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Abstract

This Thesis consists of an introductory part and six publications that study simpli-
fied models for semiconductor nanostructures. The models themselves, including the
tight binding, the Heisenberg and the Hubbard model, are familiar since the birth of
quantum mechanics, but in this Thesis their role in the description of quantum dots,
quantum dot molecules and quantum rings is studied in more detail. The use of sim-
plified models is justified since exact many-body calculations often get too laborious
or complicated for practical purposes.

In the first chapter the idea behind the semiconductor band structure confinement
and a general formalism for the models are introduced. In the following chapters each
model is explained in turn and studied in suitable nanostructures. The last chapter
collects the main results and makes the conclusions.

Though the results were obtained mainly by numerical calculations, they are all of
qualitative nature. As the central result of this Thesis we may consider the observation,
that in appropriate limits the models mentioned above can represent the underlying
physics of various semiconductor nanostructures surprisingly well. The models give
qualitatively correct results most often, and as the number of model parameters usu-
ally is minimized, one cannot even expect to find quantitative agreement. The tight
binding model gives a simple explanation for the spontaneous magnetism of quantum
dot lattices and the Hubbard model describes qualitatively the energy spectra and
general behaviour of perfect and imperfect narrow quantum rings. The Heisenberg
model appears to be intimately related to the description of quantum rings. The Hub-
bard model can be applied to predict directly experimentally observable quantities in
coupled quantum dots. The comparison of the model results has been mainly done
with the more sophisticated theoretical many-body calculations.
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1 Semiconductor Nanostructures
and Lattice Models

1.1 Introduction

Semiconductor nanostructures are nanometer-scale heterostructures within the bulk
semiconductor, and usually act as an electron trap or waveguide. This length-scale has
a common contact surface with other sciences beside physics, including chemistry and
biology, and this makes nanoscience an interdisciplinary effort. The current massive
movement in this branch of science is due to the many promising visions for the use
of nanostructures in future technology. One of the main goals in research is to scale
the current electronic device down to these extremely small length scales.

Indeed, during the last decade the progress in fabrication and measuring techniques at
the nanometer-scale already has made many text-book examples of quantum confine-
ment possible. The experimental scientists are able to accurately reproduce samples
that show phenomena characteristic to dynamically low-dimensional electron systems.

It is because of the fact that the confinement energy and the electron-electron inter-
action may be comparable that makes the physics and experiments challenging and
the theory of some nanostructures complex. This complexity calls for simple models
that would be able to capture the essential physics, but at the same time would be
simple enough to allow an easy analysis. In this Thesis we are trying to study how
well lattice models could serve as possible candidates for this mission.

In this chapter we first shortly describe the idea behind the band structure confine-
ment and introduce a few confinement models. At the end of the chapter we derive a
general formalism for lattice models and discuss their relevance in the description of
nanostructures.

1.2 Semiconductor Band Structure

Despite the spatial smallness of semiconductor nanostructures, they are inherently
bulk systems. This is actually very important, because in order to describe the confined
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electrons in a simple picture, we need a band structure, which in turn requires the
(infinite) bulk.

Conduction electrons moving in an infinite lattice of atoms feel a periodic electrostatic
potential, the atomic lattice, which acts as the origin of the band structure. The band
structure characterizes collectively the single-particle states and the general behaviour
of the electrons moving in the bulk. For example, an electron with a wave vector k
has the energy ¢,(k), where n is the band-index and the function ¢, (k) represents the
whole band structure. Without any electron-electron or electron-phonon interactions
the state of the system is set by assigning the wave-vectors and band-indices for every
electron from the band structure.

Fig.1.1 shows the band structure for fictional substances A and B that might represent,
GaAs and Ga;_,Al, As, say [1]. The most important feature of the band structure is
the conduction band minimum, because all the excess electrons end up in the vicinity
of that point in the reciprocal space. In particular, the curvature of the conduction
band at the minimum defines the effective mass m* = h?(9%/0k*)~!, which deter-
mines e.g. the dynamic response of a conduction electron to an accelerating force. In
the effective mass and envelope function approximation the complicated interactions
with the crystal are put into the single parameter m* and the complete electron wave
function ¥ (r)u(r) is replaced by the envelope function ¥(r), where u(r) represents
the rapid variations in the scale of the atomic lattice [1]. Within this approximation
the conduction electrons can be simply described by forgetting the whole atomic lat-
tice, setting the potential energy to correspond to the conduction band minimum?,
and replacing the electron mass m — m*.

Not surprisingly, it has turned out to be a fair approximation to use the infinite lat-
tice band structure even for sub-micrometer-scale samples, as long as the conduction
electrons still ‘feel’ the periodicity of the underlying atomic lattice. This is reasonable
since the band structure theory has been so successful for real substances and, after
all, there is no fundamental difference in the basic principle between a macro-scale
and sub-micrometer scale samples; they are both finite.

In the next section we put these approximations to work, describe shortly the principle
of quantum confinement and present some model confinement potentials.

LConduction band minimum can be a smoothly varying (in the atomic length scale) function of
position.



1.3 Semiconductor Nanostructures 3

A B

Figure 1.1: The band structures of two fictional substances A and B at the valence and conduc-
tion band edges. The conduction electron states can be characterized by knowing the levels of the
conduction band minima V4 and Vg, and the effective masses m% and mj.

1.3 Semiconductor Nanostructures

The Two-Dimensional Electron Gas

In Fig.1.1 it was shown how the conduction and valence band edges were related in
substances A and B. If pieces of A and B form a junction as in Fig.1.2(a), originally
different chemical potentials p4 and pp will adjust themselves by electron transport
perpendicular to the interface, until p is constant throughout the junction. This will
result in bending of the band edges [13], and if p is sufficiently high, the ultimate
result may be bound electrons at the interface [2]. The word ‘bound’ refers only to the
perpendicular direction, because in the plane parallel to the junction the electrons are
still free to move around, defining the so-called two-dimensional electron gas (2DEG).
The two-dimensionality refers to the fact that if the confinement V(z) is sufficiently
narrow, the electrons remain at the ground state of the transverse direction, and
behave as if they would live in a dynamically two-dimensional world.
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(a) (b)

Figure 1.2: A schematic diagram of a junction between substances B and A that have different
band gaps, as in Fig.1.1. (a) The band edges before relaxation. (b) Transient transverse electron
current makes the chemical potential to level throughout the junction and results in band bending.
(c) The conduction band edge at the junction may act as a potential well for the transverse motion of
electrons, where the potential form V(z) may have a triangular form. Under appropriate conditions
all the electrons confined in the junction will be in the ground state 1(z) of the transverse direction.

Further Confinement and Model Potentials

The two-dimensional electron gas is considered as the starting point for further elec-
tron confinement. If external electrodes are deposited above the 2DEG as in Fig.1.3
e.g. by chemical etching, and a negative voltage is applied, the electrons just below the
electrodes are repelled away and the middle region consequently acts as an electron
trap confining electrons in all spatial directions. This trap is often called quantum
dot (QD). This kind of fabrication allows a good control over the system: the shape
and strength of the confining potential can be adjusted by separate gate voltages.
Furthermore one can control the number of electrons confined in the structure, and
also the current via a voltage difference in source and drain contacts. With similar
kind of fabrication processes one can construct coupled quantum dots, quantum dot
molecules, quantum dot lattices, quantum rings (QR) etc., almost with the properties
one desires [6].

Another technique to fabricate dots and rings is by self-organization, where a thin
layer of low band-gap material is deposited above a high band-gap material. If the
two materials have a lattice mismatch, the resulting strain in the thin layer may relax
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Figure 1.3: Image of a quantum dot (a), an ensemble of self-organized quantum dots (b), quantum
ring (c), and a part of an ensemble of self-organized quantum rings. In (a) and (¢) the 2DEG is just
below the surface and a negative applied voltage depletes electrons below the electrodes and defines
an electron trap in the middle region (or in a ring-like region). The current can be controlled by a
voltage difference in source and drain contacts, and the potential form by varying gate voltages. In
(b) and (d) the self-organizing process creates islands of low band-gap material and these islands
trap electrons if the surrounding material has a higher band-gap [18].

and end up forming small dot- or ring-like islands of low band-gap material in the
matrix of high band-gap material [6, 16]. These islands can also appear simply because
of interface fluctuations at the junction. However, the ultimate consequence is that
electrons are trapped in these islands that operate without any externally applied
voltages.

As already mentioned, QDs and QRs are formed in electron gas that is dynami-
cally two-dimensional. If the further confinement in the plane is much weaker than
the perpendicular confinement, the electrons can be considered moving in strictly
two-dimensional zy-plane under a two-dimensional potential V' (x, y). The form of V'
depends much on the particular geometry of the system.

The potential form in the center region of a quantum dot such as the one in Fig.1.3(a)
or (b), can be modelled to a first approximation by the harmonic confinement [14]
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1
Van(r) = gm'w™r?, (1.1)

where r? = 2% + 3, and w is the confinement strength related to the applied voltage
of the repelling electrode or to the geometry of the self-organized dot. Similarly, to a
first approximation the potential for a quantum ring is also harmonic [15, 16] and can
be written as

Vor(r) = %m*wQ(r — R)?, (1.2)

where w is the radial confinement strength and R is the equilibrium radius arising
from the geometry of the ring. Note that the nature of the potential in a quantum dot
is always the same whereas in a quantum ring it depends on the relative magnitude
of w and R: At the extremes a QR can be viewed as a QD (R — 0) or as a strictly
one-dimensional wire (w — c0).

Artificial Atoms

The general properties of nanostructures can be studied e.g. with capacitance spec-
troscopy, far-infrared transmission spectroscopy and photoluminescence [15, 16, 17].
Especially quantum rings are frequently studied in magnetic fields, since a number
of flux quanta can penetrate the interior of the ring and reveal information about
the internal structure via the flux-dependence. In a large ensemble of self-organized
nanostructures the distribution in sizes and shapes, as clearly visible Fig.1.3(b), may
require an isolation of single dot or ring.

These methods, among others, have shown many characteristic features of nanostruc-
tures. As Eq.(1.1) is an attractive potential, just as is the Coulomb potential of an
atomic nucleus, QDs share many properties with real atoms. These include the dis-
creteness of the energy spectrum, the shell structure with magic numbers, Hund’s
rules, and so on. Because QDs can in principle be designed at will, this is why they
are also referred to as ‘artificial atoms’ [19, 20, 21].

In addition of showing properties analogous to real atoms, one can see phenomena
such as the Kondo effect, Aharonov-Bohm oscillations in quantum rings with different
periodicities and other novel many-body effects. However, many of the phenomena
discussed in this Thesis are still waiting for the experimental realization.

What about the applications? The future prospects are quite promising, at least in
principle [1, 24, 25, 26, 28, 29, 30|. The information processing techniques today rely
entirely on the existence of two-level memory elements, and nanostructures are one of
the best candidates for this use in the future. Tuning the spectra of dots or rings might
end up having a practical memory device, provided that the coherence time of the two-
level system is long enough and that the state can be suitably controlled. One is even
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trying to build a quantum computer by exploiting the fact that the system of quantum
bits (QUBITS), potentially made of QDs, could be in an entangled superposition of
all the possible states. Dots, rings, dot lattices and other structures can be used in
lasers and other optical devices, as well as in optoelectronics. In addition they might
be used as memory storage or in conventional electronics.

But no matter how promising the application list might look, there is still much
theoretical and experimental work to do in order to get a technological revolution at
the practical level.

1.4 Lattice Models

In the following we turn our attention to the theoretical description of a system of
quantum dots. We do this by utilizing the effective mass and envelope function ap-
proximations, so that the underlying atomic lattice is forgotten and electrons with
mass m* are described as moving in a smoothly varying external potential®> V().
The potential might consist e.g. of a multiple number of quantum dot potentials
V(r) = >, Vopo(r — R;), where R; would be the locations of the attractive QDs.
For an appropriate description of electrons in these systems, where a strong electron
localization near the locations R; is expected, we pay attention to the general theory
of interacting electrons [2, 3].

Derivation of a General Hamiltonian

First of all, the reader should keep in mind that the following derivation is superficial,
and it should be read accordingly. On the other hand, its only intention is to merely
illustrate the physical approach and the concepts used, so that they would become
familiar before discussing the different models in more detail.

Let the single-particle eigenstates of an isolated QD potential V(r) = Vop(r — R;) be
denoted by o, (r — Ry), i.e. hpn(r) = enon(r), where h — —(h2/2m*)V2 + V (r). The
eigenstates are localized in the vicinity of the point R; and they have energies ¢,. If
we add more QDs centered at R, Rs, ..., Ry, so that all R;’s are well-separated, it

is expected that the functions ¢, (r — R;), ¢ = 1,2,..., L are still fair approximations
for the eigenstates of the single-particle Hamiltonian with V(r) = 3% Vop(r — R,).
In particular, we vaguely assume that functions (r|R}) = ¢, (r — R;), i =1,2,..., L,

form approximately a complete low-energy basis set for our system.

2By smoothly varying we mean that V (r) does not, change appreciably in the atomic length scale.
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The general Hamiltonian describing an interacting N-electron system can be written
in the real-space representation as

H= Zh + ) Vellri =), (1.3)

1<J

where the external potential V (r) is hidden in & as before, and V(r) is the mutual
Coulomb repulsion between the electrons. In the language of second quantization this
turns into

H =Y (RL|WRE)cl, ciwer + > Vimm el el o Cimorimo, (1.4)

where the summations are over all the indices, the operators ¢!, and ¢;, have the

usual meaning as the fermionic creation and annihilation operators obeying the anti-
commutation relations {ci7c}} = 6, and {c;,¢;} = {cl,c ]} = 0, and where o rep-
resents the spin-index. The matrix elements preceding the c-operators are the usual
single and double integrals of the operators in Eq.(1.3) between the given basis states.

Now, since ¢’s were not exactly the eigenfunctions of h in the presence of multiple
QDs, the matrix elements of the first term are not diagonal. If i = j, n = n’ and o = ¢’
the integral will give the expectation value for an electron in the state |R}), which
is approximately equal to €,. On the other hand, if ¢ # j the integral will measure
essentially the overlap between the states ¢,(r — R;) and ¢,(r — R;). Because of
the strong localization of the electrons, the wave-functions do not spill out of the
dots very much and we expect the overlap to be considerable only for states that are
nearest neighbours. The integral, called the hopping integral, can be written for ¢ £ j
schematically as

12 = (R B R) ~ by / Pre’ (r — RSV (r)ow(r — R,), (15)

where the local function dV(r) is just a reminder that what we are computing is
actually not a pure overlap, but a somewhat modified one.

The interaction matrix element is responsible for taking the mutual Coulomb repulsion
of the electrons into account. If the typical separation between the dots is large, the
Coulomb potential is significant only when the electrons occupy the same dot. This
reduces the interaction matrix elements into

Voo ™™ = (1 = S doo) / drd®r’ e (r)n (F)Ve(|r — ') em(r)em (r).  (1.6)

With the approximations introduced above, Eq.(1.4) can eventually be written as

H Z €n macmo + Z tnn jnacjn ‘ot Z V'rm o Irw jn 15/ Cim/ o’ Cimor 5 (17)
(i.9)
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with the summations over all the indices. The notation (7,7} restricts ¢ and j to
be nearest neighbours. The basis set consists of many-electron states (Slater deter-
minants) with all the possible spin- and spatial configurations for the N electrons,
where the number of spin-up and -down electrons satisfy Ny + N = N. This is our
final result for the Hamiltonian of interacting electrons at the present stage.

Further Considerations

The operator (1.7) can be interpreted as follows. As we are looking at low-energy
regime throughout, all the N electrons are localized in the L quantum dots. More
generally speaking we could also replace QD potential with any other attracting or
localizing potential®. If the dots are infinitely far apart, the electrons are purely in the
states |R}") and the only contributions come from the on-site energies €, via the first
term in Eq.(1.7) and from the interaction between electrons in the same dot via the
last term. If the dots are brought closer together, the states in different dots start to
overlap with each other and the Hamiltonian is not diagonal anymore. The electrons
sit on different dots, now named sites, that may form a molecule, a periodic lattice or
whatever geometry, and hop from one site to another with spin conservation via the
second term in Eq.(1.7).

The Hamiltonian (1.7) is now the branching point for the different models used in
this Thesis. Especially the interaction term makes life a bit difficult and therefore re-
quires rough approximations. Constant on-site energy and constant hopping integrals
also simplify the system considerably. These different approximations lead to famous
models including the tight binding model, the Heisenberg model, the Hubbard model
and many others. The basic idea behind these models is nevertheless the same, and
in that sense they are fully accounted for by their approximate Hamiltonians derived
from Eq.(1.7). In the next three chapters a few of these different approximations are
introduced in turn, and applied to various systems of localizing centers.

3Especially, as we shall see in Chap.3, the localizing potential can arise from internal localization
of the electron system without any external potential.
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2 Quantum Dot Lattices and the
Tight Binding Model

In publication IV of this Thesis we applied the tight binding (TB) model to describe
magnetic behaviour of quantum dot lattices. In this chapter we first derive the stan-
dard tight binding model and introduce quantum dot lattices shortly. After that we
present our modification to the TB model and review the central results that the
model yields related to magnetic behaviour of QD lattices.

2.1 The Tight Binding Model

The standard TB model simplifies our starting point, Eq.(1.7) to a compact form.
Firstly, we assume a single-particle description, i.e. N = 1, and take only one identical
state per site. The energy level can then be chosen by setting the on-site energies ¢;
equal to zero. Secondly, all the nearest-neighbour hopping integrals are set equal and
the electron-electron interactions can be neglected altogether since we only have one
electron. This is how one ends up with the tight binding Hamiltonian [2, 4]

H—t Z el o (2.1)

(ij)o

This Hamiltonian is one of the standard condensed matter physics text-book ap-
proaches for the first calculation of the band structure in a lattice of atoms, for it can
be readily solved by taking the Fourier transforms of the creation and annihilation
operators [5, 9]. The name ‘tight binding’ comes from the fact that the electrons are
assumed to be tightly bound to the sites, i.e. the spatial extent of the bound electrons
is small and the hopping term acts as a small perturbation.

For future use, however, a slightly more general Hamiltonian is needed. The direct
interaction term in Eq.(1.7) is still neglected, but some additional consideration is
done with the hopping integrals, so that t%", is allowed to have the full dependence
on all the indices. Also the on-site energy ¢, — €, is allowed to depend on the spin
although h does not show any spin-dependence. Before writing the final Hamiltonian,
it is necessary to review certain properties of QD lattices.

11
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2.2 Quantum Dot Lattices

Lattice in a Lattice

One of the main reasons for the excitement over quantum dots is certainly the far-
reaching analogy with real atoms. A natural consequence of this analogy is to treat
QDs as real atoms: build molecules, clusters and lattices. QD lattice is a superlattice,
a periodic construction of quantum dots superimposed in the periodic lattice of atoms.
The conduction electrons, treated in the effective mass approximation, feel the periodic
superlattice and get another band structure, the mini-band structure.

A QD lattice may be formed e.g. by making quantum wires to cross each other, because
the effective width of quantum wires at the crossings is larger than the normal width
of the wire, and thus the electrons are attracted to these points due to the smaller
confinement energy [32]. The formation of a regular QD lattice may also be favored
for some self-organizing growth modes while fabricating quantum dots [6]. A highly
controllable QD lattice might be manufactured e.g. by simply drilling holes to a large
metallic electrode lying on top of 2DEG.

When real atoms form macroscopic crystals, the atomic number, Z, determines the
number of electrons and the outermost electron orbital in the system. For a given
Z, the Nature adjusts the crystal structure to be FCC, BCC, or something more
complicated, and adjusts also the lattice constant to correspond to the equilibrium
value. Z also determines the band structure, elasticity and magnetic properties of a
crystal. In short, Z determines essentially all the properties of perfect crystals.

With quantum dot lattices the story is different: the confinement is determined by
the design of the dots, the lattice constant and symmetry can be adjusted by hand
in the fabrication process, the number of electrons per QD may possibly be adjusted
by some electrodes lying on the top of the lattice, and that can be even a fractional
number. In this sense the macroscopic properties of QD lattices are expected to show
rich features. Next we study what happens in particular to the magnetic properties
of a QD lattice as we change the number of electrons and the lattice constant at will.

Magnetic Properties

Koskinen et al. [31] studied the properties of the magnetic ground state of a QD square
lattice with a variable number of electrons per QD and different lattice constants. They
used the spin-density functional formalism to determine the ground-state energy of
antiferromagnetic (AF) and ferromagnetic (F) configurations and constructed a mag-
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Figure 2.1: Image of a quantum dot lattice [18]. The crossings of quantum wires may provide a larger
volume for electrons and thus act as a quantum dot. The wires between the ‘dots’ may conveniently
act as tunneling routes for electrons migrating in the lattice.

0 5 v 15 20 25

iattice constant a

Figure 2.2: The magnetic phase diagram for a QD square lattice [31]. The metallic phase (no band
gap) is shown in dark grey and the arrows indicate the magnetic phase (AF=T1]1], F=1111). N is
the (integer) number electrons per quantum dot and S in the right-hand side shows the ground-state
spin of an isolated quantum dot.
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netic phase diagram as a function of IV, the number of electrons per QD, and the
lattice constant a. The main features of the phase diagram, shown in Fig.2.2, exhibit
systematic behaviour. The system is metallic for a small lattice constant, and the
transition to an insulator happens with increasingly large a when N is increased, be-
cause of the larger spatial extent of the outer electronic orbitals. The diagram suggests
insulating and non-magnetic phase with full shells, insulating and antiferromagnetic
phase with half-filled shells, and metallic and ferromagnetic phase with partly filled
or nearly full shells. This kind of systematic behaviour suggests that the underlying
physics might be quite simple and we ought to search for a model that would explain
these properties in a simple way.

2.3 Tight Binding Model for the Spontaneous Mag-
netism of Quantum Dot Lattices

Magnetism in general is due to exchange interactions between conduction electrons.
Since the tight binding model neglects the interactions altogether, the standard model
has to be improved if we want to use it for calculating the magnetic properties of QD
lattices. For this purpose we review the theory and results of the publication IV.

The Tight Binding Approach

We start by considering a typical low-energy spectrum of an isolated, nearly harmonic
QD, as depicted in the left-hand side of Fig.2.3. For generality, we introduce a small
anharmonicity for the dot potential, which induces a splitting Ay; between initially
degenerate 2s and 1d-orbitals. The gaps between the shells are still much larger than
Agg.

If multiple dots form a complete lattice, the magnetic order is expected to develop via
the exchange coupling between the nearest neighbours and the coupling is expected to
split the originally degenerate spin-states into two. This picture in mind, we postulate
an exchange splitting A, as depicted in Fig.2.3. In ferromagnetic systems the levels
are split so that in each dot the lower state has always the same spin, and in antiferro-
magnetic systems the spin of the lower state alternates from dot to dot. The electrons
with a given spin thus feel a dynamically constant exchange potential, and although
they are formally treated as non-interacting, the real interactions are effectively taken
into account via the exchange splitting.

In the following these ideas are applied in practise using the TB model. First of all,
for a square lattice we must use two-site basis as shown in Fig.2.4(c), with the sites
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Figure 2.3: The left-hand side shows the level structure of an isolated, slightly anharmonic, two-
dimensional QD. Ay is the splitting introduced by a small anharmonicity in the dot potential. As the
isolated dots approach each other so that the lattice constant is reduced from infinity, the exchange
interaction A splits the originally degenerate spin-levels. The arrows indicate the spin of the state.
The right-hand side shows schematically the basic symmetries of the states.

denoted by a and b. Fig.2.4(a) and (b) shows the ferro- and antiferromagnetic level
schemes for sites a and b in the presence of the postulated exchange splitting.

The on-site energies for the electrons with different spins are now set, but the hopping
integrals require some further attention. Eq.(1.5) tells that ¢’s are the overlap integrals
between the different orbitals, for which the right-hand side of Fig.2.3 shows the basic
symmetries. From these it is quite easy to see which hopping integrals are zero by
symmetry. For example, the hopping is forbidden between 1p; and 1p, orbitals in
a square lattice. For allowed hoppings the value of ¢ may be different, but the exact
evaluation of the integrals is not appropriate because of the vagueness of the postulated
exchange splitting A. Hence as a first approximation all the different overlap integrals,
unless exactly zero by symmetry, are assigned the same value ¢, the magnitude of which
is indirectly related to the lattice constant via the definition (1.5); smaller value of ¢
corresponds to larger lattice constant.

We can now write the model Hamiltonian for a given spin as
o= Z(e“naj-"a? + e bmor) + Z Z t(aj-"b;" + b}"a;-” + aj-"a;-” + b;-r"b;-”), (2.2)
7,1 {4,y n.m

where €’s depend on the chosen spin as suggested by Fig.2.4. We have replaced ¢ — «a
or ¢ — b so that a; and b; belong to the same 7’th unit cell, indices n,m go over all
the orbitals, and ¢, j go over all the unit cells in the lattice. The notation has also
been truncated, since all the terms in the second sum should in fact have their own



16 Quantum Dot Lattices and the Tight Binding Model

(a) (b) (c)

+ o A 280

€ € ® 0. 06
oA oA @ @@

+ 4 %%

a b a

Figure 2.4: The level scheme for a given shell n with the energy €,. (a) shows the antiferromagnetic
case (with €2 = ¢% + A, depending on spin), (b) the ferromagnetic case (with ¢% = ¢% for both spins)
and (c) shows the square lattice, the unit cell and the notation for for the dots in a unit cell. The
square lattice is bipartite, i.e. there is only a < b hoppings present.

n,m

hopping integrals ¢, (a,b), because whether the symmetry sets the integral to zero
or not, must be checked for all cases separately and may depend on all the indices.

The Method

The magnetic ground state of a QD lattice for given N and ¢ is determined as fol-
lows. First the system is assumed to be F or AF, and the energy parameters in
Eq.(2.2) are chosen accordingly from Fig.2.4 for fixed A, A,y and ¢t. The band struc-
ture €,(q, {t, A, Ay}) is obtained easily by taking the eigenstates to have a Fourier-
transformed form 1) = > exp (ig - r;)(cu|al) + Bi|bF)).

Since the gaps between the main shells are large, much larger than A or A4, all the
dynamics of the system concentrate on the valence shell and the full core electrons
as well as the empty shells can be neglected. This allows the numerical calculation of
the band structures for all the shells separately. An example of the band structure for
a one-dimensional QD chain is shown in Fig.2.5.

For a given IV, which is the sum of spin-up and spin-down electrons, the ground state
magnetic phase, either I or AF, is then determined by the smaller total energy, i.e.
the sum of the single-particle energies up to €.
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Figure 2.5: The band structures for AF (left) and F (right) systems in 1D linear chain with 1s
symmetry, where e = 0, A = 1 and ¢ = 0.2. The AF bands are always spin-degenerate and F bands
have a stronger dispersion due to smoother potential.

Analysis of the Results for a Square Lattice

Performing the calculations as explained above leads to the main results shown in
Fig.2.6, which can be directly compared to the results of the DF'T calculations pre-
sented in Fig.2.2.

It is seen that, indeed, the model exhibits the same systematics: half-shell antifer-
romagnetism, partly filled or nearly full shell ferromagnetism and filled shell non-
magnetism. The half-filled shell AF can be explained at certain level with the help
of the band structure of Fig.2.5. Because the ferromagnetic exchange potential is
flat, the bands have a strong dispersion, and with small occupation F systems have
smaller total energy than AF systems. As N increases, the F system starts to occupy
the upper bands whereas the AF system keeps occupying the same band, because
it is spin-degenerate. If the two lowest bands of Fig.2.5 are filled, corresponding to
half-filled shell, the AF system ends up with a smaller total energy.

Notice that IV is any fractional number, so that all the cases with integer N, as in
Fig.2.2, are just singular lines in the phase diagram. One also has to remember that
here a smaller ¢ corresponds to larger a, and because in reality the outer orbitals
correspond to larger spatial extent, the same t for outer orbitals corresponds to larger
lattice constants in real space as compared to inner orbitals. Furthermore, one cannot
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t/A

Figure 2.6: The magnetic phase diagram of a square QD lattice calculated using the TB model. N
is any fractional number from 0 to 12, the dash-dotted line denotes full shells and ¢ is plotted in units
of A. The grey color denotes antiferromagnetic (AF) regions whereas white regions are ferromagnetic
(F). All the ¢’s are the same for all the nearest-neighbour orbitals, unless hopping is forbidden by
symmetry. 2s — 1d splitting is chosen as Agq/A =1/2.

expect to see any of the features of small a (or, more precisely, large overlap), because
the whole argumentation of the tight binding method would in that case eventually
break down.

This simple TB model seems to explain the magnetic behaviour surprisingly well,
considering the following deficiencies. The exchange splitting A is taken to be inde-
pendent of the electron number, though more realistically one should expect A to get
larger with the shell filling as there are more electrons interacting with each other.
In addition, the calculations of Koskinen et al. suggest that A is different for each
orbital. However, one can think that the monotonic variation A = A(N) as well as
the (mostly) monotonic variation of ¢ with a are already taken into account in the
single parameter ¢(a)/A(N). Due to these monotonic variations the qualitative form
of the phase diagram cannot change if we calculate all the overlap integrals ¢ = ¢(a)
and plot the diagram with N and a instead, at least for s and p-shells. The filling of
the sd-shell brings forth the parameter Aq/A, which cannot be estimated in a simple
way. If Ayq/A > t/A, the s and d orbitals behave as two distinct shells, as there
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is not much hopping between them, and the system shows mid-2s-shell and mid-1d-
shell antiferromagnetism separately. This is why we see AF regions at N = 7,10 with
any Agy/A for a small t. With small Ayy/A the AF area vanishes with increasing ¢
when the bandwidth increases and gets bigger than Ay;/A, because the ferromagnetic
bands arising from d-states, due to the stronger dispersion, come sufficiently down to
remove the mid-2s-shell AF completely.

Beyond Square Lattices

Apart from just verifying the existing results for a square lattice, it is easy to do
calculations for other lattices as well. Fig.2.7 shows the same phase diagram for s and
p shells as Fig.2.6, but now including hexagonal (triangular) and honeycomb lattices
as well. The results are basically the same as for a square lattice, as no dramatic
changes are even expected, only the shapes of the AF regions are slightly different.
The antisymmetry with respect to the mid-shell of the hexagonal lattice is only due
to the fact that the lattice is not bipartite, i.e. there are a <+ a and b <+ b hoppings
present. Note that although hexagonal lattice is frustrated and one might expect it to
favour ferromagnetism, it actually displays mid-shell antiferromagnetism to the largest
extent.! This can be explained by the large coordination number of the hexagonal
lattice in the following way.

An enlargement of the 1s-shell phase diagram with small ¢ is shown in Fig.2.8, which
suggests that a larger lattice coordination number ¢ leads to a wider area of mid-shell
AF. This can be realized in the following way. By having a D-dimensional cubic lattice
and orbitals with 1s symmetry, the band structure can be relatively easily obtained
to be

(@) = glea t ) 1 3T P TP, (23)

where A(g) = > e @7 is the sum over all the phase factors of different nearest
neighbour hoppings. In band minima the wave vector is near w/a or zero, so that
|A(q)| ~ ¢, and by expanding for small ¢ the energies of band minima go as

~ _ _ 2
{ e~ —A/2 —(ct)?/A |, for AF case (2.4)

e~ —AJ2 —ct , for F case.

Thus the AF band minimum becomes the lower one with ¢/A > 1/¢; a larger coordi-
nation number widens the AF area with a small ¢. This vague argumentation relied
on the cubic symmetry of the lattice and on the 1s symmetry of the occupied or-
bital. For other orbitals the symmetry may prevent hopping in some directions, but
as compared to the 1s-symmetry this prevention may be viewed just as a reduction
to a kind of ‘effective’ coordination number that takes into account only the allowed

IIn hexagonal lattice the antiferromagnetic phase consists of parallel lines of alternating spin.
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Figure 2.7: The magnetic phase diagram for 1s and 1p orbitals for honeycomb(HC,dotted line),
square(dashed line) and hexagonal(solid line) lattices. The lines separate F and AF regions.

1.04 A
1.02
- 1D (2)
------ Honeycomb (3)
Z 1.0 — — Square (4)
— Hexagonal (6)
0.98
.“:4: .
S .
0.96 TR,
0.02 0.04 0.06 0.08 0.1

t/A

Figure 2.8: An enlargement of the 1s-shell magnetic phase diagram of Fig.2.7 showing the coor-
dination number effect. The numbers in parentheses are the coordination numbers and the arrows
indicate the direction of increasing coordination number. For completion we have also included ‘linear

lattice’, i.e. an array of 1D linear chains with ¢ = 2 (the band structure of which is actually shown
in Fig.2.5).



2.3 Tight Binding Model for the Spontaneous Magnetism of Quantum
Dot Lattices 21

nearest-neighbour hoppings. For non-cubic lattices such as the hexagonal or honey-
comb lattices the justification is not as evident, but there is no clear reason to expect
a dramatic deviation from this coordination number effect.

This predicted effect remains to be justified at least with a systematic DET approach,
although preliminary results already support it. Otherwise this simple TB model
seems to work surprisingly well, despite the known deficiencies. Many of these could
be remedied by treating t’s and A’s more rigorously, but that would just complicate
the model unnecessarily, and one would not expect the results to even get considerably
different.
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3 Quantum Rings and the
Heisenberg Model

The Heisenberg model, describing the interaction of localized electrons, is one of the
basic models in condensed matter physics. The interaction, electrostatic in nature, is
represented as the interaction between the spins of localized electrons, and results in
a very clear and intuitive form for the Hamiltonian operator. This chapter introduces
the Heisenberg model and explains the way it appears to the description of quantum
rings in the form of a model Hamiltonian. This discussion is devoted to publications
I and II, where we studied quantum rings in a perpendicular magnetic field in terms
of the model Hamiltonian.

3.1 The Heisenberg Model

Spin Model of Electrostatic Interactions

Consider two well-separated, localized electrons on states ¢(r — Ry 2) = ¢;2(r) and
a spin-independent Hamiltonian. If the states are singly occupied, the possible anti-
symmetric two-body wave functions with S, = 0 are

W(ry, ra) o< [o1(r1)ea(ra) £ @1(ra)ea(r)] x D (D (2) Fx @ (D], (3.1)

with the upper signs giving spin-singlets and the lower signs spin-triplets. Calculat-
ing the Coulomb interaction energies, one ends up having different energies on W,
because of the different symmetry in the spatial part. The direct magnetic interac-
tions are much weaker than the electrostatic interactions, but it is via the exchange
of particle coordinates that the strong electrostatic interaction is manifested by the
spin-arrangement of the system [35]. For this reason the spins are blamed for the
interaction, referred to as the exchange interaction, and the energy difference of the
triplet-singlet states is called the exchange splitting. With this reasoning one can
construct the Heisenberg Hamiltonian [36, 37]

H=-]Y8;-8;, (3.2)
)
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where the summation (i, j) again refers to electron spins that are nearest-neighbours
and the spin-operator S; obeys the commutation relations for an angular-momentum
operator [S$, 5]3] = 10;j€a3,5; . The symbol J represents the exchange splitting and
can have positive or negative signs leading to ferro- and antiferromagnetism for the
localized spins, respectively.

The Heisenberg Hamiltonian (3.2) can be derived somewhat more convincingly from
the Hubbard model, introduced in Sec.4.1. The connection between these two models
has actually a very important role in the whole Thesis, but these matters are discussed
in the next chapter.

Solving the Heisenberg Model

The Heisenberg model, and especially its simplified version, the Ising model, are one
of the most studied models in physics in overall. Solving the full Heisenberg model
has turned out to be quite challenging: as the ferromagnetic ground state is simply
the state of parallel spins, the antiferromagnetic ground state is already much more
difficult to solve [38, 39]. Numerical computations are easy for small systems and also
mean field approach gives a rough description of the physics of the model [9]. For
exact results in one dimension the technique of Bethe trial wave function, the Bethe
Ansatz may be used. However, this way one ends up with a complex non-linear system
of equations, that may generally be quite difficult to solve.

3.2 Model Hamiltonian for Narrow Quantum Rings

Rotational and Vibrational Spectra

Narrow quantum rings with few electrons were studied by Koskinen et al. [34], among
others [40, 41]. Fig.3.1 shows the energy spectrum obtained from configuration-in-
teraction calculations for six-electrons in the ring-potential (1.2) with the real-space
Hamiltonian (1.3) [34].

One evident feature of the spectra is the energy increase with M, the total angular
momentum, as M?, and the spectrum is symmetric about M = 0. The different
vibrational bands get more clearly separated for narrower rings. Every band also
reveals a fine-structure that is related to the spin-structure. All these features are
present in a model Hamiltonian suggested also in Ref. [34].
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Figure 3.1: The energy spectrum of a six-electron system in a quantum ring potential (1.2), calcu-
lated with the CI method for two different radial confinements [34]. The numbers indicate the total
spin of the state. The upper panel is a narrow ring and it shows several vibrational bands, whereas
the lower panel is a wider ring and the vibrational bands come down in energy. The parameter Cp
in the figures measures the height of the first radial excitation energy to the one-dimensional Fermi-
energy, i.e. w = Cphn?/(32mr?), where the ring radius R = Nr,/7. The Bohr radius a} is written
in effective mass units. The expansion of the spin-states for the narrow ring and M = 0 indicates
that the spin-structure in both rings is the same.
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The Model Hamiltonian

The CI results presented above were found to be extremely well described by the
following model Hamiltonian

ﬁf—MZ JZS S+Zﬁwna, (3.3)

()

which can be understood as follows. Since the radial confinement is strong, the elec-
trons cannot pass each other easily and thus end up localized in their internal frame
of reference, forming a Wigner molecule [42]. This N-electron system therefore rotates
as a rigid rotator, giving the first term in the Hamiltonian, where [ is the moment
of inertia of the rotator (I ~ NmR?) and M = M2z.! Internally localized electrons
interact via the exchange interaction and give rise to the second term, where the neg-
ative coupling constant J depends on the ring parameters. Notice especially that the
antiferromagnetic Heisenberg model is used even though the electrons are not local-
ized by an external confinement. However, despite the ‘localization’ the electrons can
still vibrate about their internal equilibrium positions. They have vibrational eigen-
modes in the internal frame, resulting in the last term, where hw, turned out to be
the energies of the classical vibrational eigenmodes a.

Comments About the Model Hamiltonian

The model is fairly accurate in strong radial confinement, i.e. in quasi-one-dimensional
rings, but becomes less accurate in more shallow rings, because the system gets more
two-dimensional and the analog with the 1D rigid rotator is demolished.

The one-dimensionality of the ring can be characterized by the parameter Cp that
measures the height of the first radial excitation energy to the non-interacting 1D
Fermi energy, i.e. Cr = hw/|[h?m?/(32m*r?)], where the ring radius R = Nry/m and
s is the one-dimensional density parameter. Because the exchange splitting .J comes
from the overlap between the localized electrons, one expects the splitting to get
smaller as the system becomes more one-dimensional (Cr increases), because then
the electrons are more strongly repelled and the overlap is diminished. The splitting
is also expected to get smaller with smaller N (larger r,) for the very same reason.
In the lowest vibrational band the product of the parameters I and J in the range
2<r;<6and 2 < Cr <25 can be accurately described by the relation []

IJ = [0.273 + 0.004(r2CFr) + 2.24 x 107°(r2Cr)? ™, (3.4)

INote that in two-dimensions L = M = L3, and consequently the eigenvalues of L? have the
form 12, not I(I +1).
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Figure 3.2: The function (3.4) plotted for r, for a few values of Cp. Larger rs (smaller density) and
larger Cp (more strict one-dimensionality) both decrease the effective J, as anticipated.

plotted as a function of ¢ in Fig.3.2 for a few values of C'r. It is seen that J indeed
gets smaller for larger r, and larger CF.

Note also that it is not sufficient to merely solve the Heisenberg Hamiltonian (3.2) for
the N-electron ring and add up with the other terms in the Hamiltonian (3.3) blindly,
because all the eigenstates of the Heisenberg Hamiltonian have to have the correct
symmetry corresponding to the angular momentum M. The angular momenta of the
eigenstates of Heisenberg rings must be revealed by using the symmetry operations
and character table of the group Cl,.

3.3 Analysis of the Model Hamiltonian

In this section we review publications I and II and analyze the Model Hamiltonian
(3.3) in more detail by numerical calculations. The eigenstates of Heisenberg rings
(3.2) were computed by standard FORTRAN IMSL library routines, and could be
performed quickly in a home computer. The main emphasis is on the behaviour of the
rings in the presence of a perpendicular magnetic field.
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Inclusion of a Magnetic Flux

In the presence of a perpendicular magnetic field B = BZ it is easy, rather than to
perform the CI calculations all over again for all the different values of B, to use the
model Hamiltonian, since the inclusion of B into the model is straightforward.

From the minimal substitution or from the second order perturbation theory one can
get the energy shift of a state with given M as
2

8mc?

because all the many-body states have M and S, as good quantum numbers. We
denote pup = eh/(2mc) as the Bohr magneton and g as the Landé g-factor. We have
neglected the fact that the rotating molecule might not have exactly the radius R,
but rather a slightly larger radius due to rotation induced expansion [41].

We can write the magnetic flux piercing the ring as ¢ = 7R2B. The Landé g-factor
for a free electron would have the value g = gy ~ 2.0023, but since inside a semicon-
ductor the effective Landé factor for conduction electrons is different, we consider a
general value of g = 0...2. Approximating the rigid electron system by the classical
moment of inertia I = NmR? and turning into atomic units, we can write the model
Hamiltonian (3.3) with a magnetic field as

lor ()] o (2

where ¢o = h/e is the flux quantum. From Eq.(3.6) one can easily see that the
only effect of the magnetic field is to ‘tilt’ the energy spectrum (Fig.3.1) so that the
minimum energy state corresponds always to the angular momentum M ~ —N(¢/dy).
By tilting we mean that making ¢ more negative the right-hand side of the parabolas
with larger M is pushed downwards and the left-hand side with smaller M is lifted
upwards. If g # 0 also the spin-degeneracy is lost by dragging the states with a large
S, downwards.

H=-]Y 8;-S;+R”’

(:3)

+ 3 hwaia, (3.6)

«

Vibrational States

The trickiest part of the model consists of the vibrational modes which have to be
put in ‘by hand’. The energy ratios of the classical vibrational eigenmodes have to be
calculated and adjusted to the quantum mechanical spectrum with group-theoretical
tools. It is obvious that the vibrational states do not play any role in the ground state
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Figure 3.3: (a) The energy spectrum of N = 6 ring with I.J = 6 and vibrational states neglected.
The spectrum is rotated in order to get the energy axis horizontal. (b) Pair correlation functions
g11(d) with the numbers indicating the value of d (for definition, see text) and (c) specific heat in
finite temperatures. By comparing (b) and (c) to (a), we see that the main structures vanish already
in temperatures corresponding the first excited states.

properties of the system, not even in non-zero magnetic fields, but might affect the
finite-temperature properties of various quantities.

Fig.3.3 shows the specific heat and the pair correlation functions for a six-electron ring
in zero magnetic field. The specific heat shows a finite peak above the ground state
that is due to the large degeneracy of the lowest-lying excited states, and becomes
constant soon after that within the temperature range kgT ~ 5.J. It is worthwhile to
mention that the width of the bands, i.e. the range of the spin-splitting, denoted by
Ay, is given by Ay ~ J x N/2, and hereby one can conclude that the specific heat
becomes constant in temperatures comparable to the fine structure of the rings. The
pair-correlation function, defined as

gaa’(d) - (ﬁi,a'ﬁi+d,a’>a (37)

also shows radical behaviour only below temperatures corresponding to the first ex-
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cited states. The correlations get smaller with greater distances d and indicate anti-
ferromagnetic order, as expected. The fact that the correlations vanish already at low
temperatures indicate that the strong AF order and the internal symmetries between
the ground state and the lowest excited states are considerably different. If the same
quantities are plotted in a non-zero magnetic field, all that is expected to be found is
some quantitative change in the form of the curves.

By means of the examples above one may conclude that the vibrational states are not
important in finite-T" properties of QRs where the model is valid. The narrower the
ring, the larger the parameter C'r, and the higher the vibrational bands are compared
to the spin-splitting, i.e. hw > Aj. If temperatures of the order kgT ~ hw are
reached, the thermodynamic quantities already have a covering average over the lowest
vibrational band and no additional features are brought about when higher vibrational
states get populated. These are the main reasons why the vibrational states within
the validity range of the model are neglected altogether in the following discussion.

Persistent Current with g =0

Persistent current (PC) has always been an interesting quantity to study in one-
dimensional systems. It is an equilibrium current that arises when an Aharonov-Bohm
flux pierces the ring and drives the electrons to form a current, even if the magnetic
field would just go through the ring center and avoid areas where the electrons ac-
tually are [43, 46]. For rings one can quite generally derive the relation for PC as
I(¢) = —0F/0¢, where F is the free energy of the system [44, 45]. In particular, the
periodicity of the persistent current as a function of ¢ in zero temperature is reflected
via the ground state energy periodicity.

Fig.3.4 shows the ground state energy periodicity, and consequently also the persistent
current periodicity, of the Hamiltonian (3.6) as a function of the coupling constant .J
with g = 0, which corresponds just to the ‘tilting’ of the parabolas like the ones in
Fig.3.1. Clearly, with J = 0 there is no spin-splitting? and the ground state changes
N times from M =0 to M = N as ¢ = 0 — ¢, resulting in the periodicity ¢o/N,
as seen also in Fig.3.5(d) with ¢ = 0 [22]. If we increase the coupling constant .J,
the states for given M with different spin are split, and by tilting the spectrum we
may skip some values of M and result in larger periodicity. By this we mean that
while the period may not be exactly ¢o/N (except for J = 0), the energy still shows
N peaks in the range ¢ = 0... ¢, and hereby e.g. the peaks in Fourier-transformed
spectrum indicate ¢o/N-periodicity [V]. In the extreme of very large .J, if the ground
state of the Heisenberg ring is non-degenerate with S = 0, one obtains the periodicity
¢o corresponding to the shift of ground-state angular momenta in steps of N. With

2The upper panel of Fig.3.1 could be seen as having J ~ 0.
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Figure 3.4: The ground-state energy of a six-electron ring as a function of ¢ and J with g = 0.
Darker areas denote higher energies. The periodicity ¢y can be seen to develop soon outside the
picture with J greater than 0.5. (Actually the vertical axis is |J|r?, since J < 0.)

intermediate J the periodicity ¢/2 is obtained, as would happen in the lower panel
of Fig.3.1.

If we now refer to Eq.(3.4), we may conclude that the periodicity of the persistent
current changes from ¢y — ¢o/2 — ¢o/N as the effective J decreases and the ring
gets narrower.

The Zeeman Effect, g # 0

Experimentally it might be quite difficult to confine the magnetic field so that it would
penetrate just the interior of the ring and not couple to the spins of the electrons at
all.

Fig.3.5 shows the spin and angular momentum phase diagrams as a function of the
magnetic flux and the effective Landé g-factor for two different values of I.J. Looking
at the angular momentum phase diagrams for J = 0 and small g one can see that the
periodicity ¢g/N is recovered, but as there is no spin-splitting, a larger g makes the
Zeeman energy to pick the state with a larger S,. In the end with maximum g, the state
with S, ~ N/2 is picked, and since that state appears only with angular momenta in
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Figure 3.5: The ground-state spin (left-hand side) and angular momentum (right-hand side) phase
diagrams for six-electron ring for two values of I.J. In upper diagrams (a) and (c¢) IJ = 1.8, and in
lower diagrams (b) and (d) IJ = 0. For I.J = 0 the spin states are degenerate exactly only for g = 0.

steps of N, the result is the period ¢. If J is increased, the state with S, ~ N/2 is put
higher in energy due to antiferromagnetism, and it requires a larger g (or @) to get
this state to be the ground state. This can be seen also in the spin phase diagrams.
With small g the antiferromagnetism wins and the total spin remains small until the
system becomes polarized for large enough ¢ or ¢, and returns the periodicity ¢y.

To see the effect of the temperature to the phase diagrams of Fig.3.5, one should just
look at them from a distance or screw up one’s eyes, because nothing new is brought
about to the general features already shown. This blurring to the extent where the
periodicity vanishes happens at temperatures of the order of kgT ~ J.

This completes the short introduction to the analysis of the model Hamiltonian (3.3) in
the presence of a magnetic field. However, the concepts developed and the phenomena
observed in this chapter are further processed in the first part of the next chapter,
as we study quantum rings from another point of view and with another model, the
Hubbard model.



4 Quantum Rings, Coupled
Quantum Dots and The Hubbard
Model

In this chapter we study the ability of the Hubbard model to describe quantum rings
and coupled quantum dots by reviewing the main results of publications III, V and
VI. Especially the study of quantum rings will form a complementary point of view
to what was described in the last chapter in the framework of the model Hamiltonian,
Eq.(3.3).

4.1 The Hubbard Model

The Hamiltonian Operator

The standard form of the Hubbard Hamiltonian can be derived quite readily starting
from Eq.(1.7). First we assume only one band, i.e. one state per site. In the non-
diagonal hopping part we apply the same approximation as in the tight binding model,
which was that only nearest-neighbour hopping is considered by assigning t?j"’ =—t
if 7 and j are nearest neighbours. The electron-electron interaction, however, is not
neglected, but since we only have one state per site, the electrons occupying the same
site are forced to have an opposite spin, and we may denote ;}ﬁ’mm, = Ogotor X U.

With these approximations the standard form of the Hubbard Hamiltonian takes the
form
H=—t Z C;UCj’U + UZ’IA%’T’IA?,LL, (41)
(i.g),0 i
where 7;, = cj-’acijg is the number operator for an electron at site ¢ with spin o

[47, 48, 49, 53].

In short, the Hubbard model describes electrons hopping in a lattice of sites with the
hopping amplitude ¢, while they always pay an energy penalty U whenever a site is
doubly occupied by opposite spins. Usually the parameter ¢ is set equal to one, in
which case one can continually study the effect of interactions by varying U. It is the

33
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competition of the physically two very different processes that makes the physics of
the Hubbard model surprisingly rich and diverse: The first term is trying to keep the
electrons in motion whereas the second term tries to keep them apart. The ratio of the
number of electrons to the number of states available, called filling, becomes relevant
since the importance of the contact interaction term depends on how frequently the
electrons actually interact.

Connections to Other Models

The diversity of the Hubbard model has certain consequences. Instead of deriving
the Hamiltonian (1.7) in the introduction chapter, we could have actually derived the
Hubbard model straight away, because it is the generic model for all the lattice models
presented in this Thesis. However, we preferred to use Eq.(1.7), since a more general
Hamiltonian was required in Chap.2.

As already mentioned in previous chapter, the Heisenberg model has an especially im-
portant connection to the Hubbard model, and it can be summarized in the following
way. If the two parameters of the Hubbard model satisfy U > t and the number of
electrons equals the number of sites, i.e. the system is half-filled, one would anticipate
having one electron on each site. Starting from the extreme with ¢ = 0, this state is
also a multiply degenerate ground state of the system with each site singly occupied
and no hoppings. With a finite but small ¢ the first term of operator (4.1) can be con-
sidered as a perturbation for the second one and treated by the standard perturbation
theory. The correction is of second order and the result can be cast into the form of
Eq.(3.2) with the relation J = —4¢*/U, where t* refers to the second order and U~
to the energy of the virtual doubly occupied site [52].

The half-filled Hubbard model thus reduces to the AF Heisenberg model in the limit
U > t. This is intuitive, because while large U localizes electrons, there is still some
hopping as long as the Pauli principle does not prevent it; the hopping activity — and
the energy reduction — is at its largest when the hopping is always allowed, which is
the case in AF configuration with opposite spins in nearest-neighbour sites.

The tight binding model is obtained readily! by setting U = 0, and the so-called
t-model is obtained with U = oo, which also is related to the Hubbard model with
totally polarized electrons or ‘spinless fermions’. The ¢ — J-model is a combination of
the hopping term and the Heisenberg term, so that the hopping electrons, instead of

! This happens only virtually for the Hamiltonian, since the basis set for the Hubbard Hamiltonian
consists of many-electron states, whereas the TB basis set consists of single-particle states.
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experiencing a direct Coulomb (on-site) interaction, feel the nearest-neighbour ex-
change interaction. All these models are closely related and one model can be derived
from another model in suitable limits [3, V].

Solving the Hubbard Model

Despite the apparent simplicity of the Hamiltonian (4.1), it remains extremely difficult
to solve in the general case. The dimension of the basis increases as (1\%) (1\%)’ which
restricts the exact numerical diagonalization to very small systems. Mean field theory
can even give qualitatively incorrect results [2], whereas some exact results, especially
for the one-dimensional chain, may require quite heavy mathematical machinery [50].

In the publications studied in this chapter the eigenstates of (4.1) have been solved
mainly by the exact diagonalization method using standard FORTRAN IMSL and
LAPACK library routines. In paper V the Bethe Ansatz technique was also used.
Note that in Eq.(4.1), without any Zeeman splitting, it is in fact sufficient to consider
the case Ny = N| for NV even or Ny = N £ 1 for N odd, since then S, would be
minimum and yield the whole energy spectrum. All the other possibilities for V; and
N| would yield just the degenerate states with different S.,.

4.2 Ideal Hubbard Rings

Since the typical QR potential (1.2) is smooth, the electrons are not externally local-
ized to certain points in the ring. However, as the model Hamiltonian for quantum
rings, Eq.(3.3), suggests, the electrons are localized in their internal frame of reference
while rotating in the laboratory frame of reference as a rigid rotator. This way con-
sidered the Hubbard model might not be as invalid in describing electrons in a QR as
one might first think [51]. In this section we review the main results of publication V,
where we studied, among other things, the Hubbard model in ideal quantum rings.
These results, and the results of the next section, have also a central role in the whole
Thesis.

Relation to the Model Hamiltonian

In the last section we argued how the Hubbard model turns into the Heisenberg model
with half-filling and U > ¢. However, if we want to use the Hubbard model to describe
rotating electrons in a ring, the system must be less than half-filled if U is large; in
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Figure 4.1: The many-body energy spectrum of an ideal Hubbard ring with N = 6 and L = 8 with
U = 40. Note the obvious similarity with the original rotational and vibrational energy spectrum
shown in the lower panel of Fig.3.1, obtained using the CI method.

an exactly half-filled system the electrons would be localized also in the laboratory
frame. Surprisingly only a single empty site enables a free rotation of the electrons
and hence also persistent currents.

Fig.4.1 presents the many-body spectrum of an ideal Hubbard ring with N =6, L = 8
and U = 40, as a function of the total angular momentum M. By comparing with the
rotational and vibrational spectrum of Fig.3.1, one can see the obvious similarity. The
spin structure obtained is ezactly the same as given by CI calculation or by the model
Hamiltonian. This indicates that the connection to the antiferromagnetic Heisenberg
model is conserved, even though the system is less than half-filled. In addition, the
energy rises as M?, so the Hubbard model also witness the rigid rotation of the
electron system. It is rather remarkable that this kind of simple lattice model is able
to reproduce all these effects!

The connection to the Heisenberg model can be further analyzed. If we remove the
M?-contribution from the total energy, and appropriately scale the energy spectra of
the Hubbard model, we are able to see that it approaches even more accurately that
of the Heisenberg ring as the number of empty lattice sites is increased, as long as U is
sufficiently large. Only now the relation between the model parameters is smaller than
the usual J = —4t?/U of the half-filled case, and depends on the number of empty
sites J = Jess(L), with J getting smaller with more empty sites [58]. The U and L
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Figure 4.2: The L and U-dependence of the effective exchange coupling constant J.ss for N = 4.
The black dots are the values determined from the exact solution for U = 100 and the white ones
for U = 10. With L = 4 the system is half-filled and the antiferromagnetic coupling constant is
J = —4t2/U, as usual. Compare with Fig.3.2, where we have a similar behaviour if we identify U
with Cr and r; with L. (Note that since energy axis is scaled with —4t2/U, J.ss is indeed smaller
with U = 100.)

dependence of J.ss for the N = 4-system is depicted in Fig.4.2. Note especially the
similarity shared with Fig.3.2, which shows the effective .J of the model Hamiltonian
(3.3) as a function of Cr and ry.

Persistent Currents

The magnetic field, which is the driving force of the PC, can be introduced into the
Hubbard model as a simple phase factor in the hopping integral, as indicated by
Eq.(4.2) in the next section. Fig.4.3 now shows the energy spectrum of a Hubbard
ring with a few discrete values for U, plotted as a function of the magnetic flux going
from from ¢ = 0 to ¢ = ¢ for every value of U. The length of the ring is L = 8 and
the number of electrons N = 4, with Ny = N| = 2. Referring again to the relation
between the ground state energy and the persistent current in zero temperature, we
can see that the periodicity of the persistent current decreases from ¢y with U = 0
to ¢o/N with U = 1000 via the intermediate periodicity ¢o/2 [54]. This is similar to
the periodicity change obtained by the model Hamiltonian (3.3), because there we
obtained a shorter periodicity as the ring got narrower and J decreased (see Fig.3.4).
This is very satisfactory, because we can think that the non-interacting case U = 0
corresponds to a very shallow ring where the electrons can pass each other from large
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Figure 4.3: Magnetic flux and U dependence of the many-body spectra of a Hubbard ring with
L =8 and Ny = N| = 2. Flux goes always from zero to ¢y and U increases in between with ¢ = 0.
The lowest energy state and the lowest state with S = 2 are shown in bold lines. The state with
S = 2 is independent of U since the electrons are already polarized and cannot occupy same sites
anyway due to the Pauli principle.

distances, whereas the strongly interacting case U — oo corresponds to a very narrow
ring, where the rotating electrons have to pass each other at very short distances thus
interacting and repelling one another effectively.

Vibrational States?

By adding more empty lattice sites to the ring incorporates also other effects than
the renormalized Heisenberg J. Fig.4.4 presents the effect of adding lattice sites from
L =4t L =8 with N =4 and U = 40. When one increases the number of empty
lattice sites from one to many, there appears higher bands that can in fact be identified
as the vibrational modes of the rotating electrons, the similar kind of vibrational modes
as the ones present in the model Hamiltonian and shown for example as the higher
bands in Figs.3.1 or 4.1. One can plausibly arrive at this identification using the Bethe
Ansatz technique in the limit of infinite U.

The essence of the vibrational states may be simply illustrated by the case of po-
larized, non-interacting electrons in a strictly 1D-ring. The one-particle states have
the form ¢;(p) o< e™¥ where the quantum numbers {m;} are the single-particle
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Figure 4.4: The energy spectra of Hubbard rings with N = 4 and U = 40 for L = 5 (left panel) and
L = 8 (right panel). With a single empty site there is only one band (vibrational ground state), but
with more empty lattice sites we get increasing number of vibrational bands above the lowest band.
Compare the right panel especially to the upper panel of Fig.3.1, which shows the vibrational bands
of a very narrow QR.

angular momenta. One can make the many-body Slater determinants by selecting a
set of m;’s to give the total angular momentum M = Y m,;. Just by looking at the
internal structure of the Slater determinants via correlation functions, one can find
resemblances to the rigid rotation, but also to the classical vibrational eigenmodes of
the N-electron system. For a non-interacting system! This is naturally due to the fact
that fermions cannot pass each other in a strictly 1D-ring: If we introduce larger gaps
in the set of single-particle angular momenta® {m;}, we also give large differences
to the ‘velocities’ of the electrons, and because of that they bump into each other
harder and start vibrating more vigorously. This is not quite the frame in the Hub-
bard model, but may shed light to this interpretation of vibrational modes. And after
all, the Hubbard model with U = oo is just the (lattice) model of polarized electrons
because the electrons are not allowed to be at the same site.

In this section we have gained confidence toward the fact that the Hubbard model
could actually describe the rigid rotation of the N-electron system, give the internal
structure related to the Heisenberg model and even give a signature of the vibrational
bands. All these features are completely consistent with the physical picture provided
by the model Hamiltonian (3.3). This encourages us to apply the Hubbard model even
further and study rings beyond the ideal 1D-case.

2Tf initially the quantum numbers m; consist of consecutive integer numbers.
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4.3 Small, Imperfect Hubbard Rings

In the real world it would seem quite unrealistic to think that experimentally studied
quantum rings could be completely clean and without any impurities [15, 55]. It is
then of great importance to study how impurities alter the properties of ideal 1D
quantum rings. In this section we review the results of publication VI, where the
effect of impurities in small Hubbard rings was studied more profoundly.

Using small Hubbard rings and exact diagonalization it is actually very easy to intro-
duce imperfections at non-perturbative level to the perfect ring symmetry. As com-
pared to other methods, because of the broken symmetry, analytical as well as some
exact numerical (continuum) methods can become quite tedious. The drawback of the
exact diagonalization method is that we must restrict ourselves with a few electrons
in a ring of length L X 12, whereas we might want to study also bigger rings. At this
point, however, we note that the Hubbard model does not necessarily compare better
to the ‘real’ model Hamiltonian as the number of lattice sites is increased [58|. This is
because, as long as there are empty sites, the contact interaction really matters only
when the electrons overlap, and these processes only become scarce with increasing
L. This is to say that only the energy scale diminishes with larger L, as is suggested
also by Figs.3.2 and 4.2, but the physics of the system does not appreciably change.

Models for Impurities

For treating the impurities we insert an additional term to the original Hubbard
Hamiltonian (4.1), so that the impurity Hamiltonian reads

H=- Z tij(e_i(%/L)(M(bo)CzTaCjo +He)+U ZﬁiTﬁil + Z €M (4.2)

(1:4),0 o

We allow for different hopping integrals ¢;; and site-dependent on-site energies ¢;. The
presence of the magnetic field manifests itself through a phase factor that modifies
the hopping integrals [57]. Note that the phase factors appear only in hoppings along
the ring circumference of length L, and vanish if the hop is in radial direction. With
this Hamiltonian and exact diagonalization it is relatively easy to study the effects
of single impurities, random impurities, electric field and also the temperature to the
persistent current [ induced by the magnetic flux ¢. As compared to previous studies
related to the same subjects, this method allows an exact treatment of strong, non-
perturbative impurities, and especially the inclusion of many-body effects, which we
can study by continuously increasing the electron-electron interaction U [56, 59, 61].

In Fig.4.3 we saw how the periodicity of the persistent current decreased as the Hub-
bard U increased. When U is changed with a fixed ¢, the resulting function I(U) might
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properly represent the effect of interactions to the persistent current, as long it does
not contain any discontinuities that arise from the periodicity change. Among many
other authors we use the representative value of ¢ = 0.25¢, for the magnetic flux and
study the functions Iy—g54,(X, U), where X represents some impurity strength [59].

Persistent Currents in the Presence of Impurities

We study first a single impurity site for L = 7, Ny = N; = 2 system with X = ;.
The resulting behaviour of the persistent current, I(ej,U), is shown in Fig.4.5(a).
For ¢; = 0 one can immediately notice the decrease in the current with increasing U
[60, 61, 62]. This comes from the fact that larger interaction makes the electrons to
move less independently in the lattice and ultimately only rotation as a rigid rotor is
possible; naturally the rotation is easiest when electrons with the opposite spin do not
interact at all. With increasing e; the current decreases, whereas the effect of U is first
to slightly increase, but later to slightly decrease the current. When the impurity is
attractive, 1 < 0, the current behaves in a bit more subtle way, and ends up having a
local maximum whenever ¢; +U = 0. This is because if the impurity-localized electron
has, say, a spin up, the spin-down electrons do not feel the impurity potential at all
and can circle around the ring quite freely.

This interpretation can be studied further by considering an odd number of electrons,
as in Fig.4.5(c) and (d), so that the system is not symmetric with respect to the
different spins anymore. The overall form of the total current, I = I} + I}, is like in
Fig.4.5(a), but the separate spin-components are quite different, and even have oppo-
site signs. This surprising discrepancy in the direction of the current can be fortunately
explained simply by the model of non-interacting electrons in a 1D-continuum ring.
Impurity decreases both currents, while the interaction couples them and forces them
to flow more in the same direction. In this situation, as we have only V| = 1, the
spin-up current is even larger with e; + U = 0 than with zero impurity (and the same
U), because if the only spin-down electron is localized, the potential for the spin-up
current is totally flat.

Also other kind of impurities, such as an electric field, characterized by the potential
difference X = Vg at the ring extremes, and especially a random potential, character-
ized by its width X = W = max({¢;}) — min({¢;}) with random ¢;, introduce similar
kind of localization effects as ¢;. Generally speaking, the current decays monotonically
as a function of the impurity strength, but exhibits weak local maxima as a function
of U, where the location of the maximum goes as U ~ X.

It is interesting to see what happens if electrons could really escape and hide some-
where outside the ring. This escape might mimic the processes in the presence of
external leads leading to electron reservoirs. We try to imitate leads by adding a stub,



Quantum Rings, Coupled Quantum Dots and The Hubbard Model

42

()
405
Bl
200,
A,
XN
Y,

oy

PRS
PSS
(SO0 RSO
SRS
RIS
sg“:.“.g 2
R
35X

XX
39504
XK

n
KA
:

T
7
Z

S
o

Z
Z
5%
XX
R
S
R
2R
IR
=

3
S

XX
%

2
7
7
7
T
3

77

7

Z:

o
225222,
A

s

727
757

2

7

7z
7

7
7

W

R
N

st
8

e
S
I
YKKS

R
KR
X

(i

D

\\S\S
SR
QAL

5
S
N
S
3P
7
?

R
XX
SRS
RIS
(S0
SRR
R
N
R

ORI
S
SRR
S0
Ststtests
S
QR X
AR y
X
R

R

RN
X

5

R
R
2
X
e
S
o

\
R
X
%

N
R N
X
KK
&
&
5
X
R
R
3
R
R
=

X
SRR
5 X
RIS
5 oo
5
KK

D =
R
RN
(SN
SIS
shslislisle!
s
S
S
S
N
KR
>
X

o
%
5
s
o

3
W
S

&

Figure 4.5: (a) I(e1,U) and (b) I(t12,U) for L =7, Ny = N| = 2, where ¢15 is the hopping integral
between a single link in the ring with all the other ¢’s equal to one. (c) I+(e1,U) and I (e, U) for
L =7, Ny =2, N, = 1. The magnitude of the flux is ¢ = 0.25¢.

a few extra lattice sites in the radial direction, outside the ring geometry. In Fig.4.3
we saw how the electron levels changed as a function of ¢ for a system with N = 4 and
U = 1000, giving the ground-state periodicity ¢o/N, characteristic for a narrow ring.
Fig.4.6 shows the same thing, but now with an inserted stub that consists of two lat-
tice sites. It is clear that a periodicity of ¢ /3 is obtained, as if the ring would contain
only three electrons. By summing up the electron densities in the ring it can really be
ensured that the stub completely localizes one electron and the rest of the electrons
continue rotating in the ring without any disturbance from the stub [63]. This is not
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Figure 4.6: The ¢-dependence of the many-body spectrum of a Hubbard ring for L =7, N = 4 and
U = 1000 with an additional stub with two sites. The ground state periodicity is ¢o/3 = ¢o/(N — 1),
which suggests that only three electrons are participating in the current formation and one is com-
pletely localized in the stub. Compare especially with Fig.4.4, where the periodicity in an ideal ring
with U = 1000 is ¢o/N.

the case if the length of the stub is e.g. one or three, because then the wave-function
of the localized electron ‘spills’ into the ring, interfering with the rotating electrons
and reducing the current considerably. The overall effect and importance of such an
impurity depends crucially on the length and the form of the additional stub.

All the above results are valid in temperature 7' = 0. But as seen e.g. in Fig.4.6, the
slopes OF /9¢ of the excited states are frequently opposite to that of the ground state,
which means that also the currents carried by those states have opposite signs. At
least for perfect rings this results, after a flat region in the temperature scale set by
the energy of the first excited state, in a very rapid decrease of the persistent current
with increasing T' [64].

Despite the apparent simplicity of the model, and the straightforward application to
small Hubbard rings without any truly sophisticated method, it appears that most of
the results given by the model in this section agree qualitatively very well with the
most dedicated studies of quantum rings. This notion should not actually surprise
us, especially after we already have seen how surprisingly well different models for
one-dimensional systems may resemble each other.
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4.4 Four-Wave Mixing in Coupled Quantum Dots

We end this chapter by studying something totally different, namely, coupled quantum
dots in an optical experiment. A coupled QD is simply two QDs grown or fabricated
next to each other, so that the dots, rather than being isolated, interact with each
other in some manner. If the distance between them is large enough, so that the
internal properties of the dots are not appreciably modified, the particles in the dots
can be treated within the hopping scheme, and one convenient way to describe such
a system is to use a Hubbard-type model. In this section we review the results of
publication III, where certain optical properties of coupled dots were calculated using
the Hubbard model. These properties are directly related to real quantities measured
in a so-called four-wave mixing experiment, which can thus reveal information about
the internal fine-structure of coupled QDs, even if the dots are embedded in a large
inhomogeneously broadened ensemble.

A Hubbard Model for Coupled Quantum Dots

We start by considering an isolated QD with the following structure. We assume the
ground state |0) to have no electrons or holes, but if a valence electron is promoted
to the conduction band by an absorption of a photon in the visible region, an exciton
b |0) is formed with an energy €, where b is the fermionic creation operator for an
exciton with the electron spin . In the presence of a biexciton b]}bHO), which means
two co-existing excitons, the Coulomb correlations reduce the total energy to be 2e—A,
where A is called the biexciton binding energy [70].

If now two such dots are brought close together, the electrons and holes start to
hop and get delocalized in the two dots [65]. Fortunately it has turned out, that the
exciton tunneling is preferred as compared to a separate electron and hole tunneling
[69]. This allows us to treat the exciton as the elementary building block and to write
the double-dot Hamiltonian as

E[ = EZ<’fLLU + ﬁR(,) — tz<bTLgbRo + bgabLg) - A Z ’flﬂﬁil, (-13)

i=L,R

where L and R refer to ‘left’ and ‘right’ dots, respectively, and 7;, = bl«kabia [30].
Apart from the first term, which merely tells the number of excitons in the system
(e ~ eV > A ~ meV), Eq.(4.3) is nothing but the Hubbard Hamiltonian (4.1) with a
negative interaction U = —A.

The eigenstates of (4.3) can be solved analytically and are shown in Fig.4.7. Since the
ground state is always the starting point and later we assume no other coupling to the
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Figure 4.7: The level structure of a coupled QD obtained using the model (4.3) for small ¢. The
arrows indicate the allowed optical transitions that can be reached starting from the ground state. X
is the transition from the ground state to the state where a single exciton is delocalized in both the
dots. By denotes the transition from the state |X) to a state |By) where the excitons are mainly in
the same dot, and B, denotes the transition to a state |By) where the excitons are localized mainly
in different dots and where the biexciton binding energy is absent.

environment apart from the dipole coupling to the electromagnetic field, the dotted
states can never be reached in optical transitions and can thus be totally ignored in
our future computations.

At this stage we know the states |7) of our single coupled dot system. A convenient
way to describe the state |t)(t)) = > ¢;]i) of a whole ensemble of such coupled dots
is the density matrix p(t) = ) cjc;]é)(j|. If the ensemble is inhomogeneous with a
distribution of €’s, i.e. it is inhomogeneously broadened, the total ensemble can be de-
scribed by many density matrices {p'(¢), [ = 1,2, ...}, all of which represent a smaller
ensemble of dots, within which all the coupled dots have the same energy characteris-
tics €. The time evolution of p!(t) is governed by the Liouville-von Neumann equation
and incorporates the coupling to the controlled laser field in the rotating-wave and
dipole approximations, and the coupling to the electromagnetic vacuum responsible
for the spontaneous emission of photons [74, 75]. The diagonal elements of p yield
directly the occupations of the energy levels, and the off-diagonal elements describe
the phase coherence between the levels. The off-diagonal elements also determine the
(interband) polarization,

PO = 3 (00 (44)
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which is related to the emitted radiation from the sample. The quantity M;; = —e(i|r|7)
is the dipole-matrix element responsible for the electromagnetic coupling strength of
the dipole transition between states ¢ and j [10].

The Four-Wave Mixing Experiment

Optical measurements are in an important position in extracting information from
nanoscopic structures. Visible light absorption with the photon energy in the electron-
volt range can provide direct data about the discrete many-body level structure of
an ensemble of quantum dots or quantum rings. In an inhomogeneous ensemble the
fine structure of the individual dots in the meV range is often blurred in the direct
absorption spectra by the large inhomogenious broadening in €. In this section we
introduce how this situation can be corrected.

If the occupation of the exciton and biexciton states of Fig.4.7 increase as a result of an
intense laser pulse, the off-diagonal elements of p give non-zero interband polarization.
The system then gradually decays into the ground state by spontaneous emission
of light, with the photon energies corresponding to the allowed optical transitions.
Because the transitions have different energies (~ ¢ and ~ (e — A)), the decaying
signal undergoes beating corresponding to the energy differences in the transitions [68].
Fig.4.8 can be considered to illustrate this beating pattern for a single coupled dot
or an ensemble with given /. However, this beautiful beating pattern from the total
ensemble gets blurred, since the off-diagonal elements evolve in time like pﬁj ~ et
and the relatively large differences in w!; ~ €'/h with different [, that are of the order of
30 meV, make the polarizations from different coupled dots to go quickly out of phase.
From the blurred emission spectra one cannot see the beating patterns anymore, and
consequently one cannot extract information about the fine-structure of the coupled
dots. This situation can be corrected in a four-wave mixing (FWM) experiment.

The FWM setup consists of two consecutive short and intense laser pulses that are
separated by a time delay 7 and that travel in slightly off-parallel directions k; and
ks as shown in the inset of Fig.4.8(a) [8, 71]. Without further justifications we state
that this setup effectively causes the latter pulse, arriving at time ¢t = 0, to ‘reverse’
the time development of the polarization induced by the first pulse, arrived already
at time t = —7, so that at time ¢ = 7 each dot in the ensemble has the polarization
again in-phase. The result is a delta-function-like photon echo pulse S(t) in direction
2k, — k; at time ¢ = 7 as shown in Fig.4.8(b) [72, 73].

Fig.4.8(a) shows the FWM signal from an isolated coupled QD or an ensemble with
given €. The beating frequencies would be the actual quantities of interest, but the
signal vanishes in the total inhomogeneous ensemble because the polarizations go out
of phase. If the inhomogeneity is only in ¢’s and not in A’s or t’s, the beating frequencies
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Figure 4.8: (a) The FWM signal S(¢) (7 &~ 0) arising from a single coupled QD with the fast-

oscillating eie't/ hpart projected away (Heisenberg picture). The laser pulses excite the exciton and

biexciton states which decay exponentially by spontaneous emission (here we have a short decay
constant ~ 20 ps for clarity). The beating of the signal comes from the energy differences of the X,
B; and B, transitions of Fig.4.7. The inset shows a schematic representation of the FWM setup.
A short laser pulse is shot in the direction k; at time ¢ = —7 and at time ¢ = 0 a second pulse of
the same strength is shot in a slightly off-parallel direction k». The result is an echo pulse in the
direction 2ko — ky at time ¢ = 7. (b) The two laser pulses with ¢ =7 = —5 ps and ¢ = 0 are shown
by the arrows and the peak at ¢ = 7 is the delta-function-like FWM signal S(¢) observed in the
direction 2k, — kq (while I(7) = [ S, (t)dt is the actual quantity measured). The width of the peak
is related to the decay constant. The strength of the signal I(7) measures the beating pattern of the
individual coupled dots at time ¢ = 7, denoted by the filled circle in (a). Units are arbitrary.

still remain exactly the same in the whole ensemble. Thus Fig.4.8(a) represents the
beating frequencies of the total, inhomogeneous ensemble, and the only problem that
remains is to bring it forth experimentally.

In experiments the echo pulse is measured by the time-integrated signal
I(r) = [ S.(t)dt with a fixed 7. In Fig.4.8(a) the filled circle shows the moment of the
echo signal for 7 = 5 ps; in every coupled dot in the total ensemble the echo signal
takes place at the same point of the beating pattern and hence I(r =5 ps) also shows
a maximum. If 7(7) is measured systematically for many values of 7, the whole beating
pattern is mapped out. This is how information about the fine-structure of coupled
dots can be extracted from an inhomogeneously broadened ensemble. Numerically we
calculate only S(t) for a single coupled dot, or an ensemble with fixed ¢, instead of
I(7) with multiple values of 7 for the total ensemble.

We shortly mention that in numerics we do not need to take into account the spatial
effects related to the directions of the laser and echo pulses. By following Ref. [66] we
can take these into consideration by introducing phase differences in the two controlled
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laser pulses, and the FWM-signal can be calculated from the interband polarization
(4.4) in a straightforward manner.

Analysis of the FWM Signal

Fig.4.9 shows the modulus of the Fourier transformed signal S(w) = F[S(t)], which
could equally well present the experimentally observed Fourier-transformed signal
I(w). The typical biexciton binding is A = 3meV and the tunneling amplitude ¢ goes
from zero to ~ 1 meV. With ¢ = 0 the coupled dot acts as two individual dots showing
a beating frequency at 3 meV as expected. As t is increased, three different beating
frequencies are identified: o corresponding to the beating between the transitions
X — By, 0 between X — B and v between the transitions By — Bs. It is notable
that the a-peak gets bigger, whereas both § and v get smaller with increasing ¢. The
reason is that in «a both the states X and B; are bonding states, the energy of which
decreases with larger t. By is an antibonding state, which results in smaller dipole-
coupling to the X-state and consequently in weaker transitions and beatings against
X- and B;-transitions.

The level scheme of Fig.4.7, and thus the fine-structure of the coupled QD ensemble,
can be quite readily constructed from the peak positions of Fig.4.9. Hereby the va-

«

3 B 7 t(meV)
N

1

0.5

0

-6 -3 0 3 6
w(meV)

Figure 4.9: The final results for the FWM spectra of coupled QDs representing |S(w)| for various
values of t. The decay time is 500 ps.
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lidity of the Hubbard-type model (4.3) could be directly tested. And, once more, we
stress that all this information was extracted in the presence of the inhomogeneous
broadening, larger than the fine-structure by an order of magnitude.

In this section we have demonstrated that the Hubbard model can be used also beyond
the standard electron-tunneling approach. Although this topic is somewhat different
in nature from the other subjects in this Thesis, it also shows how simple and straight-
forward it is to apply lattice models to describe semiconductor nanostructures.
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5 Summary and Conclusions

The subject of this Thesis was to study the suitability of lattice models to describe the
physics of semiconductor nanostructures. We studied the tight binding, the Heisen-
berg and the Hubbard models in quantum dot lattices, quantum rings and coupled
quantum dots. The prevalent method was to solve the models with exact numerical
diagonalization for small enough systems. The results were in fair agreement with
previous studies, considering the relative simplicity of the models.

In chapter 2, where we reviewed the results of publication IV, we saw how a simple
tight binding model was able to reproduce the qualitative behaviour of spontaneous
magnetism of QD lattices. Remarkable enough, all the complex effects of exchange
interactions were reasonably well described by postulating a single parameter, the
exchange splitting A. This suggests that the underlying physical processes are not
excessively complicated.

Publications I and II analyzed a previously suggested model Hamiltonian for nar-
row quantum rings. The model consists of a rotation of the rigid electron molecule,
the spin-structure explained by the antiferromagnetic Heisenberg model, and vibra-
tional modes explained simply by the classical vibrational eigenmodes. In chapter 3
we collected the main results of the model analysis, showing e.g. the irrelevance of the
vibrational states, the persistent current periodicity change ¢g — ¢o/2 — ¢o/N with
increasing radial confinement, and the effect of Zeeman splitting to the ground-state
properties.

Surprisingly enough, these very same phenomena were observed in quantum rings also
by using the Hubbard model. The results of publications V and VI, reviewed in the
beginning of chapter 4, indicated that the Hubbard model appropriately describes
the Wigner-crystalline electron system in a narrow quantum ring. This gave us con-
fidence to study quantum rings further by introducing imperfections to the perfect
ring symmetry. And once more, the qualitative behaviour of persistent current in the
presence of imperfections was in good agreement with earlier, more dedicated stud-
ies of the same subject. Generalizing even further, all the one-dimensional Hubbard
model derivatives, the non-interacting and interacting electrons in 1D-rings, as well
as classical particles in a ring, share surprisingly many common properties, many of
which are shown in the most sophisticated quantum-mechanical calculations.
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At the end of chapter 4, we finally introduced a Hubbard -type model that was applied
to describe exciton dynamics in coupled quantum dots. In publication III the model
was used to predict quantities that would be directly experimentally accessible.

At this stage it seems that the Hubbard model derivatives capture the physics of
nanostructures more essentially than what would be anticipated at first sight. The
original purpose of these models was to describe electrons in localized atomic states,
where some of the approximation might not work very well. However, in quantum
dots the band structure confinement is not as steep as the Coulombic r~!, and the
bound states have smoother spatial format. This may lead to different character for
the interaction of neighbouring sites. Furthermore, in quantum rings one can more
easily achieve sufficiently low densities to form a Wigner molecule. All these factors
may lead to the result that the lattice approximation work well in nanostructures.

The models have been mainly used to explain already familiar many-body phenomena
of semiconductor nanostructures, although something new has also been observed.
However, the main achievement of this Thesis has been to search and identify the
general and dominating behaviour of interacting, nanoscopic many-electron systems.
Thanks to the direct diagonalization and exact wave-functions, the physical processes
are clearly visible and we obtain a clarity for the interpretation of results.
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