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Abstra
tThe ordinary muon 
apture (OMC) is suggested to be used as a probing tool in orderto gain information about the stru
ture of the intermediate nu
lear states involvedin the double beta (ββ) de
ay. It has been demonstrated that the nu
lear-stru
tureaspe
ts in the ββ-de
ay 
al
ulations 
an be �ne tuned by the information gained fromthe measurements of the partial OMC rates from the ground state of the initial or�nal nu
leus to the intermediate states within a ββ de
ay 
hain. It has been foundthat the 
al
ulated OMC observables as well as the two-neutrino double beta (2νββ)amplitudes depend strongly on the involved nu
lear stru
ture.In nu
lear-stru
ture 
al
ulations both the nu
lear shell model (SM) and the proton-neutron quasiparti
le random-phase approximation (pnQRPA) have been employed.For the light nu
lei the SM 
al
ulations indi
ate that the states with biggest OMCrates are also the most relevant ones in the 2νββ de
ay. The e�e
t of the mean �eldon the OMC rates is also studied. The stru
ture of heavier nu
lei was 
al
ulated byusing the pnQRPA. The pnQRPA 
al
ulations involve the parti
le-parti
le intera
-tions strength parameter gpp. It was found that gpp a�e
ts strongly the 
al
ulatedOMC rates. The role of the indu
ed pseudos
alar 
urrent and its 
oupling 
onstant
gP in the OMC is also dis
ussed.
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1 Introdu
tionThe atomi
 nu
leus is a many-body system where three of the four fundamental in-tera
tions play an important role. This feature makes the nu
leus an interesting and
hallenging subje
t of study. The two strongest intera
tions � nu
lear and ele
tromag-neti
 � are responsible for nu
lear stru
ture, while the e�e
t of the weak intera
tion
an be seen in radioa
tive de
ays of nu
lei. The fourth intera
tion, gravitation, isknown to play a negligible role in the physi
s of the nu
leus. The theories of the weakand ele
tromagneti
 intera
tions 
an be uni�ed to yield one single theory: the the-ory of ele
tro-weak intera
tion. This, together with the theory of strong intera
tions,forms the standard model of parti
le physi
s. Currently, attempts are being made tounify the theories of all the four intera
tions to one single theory.A typi
al way to study the atomi
 nu
lei experimentally is to analyze nu
learrea
tions. These 
an be, for example, radioa
tive de
ays or s
atterings of two nu
leio� ea
h other in 
ollision pro
esses. In these experiments the initial state of thesystem is either known or prepared in some spe
i�
 way and the �nal state 
an bemeasured. The measured observables yield information on the nu
lear pro
ess understudy. Based on this information one 
an 
onstru
t theoreti
al models about thestru
ture of the nu
leus and the intera
tions between its 
onstituents, the nu
leons.The purpose of the present work is to study nu
lear stru
ture and nu
lear de
ayby using one parti
ular type of a weak-intera
tion pro
ess, namely the nu
lear muon
apture. The muon 
apture 
an happen in a muoni
 atom where, in addition to theele
trons, a muon orbits the nu
leus. As a result it is possible that the orbiting muonis 
aptured by one of the protons of the nu
leus. By 
omparing the 
al
ulated resultsfor the muon-
apture rates to the 
orresponding experimental ones, one 
an gaininformation about the involved nu
lear wave fun
tions. Furthermore, the presentwork demonstrates how this information 
an be exploited in the 
al
ulations of ase
ond-order weak-intera
tion pro
ess known as the nu
lear double beta de
ay.The double beta de
ay is a very rare pro
ess and for this reason the experimentalset-ups are lo
ated deep under ground in order to minimise the ba
kground radiation.The fo
us of the present-day experimental set-ups is on dete
tion of the neutrinolessdouble beta de
ay, sin
e it has a lot of relevan
e in sear
h for new physi
s beyond thestandard model. This sear
h is an a
tive topi
 in physi
s due to the fa
t that there is
lear experimental eviden
e about the existen
e of a non-zero neutrino mass whi
h isnon-existent in the framework of the standard model.
2



2 Nu
lear stru
tureExplaining nu
lear stru
ture is a 
hallenging theoreti
al problem. Due to its many-body nature the stru
ture of a given nu
leus 
an not be solved exa
tly. On the otherhand, there are too few nu
leons in nu
lei to allow for a statisti
al treatment of theproblem. Therefore, one has to make approximations. The usual starting point isthe nu
lear mean-�eld approximation, where every nu
leon is assumed to move in apotential 
reated by all the other nu
leons in a nu
leus. In this approximation thenu
lear Hamiltonian
H =

∑

αβ

tαβc
†
αcβ +

1

4

∑

αβγδ

v̄αβγδc
†
αc

†
βcγcδ , (1)where tαβ is the single-parti
le energy term and v̄αβγδ the antisymmetrised two-parti
leintera
tion term, 
an be written as

H =
∑

αβ

(

tαβc
†
αcβ +

1

4
vαβc

†
αcβ

)

+
1

4

∑

αβγδ

(

v̄αβγδc
†
αc

†
βcγcδ − vαβc

†
αcβ

)

. (2)Above vαβ denotes the mean �eld potential. In this way the nu
lear Hamiltonian (2)has been divided into two parts
H = HMF + VRES , (3)where

HMF =
∑

αβ

(

tαβc
†
αcβ +

1

4
vαβc

†
αcβ

) (4)is the mean �eld Hamiltonian and
VRES =

1

4

∑

αβγδ

(

v̄αβγδc
†
αc

†
βcγcδ − vαβc

†
αcβ

) (5)is the residual intera
tion. Thus, the mean �eld part (4) allows to treat, to �rst approx-imation, the strongly intera
ting many-fermion system as a group of non-intera
tingfermions moving in a 
entral potential tαβ +1/4vαβ. By solving the S
hrödinger equa-tion for the HamiltonianHMF one gets the single-parti
le basis, i.e. the orbitals wherethe nu
leons move independently in the mean-�eld approximation. The labeling ofthese mean-�eld orbitals follows the 
onvention α = a,mα = na, la, ja, mα.The magnitude of the residual intera
tion VRES is typi
ally a lot smaller thanthe magnitude of the mean-�eld Hamiltonian HMF. This allows for a perturbativetreatment of the total nu
lear Hamiltonian H , where HMF is 
onsidered to be theunperturbated Hamiltonian and VRES a small perturbation. To obtain the optimal
HMF one has to minimize the residual intera
tion VRES, whi
h leads to a self-
onsistent3



mean �eld. However, for simpli
ity, it is 
ommon to take the mean-�eld potential tobe a harmoni
 os
illator or Woods-Saxon potential.There are ways to obtain the residual intera
tion VRES in a self-
onsistent manner,e.g. by the Hartree-Fo
k s
heme. There are also attempts to mimi
 it in approxima-tive, empiri
al ways. One example of the latter is the simple s
hemati
 surfa
e-deltaintera
tion, whi
h gives reasonable results for nu
lear observables in many 
ases. One
an also treat all the single-parti
le energies and two-body intera
tion matrix elementsas �tting parameters in order to reprodu
e 
ertain experimental data. The USD in-tera
tion [1℄ is a typi
al example of a �tted intera
tion. There are also intera
tionswhi
h are derived from a meson-ex
hange pi
ture of the nu
lear for
e, like for examplethe Bonn one-boson-ex
hange potential [2℄.In order to reprodu
e the so-
alled magi
 numbers observed in the shell stru
tureof nu
lei, it was found by Goeppert-Mayer [3℄ that one needs to add a strong spin-orbit term to the nu
lear Hamiltonian. This, together with the 
entral mean-�eldpotential, leads to a grouping of the single-parti
le levels to "shells". These shells
ontain from one to several single-parti
le orbitals with small energy di�eren
es in thesingle-parti
le energies as 
ompared to the energy width of the adja
ent shell gaps.Due to this tenden
y to form separate energy shells, the nu
lear-stru
ture 
al
ulations
an be simpli�ed 
onsiderably. On many o

asions it is enough to 
onsider only thosenu
leons, whi
h o

upy the valen
e shell(s). The 
ompletely �lled shells, below thea
tive valen
e shells, 
an be treated as an inert 
ore, not parti
ipating in the nu
lear-stru
ture 
al
ulations.2.1 The nu
lear shell modelAt the mean-�eld level valen
e nu
leons are distributed to the single-parti
le orbitalsto form various possible 
on�gurations. Ea
h 
on�guration has its asso
iated 
on�gu-ration energy whi
h is the sum of the single-parti
le energies of the o

upied orbitals.The ground-state 
on�guration, where all the single-parti
le orbitals are o

upied upto the proton and neutron Fermi energies, has the lowest 
on�guration energy. Theresidual intera
tion mixes all the possible 
on�gurations thus produ
ing the variousnu
lear states. Cal
ulation of the e�e
ts of this many-nu
leon 
on�guration mixing isthe task of the nu
lear shell model. Numeri
s of this task are treated by using varioustypes of shell-model 
omputer 
odes.Shell-model 
odes mainly work either in the m-s
heme or j-s
heme. In addition,there are also Monte-Carlo shell-model 
odes, whi
h are not dis
ussed here. The m-s
heme states have de�nite value for the z-
omponent of the total angular momentum,but they are not states of good angular momentum. However, the eigenstates obtainedfrom the diagonalization of the Hamiltonian matrix do have the symmetries of thenu
lear Hamiltonian.The j-s
heme states are angular-momentum proje
tions of the m-s
heme states.The advantage of the j-s
heme is the redu
tion of the Hamiltonian matrix to a blo
k-4



diagonal form. Ea
h blo
k has its own de�nite angular momentum and 
an be diag-onalized separately. The disadvantage of the j-s
heme lies in the proje
tion of the
j-s
heme states, whi
h is time 
onsuming and sensitive to numeri
al rounding errors.The shell-model 
ode OXBASH [4℄, whi
h was used in our 
al
ulations, works ina mixed s
heme. The Hamiltonian matrix is diagonalised in the j-s
heme, but theresulting eigenve
tors are written in the m-s
heme basis.The 
al
ulation of the matrix element for a given one-body operator Oλ 
an bedone in the o

upation-number representation. In this way the matrix element 
anbe expressed as a sum of single-parti
le transitions, weighted with terms 
oming fromthe many-parti
le nu
lear stru
ture, i.e.

(Jf ||Oλ||Ji) = λ̂−1
∑

ab

(a||Oλ||b)(Jf ||
[

c†ac̃b
]

λ
||Ji) . (6)The term (Jf ||

[

c†ac̃b
]

λ
||Ji) above represents the many-parti
le nu
lear stru
ture andis 
alled one-body transition density. This part 
an be 
al
ulated by the shell-model
odes.The drawba
k of the shell model is the fa
t that the number of possible 
on�gura-tions in
reases 
ombinatorially as the number of available single-parti
le orbitals andthe number of valen
e nu
leons in
reases. This leads quite rapidly to huge memoryand CPU-time requirements. For this reason realisti
 shell-model 
al
ulations 
annot be applied to most of the medium-heavy and heavy nu
lei. Therefore, one hasto apply other methods for nu
lear-stru
ture 
al
ulations of these nu
lei. One pop-ular alternative for the shell model is the quasiparti
le random-phase approximation(QRPA) and its variants.2.2 The BCS and pnQRPADue to the strong pairing intera
tion in nu
lei, all of the nu
lei with even numberof protons and even number of neutrons have their ground-state spin and parity 0+.Pairing is also present in the ele
tron theory of super
ondu
tivity by Bardeen, Cooperand S
hrie�er (BCS) and this theory 
an be applied to many-nu
leon systems withsome modi�
ations. Thus, the ground state of an even-even nu
leus 
an be treated asa super
ondu
ting state where all the protons and neutrons have been paired to formzero-angular-momentum Cooper pairs.The BCS ground state |BCS〉 is a linear 
ombination of states with di�erent num-bers of nu
leons. It 
an be written in the form

|BCS〉 =
∏

a,mα>0

(

ua − vac
†
a,mα

c̃†a,mα

)

|CORE〉 , (7)where the 
oe�
ients va and ua represent o

upation and uno

upation numbers of astate a. Furthermore, |CORE〉 represents the inert 
ore of the dis
ussed nu
leus andit 
an be treated as an e�e
tive parti
le va
uum, i.e. cα|CORE〉 = 0.5



The BCS quasiparti
le 
reation and annihilation operators 
an be derived by us-ing the Bogoliubov-Valatin transformation. In this transformation the quasiparti
leannihilation operator be
omes
aα = uacα + vac̃

†
α , (8)and it annihilates, as it should, the BCS quasiparti
le va
uum i.e. aα|BCS〉 = 0. The
orresponding quasiparti
le 
reation operator is by Hermitean 
onjugation

a†α = uac
†
α + vac̃α . (9)The requirement to satisfy the fermion anti
ommutation relation {a†α, aβ} = δαβ leadsto the 
ondition

u2
a + v2

a = 1 . (10)Condition (10) 
an also be viewed as a probability normalization thus leading to theinterpretation of va and ua as o

upation and uno

upation amplitudes.The nu
lear Hamiltonian of Eq. (1) 
an be written by using the quasiparti
leoperators. In this way the Hamiltonian 
an be 
ast in a form
Ĥ = H11 +H02 +H20 +H22 +H04 +H13 +H31 +H40 , (11)where ea
h term Hnm is proportional to the produ
t a†α1

a†α2
· · ·a†αn

aβ1
aβ2

· · ·aβm
. Herethe terms H11, H02 and H20 
an be asso
iated to a quasiparti
le mean �eld withquasiparti
le energies Ea. The rest of the terms represent residual intera
tions amongthe quasiparti
les. Numeri
al values of the o

upation and uno

upation amplitudes

va and ua and the quasiparti
le energies Ea 
an be 
al
ulated by using a variationalpro
edure. The variation is performed separately for protons and neutrons.As mentioned, the BCS va
uum des
ribes the ground state of an even-even nu
leus.In order to des
ribe the ex
ited states, or states of an odd-odd nu
leus, one needs tobuild two-quasiparti
le ex
itations. The proton-neutron QRPA (pnQRPA) theory,introdu
ed by Hableib and Sorensen [5℄, des
ribes the states of an odd-odd nu
leusas proton-neutron quasiparti
le ex
itations built atop of the QRPA va
uum. Theseproton-neutron quasiparti
le ex
itations, 
oupled to good angular momentum J andits z-proje
tion M , 
an be written as [6, 7℄
A†(pn, JM) =

[

a†pa
†
n

]

JM
; Ã(pn, JM) = (−1)J+M

(

A†(pn, JM)
)†
. (12)The one-phonon ansatz of the pnQRPA 
an be written by using the above de�nedtwo-quasiparti
le operators and it has the form

Q†
JM(m) =

∑

pn

[

Xpn(J
π, m)A†(pn, JM) − Ypn(J

π, m)Ã(pn, JM)
]

, (13)where Xpn (Ypn) is the so 
alled forward- (ba
kward-) going amplitude. Magnitudes ofthe ba
kward-going amplitudes Ypn are a good measure of the amount of the pnQRPAground-state 
orrelations. 6



The pnQRPA equations of motion have the general form
(

A B
B A

)(

X
Y

)

= Ω

(

1 0
0 −1

)(

X
Y

)

. (14)The states of the double-odd nu
leus 
an be obtained by solving the non-Hermitianeigenvalue problem des
ribed by Eq. (14). The sub-matri
es A and B of Eq. (14) arede�ned as follows
Apnp′n′ = δpp′δnn′(Ep + En) − 2gppG(pnp′n′, J)(upunup′un′ + vpvnvp′vn′)

−2gphF (pnp′n′, J)(upunvp′vn′ + vpvnup′un′) (15)
Bpnp′n′ = 2gppG(pnp′n′, J)(upunvp′vn′ + vpvnup′un′)

−2gphF (pnp′n′, J)(upvnvp′un′ + vpunup′vn′) , (16)where Ep and En are the proton and neutron quasiparti
le energies. Furthermore,
G(pnp′n′, J) and F (pnp′n′, J) are the two-body parti
le-parti
le and parti
le-hole in-tera
tion matrix elements de�ned by Baranger [8℄.The 
oe�
ients gpp and gph are s
aling fa
tors for the parti
le-parti
le and parti
le-hole intera
tion strengths. The parameter gph is usually adjusted by the empiri
al dataon the energy of the Gamow-Teller giant resonan
e ex
itation. The 
oe�
ient gpp,however, is often left as a free parameter of the theory. As a matter of fa
t, the sub-matrix A in Eq. (14) is the pnQTDA matrix, whi
h appears in a more simple theory
alled the proton-neutron quasiparti
le Tamm-Dan
o� approximation. The pnQTDAtheory does not take into a

ount the 
orrelations of the ground state.The β− and β+ type of de
ay amplitudes between a Jπ pnQRPA one-phonon stateand the pnQRPA ground state 
an be expressed as [7℄

(Jπ, m||M−
λ ||QRPA) = δJλ

∑

pn

(p||Mλ||n) [upvnXpn(Jπ, m) + vpunYpn(J
π, m)] , (17)

(Jπ, m||M+
λ ||QRPA) = −δJλ

∑

pn

(p||Mλ||n) [unvpXpn(J
π, m) + vnupYpn(J

π, m)].(18)
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3 Weak intera
tionIn the �rst beta-de
ay experiments it was found that the outgoing ele
tron has a
ontinuous energy distribution instead of a �xed value of energy. This seemed to goagainst the 
onservation of energy. Moreover, beta de
ay also seemed to violate the
onservation of angular momentum. In order to 
onserve these quantities WolfgangPauli suggested that there should be also another parti
le emitted in the beta de-
ay � the neutrino. The neutrino was assumed to be neutral, massless and weaklyintera
ting. This lead Enri
o Fermi to formulate his theory of beta de
ay [9℄.The Fermi theory of beta de
ay was applied broadly to many phenomena. Besidesthe beta de
ay of atomi
 nu
lei, it was used to des
ribe phenomena su
h as the de
ay ofa muon and several other parti
les, muon 
apture of the atomi
 nu
leus, et
. However,the drawba
k of the Fermi theory lies in the fa
t that it assumes the intera
tion tobe point-like. This leads to ultraviolet divergen
es and therefore Fermi theory is notrenormalizable.The pi
ture of the weak intera
tion got more a

urate by the introdu
tion of theele
tro-weak intera
tion of the standard model [10℄. In the standard model there arethree generations of leptons and quarks and, thus, three di�ered kinds of neutrino.The neutrinos of the standard model are assumed to be massless Dira
 parti
les, i.e.the antineutrino is not the same parti
le as the neutrino. Furthermore, the standardmodel also assumes lepton-number 
onservation for ea
h generation separately.Re
ent neutrino-os
illation experiments [11, 12, 13, 14℄ have revealed that thestandard model's pi
ture of the neutrinos is not su�
ient. In these experiments ithas been observed that the �avour of a neutrino 
an 
hange due to �avour os
illation.Moreover, the �avour os
illation requires neutrino to have mass. Unfortunately, theneutrino-os
illation experiments 
annot a

ess the absolute mass s
ale of the neutrino,only the mass di�eren
es between the neutrino mass eigenstates. At the preset onlyupper limits of the neutrino mass have been determined. The determination hasbeen done by 
osmologi
al observations [15℄ or by kinemati
al analysis of the ele
tronspe
trum in beta de
ay [16℄. In addition to the unknown mass of the neutrino, thequestion of neutrino being either a Dira
 or Majorana type of parti
le is still open.However, the neutrinoless double beta de
ay 
an answer both of these questions.The double beta de
ay is one of the slowest pro
esses in nature. It 
an o

urin nu
lei with even numbers of protons and neutrons. Due to the nu
lear short-range pairing for
es, the binding energy of a double-odd nu
leus may be smallerthan the binding energy of its double-even isobari
 neighbour nu
lei. In this kindof situation it is possible that the ordinary beta de
ay of some double-even nu
lei,not lo
ated at the bottom of the valley of beta stability, is energeti
ally forbidden.In some 
ases the ordinary beta de
ay is energeti
ally possible but highly forbiddendue to the large di�eren
e in angular momentum between the mother and daughterstates. Nevertheless, in this kind of situation the nu
lear double beta de
ay allows adouble-even nu
leus to de
ay dire
tly to states of lower energy in the neighbouring8



double-even isobari
 nu
leus. This is illustrated in Fig. 1, where the isobars A = 136have been 
hosen as examples. As 
an be seen, 136Xe 
annot de
ay via ordinary betade
ay. The situation is also the same for 136Ce. However, both of these nu
lei 
andisintegrate via the double beta de
ay.
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Figure 1: Mass ex
ess of the A = 136 isobars as a fun
tion of the proton number Z.The dashed arrows represent beta de
ays and the thi
k arrows represent double betade
ays.There exist two di�erent modes of double beta de
ay. The �rst mode, two-neutrinodouble beta (2νββ) de
ay, 
onserves the lepton number and, therefore, is allowed inthe standard model's framework. Thus, as the name indi
ates, the �nal state of the
2νββ de
ay 
ontains two neutrinos. The 2νββ de
ay was �rst predi
ted by MariaGoeppert-Mayer in 1935 [17℄. The 2νββ de
ay has been experimentally observed inseveral nu
lei, and the shortest observed half-lives are of the order of 1019 y [18℄.In 
ontrast to the 2νββ de
ay, the neutrinoless double beta (0νββ) de
ay violatesthe 
onservation laws of the standard model. As the name indi
ates, there are noneutrinos in the �nal state and therefore the lepton-number 
onservation is violated by
∆L = 2. The existen
e of the 0νββ de
ay was �rst proposed by Furry in 1939 [19℄. The
0νββ de
ay allows the a

ess to the mass s
ale of the neutrino. This is due to the fa
tthat the inverse of the 0νββ half-life is proportional to the se
ond power of the e�e
tive9



mass 〈mν〉 of the neutrino. Moreover, a

ording to the S
he
hter-Valle theorem [20℄,the existen
e of the 0νββ de
ay implies that the neutrino is a Majorana parti
le withnon-zero mass. To extra
t the e�e
tive neutrino mass from the experiments, one needsinformation about the involved nu
lear matrix elements [7℄. The absolute neutrinomass 
an be obtained from the e�e
tive mass by using the available information aboutthe neutrino mixing [21℄ and CP phases. There even exists a 
laim that the 0νββ de
ayhas been observed in 76Ge with a half-life of T1/2 = (1.19+0.37
−0.23) × 1025 y [22℄, leadingto an e�e
tive neutrino mass of 〈mν〉 = 0.2 − 0.6 eV. This result is, however, underdebate [23, 24℄. The next-generation double-beta-de
ay experiments will probablyshed light on this issue.The �rst attempts for nu
lear-stru
ture 
al
ulations of double-beta-de
ay ratesmostly 
on
entrate on using the nu
lear shell model as a starting point. Unfortu-nately, due to the fa
t that the ββ-de
aying nu
lei are medium-heavy or heavy nu
lei,severe trun
ations of the 
on�guration spa
e, or the use of the weak 
oupling limit,are needed. For this reason, other methods have been used, the pnQRPA and itsvariants being the most popular ones. However, as mentioned earlier in se
tion 2.2the disadvantage of the pnQRPA theory lies in the somewhat un
ertain value of theparti
le-parti
le intera
tion strength parameter gpp. The parameter gpp has strongin�uen
e on theoreti
al predi
tions of the nu
lear stru
ture and, therefore, on the
al
ulated half-lives of the ββ-de
ay.In the theoreti
al des
ription of the double beta de
ay the transitions pro
eed viathe states of the intermediate nu
leus. In the 
ase of the 2νββ de
ay only the 1+ statesof the intermediate nu
leus are a
tive, whereas in the 
ase of the 0νββ de
ay, all the

Jπ states of the intermediate nu
leus are a
tive. A reliable theoreti
al des
ription ofthe stru
ture of these states is essential in theoreti
al 
al
ulations. As mentioned, the
gpp parameter plays a 
ru
ial role in the ββ-de
ay rate 
al
ulations.In some works [7, 25℄ the values of the gpp parameter of the ββ-de
ay 
al
ulationshave been adjusted by using the available data on the beta-de
ay or ele
tron-
apturetransitions. These transitions run from the intermediate nu
leus to the �nal or ini-tial state of the 
orresponding ββ de
ay. Unfortunately, this information is usuallyavailable only for one state, typi
ally the ground state of the intermediate nu
leus.Re
ently, it has been suggested to use the experimental data on the 2νββ de
ay half-lives to obtain the nu
lear matrix elements involved in the 
orresponding 0νββ de
ays[26℄. However, there are some pitfalls in this method, as pointed out in [27℄. It hasalso been proposed that one 
ould use 
harged-
urrent neutrino-nu
leus intera
tionsas a probe of the virtual transitions involved in the 0νββ de
ay [28℄. Unfortunately,due to the extremely small 
ross se
tion of the neutrino-nu
leus 
harged-
urrent re-a
tion, the experimental setup would require neutrino-beam intensities whi
h 
annotbe a
hieved at the present.One method to study the stru
ture of the states of the intermediate nu
leus ofdouble beta de
ay is to perform muon-
apture experiments. The ordinary muon
apture (OMC) pro
ess allows to study one leg of the virtual transitions involved in10
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Figure 2: A s
hemati
 illustration of the 
onne
tion between the ββ-de
ay andordinary muon 
apture. In the 2νββ de
ay the transition pro
eeds via the 1+ states ofthe intermediate nu
leus (solid lines), whereas in the 0νββ de
ay all the intermediatestates are a
tive (solid and dashed lines).double beta de
ays. This is demonstrated in Fig. 2, where the ββ de
ay of 76Gehas been taken as an example. By measuring the OMC rates in transitions fromthe ground state of 76Se to the states of 76As one 
ould gain information about thestru
ture of these states. In spite of the fa
t that the OMC probes only one of the twobran
hes involved in double beta de
ay, it 
an provide a lot of valuable informationwhi
h 
an be used in ββ-de
ay 
al
ulations. Due to the large mass of the muon,about 100 MeV, the �nal state of the OMC 
an be highly ex
ited. Therefore, inprin
iple, it is possible to study all the relevant intermediate states of double betade
ay. Moreover, another 
onsequen
e of the large mass of the muon is the fa
t thatforbidden transitions are not as suppressed as in the 
ase of the ele
tron 
apture orbeta de
ay. As a matter of fa
t, transition rates to some of the 2− states 
an evenbe higher than transition rates to 1+ states. This allows to study also intermediatestates with spin and parity other than 1+. These states are potentially relevant in the
0νββ de
ay [29℄. 11



3.1 Ordinary muon 
aptureWhen a negative muon is stopped in matter, in the outer shells of atoms, it undergoesseveral ele
tromagneti
 transitions to lower atomi
 orbitals, a

ompanied by emissionof muoni
 X-rays. Energies of these X-rays 
an rea
h up to an order of MeV in heaviernu
lei. Finally, the muon ends up into the K atomi
 orbit. As a result, it is possiblethat the muon is 
aptured by a nu
leus in a pro
ess µ− +(A,Z) → νµ +(A,Z− 1)(∗),where the asterisk denotes the possibility that the �nal nu
lear state 
an be an ex
itedstate. The OMC 
ompetes with the de
ay of the muon. In addition to the OMC thereexist also other pro
esses in muoni
 atoms. In the radiative muon 
apture the �nalstate also 
ontains a gamma-ray. Also, in the 
ase of some heavy nu
lei the muon
apture 
an lead to �ssion of the �nal nu
leus.There exists a phenomenologi
al estimate by Primako� to the total muon 
apturerate Wtot:
Wtot = Z4

effX1

[

1 −X2

(

A− Z

2A

)]

, (19)where Zeff is the e�e
tive 
harge of the nu
leus [30℄. Furthermore, the 
oe�
ients Xn
an be �tted to the experimental data giving the values X1 = 170 s−1 and X2 = 3.125.However, this approa
h is not fruitful from the nu
lear-stru
ture point of view sin
ewe need information on 
apture to individual nu
lear states. In [31℄ the authors
al
ulated the total muon 
apture rates in the RPA basis and obtained results similarto the ones 
oming from eq. (19). A

ording to their 
al
ulations the RPA formalismreprodu
es total OMC rates quite reliably.The formalism needed for the 
al
ulation of the OMC rate was developed by Moritaand Fujii in Ref. [32℄. In their work they started from the most general Hamiltoniandensity
H = ψ̄nHψp , (20)with

√
2H = γλCV

[

ψ̄νγλψµ + ψ̄νγλγ
5ψµ

]

−γλγ5CA

[

ψ̄νγλψµ + ψ̄νγλγ
5ψµ

]

+γ5CP

[

ψ̄νγ
5ψµ − ψ̄νψµ

]

+σλρCM

[

pρ(ψ̄νiγλψµ) + pρ(ψ̄νiγλγ
5ψµ)

]

, (21)where σλρ = 1
2

[

γλγρ − γργλ
] and pρ = (i∂/∂t , i∇). However, due to the fa
t that theweak magnetism 
oupling 
onstant is proportional to the ve
tor 
oupling 
onstant,

CM = CV [µp − µn]/2M ≈ 3.706CV /2M , there are a
tually only three independent
oupling 
onstants, namely CV , CA, and CP .In the shell-model 
al
ulations of beta-de
ay rates the 
oupling 
onstants CV and
CA are also present. In these 
al
ulations a typi
al value adopted for the ratio of theve
tor 
oupling 
onstant and the axial-ve
tor 
oupling 
onstant is CA/CV = −1.0,12



instead of the bare nu
leon value CA/CV ≈ −1.25 [33, 34℄. In the present work theratio CA/CV = −1.0 has been used for the OMC 
al
ulations.The value of the pseudos
alar 
oupling 
onstant is �xed by the partially 
onservedaxial-ve
tor 
urrent (PCAC) hypothesis, giving rise to a nu
lear-model independentestimate CP/CA ≈ 7 (see e.g. [35℄). However, the value of the pseudos
alar 
oupling
onstant may need to be renormalized in the nu
lear medium, like in the 
ase of theaxial-ve
tor 
oupling 
onstant.The transition rate for the OMC 
an be derived from the Hamiltonian densityof Eq. (20) [32℄. The derivation is done by making the standard non-relativisti
 re-du
tion of the nu
leon operators. The lepton part is kept relativisti
 and the small
omponent of the muon bound state wave fun
tion has been set to zero. This approx-imation is valid sin
e in our 
al
ulated 
ases (αZ)2 ≪ 1, where α is the �ne-stru
ture
onstant. The e�e
t of the small 
omponent is of the order of a few per
ent [36℄.By performing a summation over all magneti
 quantum numbers and integratingover the neutrino momentum one ends up with following expression for the transitionrate
W = 4P (αZm′

µ)
3 2Jf + 1

2Ji + 1

(

1 − q

mµ + AM

)

q2, (22)with
q = (mµ −W0)

(

1 − mµ −W0

2(MF +mµ)

) (23)and A being the mass number of the initial and �nal nu
lei, Z the 
harge numberof the initial nu
leus, and m′
µ the redu
ed muon mass. Furthermore, M denotes theaverage nu
leon mass and W0 = MF −MI +me + Ex, with MF and MI denoting the�nal and initial atomi
 masses. The quantity P in Eq. (22) 
ontains all the nu
lear-physi
s aspe
ts of the rea
tion, in parti
ular it 
ontains the redu
ed nu
lear matrixelements M[kwu]. De�nition of the term P 
an be found e.g. in Refs. [32, V℄. Theterm (αZm′

µ)
3 in eq. (22) 
omes from the amplitude of the muon wave fun
tion atthe origin in the nonrelativisti
 
ase. The e�e
t of the relativisti
 
orre
tions in thisterm are of the order of few per 
ent or less in our 
al
ulated 
ases, as dedu
ed fromthe expressions of [32℄. The redu
ed matrix elements are de�ned as follows

∫

UJfMf

A
∑

s=1

e−αZm′

µrsΨsτ
s
−UJiMi

dr1 . . . drA

= M[kwu

(±
p

)

](JiMi uMf −Mi|Jf Mf) , (24)where UJfMf
and UJiMi

are the �nal and initial nu
lear wave fun
tions, respe
tively.The fa
tor Ψs is de�ned in Table 1. The quantity YM
kwu in Table 1 is the ve
tor13



spheri
al harmoni
 and it is de�ned as
YM

0wu ≡ (4π)−1/2Y M
w (r̂) , (25)

YM
1wu ≡

∑

m

(1 −mwm+M |uM)Y m+M
w (r̂)

√

3

4π
σ−m . (26)

Table 1: De�nition of the redu
ed matrix elements for the muon 
apture.Matrix element Ψs

M[0wu] jw(qrs)YMf−Mi

0wu (r̂s)δwu

M[1wu] jw(qrs)YMf−Mi

1wu (r̂s, σs)

M[0wu±]
[

jw(qrs)±αZ(m′
µ/pν)jw∓1(qrs)

]

YMf−Mi

0wu (r̂s)δwu

M[1wu±]
[

jw(qrs)±αZ(m′
µ/pν)jw∓1(qrs)

]

YMf−Mi

1wu (r̂s, σs)

M[0wup] ijw(qrs)YMf−Mi

0wu σs · psδwu

M[1wup] ijw(qrs)YMf−Mi

1wu (r̂s,ps)The large momentum ex
hange in the muon-
apture pro
ess, as 
ompared to thebeta-de
ay or ele
tron 
apture, emphasizes the role of the radial part of the nu
learwave fun
tion. As seen in Table 1, the muon-
apture matrix elements 
ontain thespheri
al Bessel fun
tion jw(qr), emerging from the Fourier-Bessel expansion of the�nal-state lepton wave fun
tion. The strong os
illations of the Bessel fun
tion inter-fere with the radial part of the mean-�eld single-parti
le wave fun
tion. Therefore,the shape of the mean-�eld potential may have a signi�
ant impa
t on the 
al
ulatedsingle-parti
le transition matrix elements. Typi
ally the muon 
apture matrix ele-ments have been 
al
ulated in the harmoni
-os
illator single-parti
le basis. However,the realisti
 single-parti
le potential resembles more the Woods-Saxon potential thanthe harmoni
-os
illator potential. The Woods-Saxon potential 
an produ
e noti
eablee�e
ts on the 
al
ulated half-life when 
ompared to the one 
al
ulated by using theharmoni
-os
illator basis [I℄.3.2 Two-neutrino double beta de
ayThe two-neutrino double beta de
ay pro
eeds as virtual transitions via the 1+ statesof the intermediate nu
leus. The expression for the inverse half-life in the 
ase of atransition to the ground state of the �nal nu
leus 
an be fa
torized as
[t

(2ν)
1/2 (0+

i → 0+
f )]

−1
= G

(2ν)
DGT |M (2ν)

DGT |
2
, (27)14



where G(2ν)
DGT is an integral over the phase spa
e of the leptoni
 variables [7, 37℄. Thenu
lear matrix element M (2ν)

DGT, 
orresponding to the 2νββ de
ay, 
an be written as
M

(2ν)
DGT =

∑

n

(0+
f ||

∑

j σ(j)t∓j || 1+
n )(1+

n ||
∑

j σ(j)t∓j || 0+
i )

(1
2
Qββ + En −Mi)/me + 1

, (28)where the transition operators are the usual Gamow-Teller type of operators for the β∓transitions, Qββ is the 2νββ-de
ay Q value, En is the energy of the nth intermediatestate, Mi is the mass energy of the initial nu
leus, and me is the rest-mass energyof the ele
tron. Contributions from the Fermi transitions 
an be negle
ted [7℄. Theexpression for the half-life in the 
ase of transitions to the exited states of the �nalnu
leus is more 
omplex and 
an be found in [7℄.One 
ould also 
onsider 
ontributions 
oming from the �rst-forbidden transitionsto the 2νββ de
ay rate. These transitions pro
eed via the 0−, 1− and 2− states ofthe intermediate nu
lei. In Ref. [38℄ the authors found notable 
ontributions to thenu
lear matrix elements from the 0− and 1− 
hannels. However, it has been shownthat due to the suppression of the asso
iated phase-spa
e integrals these 
hannels 
anbe negle
ted [39℄. In typi
al 
ases this suppression is of the order of 10−6 for the�rst-forbidden 
hannel and stronger for the higher forbidden 
hannels. It has to bementioned that in the 
ase of the neutrinoless double beta de
ay the intermediatestates other than 1+ have a non-negligible 
ontribution to the total half-life.3.3 Neutrinoless double-beta-de
ayThe most general e�e
tive weak-intera
tion Hamiltonian density, relevant for 
hargedweak 
urrents, 
an be written as [7, 37℄
hW =

GF cos θC√
2

(

jLµJ
µ†
L + κjLµJ

µ†
R + ηjRµJ

µ†
L + λjRµJ

µ†
R

)

+ h.c., (29)where GF is the Fermi 
oupling 
onstant and θC is the mixing angle of the Cabibbo-Kobayashi-Maskawa me
hanism for mixing quark �avours. The left- and right-handedleptoni
 
urrents are given as follows
jLµ = ēγµ (1 − γ5) νe,L , (30)
jRµ = ēγµ (1 + γ5) ν

′
e,R , (31)where the weak eigenstates of the neutrino are given in terms of the neutrino masseigenstates NjL/R as

νe,L =

2Ng
∑

j=1

UejNjL , (32)
ν ′e,R =

2Ng
∑

j=1

VejNjR , (33)15



where Ng is the number of the neutrino generations. The U and V matri
es are themixing matri
es between the weak eigenstates and mass eigenstates of the neutrino.The summations in Eqs. (32) and (33) run to 2Ng due to the fa
t that the Majorana-neutrino �eld NL/R 
ontains the left- and right-handed neutrino �elds. The hadroni

urrent of Eq. (29) 
an be written at quark level as
Jµ†

L/R = ūγµ (1 ∓ γ5) d . (34)By assuming the neutrino mass me
hanism to be the dominant one in the 0νββde
ay (i.e. the right-handed 
urrents are negle
ted) one 
an write as a good approxi-mation the inverse of the half-life as
[

t
(0ν)
1/2

]−1

= G
(0ν)
1

(〈mν〉
me

)2
(

M
(0ν)
GT −

(

gV

gA

)2

M
(0ν)
F

)2

, (35)where me is the mass of the ele
tron and
〈mν〉 =

∑

j

λCP
j mj |Uej |2 (36)is the e�e
tive mass of the neutrino, λCP

j being the CP phase. Furthermore, thequantity G
(0ν)
1 of Eq. (35) is the leptoni
 phase-spa
e fa
tor de�ned in [7℄. Thedouble Gamow-Teller and double Fermi nu
lear matrix-elements, whi
h appear in theexpression of the 0νββ half-life, are de�ned as follows:

M
(0ν)
F =

∑

a

(0+
f ||h+(rmn, Ea)||0+

i ) , (37)
M

(0ν)
GT =

∑

a

(0+
f ||h+(rmn, Ea)σm · σn||0+

i ) . (38)Here summation over a runs over all the intermediate states. The de�nition of theneutrino potential h+(rmn, Ea) 
an be found in Refs. [7, 37℄.3.4 The OMC as a probe of double beta de
ayAs mentioned, the OMC 
an be used to probe the stru
ture of the states of theintermediate nu
leus involved in the double-beta-de
ay transition. The used two-body intera
tion, in parti
ular the value of the parameter gpp in the 
ase of thepnQRPA, strongly a�e
ts the wave fun
tions of the intermediate nu
leus. This, inturn, re�e
ts on the one-body transition densities from the initial and �nal statesto the intermediate states of double beta de
ay. These transition densities are alsopresent in the 
al
ulation of the OMC rates to the intermediate states. Thus, by
omparing the 
al
ulated OMC rates to the experimental ones, one 
an estimate thereliability of the nu
lear matrix elements involved in the double beta de
ay. It is16



worth pointing out that there exists a rather dire
t bridge between the 2νββ de
ayand the OMC. At the limit q, Z → 0 for the OMC matrix element it follows that
M[101] → J−1

f

√
3

4π
MGT , (39)whereMGT is the redu
ed Gamow-Teller matrix element appearing in the double-beta-de
ay nu
lear matrix element M (2ν)

DGT of Eq. (28). For the 0νββ de
ay the situation ismore 
ompli
ated. The 
al
ulation of the matrix elements M (0ν)
F and M (0ν)

GT involvesone-body transition densities for all multipoles in both virtual legs.There are, however, some drawba
ks in the use of the OMC to probe the stru
tureof the states of the ββ-de
ay intermediate nu
leus. Firstly, the OMC probes only oneof the two legs of a double-beta-de
ay transition. Se
ondly, due to the important roleof the indu
ed hadroni
 
urrents in the OMC, extra
tion of the relevant informationabout the matrix elements from the experimental results is more 
ompli
ated. Lastly,in the nu
lear medium the value of the pseudos
alar 
oupling 
onstant may need tobe renormalised from the value given by the PCAC hypothesis. Nevertheless, theOMC o�ers a versatile tool to study the stru
ture of the intermediate nu
leus. In
ontrast to the beta-de
ay data, the OMC 
an be used to study also the exited statesof the intermediate nu
leus. Moreover, the forbidden transitions in the OMC arenot as suppressed as in the 
ase of the beta de
ay. This allows to study also theintermediate states whi
h are relevant for the 0νββ de
ay.

17



4 Cal
ulations4.1 Nu
lear-stru
ture 
al
ulationsIn the 
ase of the light nu
lei, the studied double-beta-de
aying isobars were A =
36, 46, 48, 50. The stru
ture of these nu
lei was 
al
ulated by using the shell-model
ode OXBASH. The used intera
tions in the 
ase of the sd-shell A = 36 isobars werethe USD [1℄ and SDPOTA [40℄. For the fp-shell isobars A = 46, A = 48 and A = 50the intera
tions used were the FPBP [41℄ and FPMCC [42℄. The stru
ture of the
A = 46 isobars was 
al
ulated in the full fp model spa
e, with no restri
tions in thenumber of 
on�gurations. Also for the A = 48 isobars the 2νββ rate 
al
ulationswere done in the full fp-spa
e. In the 
ase of the A = 50 nu
lei the JT -dimensionshad to be redu
ed heavily due to 
omputational limits. The trun
ation was done byrequiring the minimum parti
le o

upan
y in the f7/2 orbital to be 8.The stru
ture for the medium-heavy nu
lei was 
al
ulated by using the pnQRPAtheory. In the numeri
al 
omputations the proton model spa
e was taken to be 1p-0f-2s-1d-0g-0h11/2. On the neutron side the used model spa
e for 76Se was the sameas on the proton side, and in the 
ase of 106Cd the used model spa
e for neutronswas taken to 
onsist of the 1p-0f-2s-1d-0g-2p-1f-0h shells. The 
orresponding single-parti
le energies were obtained from the Woods-Saxon well with its parametrizationtaken from Ref. [43℄.The nu
lear Hamiltonian for the pnQRPA 
al
ulations was obtained from theBonn one-boson-ex
hange potential [2℄, 
omplemented with an empiri
al renormal-ization based on phenomenologi
al pairing gaps, the giant Gamow-Teller resonan
eand spe
tros
opi
 data on nu
lei 
lose to the relevant isobars. The proton-neutronparti
le-parti
le intera
tion strength was s
aled by the parameter gpp whi
h 
an beused as a free parameter.4.2 Results for light nu
leiTo begin with, the 
al
ulated partial OMC rates to the 1+ states of the �nal nu
leus,as fun
tions of the ex
itation energy of the �nal state, are presented in Fig 3. Theseresults are 
al
ulated in the harmoni
-os
illators single-parti
le basis. The value forthe axial-ve
tor 
oupling 
onstant was taken to be gA = −1 in all our 
al
ulations.Furthermore, the ratio gP/gA = 7 was used for the pseudo-s
alar 
oupling 
onstant.As 
an be seen, the strongest transition rates 
an be found among the few lowest 1+states for the 
ase of 36Ar, 46Ti, and 48Ti. However, in the 
ase of 50Cr, the transitionrates are more di�used to the higher exited states.The 
al
ulated OMC results 
an be 
ompared with the ones 
al
ulated in theWoods-Saxon single-parti
le basis. The parametrization for the Woods-Saxon single-parti
le potential was taken from [43℄. In Table 2 the 
al
ulated OMC transitionrates to the 1+ states of 46S
 and 48S
 are listed for both the harmoni
-os
illator and18



Woods-Saxon 
ases. As 
an be seen, the transition rates for the di�erent bases arenot far from ea
h other, ex
ept for some s
attered 
ases.In Table 3 the 
al
ulated 2νββ rates for 36Ar, 46Ca, 48Ca, and 50Cr are listed. Inthese 
al
ulations the value gA = −1.0 for the axial-ve
tor 
oupling 
onstant has beenadopted. In the 
ase of the 2νββ de
ay of 48Ca the 
al
ulated result 
an be 
omparedwith the available experimental one. The experimental result for the 2νββ de
ay of
48Ca is t(2ν)

1/2 (0+
i → 0+

f ) = 4.2+3.3
−1.3 × 1019 y [44℄. By evaluating the phase-spa
e integral

G
(2ν)
DGT, the experimental value for the 2νββ nu
lear matrix element 
an be obtained.Using gA = −1.0, one then obtains M (2ν)

DGT(exp) = 0.038+0.008
−0.009. In the 
ase of the 2νββde
ay of 50Cr there exist an experimental limit t1/2 > 1.3 × 1018 y for the half-life ofthe β+EC mode [45℄.By 
omparing the experimental value of the 2νββ-de
ay matrix element of 48Ca tothe 
al
ulated one, it 
an be seen that the used intera
tion tends to overestimate thevalue of the matrix element. The 
orresponding 
umulative sum of the 2νββ-de
aymatrix element, plotted in Fig. 4, indi
ates that a few lowest intermediate states givethe biggest 
ontribution to the total matrix element. This is partly explained by theenergy denominator suppressing the 
ontribution of the higher-lying states. Anotherreason is that the absolute value of the produ
t of the two GT matrix elements inEq. (28) is mu
h bigger for these low-lying states than for the other, higher-lying
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Figure 3: Cal
ulated OMC rates to the 1+ states of the �nal nu
leus as a fun
tionof the ex
itation energy for four di�erent initial nu
lei. The initial nu
leus and theused intera
tion are indi
ated in ea
h panel. The ratio gP/gA = 7 was adopted in the
al
ulations. 19



Table 2: Cal
ulated partial OMC transition rates for the Woods-Saxon (WS) andharmoni
-os
illator (h.o.) single-parti
le bases using the FPBP intera
tion. The ratio
gP/gA = 7 with gA = −1.0 has been adopted.W [103 1/s℄ W [103 1/s℄Parent Jπ

f h.o. WS Parent Jπ
f h.o. WS

46Ti 1+
1 2.032 3.433 48Ti 1+

1 6.310 6.261
1+

2 15.123 12.538 1+
2 16.366 12.029

1+
3 1.780 1.754 1+

3 13.000 11.158
1+

4 1.028 0.441 1+
4 0.080 0.074
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Figure 4: Cal
ulated 
umulative sum of the matrix element M (2ν)
DGT of Eq. (28) asa fun
tion of the ex
itation energy of the intermediate state. The 2νββ de
ayingnu
leus and the used intera
tion are indi
ated in ea
h panel.Table 3: Cal
ulated DGT matrix elements, Q-values in units of the ele
tron mass(T = Q/me), phase-spa
e fa
tors in units of inverse years, and the 
orrespondinghalf-lives in units of year for the 
onsidered double-beta transitions. The renormalizedvalue gA = −1.0 has been used in all 
ases.

46Ca 48Ca 36Ar 50CrFPBP FPBP USD (bare) FPBP
T (β−β−) 1.94 8.36 T (ECEC) 0.84 2.27

G2ν
DGT 4.8 × 10−23 1.6 × 10−17 G2ν

DGT 5.1 × 10−28 4.9 × 10−25

M2ν
DGT 0.108 0.058 M2ν

DGT 0.117 0.097
t1/2 1.7 × 1024 1.8 × 1019 t1/2 1.4 × 1029 2.1 × 1026states. The same reasoning applies also to 46Ca, depi
ted in the left panel of Fig. 4.Comparison of Figs. 3 and 4 shows that the same intermediate states are relevant20



for the OMC and 2νββ de
ay. Therefore, measurements of the partial OMC rates tothese low-lying states of the intermediate nu
leus 
ould give some valuable informationabout the involved nu
lear stru
ture. This information is also useful in the 
ase ofthe 0νββ-de
ay rate 
al
ulations.4.3 Medium heavy nu
leiIn the 
ase of the medium heavy nu
lei the OMC rates were 
al
ulated for the nu
lei
76Se, 82Kr, 100Ru, 106Cd, 110Cd, 116Sn, 128Xe, and 136Ce. The OMC on these nu
leileads to the odd-odd nu
lei 76As, 82Br, 100T
, 106Ag, 110Ag, 116In, 128I, and 136La,whi
h are involved as providing intermediate states in the double beta de
ays of thenu
lei 76Ge, 82Se, 100Mo, 106Cd, 110Pd, 116Cd, 128Te, and 136Ce. Two of the de
ays,namely 106Cd → 106Ag and 136Ce → 136Ba, are β+β+ type of transitions, while therest are β−β− type of transitions. All of the 
hosen isobari
 triplets 
ontain low-lying
1+ or 2− states in the involved intermediate double-odd nu
leus.Table 4: Total muon-
apture rates to the 1+ or 2− states (
olumn 6) in the transitionsof 
olumn 5. The ratio gP/gA = 7 was used. The gpp value of 
olumn 3 is 
hosensu
h that the experimental log ft value [46℄ (
olumn 2) 
an be roughly reprodu
ed(
olumn 4) in a spe
i�
 beta-de
ay transition (
olumn 1).

log ft log ft WtotBeta de
ay (exp) gpp (th.) Muon 
apture [103 1/s℄
76As(1+

1 ) → 76Se(0+
g.s.) - 0.9 5.8 76Se → 76As(1+) 114

76As(2−g.s.) → 76Se(0+
g.s.) 9.7 1.0 8.7 76Se → 76As(2−) 1529

82Br(2−1 ) → 82Kr(0+
g.s.) 8.9 1.0 8.9 82Kr → 82Br(2−) 1497

100T
(1+
g.s.) → 100Ru(0+

g.s.) 4.6 1.1 4.4 100Ru → 100T
(1+) 3734
100T
(2−1 ) → 100Ru(0+

g.s.) - 1.0 8.9 100Ru → 100T
(2−) 1889
106Ag(1+

g.s.) → 106Cd(0+
g.s.) > 4.2 0.8 4.3 106Cd → 106Ag(1+) 4635

110Ag(1+
g.s.) → 110Cd(0+

g.s.) 4.7 0.9 4.7 110Cd → 110Ag(1+) 4650
110Ag(2−1 ) → 110Cd(0+

g.s.) - 1.0 9.2 110Cd → 110Ag(2−) 1635
116In(1+

g.s.) → 116Sn(0+
g.s.) 4.7 1.0 4.7 116Sn → 116In(1+) 5102

116In(2−1 ) → 116Sn(0+
g.s.) - 1.0 13.1 116Sn → 116In(2−) 1430

128I(1+
g.s.) → 128Xe(0+

g.s.) 6.1 1.0 6.3 128Xe → 128I(1+) 5835
128I(2−1 ) → 128Xe(0+

g.s.) - 1.0 9.4 128Xe → 128I(2−) 1270
136La(1+

g.s.) → 136Ce(0+
g.s.) - 1.0 8.2 136Ce → 136La(1+) 4423

136La(2−1 ) → 136Ce(0+
g.s.) - 1.0 9.7 136Ce → 136La(2−) 1383In Table 4 the 
al
ulated results for the total OMC rates to the 1+ and 2− �nalstates are presented. In these 
al
ulations the ratio gP/gA = 7 was used. The value ofthe parameter gpp has been 
hosen su
h that the 
orresponding experimental log ft21



value 
an be roughly reprodu
ed. As mentioned, the gpp strongly a�e
ts the 
al
ulatednu
lear stru
ture, in parti
ular the wave fun
tion of the lowest 1+ state. This 
an beseen in Fig. 5, where the partial OMC rates to the 1+
1 states of several �nal nu
leihave been plotted as fun
tions of gpp. The same shown gpp dependan
e 
an be foundin the 2νββ de
ay rates, and in fa
t the measured 2νββ half-lives 
an be reprodu
edby suitably 
hoosing the value of gpp [47℄Fig. 5 also illustrates the break-down of the pnQRPA theory at large values of the

gpp parameter. Due to the ex
essive growth of 
orrelations in the pnQRPA ground-state, the 
al
ulations produ
e unphysi
ally large values for the 
apture rates. Thisbreak-down of the pnQRPA theory 
an also be seen in the ββ matrix elements atlarge values of gpp [47℄.
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Figure 5: Cal
ulated OMC rates from the ground state of the indi
ated nu
lei to the
1+

1 states of the �nal nu
leus as fun
tions of the parti
le-parti
le intera
tion strengthparameter gpp. The ratio gP/gA = 7 has been used.In addition to the parameter gpp, there is also another parameter present in the
apture rate 
al
ulations with somewhat un
ertain value, namely the pseudos
alar
oupling 
onstant gP. The 
apture rate W has a paraboli
 behavior as a fun
tion ofthe gP. Thus, when a experimental measurement of the partial 
apture rate is made, ittranslates to a 
ertain area in the gP and gpp parameter spa
es. By measuring partial
apture rates to few lowest states, the interse
tion of the 
orresponding parameterspa
es should hopefully be
ome small enough to yield a rather restri
ted value forthese parameters. 22



5 Dis
ussion and 
on
lusionsThe main fo
us of the present work is in the nu
lear-stru
ture aspe
ts of the OMCpro
ess. Publi
ation [I℄ dis
usses the e�e
t of the mean-�eld parameters on the OMCobservables. The Publi
ations [II-VI℄ 
on
entrate on the use of the OMC as a probeof virtual transitions of double beta de
ays. Due to the fa
t that the stru
ture ofthe intermediate states of double beta de
ay has a strong impa
t on the 
al
ulatedvalues of the matrix elements, for both 2νββ and 0νββ de
ays, one needs a methodto evaluate the reliability of the used nu
lear model. Publi
ations [II-VI℄ demonstratehow to use the OMC to probe one bran
h of the ββ transition. The nu
lear modelsemployed in the OMC rate 
al
ulations of the present work are the nu
lear shell-modeland the pnQRPA. These two models are also the ones most used in ββ 
al
ulations.In Publi
ation [I℄ the e�e
t of the nu
lear mean �eld on the muon 
apture observ-ables was studied. Due to the interferen
e of the os
illating Bessel fun
tion jw(qr)and the single-parti
le wave fun
tion the shape of the mean �eld potential has animpa
t on the 
al
ulated OMC matrix elements. The 
al
ulated results of the OMCrates in the harmoni
-os
illator and Woods-Saxon single-parti
le bases did show somedi�eren
es. However, di�eren
es were usually small and never signi�
ant. The samewas also pointed out in Publi
ation [VI℄ in the 
ase of the OMC of 46Ti and 48Ti.Also, the results for the angular 
orrelation parameter x in [I℄ were found to be quitesimilar in both single-parti
le bases.Although the 
al
ulated values of the OMC rates depend on the used intera
tion,it was found in [V℄ that in the 
ase of the A = 36 isobars it there were no largedi�eren
es between the USD and SDPOTA intera
tions in the total 
apture rates to
1+ states. This happened even though the transition rates to the individual statesdi�ered. The same kind of phenomenon was also noted in the 2νββ-de
ay matrixelement of 36Ar. The value of the total matrix element M (2ν)

DGT was quite similar inboth 
ases, although there were some di�eren
es in the shape of the 
umulative sum.In the 
al
ulations of the fp-shell nu
lei it was found that in the OMC of 46Tiand 48Ti the biggest transition rates were among the transitions to the few lowest
1+ �nal states. These states were also important in the 2νββ de
ay. The OMC rate
al
ulations of Publi
ation [V℄ indeed indi
ate some di�eren
es between the FPBPand FPMCC intera
tions. The OMC rates for 46Ti and 48Ti were also 
al
ulatedin [V℄ with di�erent values of the pseudos
alar 
oupling 
onstant gP. These 
al
u-lations indi
ate surprisingly small dependen
e on gP in many 
ases. This helps thenu
lear-stru
ture analysis, when the 
al
ulated partial OMC rates are 
ompared tothe experimental ones. The �rst experiments on the OMC of 48Ti have been per-formed at the PSI [48℄. Con
erning the OMC of 50Cr it was found that the 
apturesfavour more the higher energy 1+ �nal states than in the other 
al
ulated 
ases. Itwas also noted that the partial OMC rates did not wary mu
h as fun
tions of gP.A number of 2νββ rates were 
al
ulated in [V℄. In addition to the results quotedin the previous se
tion, the shape of the 
al
ulated 
umulative sum of the matrix23



element M (2ν)
DGT was studied also for 48Ca. It was found that the strong transitionsthrough few low-lying 1+ states were mainly transition involving the 0f7/2 orbital.Contributions of transitions through the higher-lying 1+ states typi
ally de
reased thevalue of the total matrix element. The involved single-parti
le transitions were mainly

0f7/2 → 0f5/2 → 0f7/2. This same behaviour was seen for both the FPBP and FPMCCintera
tions. In Publi
ation [IV℄ it was noted that FPBP and FPMCC intera
tionsprodu
e quite similar values for the total 2νββ de
ay matrix element. However, theshape of the 
umulative sum had di�eren
es. Nevertheless, the 
ommon feature for allthe 
al
ulated 
ases of 2νββ de
ay of 46Ca and 48Ca was that the transitions througha few lowest 1+ states dominated the total matrix element. This was also displayedin Publi
ations [IV, V℄ in the plot of the produ
t of the two Gamow-Teller matrixelements of Eq. (28) as a fun
tion of the ex
itation energy of the intermediate state.For 50Cr it was pointed out in [V℄ that the experimental limit of [45℄ was far from the
al
ulated value of the half-life.In the 
ase of the heavier nu
lei the individual OMC rates had a strong depen-den
e on the parti
le-parti
le intera
tion strength parameter gpp, as 
an be seen inPubli
ation [III℄. However, the strong dependen
e on gpp tends to vanish when thepartial 
apture rates are summed up to the total 
apture rates to the 1+ or 2− states.In [III℄ the involved matrix elements of the OMC were analyzed. It was found thatthe matrix element M[101], involved in transitions to the 1+ states, is typi
ally moresensitive to gpp than the matrix elementM[112], whi
h appear in transitions to the 2−states. This also re�e
ts in the partial 
apture rates. The break-down of the pnQRPAat large values of gpp was also seen in some matrix elements. It was found that thepartial and total OMC rates 
learly depend on the pseudos
alar 
oupling 
onstant
gP. Thus, there are a
tually two relevant parameters in the 
al
ulations. The log ftvalues of β de
ays of the intermediate nu
lei to the ground states of the �nal or initialnu
lei of double beta de
ay were dis
ussed in [III℄. In many 
ases the experimental
log ft value was unknown.In 
on
lusion, the formalism of the OMC has been presented and its 
onne
tionto the double beta de
ay explored. It has been shown that the partial OMC rates
an be used to probe the intermediate states of double beta de
ay. Furthermore,results on the partial OMC rates have been presented for several nu
lei. The nu
learstru
ture for the light nu
lei was handled with the nu
lear shell model. In the 
ase ofthe heavier nu
lei the pnQRPA was used for the nu
lear-stru
ture 
al
ulations. Forthe lighter nu
lei it was found that 1+ states with large OMC transition rate were alsothe ones whi
h gave the dominant 
ontributions for the 2νββ de
ay. The e�e
t of themean �eld on the OMC rates was also dis
ussed. For 48Ca the 
al
ulated 2νββ-de
ayrates were 
ompared to the experiment. In the 
ase of the heavier nu
lei, strongdependen
e of the OMC rates on the parti
le-parti
le intera
tion strength parameter
gpp was found. Also, the role of the pseudos
alar 
oupling 
onstant gP was dis
ussed.

24



Referen
es[I℄ Publi
ation I of this thesis.[II℄ Publi
ation II of this thesis.[III℄ Publi
ation III of this thesis.[IV℄ Publi
ation IV of this thesis.[V℄ Publi
ation V of this thesis.[VI℄ Publi
ation VI of this thesis.[1℄ B.H. Wildenthal, Prog. Part. Nu
l. Phys. 11 (1984) 5.[2℄ K. Holinde, Phys. Rep. 68 (1981) 121.[3℄ M.G. Mayer, Phys. Rev. 74 (1948) 235;M. Goeppert Mayer, Phys. Rev. 75 (1949) 1969.[4℄ B.A. Brown, A. Et
hegoyen and W.D.M. Rae, the 
omputer 
ode OXBASH,MSU-NSCL Report 524 (1988).[5℄ J.A. Halbleib and R.A. Sorensen, Nu
l. Phys. A 98 (1967) 542.[6℄ J. Suhonen, T. Taigel and A. Faessler, Nu
l. Phys. A 486 (1988) 91.[7℄ J. Suhonen and O. Civitarese, Phys. Rep. 300 (1998) 123.[8℄ M. Baranger, Phys. Rev. 120 (1960) 957.[9℄ E. Fermi, Z. Physik 88 (1934) 161.[10℄ S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264.[11℄ The Super-Kamiokande Collaboration, Phys. Rev. Lett. 81 (1998) 1562.[12℄ The SNO Collaboration, Phys. Rev. Lett. 89 (2002) 011301.[13℄ KamLAND Collaboration, Phys. Rev. Lett. 90 (2003) 021802.[14℄ M. Appollonio et al., Phys. Lett. B 466 (1999) 415.[15℄ D.N. Spergel et al., Astrophys. J. Suppl. 148 (2003) 175.[16℄ Ch. Kraus et al., Eur. Phys. J. C 40 (2005) 447.[17℄ M. Goeppert-Mayer, Phys. Rev. 48 (1935) 512.25



[18℄ V. Tretyak and Y. Zdesenko, At. Data Nu
l. Data Tables 80 (2002) 83.[19℄ W.H. Furry, Phys. Rev. 56 (1939) 1184.[20℄ J. S
he
her and J.W.F. Valle, Phys. Rev. D 25 (1982) 2951.[21℄ O. Civitarese and J. Suhonen, Nu
l. Phys. A 729 (2003) 867.[22℄ H.V. Klapdor-Kleingrothaus, Nu
l. Phys. B (Pro
. Suppl.) 143 (2005) 229.[23℄ C.E. Aalseth et. al., Mod. Phys. Lett. A 17 (2002) 1475.[24℄ Yu.G. Zdesenko, F.A. Danevi
h and V.I. Tretyak, Phys. Lett. B 546 (2002) 206.[25℄ M. Aunola and J. Suhonen, Nu
l. Phys. A 602 (1996) 113.[26℄ V.A. Rodin, A. Faessler, F. �imkovi
 and P. Vogel, Phys. Rev. C 68 (2003)044302.[27℄ J. Suhonen, Nu
l. Phys. A 752 (2005) 53.[28℄ C. Volpe, J. Phys. G 31 (2005) 903.[29℄ O. Civitarese and J. Suhonen, Phys Lett. B 626 (2005) 80.[30℄ D.F. Measday, Phys. Rep. 354 (2001) 243.[31℄ E. Kolbe, K. Langanke and K. Riisager, Eur. Phys. J. A 11 (2001) 39.[32℄ M. Morita and A. Fujii, Phys. Rev. 118 (1960) 606.[33℄ J.S. Towner, Phys. Rep. 155 (1987) 263.[34℄ B.A. Brown and B.H. Wildenthal, Ann. Rev. Nu
l. Part. S
i 38 (1988) 29.[35℄ A. de Shalit and I. Feshba
h, Theoreti
al Nu
lear Physi
s vol I, (Wiley & Sons,1974).[36℄ V. Gillet and D.A. Jenkins, Phys. Rev. 140 (1965) B32.[37℄ M. Doi, T. Kotani and E. Takasugi, Prog. Theor. Phys. Suppl. 83 (1985) 1.[38℄ C. Barbero, F. Krampoti¢ and A. Mariano, Phys. Lett. B 345 (1995) 192.[39℄ O. Civitarese and J. Suhonen, Nu
l. Phys. A 607 (1996) 152.[40℄ B.A. Brown, W.A. Ri
hter, R.E. Julies and B.H. Wildenthal, Ann. Phys. 182(1988) 191.[41℄ W.A. Ri
hter, et al., Nu
l. Phys. A 523 (1991) 325.26



[42℄ J.B. M
Grory, B.H. Wildenthal and E.C. Halbert, Phys. Rev. C 2 (1970) 186.[43℄ A. Bohr and B.R. Mottelson, Nu
lear stru
ture, vol. I (Benjamin, New York,1969).[44℄ V.B. Brudanin, et al., Phys. Lett. B 495 (2000) 63.[45℄ I. Bikit, et al., Phys. Rev. C 67 (2003) 065801.[46℄ R.B. Firestone, V.S. Shirley, S.Y. Chu, C.M. Baglin and J. Zipkin, Table ofIsotopes CD-ROM, 8th Ed. Version 1.0 (Wiley-Inters
ien
e, New York, 1996).[47℄ J. Suhonen, Phys. Lett. B 607 (2005) 87.[48℄ Ch. Brian
on, et al., The R-97-03 Experiment and Its Extension (µCR42β) atthe PSI.

27


	Text3: ISBN 978-951-39-3167-4
	Text4: URN:ISBN:978-951-39-3167-4


