p.(Research report/Department of Physics, University of Jyväskylä,ISSN 0075-465X; 8/2007)ISBN 978-951-39-2937-4diss.The work described in this thesis consists of two main topics. First, the hydrodynamic forcesacting on solid particles suspended in a �ow of a Newtonian �uid were studied with directnumerical simulations. Second, the �ow behaviour of wood �bre suspensions in straight pipeswas studied.The hydrodynamic forces acting on long solid cylinders suspended in a �ow of Newtonianliquid near a solid wall were studied with direct numerical simulations separately for a singlecylinder and a matrix of stationary cylinders with random positions. In the single-cylindercase, it was found that the nondimensional hydrodynamic drag and lift forces mainly dependon two nondimensional parameters, namely the dimensionless distance from the wall, andthe ratio of the slip Reynolds number to the shear Reynolds number. It was found that thehydrodynamic force acting on a matrix of long cylinders is qualitatively similar both forunidirectional cylinders and for cylinders with random orientation. The drag force is largestnear a moving wall and approaches zero monotonically with increasing distance from thewall. Close to the moving wall the simulated drag force deviates considerably from the dragforce predicted by Darcy's law. Strongly repulsive lift force was found near the moving wall,and the maximum value of repulsion decreases as the the width of the gap between themoving wall and the matrix is increased. The total lift force acting on the cylinders wasv



vifound strongly repulsive when the gap width is small, and decreases monotonically withincreasing gap width. For unidirectional cylinders, the total lift force changes into attractionat the distance that is of the order of the cylinder radius.The �ow behaviour of wood �bre suspensions in straight pipes exhibits a peculiar plug-�ow regime where frictional losses stay constant or even decrease with increasing �ow rate.Moreover, in the turbulent regime the losses are usually lower than those for pure water atthe same �ow rate. New experimental methods were utilized in order to gain more detailedunderstanding on the �ow behaviour and the relevant rheological material properties of wood�bre suspensions. The suspensions used in this study consisted of water and chemicallyreleased pine or birch �bres. The experiments were carried out with consistency 0.5�2.0% byweight in a �ow loop with pipe diameter 40 mm. The thickness of a lubrication layer appearingin the plug-�ow regime was determined by measuring the intensity of laser light re�ected by�bres. An observable lubrication layer is found above the �ow rate corresponding to the localmaximum in the loss curve (birch) or to the point where the loss curve levels o� (pine). Theobserved thickness of the layer decreases with increasing consistency, and the largest observedthickness was 0.4 mm and 0.11 mm for the pine and birch �bre suspensions, respectively. Thetransient behaviour of the �ow after a sudden step that acted as a turbulence generator,approach to steady state �ow, and the main features of fully developed �ow were studied.The detailed time-dependent velocity pro�les in such developing �ow were measured with apulsed ultra-sound velocimetry technique. From these velocity pro�les, the local intensity ofvelocity �uctuations was calculated. Based on the results, it is proposed that the �ow may bedivided into �ve di�erent regimes according to �ow rate, namely plug �ow with wall contact,plug �ow with a lubrication layer, plug �ow with a smearing annulus, mixed �ow, and fullyturbulent �ow. A semiempirical correlation formula for the loss was derived by utilizing themodeled velocity pro�le in the plug �ow regimes and the parametrized experimental velocitypro�le in the mixed and turbulent regimes.Keywords wood �bre suspension, friction loss, plug �ow, drag reduction, lubrication layer
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Nomenclature
a, d particle radius and diameter
R, D pipe radius and diameter
c percentage consistency (by weight)
cm consistency (by weight)
c0, cm0 threshold consistency for �bre network
CD drag coe�cient
CL lift coe�cient
Eα total energy per unit mass
Fα external force density
FD drag force
FL lift force
g gravitation vector
JEα heat source density
Jqα heat �ux into phase α

k permeability
K dimensionless permeability
Mα averaged interfacial momentum source terms for phase α

Wα averaged interfacial momentum source terms for phase α

D volumetric drag force density
L volumetric lift force density
n̂α outer unit normal vector of phase α

MR moisture ratio
MRb moisture ratio of bound water
pα pressure of pure phase α

Re, Rep particle Reynolds number based on slip velocityix



x
Reγ particle Reynolds number based on shear rate
vp particle velocity
uα velocity of pure phase α11 second rank unit tensor
〈f〉 volume/ensemble average of f

f̃ phasic average of f

f̄ de Favre average of f

s, f subscripts for solid and liquid phase
x, y, z subscripts for x,y, and z components of vector (tensor)
Q volumetric �ow rate
q mean �ow velocity
P pressure
Greek symbols
Γα rate of mass generation of phase α at phase interface
ΓG ratio of shear Renolds number to slip Reynolds number
θ phase indicator characteristic function
µα dynamic viscosity of phase α

να kinematic viscosity of phase α

ρα density of pure phase α

σα total stress tensor of phase α

τα shear stress tensor of phase α

τδα pseudo-turbulent stress tensor
τw wall shear stress
σαβ interface surface tension between phases α and β

φα volume fraction of phase α

φ porosity
ω �bre coarseness



Contents
1 Introduction 12 Multiphase �ow dynamics 52.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.2 Microscopic �ow equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.2.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.3 Multiphase equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.3.1 Volume Averaged Equations . . . . . . . . . . . . . . . . . . . . . . . 142.3.2 Constitutive relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Liquid-particle suspension . . . . . . . . . . . . . . . . . . . . . . . . 21Flow in porous medium . . . . . . . . . . . . . . . . . . . . . . . . . 243 Hydrodynamic interactions between �uid and solid particles 313.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.2 Drag and lift forces acting on a single particle . . . . . . . . . . . . . . . . . 313.3 Simulations: a single particle . . . . . . . . . . . . . . . . . . . . . . . . . . . 363.4 Simulations: a matrix of stationary cylinders . . . . . . . . . . . . . . . . . . 473.4.1 Analytic solution of the averaged �ow velocity . . . . . . . . . . . . . 483.4.2 Lattice-Boltzmann solution: unidirectional cylinders . . . . . . . . . . 503.4.3 Lattice-Boltzmann solution: random orientation of cylinders . . . . . 583.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644 Flow behaviour of wood �bre suspensions in a straight pipe 674.1 Qualitative analysis of friction loss . . . . . . . . . . . . . . . . . . . . . . . 674.2 Design methods and �ow models . . . . . . . . . . . . . . . . . . . . . . . . 694.3 Fibre interactions, �occulation and coherent networks . . . . . . . . . . . . . 754.3.1 E�ect of consistency and �bre aspect ratio on the �bre �occulation . 764.3.2 Mechanisms of �bre contacts . . . . . . . . . . . . . . . . . . . . . . . 784.3.3 Stochastic analysis and threshold consistency . . . . . . . . . . . . . 804.3.4 Fibre analysis and threshold consistency . . . . . . . . . . . . . . . . 82xi



xii CONTENTS5 Experimental work 855.1 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855.1.1 Ultrasound velocimetry . . . . . . . . . . . . . . . . . . . . . . . . . . 865.1.2 Laser-optical lubrication layer measurement . . . . . . . . . . . . . . 885.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945.2.1 Transient phenomena in developing �ow . . . . . . . . . . . . . . . . 945.2.2 Thickness of the lubrication layer . . . . . . . . . . . . . . . . . . . . 995.3 Flow regimes of wood �bre suspension in a straight pipe . . . . . . . . . . . 1036 Velocity pro�les and loss correlation 1096.1 Velocity pro�les in the plug �ow regimes . . . . . . . . . . . . . . . . . . . . 1096.2 Velocity pro�le in the mixed and turbulent �ow regimes . . . . . . . . . . . . 1176.3 Loss correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1256.3.1 Plug �ow regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1256.3.2 Mixed and turbulent �ow regimes . . . . . . . . . . . . . . . . . . . . 1316.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1347 Conclusions 139A Appendix 145A.1 The crowding factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145A.2 The solid volume fraction versus the consistency . . . . . . . . . . . . . . . . 146



Chapter 1
Introduction
A central issue in many engineering problems involving �uid �ow is estimating frictionallosses. For simple Newtonian �uids, loss in a fully developed �ow in a straight pipe is relativelyaccurately given by the famous Moody's diagram, or the related correlation formulas, whichsummarize the existing (yet incomplete) theoretical understanding on frictional �ow in closedchannels and a vast amount of carefully measured and analyzed experimental data.The �ows found in many industrial processes are inherently multiphase �ows, and theirbehaviour is frequently much more complex than that of Newtonian liquids. For example,the �ow behaviour of wood �bre suspensions in straight pipes exhibits a peculiar �ow regimewhere frictional losses stay constant or even decrease with increasing �ow rate. It has beenknown for a long time that in this regime the (more or less) rigid plug formed by �bres slideon top of a thin lubrication layer of pure water at pipe wall. Moreover, in the turbulentregime the losses are usually lower than those for pure water at the same �ow rate. Althoughthis �ow behaviour is relatively well known, this general knowledge is not su�cient forproviding us with loss correlations that are similar to those of Newtonian �uids. The practicaldesign equations used in the industry are based on experimental correlations utilizing a largeamount of data but relatively vague theoretical reasoning. The design principles are thusquite conservative and omit many �ne details of the �ow behaviour.In this work, new experimental methods were utilized in order to gain more detailed un-derstanding on the �ow behaviour and the relevant rheological material properties of wood�bre suspensions. These methods have only recently become available, and they were partlydeveloped during the experimental work described in this thesis. The suspensions used in1



2 CHAPTER 1. INTRODUCTIONthis study consisted of water and chemically released pine or birch �bres. No �llers were usedand the amount of �nes was very low. During the experiments the consistency was variedbetween 0.5% and 2.0% by weight. Moreover, direct numerical simulation were performedto get qualitative insight into the relevant force interaction occurring in �ows of wood �bresuspensions. The information extracted from these experiments and simulations was thenutilized in an e�ort to develop improved methods for predicting frictional losses in straightpipe �ow of �bre suspensions.In the second chapter of this thesis equations are reviewed that govern the �ows of multiphasesystems consisting of two or more insoluble materials. Such �ows are frequently found invarious processes within, e.g., paper and pulp industry, chemical industry and petroleumindustry. At �rst the equations are stated in a general form that applies to a wide range ofmultiphase systems that consist of insoluble materials, and then re�ne the equations intospeci�c form that can be used to solve �ows of wood �bre suspensions.The multi-phase equations that are recapitulated in the second chapter form a set of equa-tions that are coupled with interaction terms. These interactions terms include, e.g., thehydrodynamic forces acting between the phases. In the third chapter the hydrodynamic in-teractions in liquid-particle systems are studied by direct numerical simulations. Speci�cally,the hydrodynamic forces acting on stationary long cylinders suspended in a �ow of New-tonian liquid near a solid wall are studied. Emphasis will be on the so-called lift force thatis responsible for, e.g., the lubrication layer in the plug �ow regime of �bre suspension �ow.In the fourth chapter the somewhat peculiar �ow behaviour of wood �bre suspensions instraight pipes is described at a qualitative level. Some characteristic features found in ex-perimental frictional loss correlations are summarized after which various �ow regimes arestudied, and the �ow phenomena are shortly discussed that are known to produce the ob-served loss correlation. Next the most relevant e�orts on modeling the �ow of wood �bresuspension in straight pipes and on design equations and methods for determining frictionloss are reviewed.In the �fth chapter the experimental work carried out in this study on the �ow propertiesof wood �bre suspensions on straight pipes are described. New experimental methods wereused to acquire better grasp on the �ow phenomena responsible for the peculiar �ow prop-erties. The thickness of the lubrication layer in the plug-�ow regime was measured with alaser-optical device. The detailed time-dependent velocity pro�les in a developing �ow weremeasured with a pulsed ultra-sound velocimetry techniques. The experimental results are



3extensively analyzed, and based on the results, a plausibler explanation to the observed �owbehaviour is proposed. While still qualitative, this explanation contains more detailed physi-cal reasoning than the previous studies on the phenomenon; it is based on direct and detailedmeasurements of �ow pro�les.In the sixth chapter the correlations are derived that can be used to estimate frictional lossesof wood �bre suspension �ow in a straight pipe. This e�ort summarizes the work that hasbeen described in the previous chapters, and it utilizes multiphase modeling results from thesecond chapter, numerical result of the third chapter, and the experimental results from the�fth chapter.
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Chapter 2
Multiphase �ow dynamics
2.1 IntroductionIn this chapter the equations are presented that govern the �ow of a multicomponent systemconsisting of two or more insoluble materials. In such a system each point can be identi�ed asbelonging to exactly one of the materials, thus the materials form distinct domains that areseparated by well-de�ned boundaries. Di�erent physical states of one material (solid, liquid,and gas) are usually treated as separate components of the system, thus a generic phase isused to refer to each of the components and the system is called a multiphase system.Flows of insoluble multiphase systems include a wide range of �ows found in industrialprocesses. Flows of insoluble liquids are common in oil extraction, while bubbly �ows oc-cur quite frequently in cooling systems and cavitation processes. Gas-particle suspensionsor liquid-particle suspensions are characteristic to combustion processes as well as manyprocesses in chemical industry. This work will concentrate on �ows of liquid-particle suspen-sions, and especially on liquid-�bre suspensions that are fundamental within paper and pulpindustry.To start with, the generic equations governing the microscopic �ow inside each phase areshortly reviewed, and various boundary conditions are described that can be applied on in-terphase boundaries and external boundaries of the system. In most of the practical cases(and most de�nitely in liquid-�bre suspensions) inter-phase boundaries have very compli-cated shape that may change with time, and one can not �nd an exact solution to the �ow5



6 CHAPTER 2. MULTIPHASE FLOW DYNAMICSequations. The analytical studies are usually restricted to simple cases where there is, e.g.,one stationary solid object immersed in a �ow �eld. There are computational methods, e.g.the lattice-Boltzmann method, that can be used to numerically solve �ow �elds in complexgeometries that may change with time.In analytical studies one have to resort to averaged equations, in general. To that end, thegoverning mesoscopic multiphase equations are derived by applying volume averaging onthe microscopic �ow equations. These averaged equations are at �rst given in a generic formthat applies to many kinds of multiphase systems. These equations have to be equipped withadditional closure relations that bring the equations into a closed form by taking into accountspeci�c features of the system under study. These relations include, e.g., the forces actingbetween the phases. Basic principles are presented that have to be followed in inferring theclosure relations for any multiphase system. Following these general guidelines, the closurerelations are presented for liquid-particle suspensions, i.e. binary systems of solid particlessuspended in a Newtonian liquid. Finally, the closure relations for �ow in porous media arepresented. These relations apply, e.g., for plug �ow regime of �bre suspensions where �bresform a rigid porous network through which water �ows.2.2 Microscopic �ow equationsConsider a representative sample volume V which contains distinct domains of each phasesuch that V =
∑

α Vα where Vα is the volume occupied by phase α within V (see Fig. 2.1). Itis assumed that for each phase α the usual �uid mechanical equations for mass, momentumand energy conservation are valid at any interior point of Vα, namely
∂

∂t
ρα + ∇ · (ραuα) = 0 (2.1)

∂

∂t
(ραuα) + ∇ · (ραuαuα) = +∇ · σα + Fα (2.2)

∂

∂t
(ραEα) + ∇ · (ραuαEα) = (2.3)

+∇ · (uα · σα) + uα · Fα −∇ · Jqα + JEα.Here,
ρα = density of pure phase α
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Figure 2.1: A control volume V including three phases α, β, and γ.
uα = �ow velocity
σα = stress tensor
Eα = total energy per unit mass
Fα = external force density
Jqα = heat �ux into phase α

JEα = heat source density.The energy equation (2.3) is necessary only in the presence of heat transfer. For simplicity,the energy equation will be neglected from now on and only mass and momentum equationswill be considered.For a �uid phase, the stress tensor is normally written in the form
σα = −pα11 + τα, (2.4)



8 CHAPTER 2. MULTIPHASE FLOW DYNAMICSwhere
pα = pressure11 = second rank unit tensor
τα = traceless shear stress tensorHence the momentum equation becomes

∂

∂t
(ραuα) + ∇ · (ραuαuα) = −∇pα + ∇ · τα + Fα (2.5)Notice however, that the concept of 'pressure' is, in general, not useful for a solid material.In such cases it is preferable to use the total stress tensor σα and equation (2.2) instead.In order to render the equations in closed form, constitutive relations stating the propertiesof individual phases have to be given. These relations relate the stress tensor to strain (solids)and/or rate of strain (�uids). For an incompressible �uid, this relation is commonly given inthe form

τα = 2µαεα (2.6)where the rate of strain tensor is given by
εα =

1

2

(

(∇uα) + (∇uα)T
) (2.7)and µα is the dynamic viscosity of the liquid. For a Newtonian liquid, viscosity is constant(may depend on temperature), while for a non-Newtonian liquid it may depend on, e.g., onthe local rate of strain εα.2.2.1 Boundary conditionsEquations (2.1) and (2.2) for phase α are subject to the following jump conditions at theinterface Aαγ between phase α and any other phase γ inside volume V (see Fig. 2.2).

ρα(uα − us) · n̂α + ργ(uγ − us) · n̂γ = 0 (2.8)
ραuα(uα − us) · n̂α + ργuγ(uγ − us) · n̂γ = (2.9)

σα · n̂α + σγ · n̂γ −∇sσαγ +
2σαγ

|Rs|
R̂s,
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Figure 2.2: A portion of the interface between phases α and γ.where
n̂α = unit outward normal vector of phase α

us = velocity of the interface
R̂s = Rs/|Rs|
Rs = interface curvature radius vector
σαγ = interface surface tension
∇s = ∇− R̂s · ∇ = surface gradient operatorEquations (2.8) and (2.9) express the conservation of mass and momentum at the interface,respectively. Terms on the left hand side of Eq. (2.9) give the momentum carried by thematerial crossing the interface due to phase change. The �rst two terms on the right sidegive the momentum exchange due to mechanical stresses. The remaining terms give themomentum transfer due to interface surface tension, and can usually be neglected at theinterface involving solid phase.In principle, equations (2.1) and (2.2) can be solved for a selected phase to get a detailed�ow �eld. To pick up the speci�c solution, proper boundary conditions must be speci�ed ateach point of the boundary of the phase. In addition to the boundaries with other phases,this may also include parts of the external boundary of the entire system under study. In



10 CHAPTER 2. MULTIPHASE FLOW DYNAMICSaddition to the jump conditions (2.8) and (2.9) which are valid for all interfaces, boundaryconditions should take into account the material and case dependent special features of theinterface. Furthermore the interface Aα =
⋃

γ Aαγ may have a very complicated shape whichdepends on time and which actually should be solved simultaneously with the �ow equations.There are three general classes of boundary conditions. Dirichlet's boundary condition spec-i�es the value of an unknown quantity at the boundary. In the present case the unknownquantity is �ow velocity, and the boundary condition can be written as
uα = uDir. (2.10)where uDir is the known �ow velocity at the boundary. This condition is often used to set ano-slip condition for a �uid phase at the solid boundary by setting uDir equal to the localvelocity of the solid surface. This condition can also be used to specify the �ow velocity atthe inlet and outlet boundaries of the system.Neumann's boundary condition imposes a constraint on the derivatives of an unknown quan-tity. The stress tensor depends on the gradient of the velocity �eld, thus a special case ofNeumann's boundary condition can be written in the form

σα · n̂α = σNeu. (2.11)where σNeu is the known stress at the boundary. In some cases the friction at the interfacecan be neglected and the tangential shear stress set to zero. This may happen, e.g., at agas-liquid interface, where the shear stress of the liquid can be approximately neglected dueto relatively low viscosity of the gas phase.Robin's boundary condition is a combination of the two �rst types
σα · n̂α + ARob · uα = σRob. (2.12)This boundary condition is far less frequently used compared to Dirichlet's and Neumann'sboundary conditions. It has been used, e.g., for the out�ow through the tube bank whencalculating the �ow of dilute �bre suspension inside head box of paper machine[Häm93].In the context of continuum �uid mechanics, the no-slip boundary condition at the solid-�uid interface is quite often considered as an exact law of nature. However, it is only anapproximate result which breaks down when the Knudsen number becomes large. A practical



2.2. MICROSCOPIC FLOW EQUATIONS 11case of such breakdown is gas �ow in micron-sized channels in some modern Micro-Electro-Mechanical-Systems (MEMS) [MRC02]. The Knudsen number Kn is de�ned as the ratio ofthe mean-free path of the �uid molecules λ to the characteristic length scale of the �ow �eld
L,

Kn =
λ

L
. (2.13)For internal �ows, L is the length scale associated with the volume available to the �ow, e.g.the diameter of the �ow channel, while for external �ows L is the characteristic scale of theobject immersed in the �ow. The mean-free path for ideal gas at standard temperature andpressure is approximately λ = 10−7 m, hence the Knudsen number for a micron-sized channelis Kn = 0.1. This is just at the limit where the continuum �ow assumption begins to fail,and the gas cannot be considered to be in a thermodynamic equilibrium anymore. Abovethis limit the system must be solved by using kinetic theory and Boltzmann's equation.Moreover, even well below this limit, i.e. when the continuum approach is justi�ed, the no-slip condition may not be valid at the interface. This can be shown with a simple modelwhere the kinetic theory is used near the interface and continuum approach for the restof the �ow [MRC02]. The slip velocity vslip predicted by such a model is a special case ofRobin's boundary condition (2.12):

vslip =
2 − σ

σ

λ

µα

τwall (2.14)where τwall is the tangential shear stress at the interface, and σ is the tangential accom-modation coe�cient. This dimensionless number gives the relative amount of the tangentialmomentum lost by gas molecules as they collide with the solid phase. For an idealized inter-face (perfectly smooth) the molecules conserve their tangential momentum (σ = 0), whereasin the case of an extremely rough surface, the molecules lose, on average, their entire tan-gential momentum (σ = 1). For very smooth interfaces, the slip velocity is thus large or,putting it the other way round, tangential shear stress is small.It is straightforward to show that for laminar �ow in a pipe of circular cross-section, theratio of the slip velocity given by Eq. (2.14) to the average �ow velocity q is given by
vslip

q
= 8Kn (2.15)where the Knudsen number is de�ned with pipe diameter D, i.e. Kn = λ

D
As an example,



12 CHAPTER 2. MULTIPHASE FLOW DYNAMICSconsider the �ow of oxygen at the normal temperature T = 273.15 K and at the pressure
P = 750 mmHg = 100.0 kPa. The mean free path of oxygen in this state is λ = 90.5 nm[Wea74]. In order to keep the velocity ratio given by Eq. (2.15) below 5%, the Knudsennumber should be less than 0.00625. Hence, the minimum pipe diameter would be D = 14 µm.Due to many complicated features discussed above, it is not always possible to apply theboundary conditions and to solve the microscopic equations (2.1) and (2.2) in the usualmanner. This is the basic reason why one have to resort to averaged equations, in general.These averaged equations are reviewed in the next section.



2.3. MULTIPHASE EQUATIONS 132.3 Multiphase equations
In this section the 'equations of multi-phase �ow' appropriate within the Eulerian approachare reviewed by closely following the approach used by Soo [Soo90]. First, suitable averageddynamic �ow quantities are de�ned, and then the required �ow equations are derived byaveraging the corresponding 'microscopic' phasial equations (2.1), and (2.2). For derivationof the energy equation for multi-phase �ows see e.g. Refs. [Soo90] and [Hwa89].The averaging procedure can be carried out in several alternative ways. Perhaps the mostcommon approaches are time averaging [Ish75, Dre83], volume averaging [Ish75, Dre83,Soo90, Dre71, DS71, Nig79] and ensemble averaging [Ish75, Dre83, Buy71, Hwa89, JL90].Various combinations of these basic methods can also been considered [Ish75]. Also, a ho-mogenization method of multiple-scale asymptotic expansions has been used to derive thegoverning equations at the mesoscopic level from the microscopic equations [BA98, CP07].It appears, however, that irrespectively of the method used, the averaging procedure leadsto equations of the same generic form, namely the form of the original phasial equationsexcept for a few additional terms which include the interactions i.e. exchange of mass, mo-mentum and energy between the phases. Each averaging procedure may, however, providea slightly di�erent view in the physical interpretation of the interaction terms and, conse-quently, may suggest di�erent solutions to the closure problem that is invariably associatedwith the solution of these equations. The manner, in which the various possible interac-tion mechanisms are naturally divided between these additional terms, may also depend onthe averaging procedure being used. While ensemble averaging appears as the most elegantapproach from the theoretical point of view, volume averaging provides perhaps the mostintuitive and straightforward interpretation of the dynamic quantities and interaction termsinvolved. Volume averaging also illustrates the potential problems and intricacies that arecommon to all averaging methods. Thus the study is restricted to volume averaging methodwhich is based on the assumption that a length scale Lc exists such that Lm << Lc << LS ,where Lm is the 'mesoscopic' length scale associated with the distribution of the variousphases within the mixture and LS is the 'macroscopic' length scale of the entire system.
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Figure 2.3: Characteristic length scales in a multiphase �ow system.2.3.1 Volume Averaged Equations
For any quantity qα (scalar, vector or tensor) de�ned in phase α the following averages arede�ned [Ish75, Hwa89]

〈qα〉 =
1

V

∫

Vα

qα dV (2.16)
q̃α =

1

Vα

∫

Vα

qα dV =
1

φα
〈qα〉 (2.17)

q̄α =

∫

Vα
ραqα dV

∫

Vα
ρα dV

=
〈ραqα〉
φαρ̃α

, (2.18)where
φα = Vα/V. (2.19)



2.3. MULTIPHASE EQUATIONS 15is the volume ratio of phase α and is subject to the constraint that
∑

α

φα = 1. (2.20)The quantities de�ned by Eqs. (2.16), (2.17) and (2.18) are called the partial average, theintrinsic or phasic average and the Favré or mass weighted average of qα, respectively. Atthis point the decision is postponed of which particular average of each �ow quantity oneshould choose to appear as the �nal dynamic quantity of the averaged theory.
In order to derive the governing equations for the averaged quantities de�ned above, aver-aging is applied to the microscopic equations (2.1) and (2.2). To this end, it is �rst noticedthat the following rules apply to the partial averages (and to the other two averages),

〈f + g〉 = 〈f〉 + 〈g〉 (2.21)
〈〈f〉g〉 = 〈f〉〈g〉 (2.22)
〈C〉 = C for constant C. (2.23)It is also rather straightforward to show that the following rules hold for partial averages ofvarious derivatives of qα [Soo90],

〈∇qα〉 = ∇〈qα〉 +
1

V

∫

Aα

qαn̂α dA (2.24)
〈∇ · qα〉 = ∇ · 〈qα〉 +

1

V

∫

Aα

qα · n̂α dA (2.25)
〈 ∂

∂t
qα〉 =

∂

∂t
〈qα〉 −

1

V

∫

Aα

qαus · n̂α dA. (2.26)Applying partial averaging on both sides of Eqs. (2.1) and (2.2) and using Eqs. (2.21)-(2.26)the following equations are obtained
∂

∂t
〈ρα〉 + ∇ · 〈ραuα〉 = Γα (2.27)

∂

∂t
〈ραuα〉 + ∇ · 〈ραuαuα〉 = −∇〈pα〉 + ∇ · 〈τα〉 + 〈Fα〉 + Mα, (2.28)



16 CHAPTER 2. MULTIPHASE FLOW DYNAMICSwhere the 'transfer integrals' Γα and Mα are de�ned by
Γα = − 1

V

∫

Aα

ρα(uα − us) · n̂α dA (2.29)
Mα =

1

V

∫

Aα

(−pα11 + τα) · n̂α dA

− 1

V

∫

Aα

ραuα(uα − us) · n̂α dA. (2.30)Obviously, the �ow equations (2.27) and (2.28) are not yet given in a closed form amenable forsolution. Firstly, the properties of each pure phase are not speci�ed at this point. Secondly,the transfer integrals (2.29) and (2.30), which include the interactions (mass and momentumtransfer) between phases, are still given in terms of integrals of the original microscopicquantities over the unknown phase boundaries. The additional constitutive relations, whichare required to specify the material properties and to relate the transfer integrals with theproper averaged quantities, are discussed in more detail below. Thirdly, averages of variousproducts of original variables that appear on the left side of the equations are, in principle,independent of each other. Even in the case that all the necessary constitutive relations areassumed to be known, one still has more independent variables than equations for each phase.In order to reduce the number of independent variables, one must express averages of theseproducts in terms of products of suitable averages. This can be done in several alternativeways which may lead to slightly di�erent results. Here, Favré averaging is used for velocityand, depending on which is more convenient, either partial or intrinsic averaging is used fordensity and pressure. De�ning the velocity �uctuation δuα by
uα = ūα + δuα, (2.31)it is easy to see that the averages of products that appear in Eqs. (2.27) and (2.28) can bewritten as

〈ραuα〉 = 〈ρα〉ūα = φαρ̃αūα (2.32)
〈ραuαuα〉 = 〈ρα〉ūαūα + 〈ραδuαδuα〉 (2.33)

= φαρ̃αūαūα + 〈ραδuαδuα〉



2.3. MULTIPHASE EQUATIONS 17The averaged equations now acquire the form
∂

∂t
(φαρ̃α) + ∇ · (φαρ̃αūα) = Γα (2.34)

∂

∂t
(φαρ̃αūα) + ∇ · (φαρ̃αūαūα) =

−∇(φαp̃α) + ∇ · 〈τα〉 + φαF̃α + Mα + ∇ · τδα, (2.35)where
τδα = −〈ραδuαδuα〉. (2.36)This tensor is sometimes called a pseudo-turbulent stress tensor since it is analogous to theusual Reynolds stress tensor of turbulent one-phase �ow. Notice however, that tensor τδα isde�ned here as a volume average instead of a time average as in the case of the usual Reynoldsstress. It also contains momentum �uxes that arise both from the turbulent �uctuations ofthe microscopic �ow and from the �uctuations of the velocity of phase α due to the presenceof other phases. Consequently, tensor τδα does not necessarily vanish even in the case thatthe microscopic �ow is laminar.Integrating the microscopic boundary conditions (2.8) and (2.9) over the interface Aαγ ,summing over α and γ and using de�nitions (2.29) and (2.30), it is found that

∑

α

Γα = 0 (2.37)
∑

α

Mα = − 1

2V

∑

α,γ

α6=γ

∫

Aαγ

(−∇sσαγ +
2σαγ

|Rs|
R̂s)dA. (2.38)Equation (2.37) ensures conservation of the total mass of the mixture, while the right side ofEq. (2.38) gives rise to surface e�ects such as 'capillary' pressure di�erences between variousphases.Equations (2.34) and (2.35) together with constraints (2.20), (2.37) and (2.38) are the mostgeneral averaged equations of multi-phase �ow (with no heat transfer), which can be de-rived without reference to the particular properties of the system (other than the generalcontinuum assumptions).The basic dynamic variables of the averaged theory can be taken to be the three componentsof the mass-averaged velocities ūα and the volume fractions φα (or, alternatively, the averaged



18 CHAPTER 2. MULTIPHASE FLOW DYNAMICSdensities 〈ρα〉). Provided that all the other variables and terms that appear in Eqs. (2.34)and (2.35) can be related to these basic variables using de�nitions (2.16) through (2.18),constraints (2.20), (2.37) and (2.38) and constitutive relations, one thus has a closed set offour unknown variables and four independent equations for each phase α.



2.3. MULTIPHASE EQUATIONS 192.3.2 Constitutive relationsEquations (2.34) and (2.35) are, in principle, exact equations for the averaged quantities. Sofar, they do not contain much information about the dynamics of the particular system tobe described. That information must be provided by a set of system dependent constitutiverelations which specify the material properties of each phase, the interactions between di�er-ent phases and the (pseudo)turbulent stresses of each phase in the presence of other phases- and which �nally render the set of equations in a closed form where solution is feasible.At this point we do not attempt to elaborate in detail the possible strategies for attainingthe constitutive relations in speci�c cases, but simply state the basic principles that maybe followed in inferring such relations. The unknown terms that appear in the averagedequations (2.34) and (2.35), such as the transfer integrals and stress terms that still containmicroscopic quantities, should be replaced by new terms which [Dre83]
• depend only on the averaged dynamic quantities (and their derivatives),
• have the same physical content, tensorial form and dimension as the original terms,
• have the same symmetry properties as the original terms (isotropy, frame indi�erenceetc.),
• include the e�ects of all the physical processes or mechanisms that are considered tobe important in the system to be described.Typically, constitutive relations are given in a form where these new terms include free pa-rameters which are supposed to be determined experimentally. For more detailed discussionon the constitutive relations and constitutive principles, see e.g. Refs. [DAL90, Dre83, DL79,Dre76, Hwa89, HS89, HS91, BS78, Buy92a, Buy92b].In some cases constitutive laws can readily be derived from the microscopic properties of themixture, or from the properties of the pure phase. If e.g. the pure phase α is incompressiblei.e. ρα = constant, that implies the constitutive relation ρ̃α=constant. Similarly, the equationof state pα = Cρα, where C=constant for the pure phase, implies p̃α = Cρ̃α. In most cases,however, the constitutive relations must be extracted from experiments, derived analyticallyunder suitable simplifying assumptions, or postulated.



20 CHAPTER 2. MULTIPHASE FLOW DYNAMICSIncluding a given physical mechanism in the model by imposing proper constitutive relationsis not, however, always very straightforward even in the case that adequate experimental andtheoretical information is available. Especially making speci�c assumptions concerning oneof the unknown quantities may induce constraints on other terms. For example, the transferintegrals Γα and Mα contain the e�ect of exchange of mass and momentum between thephases. According to Eq. (2.29), the quantity Γα gives the rate of mass transfer per unitvolume through the phase boundary Aα into phase α from the other phases. In a reactivemixture, where phase α is changed into phase γ, the mass transfer term Γα might be givenin terms of the experimental rate of the chemical reaction α → γ as correlated e.g. tothe volume fractions φα and φγ, temperature of the mixture T etc. Similarly, the quantity
Mα gives the rate of momentum transfer per unit volume into phase α through the phaseboundary Aα. The second integral on the right side of Eq. (2.30) contains the transfer ofmomentum carried by the mass exchanged between phases. It is obvious that this part ofthe momentum transfer integral Mα must be consistently correlated with the mass transferintegral Γα. Similarly, the �rst integral on the right side of Eq. (2.30) contains the change ofmomentum of phase α due to stresses imposed on the phase boundary by the other phases.Physically, this term contains forces such as buoyancy which may be correlated to averagepressures and gradients of volume fractions, and viscous drag which might be correlated tovolume fractions and average velocity di�erences. For instance in a liquid-particle suspension,the average stress inside solid particles depends on the hydrodynamic forces acting on thesurface of the particles. The choice of e.g. drag force correlation between �uid and particlesshould therefore in�uence the choice of the stress correlation for the particulate phase. Whilethis particular problem can be solved exactly for idealized cases [DAL90], there seems to beno algorithm available for accomplishing this in a general case.Perhaps the most intricate term which is to be correlated to the averaged quantities throughconstitutive relations is, however, the tensor τδα given by Eq. (2.36). It contains the momen-tum transfer inside phase α, which arises from the genuine turbulence of phase α and fromthe velocity �uctuations that arise due to presence of other phases, and that are also presentin the case that the microscopic �ow is laminar. Moreover, the truly turbulent �uctuations ofphase α may be substantially modulated by the other phases. Bearing in mind the intricaciesthat are encountered in modeling turbulence in single phase �ows, it is evident that inferringrealistic constitutive relations for tensor τδα remains as a considerable challenge. It may,however, be attempted e.g. for �uid-particle suspensions by generalizing the correspondingmodels for single phase �ows, such as turbulence energy dissipation models, large-eddy sim-



2.3. MULTIPHASE EQUATIONS 21ulations or direct numerical simulations. A review on the topic is given by Crowe, Trouttand Chung in Ref. [CTC96].It should be emphasized that no general set of equations exists that, as such, would be validand readily solvable for an arbitrary multi-phase �ow, or even for an arbitrary two-phase�ow. Instead, for each particular system, the �ow equations should be derived separatelystarting from the general (but unclosed) set of equations given in section (2.3) and utilizingall the speci�c assumptions and approximations that are plausible for that system.Next two particular cases are discussed that are most relevant to this thesis, namely liquid-particle suspension and �ow in the porous medium.
Liquid-particle suspensionConsider a binary system of solid particles suspended in a Newtonian liquid. The continuous�uid phase is denoted by subscript f and the dispersed particle phase by subscript s. It isassumed that both phases are incompressible, that the suspension is non-reactive i.e. thereis no mass transfer between the two phases and that surface tension between solid and liquidis negligible. Both the densities ρ̃f and ρ̃s are thus constants, and

Γf = Γf = 0 (2.39)
Mf + Ms = 0. (2.40)The mutual momentum transfer integral can now be written as

M ≡ Mf = −Ms =
1

V

∫

Af

(−pf11+ τf) · n̂f dA

= − 1

V

∫

A

(−pf11 + τf) · n̂ dA, (2.41)where A = Af = As and n̂ = n̂s = −n̂f . Introducing the �uid pressure �uctuation by
δpf = pf − p̃f , the momentum transfer integral can be written in a form

M = p̃f (
1

V

∫

A

n̂ dA) + W, (2.42)



22 CHAPTER 2. MULTIPHASE FLOW DYNAMICSwhere
W = − 1

V

∫

A

(−δpf11 + τf) · n̂ dA. (2.43)Next, the characteristic function of the dispersed phase θs(r) is de�ned such that it has thevalue 1 if r is in the dispersed phase and 0 otherwise. Denoting φ ≡ φf , whereby φs = 〈θs〉 =

1 − φ, and applying Eq. (2.24) with qα = θs(r), it is easy to see that
1

V

∫

A

n̂ dA = ∇φ. (2.44)From Eq. (2.42) one thus gets
M = p̃f ∇φ + W. (2.45)The averaged �ow equations can now be written as

∂

∂t
φ + ∇ · (φūf) = 0 (2.46)

∂

∂t
(1 − φ) + ∇ · ((1 − φ)ūs) = 0 (2.47)

ρ̃f [
∂

∂t
(φūf) + ∇ · (φūf ūf)] = −φ∇p̃f + ∇ · 〈τf〉 + φF̃f

+W + ∇ · τδf (2.48)
ρ̃s[

∂

∂t
((1 − φ)ūs) + ∇ · ((1 − φ)ūsūs)] = +∇ · 〈σs〉 + (1 − φ)F̃s

−W − p̃f ∇φ + ∇ · τδs, (2.49)where 〈τf〉 is the averaged viscous stress tensor of the �uid, and 〈σs〉 is the averaged totalstress tensor of the dispersed phase. The �rst term on the right side of Eq. (2.45) is calledbuoyancy. Despite of its name, this term is not the buoyancy acting on immersed bodies asgiven by Archimedes' principle. In fact, Archimedes' buoyancy is proportional to the pressuregradient and is included in the �rst term on the right side of Eq. (2.48).In the Eqs. (2.46)-(2.49) one has eight equations for the eight unknowns that can be takento be the volume fraction of the �uid φ, �uid pressure p̃f and the three components of boththe velocities ūf and ūs. It remains to specify the constitutive relations for the viscous stresstensor of the �uid 〈τf〉, the total stress tensor of the particulate phase 〈σs〉, the momentumtransfer integral W, and the turbulent stresses τδs and τδf .



2.3. MULTIPHASE EQUATIONS 23The constitutive relation for the viscous stress tensor of the �uid 〈τf〉 can be derived simplyby performing the volume averaging of the microscopic tensor τf = µf((∇uf) + (∇uf)
T) andusing Eq. (2.24). The averaged surface velocity Ūsurf is de�ned by

1

V

∫

Af

uf n̂f dA = Ūsurf
1

V

∫

Af

n̂f dA = −Ūsurf∇φ, (2.50)and postulate that Ūsurf = būs − (1− b)ūf , where b = b(φ) is a free parameter (the 'mobility'of the dispersed phase) and acquires values between 0 and 1. It is then easy to see that theviscous stress tensor of the �uid can be given as
〈τf〉 = φµf

(

(∇ūf) + (∇ūf)
T
)

− bµf((∇φ)(ūs − ūf) + (ūs − ūf)(∇φ)), (2.51)which is identical to the result that Ishii stated without a proof[Ish75].



24 CHAPTER 2. MULTIPHASE FLOW DYNAMICSFlow in porous mediumMost porous materials of practical interest consist either of particles packed in a more orless disordered manner or of a consolidated irregular porous structure. Examples of suchmaterials are numerous: sand, soil, fractured rock, ceramics, sponge, paper etc. Many im-portant processes found in geophysics or in various industrial applications involve �ow of�uid through a porous medium. In some cases, such as in slow transport of ground waterthrough an aquifer, the porous material can be considered rigid so that the structure of thesolid matrix is not signi�cantly deformed during the process. The basic equation for such a�ow is given by the famous Darcy's law, which was originally inferred from purely empiricalresults for a stationary creeping �ow of Newtonian liquid through a homogeneous column ofsand [Bea72]. With processes such as removal of water from a sponge by squeezing it, theporous structure appears soft and may thus be extensively deformed by external forces andby hydrodynamic forces exerted on the solid matrix by the �uid �ow.In this section, Darcy's experimental formula is utilized in the context of the multiphase �owtheory and derive the governing equations for time dependent creeping �ow of Newtonianliquid through a soft porous medium. Formally, the system of the highly deformable solidmatrix and the liquid �owing through the interstities of the matrix is treated as a binarymixture of two �uids. It is assumed again that both phases are incompressible, that there isno mass transfer between the two phases and that surface tension between the solid materialand the liquid is negligible. The situation is thus reminiscent to the liquid-particle suspensiondiscussed in Section (2.3.2), and Eqs. (2.46)-(2.49) and (2.51) are valid for the present system.A few simpli�cations as compared to the liquid-particle suspension can, however, be madein this case. By assuming creeping �ow the inertial terms that appear on the left side ofEqs. (2.48) and (2.49) can be neglected. Furthermore, the pseudoturbulent stress term ∇·τδsvanishes in the solid phase and is expected to be very small also in the �uid phase in this�ow regime. According to Darcy's early experiments and innumerable later experiments, thedominant interaction mechanism in a �ow through porous medium is viscous drag D. Theresults of these experiments, as summarized by the Darcy's law, indicate that the momentumtransfer integral W should be written in a form
W = D = −µf

k
(ūf − ūs). (2.52)Here, k = k(φ) is the permeability of the porous material, which remains to be determined.



2.3. MULTIPHASE EQUATIONS 25Notice that permeability is, in general, a tensor of second rank and the momentum transfervector may point to a direction that is not aligned with the velocity di�erence between thephases. However, in this monograph only isotropic materials will be considered for which thepermeability is fully described by one scalar value k, and thus Eq. (2.52) applies.Several experimental correlations for k have been reported in literature for di�erent typesof porous media (see e.g. ref. [Bea72]). Perhaps the most common formula which can bederived analytically for simpli�ed capillary models of porous materials and which at leastqualitatively grasps the correct behaviour for many materials, is the Kozeny-Carman relation
k =

1

cS2
0

φ

(1 − φ)2
. (2.53)Here, S0 is the speci�c pore surface area and c is the dimensionless Kozeny constant whichacquires values between 2 and 10, in practice. (Notice that due to the conventions used here,Eq. (2.53) di�ers from its more usual form where φ3 instead of φ appears in the numerator,see Eq. (2.67) below.) The Kozeny-Carman relation does not predict well the permeabilityof �brous porous materials with high porosity. There are several analytic results derivedespecially for �brous porous materials that can be used for relatively high porosities. Theseresults include,e.g., the correlations derived by Happel [Hap59], by Kuwabara [Kuw59], andby Jackson and James [JJ86]:

k

a2
= 1

8φs(1−φs)2

(

− ln φs + φ2
s−1

φ2
s+1

) (Happel) (2.54)
k

a2
= 1

8φs(1−φs)2

(

− ln φs − 3
2

+ 2φs

) (Kuwabara) (2.55)
k

a2
= 3

20φs(1−φs)2
(− ln φs − 0.931) (Jackson and James) (2.56)where φs = 1 − φ is the volume fraction of �bres, and a is the characteristic length scaleof the permeability. All these results were derived for smooth uniradius cylinders, and a isthe radius of cylinders. Eqs. (2.54) and (2.55) were derived for �ow perpendicular to a rigidarray of randomly placed parallel cylinders, while Eq. (2.56) is a weighted average of thepermeabilities for �ow parallel and perpendicular to an array of cylinders.Ghaddar considered random porous media made of uniradius parallel cylinders and simulated�ow perpendicular to the cylinders[Gha95]. He used solid volume fractions in the range 0.05�

0.58 and found that the dependence on the volume fraction of the simulated permeability is



26 CHAPTER 2. MULTIPHASE FLOW DYNAMICSdescribed quite accurately by a simple exponential formula
k

a2
= 4.684 exp(−12.736φs). (2.57)Koponen et al simulated �ow through �brous porous material with the lattice-Boltzmann nu-merical method [KKH+98]. They found the following interpolation formula for the simulatedpermeability

k

a2
= 5.55

(

(1 − φs)
2(exp(10.1φs) − 1)

)−1 (2.58)The functional forms of the permeabilities given by Eqs. (2.54)�(2.56) and (2.58) are showin Fig. 2.4. Also shown in the �gure are numerical results by Ghaddar[Gha95].
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Figure 2.4: The permeabilities given by Eqs. (2.54)�(2.56) and (2.58) as functions of solidvolume fraction φs. The open circles are the results corresponding to the lowest three solidvolume fractions used in Ref. [Gha95].If the porosity φ is not too close to unity, the viscous shear stress term ∇ · 〈τf〉 is smallcompared to the viscous drag term and can be neglected. Taking gravitation to be the onlybody force, the equations for a �ow of liquid in a deformable porous medium can thus be



2.3. MULTIPHASE EQUATIONS 27written in a form
∂

∂t
φ + ∇ · (φūf) = 0 (2.59)

∂

∂t
(1 − φ) + ∇ · ((1 − φ)ūs) = 0 (2.60)

φ∇p̃f = −µf

k
(ūf − ūs) + φρ̃fg (2.61)

−∇ · 〈σs〉 = +
µf

k
(ūf − ūs) − p̃f ∇φ + (1 − φ)ρ̃sg. (2.62)Adding Eqs. (2.59) and (2.60) and Eqs. (2.61) and (2.62) one arrives at the mixture equations

∇ · 〈q〉 = 0 (2.63)
∇ · 〈T〉 = −〈ρ〉g, (2.64)where 〈q〉 = φūf + (1 − φ)ūs is the volume �ux, 〈T〉 = −φp̃f11+ 〈σs〉 is the total stress, and

〈ρ〉 = φρ̃f + (1 − φ)ρ̃s is the density of the mixture.For linearly elastic materials, the stress tensor 〈σs〉 is readily given as a function of local strainby Hooke's law. For viscoelastic materials instead, 〈σs〉 may depend both on the strain andon the rate of strain (i.e. on ūs). The fact that the solid phase is actually not a �uid in anordinary sense indicates that a �nite stress implies �nite strain on the solid matrix. It followsthat the velocity of the solid phase can be non-zero only in a transient state. In a stationarystate (and in the case of rigid porous material) one has ūs = constant. The porosity φ isthen independent of time, and in the frame of reference attached to the porous material (i.e.
ūs = 0) the �ow equations are reduced to

∇ · qf = 0 (2.65)
qf = − k̄

µf

(∇p̃f − ρ̃fg), (2.66)and one of equations (2.62) or (2.64). Here qf = φūf is the volume �ux of the �uid (the'seepage' velocity), and
k̄ =

1

cS2
0

φ3

(1 − φ)2
. (2.67)Eq. (2.66) is the Darcy's formula in its conventional form.



28 CHAPTER 2. MULTIPHASE FLOW DYNAMICSThere are cases where the viscous shear stress term ∇ · 〈τf〉 is of comparable magnitudewith the viscous drag term and must be retained in the formulation. One example is the�ow in a channel partly �lled with porous medium surrounded by an annulus of pure liquid.It is evident that the shear �eld of pure liquid in the annulus penetrates the porous plugfor some depth, and in some cases the �ow �eld in this transitional region may be essentialin analyzing the interactions, e.g. the lift force, between the phases. To solve the pro�le ofaverage liquid velocity in this transitional region, the shear stresses inside the annulus andinside the plug must be matched at the plug surface. The viscous shear stress is given byEq. (2.51). In the current case ūs = constant, thereby the averaged surface velocity of the�uid Ūsurf de�ned by Eq. (2.50) equals ūs, and the mobility parameter b is unity. Hence, theaveraged viscous shear stress tensor of the �uid can be written as
〈τf〉 = φµf

(

(∇ūf) + (∇ūf)
T
)

− µf((∇φ)ūs + ūs(∇φ)). (2.68)There are also cases where one has to consider the momentum transfer between the phasesin the direction perpendicular to the main �ow, i.e. the hydrodynamic lift force. This forcequite often plays an important role in �ows near solid walls. It may have a remarkable e�ecton the �ow properties of liquid-particle suspensions, and it is most likely responsible for alubrication layer in the �ow of wood-�bre suspension in straight pipes. In these cases, Eq.(2.52) is replaced with
W = −µf

k
(ūf − ūs) + L. (2.69)where L is the volumetric lift force density acting on the �uid phase. This force points in thedirection perpendicular to the velocity di�erence ūf − ūs. Notice that the lift force density Lis solely due to the inertial e�ects in the �ow, while the corresponding transverse componentof the momentum transfer integral M includes the e�ect of buoyancy, as well (see Eq. (2.45)).Now a generic set of equations is introduced that applies to the wide range of �ows in porousmedium with possible solid walls (exterior to porous medium) involved. To that end Eq.(2.69) is substituted for the interaction term W in Eqs. (2.48) and (2.47), and the inertialterms and the pseudoturbulent term of the solid phase are dropped. The resulting equationsare

φ∇p̃f = ∇ · 〈τf〉 −
µf

k
(ūf − ūs) + φρ̃fg + L + ∇ · τδf (2.70)

−∇ · 〈σs〉 = +
µf

k
(ūf − ūs) − p̃f ∇φ + (1 − φ)ρ̃sg − L. (2.71)



2.3. MULTIPHASE EQUATIONS 29together with the Eqs. (2.59) and (2.62) for the conservation of mass. Notice that thepseudoturbulent stress term of the �uid phase has been included in Eq. (2.70). It will bedemonstrated in Sect. 3.4 that this term has a remarkable contribution to the hydrody-namic lift force acting on the solid particles near a moving wall. If one considers the �rstthree terms of Eq. (2.70), they are quite similar to the famous equation that was derivedby Brinkman [Bri47] to describe �ow through a rigid bed of randomly deposited sphericalparticles. Brinkman extended the drag force on a sphere to include the e�ect of neighbouringspheres by combining the Stokes equation (Eq. (2.5) without time dependent and nonlinearterms and without external force) with Darcy's law:
∇p = µ′

f∇2u +
µf

K
u (2.72)where the viscosity µ′

f may di�er µf . Notice that while Brinkman's derivation of Eq. (2.72)is a heuristic one, Eq. (2.70) was derived from basic single-phase �ow equations by applyingvolume averaging.To summarize, in this chapter the general multiphase �ow equations were derived by volumeaveraging the microscopic �ow equations of each phase. General principles of constitutiverelations were discussed and the closure relations were reviewed for two cases that haveimportance within the scope of this monograph, namely liquid-particle suspension and �owin porous medium. These results will be utilized while studying the result of the directnumerical simulations in Chap. 3, and in deriving a multiphase model for the plug �ow ofwood �bre suspension in Chap. 6.
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Chapter 3
Hydrodynamic interactions between �uidand solid particles
3.1 IntroductionIn this chapter the hydrodynamic forces acting on stationary cylinders suspended in a shear�ow of Newtonian �uid near a solid wall are studied. The numerical simulations describedhere were carried out in order to gain understanding on the dynamics of the lubrication layerfound in the �ow wood �bre suspensions in straight pipe.The �rst goal of this study is to learn the basic features of hydrodynamic interactions betweenthe �uid and a single stationary cylinder in a presence of a solid wall. This was achieved bynumerically computing the drag coe�cient and the lift coe�cient of the cylinder for various�ow conditions, and correlating the calculated coe�cients with the relevant dimensionlessparameters that characterize the �ow. In order to gain qualitative understanding on the �owof �bre plug near a wall, a random rigid array of long cylinders suspended in a �ow of aNewtonian �uid between two walls is considered.3.2 Drag and lift forces acting on a single particleHydrodynamic forces acting on solid particles suspended in a �ow of a Newtonian �uid havebeen studied for a long time. In middle 19's Stokes studied creeping �ow of unbounded �uid31



32 CHAPTER 3. HYDRODYNAMIC INTERACTIONSpast a rigid sphere and derived the famous formula for the drag force acting on the sphere[LL87],
FD = 6πµfav. (3.1)Here FD is the drag force, µf is the dynamic viscosity of the �uid, a is the radius of the sphere,and v is the velocity of the sphere. Since Stokes' zeroth order approximation Eq. (3.1) theconcept of drag has been discussed by many authors and many higher order corrections to thisformula have been reported [LL87, Lam75]. In the meantime, drag has also been measured innumerous experiments, and today one can �nd drag coe�cients for various cases in standardhandbooks [BT83]. From practical point of view, drag on submerged bodies is understoodadequately.The force acting on an immersed body in the direction that is orthogonal to the �ow, the'lift force' (or 'side force'), is not understood at such a comprehensive level. Especially, thelift force acting on a particle near a wall can have a remarkable e�ect on closed channel�ows of suspensions, since the migration of particles away from the walls due to such a liftforce can lead to a formation of a pure �uid layer next to the walls. This �lubrication layer�a�ects the �ow properties of the suspension considerably, and contributes to the so-calleddrag reduction found in many suspension �ows. A famous example of such a phenomenon isthe �ow of blood in small vessels [SS62]. Another example with industrial relevance is thepipe �ow of paper pulp. It has also been reported that the lateral migration of particles maya�ect the experimental results from Couette-viscometry [SS62].The e�ect of the lift force was already reported by Poiseuille, although the phenomenonwas overlooked or misinterpreted at that time. It was the rigorous experiments devicedby Segre and Silberberg [SS62] for over a century after Poiseuille's work that undoubtedlydemonstrated the existence of the lift force. Their experiments showed that spherical particlesin laminar pipe �ow migrate to a preferred radial position. This observation induced activetheoretical study of the subject including both analytical considerations using perturbationtheories, and direct numerical simulations (see Refs. [CM71, Lea80, Feu89, FHJ94] for acomprehensive review of experimental and theoretical work on the subject).Notice that �uid dynamics text books, usually, cite only the two most famous results, namelythe Sa�man force and the Magnus force. These forces can be explained with the pressuredi�erence due to di�erent �ow velocities on the opposite sides of a particle. Sa�man derivedthe lift force acting on a sphere suspended in an unbounded shear �ow [Saf65]. The Sa�man



3.2. DRAG AND LIFT FORCES ACTING ON A SINGLE PARTICLE 33force scales with the slip velocity between the �uid and the particle and with the square rootof the shear rate of the undisturbed �ow �eld. The Magnus force is the lift force that actson a rotating cylinder suspended in a �ow, and it scales with the angular velocity of thecylinder and the slip velocity [Whi94]. Notice however, that there are cases where the liftforce appears much more complicated than the well-known Sa�man force or Magnus force.Especially, the presence of solid walls modi�es the lift force considerably[CM94].Based on the reversibility argument one can show that a spherical particle suspended in aStokes �ow cannot experience any lift force [CM71]. The lift force observed experimentallythus arises due to inertial e�ects. In some cases one can estimate the magnitude of the liftforce using an iterative procedure where the inertial terms are calculated at each iterativestep using the next lower-order approximation of the �ow �eld. In some speci�c occasionshowever (called 'e�ectively unbounded cases'), Stokes' solution can not be used as the ze-roth order approximation throughout the �ow domain. A famous example of such a case isthe two-dimensional �ow past a cylinder. Neglecting the inertia of the far �eld in such a�ow leads in Whitehead's paradox, where the proper boundary conditions of the �rst orderapproximation can not be satis�ed[PP57]. The reason for the discrepancy is that althoughStokes' solution provides a good approximation to the �ow velocity everywhere in the �ow�eld, the velocity gradients used to calculate the inertial terms in the next order are seri-ously in error in the far �eld. One way to avoid Whitehead's paradox is to use the methodof matched asymptotic expansions [PP57]. In this approach the �ow in the viscous regionnear the particle is calculated using Stokes' equation while the �ow in the inertial region farfrom the particle is calculated using Oseen's equation. The two solutions are matched in anarrow overlapping region. Using this technique Sa�man [Saf65] derived an expression forthe lift force acting on a sphere that moves and rotates in a linear shear �eld when the shearrate is high compared to the velocity di�erence between the sphere and undisturbed �uid.Later, McLaughlin [McL91] extended Sa�man's result to allow weaker shear rates. Brether-ton [Bre62] studied the lift force in a two-dimensional case and derived an expression for thelift force acting on a circular cylinder suspended in a simple shear �ow v = (vx + γy)x̂+ vyŷof unbounded �uid
F = 4πµfaγ

[

R
(

Hvx + Kvy

τ − ln Re1/2
γ

)

x̂ + R
(

Evx + Fvy

τ − ln Re1/2
γ

)

ŷ

]

, (3.2)where R(z) is the real part of complex number z, and the complex constants are E =
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−2.11 i, F = −1 + 0.289 i, H = 1 + 0.289 i, K = −0.513 i, and τ = 0.679 + 0.798 i. TheReynolds number based on the shear rate is

Reγ =
ρfγa2

µfwhere ρf is the density of the �uid and a is the radius of the cylinder. All these e�ectivelyunbounded theories predict a lift force that depends on viscosity and is linearly dependenton the velocity di�erence between the particle and undisturbed �uid �ow [FHJ94].Cox and Brenner[CB68] studied the lift force on a particle of arbitrary shape in a wall-bounded �ow. As in most studies of wall-bounded �ows, they assumed that the �ow ise�ectively bounded, i.e.the wall lies within the viscous region of the particle, and that Stokes'equation alone is su�cient for calculating the lift force to the �rst order [CH77]. E�ectivelybounded theories predict lift force that does not depend on viscosity and is quadraticallydependent on velocity [FHJ94]. Cox and Hsu [CH77] applied the theory developed by Coxand Brenner in two cases: a sphere sedimenting in a stagnant �uid and a sphere moving in astrong shear �eld. In the former case the particle was found to be always repelled away fromthe walls by a lift force
FL = aµfvpRepI = ρfa

2v2
pI (3.3)where

I =
18π

32
. (3.4)and a is the radius of the sphere, vp is the velocity di�erence between the sphere and undis-turbed �uid �ow, and Rep is the corresponding Reynolds number:

Rep =
ρfvpa

µfAccording to that result, the lift force does not depend on the distance from the wall, thusthe only equilibrium position of a particle sedimenting in a vertical cylindrical pipe wouldbe at the axis of the pipe. In the latter case, they found that the lift force depends on theratio of the shear rate γ to the slip velocity vp [CH77, CM94]:
I =

18π

32
− 66π

64
ΛG

(

l

a

)

+
366π

576
Λ2

G (3.5)where l/a is the dimensionless distance from the wall, and ΛG = Reγ

Rep
= γa

vp
the ratio of the



3.2. DRAG AND LIFT FORCES ACTING ON A SINGLE PARTICLE 35Reynolds numbers based on shear and slip:
Reγ =

ρfγa2

µfWith this result, it is possible that the lift force is repulsive near the wall, but becomesattractive at some distance from the wall. The equilibrium position of a particle moving ina cylindrical pipe with a shear �ow may thus be at some radial distance from the axis of thepipe. This result is compatible with the experimental observations of Segre and Silberberg.Vasseur and Cox [VC77] studied a case where a spherical particle is sedimenting in a stagnant�uid bounded by a wall. They expressed I in a closed form as an complex integral thatdepends on the dimensionless distance from the wall l? = Repl/a = ρfvpa/µf . In a casewhere l? << 1, i.e. particle is close to the wall, they found that
I =

18π

32

(

1 − 11

32
(l?)2 + . . .

) (3.6)For a large distance from the wall they found that
I =

18π

8
(l?)−2 +

54π

8
(2π)−2K(

1

2
)(l?)−5/2 + . . . (3.7)where K() is the complete elliptic integral of the �rst kind. Notice that the leading term ofthis expression, when substituted in Eq. (3.3), gives a lift force

FL = ρfa
2v2

p ×
3

8
(l?)−2 =

3µf
2

8ρf

, (3.8)that does not depend on sedimentation velocity vp. To obtain the solution for the entire rangeof l?, a numerical integration of I must be undertaken. Vasseur and Cox gave the result asa plot, but it can be also found that I can be approximated with reasonable accuracy withan expression
I =

18π

32

1

(l∗/l∗0)
2 + 1

. (3.9)where l∗0 ≈ 2.6 is the characteristic length scale of the lift force. For l∗ >> l∗0, i.e. case wherethe wall lies in the inertial region, the lift force depends on viscosity (l∗ depends on viscosity).At the other limit l∗ << l∗0, Eq. (3.4) is obtained even though Cox and Hsu used completelydi�erent methods. At the distance l?0 the lift force is half of this maximum value. Drew [Dre88]



36 CHAPTER 3. HYDRODYNAMIC INTERACTIONSextended Sa�mann's work by including the lift force induced by a wall in the inertial region,and found that such an e�ect cannot change the total lift force from attraction to repulsion.For most wall-bounded cases it was assumed that the distance between the sphere and thewall was large compared to the radius of the sphere and that the sphere can be treated as apoint force or point force doublet acting on the �uid. Leighton and Acrivos [LA85] studiedthe case where the sphere was in contact with the wall, and they derived an expression forthe lift force
FL = 9.22aµfvpRep (3.10)where the slip velocity is vp = γa and the corresponding Reynolds number Rep = ρfavp/µf .Cherukat and McLaughlin [CM94] studied the case where the distance from the wall andthe radius of the sphere may be of comparable magnitude. They ended up with the result

FL = aµfvpRepI(l/a, ΛG), (3.11)and the function I was given in the form of tables. For stagnant �uid, their result agreeswith Eq. (3.4) for distances larger than l/a > 6. They also found that by setting ΛG = 1.0the lift approaches that given by Eq. (3.10) as l/a → 1.The analytical results discussed above are all based on perturbation methods and have quitea limited range of validity. The Reynolds numbers based on the slip velocity and on theshear rate were assumed small. Furthermore, in e�ectively bounded cases it was assumedthat the Reynolds numbers are small compared to the dimensionless inverse distance fromthe wall [VC76]. This is a very restrictive condition when the particle is far away from thewall which, on the other hand, is a very common assumption in these theoretical approaches.The present author is not aware of any analytical work on wall-bounded �ow past a particlein two-dimensional case.3.3 Simulations: a single particleThe behaviour of hydrodynamic forces acting on a single particle suspended in a two-dimensional �ow of Newtonian �uid near a rigid wall will now be studied. The forces aresolved with direct numerical simulations in the �ow regime where the Reynolds numbersde�ned by the cylinder radius and the slip velocity or the shear rate may be of the order of
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Figure 3.1: In�nitely long cylinder suspended in a semi-in�nite plane Couette �ow of aNewtonian incompressible �uid near a moving wall.unity, and analytical solutions are not known. The primary purpose here is to gain qualita-tive understanding of the behaviour the relevant hydrodynamic forces rather than obtainingprecise numerical results for a speci�ed physical case. The approach is similar to that of Fenget al. [FHJ94] who studied the �ow past a circular cylinder suspended in a Couette �ow andin a plane Poiseuille �ow between two parallel walls. In that work, lateral movement and the�nal equilibrium position of the particle were considered, whereas the present work addressesthe hydrodynamic forces acting on the particle that is translating with a constant velocityparallel to the wall.Let us consider a cylinder of in�nite length and radius a suspended in a semi-in�nite planeCouette �ow of a Newtonian incompressible �uid near a moving, �at wall (see Fig. 3.1).The axis of the cylinder is parallel to the wall and perpendicular to the direction of �ow.Hence, the �ow may be treated as two-dimensional in a plane perpendicular to the axis ofthe cylinder. The cylinder is held at a �xed position. Undisturbed �uid velocity is given by
vf = (vp + γ(y − l)) êx (3.12)where vp is the undisturbed �uid velocity at the centre of the cylinder, γ is the shear rate,and l is the distance between the axis of the cylinder and the wall. Here only positive valuesof vp and γ are considered.In what follows the longitudinal (drag) and lateral (lift) forces applied on the cylinder by the



38 CHAPTER 3. HYDRODYNAMIC INTERACTIONS�uid per unit length of the cylinder are denoted by FD and FL, respectively. The cylinderradius a is chosen as the characteristic length scale, and the slip velocity vp as the character-istic velocity scale of the problem. The drag and lift coe�cients CD and CL of the cylinderare de�ned by
Cq =

Fq

2a × ρfv2
p/2

, q = D, L, (3.13)where ρf is the density of the �uid. The other relevant nondimensional parameters of theproblem can be chosen to be the inverse distance of the cylinder from the wall, and the twoReynolds numbers based on the slip velocity and on the shear rate. These parameters arede�ned by
κ =

a

l
; Rep =

vpa

νf
; Reγ =

γa2

νf
. (3.14)Here νf is the kinematic viscosity.The dimensionless shear rate is de�ned by the ratio of the two Reynolds numbers as

ΛG ≡ Reγ

Rep
=

γa

vp
. (3.15)Dimensional analysis results in the following relations between the coe�cients:

Cq = Cq(κ, Reγ, Rep), q = D, L. (3.16)In this work the scaling laws, Eqs. (3.16), are studied using numerical simulations and utiliz-ing previous analytical results when appropriate. The simulations were done in the rest frameof the particle using two commercial �ow solvers (CFX [CFX94] and FLUENT [FLU98]) thatare based on �nite volume method. The length and the width of the simulation domain were
75a and 40a, respectively. The cylinder was positioned near the lower wall approximately
25a downstream from the inlet. Both walls were made to move with constant (but di�erent)velocities. The velocity �eld given by Eq. (3.12) was speci�ed at the inlet and the �ow wasassumed to be fully developed at the outlet, i.e.dynamic quantities do not depend on x.No-slip condition was applied on all solid surfaces. The dimensionless inverse distance κ wasvaried from 0.111 to 0.84, the particle Reynolds number Rep from 0.0 to 3.3, and the shearReynolds number Reγ from 0.0 to 0.25. The stationary �ow �eld was found for all the 420combinations of 14 values of Rep, 6 values of Reγ, and 5 values of κ. In each case the x and
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y components (i.e., the drag and lift forces, respectively) of the total force

F =

∮

S

σ · dS (3.17)acting on the unit length of the cylinder were found. Here S is the surface per unit lengthof the cylinder and the total stress tensor of the �uid is given by
σ = −p1 + µf

(

∇v + (∇v)T
) (3.18)where p is the pressure, µf is the dynamic viscosity and v is the velocity of the �uid.In Fig. 3.2 are shown all the calculated values of drag and lift coe�cients as a function of theparticle Reynolds number Rep and for various values of the inverse distance κ and the shearReynolds number Reγ (values not indicated in the �gure). Also shown is the Bretherton'sanalytical result (a cylinder in an in�nite �uid) for the drag and lift coe�cients and for a�xed value of Reγ (see Eqs. (3.19) and (3.20) below). From Fig. 3.2 it is evident that thedata scatter is quite large and that all the three dimensionless parameters Rep, Reγ and κthat appear in Eq. (3.16) indeed are essential in describing the behaviour of the drag andlift coe�cients. The dependence on the particle Reynolds number of the drag coe�cient,especially at small values of κ, is roughly of the form 1/Rep, which is in accordance withthe Bretherton's result. The drag coe�cient increases strongly with increasing κ, while itsdependence on Reγ is relatively weak in this region of parameter values. At small valuesof 1/Rep, the lift coe�cient is positive corresponding to a repulsive lift force, and increasesstrongly with increasing κ. In a certain region of parameter values, the lift coe�cient isnegative corresponding to an attractive force towards the wall (see insert in Fig. 3.2 b). Thedependence on Reγ of the lift coe�cient is always relatively strong.The scaling law for the drag and lift coe�cients given by the present numerical analysisis now studied. An appropriate analytic expressions is sought for that can be �tted to thecomputed data with a good con�dence level. Here, former analytical results by Brethertonfor unbounded �ow are utilized [Bre62]. In the present case Bretherton's result can be writtenin an explicit form as

CD,B =
4π

Rep

0.9096 − 1
2
lnReγ

(0.679 − 1
2
ln Reγ)2 + 0.637

, (3.19)
CL,B = − 4π

Rep

1.684

(0.679 − 1
2
ln Reγ)2 + 0.637

. (3.20)
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Figure 3.2: a) drag force coe�cient CD and b) lift force coe�cient CL vs slip Reynolds number
Rep. Discrete points are the numerical results and the solid lines are the corresponding resultsderived by Bretherton, Eqs. (3.19) and (3.20), with Reγ = 0.1.



3.3. SIMULATIONS: A SINGLE PARTICLE 41The behaviour of the coe�cients Cq,B, q = D, L are also shown in Fig. 3.2 in the casethat Reγ = 0.1. Notice that Bretherton's results are valid only for a limited range of thetwo Reynolds numbers. In particular, Bretherton's drag and lift coe�cients both vanish as
Reγ → 0.It appears convenient to seek for a correlation separately for results with Reγ > 0 (and
ΛG > 0), and for results where Reγ = ΛG = 0. The latter case corresponds to a particlesedimenting in a quiescent �uid where no analytical results for two-dimensional �ow seemto be available. For �nite values of Reγ relatively good data collapse is achieved by simplyscaling the numerical data by the corresponding Bretherton's result. The ratio Cq/|Cq,B|depends primarily on ΛG and κ, and only weakly on Reγ. That residual dependence is wellapproximated by a simple power law ∝ Reεq

γ , where εD ≈ −0.15 and εL ≈ 0.30. For theresults with Reγ 6= 0 the scaled force coe�cients PD and PL are thus de�ned by
Cq

|Cq,B|
= Pq(ΛG, κ)Reεq

γ , q = D, L. (3.21)According to the proposed scaling law given by Eq. (3.21), the scaled drag and lift coe�cients
PD and PL depend on only two variables instead of the three variables that appear in theoriginal force coe�cients, Eqs. (3.16). The calculated values of PD and PL for various valuesof ΛG ( 6= 0) and κ are shown in Fig. 3.3. It is evident from Fig. 3.3 that the calculatedscaled coe�cients PD and PL indeed collapse on a set of smooth curves as a function ofthe dimensionless shear rate ΛG, each curve corresponding to a distinct value of the inversedistance κ. The factorization given in Eqs. (3.21) thus seems justi�ed. For the results where
κ is small and ΛG is large, the data scatter is, however, quite large especially for PD. In thisregion the cylinder is far away from the nearest wall, the slip velocity is small and the shearis strong. In this condition the calculated drag force is very small and the drag coe�cientis computed as a ratio of two small numbers and may thus involve large absolute errorsdue to numerical �uctuations. The �nite total width of the channel, that was ignored in thedimensional analysis above, may also a�ect the numerical results in this region.For values of ΛG > 0.1 the numerical results can be �tted using the following functionalforms

PD(ΛG, κ) = [a01κ/(1 − κ) + a02 + a03κ] (3.22)
+[a11κ/(1 − κ) + a12κ + a13κ

2]ΛG.
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Figure 3.3: Scaled a) drag force PD and b) lift force PL vs dimensionless shear rate ΛG forvarious values of inverse dimensionless distance κ. Discrete points are the numerical resultsand the solid lines are the corresponding �tted functions given by Eqs. (3.22) and (3.23).
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PL(ΛG, κ) = b0 +

b1

b2 + κ
(3.23)

−(1 + κ)(1 + lg2 ΛG)[b3 lg ΛG + b4 lg2 ΛG]. (3.24)The values of the unknown coe�cients that appear in Eqs. (3.21), (3.22) and (3.23) werefound by using a standard least-squares �tting method, and are given in Table 3.1. The�tted functions, also shown in Fig. 3.3, reproduce the numerical results quite accurately inboth cases, except for small values of ΛG where the Bretherton's result used in data scalingbecomes inappropriate.It is noticed that the functional forms of PD and PL given by Eqs. (3.22) and (3.23) have nophysical justi�cation other than giving a good �t to the numerical data in a quite broad rangeof parameter values. They do, however, exhibit the following natural limiting behaviour: forlarge distances (κ → 0), the scaled drag force approaches a constant value a02 ≈ 0.55 (seeEq. (3.22) and Table 3.1) for all values of the dimensionless shear rate. The �tted ratio
CD/|CD,B|, as given by Eq. (3.21) is then close to unity for all values of Reγ used in thepresent calculation (excluding the limit Reγ → 0, which is discussed below). In this limit,the �tted functions thus reproduce Bretherton's analytical result for drag quite closely. Theratio CL/|CL,B| is also of the order of unity in the region where Bretherton's result is assumedto be valid, namely when Reγ and Rep are both small and ΛG is close to one. The deviationfrom the Bretherton's result of the present results is, however, larger for the lift than for thedrag. A plausible reason for this is that the presence of walls has a stronger relative in�uenceon lift force than on drag force. For all �nite values of Reγ the �tted values of the two forces,as given by Eq. (3.13), both vanish when Rep → 0 (ΛG → ∞). Furthermore, for �nite valuesof Rep the drag force diverges as κ → 1, i.e., as the width of the gap between the cylinderand the wall approaches zero. This re�ects the divergence of the shear rate in the narrowgap as the cylinder is brought into contact with the wall. Irrespective of the value of κ, thelift force is repulsive when the shear rate ΛG is low enough or high enough, but is attractiveat a region around ΛG = 1. Increasing κ increases lift force thus making it more repulsive.Next, the results where Reγ = ΛG = 0 are studied, i.e., the case corresponding to a cylindersedimenting near a wall in a quiescent �uid. The calculated values of the drag and liftcoe�cient for this case are shown in Figs. 3.4 a) and b), respectively. Also shown in Fig. 3.4a) is the standard experimental drag coe�cient for a long cylinder in an in�nite �uid and inthe absence of shear (notice, that the particle Reynold's number is de�ned here in terms ofthe radius of the particle).
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Figure 3.4: Drag force coe�cient CD (a) and lift force coe�cient CL (b) vs slip Reynoldsnumber Rep for vanishing shear rate, i.e. Reγ = 0. Discrete points are the numerical resultsand the solid lines are the �ts given by (3.27) and (3.26). Dashed line gives the experimentalvalues for the drag force with κ = 0 and Reγ = 0 (data reproduced from Fig. 7.16 a) of Ref.[Whi94]).



3.3. SIMULATIONS: A SINGLE PARTICLE 45When the distance from the wall is small (κ is close to unity), the calculated value of the dragcoe�cient is roughly of an order of magnitude larger than the experimental drag coe�cient,but approaches the experimental value as the distance from the wall increases. With thelargest distances used in the calculation, the qualitative behaviour of the drag coe�cientis similar to the experimental result. The maximum deviation between the computed valueand the experimental value is then less than a factor of two. This deviation remains even inthe case of vanishing shear and arises most probably due to the closed channel used in thecalculation since the e�ect of walls decreases very slowly in this two-dimensional �ow. (Thisphenomenon is related to Whitehead's paradox.)The lift coe�cient for a sedimenting cylinder is always positive indicating repulsive lift force.At high values of Rep the lift coe�cient depends strongly on the distance from the wallincreasing with κ. At small values of Rep, CL becomes nearly independent on the distancefrom the wall. This result, which may seem somewhat surprising is, in fact, in accordancewith former analytical results for a sphere sedimenting near a �at wall [CM94].The behaviour of the calculated drag and lift coe�cients at Reγ = 0 can be quite accurately�tted using the following simple functions.
CD(Rep, κ) =

1

Rep

[

A(κ) + B Ren
p

] (3.25)
log CL(Rep, κ) = a0

[

1 − Rep(− log κ)m
]

, (3.26)where
A(κ) = 6.1 + 22.2 κ2.7

B = 1.9 (3.27)
n = 1.0

m = 1.7

a0 = 0.50 .These functions are also shown in Figs. 3.4 a) and b). The limiting behaviour of the �tted dragcoe�cient as κ → 0 is close to the experimental result for a cylinder in an in�nite �uid. Noticethat for values of Rep between 0.05 and 100, the experimental result for the drag coe�cientcan be very accurately �tted with an equation of the form (3.25) with constant values



46 CHAPTER 3. HYDRODYNAMIC INTERACTIONSTable 3.1: Fitted coe�cients of drag and lift forces (see Eqs. (3.22) and (3.23))
a11 = 0.140 a12 = −0.38 a13 = 1.01
b0 = −0.0050 b1 = 0.067 b2 = −0.001
b3 = −0.031 b4 = −0.279

A ≈ 3.0, B ≈ 3.0 and n ≈ 0.8. For small values of Rep the �tted lift coe�cient approachesa constant value of approximately 3.5. This is to be compared with the corresponding valueachieved by Cherukat and McLaughlin for a sphere in a three-dimensional �ow, namely
CL ∼ 1.1 (de�ned in a usual manner using the cross-sectional area of the sphere) [CM94].The primary variables that characterize drag and lift forces on the particle are the slipvelocity, the shear rate and the distance from the wall (made dimensionless in a usual mannerusing the radius of the particle and the kinematic viscosity of the �uid). Both forces vanishwith vanishing slip velocity and are strongly modi�ed by the vicinity of the wall. As thedistance from the moving wall approaches zero, the drag force diverges while the lift forceapproaches a constant positive (repulsive) value. The drag force depends only weakly on shearwhile the lift force is very sensitive to the shear rate. Depending on the �ow parameters, thelift force may be either repulsion from the wall, or attraction towards the wall. That featureis of particular interest concerning the dynamics of the particle-free wall layer in the channel�ow of liquid-particle suspensions.



3.4. SIMULATIONS: A MATRIX OF STATIONARY CYLINDERS 473.4 Simulations: a matrix of stationary cylindersIn order to gain qualitative understanding on the �ow of �bre plug near a wall a random rigidarray of cylinders suspended in a �ow of a Newtonian �uid between two walls is considered.The system consists of two parts, namely a suspension layer of width w and a �uid layer ofwidth λ (see Fig. 3.5). The upper wall adjacent to the pure �uid layer moves with velocity
vw in the direction of z-axis, and the lower wall adjacent to the suspension is stationary. Theset-up thus resembles the �ow of a �bre plug in a direction of negative z-axis viewed in therest frame of the plug and considering only the boundary layer near the wall.
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Stationary wallFigure 3.5: Random rigid particle matrix made of cylinders suspended in a shear �ow of aNewtonian �uid.Two approaches are used: Analytic solution in terms of averaged �ow quantities and directnumerical simulations with the lattice-Boltzmann method. In the lattice-Boltzmann method,viscous �ow of a �uid is modeled by solving a special version of the Boltzmann equation thathas been discretized in space, time and momentum [RSM92, QdL92]. In the continuum limitthe governing continuity and Navier-Stokes equations are recovered from this discretized



48 CHAPTER 3. HYDRODYNAMIC INTERACTIONSequation. In practice, motion of �ctitious �uid particles is simulated, and special particle-particle collision models are applied in a way that automatically generates viscous �owbehaviour. The lattice-Boltzmann method appears to be particularly useful for complex�uids and for solving �ow in complex and irregular geometries such as the present one[Lad94, FR95].The simulations were carried out separately in a two-dimensional case where the cylindersare parallel and the �ow is perpendicular to the cylinders, and in a three-dimensional casewith random orientation of the cylinders.3.4.1 Analytic solution of the averaged �ow velocityThe detailed microscopic �ow �eld in a random system shown in Fig. 3.5 is complicated. Itwould be quite di�cult to analytically solve forces acting on individual particles. Instead,a multiphase �ow approach in terms of averaged quantities, e.g. the average drag forceacting on the cylinders at a given distance from the moving wall, will be considered. Theanalytic results will then be compared with the numerical results achieved by �rst solvingthe microscopic �ow for an ensemble of macroscopically identical systems using the lattice-Boltzmann method, and then computing the appropriate averaged quantities.Now the average �uid velocity is derived by considering the suspension as a system of twointeracting continua, namely the �uid phase and the solid phase. The governing equationfor the average �uid velocity is derived by applying volume averaging to the microscopicequations for the �uid �ow through the particle matrix. To that end, the equations for a�ow of liquid in a porous medium that were derived in Sect. 2.3.2 are applied to the currentcase. The conservation of mass is described by Eqs. (2.59) and (2.60), and the conservationof momentum of the solid phase is given by Eq. (2.62). Here the �uid �ow is a shear �owdriven by the moving wall, thereby one has to retain the viscous shear stress of the �uidphase, Eq. (2.68), in the formulation and use Eq. (2.70) for the conservation of momentumof the �uid phase. In the present case gravity is neglected.Here a stationary �ow is assumed, hence all the partial derivatives with respect to timevanish. Furthermore, a fully developed �ow is considered, i.e. the averaged quantities of thesuspension do not depend on the position in the x-direction (notice that this applies also tothe hydrodynamic pressure, since the �ow is not driven by a pressure gradient). Thus theaverage �uid velocity is parallel to the walls everywhere, i.e. ūf = uf(y)êx.



3.4. SIMULATIONS: A MATRIX OF STATIONARY CYLINDERS 49The solid matrix is stationary, ūs = 0. Thus, the averaged equation for the conservation ofmass of the solid phase, Eq. (2.60), is satis�ed trivially. Notice that the equation for theconservation of momentum of the solid phase, Eq. (2.70), is not needed for the solution.This equation can be used to calculate the mechanical stress 〈σs〉 of the solid phase after thesolution for the �uid �ow �eld has been found.With the assumptions discussed above, the equation for the conservation of the longitudinalmomentum of the �uid phase can be written in the form
φµf

d2uf

dy2
+ µf

dφ

dy

duf

dy
− Ds = 0, (3.28)where µf is the dynamic viscosity of the �uid, y is the distance to the moving wall, φ is theporosity of the suspension, and Ds = Ws,x is the volumetric density of the hydrodynamicdrag force acting on the solid matrix. Inside the �uid layer this force vanishes, and insidethe suspension layer it is given according to Darcy's law:

Ds =

{

0, 0 ≤ y < λ
µf

k
uf , 0 ≤ y ≥ λ

(3.29)where k is the permeability of the solid matrix.The average drag force per unit length of a cylinder, FD, can be calculated by multiplyingthe force density Ds by the average cross-sectional area occupied by a single cylinder, andthe results is
FD =

πµfa
2

(1 − φ)k
uf , (3.30)where a is the radius of the cylinder, and uf is the average �uid velocity at the same transverseposition as the cylinder.Let us assume that the porosity is constant φ = φ0 inside the suspension layer (y ≥ λ).Equation (3.28) then reduces to the form

d2uf

dy2
= 0, 0 ≤ y < λ (3.31)

d2uf

dy2
− 1

φ0k
uf = 0, λ ≤ y ≤ λ + w. (3.32)The no-slip boundary condition is applied at both walls, i.e. uf(0) = vw and uf(λ + w) = 0.



50 CHAPTER 3. HYDRODYNAMIC INTERACTIONSThe porosity has a discontinuous jump at the boundary y = λ, and the general solutions toEqs. (3.31) and (3.32) have to be matched at the boundary so that the �uid velocity andthe total shear stress are continuous. Notice that inside the suspension layer both phasescontribute to the total shear stress, and details of this process depend on the microscopic�ow �eld. It is expected, however, that the solid shear stress is relatively small due to lowsolid concentration. Thus an approximation is made by imposing the continuity of the �uidshear stress at the boundary y = λ:
lim

y→λ
−

〈τf〉 = lim
y→λ+

〈τf〉, (3.33)where the �uid shear stress tensor 〈τf〉 is given by Eq. (2.68). In the current case this conditionsimpli�es to the form
(

duf

dy

)

−

=

(

duf

dy

)

+

, (3.34)where (d/dy)− and (d/dy)− denote the one-sided derivatives from positive and negativeside, respectively. Equations (3.31) and (3.32) are solved with the boundary conditions andthe matching conditions discussed above, and the solution for the �uid velocity (in the x-direction) is found as
uf(y) = −y

λ
vw +

(

1 +
y

λ

)

u0, 0 ≤ y < λ (3.35)
uf(y) =

exp(α(y − λ)) − exp(α{2w − (y − λ)})
1 − exp(2wα)

u0, λ ≤ y ≤ λ + w,where α = (φ0k)−1/2, and the velocity at the plug surface is given by
u0 ≡ uf |y=λ = vw

(

1 − φ0αλ
1 + exp(2αw)

1 − exp(2αw)

)−1 (3.36)This result will be compared with the numerical results in the next two sections.3.4.2 Lattice-Boltzmann solution: unidirectional cylindersThe hydrodynamic interactions in a �ow perpendicular to a rigid matrix of parallel cylinderswere studied by solving the �uid �ow between the suspended particles in a number of systemssimilar to that shown in Fig. 3.6 using the lattice-Boltzmann (LB) method [QdL92, RSM92,
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Figure 3.6: Random rigid particle matrix made of parallel cylinders suspended in a shear�ow of a Newtonian �uid between parallel walls.Sko93]. For each macroscopic con�guration, i.e. wall velocity vw, bulk porosity φ0 and �uidgap width λ �xed, an ensemble of 80− 100 random systems was used. The simulations weredone here using a particular version of the method, namely the 9-link lattice-Bhatnagar-Gross-Krook (LBGK) model [Sko93].The simulations were done using cylinders of radius a = 11.5 (in lattice units). Notice howeverthat due to the discreteness of the model the hydrodynamic radius ah of the obstacles di�ersslightly from that value of a. The proper value of ah was de�ned by solving the �uid �owthrough an in�nite (periodic) array of cylinders arranged in a square lattice. The simulatedpermeability at the porosity φ = 0.95 was found to be k = 540 (in lattice units). Theanalytical solution of the permeability is known and can be given in terms of the actualradius of the cylinders [JJ86]:
k

a2
h

=
1

8φs

(

− ln(φs) − 1.476 + 2φs − 1.774φ2
s + O(φ3

s)
)

, (3.37)where φs ≡ 1−φ is the volume fraction of the solid phase. Substituting the simulated values
φ = 0.95 and k = 540 in Eq. (3.37), and solving for the hydrodynamic radius leads to avalue ah = 11.56. This indicates that the discretization used here was dense enough and theobstacles appear nearly as smooth cylinders.Since the grid used by the present method is regular, the discretization of the gap betweenthe particle and the wall will be rough when particles are placed very close to the wall. The



52 CHAPTER 3. HYDRODYNAMIC INTERACTIONS

Figure 3.7: a) The drag force coe�cient CD for a cylinder near a moving wall as a functionof of dimensionless gap length λ/a as given by the FV -simulation (solid line) and the LB-simulation (open markers). b) The relative di�erence RD between the drag forces given bythe two methods as a function of dimensionless gap length λ/a.accuracy of our LB simulations were checked in this respect by computing the lift and dragforces acting on a single particle that was placed close to a moving wall, and compared theresults with those given by a standard �nite volume methods with greatly densi�ed grid inthe gap region. The size of the calculation area was Ly × Lx = 98 × 140 lattice spacings.Periodic boundary conditions were applied in the x-direction. The upper wall was made tomove with velocity Vw = 0.05 (expressed in lattice units) using the method presented inRef. [Lad94]. The gap between the particle and the moving wall was 1, 2, 4, 8 and 16 latticespacings. The lower wall was stationary.The drag force coe�cients CD given by the FV -method and the LB -method are shown inFig. 3.7 a) as a function of the dimensionless gap distance λ/a. As shown by Fig. 3.7 a),the calculated drag force increases rapidly with decreasing gap width. The relative di�erence
RD = (FD,FV − FD,LB)/FD,FV, where FD,FV and FD,LB are the drag forces given by FV andLB methods, respectively, is given in Fig. 3.7 b). The di�erence between the two results isvery small everywhere. Remarkably, RD is less than 1% even in the case where the gap widthis only one lattice spacing.The lift force coe�cients CL given by the two methods are shown in Fig. 3.8 a.) The liftforce is seen to be repulsive (positive) at all distances in this case and it increases rapidly
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Figure 3.8: a) The lift force coe�cient CL for a cylinder near a moving wall as a function ofdimensionless gap length λ/a given by the FV simulations (solid line) and LB simulations(open markers). Positive values indicate repulsive force. b) The relative di�erence RL betweenthe lift forces given by the FV and LB method as a function of dimensionless gap length
λ/a.with decreasing gap width. As can be seen in Fig. 3.8 b), the relative deviation of the twomethods is now higher than in the case of the drag force. However, even in the worst caseit remains below 6%. The absolute value of the deviation is of the same order of magnitudein both cases. Based on these results it is concluded that the results given by the lattice-Boltzmann approach for the drag and lift forces acting on particles moving close to a wallare in accordance with the results given by the conventional �nite volume method used here.The actual simulations of hydrodynamic forces acting on the random rigid array of suspendedparticles were done in lattices of 300�330× 780 lattice spacings depending on the gap width
λ (see Fig. (3.6)). Two arbitrary values for the porosity were chosen to study the e�ecton the hydrodynamic forces of the porosity. The simulations were done at bulk porosities
φ0 = 0.88 and φ0 = 0.94 (corresponding to systems of 60 and 30 particles, respectively).With φ0 = 0.94 two di�erent wall velocities vw were used, namely vw = 0.025 and vw = 0.05(in lattice units). Periodic boundary conditions were applied in the x-direction. The systemwas let to saturate for 20000 time steps. This resulted in the maximum relative error ofapproximately 1% for both the lift and the drag forces.
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Figure 3.9: a) The dimensionless drag force D∗ acting on a cylinder near a moving wall vs.dimensionless distance y/a for porosity φ0 = 0.88 and gap width λ = 4. The numerical andanalytical results (see Eq. (3.30)) are given by open symbols and solid line, respectively. b)The dimensionless velocity v∗ vs. dimensionless distance y/a. The porosity is φ0 = 0.90 andthe gap width is λ = 4. The numerical and analytical results (see Eq. (3.35)) are given byopen symbols and solid line, respectively.Next the dimensionless averaged drag force acting on a cylinder de�ned by
D∗ =

FD

4πµfvw
(3.38)is considered. Combining this equation with Eq. (3.30) one gets the dimensionless drag forceas given by Darcy's law

D∗ =
v∗

4(1 − φ)K
, (3.39)where v∗ = uf/vw is the dimensionless �ow velocity and K = k/a2 is the dimensionlesspermeability. The dimensionless drag force D∗ as a function of the dimensionless distance

y/a from the moving wall is shown in Figs. 3.9 a) and 3.10 a) for porosities φ0 = 0.88 and
φ0 = 0.94, respectively. The gap width is λ = 4 in both cases shown. The dimensionlessvelocity v∗ as a function of the dimensionless distance is shown in Figs. 3.9 b) and 3.10b). The dimensionless permeabilities for the given porous media are calculated using thecorrelation derived by Kuwabara, Eq. (2.55), and they are K = 1.57 and K = 3.38 forporosities φ = 0.88 and φ = 0.94, respectively.The deviation of the results given by Darcy's law from the numerical results is quite large
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Figure 3.10: Same as Fig. 3.9 but for higher porosity φ0 = 0.94especially for the lower value of porosity. For the outermost particles the relative di�erencebetween the two results is approximately 50% for both porosities. The reason for this devia-tion can be found by considering the single particle results shown in Fig. 3.2 a). Keeping thelocal �ow conditions (Reynolds numbers) unchanged and decreasing the distance betweenthe particle and the wall (increasing κ) increases the drag force. Below, it will be found outthat the same is true also for the average drag force acting on an array of particles. Thisincrease of drag force should thus re�ect itself as a deviation from the usual Darcy's law nearthe walls.The calculated average lift force FL per particle as a function of the dimensionless distance
y/a from the moving wall for a �xed gap width λ/a = 0.35, is shown in Figs. 3.11 a) and b)for the bulk porosities φ0 = 0.94 and φ0 = 0.88, respectively. The wall velocity is vw = 0.05in the both cases shown.The lift force FL appears to be strongly repulsive close to the wall, but changes into weakattraction at y/a ≈ 2 − 3. Still further away from the wall the lift force decays rapidly asthe �uid velocity approaches zero. In this region the lift force may even oscillate betweenattraction and repulsion. The attractive region becomes narrower and moves closer to thewall as the porosity is lowered, which correlates with the steepening of the velocity pro�lewith decreasing porosity (see Figs. 3.9 b)) and 3.10 b)). The absolute statistical errors in thesimulated drag and lift force are of the same magnitude, but since the values of the lift forceare an order of magnitude smaller than the values of the drag force, the relative errors are
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Figure 3.11: The numerical results for lift force FL (in lattice units) vs. dimensionless distance
y/a for �uid gap width λ = 4 and wall velocity vw = 0.05, for porosity φ0 = 0.94 (a) and
φ0 = 0.88 (b).much higher for the lift force.Further calculations with increasing gap width show that the behaviour of the lift force FLremains similar to that shown in Fig. 3.11 b) irrespective of the gap width, except thatthe repulsive peak is truncated as the gap width increases. This phenomenon also explainsthe decrease of the integrated lift force with increasing gap width and the negative valuesachieved at relatively wide gap widths.In what follows, the total drag and lift forces acting on the particle matrix are studied.The total drag force acting on the cylinders, as given by Darcy's law, can be calculated byintegrating Eq. (3.29) over the system,

ΣFD = Lx

∫ λ+w

0

D dy =
Lxµf

k

∫ λ+w

λ

uf dy, (3.40)where Lx is the size of the system in the x-direction. The total drag and lift forces are givenin Fig. 3.12 a) and b) as a functions of the dimensionless �uid gap width λ/a. As shownin Fig. 3.12 a), the drag force is highest when the gap width is small (Fig. 3.12 a), and itdecreases monotonically with increasing gap width. This behaviour is due to the decreasingaverage velocity di�erence between the particles and the �uid as the gap width is increased.The corresponding results obtained using Darcy's law deviate from the numerical resultsespecially at small gap widths. As expected, the deviation decreases with increasing gap
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Figure 3.12: a) Total drag force ΣFD and b) total lift force ΣFL acting on the particlematrix as a function of the dimensionless �uid gap width λ/a. The forces are shown inlattice units. Open markers are the simulation results and the lines are given by Eq. (3.40).Set (1) is for φ0 = 0.94, vw = 0.05, set (2) is for φ0 = 0.94, vw = 0.025, and set (3) is for
φ0 = 0.88, vw = 0.05.width as the e�ect of the walls gradually decays.According to the results shown in Fig. 3.12 b), the total lift force is repulsive (positive)when the gap width λ is much smaller than the particle radius a and becomes attractiveas λ increases. Consequently, the total lift force is close to zero when λ is of the order ofthe particle radius a. An analogous condition might be prevalent in the plug �ow regime ofdense �bre suspension in the presence of a drag reducing lubrication layer. Notice, however,that in the �bre suspension there are many di�erent length scales that a�ect hydrodynamicforces. The relevant size scale corresponding to the radius a used in these simulations maybe, e.g., the average �oc size or the surface roughness of the �bre plug rather than the �breradius.For the porosities used in this study, the ratio of the Reynolds numbers ΛG is always nearunity, and the corresponding single-particle lift force is attractive (see Fig. 3.2 b)) even closeto the wall, where the lift force on the array is strongly repulsive. This is true irrespective ofwhether the shear rate used in applying the single-particle result is calculated as the localshear rate of the computed velocity �eld inside the particle array or as the global shear rate ofthe linear velocity pro�le between the wall velocity and the slip velocity. Thus the simulatedaveraged lift force on the particle array can not be reproduced by using the single-particle



58 CHAPTER 3. HYDRODYNAMIC INTERACTIONSresult. This is most likely due to complex many-particle interactions that a�ect the local�ow �eld and the hydrodynamic stress on particle surfaces.3.4.3 Lattice-Boltzmann solution: random orientation of cylindersThe study is extended towards more realistic systems by considering the hydrodynamicinteractions in a �ow perpendicular to a rigid matrix of randomly oriented cylinders. The�uid �ow between the cylinders in a number of systems similar to that shown in Fig. 3.5is solved using the lattice-Boltzmann method. The simulations were carried out using the19-link lattice-Bhatnagar-Gross-Krook model [RSM92].The simulations were carried out at the bulk porosity φ0 = 0.95 and with the wall velocity
vw = 0.0821 (lattice units). Notice that the bulk porosities used in Chap. 3.4.2 were 0.88 and
0.94. The small change in porosity from a value 0.94 to a value 0.95 is due to a di�erence inthe generation of simulation geometry that was discovered only afterwards. Three di�erentgap widths were used, namely λ = 1, λ = 4, and λ = 8 (lattice units). For each �uid gapwidth an ensemble of 13− 18 random systems was simulated. Periodic boundary conditionswere applied in the x and z-directions. The simulated �ow �eld was saturated at least 15000time steps.The simulations were done in lattices of 800× (102�109)×780 lattice spacings depending onthe gap with. The cylinders used in the simulations had the radius of 3.5 and the length of 70lattice spacings. They were placed in random positions with random orientations by allowingoverlapping with each other. The random positions for the centres of �bres were chosen insidethe suspensions layer y > λ, and the �bre segments that fell out of the suspension layer werecropped.The averaged volumetric drag force density Ds,x acting on the cylinder matrix is shown inFigs. 3.13� 3.15 a) as a function of the dimensionless distance y/a from the moving wall.The simulation results are shown as open markers, while the curves are given by Eq. (3.29).The dimensionless �ow velocity v∗ = v/vw is shown in Figs. 3.13� 3.15 b) as a function ofthe dimensionless distance from the moving wall. The simulation results are shown as openmarkers, while the curves are given by Eq. (3.28). The permeability correlations used herewere Eq. (2.55), Eq. (2.56), and Eq. (2.58) for curves (1), (2), and (3), respectively.It is immediately evident from the velocity graphs, that the permeability correlation Eq.



3.4. SIMULATIONS: A MATRIX OF STATIONARY CYLINDERS 59

0 5 10 15
0

0.5

1

1.5

2

2.5
x 10

−4

a)

y/a

D s,
x

LB
(1)
(2)
(3)

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y/a

v *

b)
LB
(3)
(2)
(1)

Figure 3.13: Results for a) the averaged drag force density acting on the solid matrix, Ds,x,and b) the dimensionless velocity v∗ (right) vs. the dimensionless distance y/a for the �uidgap with λ = 1. Open symbols are the numerical results, and curves are given by Eq. (3.29)for the drag force and by Eq. (3.28) for the velocity. Permeability correlations used here areEq. (2.55) for curves (1), Eq. (2.56) for curves (2), and Eq. (2.58) for curves (3). The forcesare shown in lattice units.(2.56) reproduces the simulated velocity pro�le with high accuracy. Equation (2.55) un-derestimates the permeability (overestimates �ow resistance) thereby predicting too steepvelocity pro�le, while Eq. (2.58) does the opposite. The same deviations can be seen in thegraphs for the local drag force, as well. For the best permeability correlation used in thisstudy, Eq. (2.56), the relative di�erence between the simulated and analytical drag forcedensities at the surface of the cylinder matrix, y = λ is approximately 50%, 40%, and 20%for the gap widths λ = 1, 4, and 8, respectively. The reason for this deviation is most likelythe same wall e�ect that was discussed in the case of unidirectional cylinders already.In order to gain some qualitative understanding of this behaviour of local lift force, theaverage volumetric lift force density acting on the solid matrix was calculated from thesimulation results. The lift force may be calculated explicitly from the particle distributionsof the LB method during simulations or inferred afterwards from the simulated �ow �eld. Tothat end two quantities are considered, namely the momentum transfer integral Ms de�nedby Eq. (2.41,) and the lift force density Ls = −L where L is de�ned by Eqs. (2.45) and(2.69). Combining Eqs. (2.45), (2.69) and (2.70), one gets the following expressions for lift
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Figure 3.14: Same as Fig. 3.13 but for gap width λ = 4.
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Figure 3.15: Same as Fig. 3.13 but for gap width λ = 8.force density acting on the solid matrix
Ls = −φdp̃f

dy
+

dτδyy

dy
(3.41)

Ms,y = −p̃f
dφ
dy

+ Ls = − d
dy

(φp̃f) +
dτδyy

dy
, (3.42)where the pseudoturbulent stress is de�ned in terms of velocity �uctuations as

τδyy = −〈ρf (δuf,y)
2〉. (3.43)Notice that the lift force density Ls arises solely due to inertial e�ects in the �uid �ow, while
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Figure 3.16: The average volumetric lift force density Ms,y vs. dimensionless distance y/a forgap width λ = 4. In the insert the vertical axis is magni�ed to reveal the �uctuations. Theforce density is given in lattice units.
Ms,y includes the e�ect of hydrostatic buoyancy as well (see Eq. (2.45)). The calculatedaveraged lift force density Ms,y is shown as a function of the dimensionless distance y/a fromthe moving wall in Fig. 3.16 for gap with λ = 4. There is a strong positive (negative) liftforce density at the surface of the cylinder matrix near the moving (stationary) wall thatrepels the cylinders away from the wall. Between these two peaks, the average volumetric liftforce density �uctuates with zero mean value. One cannot �nd the same kind of behaviourof the lift force as in the case of unidirectional cylinders. Besides, it may appear odd at the�rst sight that there is a strong lift force at the matrix surface next to the stationary wall.The explanation for this behaviour can be found by looking Eq. (3.42), where the interestingterm is the one containing the derivative of the local porosity, i.e.the buoyancy term. Thispressure driven term contributes to the total hydrodynamic force in the regions of localporosity changes even in a case of constant average pressure. The local average porosity andits derivative were calculated, and the results were plotted as a function of the dimensionlessdistance from the moving wall y/a for gap width λ = 4. The results are shown in Fig.3.17. Comparing the graphs in Figs. 3.16 and 3.17, one may immediately conclude that thedominant part of the lift force shown in Fig. 3.16 is due to step in the porosity at the surfacesof the cylinder matrix, and the porosity �uctuations inside the matrix. The �uctuations in



62 CHAPTER 3. HYDRODYNAMIC INTERACTIONSthe porosity are due to limited number of systems used in ensemble averaging, and could bemade arbitrary small by increasing the number of simulated systems. The steps in porosity atthe surfaces of the solid matrix, and the corresponding peaks at the lift force, will, however,stay intact irrespective of the size of the ensemble used in averaging.

0 5 10 15 20 25 30
0.94

0.95

0.96

0.97

0.98

0.99

1

y/a

φ

0 5 10 15 20 25 30
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

y/a

−
dφ

/d
y

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1
x 10

−3

Figure 3.17: The porosity φ (left) and the derivative of the porosity dφ/dy as a function ofthe dimensionless distance y/a for gap width λ = 4.The average volumetric lift force density was calculated from the simulated particle distribu-tions of the LB method by subtracting the e�ect of the average pressure. Thus the gradientsin the local porosity do not contribute to the result, and one may expect the calculated liftforce to equal Ls. The calculated forces are shown in Figs. 3.18-3.20 as open symbols. Thelift force density Ls de�ned by Eq. (3.41) was also calculated. The results are shown in Figs.3.18-3.20 as a solid line. The relative di�erence between the lift force calculated at the linklevel with the e�ect of the average pressure subtracted, and the lift force calculated usingEq. (3.41) is of the order 10% at most in the repulsive region near the moving wall.The results shown in Figs. 3.18- 3.20 now reveal similar behaviour of lift force for the randomarray of cylinders as was earlier found for the case of unidirectional cylinders (see Fig. 3.11).There is a strong repulsive (positive) force near the moving wall, and the force approacheszero near the stationary wall. Interestingly, the repulsive lift force is in maximum not atthe surface of the cylinder matrix, but inside the matrix at a small distance (a few latticespacings) from the surface. After the maximum, the repulsion decays with increasing distancefrom the moving wall within a distance ∆y/a ≈ 5 − 10. This distance is larger than thecorresponding distance of ∆y/a ≈ 2 − 3 in the case of unidirectional cylinders. It should
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Figure 3.18: The volumetric inertial lift force density Ls vs. dimensionless distance y/a forgap width λ = 1. Open markers are calculated directly from the particle distributions of theLB method, the solid line is given by Eq. (3.41), and the dashed line by Eq. (3.41) with thepseudoturbulent term omitted. The force density is given in lattice units.also be noticed that in the current case one cannot �nd any region of notable attractive(negative) lift force next to the repulsive region, but the lift force approaches zero more orless monotonically as the distance from the moving wall increases. On the other hand, thereseems to be a narrow region of attraction at the surface of the solid matrix in the case of thegap with λ = 8. The origin of this possible attraction is not known. As for the unidirectionalcylinders, the major e�ect of increasing the width of the �uid gap is to truncate the repulsivepeak as the gap widens.In order to study the e�ect of the pseudoturbulent term, the lift force density was calculatedfrom Eq. (3.41) by omitting the pseudoturbulent stress. The results are shown in Figs. 3.18-3.20 as dashed lines. Clearly, there is a large di�erence between the lift forces calculatedwith and without the pseudoturbulent term. At the maximum of the repulsive lift force,the di�erence is more than 100%. One may thus conclude that the pseudoturbulent velocity�uctuations contribute substantially to lift force.The total drag and lift force acting on the cylinders were also calculated by integrating thecorresponding force densities in the y-direction from the moving wall to the stationary wall:
PD =

∫ λ+w

0
Ds,x dy (3.44)
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Figure 3.19: Same as Fig. 3.18 but for gap width λ = 4.
PL =

∫ λ+w

0
Ls dy. (3.45)The integrated total drag and lift forces are shown in Fig. 3.21 as a function of the dimension-less gap width λ/a. The qualitative behaviour of these forces is quite similar to the case ofparallel cylinders (see Fig. 3.12). Both the total forces decrease monotonically as the gap withincreases. Notice however, that for the parameters used in the current study, the integratedlift force remains nonnegative. Further simulations would be required to check whether thetotal lift force will become attractive as the gap width is increased beyond λ = 8.3.5 SummaryIt was found that hydrodynamic lift force, i.e. force perpendicular to the main �ow direction,do exist in the �ows of liquid-particle suspensions. This force arises due to inertial e�ects,and is thereby complicated and rather poorly known even for a case where a single particleis suspended in the �ow.In the case where there is a single cylinder suspended in a �ow near a solid wall, it was foundthat the nondimensional hydrodynamic drag and lift forces mainly depend on two nondimen-sional parameters, namely the dimensionless distance from the wall, and the ratio of the slip
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Figure 3.20: Same as Fig. 3.18 but for gap width λ = 8.Reynolds number to the shear Reynolds number. It was also found an analytic expression ofthese parameters that reproduce the simulation results with reasonable accuracy.It was found that the hydrodynamic force acting on a rigid matrix of long cylinders isqualitatively similar both for a matrix of unidirectional cylinders and for a matrix of cylinderswith random orientation. The drag force is largest near a moving wall and approaches zeromonotonically with increasing distance from the wall. Close to the moving wall the simulateddrag force deviates considerably from the drag force predicted by Darcy's law. To accountfor for this di�erence, the single particle results were referred to. These results involve anincrease in the drag force as the distance from the moving wall is decreased and the otherlocal �ow conditions are kept constant. The total drag force acting on the cylinder matrix ishighest when the gap width is small, and decreases monotonically with increasing gap width.Numerical simulations indicate strongly repulsive lift force near the moving wall, and themaximum value of repulsion decreases as the gap width is increased. This strong repulsiondecays within a distance that is 2−3 times the cylinder radius and 5−10 times the cylinderradius for unidirectional and random orientations of the cylinders, respectively. At thatdistance, the lift force acting on unidirectional cylinders changes to weak attraction, whichdecays rapidly with increasing distance as the �uid velocity approaches zero. For randomlyoriented cylinders no region of signi�cant attraction was found. The total lift force acting onthe cylinders is strongly repulsive when the gap width is small, and decreases monotonicallywith increasing gap width. For unidirectional cylinders, the total lift force changes into



66 CHAPTER 3. HYDRODYNAMIC INTERACTIONS

0 0.5 1 1.5 2 2.5
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 10

−3

λ/a

P
D

0 0.5 1 1.5 2 2.5
−1

0

1

2

3

4

5

6

7
x 10

−5

λ/a

P
L

Figure 3.21: The total drag force (left) and lift force (right) acting on the cylinder matrix asfunctions of the dimensionless �uid gap width λ/a.attraction at the distance that is of the order of the cylinder radius. For randomly orientedcylinders, the total lift remained repulsive in all the simulations, and was close to zero forthe largest gap width used that was 2.3 times the cylinder radius.The inertial lift force most likely accounts for a lubrication layer that is commonly believedto be responsible for much of the peculiar �ow behaviour of wood �bre suspensions. Realwood �bre suspensions are, however, much more complex than the model systems used inthis study. The particular results quoted in this chapter may thus not be very helpful inquantitative analysis of the �ow of real suspensions. The result do, however, give some phys-ical insight of the relevant phenomena in such �ows, and this insight is utilized in interpretingexperimental results and in modeling the �ow behaviour of wood �bre suspensions in nextchapters.



Chapter 4
Flow behaviour of wood �bresuspensions in a straight pipe
In this chapter a summary of the well known qualitative features of �bre suspension �ow in astraight pipe is given. E�orts on modeling the �ow of wood �bre suspension in straight pipesand on design equations and methods for determining friction loss are reviewed. This chapteris closed by studying the formation of �bre �ocs and coherent �bre networks in various �owregimes. The most relevant stochastic approaches to calculate the average number of �brecontacts are shortly reviewed. Based on these results, the threshold consistency is estimatedabove which a coherent and percolating �bre network may form.4.1 Qualitative analysis of friction lossFigure 4.1 shows measured friction loss for unbleached suplhite pulp in a copper pipe ofdiameter 200 mm. According to Du�y [Duf97], the �ow behaviour can be roughly divided intwo main regimes: the plug �ow regime that occurs at low �ow rates and the drag reductionregime that occurs at high �ow rates [LD76]. Within the plug �ow regime the �bre phasemoves as a continuous �bre network with solid like properties and with no shearing motion. Inthis regime, the loss is high compared to that of the carrier �uid (usually water) at the same�ow rate. Furthermore, the dependence on �ow rate of loss can be quite complicated. In somecases the loss may decrease with increasing �ow rate. In the drag reduction regime, the �bre67
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Figure 4.1: Friction loss vs. �ow velocity for unbleached sulphite pulp in a o/ = 200 mmcopper pipe. The data is reproduced from Fig. 5 of Ref. [Bh50].network is partly or entirely broken into �ocs that undergo turbulent and shearing motion.Characteristic to this region is that the frictional loss may be below that of a pure carrier�uid. These qualitatively di�erent main regimes can be divided into several sub-regimes. Ifthe pressure gradient applied to the pipe is below some threshold value that depends on �bretype and consistency, the �bre plug does not move at all and the motion of the carrier �uidis described as a �ow through porous medium. Above the threshold pressure gradient, alsothe �bre plug is set into motion. The �bres are �rst in a direct contact with the wall inducinghigh shear stress (high loss). As the �ow rate is increased, a plug �ow behaviour is preserved,but a thin layer of pure water (a 'lubrication' layer) is created next to the wall. Characteristicto this �ow regime is that the wall friction is approximately constant, and may even decreasewith increasing �ow velocity. As the �ow rate increases further, turbulent �ow appears nearthe walls and the �bre plug begins to break from its outer surface. Thus, in this mixed �owregime a turbulent �bre annulus surrounds a rigid �bre plug in the middle of the pipe. Atsome point, frictional loss falls below that of the carrier liquid and drag reduction regime isobtained. As the �ow rate is still increased, the solid �bre core gradually vanishes indicatingfully turbulent or '�uidized' �ow regime. Here, the loss typically approaches the pure �uidcurve asymptotically as the �ow rate is increased. This quite generally accepted view on the



4.2. DESIGN METHODS AND FLOW MODELS 69di�erent �ow domains was originally based on loss measurements, visual observations of the�ow near the pipe wall and on velocity pro�le measurements made at turbulent region usinga speci�c annular-purge impact probe [Duf97, LD76].4.2 Design methods and �ow modelsFor the practical design purposes the results of extensive loss studies have traditionally beenpublished in a graphical form, see e.g. Ref. [Bh50]. These graphical correlations have beenused, e.g., to estimate the frictional losses for pipe diameters that were not included in theoriginal measurement. Later, speci�c design equations have been developed for the regimebefore the maximum in the loss curve, see Ref. [Duf76] for a extensive review and evaluationof these equations. These equations are usually expressed in a generic form
∆P

L
= KqαcβDγ, (4.1)where ∆P/L is the loss, q is the average �ow velocity, c is the percentage consistency, D isthe pipe diameter. In addition, the numerical coe�cient K, and the dimensionless indices

α, β, γ are constant for a given pulp.Notice that Eq. (4.1) is �awed in a way that the dimension of the coe�cient K dependson the values of the indices α, β, and γ. This de�ciency is an inevitable result of the factthat the equation is just a numerical �t in the experimental data with little or no physicalreasoning. The fundamental reason for this shortcoming is that Eq. (4.1) does not includeall the relevant physical dimensional quantities.As an example of dimensionally sound form of loss correlation, a plausible set of relevantphysical quantities is included in the analysis . The loss depends on the viscosity µf and thedensity ρf of the carrier �uid, in general. The extra shear stress (mechanical friction) τs isalso taken into account that acts on the �bres at the pipe wall, and the permeability of the�bre plug k. Solely based on dimensional analysis, one can write the following pressure losscorrelation
∆P

L
=

ρfq
2

D
f

(

ρfqD

µf
,

τs

ρfq2
,

k

D2
, c

)

, (4.2)where the form of the function f is still unknown, and it may be inferred,e.g., from a adequateset of experimental results. Notice that all the parameters of the function f are dimensionless,



70 CHAPTER 4. FLOW BEHAVIOUR OF WOOD FIBRE SUSPENSIONSand the correct dimension result from the factor ρfq
2/D. In a case where the function f canbe written as a power law of its parameters, one can write the loss correlation in the formanalogous to Eq. (4.1):

∆P

L
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ρfq
2

D

(

ρfqD
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)α1
(

τs

ρfq2

)α2
(

k

D2

)α3

cα4 , (4.3)where α1, α2, α3, and α4 are dimensionless constants. Notice that in Eq. (4.3), the dependenceon the �ow rate of the loss is not isolated to any single power factor on the right side of theequation, but the loss scales with the �ow rate q to the power 2 + α1 − 2α2. Likewise, theloss scales with the diameter D to the power −1 + α1 − 2α3.Notice that Eq. (4.3) can be applied to �ow of water by setting to zero the exponents α2�α4of the unrelevant quantities τs, k, and c. Blasius found that for water α1 ≈ −1/4[Whi06]:
∆P

L
≈ 0.1584ρf

3/4q7/4µ
1/4
f D−5/4. (4.4)In practical design tasks, the e�ect of drag reduction has traditionally been neglected, andat the �ow rates above the onset of drag reduction (where the loss curve of pulp intersectthat of water) the loss curve of water has been used as a conservative approach to be on thesafe side. Despite this common reluctance to adopt the concept of drag reduction, Møllerand Du�y have derived an empirical loss correlation in the transitional regime [KD78]. Theyassumed that the amount of the drag reduction scales with the area of the �uidized �breannulus and derived the following correlation

τ ′
w =

τ 3
w

(1 − Λ)τ 2
w + Λτ 2

D

(4.5)where τw and τ ′
w are the wall shear stresses for the pulp suspension and for water for a given�ow rate, respectively, τD is the wall shear stress at the onset of the drag reduction, and Λ isthe maximum fractional drag reduction. Equation (4.5) can be �t in the experimental databetween the onset of drag reduction and the maximum level of drag reduction.There are design procedures that have been developed to cover a wide range of �ow velocitiesand consistencies. One of these procedures is documented in Ref. [TIS88], and is depictedin Fig. 4.2. In this procedure, the loss curve is partitioned into three regimes by distinctvelocities q1 and q2. The velocity q1 corresponds to the maximum in the loss curve, and q2
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Figure 4.2: Schematic view of the design method proposed in Ref. [TIS88]corresponds to the onset of the drag reductions. These velocities are calculated from thefollowing correlations
qi = Kic

σi , i = 1, 2 (4.6)where Ki and σi are constants for a given pulp. Equation (4.1) is used to calculate the loss inthe �rst regime q < q1. The value of the loss at its maximum, i.e. the value given by Eq. (4.1)with q = q1, is used for the middle regime q1 < q < q2. In the high velocity regime q > q2,the loss is calculated from the standard correlation for water at the same �ow conditions.Even though the lubrication layer is known to be responsible for much of the peculiar �owbehaviour of wood �bre suspensions, there are only a few attempts to calculate or model thethickness of the layer. In what follows, a very simple correlation between the thickness of thelubrication layer and the loss data is derived by considering the �bre plug as porous material.In that case, the plug moves with constant velocity and all the shearing takes place insidethe lubrication layer. The �ow velocity inside the lubrication layer is given by the Poiseuilleparabolic pro�le, and the �ow velocity inside the �bre plug is constant. Furthermore, the no-slip condition is applied on the plug surface, thus the velocity of the plug equals the velocityof the �uid at the surface. With these assumptions one can derive the following correlationfor the width of the layer
h = R

[

1 −
(

1 − 4µfq

τwR

)1/4
]

, (4.7)



72 CHAPTER 4. FLOW BEHAVIOUR OF WOOD FIBRE SUSPENSIONSwhere R is the pipe radius, τw is the wall shear stress, and q is the �ow velocity. For verysmall values of h, the velocity pro�le inside the lubrication layer can be approximated bythe linear Couette pro�le, and the correlation for the layer width simpli�es into the form
h = µf

q

τw
, (4.8)which states the linear relationship between the shear stress τw and the shear rate q/h. Stenufand Anumolu applied Eq. (4.8) on an extensive set of loss data for bleached softwood pulp atconsistencies between 1% and 3.4%, and derived the following correlation for the thicknessof the lubrication layer [SA72]

h = Kc−2.90q1.36(α/α0)
−0.26(σ/σ0)

0.56, (4.9)where K is a constant, α is the speci�c volume, and σ is the speci�c surface. The variableswidth subscript zero correspond to unbeaten pulp.Møller et al. [MDT71] explained the formation of the lubrication layer in terms of elasticdeformation of the �bre plug caused by hydrodynamic shear stress. In this �linear elasticsolid� model, the local shear strain α of the �bre plug is a linear response to the local shearstress τ

τ = Gα (4.10)where G is the shear modulus. The local shear stress varies linearly with radial distance rfrom the pipe axis:
τ =

(

∆P

L

)

r

2
. (4.11)The thickness h of the lubrication layer was found by integrating the local shear strain givenby Eqs. (4.10) and (4.11) from the pipe axis to the pipe wall. Møller et. al. derived thefollowing correlations

q =
(

∆P
L

)3 R4

48G2µf
(4.12)

h =
(

∆P
L

)2 R3

24G2 . (4.13)Myréen modeled the �ow of paper pulp as a non-Newtonian �bre core surrounded by anannulus of Newtonian �uid [Myr98a, Myr98b]. The �bre core was considered as pseudoplastic



4.2. DESIGN METHODS AND FLOW MODELS 73�uid, and the local shear stress τ(r) was written as a power law of local shear rate duf/dr:
τ(r) = K
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n

, (4.14)where K is a dimensional constant, and n is a dimensionless constant. In the viscous �owregime, that is in the low �ow rate regime where the �bres are in contact with the pipe wall,Myréen ended up with the following loss correlation:
∆P

L
= 2

(

3n + 1

n

)

KqnR−n−1. (4.15)Comparing the exponents of Eq. (4.15) with those of Eq. (4.1), one may �nd the followingidentities for the exponents: α = n and γ = −n−1 = −α−1. As an example, the exponentsfor the original data of Brecht and Heller are α = 0.36 and γ = −1.33 [TIS88], which meetthis equality quite accurately.
In the plug �ow regime where the lubrication layer surrounds the �bre core, Myréen expressedthe �ow velocity at the plug surface of the �uid as

uf |r=R−h = sq, (4.16)where s is a dimensionless slip factor. Moreover, he wrote the thickness of the lubricationlayer in the form
h = xhmax, (4.17)where the factor x is in the range 0 < x < 1. The maximum layer thickness hmax correspondsto the value of 30 of the non-dimensional wall-layer variable y+, i.e.

h+
max =

hmaxρf

µf

√

τw

ρf
= 30. (4.18)With these de�nitions, the following loss correlation was derived
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74 CHAPTER 4. FLOW BEHAVIOUR OF WOOD FIBRE SUSPENSIONSwhere the friction factor f is given by
f = 0.0089

s2

x
. (4.20)Skali Lami considered the plug �ow regimes, and modelled the width of the lubrication layerwith the linear elastic model given by Eq. (4.10) [Sl91]. In solving the velocity pro�le of the�uid phase, he considered the �uid pseudoturbulence created by irregular surface of the �breplug. He wrote the presudoturbulent stress of the �uid phase in the form that is proportionalto the square of the local velocity gradient,

τδxy = −〈ρfδuf,xδuf,y〉 = L2

(

d uf,y

d y

)2

, (4.21)where the factor L determines the magnitude of pseudoturbulent stress. In his model, SkaliLami divided the �ow into four domains according to the radial position. Next to the wallthere is a viscous domain, i.e. L = 0, with linear velocity pro�le. In the next domain thatspans from the inner edge of the viscous domain to the outer edge of the �bre plug, thepseudoturbulence factor increases linearly with distance from zero to the maximum valueof L = kε, where k is a constant and ε is the surface roughness of the �bre plug. The nextdomain is the layer corresponding to the surface roughness of the �bre plug. In this domainthe pseudoturbulence factor has a constant value L = kε. Inside the core of the �bre plugthe velocity pro�le is assumed to be constant and equal to the velocity of �bre plug. Basedon these assumptions, Skali Lami derived the following correlation for the wall shear stress
τw = Aτw,water

(

Re

Sk1.185

)−1.35

, (4.22)where A is a nondimensional constant, τw,water is the wall shear stress for water (at the same�ow rate), Re = ρfqD/µf is the pipe Reynolds number, and Sk is a constant that depends onconsistency, in general. Even though Skali Lami derived the correlation given by Eq. (4.22)for the plug �ow regime, he applied it successfully to the fully turbulent �ow regime as well.Hammarström considered wood �bre suspension as a single-component �uid with non-Newtonian viscosity, and modelled the e�ect of the lubrication layer with a slip velocity



4.3. FIBRE INTERACTIONS, FLOCCULATION AND COHERENT NETWORKS 75that is proportional to the wall shear stress [Ham04]. He wrote the slip model in the form
τw = Fuslip, (4.23)where F is a constant and the slip velocity uslip is the velocity at the surface of the �breplug. The parameters of the model were found by a direct least-squares �t in experimentalloss data for straight pipes. The modeled velocity pro�les in straight pipes agreed withgood accuracy with experimental velocity pro�les. Hammarström implemented the modelin a computational �uid dynamic solver as well, and applied it for �ows in more complexgeometries, e.g. a �ow past an abrupt contraction.The models reviewed above range from simple numerical �ts in experimental loss data to morecomplex theoretical models that take into account some of the relevant physical properties ofthe �ow process. Some of the models are not in a closed form ready for the solution, but canbe used, e.g., to estimate the thickness of the lubrication layer based on experimental lossdata. The validity of the assumptions made in some of these models will be studied whilediscussing the experimental results in Chapter 5.

4.3 Fibre interactions, �occulation and coherent networksThe unique behaviour of wood �bre suspensions relates to the elongated shape of wood �bres.Due to the high aspect ratio and complicated surface structure of �bres, the non-uniformityof spatial �bre distribution, i.e. �bre �occulation, and the mobility of �bres in a suspensiondepend strongly on the consistency of the suspension. In this section the characterization of�bre �occulation regimes is discussed, and how these regimes are related to the aspect ratioof �bres and the consistency of the suspension. Next the nature of �bre contacts in �bre �ocsand percolating �bre networks is discussed. This section is closed by reviewing some basicstochastic e�orts to derive correlations between the suspension consistency and the averagenumber of persistent contacts that each �bre may have with other �bres. These correlationswill provide estimates for the minimum consistency at which coherent �bre networks can beformed.



76 CHAPTER 4. FLOW BEHAVIOUR OF WOOD FIBRE SUSPENSIONS4.3.1 E�ect of consistency and �bre aspect ratio on the �bre �oc-culationLet us consider a �bre that moves and rotates freely in a very dilute �bre suspension. Onemay associate two volumes to such a �bre, namely the spherical volume swept by the �breas it rotates, and the average system volume available to the �bre (the volume of the systemdivided by the number of �bres). The spherical volume covered by the �bre has a maximumdiameter equal to the length of the �bre. In a very dilute case this spherical volume ismuch larger than the average volume available to the �bre, and the �bre can move relativelyfreely without colliding with other �bres. Mason proposed that the interactions between�bres become important as a critical consistency is exceeded [Mas54]. He calculated thisconsistency from a condition that there is exactly one �bre in a spherical volume that hasdiameter equal to the length of a single �bre. The corresponding solid volume fraction is
φs,crit =

3

2
A−2, (4.24)where A = L/d is the aspect ratio of �bres, and L is the length and d the diameter of�bres. For a typical value of the aspect ratio A = 70 for pine �bres, Eq. (4.24) predicts

φs,crit = 0.03%.Kerekes and Schell extended the analysis and de�ned a new parameter N called �crowdingfactor� that is the number of �bres in a spherical volume that has diameter equal to thelength of a single �bre [KS92]. They studied the degree of �occulation in a �ow of decayingturbulence, and based on the value of the crowding factor, they partitioned the �occulationof suspensions into three regimes. Soszynski and Kerekes had found the same regimes in anexperiment they deviced with nylon �bres, but they did not provide any numerical criteriafor the regimes[SK88].In a dilute regime the crowding factor N < 1, i.e. below the critical limit given by Eq.(4.24), �bres are free to move and they collide only occasionally due to translational motion.In this regime the �bre distribution is relatively uniform as was reported by Soszynski andKerekes[SK88].The rate of collisions increases with the crowding factor, and in a semiconcentrated regime
1 < N < 60 collisions take place also due to rotational motion of �bres. In this regimethe �bre non-uniformity increases with increasing consistency, and in the local areas of high



4.3. FIBRE INTERACTIONS, FLOCCULATION AND COHERENT NETWORKS 77concentration, �bres may form small networks called �ocs. The mechanical strength of these�ocs is very low, and they are easily torn apart by the hydrodynamic forces created by the�ow of suspending liquid. The �occulation reaches a dynamic equilibrium where �ocs are in astate of continuous dispersion and formation. Soszynski and Kerekes rediluted the suspensionin their experiment and found that �ocs disappeared and the uniformity increased as theconsistency decreased, and the suspension returned to the uniform state if rediluted belowthe critical limit N = 1.As the crowding factor is increased further, the number of persistent contacts between �bresincreases, and in a concentrated regime N > 60 the mobility of �bres decreases signi�cantly.Fibres form local coherent networks that have su�cient strength to tolerate the hydrody-namic forces created by a moderate �ow of suspending liquid, and intensive agitation of thesuspension is needed to disperse the coherent �ocs. Moreover, Soszynski and Kerekes foundin their experiment that the coherent �ocs do not disperse even in the case where the sus-pension is rediluted below the critical limit N = 1. Notice that there is no unique crowdingnumber associated with the formation of coherent �ocs, but the limit depends on the �bretype, and was found to be in the range 60 < N < 130.Obviously further increase in the consistency will increase the number of coherent �ocs, andfor high enough consistency these coherent �ocs will come into contact with each other andform a network percolating through the system.So far the formation of �bre networks in a �ow of decaying turbulence, which is the case inmany paper making processes, has been discussed. The other way of forming �bre networksis by sedimenting, either due to gravity in quiescent �uid or in a uniform �ow through a�ltrating device, e.g. a wire in a hand-sheet mould. Here the sedimentation by gravity will beshortly discussed, as it is used to infer one parameter that is often used to characterize �bresuspensions, namely sediment consistency. The average density of saturated wood �bres ishigher than that of water, thus free �bres will fall down in quiescent �uid under the in�uenceof the gravitational �eld. As the �bres fall down, the average consistency of the sedimentinglayer will increases and eventually it will enter the semi-concentrated regime. The �breswill form �ocs that will come into contact with each other as the consistency continues toincrease. The �bres will eventually settle down at the bottom of the container, where theywill form a network percolating between the walls of container. The average consistencyof this network is called sediment consistency. Notice however, that the consistency of thesedimenting suspension will not reach a well-de�ned stationary value. On the contrary, the



78 CHAPTER 4. FLOW BEHAVIOUR OF WOOD FIBRE SUSPENSIONSconsistency continues to increase slowly for a very long period of time, and in practice astationary value is recorded after a certain time, e.g. 18 hours, of sedimentation.In many cases the experimental sediment consistency corresponds approximately to thecrowding factor value N = 60. Yet there is a salient di�erence in the properties of the �brenetworks created in decaying turbulence or in sedimenting suspensions. As was discussedabove, in the concentrated regime the �ocs created by decaying turbulence are coherent,i.e. they can withstand moderate stresses and strong agitation of suspension is needed todisintegrate the �ocs. The network in the sediment has, by contrast, quite low mechanicalstrength, and relatively small amount of stirring is enough to break the network and to makethe �bres whirl. This di�erence in network strengths relates to the di�erence in the contactsbetween �bres. The nature of these contacts will be discussed next.4.3.2 Mechanisms of �bre contactsThree types of cohesion forces between �bres have been suggested, namely colloidal, surfacetension, and mechanical[SK88]. The mechanical interaction can be further divided to hookingof �bres and/or �brilles, interlocking by elastic bending of �bres, and drawing and twistingof �bres into threads. Depending on the pulping process, the shape of a �bre can becometangled and distorted. Some processes, e.g. beating, roughens the �bre wall uncovering the�brillated wall structure. The resulting variety of �bre shapes and surface structure allowsvarious forms of mechanical interlocking and electro-mechanical coupling.It has been proposed that the mechanical interlocking is the main mechanism for the for-mation coherent �ocs and coherent percolating networks [Mas54]. Soszynski and Kerekesexamined the elastic interlocking of �bres in an experiment where the other types of cohe-sion were eliminated by using relatively straight and smooth nylon �bres [SK88]. The rangesof �bre dimensions, apparent densities, and �exibility were carefully chosen to closely matchthose of wood �bres. The �bres �owed in an inclined cylinder that rotated to produce mod-erately unsteady �ow. In an initial state the consistency of the suspension was in the diluteregime, thus no �ocs were visible and the �bre distribution was uniform. This state corre-sponds to the dilute crowding factor regime N < 1. The consistency was increased, and atsome well-de�ned concentration the suspension shifted from the state of uniform dispersionto a cloudy state where the clouds were temporary noncoherent �ocs. Redilution of the sus-pension broke these weak �ocs and the suspension resumed the uniform state. This regime



4.3. FIBRE INTERACTIONS, FLOCCULATION AND COHERENT NETWORKS 79corresponds to the semi-concentrated crowding factor regime 1 < N < 60. The consistencywas increased further, and at some well-de�ned threshold consistency the suspension changedfrom the cloudy state to a grainy state. In this state the �bres formed persistent �ocs thatremained identi�able through the unsteady �ow. Moreover, these coherent �ocs remainedintact even though the suspension was rediluted to the point where the average consistencywas at the initial level. This regime corresponds to the concentrated crowding factor regime
N > 60.Soszynski and Kerekes demonstrated the nature of the mechanical cohesion between the�bres by picking up a few coherent �ocs out of the cylinder and applying heat on themto relax the elastic stresses. These heat-treated �ocs were brought back into the rotatingcylinder where they dispersed immediately due to hydrodynamic stresses applied by theunsteady �ow. This indicates that the formation of the coherent �ocs was by interlocking byelastic bending. The experiment reviewed above was carried out with nylon �bres. However,the �bre properties were closely matched with those of wood �bres, thus there is a strongpossibility that same kind of elastic bending is responsible for the formation of coherent �brenetworks in wood-�bre suspensions as well.Soszynski and Kerekes found that coherent �ocs are created only if the consistency of sus-pension exceeds a well-de�ned threshold value that depend largely on the �bre aspect ratio[SK88]. This supports the results reported by Thalén and Wahren that certain mechani-cal properties of paper pulp can be measured only if the �bre content of the pulp is highenough [TD64]. Thalén and Wahren measured the shear modulus G in an elasto-viscometerfor a number of paper pulps. They found that the shear modulus and the ultimate shearstrength can be measured only above a certain limiting consistency. The values of this lim-iting consistency they detected were only slightly higher than the sediment consistency cs.They reported their result in the form

G = G′
(

c−cs
0.1%

)kG (4.25)
τu = τ ′

(

c−cs
0.1%

)kτ
, (4.26)where G and G′ (τu and τ ′) is the shear modulus (the ultimate shear strength) at theconsistency c and c = cs + 0.1%, respectively, and kG (kτ ) is a dimensionless constant. Thelimiting consistency measured by Thalén and Wahren [TD64], the sediment and thresholdconsistencies measured by Soszynski and Kerekes [SK88], and the consistency corresponding



80 CHAPTER 4. FLOW BEHAVIOUR OF WOOD FIBRE SUSPENSIONSto he lower limit N = 60 of the concentrated regime coincide with moderate accuracy (seeFig. 4.3).4.3.3 Stochastic analysis and threshold consistencyThe crowding factor can be expressed in the form (see Eqs. (A.3) and (A.5))
N =

π

6

cmL2

ω
=

2

3
φsA

2, (4.27)where cm is the consistency of the suspension, L is the length of a �bre, and ω is the �brecoarseness (mass per unit length). Real wood �bres come in variety of lengths even for asmall sample of one species. Thus, the �bre length L in Eq. (A.3) is not uniquely de�ned.Kerekes and Schell recommended that the average �bre length be used when calculating thecrowding factor. Huber et al extended the calculation of the crowding factor to the case ofgeneral �bre-length distribution [HRGP03].The value of N = 60 for the crowding factor is used normally as the lower limit for theconcentrated regime, i.e. it corresponds to the lowest consistency at which �bres form acoherent network. The corresponding volume fraction φs0 is calculated by setting N = 60 inEq. (4.27), and the result is
φs0 =

90

A2
. (4.28)The quantity φs0 is quite often referred to as the sediment solid (volume) fraction. Dueto vagueness of the de�nition for the sediment consistency that was discussed above, thequantity φs0 from now on will be called the threshold volume fraction.Meyer and Wahren examined the correlation between the volumetric concentration of �bres,the average number of contacts per �bre, and the aspect ratio of �bres A [MD64]. Theytook into account the �bre length distribution and the �bre diameter distribution. In a casewhere all �bres are of the same length, they found the following correlation between the solidvolume fraction φs and the average number of contacts per �bre n:

φs =
16πA

(2A/n + n/(n − 1))3 (n − 1)
. (4.29)They proposed that �bres may form a coherent network only if, on the average, every �breis locked in position by contact with at least three other �bres and in such a way as to be
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Figure 4.3: Sediment and threshold volume fraction as a function of �bre aspect ratio. Solidline is given by Eq. (4.28), dashed line by Eq. (4.30), and dotted line by Eq. (4.32). Open tri-angles and circles are the threshold and sediment volume fractions, respectively, as measuredby Soszynski and Kerekes (this data is reproduced from Fig. 7 of Ref. [SK88]).able to transmit forces. Thus one can calculate an estimate for the threshold consistency bysetting n = 3 in Eq. (4.29):
φs0 =

8πA
(

2A
3

+ 3
2

)3 (4.30)Dodson considered �bres as circular cylinders, and with a simple geometrical analysis hefound that the average number of contacts per �bre scales with the crowding factor as[Dod96]
n =

3N

A
= 2φsA. (4.31)By setting n = 3 in Eq. (4.31) the threshold volume fraction is solved as

φs0 =
3

2A
. (4.32)In Fig. 4.3 is shown the threshold volume fraction φs0 given by Eqs. (4.28), (4.30), and(4.32) as functions of �bre aspect ratio A. The scatter in this experimental data is due toweak dependence of the threshold and sediment consistencies on the �bre diameter (the



82 CHAPTER 4. FLOW BEHAVIOUR OF WOOD FIBRE SUSPENSIONSdiameter varied in the experiment form 19.8 µm to 44.2 µm). All the threshold and sedimentvolume fractions decrease with increasing aspect ratio. Equations (4.28) and (4.30) predictthreshold volume fractions that are quite close to each other over a wide range of �breaspect ratios. The di�erence is 25% at the aspect ratio A = 30 and decreases with increasingaspect ratio. Equation (4.32), on the other hand, gives a threshold volume fraction thatis considerably lower for low aspect ratios and higher for high aspect ratios. The valuespredicted by Eq. (4.32) match quite well with the measured threshold values up to aspectratio 100. The measured threshold volume fractions are in most cases higher than measuredsediment volume fractions.4.3.4 Fibre analysis and threshold consistencySpecies # �bres analyzed L [mm] d [µm] A=L/d ω [µg/m] MRbPine 20000 2.04 27.7 71 147 3.5Birch 45000 0.900 21.0 43 109 2.5Table 4.1: Experimental results for the average �bre length L, the average �bre width d,and the coarseness of �bres ω. Also shown is the aspect ratio A = L/d calculated from thephysical dimensions, and the moisture ratio of bound water MRb calculated from eq. (A.10).In the experimental work of this thesis suspensions consisting of water and chemically re-leased pine or birch �bres were studied. The physical dimensions of �bres were measuredwith a commercial �bre analyzer at Techinal Research Center of Finland[Haa]. In the an-alyzer �bres are aligned between two glass windows and imaged with a CCD camera. The�bre dimensions are calculated with image analysis. The results include, e.g. distributionsfor the �bre length and width, and the averages of these distributions. The total mass of dry�bres is measured before the analysis, thus the coarseness of �bres can be calculated too.The results for the average physical dimensions and coarseness are presented in Tab. 4.1.Also shown in the table is the aspect ratio A = L/d calculated from the average physicaldimension. Also shown in the table is the moisture ratio MRb calculated using Eq. (A.10),the density of eater ρ̃w = 1000 kg/m3, the density of cellulose ρ̃c = 1500 kg/m3, and thecross-sectional area of �bres A0 = 1/4 × πd2 (here round �bres are assumed).The threshold consistency can be estimated by using the �bre properties presented in Table4.1, the result presented in Sect. 4.3, and the correlations derived in App. A.2. The thresholdsolid volume fraction φs0, calculated using Eqs. (4.28), (4.30), and (4.32), are shown in the
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φs0 cm0 [kg/m3] c0Eq. (4.28) 0.018 4.3 0.43%Eq. (4.30) 0.015 3.7 0.37%Eq. (4.32) 0.021 5.1 0.50%Table 4.2: The threshold values for solid volume fraction and consistency for pine �bres. Thevolume fraction φs0 is calculated from each of Eqs. (4.28), (4.30) and (4.32). For each valueof φs0, the consistency cm0 is calculated from Eq. (4.33), and the percentage consistency c0from Eq. (4.34).
φs0 cm0 [kg/m3] c0Eq. (4.28) 0.049 15.3 1.5%Eq. (4.30) 0.039 12.4 1.2%Eq. (4.32) 0.035 10.1 1.0%Table 4.3: Same as Table 4.2 but for birch �bres.second columns of Tables 4.2 and 4.3 for the pine and birch �bre suspensions, respectively.The corresponding values of the threshold consistency are calculated from Eq. (A.4), i.e.

cm0 =
4ω

πd2
φs0, (4.33)and the results are shown in the third columns of Tables 4.2 and 4.3. Finally, the values ofthe threshold percentage consistency are calculated from Eq. (A.20) by setting c = c0 and

cm = cm0,
c0 =

(

MRb + r + (1 − r)
πd2cm0

4ω

)−1
πd2cm0

4ω
. (4.34)The results are shown in the third columns of Tables 4.2 and 4.3. Notice that in calculatingthreshold consistencies average values are used for all �bre properties and, e.g., the coarse-ness is assumed to be same for all �bres of one species. In the modeling e�ort (see Chap. 6),the threshold values given by Eq. (4.32) will be used, as they are supported by the visualobservations of the suspension state at various consistencies during the experiments. In addi-tion, the threshold values predicted by Eq. (4.32) are in better agreement with experimentalthreshold values for A < 100 than those given by Eqs. (4.28) and (4.30), see Fig. 4.3.
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Chapter 5
Experimental work
This chapter is started by describing the methods used in the experimental part of this work.Pulsed ultrasound Doppler method was used for measuring momentary velocity pro�les, anda laser-optical method for measuring the thickness of the lubrication layer. These methodswere applied to study the transient behaviour of the �ow after a turbulence generator (suddenstep), the approach to steady state �ow, and the main features of fully developed �ow.In particular, the various �ow regimes are sought to be identi�ed on the basis of directmeasurements. The properties of the �bres used in the experiments were also measured.The results of the experiments are shortly reported after which each �ow regime that wasidenti�ed based on these results is studied in detail.
5.1 Measurement setupThe experiments were made in an laboratory-scale acrylic �ow loop for birch and pine �bresuspensions. The �ow was driven by a centrifugal pump, and the �ow rate was measured usinga magnetic �ow meter. The �ow loop was equipped with a di�erential pressure transducer forloss measurement. The velocity pro�le across the pipe was measured using pulsed ultrasoundvelocimetry. In a separate experiment, the thickness of the lubrication layer in the plug-�owregime was measured optically using a collimated laser beam guided inside the �ow channel,and measuring the light scattered by �bres. 85



86 CHAPTER 5. EXPERIMENTAL WORK5.1.1 Ultrasound velocimetry

PSfrag replacements
θ z

uFigure 5.1: Left: The principle of the pulsed ultrasound Doppler velocimeter (PUDV). Right:One momentary velocity pro�le (dashed line) and the average of 3000 momentary velocitypro�les (solid line).The velocity pro�le across the pipe was measured using pulsed ultrasound velocimeter(PUDV) techniques, see Fig. 5.1. The measurement is based on using a transmitter to sendshort ultrasound pulses through the pipe wall and into the �ow. Target particles (�bres)moving with the �ow re�ect the sound which is detected by the transmitter. The distanceof the particle is found by the time-of-�ight method using the known velocity of sound, andthe velocity of the particle is calculated from the cross-correlation between the echoes fromconsequent pulses. Notice that the device thus measures the velocity component in the di-rection of the ultrasound beam. Within the present measurement, an ultrasound transmitterwith the emitting frequency of 4 MHz was used. The angle between the axis of the probe(the direction of ultrasound beam) and the pipe wall was set to θ = 85◦. The duration ofa single ultrasound pulse was selected as 4 wavelengths corresponding to a length 1.5 mmin water with the velocity of sound 1500 m/s. The repeating frequency of pulses was set to
15.6 kHz, thus the time delay between the emissions of two consequent pulses was 64.0 µswhile a single pulse lasted only for 1.0 µs. The echo signal was sampled in 54 gates (windows)corresponding to 54 depth values with spacing 0.75 mm in the direction of ultrasound beam.A series of 32 pulse emissions was used to construct a single velocity pro�le uus(zus, t), and3000 pro�les were collected during 20 seconds. Here uus is the velocity component in the



5.1. MEASUREMENT SETUP 87direction of the ultrasound beam and zus is the distance along the beam axis from the frontwall of the �ow channel. Velocity pro�les u(z, t) were calculated, where u = uus/ cos θ is thevelocity component in the direction of the pipe axis and z = sin θzus is the perpendicular dis-tance from the front wall of the �ow channel. The mean velocity pro�le ū(z) was calculatedas the average of these 3000 individual pro�les
ū(z) =< u(z, t) >, (5.1)where <> denotes average over 3000 separate velocity pro�les, i.e. average over time. The�uctuating velocity component was determined as the deviation of each individual velocityvalue from the mean velocity at a given position across the pipe:

δu(z, t) = u(z, t) − ū(z). (5.2)In order to characterize the turbulent state of the �ow the local intensity of the velocity�uctuations is calculated as the correlation
IT (z) =< δu(z, t)δu(z, t) > . (5.3)The individual velocity pro�les given by the PUDV method su�er, however, from a noiseintrinsic to the measuring principle. This noise contributes to the intensity given by Eq. (5.3),and for weak �uctuations it dominates the intensity totally obscuring the actual �uctuationsof the �ow. It appears however that one can eliminate the noise from the results by usingspatial velocity correlations. To that end, the time averaged spatial pair correlation functionof the measured velocity �uctuations is de�ned as

g(z, z′) =< δu(z, t)δu(z′, t) > . (5.4)This pair correlation function is shown in Fig. 5.2 for pine �bre suspension at consistency
c = 1.0% and �ow rate Q = 1.3 l/s at the distance 0.5 m downstream from a turbulencegenerator (see Fig. 5.8). Since the intrinsic noise is highly uncorrelated, it only a�ects thevalues of correlation function near main diagonal. As an example, the �uctuations at thedistance z0 = 20 mm from the front wall, that is at the pipe axis, are considered. A cross-section of the correlation of Fig. 5.2 is taken along the line z + z′ = 2z0 = 40 mm, this cut isshown in Fig. 5.3 with open markers as a function of coordinate δz = z − z0. The shape of
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Figure 5.2: The spatial correlation function < δu(z)δu(z′) > of the �uctuating velocitycomponent measured with the PUDV method for the pine �bre suspension at the consistency
c = 1.0% and �ow rate Q = 1.3 l/s at the distance 0.5 m downstream from a sudden expansionwith the area ratio 1:4. The intrinsic noise caused by PUDV-method is visible as a sharpridge along the main diagonal.the function g(z0−δz, z0 +δz) is almost Gaussian except for the center where there are a fewpoints of large values due to the intrinsic noise. These points at the centre (in Fig. 5.3 thethree points at the centre) are excluded and �t in the rest of the data a Gaussian function

f(δz) = I0 exp(−(δz/λδu)2) (5.5)The �tted Gaussian function is shown in Fig. 5.3 with solid line, and the �tted values of theGaussian parameters are in this case I0 = 0.15 and λδu = 7 mm. The parameter I0 gives thecorrected intensity for the velocity �uctuations at the point z0, thus the local intensity ofthe velocity �uctuations is de�ned as
IT (z0) = I0(z0) (5.6)5.1.2 Laser-optical lubrication layer measurementThe thickness of the lubrication layer was measured optically using a collimated laser beamguided inside the acrylic �ow channel (see Fig. 5.4). This method is quite analogous to that
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Figure 5.3: An example of the removal of the intrinsic noise. The cross-section of the originalspatial correlation function in Fig. 5.2 along the line z + z′ = 20 mm is shown by the openmarkers, high values at the centre are due to intrinsic noise. The noise is removed by �ttinga Gaussian function (solid line) to the original data excluding a few points at the centre. Inthis case the �nal value of the correlation at the center is 0.15.

Figure 5.4: The principle of the laser-optical measurement of the lubrication layer thickness.



90 CHAPTER 5. EXPERIMENTAL WORKone used by Salmela[Sal97]. However, a few enhancement were included in the measurementsetup used in the current study. First, the horizontal position of the vertical beam couldbe controlled so that the focal point remained at the horizontal pipe diameter. Second, theaccuracy of the beam position as well as the diameter of the focal waist of the beam wereapproximately 10 µm, while in the setup used by Salmela the diameter of the focal waist wasapproximately 90 µm. The light scattered from �bres traversing the beam was detected byan optical sensor placed just outside the pipe wall, and having a narrow horizontal �eld ofview through the pipe wall into the focal point of the beam.The optical setup is shown in more detail in Fig. 5.5. The device was build as a separateoptical table that has its own section of �ow channel attached �rmly to it. This section of�ow channel is made of two semi-circular channels cut to separate acrylic prisms that are�rmly bolted together to form a full circular �ow channel. Only the front side prism wasattached to the table while the rear prism stayed attached to the front part. This two-prismconstruction was chosen for two reasons. The �rst one is the possibility to drill the holes forthe pressure taps starting from the inside of the channel wall while the prisms are detached.This way distortion of the channel wall next to the hole is reduced, which decreases velocity�uctuations near the holes and the error they generate in the loss measurement. The secondadvantage is the ability to replace the rear prism while keeping the front prism �rmly attachedto the table. This feature is utilized while calibrating the optical setup with a special deviceattached to a third prism that is used as a temporary rear prism during the calibration, seebelow.The laser beam is generated with a 5 mW helium-neon laser (wave length λ = 623 nm),and guided via a mirror through an beam expander that increases the beam diameter from
1 mm to 10 mm. The expanded beam is collimated with a focussing lens (f = 100 mm) andguided by a mirror driven by a rotational stage into the �ow channel. The positions of themechanical stages were calculated using geometrical optics. At �rst the position of the lowerlinear stage and the rotation angle of the rotational stage were determined such that thecentral ray passed through the �ow channel vertically at the desired distance from the wall.Next the position of the upper linear stage driving the collimating element was calculatedfrom the condition that the point of focus is at the horizontal diameter of the �ow channel.The path of the laser beam is sensitive to various imperfections in the optical system. Theseimperfections include, e.g., errors in the positions and alignment of both the optical elements(lenses, mirrors) and the mechanical stages driving those elements. In addition, various com-
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92 CHAPTER 5. EXPERIMENTAL WORKplications arise for very small values of the beam depth, since the angle of incidence of thelaser beam entering the �ow channel approaches that of total re�ection as the depth of thebeam goes to zero. Thus the positions calculated from geometrical optics can only be usedas estimates for actual positions, and calibration of the optical setup is necessary.

Figure 5.6: The device used for the calibration of the laser-optical setup.A special calibration device was used to verify the exact depth of the laser beam as it isguided through the �ow channel, see Fig. 5.6. A separate rear acrylic prism was used thathad a hole in its side through which a rod with a light scattering blade at its tip was operated.The blade is driven along the horizontal diameter by the rod, which is attached to a manualmicrometer gauge. During the calibration the �ow channel was �lled with clear water. For aninitial value of distance from the pipe wall, the mechanical stages were driven to the positionsgiven by the geometrical optics equations. The path of the laser beam was observed visually,and where necessary, tiny corrections to the positions of the mechanical stages were madeto make the laser beam pass vertically through the �ow channel. The beam was judged topass the channel vertically when the bright spots visible at the points were the beam enteredand left the �ow channel were positioned symmetrically below and above the horizontaldiameter. After the beam had a correct path, the edge of the calibration blade was drivenclose to the beam. As the blade was driven into the beam, the intensity of the light scattered



5.1. MEASUREMENT SETUP 93by the blade increased from zero to some maximum value within a distance that was of theorder of the beam width. The position of the half-value in this step was chosen to give theposition of the beam. In the next phase the focal point of the laser beam was driven to thehorizontal diameter of the pipe. In this process, the intensity of the light scattered from theblade was maximized by making small changes to the position of the linear stage driving thecollimating element. After all necessary adjustments were made, the distance of the beamfrom the pipe wall was read from the micrometer gauge, and this value together with thepositions of the mechanical stages were recorded. This procedure was repeated for distances
15 − 1270 µm from the wall with 10 µm steps.
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Figure 5.7: Calculated and calibrated positions vs. distance from the pipe wall for the baselinear stage (L1), rotational stage (φ) and collimating stage (L2). Solid lines are calculatedfrom geometrical optics, and the open markers are the calibrated positions.The positions of the mechanical stages as functions of the beam distance from the wall areshown in Fig. 5.7. Solid lines are the positions calculated from geometrical optics, while theopen markers are the values given by the calibration procedure. As can be seen, the valuescalculated from optical equations are quite accurate at the distances over 0.2 mm, but failfor shorter distances.



94 CHAPTER 5. EXPERIMENTAL WORK5.2 MeasurementsThe experimental work carried out in this study divides into three parts. First, pulsed ul-trasound Doppler method was used to study the transient behaviour of the �ow after aturbulence generator (sudden step), the approach to steady state �ow, and the main fea-tures of fully developed �ow. Secondly, the thickness of the lubrication layer was measured ina fully developed state with the laser-optical device. The properties of the �bres used in ourexperiments were also measured with a commercial �bre analyzer. Based on the measuredproperties, the threshold consistency is estimated above which a �bre plug may form.5.2.1 Transient phenomena in developing �ow

Figure 5.8: Schematic illustration of the experimental arrangement for �bre suspension �owin a straight pipe after a turbulence generator.The PUDV -method was applied to study the �ow in a straight pipe of diameter isD = 40 mmand length L = 3 m with a constriction block of inner diameter 20 mm and length 0.25 mplaced inside the entrance part of the pipe, see Fig. 5.8. The resulting backward facingsudden step provided by the exit end of the constriction block generates a recirculationzone and a strong turbulent �eld in the downstream part of the pipe. The velocity and�uctuation pro�les through the pipe diameter were measured at 18 �xed locations after theconstriction block for di�erent �ow rates varied between 0.7 and 3.5 l/s. The �rst measuringpoint was located at distance 0.2 m and the last point at distance 2.6 m from the step. Themeasurement zone thus includes portion of the pipe, downstream of the recirculation zone,where the �ow is already reattached to the pipe walls, takes place in a decaying turbulent �eld



5.2. MEASUREMENTS 95and approaches a fully developed condition towards the end of the pipe. In this experimentbirch �bre suspension at consistency 1.0% was used.Figures 5.9- 5.11 show the mean velocity and turbulent intensity pro�les at various locationsalong the pipe for �ow rates 0.7 l/s , 1.9 l/s and 3.5 l/s, respectively. The turbulent intensity iscalculated from Eqs. (5.4)- (5.6). At all �ow rates used, the turbulent intensity immediatelyafter the sudden expansion is very high indicating that the suspension is in a �uidized statewhere the �bre phase is broken into small �ocs that undergo turbulent motion. The turbulentintensity is highest in the middle of the pipe and decreases rapidly with distance x as the�uctuations of the �bre phase cease. At low �ow rate (see Fig. 5.9), the �bre phase �nallyforms a continuous network that spans through the pipe, except of a thin �bre free lubricationlayer that may be formed at the walls (but can not be observed with the PUDV techniques).The shape of the mean velocity pro�le undergoes only minor change along the pipe, beingplug-like turbulent pro�le immediately after the recirculation zone and turning into a plug-like steady pro�le further downstream where the �ow approaches fully developed condition.The developed pro�les shown in Fig. 5.9 are typical to plug �ow regime. At moderate �owrate (see Fig. 5.10) the behaviour is similar to that shown in Fig. 5.9. However, the overallturbulent intensity is higher and the high intensity region extends further downstream. Inaddition, the increased wall friction now prevents �bres from forming continuous networknear the walls. Instead, a turbulent annulus remains near the walls and a continuous networkis formed only at the core. This is seen as the turbulent intensity maxima near the walls anda slightly more rounded mean �ow pro�le in the developed �ow region. Here, the developed�ow is typical to the mixed �ow regime.At the highest �ow rate (see Fig. 5.11), the initial turbulent intensity is still higher andextends still further downstream. The turbulence induced by strong wall friction now preventsformation of continuous �bre network throughout the pipe. The suspension remains fully�uidized also in the developed �ow and is thus in the turbulent �ow regime. Althoughthe mean velocity and turbulent intensity pro�les in the developed �ow region appear quitesimilar to those for ordinary turbulent �ow of simple �uids, a closer examination of the meanvelocity pro�le reveals marked di�erences to the conventional logarithmic law behaviour (seeSect. 6.1).In this experiment a forward facing step was used to induce transient �ow in decayingturbulence �eld and the resulting approach to fully developed �ow. In practical applications,turbulent �ow may be generated by other devices such as pumps, mixers and valves. One
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Figure 5.9: The measured mean velocity pro�le (top) and turbulent intensity pro�le (bottom)for birch �bre suspension at the consistency c = 1.0% (by weight) after the recirculationzone created by a sudden expansion with area ratio 1:4. Flow rate is Q = 0.7 l/s, and thecorresponding Reynolds number calculated with the properties of water is Rew = 22000. Theinsert in bottom �gure shows the measured turbulent intensity multiplied by a factor 100for clarity in the latter part of the pipe. Here, x is the downstream distance from the suddenexpansion, z is the distance from the inner surface of the pipe wall along the horizontal pipediameter, q is the average �ow velocity, and D is the pipe diameter. The axis of the pipe islocated at z = 20 mm.
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Figure 5.10: Same as Fig. 5.9 but for �ow rate Q = 1.9 l/s, Rew = 60000.
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Figure 5.11: Same as Fig. 5.9 but for �ow rate Q = 3.5 l/s, Rew = 110000.



5.2. MEASUREMENTS 99can, however, expect the qualitative features of the �ow remain the same irrespective of theway in which the turbulence was generated.5.2.2 Thickness of the lubrication layerThe thickness of the lubrication layer was measured in a fully developed �ow with the laser-optical device described above. The straight pipe sections upstream and downstream of themeasuring point were approximately 2.7 m and 0.5 m, respectively. For each �ow rate, 10000light intensity values were collected at a sampling rate adjusted according to the mean �owvelocity such that the distance between consequent measuring points in the moving �breplug was approximately 1 mm. Thus a length 10 m of the suspension �owing in the pipe wasmeasured to give an adequate and statistically similar set of measurements for all �ow rates.Notice that this method is applicable in the plug �ow regimes, where the velocity of the�bre plug is very close to the measured mean velocity. The frictional loss in the pipe wasmeasured simultaneously with the lubrication layer thickness.Figure 5.12 shows an example of results obtained by the laser optical lubrication layer thick-ness measuring device discussed above. In the �gure, shown is the mean intensity of scatteredlight as a function of the laser beam position inside the pipe of diameter 40 mm near thepipe wall. The measurement is for pine �bre suspension at consistency 0.5% and �ow rates
0.14 l/s and 0.54 l/s, where the �ow is well in the plug �ow regime in both cases. The layerof pure water is indicated by a region next to the wall of nearly constant intensity. As thebeam enters the �bre plug, the intensity starts to increase with the beam position more orless linearly. The thickness of the lubrication layer is de�ned as the crossing point of the twostraight lines �tted to the data points in the constant intensity region and in the increasingintensity region as indicated in Fig. 5.12. In the �ow condition shown, the thickness of thelubrication layer is thus estimated to be 0.037 mm at the �ow rate 0.14 l/s and 0.38 mm at�ow rate 0.54 l/s.In Figs. 5.13 and 5.14 shown are the measured values of layer thickness as a function of mean�ow velocity for various consistencies. The measured layer thickness is shown only for those�ow velocities at which a well de�ned �nite thickness value could be found. Especially withthe present measuring techniques, the lubrication layer could not be observed at very low�ow rates. It appears that in each case, the regime where the lubrication layer was not foundcoincides with the low �ow rate domain where the loss increases with �ow rate. This domain
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Figure 5.12: The measured intensity of the laser light scattered by �bres as a function ofdistance from the pipe wall at �ow rates Q = 0.14 l/s (top) and Q = 0.54 l/s (bottom). Foreach �ow rate, the crossing point of two �tted lines de�nes the thickness of the �bre freelubrication layer.
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Figure 5.13: Measured pressure drop (small dots) and wall layer thickness (open circles)versus �ow rate for pine suspension at consistencies 0.5% � 2.0% (by weight). Solid line isthe pressure drop of water calculated using Eq. (4.4), and stars give the thickness of theviscous sublayer (y+ = 5) for water at each value of loss.
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Figure 5.14: As Fig. 5.13, but for birch suspension at consistencies 1.0% � 2.0% (by weight).



5.3. FLOW REGIMES OF WOOD FIBRE SUSPENSION IN A STRAIGHT PIPE 103is naturally identi�ed as the plug �ow regime with direct �bre-wall contact. An observablelubrication layer appears at the �ow rate corresponding to the local maximum in the losscurve (birch) or to the point where the loss curve levels o� (pine). Above that �ow rate,the measured value of the lubrication layer thickness �rst grows with �ow rate, reaches amaximum and then starts to decrease. In general, the thickness decreases with consistencyand the location of maximum point becomes less de�nite. The �ow rate corresponding tothe maximum layer thickness (where observable in the data) falls approximately at thesame point, where the loss curve again starts to grow. This domain is identi�ed as the plug�ow regime with lubrication layer. The observed decrease of the layer thickness after themaximum is most likely due to incipient turbulence, i.e. turbulence in the �uid phase (thatwas not observed with the present methods). This turbulence is not yet strong enough tocause macroscopic breakage of the �bre network, but only to bend and dislodge individual�bres that are loosely bound to the �bre plug surface. These �bres can then be randomlydisplaced towards the pipe wall by �uctuations of �uid velocity, and thereby cause increasedlight scattering as they traverse the laser beam. The apparent decrease of lubrication layerthickness may thus be explained by dispersion of the �bre plug surface layer due to �uid phaseturbulence. In this region the measured lubrication layer thickness decreases and pressureloss increases but macroscopic rupture of �bre plug is not yet observed.5.3 Flow regimes of wood �bre suspension in a straightpipeBased on the experimental results discussed above, the main qualitative features of �ow ofwood �bre suspensions in straight pipe are now summarized. Direct observation using var-ious experimental methods suggests that one can divide the �ow into �ve di�erent regimesaccording to �ow rate. These regimes are shown in Fig. 5.15, where the measured loss curvesas a function of �ow rate for pine �bre suspension at di�erent consistencies are plotted.Figure 5.16 illustrates the �ve qualitatively di�erent �ow regimes discussed below. The num-bering coincides with that shown in the context of loss data, Fig. 5.15. Below, the relevantphenomena taking place in each of these regimes will be shortly discussed.Regime I: plug �ow with wall contactIn this regime the intensity of turbulence is high immediately after the source (constriction,



104 CHAPTER 5. EXPERIMENTAL WORKpump, etc. ), and the suspension is in a �uidized state where the �bre phase is broken into�ocs. The intensity of the turbulence decays rapidly downstream from the source, and the�bre phase forms into a continuous network. In this process, the turbulent energy of �bres ispartly captured as the elastic energy of the network. This elastic energy manifests itself asan elastic force that pushes �bres towards the pipe wall. Notice that the quantitative detailsof this elastic force may depend on the initial turbulent intensity and the way the turbulencedecays, i.e. the history of the suspension. The inertial lift force, on the other hand, repels�bres from the wall. In this regime of low �ow velocity, the elastic force is, however, largeenough to keep the �bre plug in a contact with the wall. Thus the �bre network forms intoa state that spans through the pipe, and no observable lubrication layer is found. The radialforce balance of the �bre plug is maintained between the elastic force, the lift force, and asupport force by the wall. The support force give rise to mechanical friction between the�bre plug and the pipe wall, increasing the loss.
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Figure 5.15: Measured loss vs. �ow rate for pine �bre suspension in a D = 40 mm �owchannel for various consistencies (by weight). Dashed line is the standard curve for purewater in a hydraulically smooth pipe, and solid lines divide the �ow domain into �ve mainregimes (labeled I - V) based on the �ow behaviour (see Fig. 5.16)Regime II: plug �ow with lubrication layerThis regime is quite similar to the regime I, with the exception that the lift force is largeenough to keep the �bres away from the pipe wall, on the average. Thus the �bre network
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Figure 5.16: The main regimes of fully developed �ow of �bre suspensions. (I) Plug �owregime with direct �bre-wall contact, (II) plug �ow regime with lubrication layer, (III) plug�ow regime with incipient (�uid phase) turbulence, (IV) mixed �ow regime and (V) fullyturbulent �ow regimeforms into a state where there is a �breless lubrication layer next to the pipe wall. Thethickness of this layer increases with �ow rate. Due to the lubrication layer, the loss saturatesof may even decrease with increasing �ow rate.Regime III: plug �ow with smearing annulusIn this regime the loss increases approximately linearly with �ow rate, and the behaviourof the lubrication layer thickness is ambiguous. Fluctuations in the �uid phase (incipientturbulence) deform and disengage individual �bres on the surface of the �bre plug. These�bres are randomly displaced towards the wall into the lubrication layer by the �uctuationsin the �uid velocity, which eventually renders the lubrication layer unobservable.Regime IV: Mixed �owIn this regime the dependence on the �ow rate of the loss is approximately quadratic. Theturbulence induced by the high �ow velocity and the strong wall friction prevents �bres fromforming a continuous network near the walls. Thus the �bre plug is only formed at the coreand a turbulent annulus remains at the walls.Regime V: Full turbulenceIn this regime the turbulence created by strong wall friction prevents the formation of the



106 CHAPTER 5. EXPERIMENTAL WORK�bre plug throughout the pipe, and the suspensions remains in a �uidized state. The transi-tion from mixed �ow regime IV into fully turbulent regime V is gradual and no sharp changein loss behaviour can be observed. The dependence on the �ow rate of the loss remains closeto quadratic in the transition, thus the exact �ow rate at which the �bre plug core disappearscan not be identi�ed from loss data. This topic will be discussed in greater detail in Sect.6.1 utilizing the results from velocity pro�le measurements. At very high �ow rates, the lossbehaviour approaches that of pure carrier �uid.Although the classi�cation discussed above and depicted in Figs. 5.15 and 5.16 is very similarto those presented previously (see e.g. Ref. [Duf97]), there are some subtle di�erences. In par-ticular, the existence and nature of regime III and identi�cation of the di�erent �ow regimesin the loss data are now more precisely de�ned. Notice also, that the present classi�cationis based on direct experimental evidence on various features of the �ow.The results reported in this chapter may not seem to add much to the qualitative under-standing of the developing �ow of �bre suspension in decaying turbulence. They do, however,indicate that the new experimental method utilized here can be used to gain much more de-tailed information on the �ow behaviour as has been previously possible. Based on alreadythese results, even the qualitative behaviour of the pipe �ow can be further speci�ed at leastin two respects. Firstly, unlike often phrased, for a pipe �ow in mixed or turbulent �owregions (after a pump, say) the wall friction does not break the continuous �bre network.Instead, wall friction prevents such a network from ever forming within an annulus of somethickness or in the entire pipe. (Actual breaking of �bre network would only take place if the�ow was �rst stopped to allow the continuous network to form, and then resumed.) Eventhough this di�erence may appear quite super�cial, it can have some signi�cance, e.g., whenusing the measured values of disruptive shear stress of the �bre network in predicting pipe�ow behaviour. It is not clear, without further investigation, that the value of disruptiveshear stress measured by actually breaking an existing network by applied shear stress isthe proper value to be used, e.g., in predicting the transition from plug �ow to mixed andturbulent �ow regions in conventional pipe �ows. Secondly, the appearance of the �bre freelubrication layer in the plug �ow regime is often explained by mechanical models based onshear deformation of the network induced by the wall stress, and the resulting reduction ofplug diameter [MDT71]. For a pipe �ow brought about by a pump, such a model is unphys-ical simply because the undeformed state of the network never existed. Instead, the �breplug formes from the �uidized state in decaying turbulence after a pump or any �uidizing



5.3. FLOW REGIMES OF WOOD FIBRE SUSPENSION IN A STRAIGHT PIPE 107device is originally of diameter slightly less than that of the pipe. The existence of lubricationlayer is more likely due to inertial lift force that acts on particles moving near the wall. Thisphenomenon leads to a tubular pinch e�ect where the �bres are repelled from the wall andthe �bre plug is formed in a state where the lift force is balanced by the elastic force of thenetwork. The elastic force, in turn, is a�ected by the turbulent energy of �bres, partiallystored as the elastic energy of the forming network.In the next chapter this qualitative depiction of the �ow behaviour will be utilized in a moredetailed theoretical and semiempirical analysis of the �ow dynamics. This analysis, in turn,is then used in deriving new physically justi�ed loss correlation formulas for the �ow of wood�bre suspension in straight, smooth pipes.
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Chapter 6
Velocity pro�les and loss correlation
In this chapter correlations for frictional losses of wood �bre suspension �ow in a straight pipeare derived. These correlations cover a large range of �ow rates from the plug-�ow regimesto the fully turbulent regime. The approach used here is based on detailed information on�ow pro�les and is thus analogous to that used to derive the conventional loss correlationsof Newtonian liquids. In the plug-�ow regimes, the velocity pro�le is found by analyticallysolving a set of two-phase equations of the �ow, while in the mixed and turbulent regimesa suitable parameterization of the measured pro�les discussed in Chapter 5 is utilized. Theloss correlations are then found by integrating these velocity pro�les over the cross sectionof the pipe.6.1 Velocity pro�les in the plug �ow regimesIn the plug-�ow regimes all the relevant phenomena take place in a very narrow annulus nextto the pipe wall. Typically the width of this annulus is less than 1 mm, i.e. below the spatialresolution of the pulsed ultrasound Doppler device used to measure the velocity pro�les.On the other hand, �ow is non-turbulent and one can resort to modeling of the �ow �eld.Based on earlier knowledge and the experimental results presented in this monograph, anovel approach to the dynamics of the lubrication layer was introduced (see chapter 5). Herea simple two-phase model for closed-channel �ow of wood-�bre suspension in this regime isconsidered. This model includes all the dynamical features of the �ow discussed in chapter109



110 CHAPTER 6. VELOCITY PROFILES AND LOSS CORRELATION5 for the plug-�ow regimes. The model is based on the averaged �ow equations that werederived in chapter 2, and it will be presented in a closed form ready for solution. In the model,the lubrication layer is modeled as a response to the inertial transverse lift force acting onthe �bres near the pipe wall. The form of the lift force used in the model is qualitativelysupported by the numerical simulations described in sections 3.3 and 3.4.Thus the plug-�ow regimes I and II shown in Fig. 5.16 are considered, and a laminar two-phase �ow model for the regimes is derived. The model takes into account the direct contactfriction between �bres and pipe wall at low �ow rates and existence of lubrication layer athigher �ow rates (see Fig. 6.1). The lubrication layer is formed due to repulsive inertial liftforce that is known to act on �bres moving near the wall. The averaged �uid �ow is assumedto be steady and fully developed, i.e. �uid velocity is longitudinal
uf = uf(r)êz. (6.1)Fibres move as a rigid plug with a constant velocity
us = usêz. (6.2)At very low �ow rates the �bre plug is indirect contact with the pipe wall. As the �ow rateincreases, a lubrication layer of pure carrier �uid occurs next to the pipe wall. The widthof the lubrication layer is small compared to the pipe radius. In the case where lubricationlayer exists, the velocity of the �uid within the thin layer is given approximately by the linearpro�le

uf(r) = −R

µf

∂p̃f

∂z
(R − r) =

τw

µf
y (6.3)where r and z are the radial and axial coordinates, respectively, µf is the dynamic viscosityof the �uid, p̃f is the �uid pressure, R is the radius of the pipe, y is the distance from thewall and τw is the wall shear stress. The �uid velocity at the surface of the �bre plug is thusgiven by

u0 =
τw

µf
h, (6.4)where h is the thickness of the lubrication layer.Inside the �bre core, the system is modeled as two interacting continua, and the governingtwo-phase equations for momentum are obtained by (volume) averaging the correspondingequation for each phase. The �ow inside the core is described by the equations that have
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Figure 6.1: Schematic view of the plug �ow of �bre suspension. A close up view at the wallwith the �bre plug in a contact with the wall (bottom left) and with a lubrication layer(bottom right).



112 CHAPTER 6. VELOCITY PROFILES AND LOSS CORRELATIONbeen derived in section 2.3.2. The porosity of the �bre plug φ is assumed to be constant,hence the equations for the conservation of mass, Eqs. (2.59) and (2.60), are satis�ed for thelongitudinal �ow �eld of Eqs. (6.1) and (6.2). The conservation of momentum is describedby Eqs. (2.70) and (2.62), namely
φ∇p̃f = ∇ · 〈τf〉 −

µf

k
(ūf − ūs) − Lsêr (6.5)

−∇ · 〈σs〉 = +
µf

k
(ūf − ūs) + Lsêr. (6.6)were Ls is the lift force applied on the unit volume of the �bre plug by the carrier �uid. Itis assumed in Eqs. (6.5) and (6.6) that the e�ect of gravity can be neglected. The averagestress tensor of the �uid phase given by Eq. (2.68) simpli�es in the current case in the form

〈τf〉 = φµf

(

(∇ūf) + (∇ūf)
T
)

. (6.7)The longitudinal component of the equation for the carrier �uid, Eq. (6.5), can be writtenin the form
−φ

∂p̃f

∂z
+ φµf

(

d2

dr2
uf +

1

r

d

dr
uf

)

− µf

k
(uf − us) = 0. (6.8)The proper boundary conditions for this equation are the velocity at the plug surface givenby Eq. (6.4), and zero velocity gradient at the pipe axis. With these boundary conditions,the exact solution of Eq. (6.8) is

uf(r) = uf0

[

1 − I0(r
∗)

I0(R∗)

]

+ u0, (6.9)where
uf0 = us − u0 −

φk

µf

∂p̃f

∂z
, (6.10)

I0(x) is the modi�ed Bessel function of the �rst kind of order zero, r∗ = r/
√

φk is a dimen-sionless radial coordinate, and R∗ = (R − h)/
√

φk is a dimensionless plug radius.The length scale √
φk of the velocity pro�le is typically of the order of 10−3 m to 10−5 m sothat the arguments of the Bessel functions in Eq. (6.9) are large. The velocity pro�le canthus be approximated by an exponential function

uf(r) = uf0 [1 − exp(−y∗)] + u0, (6.11)
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Figure 6.2: The calculated scaled velocity pro�les for various values of dimensionless plugradius R∗. Solid lines are the exact solutions given by Eq. (6.9), while dashed lines show theapproximations given by Eq. (6.11).where y∗ = R∗ − r∗ is the nondimensional distance from the plug surface. The reduced �owvelocity (uf − u0)/uf0 is shown in Fig. 6.2 as a function of nondimensional radial distance
r∗/R∗ = r/(R − h) for selected values of R∗ in the range 1-100. The di�erence between theexact solution and the approximation is large with small nondimensional plug radius, butdecreases with increasing radius (decreasing permeability). The relative di�erence is below
2% for R∗ = 10, and for R∗ = 100 the absolute di�erence is below the line thickness of thegraph.The velocity of the �bre plug can be solved from the condition that the sum of the forcesacting on the plug is zero in the steady state. The forces acting on the plug can be identi�edby integrating the longitudinal component of the momentum equation (6.6) over the cross-section of the �bre core. The resulting equation manifests a balance between two forces,namely the total Darcy's drag applied by the carrier �uid and the extra mechanical frictionwith the pipe wall (present in the case where lubrication layer does not exist, i.e. h = 0).Darcy's drag can be obtained by integrating the velocity pro�le for the carrier �uid, Eq.(6.11). Combining these two results and replacing wall shear stress for pressure gradient



114 CHAPTER 6. VELOCITY PROFILES AND LOSS CORRELATIONyields the plug velocity in a form
us =

1

µf

√

k

φ

(

(1 − h

R
)τw − τs

)

− 2φk

µfR
τw + u0. (6.12)Here the shear stress at the plug surface τs is the (yet unknown) mechanical wall friction perunit area. Finally, combining Eqs. (6.11) and (6.12) gives the velocity pro�le of the carrier�uid in the form

uf(r) =
1

µf

√

k

φ

(

(1 − h

R
)τw − τs

)[

1 − exp(− y√
φk

)

]

+ u0, (6.13)where u0 is given by Eq. (6.4).Notice that equations (6.12) and (6.13) are valid for both plug-�ow regimes I and II shownin Fig. 5.16, and even for the percolating regime, where the �bre plug is stagnant and only�uid �ow occurs. It now remains to develop an appropriate model for the shear stress at theplug surface τs and for the thickness of the lubrication layer h. Clearly, τs must depend onthe radial structural stress of the �bre network at pipe wall. Thus the radial stress balanceequation of the �bre plug is considered, i.e. the radial component of Eq. (6.6)
− ∂

∂r
Ps + Ls = 0. (6.14)Here, Ls(≤ 0) is the inertial lift force per unit volume acting on the �bres and Ps is the radialnormal stress of the �bre network. In what follows it will be called simply the structuralstress. (Notice that the structural stress arises originally from turbulent energy partiallyconverted into elastic energy of the network that forms in the decaying turbulent �ow �eld).According to the numerical results presented in Chapter 3, the lift force decays rapidly withthe distance from the wall - typically within a few particle diameters. Notice that the lengthscale associated with this decay is not known in the current case. It may be, e.g., the average�bre length or the surface roughness of the �bre plug rather than the �bre radius.Since the length scale associated with the lift force is not known, a global balance equationfor the structural stress of the �bre network is considered instead. Integration of Eq. (6.14)



6.1. VELOCITY PROFILES IN THE PLUG FLOW REGIMES 115gives the structural stress at the surface of the �bre plug
Ps(R − h) = Ps(0)|h +

∫ R−h

0

Ls dr = Ps(0)|h − PL (6.15)where Ps(0)|h is the structural stress at the centre of the pipe. (The notation is chosen toemphasize that the stress in the centre may depend on the lubrication layer thickness h.)The quantity PL(≥ 0) gives the integrated contribution of lift force on structural stress anddepends on �ow rate. The integrated lift force is chosen to be modeled as
PL =

1

2
ρfu

2
sCL, (6.16)where ρf is the density of the carrier �uid, CL is the lift force coe�cient and Res = ρfus

√
k/µfis the �bre-network Reynolds number.At low values of �ow rate, �bres are in contact with the wall (h = 0) and the structuralstress at the surface of the �bre plug is positive, i.e. Ps(R) > 0. The radial force balance isthen maintained between structural stress, lift force and the support force by the wall. Thelatter is proportional to Ps and automatically adjusts itself so that there is no macroscopicdeformation of the plug. Consequently, the structural stress at the centre of the plug isconstant; Ps(0)|h=0 ≡ Ps0. Furthermore, it is assumed that the mechanical friction stress isthen proportional to Ps(R):

τs = CsPs(R) = Cs (Ps0 − PL) , (6.17)where Cs is a friction coe�cient. As the �ow rate is increased, PL increases, and Ps(R)and τs decrease and eventually become zero. As the �ow rate is increased beyond this point,lubrication layer develops. Consequently, �bre consistency and structural pressure well insidethe plug increase by a small but �nite amount. The structural pressure at the plug boundary
Ps(R − h) vanishes for all h > 0. The excess stress ∆Ps at pipe centre for a �nite value oflubrication layer thickness h is now de�ned by

Ps(0)|h = Ps0 + ∆Ps(h). (6.18)For small values of h, it is postulated that ∆Ps = 1
Γ
h where Γ is a constant. This relation



116 CHAPTER 6. VELOCITY PROFILES AND LOSS CORRELATIONgives a natural constitutive model for lubrication layer thickness, namely
h = Γ∆Ps = Γ(Ps(0)|h − Ps0) = Γ(PL − Ps0), (6.19)where the latter equality follows from Eq. (6.15) since Ps(R−h) = 0. Reorganizing the equa-tions given above, one can now rewrite the �nal results for frictional stress and lubricationlayer thickness in a compact form as

{

τs = max(0, Cs(Ps0 − PL))

h = max(0, Γ(PL − Ps0))
(6.20)Notice that the constants Ps0 and Γ, related to elastic stress in the �bre plug as h = 0 and torate of change of that stress with respect to h, may depend on �ow conditions and not onlyon �bre properties. In particular, they may depend on the initial turbulent intensity and onthe details of turbulence decay and formation of the �bre plug in the developing �ow regiondownstream of the turbulence generator (see Sect. 5.2.1).There is still some degeneracy in this set of parameters, and the number parameters can bereduced by combining Eqs. (6.20) and (6.16). The frictional stress at the plug surface andthe width of the lubrication layer can now be written in the form

{

τs = max
{

0, P ∗
s0 − C∗

L × 1
2
ρfu

2
s

}

h = max
{

0, Γ∗
(

C∗
L × 1

2
ρfu

2
s − P ∗

s0

)} (6.21)where a set of reduced parameters is de�ned by
P ∗

s0 ≡ CsPs0 (6.22)
CL

∗ ≡ CsCL (6.23)
Γ∗ ≡ Γ/Cs (6.24)The velocity pro�les in the plug �ow regime are governed by Eqs. (6.4), (6.12), (6.13), and(6.21), which include four free material parameters k, P ∗

s0, C∗
L, and Γ∗. Notice that theseparameters depend, in general, on the suspension consistency. The permeability k is theonly one of these parameters that explicitly in�uences the �ow of the carrier �uid, see Eq.(6.13). The remaining three parameters govern the dynamics of the lubrication layer via Eqs.(6.21). The evaluation of the material parameters will be postponed until Sect. 6.3 where



6.2. VELOCITY PROFILE IN THE MIXED AND TURBULENT FLOW REGIMES 117the parameters are determined by a least-squares �t in the experimental loss data.Given these basic results one can now �nd the limiting values of wall stress (pressure gradient)where the �bre plug is �rst set to motion and where the lubrication layer is �rst formed.The value τw0 at which the �bre plug starts to move can be solved by setting us = 0,
τs = CsPs0 = P ∗

s0 and h = 0 in Eq. (6.12), and solving for the wall stress. The result is
τw0 =

(

1 − 2

R
φ
√

φk

)−1

P ∗
s0. (6.25)When the wall stress is below this limit, the �bre plug is stationary, and the mechanicalfriction τs must be calculated from Eq. (6.12) by setting us = 0 and h = 0. The value τw1 atwhich the lubrication layer is created can be found by setting Ps = 0 in Eq. (6.15) to solvefor the corresponding plug velocity, and then applying Eq. (6.12). The result is

τw1 =

(

1 − 2

R

√

φk

)−1(
2P ∗

s0

C∗
Lµ2

f /(ρfk)

)1/2
√

φµ2
f /(ρfk). (6.26)6.2 Velocity pro�le in the mixed and turbulent �ow regimesFor the turbulent �ow regimes III - V, illustrated in Fig. 5.15, one have to rely on the exper-imental pro�le correlations that were obtained using pulsed ultrasound Doppler velocimetry,see chapter 5. Figure. 6.3 shows the mean velocity pro�les of pine �bre suspension of con-sistency 1% for �ow rate ranging from 1.5 l/s to 5 l/s. Due to noise caused by the wall-�uidinterface, the velocity measurement by the PUDV method is not accurate below 1 mm fromthe wall, and those results are excluded from the pro�les shown. A peculiar feature of themeasured mean velocity at high �ow rates is the S -shaped pro�le near the wall. (A similarresult was obtained recently also by Xu and Aidun for rectangular channels [XA05].) Asin the case of Newtonian �ows, parameterization of turbulent velocity pro�les of �bre sus-pensions is best done by utilizing the standard non-dimensional wall-layer variables de�nedby

u+ = u/u? (6.27)
y+ = yu?/νf (6.28)
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Figure 6.3: Mean velocity pro�les of pine �bre suspension at consistency 1% as a functionof distance from the pipe wall. The �ow rate is varied from 1.5 l/s to 5 l/s where the �owis in the mixed or turbulent �ow regimes. The centre line of the acrylic pipe is located at
y = 20 mm.where u? =

√

τw/ρf is the friction velocity, ρf and νf are the density and the kinematic viscos-ity of the �uid and τw is the wall shear stress obtained from the pressure drop measurements.Figure 6.4 shows the same velocity pro�les as Fig. 6.3 but redrawn in the dimensionless vari-ables. Also shown is the standard logarithmic velocity pro�le for turbulent Newtonian �ow,namely:
u+ =

1

κ
ln(y+) + B (6.29)where the constants κ and B have the standard values 0.41 and 5.5, respectively [Whi94].A remarkable feature of the pro�les shown in Fig. 6.4 is that there seems to exist a unique(approximate) envelope curve that corresponds to a limiting velocity pro�le shape as the �owrate approaches in�nity. That envelope curve consists of a logarithmic near wall region wherethe pro�le coincides with that of Newtonian �ow, a yield region where velocity gradient ishigher than that of Newtonian �ow, and a core region where the pro�le again is of the formgiven by Eq. (6.29) but with a value of constant B above that of Newtonian �ows (i.e. B ∼ 5).
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Figure 6.4: Same as Fig. 6.3 but for dimensionless velocity and distance from the pipe wall(see Eq. (6.27). The dashed line is the standard logarithmic pro�le of turbulent Newtonian�ow, Eq. (6.29).The near wall region extends up to a distance scale y+
L ∼ 102. Correspondingly, the core regionstarts at a distance scale y+

H ∼ 103 and extends up to pipe entry at y+ = R+ = Ru?/νf . Theyield region (in very high �ow rate limit) is located between y+
L and y+

H .At �nite �ow rates the dimensionless velocity pro�les seem to be approximately independentof �ow rate in the region near the pipe wall. At distances y+ < y+
L the velocity pro�les thusapproximately coincide with that of Newtonian �ow. Above that point in the yield region,the pro�les follow the envelope curve up to a certain point y+

C ≤ y+
H that depends on �owrate. From that point on, the velocity pro�les again become approximately logarithmic withvarying slope such that at low �ow rates, the slope is zero and approaches the Newtonianpro�le value (1/κ in the logarithmic y+-scale) as the �ow rate increases. The measuredpro�les can be approximated by a piecewise logarithmic pro�le of the form.

u+ =
1

κ
ln(y+) + B + ∆u+ (6.30)
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∆u+ =











0 0 < y+ ≤ y+
L

α
κ

ln
(

y+/y+
L

)

y+
L < y+ ≤ y+

C (≤ y+
H)

∆u+
P − β

κ
ln
(

y+/y+
L

)

y+
C < y+ ≤ R+

(6.31)Here, α and β give the slope (relative to Newtonian pro�le value) of the envelope curve in theyield region and the core region, respectively. Figure 6.5 illustrates the simpli�ed pro�le andthe meaning of various parameters. Notice that the quantities y+
L , y+

H and α are constantsfor a given suspension. Instead, β and y+
C depend on �ow rate (on τw) in a manner thatremains to be found. Within the present parameterization for each velocity pro�le at a �nite

Figure 6.5: The piecewise logarithmic approximation of measured velocity pro�les shown inFig. 6.3. The parameters are as in Eqs. (6.30) and (6.31).�ow rate, y+
C denotes the point where the pro�le departs from the high �ow rate envelopecurve, and the upper limit of the yield region. (At very low �ow rates, that point may appearalready at the near wall region in which case the yield region does not exist.) Obviously, the�ow is turbulent and the �bre phase is �uidized in the near wall and yield regions. Theexistence of the yield region is most likely related to quenching of wall induced turbulencedue to presence of �bres. As a consequence, the rate of turbulent transfer of longitudinalmomentum from the core region towards the wall (and thus, the e�ective eddy viscosity ofthe suspension) is reduced. The existence of the yield region is thus identi�ed as the primary



6.2. VELOCITY PROFILE IN THE MIXED AND TURBULENT FLOW REGIMES 121phenomenon underlying the drag reduction found in the mixed and turbulent �ow regions.Indeed, according to the present results, set up of the drag reduction regime takes place atthe �ow rate regime where the yield region in the velocity pro�le �rst appears.At relatively low �ow rates, the velocity pro�le in the core region is �at indicating existenceof a central �bre plug and y+
C denotes the position of the plug surface. According to theconventional reasoning, plug rupture takes place at the position where the total stress equalsthe disruptive shear stress τD which, in turn, is a material property of the �bre network.This suggests a correlation for y+

C in the form
y+

C = R+(1 − τD/τw) (6.32)It appears, however, that this correlation is not in accordance with the observed pro�lesand loss behaviour (see below). As discussed above, the concept of disruptive shear stress asthe criterion of plug rupture is somewhat questionable in the case where no actual ruptureof once formed �bre network takes place. It is assumed here, instead, that the existenceof �uidized annulus and �bre plug is controlled by a critical turbulent intensity that canprevail in the suspension. Lacking the possibility to measure the absolute values of turbulentintensity the assumption is made that the turbulent intensity is correlated with the mean�ow velocity gradient, instead of total shear stress level. In other words, we conjecture thatthe upper limit of the yield region is set by the requirement that the mean velocity gradientis a (material) constant at that location, i.e. that
du

dy

∣

∣

∣

∣

yC

= ΓC = constant (6.33)Converting this equation in dimensionless form, solving for y+
C in the yield region and takinginto account the limitation y+

C ≤ y+
H set by the present quite rough parameterization of thepro�le, leads to the correlation

y+
C = min

(

y+
H , (u?/u?

C)2
)

, (6.34)where
u?

C =

√

νfκΓC

1 + α
. (6.35)Notice that according to Eq. (6.34), y+

C does not depend on pipe radius, as it would according



122 CHAPTER 6. VELOCITY PROFILES AND LOSS CORRELATIONto Eq. (6.32). If necessary, this result can be generalized to other parts of the pro�le andto more re�ned pro�le parameterizations. Finally, examination of the pro�le data suggestscorrelating the core region slope parameter β with y+
C as

β = 1 −
(

y+
C/y+

H

)2 (6.36)To summarize, the velocity pro�les in mixed and fully turbulent �ow regimes are parame-trized by Eqs. (6.30) and (6.31) that include four free parameters: y+
L , y+

H , α and u?
C (oralternatively, ΓC ). Figure 6.6 shows the measured and �tted pro�les for 1% pine and 2%birch at several �ow rates in the mixed and turbulent regions. The �tted parameter valuesare given in Table 6.1. Notice however, that for birch suspension, the yield layer seems tobe located too close to the wall to be reliably measured by PUDV method for all but thehighest �ow rates (i.e. within the range 1 mm from the wall). This feature gives rise tosome additional uncertainty in the �tted values of pro�le parameters for 2% birch suspen-sion. A reliable estimation of the uncertainty in the �tted values of the parameters is notpossible with the limited set of experimental data used in the present study. For the samereason, the dependence on the consistency and on �bre properties of the parameters cannotbe determined based on the current results.Parameter Pine 1% Birch 2%

y+
L 120 50

y+
H 880 320
α 1.8 2.4

u?
C [m/s] 0.0047 0.0125Table 6.1: Fitted values of pro�le parameters for 1% pine and 2% birch �bre suspension.Given the new pro�le information obtained by the PUDV method, the dynamics of thetransition from the incipient turbulent regime via mixed �ow regime to the fully turbulentregime (regimes III, IV and V in Fig. 5.15 can now been discussed in more detail.' Theincipient turbulence region most likely arises due to growth of the lubrication layer thicknessuntil turbulent �uctuations of the �uid phase can exist between the wall and the �bre plug.The edge of the �bre plug is not sharp, however. Instead, a surface layer exists where theaverage �bre consistency increases from zero to some constant value within a distance scaleset by a structural correlation length of the �bre network (that is left unspeci�ed in thiswork but can be expected to be of the order of �bre length, but may depend on consistency).
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Figure 6.6: Measured velocity values (solid symbols) and �tted pro�les (solid lines) at di�er-ent �ow rates in mixed and turbulent �ow regimes for 1% pine (top) and 2% birch (bottom).Also shown are the logarithmic Newtonian pro�les (dashed lines) corresponding to samevalues of wall stress (loss) as the measured pro�les.



124 CHAPTER 6. VELOCITY PROFILES AND LOSS CORRELATIONDue to low �bre consistency near the surface, the �uid phase turbulence is not e�ectivelydamped until well inside the plug. Consequently, the �ow behaviour is dominated by �uidphase turbulence in a region that starts from the outer edge of the viscous sub-layer wellinside the �bre free lubrication layer, and extends inside the �bre core a distance of theorder of correlation length. This explains the observed behaviour that the velocity pro�le of�bres approach that of turbulent Newtonian �uid near the wall. Remember that the PUDVtechniques could not be applied close enough to the wall such that the linear viscous sub-layercould be resolved.As the �ow rate is increased, turbulence production at the wall increases and �uctuationscan prevail deeper in the �bre phase core preventing �bres from forming continuous networkwithin some annular region. Well inside the core, �bre consistency is high leading to e�ectiveattenuation of turbulent �uctuations. The attenuation is most e�ective in the size scale ofcorrelation length. On the other hand, the size scale of the largest eddies, that contain mostof the turbulent energy and that are most e�ective in momentum transfer (i.e. in generatingturbulent friction) is set by the distance from the wall. An immediate consequence of thearguments given above is that at a distance of the order of correlation length from thewall, the largest eddies possible at that distance, are e�ectively attenuated by the �bres.Consequently, the turbulent friction is attenuated leading to the yield layer characterizedby increasing velocity gradient and the S-shaped pro�le shown in Fig. 6.4. (Obviously, thisconclusion is based on an assumption that the friction is dominated by turbulence.) Theexistence of the yield layer, located between y+
L and y+

C in the schematic illustration of thepro�le parameterization shown in Fig. 6.5, is the origin of the drag reduction phenomenon- although within the present reasoning that region could more accurately be described asthe 'region of �ow enhancement'.As the �ow rate is further increased, the turbulent production still increases and the turbulentannulus can di�use deeper in the �bre core. Entering further away from the wall leaves spaceto larger eddies that are not anymore attenuated very e�ectively. As a consequence, the coreregion can �nally remain turbulent due to eddies larger than correlation length. Furthermore,the large scale end of the turbulent spectrum near the pipe centre can become similar to thatof pure �uid. At very high �ow rates the turbulent momentum transfer and consequently themean velocity gradient approaches that of turbulent Newtonian �ow. That would explainthe limiting value of slope in the logarithmic -scale in the core region (see Figs. 6.4 and 6.5).



6.3. LOSS CORRELATIONS 1256.3 Loss correlationsIn this section the frictional loss will be studied in detail. The aim is to utilize the modeledvelocity pro�le in the plug �ow regime and the parametrized experimental velocity pro�lein the mixed and turbulent regimes, and thereby derive a semiempirical correlation formulafor the loss. The �ow rate corresponding to a given friction velocity/wall stress (that yieldsthe loss) is found simply by integrating the velocity pro�le over the pipe cross section.6.3.1 Plug �ow regimesFor the plug �ow regimes, integration of the average bulk velocity φuf + (1 − φ)us over thecross-section of the pipe using Eqs. (6.12) and (6.13) yields
Q = 2πR

φk

µf
(τs − (1 − φ)τw) + πR2us +

πR

µf
τwh2 (6.37)Further investigation of Eq. (6.37) reveals that the dominant term on the right side is thesecond one for all values of wall shear within the plug �ow regimes, except of those very closeto τw0 where the �bre plug starts to move. As a good approximation valid for most practicalcases in the plug �ow regimes, one can thus write

Q ∼= πR2us (6.38)The permeability is chosen here to be modeled with Eq. (2.56), the result derived by Jacksonand James [JJ86]. It should be noticed that the results in Eqs. (2.54) - (2.56) were derived forsmooth circular cylinders. Real wood �bres, on the other hand, may have non-circular cross-section, and a rich surface structure. Especially �brillation due to mechanical processing(beating) increases the speci�c surface area of �bres, thus the drag on �bres increases andthe permeability decreases. Thereby, the e�ective radius a in Eqs. (2.54) - (2.56) should beconsidered as a free material parameter that gives the speci�c permeability scale k0 = a2.The values of the material parameters k0, P ∗
s0, C∗

L, and Γ∗ were found by a least-squares �tof Eq. (6.38) in the experimental loss data separately for each suspension consistency. Theresults are shown in Figs. 6.7 (pine) and 6.8 (birch). Notice that in the �gures shown is thepermeability k as is given by Eq. (2.56), and not the speci�c permeability k0.



126 CHAPTER 6. VELOCITY PROFILES AND LOSS CORRELATIONIn what follows, the reduced material parameters P ∗
s0, CL

∗, and Γ∗ are expressed as functionsof consistency (the permeability k is given by Eq. (2.56)). To that end, the expected qual-itative dependence on the consistency of the material parameters is shortly discussed, andsimple analytic expressions are proposed that have these qualitative features.According to Eq. (6.21), the shear stress at the plug surface, τs, is in the percolating �owregime (�bre plug is stationary) equal to the reduced parameter P ∗
s0. This stress correspondsto the loss that is obtained by extrapolating the loss curve to zero �ow rate. Equation (6.26)states that the wall shear stress at the local maximum of the loss curve, τw1, increases withthe parameter P ∗

s0. Further analysis of the governing equations show that the overall levelof the loss increases with this parameter, as expected. The experimental loss data clearlydemonstrates, on the other hand, that loss increases with consistency. One may thus concludethat the value of parameter P ∗
s0 should increase with consistency. This is clearly the case withthe values that were inferred from the �tting procedure described above, these values areshown as open markers in Figs. 6.7 and 6.8.It may be also seen that the dependence on the consistency of the parameter P ∗

s0 is nonlinear,in general. Moreover, the value of the parameter tends to zero as the consistency approachesthe lowest value used in the analysis. This lowest consistency coincides with the thresholdvalue shown on the last line of table 4.2 and 4.3 for pine and birch �bre suspension, respec-tively. Thus the dependence on the consistency of P ∗
s0 is quite analogous to that of the shearmodulus given by Eq. (4.25) and the ultimate shear strength given by Eq. (4.26), and theparameter P ∗

s0 is chosen to be modeled with a similar expression:
P ∗

s0 = τ0(max(c, c0)/c0 − 1)ατ , (6.39)where c is the percentage consistency, c0 is the threshold consistency for the plug formation,and τ0 and ατ are free material parameters.As can be seen from the experimental results shown in Figs. 5.13 and 5.14, the thicknessof the lubrication layer decreases with increasing consistency. Equation (6.19) states, on theother hand, that the thickness of the layer increases with the parameter Γ∗. Thus one mayconclude that Γ∗ decreases with increasing consistency. The parameter Γ∗ is chosen to bewritten in a power-law form
Γ∗ = Γ0c

αΓ , (6.40)
Γ0 and αΓ are free material parameters. One expects Γ∗ to decrease with increasing consis-



6.3. LOSS CORRELATIONS 127tency, thus the exponent αΓ should be negative. The material parameter C∗
L is expressed inthe form

CL
∗ = CL0c, (6.41)where CL0 is a free material parameter. Notice that the formulas given in Eqs. (6.39)- (6.41)do not have direct physical justi�cation, but were chosen merely as they have the correctqualitative behaviour and reproduce the experimental results with reasonable accuracy.At this point our model contains six material parameters de�ned by Eqs. (6.39)- (6.41)and (2.56), namely k0, τ0, CL0, Γ0, ατ , and αΓ. It is tempting to evaluate the values of theseparameters by �tting Eqs. (6.39)- (6.41) and (2.56) into values of the material parameters k0,

P ∗
s0, C∗

L, and Γ∗ that are shown as open markers in Figs. 6.7 and 6.8. It was found, however,that this does not reproduce good approximation to the observed loss data. Instead, thevalues of these parameters were found for each wood species by �tting the model in all theexperimental loss data at all consistencies in one go. The results are shown in Table 6.2. The�tted functions are shown as solid lines in Figs. 6.7 and 6.8. Notice that a reliable estimationof the uncertainty in the �tted values of the parameters is not possible with the limited setof experimental data. The measured loss data and the loss predicted by the model areSpecies k0 [10−9 m2] τ0 [Pa] CL0 Γ0 [10−6 m/Pa] ατ αΓPine 1.0 0.12 0.0012 93 3.1 -3.7Birch 0.58 3.6 0.0008 310 2.0 -4.8Table 6.2: Fitted parameters for pine and birch �bre suspensionsshown in Figs. 6.9 and 6.10 for pine and birch �bre suspensions, respectively. The modelreproduces the loss data with moderate accuracy, the di�erence between the calculated andthe experimental losses is of the same order as the scatter in the experimental data itself.At the point where the lubrication layer is formed, the model produces a sharp corner in theloss curve. This is a consequence of the simpli�cation made in the model. The �bre networkis considered as a sharp-edged plug that undergoes an abrupt transition from the state withwall contact to the sate with lubrication layer. In this transition the number of �bres incontact with the wall has a discontinuous jump to zero. In reality the surface of the �breplug has a complicated �oc structure that one expects to change as the �bre plug is liftedo� the pipe wall. Especially the average number of �bres in contact with the wall decreasessmoothly, and there is a gradual rather than sudden transition to the next �ow regime withlubrication layer.
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Figure 6.7: The values of the physical parameters determined by a least-squares �t in theexperimental data for pine �bre suspension. Open markers are the values calculated for eachconsistency separately, while the solid lines are given Eqs. (2.56), and (6.39)- (6.41).
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Figure 6.8: As Fig. 6.7 but for birch �bre suspension.
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Figure 6.9: Measured (small markers) and calculated (solid line) loss as a function of �owrate for pine suspension at consistencies 0.5%�2.0%.
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Figure 6.10: As Fig. 6.9, but for birch suspension at consistencies 1.0% � 2.0%.
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Figure 6.11: The thickness of the wall layer as a function of �ow rate for pine suspension atconsistencies 0.5% � 2.0%. Open markers are the experimental results, solid line is given bythe two-phase model, and dashed line is given by Eq. (4.8).
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Figure 6.12: As Fig. 6.11, but for birch suspension at consistencies 1.0% � 2.0%.



6.3. LOSS CORRELATIONS 131The measured width of the lubrication layer and the width predicted by the model areshown in Figs. 6.11 and 6.12 for pine and birch �bre suspensions, respectively. Even thoughthe model predicts layer widths that are larger than the measured values, the qualitativebehaviour of the modeled results is quite similar to the experimental results. The di�erencebetween the results is most likely due to the fact that in the model the �bre plug is consideredas a sharp-edged object, while in reality the plug surface has an irregular �oc structure andindividual �bres are protruding out of the plug as well. The intensity of the light re�ectedfrom the �bres increases substantially as the incoming beam hits the outermost �bre �ocs.Thus the location of the plug surface as given by the laser-optical measurement is close tothis depth. From modeling point of view, on the other hand, the e�ective surface of the plugseen by the �uid �ow is deeper inside the roughness layer of the plug, and the layer thicknesspredicted by the model is larger than observed thickness.
6.3.2 Mixed and turbulent �ow regimesFor mixed and turbulent regions, integration of the velocity pro�le given by Eqs. (6.30) and(6.31) yields

Q+ = Q+
0 + ∆Q+

1 + ∆Q+
2 , (6.42)where
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)] (6.45)Here, the �rst term Q+
0 is the contribution of the standard Newtonian pro�le, the secondterm ∆Q+

1 gives the additional �ow contribution due to yield region and the constant velocitycontribution in the core region. The third term ∆Q+
2 includes the e�ect of the non-zero slopein the core region (that becomes signi�cant at high �ow rates, see Fig. 6.5). Finally the �ow



132 CHAPTER 6. VELOCITY PROFILES AND LOSS CORRELATIONrate Q in physical dimensions is given in terms of the dimensionless �ow rate as
Q =

ν2
f

u?
Q+. (6.46)This equation gives the required correlation between the �ow rate and loss. Figure 6.13 showsthe measured loss for 1% pine and 2% birch suspensions together with the correlations givenby Eqs. (6.42) - (6.45). For the turbulent regime, the loss is calculated using the parametervalues given in Table 6.1 as obtained from a �t to pro�le data. Notice that while knowingthe pro�le parameters y+

l , y+
H , α and u?

C immediately yields an accurate loss correlation, theinverse is not true: knowledge of loss behaviour alone does not yield unique values of pro�leparameters. Consequently, a direct �t of Eqs. (6.42) - (6.45) in the turbulent regime wouldlead to even closer agreement with the loss data as the one shown in Fig. 6.13, but withparameter values that do not reproduce good approximation to the measured pro�les throughEqs. (6.30) and (6.31).As shown by Fig. 6.13, the agreement between measured and calculated loss behaviour isvery good in the present cases. At the relatively low consistencies considered here, the mixedand turbulent �ow regimes are obviously the most important regimes from practical point ofview. At those domains, the loss correlation discussed above is based on a somewhat arbitraryand suggestive parameterization of the �ow pro�le, the generality of which can not be assuredgiven the rather small amount of data yet available. However, even more important than theexplicit functional form of the loss correlation given by Eqs. (6.42)- (6.46), these formulassuggest a certain scaling law of the correlation, namely that
Q+ = Q+(R+, u?/u?

C), (6.47)i.e. that the dimensionless �ow rate of suspension depends only on two quantities, the dimen-sionless pipe radius R+ and the ratio u?/u?
C , where u?

C is a material parameter related to thecritical turbulent intensity that is su�cient to keep the �bre phase �uidized. Furthermore, itappears that the primary variable here is R+. Instead, the dependence on u?/u?
C is relativelyweak and limited to low �ow rate end of the mixed �ow region. As a good approximationone can then drop the dependence on u?/u?

C in Eq. (6.47). In particular, using Eqs. (6.42)-(6.45) in the high shear stress limit, and using the approximation valid for large pipes that
y+

H , y+
H << R+ one gets

Q+ ≈ Q+
0 + ∆Q+

∞ (6.48)
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Figure 6.13: Measured (symbols) and calculated loss for plug �ow (dashed line) and turbulentregime (solid line) as a function of �ow rate for 1% pine (top) and 2% birch (bottom). Alsoshown is the Newtonian correlation for smooth pipe turbulent �ow (dash-dotted line).



134 CHAPTER 6. VELOCITY PROFILES AND LOSS CORRELATIONwhere Q+
0 is given by Eq. (6.43) and

∆Q+
∞ = λ1R

+ + λ2(R
+)2 (6.49)Instead of four material parameters for the velocity pro�les (see Table 6.1), one is nowleft with only two material parameters λ1 and λ2 that are related to the original pro�leparameters as
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) (6.51)In order to test the scaling law Eq. (6.47), in Fig. 6.14 is shown the loss data measured at the�ow laboratory of Techinal Research Center of Finland for 1% commercial �ne, LWC andSC pulps in three di�erent standard steel pipe sizes DN100, DN200 and DN300 [Luu]. Themeasurement was done only in mixed and turbulent regimes where the three pulps show verysimilar loss behaviour. No pro�le information is available. Also shown in Fig. 6.14 are theresults obtained by �tting Eqs. (6.48) and (6.49) using only the data for the smallest pipesize, DN100. The curves for the two larger pipes then ensue purely from the proposed scalinglaw. The �tted values of the two parameters are λ1 = 96600 and λ2 = 7.33. As discussedabove, knowledge of loss behaviour alone does not yield unique values of pro�le parameters.It was, however veri�ed that plausible values of pro�le parameters can be chosen such thatthe loss behaviour shown in Fig. 6.14 is reproduced also by Eqs. (6.42)- (6.45).
6.4 SummaryVelocity pro�les were studied in detail both in the plug-�ow and the turbulent regimes. Inthe plug-�ow regimes, velocity pro�les were inferred from a simple two-phase model thatis based on the averaged �ow equations. In the model, the lubrication layer is modeled asa response to the inertial transverse lift force acting on the �bres near the pipe wall. Themodel contains four material parameters that describe the �ow resistance of �bre networkand the dynamics of the formation of the lubrication layer. The velocity pro�les predictedby the model are typical to plug �ow, and all the shearing occurs in a narrow wall layer thewidth of which is less than 1 mm.
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Figure 6.14: Measured loss as a function of �ow rate for 1% commercial �ne paper (2), LWC(O) and SC (+) pulps [Luu]. The measurement was done for three di�erent standard steelpipes, DN100 (o/ = 110.3 mm), DN200 (o/ = 215.1 mm) and DN300 (o/ = 300 mm). Solid linesshow the �tted behaviour according to Eqs. (6.48) and (6.49). The �t was done using thedata for DN100 pipe only.



136 CHAPTER 6. VELOCITY PROFILES AND LOSS CORRELATIONIn the mixed and turbulent regimes the measured pro�les were utilized. There seems to exista unique envelope curve that corresponds to a limiting velocity pro�le shape as the �ow rateapproaches in�nity. That envelope curve consists of a logarithmic near wall region wherethe pro�le coincides with that of Newtonian �ow, a yield region where velocity gradientis higher than that of Newtonian �ow, and a core region where the pro�le again is of thelogarithmic form. The measured pro�les were approximated by a piecewise logarithmic pro�lethat contains four free material parameters that depend on consistency, in general. Theseparameters were determined by a direct least-squares �t in the experimental velocity pro�les.A semiempirical correlation formula for the loss was derived by utilizing the modeled velocitypro�le in the plug �ow regime and the parametrized experimental velocity pro�le in the mixedand turbulent regimes. The �ow rate corresponding to a given wall shear stress was foundsimply by integrating the velocity pro�le over the pipe cross section.In the plug �ow regimes, the values of the material parameters of the two-phase model werefound by �tting the loss correlation predicted by the model in the observed loss. The modeledthickness of the lubrication layer behaves qualitatively in the same way as the observed one,yet the modeled values are in all cases larger than the experimental values. This di�erenceis most likely due to the fact that in the model the �bre plug is considered as a sharp-edgedobject, while in reality the plug surface has a irregular �oc structure and and individual�bres protruding out of the plug.In the mixed and turbulent regimes, integration of the parametrized pro�les yielded a losscorrelation that agrees with high accuracy with the observed loss behaviour. Moreover, thederived loss correlation suggests a certain scaling law that can be used to predict loss in apipe that has di�erent diameter as the pipe that is used to �x the material parameters. Thescaling law was tested in a case where the material parameters were �tted in loss data for aDN100 pipe. The loss predicted by the scaling law for a DN200 and A DN300 pipe agreedwith the observed loss with high accuracy.The existence of the yield region in the mixed and turbulent regimes is most likely relatedto quenching of wall induced turbulence due to presence of �bres. As a consequence, therate of turbulent transfer of longitudinal momentum from the core region towards the wallis reduced. The existence of the yield region is thus identi�ed as the primary phenomenonunderlying the drag reduction found in the mixed and turbulent �ow regions.According to the measured velocity pro�les in the mixed and turbulent regimes, two mech-



6.4. SUMMARY 137anisms are e�ective in the transition from mixed to fully turbulent �ow. First, increase ofturbulent intensity near the wall leads to annulus of disrupted �bre phase and a central�bre plug, the radius of which slowly decreases with �ow rate. Second, at high enough �owrates, large scale �uctuations can persist throughout the core and the 'degree of �uidization'gradually increases with �ow rate in the entire central core. At very high �ow rates the largescale turbulent structure of the core region is similar to that of pure �uid (at the same wallshear stress) indicating 'fully �uidized' state of �ow.
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Chapter 7
Conclusions
In the second chapter of this monograph the multiphase equations were recapitulated thatcan be used to model �ows of liquid-particle suspensions, and �ows in porous medium.Derivation of a generic set of multiphase equations was �rst reviewed using the method ofvolume averaging. A plausible set of constitutive relations was then applied to render theequations applicable to liquid-particle suspensions, to �ows in porous medium, and to the�ow of wood �bre suspension in the plug �ow regime, in particular.In the third chapter the interaction forces between the phases were studied with directnumerical simulations, and the emphasis was on the forces acting on solid particles in a �ownear a solid wall. Speci�cally, the hydrodynamic forces acting on stationary solid cylinderswere studied. It was found that hydrodynamic lift forces, i.e. forces perpendicular to themain �ow direction, do exist in the �ows of liquid-particle suspensions. These forces arisedue to inertial e�ects, and are thereby complicated and rather poorly understood even fora case where a single particle is suspended in the �ow. In the single-cylinder case, it wasfound that the nondimensional hydrodynamic drag and lift forces mainly depend on twonondimensional parameters, namely the dimensionless distance from the wall, and the ratio ofthe slip Reynolds number to the shear Reynolds number. It was found that the hydrodynamicforce acting on a rigid matrix of long cylinders is qualitatively similar both for a matrix ofunidirectional cylinders and for a matrix of cylinders with random orientation. The drag forceis largest near a moving wall and approaches zero monotonically with increasing distancefrom the wall. Close to the moving wall the simulated drag force deviates considerably fromthe drag force predicted by Darcy's law. Numerical simulations indicate strongly repulsive lift139



140 CHAPTER 7. CONCLUSIONSforce near the moving wall, and the maximum value of repulsion decreases as the gap widthis increased. This strong repulsion decays within a distance that is 2 − 3 times the cylinderradius and 5 − 10 times the cylinder radius for unidirectional and random orientations ofthe cylinders, respectively. At that distance, the lift force acting on unidirectional cylinderschanges to weak attraction, which decays rapidly with increasing distance as the �uid velocityapproaches zero. For randomly oriented cylinders no region of signi�cant attraction wasfound. The total lift force acting on the cylinders is strongly repulsive when the width of thegap between the moving wall and the �bre matrix is small, and decreases monotonically withincreasing gap width. For unidirectional cylinders, the total lift force changes into attractionat the distance that is of the order of the cylinder radius. For randomly oriented cylinders,the total lift remained repulsive in all the simulations, and was close to zero for the largestgap width used that was 2.3 times the cylinder radius.In the fourth chapter the unique �ow behaviour of wood �bre suspensions was described ata qualitative level. Some characteristic features found in experimental frictional loss corre-lations were summarized, various �ow regimes were studied, and the �ow phenomena thatare known to produce the observed loss correlation were discussed shortly. Next the mostrelevant e�orts on modeling the �ow of wood �bre suspension in straight pipes and on designequations and methods for determining friction loss were reviewed. The methods to char-acterize the various regimes of �bre �occulation and formation of coherent �bre networkswere also reviewed. A few estimates of the threshold consistency above which coherent �brenetworks may form were recorded.In the �fth chapter the experimental work was described that was carried out on the �owproperties of wood �bre suspensions on straight pipes. New experimental methods were usedto acquire better grasp on the �ow phenomena responsible for the peculiar �ow properties.The thickness of the lubrication layer in the plug-�ow regimes was inferred for fully developed�ow with a novel technique that is based on measuring the intensity of laser light re�ectedby �bres. The transient behaviour of the �ow after a sudden step that acted as a turbulencegenerator was also studied. The detailed time-dependent velocity pro�les in such developing�ow were measured with a pulsed ultra-sound velocimetry technique. From these velocitypro�les, the local intensity of velocity �uctuations was calculated. Based on the results ofthese experiments, the �ow was divided into �ve di�erent regimes according to �ow rate.With the measuring techniques used in this study, the lubrication layer could not be observedat very low �ow rates. The regime where the lubrication layer was not found coincides with



141the low �ow rate domain where the loss increases with �ow rate. This domain is identi�ed asthe plug �ow regime with direct �bre-wall contact. In this regime the intensity of turbulenceis high immediately after the source (constriction, pump, etc. ), and the suspension is ina �uidized state where the �bre phase is broken into �ocs. The intensity of the turbulencedecays rapidly downstream from the source, and the �bre phase forms into a continuousnetwork. In this process, the turbulent energy of �bres is partly captured as the elasticenergy of the network. This elastic energy manifests itself as an elastic force that pushes�bres towards the pipe wall. The inertial lift force, on the other hand, repels �bres from thewall. In this regime of low �ow velocity, the elastic force is, however, large enough to keepthe �bre plug in a contact with the wall. Thus the �bre network forms into a state that spansthrough the pipe, and no observable lubrication layer is found. The radial force balance ofthe �bre plug is maintained between the elastic force, the lift force, and a support force bythe wall. The support force gives rise to mechanical friction between the �bre plug and thepipe wall, increasing the loss.An observable lubrication layer appears at the �ow rate corresponding to the local maximumin the loss curve (birch) or to the point where the loss curve levels o� (pine). Above that�ow rate, the measured value of the lubrication layer thickness grows with �ow rate until itreaches a maximum. This domain is identi�ed as the plug �ow regime with lubrication layer.In this regime the lift force is large enough to keep the �bres away from the pipe wall, onthe average. Thus the �bre network forms into a state where there is a �breless lubricationlayer next to the pipe wall. The �bre plug slides on top of this lubrication layer, and the losssaturates or may even decrease with increasing �ow rate.In the next domain the measured thickness of the lubrication layer decreases with increasing�ow rate. The observed decrease of the layer thickness is most likely due to incipient turbu-lence, i.e. turbulence in the �uid phase (that was not observe with the present methods). Thisturbulence is not yet strong enough to cause macroscopic breakage of the �bre network, butonly to bend and dislodge individual �bres that are loosely bound to the �bre plug surface.These �bres can then be randomly displaced towards the pipe wall by �uctuations of �uidvelocity, and thereby cause increased light scattering as they traverse the laser beam. Theapparent decrease of lubrication layer thickness may thus be explained by dispersion of the�bre plug surface layer due to �uid phase turbulence. This domain is identi�ed as the plug�ow regime with smearing annulus. In this regime, the loss increases approximately linearlywith �ow rate.



142 CHAPTER 7. CONCLUSIONSAs the �ow rate increases, the overall turbulent intensity increases and the high intensityregion extends further downstream. Above a certain �ow rate, the increased wall frictionnow prevents �bres from forming continuous network near the walls. Instead, a turbulentannulus remains near the walls and a continuous network is formed only at the core. Thisis seen as the turbulent intensity maxima near the walls and a slightly more rounded mean�ow pro�le in the developed �ow region. This regime is identi�ed as mixed �ow regime. Inthis regime the dependence on the �ow rate of the loss is approximately quadratic.When the �ow rate is high enough, the turbulence created by strong wall friction prevents theformation of the �bre plug throughout the pipe, and the suspensions remains in a �uidizedstate. This domain is identi�ed as a fully turbulent regime. The dependence on the �ow rateof the loss remains close to quadratic in the transition, thus the exact �ow rate at which the�bre plug core disappears can not be identi�ed from loss data. At very high �ow rates, theloss behaviour approaches that of pure carrier �uid.In the sixth chapter velocity pro�les were studied in detail both in the plug-�ow and theturbulent regimes. In the plug-�ow regimes, velocity pro�les were inferred from a simpletwo-phase model that is based on the averaged �ow equations. In the model, the lubricationlayer is modeled as a response to the inertial transverse lift force acting on the �bres nearthe pipe wall. The model contains four material parameters that describe the �ow resistanceof �bre network and the dynamics of the formation of the lubrication layer. The velocitypro�les predicted by the model are typical to plug �ow, and all the shearing occurs in anarrow wall layer the width of which is less than 1 mm.In the mixed and turbulent regimes the measured pro�les were utilized. There seems to exista unique envelope curve that corresponds to a limiting velocity pro�le shape as the �ow rateapproaches in�nity. That envelope curve consists of a logarithmic near wall region wherethe pro�le coincides with that of Newtonian �ow, a yield region where velocity gradientis higher than that of Newtonian �ow, and a core region where the pro�le again is of thelogarithmic form. The measured pro�les were approximated by a piecewise logarithmic pro�lethat contains four free material parameters that depend on consistency, in general. Theseparameters were determined by a direct least-squares �t in the experimental velocity pro�les.A semiempirical correlation formula for the loss was derived by utilizing the modeled velocitypro�le in the plug �ow regimes and the parametrized experimental velocity pro�le in themixed and turbulent regimes. The �ow rate corresponding to a given wall shear stress wasfound simply by integrating the velocity pro�le over the pipe cross section.



143In the plug �ow regimes, the values of the material parameters of the two-phase model werefound by �tting the loss correlation predicted by the model in the observed loss. The modelledthickness of the lubrication layer behaves qualitatively in the same way as the observed one,yet the modelled values are in all cases larger than the experimental values. This di�erenceis most likely due to the fact that in the model the �bre plug is considered as a sharp-edgedobject, while in reality the plug surface has a irregular �oc structure and and individual�bres protruding out of the plug.In the mixed and turbulent regimes, integration of the parametrized pro�les yielded a losscorrelation that agrees with high accuracy with the observed loss behaviour. Moreover, thederived loss correlation suggests a certain scaling law that can be used to predict loss in apipe that has di�erent diameter as the pipe that is used to �x the material parameters. Thescaling law was tested in a case where the material parameters were �tted in loss data for aDN100 pipe. The loss predicted by the scaling law for a DN200 and A DN300 pipe agreedwith the observed loss with high accuracy.The experimental results reported in this monograph may not seem to add much to thequalitative understanding of the �ow behaviour of wood �bre suspension in straight pipes.They do, however, indicate that the new experimental methods utilized here can be used togain much more detailed information on the �ow behaviour as has been previously possible.Based on already these results, even the qualitative behaviour of the pipe �ow can be furtherspeci�ed to some extent.Unlike often phrased, for a pipe �ow in mixed or turbulent �ow regions the wall friction doesnot break the continuous �bre network. Instead, wall friction prevents such a network fromever forming within an annulus of some thickness or in the entire pipe.The appearance of the �bre free lubrication layer in the plug �ow regime is often explainedby mechanical models based on shear deformation of the network induced by the wall stress,and the resulting reduction of plug diameter. For a pipe �ow brought about by a pump, sucha model is unphysical simply because the undeformed state of the network never existed.Instead, the �bre plug forms from the �uidized state in decaying turbulence after a pump orany �uidizing device is originally of diameter slightly less than that of the pipe.The drag reduction found in the mixed and turbulent �ow regimes is due to a yield regionin the velocity pro�le. The existence of this region is most likely related to quenching of wallinduced turbulence due to presence of �bres. As a consequence, the rate of turbulent transfer



144 CHAPTER 7. CONCLUSIONSof longitudinal momentum from the core region towards the wall is reduced.According to the measured velocity pro�les, two mechanisms are e�ective in the transitionfrom mixed to fully turbulent �ow. First, increase of turbulent intensity near the wall leadsto annulus of disrupted �bre phase and a central �bre plug, the radius of which slowlydecreases with �ow rate. Second, at high enough �ow rates, large scale �uctuations canpersist throughout the core and the 'degree of �uidization' gradually increases with �ow ratein the entire central core. At very high �ow rates the large scale turbulent structure of thecore region is similar to that of pure �uid (at the same wall shear stress) indicating 'fully�uidized' state of �ow.With the novel experimental methods used in this work, new information was inferred aboutthe �ow behaviour of wood �bre suspension in straight pipes. However, there are a fewaspects that have to be considered further. Probably the most important thing that should bestudied is the scaling of loss with pipe diameter. Within the present study, it was only testedin the turbulent �ow regime in a single case. Further experiments are necessary for propervalidation of the derived loss correlations. On the other hand, the experimental methodsused in this study and the results reported here make possible new experimental works onrelated phenomena, e.g. mixing of chemicals by turbulence in paper making processes.



Appendix A
Appendix
A.1 The crowding factorThe crowding factor N is the average number of �bres in a spherical volume that has diameterequal to the length of a �bre [KS92]. The average mass of �bres in such volume, mfibres, canbe calculated by multiplying the volume of the sphere by the consistency of suspension:

mfibres =
4

3
π

(

L

2

)3

cm, (A.1)where L is the average length of a �bre and cm is the consistency of the suspension. Theaverage total length of the �bres in the volume is
ΣLfibres =

mfibres

ω
=

π

6

cmL3

ω
, (A.2)where ω is the �bre coarseness (mass per unit length). Notice that in writin Eq. (A.1)coarseness is assumed to be constant, while in reality it usually depends, e.g., on �bre length.The crowding factor can now be expressed in the form

N =
ΣLfibres

L
=

π

6

cmL2

ω
. (A.3)The total length of �bres in a unit volume of suspension equals cm/ω. The volume fractionof �bres is calculated by multiplying the total length with the average cross-sectional area145



146 APPENDIX A. APPENDIXof a �bre. For cylindrical �bres the volume fraction can be expressed in the form
φs =

cm

ω
× π

(

d

2

)2

=
π

4

d2cm

ω
. (A.4)By combining Eqs. (A.4) and (A.3), the crowding factor can be expressed in an alternativeform as

N =
2

3
φsA

2. (A.5)A.2 The solid volume fraction versus the consistency
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AFigure A.1: Schematic view of the �bre structure, Aw is the �bre wall made of cellulose, and
Al is the lumen.In this appendix correlations between the solid volume fraction and the solid mass fractionare derived for fully saturated �bres. To that end, �bres are considered as tubes that havewall made of cellulose, and a cavity, a lumen, at the centre, see Fig. A.1.First the ratio of the cross-sectional area of the lumen to the cross-sectional area of the �brewall is solved by considering a case where the lumen is �lled by air. The mass of a �bre is
mfibre = Lω and the volume of the �bre is Vfibre = LA0 where A0 = Al + Aw is the area ofthe �bre cross-section and Al and Aw are the cross-sectional areas of the lumen and the �brewall, respectively. Thus the bulk density of the �bre can be given as

ρfibre =
mfibre

Vfibre
=

Lω

LA0
=

ω

A0
. (A.6)



A.2. THE SOLID VOLUME FRACTION VERSUS THE CONSISTENCY 147On the other hand, the mass of the air inside the lumen is negligible compared to the massof the �bre wall, which can be calculated by multiplying the volume of the �bre wall LAwby the density of cellulose ρ̃c, i.e. mfibre = LAwρ̃c. Thus the bulk density can be expressedin an alternative form
ρfibre =

mfibre

Vfibre
=

LAwρ̃c

LA0
=

Awρ̃c

Aw + Al
. (A.7)Combining Eqs. (A.6) and (A.7), and solving for the ratio Al/Aw, one gets

Al

Aw

=
A0ρ̃c

ω
− 1. (A.8)Now saturated �bres are considered that have their lumens �lled by water. The water insidethe lumen is forced to move with the �bre and is thus considered as bound water. Themoisture ratio of bound water of a �bre MRb is de�ned as the ratio of the mass of boundwater to the mass of the �bre wall:

MRb =
Alρ̃w

Awρ̃c

. (A.9)Using Eq. (A.8), the moisture ratio of bound water can be given as
MRb =

(

A0ρ̃c

ω
− 1

)

r. (A.10)where r is the density ratio of water and cellulose:
r =

ρ̃w

ρ̃c
. (A.11)The overall moisture ratio of a suspension is de�ned as the ratio of the total mass of waterto the mass of oven-dried �bres (the mass of cellulose in the �bre walls). Notice that here themass of water includes both the bound water inside the lumens and the free carrier wateroutside the �bres. A sample volume of suspension is considered here that has the total massof m = mc + mw, where mc is the mass of cellulose and mw is the total mass of bound andfree water. Thus the moisture ratio MR is:

MR =
mw

mc
=

m − mc

mc
=

1 − c

c
, (A.12)



148 APPENDIX A. APPENDIXwhere c is the percentage consistency of the suspension, i.e. the ratio of the mass of celluloseto the total mass:
c =

mc

m
. (A.13)The total volume of the sample V can be written in the form V = Vw + Vc where Vw and Vcis the total volume occupied by water and cellulose (�bre walls), respectively. In addition,the total volume occupied by water can be written as Vw = Vwf + Vwb where Vwf and Vwb isthe volume �lled by free water and bound water, respectively. Now the moisture ratio canbe written in the form

MR =
mw

mc
=

Vwρ̃w

Vcρ̃c
=

V −Vwf

Vc
Vwρ̃w

(V − Vwf)ρ̃c
(A.14)The following identity holds for the volumes:

(V − Vwf)Vw = (V − Vwf − Vc)V + VwfVc = VwbV + VwfVc. (A.15)Inserting Eq. (A.15) into Eq. (A.14) results in
MR =

Vwb

Vc
V ρ̃w + Vwf ρ̃w

(V − Vwf)ρ̃c
=

Vwb ρ̃w

Vcρ̃c
+

Vwf

V
ρ̃w

ρ̃c

1 − Vwf

V

. (A.16)The �rst term in the numerator of Eq. (A.16) equals the moisture ratio of bound water MRb,and φ = Vwf/V is the porosity of the suspension. Thus the moisture ratio can be written as
MR =

MRb + φr

1 − φ
. (A.17)Combining Eqs. (A.17) and (A.12) one can write the following correlation between the volumefraction of �bres φs and the consistency of the suspension,

φs =
(MRb + r)c

1 − (1 − r)c
(A.18)Furthermore, combining Eqs. (A.4) and (A.18) one gets the following expression for theconsistency,

cm =
4ω

πd2

(MRb + r)c

1 − (1 − r)c
. (A.19)



A.2. THE SOLID VOLUME FRACTION VERSUS THE CONSISTENCY 149Equation (A.19) can be inverted to get the following expression for the consistency,
c =

(

MRb + r + (1 − r)
πd2cm

4ω

)−1
πd2cm

4ω
. (A.20)Notice that it has been assumed in Eqs. (A.4), (A.19), and (A.20) that the �bres have circularcross-section.
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