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AbstratThe ordinary muon apture (OMC) is suggested to be used as a probing tool in orderto gain information about the struture of the intermediate nulear states involvedin the double beta (ββ) deay. It has been demonstrated that the nulear-strutureaspets in the ββ-deay alulations an be �ne tuned by the information gained fromthe measurements of the partial OMC rates from the ground state of the initial or�nal nuleus to the intermediate states within a ββ deay hain. It has been foundthat the alulated OMC observables as well as the two-neutrino double beta (2νββ)amplitudes depend strongly on the involved nulear struture.In nulear-struture alulations both the nulear shell model (SM) and the proton-neutron quasipartile random-phase approximation (pnQRPA) have been employed.For the light nulei the SM alulations indiate that the states with biggest OMCrates are also the most relevant ones in the 2νββ deay. The e�et of the mean �eldon the OMC rates is also studied. The struture of heavier nulei was alulated byusing the pnQRPA. The pnQRPA alulations involve the partile-partile intera-tions strength parameter gpp. It was found that gpp a�ets strongly the alulatedOMC rates. The role of the indued pseudosalar urrent and its oupling onstant
gP in the OMC is also disussed.
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1 IntrodutionThe atomi nuleus is a many-body system where three of the four fundamental in-terations play an important role. This feature makes the nuleus an interesting andhallenging subjet of study. The two strongest interations � nulear and eletromag-neti � are responsible for nulear struture, while the e�et of the weak interationan be seen in radioative deays of nulei. The fourth interation, gravitation, isknown to play a negligible role in the physis of the nuleus. The theories of the weakand eletromagneti interations an be uni�ed to yield one single theory: the the-ory of eletro-weak interation. This, together with the theory of strong interations,forms the standard model of partile physis. Currently, attempts are being made tounify the theories of all the four interations to one single theory.A typial way to study the atomi nulei experimentally is to analyze nulearreations. These an be, for example, radioative deays or satterings of two nuleio� eah other in ollision proesses. In these experiments the initial state of thesystem is either known or prepared in some spei� way and the �nal state an bemeasured. The measured observables yield information on the nulear proess understudy. Based on this information one an onstrut theoretial models about thestruture of the nuleus and the interations between its onstituents, the nuleons.The purpose of the present work is to study nulear struture and nulear deayby using one partiular type of a weak-interation proess, namely the nulear muonapture. The muon apture an happen in a muoni atom where, in addition to theeletrons, a muon orbits the nuleus. As a result it is possible that the orbiting muonis aptured by one of the protons of the nuleus. By omparing the alulated resultsfor the muon-apture rates to the orresponding experimental ones, one an gaininformation about the involved nulear wave funtions. Furthermore, the presentwork demonstrates how this information an be exploited in the alulations of aseond-order weak-interation proess known as the nulear double beta deay.The double beta deay is a very rare proess and for this reason the experimentalset-ups are loated deep under ground in order to minimise the bakground radiation.The fous of the present-day experimental set-ups is on detetion of the neutrinolessdouble beta deay, sine it has a lot of relevane in searh for new physis beyond thestandard model. This searh is an ative topi in physis due to the fat that there islear experimental evidene about the existene of a non-zero neutrino mass whih isnon-existent in the framework of the standard model.
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2 Nulear strutureExplaining nulear struture is a hallenging theoretial problem. Due to its many-body nature the struture of a given nuleus an not be solved exatly. On the otherhand, there are too few nuleons in nulei to allow for a statistial treatment of theproblem. Therefore, one has to make approximations. The usual starting point isthe nulear mean-�eld approximation, where every nuleon is assumed to move in apotential reated by all the other nuleons in a nuleus. In this approximation thenulear Hamiltonian
H =

∑
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†
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βcγcδ , (1)where tαβ is the single-partile energy term and v̄αβγδ the antisymmetrised two-partileinteration term, an be written as
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. (2)Above vαβ denotes the mean �eld potential. In this way the nulear Hamiltonian (2)has been divided into two parts
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) (5)is the residual interation. Thus, the mean �eld part (4) allows to treat, to �rst approx-imation, the strongly interating many-fermion system as a group of non-interatingfermions moving in a entral potential tαβ +1/4vαβ. By solving the Shrödinger equa-tion for the HamiltonianHMF one gets the single-partile basis, i.e. the orbitals wherethe nuleons move independently in the mean-�eld approximation. The labeling ofthese mean-�eld orbitals follows the onvention α = a,mα = na, la, ja, mα.The magnitude of the residual interation VRES is typially a lot smaller thanthe magnitude of the mean-�eld Hamiltonian HMF. This allows for a perturbativetreatment of the total nulear Hamiltonian H , where HMF is onsidered to be theunperturbated Hamiltonian and VRES a small perturbation. To obtain the optimal
HMF one has to minimize the residual interation VRES, whih leads to a self-onsistent3



mean �eld. However, for simpliity, it is ommon to take the mean-�eld potential tobe a harmoni osillator or Woods-Saxon potential.There are ways to obtain the residual interation VRES in a self-onsistent manner,e.g. by the Hartree-Fok sheme. There are also attempts to mimi it in approxima-tive, empirial ways. One example of the latter is the simple shemati surfae-deltainteration, whih gives reasonable results for nulear observables in many ases. Onean also treat all the single-partile energies and two-body interation matrix elementsas �tting parameters in order to reprodue ertain experimental data. The USD in-teration [1℄ is a typial example of a �tted interation. There are also interationswhih are derived from a meson-exhange piture of the nulear fore, like for examplethe Bonn one-boson-exhange potential [2℄.In order to reprodue the so-alled magi numbers observed in the shell strutureof nulei, it was found by Goeppert-Mayer [3℄ that one needs to add a strong spin-orbit term to the nulear Hamiltonian. This, together with the entral mean-�eldpotential, leads to a grouping of the single-partile levels to "shells". These shellsontain from one to several single-partile orbitals with small energy di�erenes in thesingle-partile energies as ompared to the energy width of the adjaent shell gaps.Due to this tendeny to form separate energy shells, the nulear-struture alulationsan be simpli�ed onsiderably. On many oasions it is enough to onsider only thosenuleons, whih oupy the valene shell(s). The ompletely �lled shells, below theative valene shells, an be treated as an inert ore, not partiipating in the nulear-struture alulations.2.1 The nulear shell modelAt the mean-�eld level valene nuleons are distributed to the single-partile orbitalsto form various possible on�gurations. Eah on�guration has its assoiated on�gu-ration energy whih is the sum of the single-partile energies of the oupied orbitals.The ground-state on�guration, where all the single-partile orbitals are oupied upto the proton and neutron Fermi energies, has the lowest on�guration energy. Theresidual interation mixes all the possible on�gurations thus produing the variousnulear states. Calulation of the e�ets of this many-nuleon on�guration mixing isthe task of the nulear shell model. Numeris of this task are treated by using varioustypes of shell-model omputer odes.Shell-model odes mainly work either in the m-sheme or j-sheme. In addition,there are also Monte-Carlo shell-model odes, whih are not disussed here. The m-sheme states have de�nite value for the z-omponent of the total angular momentum,but they are not states of good angular momentum. However, the eigenstates obtainedfrom the diagonalization of the Hamiltonian matrix do have the symmetries of thenulear Hamiltonian.The j-sheme states are angular-momentum projetions of the m-sheme states.The advantage of the j-sheme is the redution of the Hamiltonian matrix to a blok-4



diagonal form. Eah blok has its own de�nite angular momentum and an be diag-onalized separately. The disadvantage of the j-sheme lies in the projetion of the
j-sheme states, whih is time onsuming and sensitive to numerial rounding errors.The shell-model ode OXBASH [4℄, whih was used in our alulations, works ina mixed sheme. The Hamiltonian matrix is diagonalised in the j-sheme, but theresulting eigenvetors are written in the m-sheme basis.The alulation of the matrix element for a given one-body operator Oλ an bedone in the oupation-number representation. In this way the matrix element anbe expressed as a sum of single-partile transitions, weighted with terms oming fromthe many-partile nulear struture, i.e.
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||Ji) above represents the many-partile nulear struture andis alled one-body transition density. This part an be alulated by the shell-modelodes.The drawbak of the shell model is the fat that the number of possible on�gura-tions inreases ombinatorially as the number of available single-partile orbitals andthe number of valene nuleons inreases. This leads quite rapidly to huge memoryand CPU-time requirements. For this reason realisti shell-model alulations annot be applied to most of the medium-heavy and heavy nulei. Therefore, one hasto apply other methods for nulear-struture alulations of these nulei. One pop-ular alternative for the shell model is the quasipartile random-phase approximation(QRPA) and its variants.2.2 The BCS and pnQRPADue to the strong pairing interation in nulei, all of the nulei with even numberof protons and even number of neutrons have their ground-state spin and parity 0+.Pairing is also present in the eletron theory of superondutivity by Bardeen, Cooperand Shrie�er (BCS) and this theory an be applied to many-nuleon systems withsome modi�ations. Thus, the ground state of an even-even nuleus an be treated asa superonduting state where all the protons and neutrons have been paired to formzero-angular-momentum Cooper pairs.The BCS ground state |BCS〉 is a linear ombination of states with di�erent num-bers of nuleons. It an be written in the form
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∏
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|CORE〉 , (7)where the oe�ients va and ua represent oupation and unoupation numbers of astate a. Furthermore, |CORE〉 represents the inert ore of the disussed nuleus andit an be treated as an e�etive partile vauum, i.e. cα|CORE〉 = 0.5



The BCS quasipartile reation and annihilation operators an be derived by us-ing the Bogoliubov-Valatin transformation. In this transformation the quasipartileannihilation operator beomes
aα = uacα + vac̃

†
α , (8)and it annihilates, as it should, the BCS quasipartile vauum i.e. aα|BCS〉 = 0. Theorresponding quasipartile reation operator is by Hermitean onjugation

a†α = uac
†
α + vac̃α . (9)The requirement to satisfy the fermion antiommutation relation {a†α, aβ} = δαβ leadsto the ondition

u2
a + v2

a = 1 . (10)Condition (10) an also be viewed as a probability normalization thus leading to theinterpretation of va and ua as oupation and unoupation amplitudes.The nulear Hamiltonian of Eq. (1) an be written by using the quasipartileoperators. In this way the Hamiltonian an be ast in a form
Ĥ = H11 +H02 +H20 +H22 +H04 +H13 +H31 +H40 , (11)where eah term Hnm is proportional to the produt a†α1

a†α2
· · ·a†αn

aβ1
aβ2

· · ·aβm
. Herethe terms H11, H02 and H20 an be assoiated to a quasipartile mean �eld withquasipartile energies Ea. The rest of the terms represent residual interations amongthe quasipartiles. Numerial values of the oupation and unoupation amplitudes

va and ua and the quasipartile energies Ea an be alulated by using a variationalproedure. The variation is performed separately for protons and neutrons.As mentioned, the BCS vauum desribes the ground state of an even-even nuleus.In order to desribe the exited states, or states of an odd-odd nuleus, one needs tobuild two-quasipartile exitations. The proton-neutron QRPA (pnQRPA) theory,introdued by Hableib and Sorensen [5℄, desribes the states of an odd-odd nuleusas proton-neutron quasipartile exitations built atop of the QRPA vauum. Theseproton-neutron quasipartile exitations, oupled to good angular momentum J andits z-projetion M , an be written as [6, 7℄
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. (12)The one-phonon ansatz of the pnQRPA an be written by using the above de�nedtwo-quasipartile operators and it has the form
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, (13)where Xpn (Ypn) is the so alled forward- (bakward-) going amplitude. Magnitudes ofthe bakward-going amplitudes Ypn are a good measure of the amount of the pnQRPAground-state orrelations. 6



The pnQRPA equations of motion have the general form
(

A B
B A

)(

X
Y

)

= Ω

(

1 0
0 −1

)(

X
Y

)

. (14)The states of the double-odd nuleus an be obtained by solving the non-Hermitianeigenvalue problem desribed by Eq. (14). The sub-matries A and B of Eq. (14) arede�ned as follows
Apnp′n′ = δpp′δnn′(Ep + En) − 2gppG(pnp′n′, J)(upunup′un′ + vpvnvp′vn′)

−2gphF (pnp′n′, J)(upunvp′vn′ + vpvnup′un′) (15)
Bpnp′n′ = 2gppG(pnp′n′, J)(upunvp′vn′ + vpvnup′un′)

−2gphF (pnp′n′, J)(upvnvp′un′ + vpunup′vn′) , (16)where Ep and En are the proton and neutron quasipartile energies. Furthermore,
G(pnp′n′, J) and F (pnp′n′, J) are the two-body partile-partile and partile-hole in-teration matrix elements de�ned by Baranger [8℄.The oe�ients gpp and gph are saling fators for the partile-partile and partile-hole interation strengths. The parameter gph is usually adjusted by the empirial dataon the energy of the Gamow-Teller giant resonane exitation. The oe�ient gpp,however, is often left as a free parameter of the theory. As a matter of fat, the sub-matrix A in Eq. (14) is the pnQTDA matrix, whih appears in a more simple theoryalled the proton-neutron quasipartile Tamm-Dano� approximation. The pnQTDAtheory does not take into aount the orrelations of the ground state.The β− and β+ type of deay amplitudes between a Jπ pnQRPA one-phonon stateand the pnQRPA ground state an be expressed as [7℄
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∑
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∑
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3 Weak interationIn the �rst beta-deay experiments it was found that the outgoing eletron has aontinuous energy distribution instead of a �xed value of energy. This seemed to goagainst the onservation of energy. Moreover, beta deay also seemed to violate theonservation of angular momentum. In order to onserve these quantities WolfgangPauli suggested that there should be also another partile emitted in the beta de-ay � the neutrino. The neutrino was assumed to be neutral, massless and weaklyinterating. This lead Enrio Fermi to formulate his theory of beta deay [9℄.The Fermi theory of beta deay was applied broadly to many phenomena. Besidesthe beta deay of atomi nulei, it was used to desribe phenomena suh as the deay ofa muon and several other partiles, muon apture of the atomi nuleus, et. However,the drawbak of the Fermi theory lies in the fat that it assumes the interation tobe point-like. This leads to ultraviolet divergenes and therefore Fermi theory is notrenormalizable.The piture of the weak interation got more aurate by the introdution of theeletro-weak interation of the standard model [10℄. In the standard model there arethree generations of leptons and quarks and, thus, three di�ered kinds of neutrino.The neutrinos of the standard model are assumed to be massless Dira partiles, i.e.the antineutrino is not the same partile as the neutrino. Furthermore, the standardmodel also assumes lepton-number onservation for eah generation separately.Reent neutrino-osillation experiments [11, 12, 13, 14℄ have revealed that thestandard model's piture of the neutrinos is not su�ient. In these experiments ithas been observed that the �avour of a neutrino an hange due to �avour osillation.Moreover, the �avour osillation requires neutrino to have mass. Unfortunately, theneutrino-osillation experiments annot aess the absolute mass sale of the neutrino,only the mass di�erenes between the neutrino mass eigenstates. At the preset onlyupper limits of the neutrino mass have been determined. The determination hasbeen done by osmologial observations [15℄ or by kinematial analysis of the eletronspetrum in beta deay [16℄. In addition to the unknown mass of the neutrino, thequestion of neutrino being either a Dira or Majorana type of partile is still open.However, the neutrinoless double beta deay an answer both of these questions.The double beta deay is one of the slowest proesses in nature. It an ourin nulei with even numbers of protons and neutrons. Due to the nulear short-range pairing fores, the binding energy of a double-odd nuleus may be smallerthan the binding energy of its double-even isobari neighbour nulei. In this kindof situation it is possible that the ordinary beta deay of some double-even nulei,not loated at the bottom of the valley of beta stability, is energetially forbidden.In some ases the ordinary beta deay is energetially possible but highly forbiddendue to the large di�erene in angular momentum between the mother and daughterstates. Nevertheless, in this kind of situation the nulear double beta deay allows adouble-even nuleus to deay diretly to states of lower energy in the neighbouring8



double-even isobari nuleus. This is illustrated in Fig. 1, where the isobars A = 136have been hosen as examples. As an be seen, 136Xe annot deay via ordinary betadeay. The situation is also the same for 136Ce. However, both of these nulei andisintegrate via the double beta deay.
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Figure 1: Mass exess of the A = 136 isobars as a funtion of the proton number Z.The dashed arrows represent beta deays and the thik arrows represent double betadeays.There exist two di�erent modes of double beta deay. The �rst mode, two-neutrinodouble beta (2νββ) deay, onserves the lepton number and, therefore, is allowed inthe standard model's framework. Thus, as the name indiates, the �nal state of the
2νββ deay ontains two neutrinos. The 2νββ deay was �rst predited by MariaGoeppert-Mayer in 1935 [17℄. The 2νββ deay has been experimentally observed inseveral nulei, and the shortest observed half-lives are of the order of 1019 y [18℄.In ontrast to the 2νββ deay, the neutrinoless double beta (0νββ) deay violatesthe onservation laws of the standard model. As the name indiates, there are noneutrinos in the �nal state and therefore the lepton-number onservation is violated by
∆L = 2. The existene of the 0νββ deay was �rst proposed by Furry in 1939 [19℄. The
0νββ deay allows the aess to the mass sale of the neutrino. This is due to the fatthat the inverse of the 0νββ half-life is proportional to the seond power of the e�etive9



mass 〈mν〉 of the neutrino. Moreover, aording to the Shehter-Valle theorem [20℄,the existene of the 0νββ deay implies that the neutrino is a Majorana partile withnon-zero mass. To extrat the e�etive neutrino mass from the experiments, one needsinformation about the involved nulear matrix elements [7℄. The absolute neutrinomass an be obtained from the e�etive mass by using the available information aboutthe neutrino mixing [21℄ and CP phases. There even exists a laim that the 0νββ deayhas been observed in 76Ge with a half-life of T1/2 = (1.19+0.37
−0.23) × 1025 y [22℄, leadingto an e�etive neutrino mass of 〈mν〉 = 0.2 − 0.6 eV. This result is, however, underdebate [23, 24℄. The next-generation double-beta-deay experiments will probablyshed light on this issue.The �rst attempts for nulear-struture alulations of double-beta-deay ratesmostly onentrate on using the nulear shell model as a starting point. Unfortu-nately, due to the fat that the ββ-deaying nulei are medium-heavy or heavy nulei,severe trunations of the on�guration spae, or the use of the weak oupling limit,are needed. For this reason, other methods have been used, the pnQRPA and itsvariants being the most popular ones. However, as mentioned earlier in setion 2.2the disadvantage of the pnQRPA theory lies in the somewhat unertain value of thepartile-partile interation strength parameter gpp. The parameter gpp has strongin�uene on theoretial preditions of the nulear struture and, therefore, on thealulated half-lives of the ββ-deay.In the theoretial desription of the double beta deay the transitions proeed viathe states of the intermediate nuleus. In the ase of the 2νββ deay only the 1+ statesof the intermediate nuleus are ative, whereas in the ase of the 0νββ deay, all the

Jπ states of the intermediate nuleus are ative. A reliable theoretial desription ofthe struture of these states is essential in theoretial alulations. As mentioned, the
gpp parameter plays a ruial role in the ββ-deay rate alulations.In some works [7, 25℄ the values of the gpp parameter of the ββ-deay alulationshave been adjusted by using the available data on the beta-deay or eletron-apturetransitions. These transitions run from the intermediate nuleus to the �nal or ini-tial state of the orresponding ββ deay. Unfortunately, this information is usuallyavailable only for one state, typially the ground state of the intermediate nuleus.Reently, it has been suggested to use the experimental data on the 2νββ deay half-lives to obtain the nulear matrix elements involved in the orresponding 0νββ deays[26℄. However, there are some pitfalls in this method, as pointed out in [27℄. It hasalso been proposed that one ould use harged-urrent neutrino-nuleus interationsas a probe of the virtual transitions involved in the 0νββ deay [28℄. Unfortunately,due to the extremely small ross setion of the neutrino-nuleus harged-urrent re-ation, the experimental setup would require neutrino-beam intensities whih annotbe ahieved at the present.One method to study the struture of the states of the intermediate nuleus ofdouble beta deay is to perform muon-apture experiments. The ordinary muonapture (OMC) proess allows to study one leg of the virtual transitions involved in10
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Figure 2: A shemati illustration of the onnetion between the ββ-deay andordinary muon apture. In the 2νββ deay the transition proeeds via the 1+ states ofthe intermediate nuleus (solid lines), whereas in the 0νββ deay all the intermediatestates are ative (solid and dashed lines).double beta deays. This is demonstrated in Fig. 2, where the ββ deay of 76Gehas been taken as an example. By measuring the OMC rates in transitions fromthe ground state of 76Se to the states of 76As one ould gain information about thestruture of these states. In spite of the fat that the OMC probes only one of the twobranhes involved in double beta deay, it an provide a lot of valuable informationwhih an be used in ββ-deay alulations. Due to the large mass of the muon,about 100 MeV, the �nal state of the OMC an be highly exited. Therefore, inpriniple, it is possible to study all the relevant intermediate states of double betadeay. Moreover, another onsequene of the large mass of the muon is the fat thatforbidden transitions are not as suppressed as in the ase of the eletron apture orbeta deay. As a matter of fat, transition rates to some of the 2− states an evenbe higher than transition rates to 1+ states. This allows to study also intermediatestates with spin and parity other than 1+. These states are potentially relevant in the
0νββ deay [29℄. 11



3.1 Ordinary muon aptureWhen a negative muon is stopped in matter, in the outer shells of atoms, it undergoesseveral eletromagneti transitions to lower atomi orbitals, aompanied by emissionof muoni X-rays. Energies of these X-rays an reah up to an order of MeV in heaviernulei. Finally, the muon ends up into the K atomi orbit. As a result, it is possiblethat the muon is aptured by a nuleus in a proess µ− +(A,Z) → νµ +(A,Z− 1)(∗),where the asterisk denotes the possibility that the �nal nulear state an be an exitedstate. The OMC ompetes with the deay of the muon. In addition to the OMC thereexist also other proesses in muoni atoms. In the radiative muon apture the �nalstate also ontains a gamma-ray. Also, in the ase of some heavy nulei the muonapture an lead to �ssion of the �nal nuleus.There exists a phenomenologial estimate by Primako� to the total muon apturerate Wtot:
Wtot = Z4

effX1

[

1 −X2

(

A− Z

2A

)]

, (19)where Zeff is the e�etive harge of the nuleus [30℄. Furthermore, the oe�ients Xnan be �tted to the experimental data giving the values X1 = 170 s−1 and X2 = 3.125.However, this approah is not fruitful from the nulear-struture point of view sinewe need information on apture to individual nulear states. In [31℄ the authorsalulated the total muon apture rates in the RPA basis and obtained results similarto the ones oming from eq. (19). Aording to their alulations the RPA formalismreprodues total OMC rates quite reliably.The formalism needed for the alulation of the OMC rate was developed by Moritaand Fujii in Ref. [32℄. In their work they started from the most general Hamiltoniandensity
H = ψ̄nHψp , (20)with

√
2H = γλCV

[

ψ̄νγλψµ + ψ̄νγλγ
5ψµ

]

−γλγ5CA

[

ψ̄νγλψµ + ψ̄νγλγ
5ψµ

]

+γ5CP

[

ψ̄νγ
5ψµ − ψ̄νψµ

]

+σλρCM

[

pρ(ψ̄νiγλψµ) + pρ(ψ̄νiγλγ
5ψµ)

]

, (21)where σλρ = 1
2

[

γλγρ − γργλ
] and pρ = (i∂/∂t , i∇). However, due to the fat that theweak magnetism oupling onstant is proportional to the vetor oupling onstant,

CM = CV [µp − µn]/2M ≈ 3.706CV /2M , there are atually only three independentoupling onstants, namely CV , CA, and CP .In the shell-model alulations of beta-deay rates the oupling onstants CV and
CA are also present. In these alulations a typial value adopted for the ratio of thevetor oupling onstant and the axial-vetor oupling onstant is CA/CV = −1.0,12



instead of the bare nuleon value CA/CV ≈ −1.25 [33, 34℄. In the present work theratio CA/CV = −1.0 has been used for the OMC alulations.The value of the pseudosalar oupling onstant is �xed by the partially onservedaxial-vetor urrent (PCAC) hypothesis, giving rise to a nulear-model independentestimate CP/CA ≈ 7 (see e.g. [35℄). However, the value of the pseudosalar ouplingonstant may need to be renormalized in the nulear medium, like in the ase of theaxial-vetor oupling onstant.The transition rate for the OMC an be derived from the Hamiltonian densityof Eq. (20) [32℄. The derivation is done by making the standard non-relativisti re-dution of the nuleon operators. The lepton part is kept relativisti and the smallomponent of the muon bound state wave funtion has been set to zero. This approx-imation is valid sine in our alulated ases (αZ)2 ≪ 1, where α is the �ne-strutureonstant. The e�et of the small omponent is of the order of a few perent [36℄.By performing a summation over all magneti quantum numbers and integratingover the neutrino momentum one ends up with following expression for the transitionrate
W = 4P (αZm′

µ)
3 2Jf + 1

2Ji + 1

(

1 − q

mµ + AM

)

q2, (22)with
q = (mµ −W0)

(

1 − mµ −W0

2(MF +mµ)

) (23)and A being the mass number of the initial and �nal nulei, Z the harge numberof the initial nuleus, and m′
µ the redued muon mass. Furthermore, M denotes theaverage nuleon mass and W0 = MF −MI +me + Ex, with MF and MI denoting the�nal and initial atomi masses. The quantity P in Eq. (22) ontains all the nulear-physis aspets of the reation, in partiular it ontains the redued nulear matrixelements M[kwu]. De�nition of the term P an be found e.g. in Refs. [32, V℄. Theterm (αZm′

µ)
3 in eq. (22) omes from the amplitude of the muon wave funtion atthe origin in the nonrelativisti ase. The e�et of the relativisti orretions in thisterm are of the order of few per ent or less in our alulated ases, as dedued fromthe expressions of [32℄. The redued matrix elements are de�ned as follows

∫

UJfMf

A
∑

s=1

e−αZm′

µrsΨsτ
s
−UJiMi

dr1 . . . drA

= M[kwu

(±
p

)

](JiMi uMf −Mi|Jf Mf) , (24)where UJfMf
and UJiMi

are the �nal and initial nulear wave funtions, respetively.The fator Ψs is de�ned in Table 1. The quantity YM
kwu in Table 1 is the vetor13



spherial harmoni and it is de�ned as
YM

0wu ≡ (4π)−1/2Y M
w (r̂) , (25)

YM
1wu ≡

∑

m

(1 −mwm+M |uM)Y m+M
w (r̂)

√

3

4π
σ−m . (26)

Table 1: De�nition of the redued matrix elements for the muon apture.Matrix element Ψs

M[0wu] jw(qrs)YMf−Mi

0wu (r̂s)δwu

M[1wu] jw(qrs)YMf−Mi

1wu (r̂s, σs)

M[0wu±]
[

jw(qrs)±αZ(m′
µ/pν)jw∓1(qrs)

]

YMf−Mi

0wu (r̂s)δwu

M[1wu±]
[

jw(qrs)±αZ(m′
µ/pν)jw∓1(qrs)

]

YMf−Mi

1wu (r̂s, σs)

M[0wup] ijw(qrs)YMf−Mi

0wu σs · psδwu

M[1wup] ijw(qrs)YMf−Mi

1wu (r̂s,ps)The large momentum exhange in the muon-apture proess, as ompared to thebeta-deay or eletron apture, emphasizes the role of the radial part of the nulearwave funtion. As seen in Table 1, the muon-apture matrix elements ontain thespherial Bessel funtion jw(qr), emerging from the Fourier-Bessel expansion of the�nal-state lepton wave funtion. The strong osillations of the Bessel funtion inter-fere with the radial part of the mean-�eld single-partile wave funtion. Therefore,the shape of the mean-�eld potential may have a signi�ant impat on the alulatedsingle-partile transition matrix elements. Typially the muon apture matrix ele-ments have been alulated in the harmoni-osillator single-partile basis. However,the realisti single-partile potential resembles more the Woods-Saxon potential thanthe harmoni-osillator potential. The Woods-Saxon potential an produe notieablee�ets on the alulated half-life when ompared to the one alulated by using theharmoni-osillator basis [I℄.3.2 Two-neutrino double beta deayThe two-neutrino double beta deay proeeds as virtual transitions via the 1+ statesof the intermediate nuleus. The expression for the inverse half-life in the ase of atransition to the ground state of the �nal nuleus an be fatorized as
[t

(2ν)
1/2 (0+

i → 0+
f )]

−1
= G

(2ν)
DGT |M (2ν)

DGT |
2
, (27)14



where G(2ν)
DGT is an integral over the phase spae of the leptoni variables [7, 37℄. Thenulear matrix element M (2ν)

DGT, orresponding to the 2νββ deay, an be written as
M

(2ν)
DGT =

∑

n

(0+
f ||

∑

j σ(j)t∓j || 1+
n )(1+

n ||
∑

j σ(j)t∓j || 0+
i )

(1
2
Qββ + En −Mi)/me + 1

, (28)where the transition operators are the usual Gamow-Teller type of operators for the β∓transitions, Qββ is the 2νββ-deay Q value, En is the energy of the nth intermediatestate, Mi is the mass energy of the initial nuleus, and me is the rest-mass energyof the eletron. Contributions from the Fermi transitions an be negleted [7℄. Theexpression for the half-life in the ase of transitions to the exited states of the �nalnuleus is more omplex and an be found in [7℄.One ould also onsider ontributions oming from the �rst-forbidden transitionsto the 2νββ deay rate. These transitions proeed via the 0−, 1− and 2− states ofthe intermediate nulei. In Ref. [38℄ the authors found notable ontributions to thenulear matrix elements from the 0− and 1− hannels. However, it has been shownthat due to the suppression of the assoiated phase-spae integrals these hannels anbe negleted [39℄. In typial ases this suppression is of the order of 10−6 for the�rst-forbidden hannel and stronger for the higher forbidden hannels. It has to bementioned that in the ase of the neutrinoless double beta deay the intermediatestates other than 1+ have a non-negligible ontribution to the total half-life.3.3 Neutrinoless double-beta-deayThe most general e�etive weak-interation Hamiltonian density, relevant for hargedweak urrents, an be written as [7, 37℄
hW =

GF cos θC√
2

(

jLµJ
µ†
L + κjLµJ

µ†
R + ηjRµJ

µ†
L + λjRµJ

µ†
R

)

+ h.c., (29)where GF is the Fermi oupling onstant and θC is the mixing angle of the Cabibbo-Kobayashi-Maskawa mehanism for mixing quark �avours. The left- and right-handedleptoni urrents are given as follows
jLµ = ēγµ (1 − γ5) νe,L , (30)
jRµ = ēγµ (1 + γ5) ν

′
e,R , (31)where the weak eigenstates of the neutrino are given in terms of the neutrino masseigenstates NjL/R as

νe,L =

2Ng
∑

j=1

UejNjL , (32)
ν ′e,R =

2Ng
∑

j=1

VejNjR , (33)15



where Ng is the number of the neutrino generations. The U and V matries are themixing matries between the weak eigenstates and mass eigenstates of the neutrino.The summations in Eqs. (32) and (33) run to 2Ng due to the fat that the Majorana-neutrino �eld NL/R ontains the left- and right-handed neutrino �elds. The hadroniurrent of Eq. (29) an be written at quark level as
Jµ†

L/R = ūγµ (1 ∓ γ5) d . (34)By assuming the neutrino mass mehanism to be the dominant one in the 0νββdeay (i.e. the right-handed urrents are negleted) one an write as a good approxi-mation the inverse of the half-life as
[

t
(0ν)
1/2

]−1

= G
(0ν)
1

(〈mν〉
me

)2
(

M
(0ν)
GT −

(

gV

gA

)2

M
(0ν)
F

)2

, (35)where me is the mass of the eletron and
〈mν〉 =

∑

j

λCP
j mj |Uej |2 (36)is the e�etive mass of the neutrino, λCP

j being the CP phase. Furthermore, thequantity G
(0ν)
1 of Eq. (35) is the leptoni phase-spae fator de�ned in [7℄. Thedouble Gamow-Teller and double Fermi nulear matrix-elements, whih appear in theexpression of the 0νββ half-life, are de�ned as follows:

M
(0ν)
F =

∑

a

(0+
f ||h+(rmn, Ea)||0+

i ) , (37)
M

(0ν)
GT =

∑

a

(0+
f ||h+(rmn, Ea)σm · σn||0+

i ) . (38)Here summation over a runs over all the intermediate states. The de�nition of theneutrino potential h+(rmn, Ea) an be found in Refs. [7, 37℄.3.4 The OMC as a probe of double beta deayAs mentioned, the OMC an be used to probe the struture of the states of theintermediate nuleus involved in the double-beta-deay transition. The used two-body interation, in partiular the value of the parameter gpp in the ase of thepnQRPA, strongly a�ets the wave funtions of the intermediate nuleus. This, inturn, re�ets on the one-body transition densities from the initial and �nal statesto the intermediate states of double beta deay. These transition densities are alsopresent in the alulation of the OMC rates to the intermediate states. Thus, byomparing the alulated OMC rates to the experimental ones, one an estimate thereliability of the nulear matrix elements involved in the double beta deay. It is16



worth pointing out that there exists a rather diret bridge between the 2νββ deayand the OMC. At the limit q, Z → 0 for the OMC matrix element it follows that
M[101] → J−1

f

√
3

4π
MGT , (39)whereMGT is the redued Gamow-Teller matrix element appearing in the double-beta-deay nulear matrix element M (2ν)

DGT of Eq. (28). For the 0νββ deay the situation ismore ompliated. The alulation of the matrix elements M (0ν)
F and M (0ν)

GT involvesone-body transition densities for all multipoles in both virtual legs.There are, however, some drawbaks in the use of the OMC to probe the strutureof the states of the ββ-deay intermediate nuleus. Firstly, the OMC probes only oneof the two legs of a double-beta-deay transition. Seondly, due to the important roleof the indued hadroni urrents in the OMC, extration of the relevant informationabout the matrix elements from the experimental results is more ompliated. Lastly,in the nulear medium the value of the pseudosalar oupling onstant may need tobe renormalised from the value given by the PCAC hypothesis. Nevertheless, theOMC o�ers a versatile tool to study the struture of the intermediate nuleus. Inontrast to the beta-deay data, the OMC an be used to study also the exited statesof the intermediate nuleus. Moreover, the forbidden transitions in the OMC arenot as suppressed as in the ase of the beta deay. This allows to study also theintermediate states whih are relevant for the 0νββ deay.

17



4 Calulations4.1 Nulear-struture alulationsIn the ase of the light nulei, the studied double-beta-deaying isobars were A =
36, 46, 48, 50. The struture of these nulei was alulated by using the shell-modelode OXBASH. The used interations in the ase of the sd-shell A = 36 isobars werethe USD [1℄ and SDPOTA [40℄. For the fp-shell isobars A = 46, A = 48 and A = 50the interations used were the FPBP [41℄ and FPMCC [42℄. The struture of the
A = 46 isobars was alulated in the full fp model spae, with no restritions in thenumber of on�gurations. Also for the A = 48 isobars the 2νββ rate alulationswere done in the full fp-spae. In the ase of the A = 50 nulei the JT -dimensionshad to be redued heavily due to omputational limits. The trunation was done byrequiring the minimum partile oupany in the f7/2 orbital to be 8.The struture for the medium-heavy nulei was alulated by using the pnQRPAtheory. In the numerial omputations the proton model spae was taken to be 1p-0f-2s-1d-0g-0h11/2. On the neutron side the used model spae for 76Se was the sameas on the proton side, and in the ase of 106Cd the used model spae for neutronswas taken to onsist of the 1p-0f-2s-1d-0g-2p-1f-0h shells. The orresponding single-partile energies were obtained from the Woods-Saxon well with its parametrizationtaken from Ref. [43℄.The nulear Hamiltonian for the pnQRPA alulations was obtained from theBonn one-boson-exhange potential [2℄, omplemented with an empirial renormal-ization based on phenomenologial pairing gaps, the giant Gamow-Teller resonaneand spetrosopi data on nulei lose to the relevant isobars. The proton-neutronpartile-partile interation strength was saled by the parameter gpp whih an beused as a free parameter.4.2 Results for light nuleiTo begin with, the alulated partial OMC rates to the 1+ states of the �nal nuleus,as funtions of the exitation energy of the �nal state, are presented in Fig 3. Theseresults are alulated in the harmoni-osillators single-partile basis. The value forthe axial-vetor oupling onstant was taken to be gA = −1 in all our alulations.Furthermore, the ratio gP/gA = 7 was used for the pseudo-salar oupling onstant.As an be seen, the strongest transition rates an be found among the few lowest 1+states for the ase of 36Ar, 46Ti, and 48Ti. However, in the ase of 50Cr, the transitionrates are more di�used to the higher exited states.The alulated OMC results an be ompared with the ones alulated in theWoods-Saxon single-partile basis. The parametrization for the Woods-Saxon single-partile potential was taken from [43℄. In Table 2 the alulated OMC transitionrates to the 1+ states of 46S and 48S are listed for both the harmoni-osillator and18



Woods-Saxon ases. As an be seen, the transition rates for the di�erent bases arenot far from eah other, exept for some sattered ases.In Table 3 the alulated 2νββ rates for 36Ar, 46Ca, 48Ca, and 50Cr are listed. Inthese alulations the value gA = −1.0 for the axial-vetor oupling onstant has beenadopted. In the ase of the 2νββ deay of 48Ca the alulated result an be omparedwith the available experimental one. The experimental result for the 2νββ deay of
48Ca is t(2ν)

1/2 (0+
i → 0+

f ) = 4.2+3.3
−1.3 × 1019 y [44℄. By evaluating the phase-spae integral

G
(2ν)
DGT, the experimental value for the 2νββ nulear matrix element an be obtained.Using gA = −1.0, one then obtains M (2ν)

DGT(exp) = 0.038+0.008
−0.009. In the ase of the 2νββdeay of 50Cr there exist an experimental limit t1/2 > 1.3 × 1018 y for the half-life ofthe β+EC mode [45℄.By omparing the experimental value of the 2νββ-deay matrix element of 48Ca tothe alulated one, it an be seen that the used interation tends to overestimate thevalue of the matrix element. The orresponding umulative sum of the 2νββ-deaymatrix element, plotted in Fig. 4, indiates that a few lowest intermediate states givethe biggest ontribution to the total matrix element. This is partly explained by theenergy denominator suppressing the ontribution of the higher-lying states. Anotherreason is that the absolute value of the produt of the two GT matrix elements inEq. (28) is muh bigger for these low-lying states than for the other, higher-lying
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Figure 3: Calulated OMC rates to the 1+ states of the �nal nuleus as a funtionof the exitation energy for four di�erent initial nulei. The initial nuleus and theused interation are indiated in eah panel. The ratio gP/gA = 7 was adopted in thealulations. 19



Table 2: Calulated partial OMC transition rates for the Woods-Saxon (WS) andharmoni-osillator (h.o.) single-partile bases using the FPBP interation. The ratio
gP/gA = 7 with gA = −1.0 has been adopted.W [103 1/s℄ W [103 1/s℄Parent Jπ

f h.o. WS Parent Jπ
f h.o. WS

46Ti 1+
1 2.032 3.433 48Ti 1+

1 6.310 6.261
1+

2 15.123 12.538 1+
2 16.366 12.029

1+
3 1.780 1.754 1+

3 13.000 11.158
1+

4 1.028 0.441 1+
4 0.080 0.074
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Figure 4: Calulated umulative sum of the matrix element M (2ν)
DGT of Eq. (28) asa funtion of the exitation energy of the intermediate state. The 2νββ deayingnuleus and the used interation are indiated in eah panel.Table 3: Calulated DGT matrix elements, Q-values in units of the eletron mass(T = Q/me), phase-spae fators in units of inverse years, and the orrespondinghalf-lives in units of year for the onsidered double-beta transitions. The renormalizedvalue gA = −1.0 has been used in all ases.

46Ca 48Ca 36Ar 50CrFPBP FPBP USD (bare) FPBP
T (β−β−) 1.94 8.36 T (ECEC) 0.84 2.27

G2ν
DGT 4.8 × 10−23 1.6 × 10−17 G2ν

DGT 5.1 × 10−28 4.9 × 10−25

M2ν
DGT 0.108 0.058 M2ν

DGT 0.117 0.097
t1/2 1.7 × 1024 1.8 × 1019 t1/2 1.4 × 1029 2.1 × 1026states. The same reasoning applies also to 46Ca, depited in the left panel of Fig. 4.Comparison of Figs. 3 and 4 shows that the same intermediate states are relevant20



for the OMC and 2νββ deay. Therefore, measurements of the partial OMC rates tothese low-lying states of the intermediate nuleus ould give some valuable informationabout the involved nulear struture. This information is also useful in the ase ofthe 0νββ-deay rate alulations.4.3 Medium heavy nuleiIn the ase of the medium heavy nulei the OMC rates were alulated for the nulei
76Se, 82Kr, 100Ru, 106Cd, 110Cd, 116Sn, 128Xe, and 136Ce. The OMC on these nuleileads to the odd-odd nulei 76As, 82Br, 100T, 106Ag, 110Ag, 116In, 128I, and 136La,whih are involved as providing intermediate states in the double beta deays of thenulei 76Ge, 82Se, 100Mo, 106Cd, 110Pd, 116Cd, 128Te, and 136Ce. Two of the deays,namely 106Cd → 106Ag and 136Ce → 136Ba, are β+β+ type of transitions, while therest are β−β− type of transitions. All of the hosen isobari triplets ontain low-lying
1+ or 2− states in the involved intermediate double-odd nuleus.Table 4: Total muon-apture rates to the 1+ or 2− states (olumn 6) in the transitionsof olumn 5. The ratio gP/gA = 7 was used. The gpp value of olumn 3 is hosensuh that the experimental log ft value [46℄ (olumn 2) an be roughly reprodued(olumn 4) in a spei� beta-deay transition (olumn 1).

log ft log ft WtotBeta deay (exp) gpp (th.) Muon apture [103 1/s℄
76As(1+

1 ) → 76Se(0+
g.s.) - 0.9 5.8 76Se → 76As(1+) 114

76As(2−g.s.) → 76Se(0+
g.s.) 9.7 1.0 8.7 76Se → 76As(2−) 1529

82Br(2−1 ) → 82Kr(0+
g.s.) 8.9 1.0 8.9 82Kr → 82Br(2−) 1497

100T(1+
g.s.) → 100Ru(0+

g.s.) 4.6 1.1 4.4 100Ru → 100T(1+) 3734
100T(2−1 ) → 100Ru(0+

g.s.) - 1.0 8.9 100Ru → 100T(2−) 1889
106Ag(1+

g.s.) → 106Cd(0+
g.s.) > 4.2 0.8 4.3 106Cd → 106Ag(1+) 4635

110Ag(1+
g.s.) → 110Cd(0+

g.s.) 4.7 0.9 4.7 110Cd → 110Ag(1+) 4650
110Ag(2−1 ) → 110Cd(0+

g.s.) - 1.0 9.2 110Cd → 110Ag(2−) 1635
116In(1+

g.s.) → 116Sn(0+
g.s.) 4.7 1.0 4.7 116Sn → 116In(1+) 5102

116In(2−1 ) → 116Sn(0+
g.s.) - 1.0 13.1 116Sn → 116In(2−) 1430

128I(1+
g.s.) → 128Xe(0+

g.s.) 6.1 1.0 6.3 128Xe → 128I(1+) 5835
128I(2−1 ) → 128Xe(0+

g.s.) - 1.0 9.4 128Xe → 128I(2−) 1270
136La(1+

g.s.) → 136Ce(0+
g.s.) - 1.0 8.2 136Ce → 136La(1+) 4423

136La(2−1 ) → 136Ce(0+
g.s.) - 1.0 9.7 136Ce → 136La(2−) 1383In Table 4 the alulated results for the total OMC rates to the 1+ and 2− �nalstates are presented. In these alulations the ratio gP/gA = 7 was used. The value ofthe parameter gpp has been hosen suh that the orresponding experimental log ft21



value an be roughly reprodued. As mentioned, the gpp strongly a�ets the alulatednulear struture, in partiular the wave funtion of the lowest 1+ state. This an beseen in Fig. 5, where the partial OMC rates to the 1+
1 states of several �nal nuleihave been plotted as funtions of gpp. The same shown gpp dependane an be foundin the 2νββ deay rates, and in fat the measured 2νββ half-lives an be reproduedby suitably hoosing the value of gpp [47℄Fig. 5 also illustrates the break-down of the pnQRPA theory at large values of the

gpp parameter. Due to the exessive growth of orrelations in the pnQRPA ground-state, the alulations produe unphysially large values for the apture rates. Thisbreak-down of the pnQRPA theory an also be seen in the ββ matrix elements atlarge values of gpp [47℄.
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Figure 5: Calulated OMC rates from the ground state of the indiated nulei to the
1+

1 states of the �nal nuleus as funtions of the partile-partile interation strengthparameter gpp. The ratio gP/gA = 7 has been used.In addition to the parameter gpp, there is also another parameter present in theapture rate alulations with somewhat unertain value, namely the pseudosalaroupling onstant gP. The apture rate W has a paraboli behavior as a funtion ofthe gP. Thus, when a experimental measurement of the partial apture rate is made, ittranslates to a ertain area in the gP and gpp parameter spaes. By measuring partialapture rates to few lowest states, the intersetion of the orresponding parameterspaes should hopefully beome small enough to yield a rather restrited value forthese parameters. 22



5 Disussion and onlusionsThe main fous of the present work is in the nulear-struture aspets of the OMCproess. Publiation [I℄ disusses the e�et of the mean-�eld parameters on the OMCobservables. The Publiations [II-VI℄ onentrate on the use of the OMC as a probeof virtual transitions of double beta deays. Due to the fat that the struture ofthe intermediate states of double beta deay has a strong impat on the alulatedvalues of the matrix elements, for both 2νββ and 0νββ deays, one needs a methodto evaluate the reliability of the used nulear model. Publiations [II-VI℄ demonstratehow to use the OMC to probe one branh of the ββ transition. The nulear modelsemployed in the OMC rate alulations of the present work are the nulear shell-modeland the pnQRPA. These two models are also the ones most used in ββ alulations.In Publiation [I℄ the e�et of the nulear mean �eld on the muon apture observ-ables was studied. Due to the interferene of the osillating Bessel funtion jw(qr)and the single-partile wave funtion the shape of the mean �eld potential has animpat on the alulated OMC matrix elements. The alulated results of the OMCrates in the harmoni-osillator and Woods-Saxon single-partile bases did show somedi�erenes. However, di�erenes were usually small and never signi�ant. The samewas also pointed out in Publiation [VI℄ in the ase of the OMC of 46Ti and 48Ti.Also, the results for the angular orrelation parameter x in [I℄ were found to be quitesimilar in both single-partile bases.Although the alulated values of the OMC rates depend on the used interation,it was found in [V℄ that in the ase of the A = 36 isobars it there were no largedi�erenes between the USD and SDPOTA interations in the total apture rates to
1+ states. This happened even though the transition rates to the individual statesdi�ered. The same kind of phenomenon was also noted in the 2νββ-deay matrixelement of 36Ar. The value of the total matrix element M (2ν)

DGT was quite similar inboth ases, although there were some di�erenes in the shape of the umulative sum.In the alulations of the fp-shell nulei it was found that in the OMC of 46Tiand 48Ti the biggest transition rates were among the transitions to the few lowest
1+ �nal states. These states were also important in the 2νββ deay. The OMC ratealulations of Publiation [V℄ indeed indiate some di�erenes between the FPBPand FPMCC interations. The OMC rates for 46Ti and 48Ti were also alulatedin [V℄ with di�erent values of the pseudosalar oupling onstant gP. These alu-lations indiate surprisingly small dependene on gP in many ases. This helps thenulear-struture analysis, when the alulated partial OMC rates are ompared tothe experimental ones. The �rst experiments on the OMC of 48Ti have been per-formed at the PSI [48℄. Conerning the OMC of 50Cr it was found that the apturesfavour more the higher energy 1+ �nal states than in the other alulated ases. Itwas also noted that the partial OMC rates did not wary muh as funtions of gP.A number of 2νββ rates were alulated in [V℄. In addition to the results quotedin the previous setion, the shape of the alulated umulative sum of the matrix23



element M (2ν)
DGT was studied also for 48Ca. It was found that the strong transitionsthrough few low-lying 1+ states were mainly transition involving the 0f7/2 orbital.Contributions of transitions through the higher-lying 1+ states typially dereased thevalue of the total matrix element. The involved single-partile transitions were mainly

0f7/2 → 0f5/2 → 0f7/2. This same behaviour was seen for both the FPBP and FPMCCinterations. In Publiation [IV℄ it was noted that FPBP and FPMCC interationsprodue quite similar values for the total 2νββ deay matrix element. However, theshape of the umulative sum had di�erenes. Nevertheless, the ommon feature for allthe alulated ases of 2νββ deay of 46Ca and 48Ca was that the transitions througha few lowest 1+ states dominated the total matrix element. This was also displayedin Publiations [IV, V℄ in the plot of the produt of the two Gamow-Teller matrixelements of Eq. (28) as a funtion of the exitation energy of the intermediate state.For 50Cr it was pointed out in [V℄ that the experimental limit of [45℄ was far from thealulated value of the half-life.In the ase of the heavier nulei the individual OMC rates had a strong depen-dene on the partile-partile interation strength parameter gpp, as an be seen inPubliation [III℄. However, the strong dependene on gpp tends to vanish when thepartial apture rates are summed up to the total apture rates to the 1+ or 2− states.In [III℄ the involved matrix elements of the OMC were analyzed. It was found thatthe matrix element M[101], involved in transitions to the 1+ states, is typially moresensitive to gpp than the matrix elementM[112], whih appear in transitions to the 2−states. This also re�ets in the partial apture rates. The break-down of the pnQRPAat large values of gpp was also seen in some matrix elements. It was found that thepartial and total OMC rates learly depend on the pseudosalar oupling onstant
gP. Thus, there are atually two relevant parameters in the alulations. The log ftvalues of β deays of the intermediate nulei to the ground states of the �nal or initialnulei of double beta deay were disussed in [III℄. In many ases the experimental
log ft value was unknown.In onlusion, the formalism of the OMC has been presented and its onnetionto the double beta deay explored. It has been shown that the partial OMC ratesan be used to probe the intermediate states of double beta deay. Furthermore,results on the partial OMC rates have been presented for several nulei. The nulearstruture for the light nulei was handled with the nulear shell model. In the ase ofthe heavier nulei the pnQRPA was used for the nulear-struture alulations. Forthe lighter nulei it was found that 1+ states with large OMC transition rate were alsothe ones whih gave the dominant ontributions for the 2νββ deay. The e�et of themean �eld on the OMC rates was also disussed. For 48Ca the alulated 2νββ-deayrates were ompared to the experiment. In the ase of the heavier nulei, strongdependene of the OMC rates on the partile-partile interation strength parameter
gpp was found. Also, the role of the pseudosalar oupling onstant gP was disussed.
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