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Abstract

The ordinary muon capture (OMC) is suggested to be used as a probing tool in order
to gain information about the structure of the intermediate nuclear states involved
in the double beta (33) decay. It has been demonstrated that the nuclear-structure
aspects in the §(3-decay calculations can be fine tuned by the information gained from
the measurements of the partial OMC rates from the ground state of the initial or
final nucleus to the intermediate states within a 33 decay chain. It has been found
that the calculated OMC observables as well as the two-neutrino double beta (2v3/3)
amplitudes depend strongly on the involved nuclear structure.

In nuclear-structure calculations both the nuclear shell model (SM) and the proton-
neutron quasiparticle random-phase approximation (pnQRPA) have been employed.
For the light nuclei the SM calculations indicate that the states with biggest OMC
rates are also the most relevant ones in the 2v33 decay. The effect of the mean field
on the OMC rates is also studied. The structure of heavier nuclei was calculated by
using the pnQRPA. The pnQRPA calculations involve the particle-particle interac-
tions strength parameter g,,. It was found that g,, affects strongly the calculated
OMC rates. The role of the induced pseudoscalar current and its coupling constant
gp in the OMC is also discussed.
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1 Introduction

The atomic nucleus is a many-body system where three of the four fundamental in-
teractions play an important role. This feature makes the nucleus an interesting and
challenging subject of study. The two strongest interactions nuclear and electromag-
netic — are responsible for nuclear structure, while the effect of the weak interaction
can be seen in radioactive decays of nuclei. The fourth interaction, gravitation, is
known to play a negligible role in the physics of the nucleus. The theories of the weak
and electromagnetic interactions can be unified to yield one single theory: the the-
ory of electro-weak interaction. This, together with the theory of strong interactions,
forms the standard model of particle physics. Currently, attempts are being made to
unify the theories of all the four interactions to one single theory.

A typical way to study the atomic nuclei experimentally is to analyze nuclear
reactions. These can be, for example, radioactive decays or scatterings of two nuclei
off each other in collision processes. In these experiments the initial state of the
system is either known or prepared in some specific way and the final state can be
measured. The measured observables yield information on the nuclear process under
study. Based on this information one can construct theoretical models about the
structure of the nucleus and the interactions between its constituents, the nucleons.

The purpose of the present work is to study nuclear structure and nuclear decay
by using one particular type of a weak-interaction process, namely the nuclear muon
capture. The muon capture can happen in a muonic atom where, in addition to the
electrons, a muon orbits the nucleus. As a result it is possible that the orbiting muon
is captured by one of the protons of the nucleus. By comparing the calculated results
for the muon-capture rates to the corresponding experimental ones, one can gain
information about the involved nuclear wave functions. Furthermore, the present
work demonstrates how this information can be exploited in the calculations of a
second-order weak-interaction process known as the nuclear double beta decay.

The double beta decay is a very rare process and for this reason the experimental
set-ups are located deep under ground in order to minimise the background radiation.
The focus of the present-day experimental set-ups is on detection of the neutrinoless
double beta decay, since it has a lot of relevance in search for new physics beyond the
standard model. This search is an active topic in physics due to the fact that there is
clear experimental evidence about the existence of a non-zero neutrino mass which is
non-existent in the framework of the standard model.



2 Nuclear structure

Explaining nuclear structure is a challenging theoretical problem. Due to its many-
body nature the structure of a given nucleus can not be solved exactly. On the other
hand, there are too few nucleons in nuclei to allow for a statistical treatment of the
problem. Therefore, one has to make approximations. The usual starting point is
the nuclear mean-field approximation, where every nucleon is assumed to move in a
potential created by all the other nucleons in a nucleus. In this approximation the
nuclear Hamiltonian

1 _
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where ¢4 is the single-particle energy term and v,4,5 the antisymmetrised two-particle
interaction term, can be written as
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Above v,5 denotes the mean field potential. In this way the nuclear Hamiltonian (2)
has been divided into two parts

H = Hyp + Vigs , (3)
where
1
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is the mean field Hamiltonian and
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is the residual interaction. Thus, the mean field part (4) allows to treat, to first approx-
imation, the strongly interacting many-fermion system as a group of non-interacting
fermions moving in a central potential ¢,5+1/4v,3. By solving the Schrodinger equa-
tion for the Hamiltonian Hyr one gets the single-particle basis, i.e. the orbitals where
the nucleons move independently in the mean-field approximation. The labeling of
these mean-field orbitals follows the convention a = a, my = Ny, la, Ja, Ma-

The magnitude of the residual interaction Vggg is typically a lot smaller than
the magnitude of the mean-field Hamiltonian Hyg. This allows for a perturbative
treatment of the total nuclear Hamiltonian H, where Hyy is considered to be the
unperturbated Hamiltonian and Vrgg a small perturbation. To obtain the optimal
Hyr one has to minimize the residual interaction Viygs, which leads to a self-consistent



mean field. However, for simplicity, it is common to take the mean-field potential to
be a harmonic oscillator or Woods-Saxon potential.

There are ways to obtain the residual interaction Vygg in a self-consistent manner,
e.g. by the Hartree-Fock scheme. There are also attempts to mimic it in approxima-
tive, empirical ways. One example of the latter is the simple schematic surface-delta
interaction, which gives reasonable results for nuclear observables in many cases. One
can also treat all the single-particle energies and two-body interaction matrix elements
as fitting parameters in order to reproduce certain experimental data. The USD in-
teraction |1] is a typical example of a fitted interaction. There are also interactions
which are derived from a meson-exchange picture of the nuclear force, like for example
the Bonn one-boson-exchange potential [2].

In order to reproduce the so-called magic numbers observed in the shell structure
of nuclei, it was found by Goeppert-Mayer [3| that one needs to add a strong spin-
orbit term to the nuclear Hamiltonian. This, together with the central mean-field
potential, leads to a grouping of the single-particle levels to "shells". These shells
contain from one to several single-particle orbitals with small energy differences in the
single-particle energies as compared to the energy width of the adjacent shell gaps.
Due to this tendency to form separate energy shells, the nuclear-structure calculations
can be simplified considerably. On many occasions it is enough to consider only those
nucleons, which occupy the valence shell(s). The completely filled shells, below the
active valence shells, can be treated as an inert core, not participating in the nuclear-
structure calculations.

2.1 The nuclear shell model

At the mean-field level valence nucleons are distributed to the single-particle orbitals
to form various possible configurations. Each configuration has its associated configu-
ration energy which is the sum of the single-particle energies of the occupied orbitals.
The ground-state configuration, where all the single-particle orbitals are occupied up
to the proton and neutron Fermi energies, has the lowest configuration energy. The
residual interaction mixes all the possible configurations thus producing the various
nuclear states. Calculation of the effects of this many-nucleon configuration mixing is
the task of the nuclear shell model. Numerics of this task are treated by using various
types of shell-model computer codes.

Shell-model codes mainly work either in the m-scheme or j-scheme. In addition,
there are also Monte-Carlo shell-model codes, which are not discussed here. The m-
scheme states have definite value for the z-component of the total angular momentum,
but they are not states of good angular momentum. However, the eigenstates obtained
from the diagonalization of the Hamiltonian matrix do have the symmetries of the
nuclear Hamiltonian.

The j-scheme states are angular-momentum projections of the m-scheme states.
The advantage of the j-scheme is the reduction of the Hamiltonian matrix to a block-
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diagonal form. Each block has its own definite angular momentum and can be diag-
onalized separately. The disadvantage of the j-scheme lies in the projection of the
7-scheme states, which is time consuming and sensitive to numerical rounding errors.
The shell-model code OXBASH [4], which was used in our calculations, works in
a mixed scheme. The Hamiltonian matrix is diagonalised in the j-scheme, but the
resulting eigenvectors are written in the m-scheme basis.

The calculation of the matrix element for a given one-body operator O, can be
done in the occupation-number representation. In this way the matrix element can
be expressed as a sum of single-particle transitions, weighted with terms coming from
the many-particle nuclear structure, i.e.

(JNOAIT) = A7~ (al [OAlD) (| [ches] , 117) - (6)

ab

The term (Ji|| [cié], ||;) above represents the many-particle nuclear structure and
is called one-body transition density. This part can be calculated by the shell-model
codes.

The drawback of the shell model is the fact that the number of possible configura-
tions increases combinatorially as the number of available single-particle orbitals and
the number of valence nucleons increases. This leads quite rapidly to huge memory
and CPU-time requirements. For this reason realistic shell-model calculations can
not be applied to most of the medium-heavy and heavy nuclei. Therefore, one has
to apply other methods for nuclear-structure calculations of these nuclei. One pop-
ular alternative for the shell model is the quasiparticle random-phase approximation
(QRPA) and its variants.

2.2 The BCS and pnQRPA

Due to the strong pairing interaction in nuclei, all of the nuclei with even number
of protons and even number of neutrons have their ground-state spin and parity 07.
Pairing is also present in the electron theory of superconductivity by Bardeen, Cooper
and Schrieffer (BCS) and this theory can be applied to many-nucleon systems with
some modifications. Thus, the ground state of an even-even nucleus can be treated as
a superconducting state where all the protons and neutrons have been paired to form
zero-angular-momentum Cooper pairs.

The BCS ground state |BCS) is a linear combination of states with different num-
bers of nucleons. It can be written in the form

BCS) = ] (ua— vac),.El.) |ICORE), (7)

a,Mq ~a,Mq
a,meq>0

where the coefficients v, and u, represent occupation and unoccupation numbers of a
state a. Furthermore, |[CORE) represents the inert core of the discussed nucleus and
it can be treated as an effective particle vacuum, i.e. ¢,|CORE) = 0.



The BCS quasiparticle creation and annihilation operators can be derived by us-
ing the Bogoliubov-Valatin transformation. In this transformation the quasiparticle
annihilation operator becomes

Ao = UgCo + Va0 (8)

)

and it annihilates, as it should, the BCS quasiparticle vacuum i.e. a,|BCS) = 0. The
corresponding quasiparticle creation operator is by Hermitean conjugation

aL = uacL + VyCq - 9)

The requirement to satisfy the fermion anticommutation relation {a],, as} = d,5 leads
to the condition
ul+vi=1. (10)

Condition (10) can also be viewed as a probability normalization thus leading to the
interpretation of v, and u, as occupation and unoccupation amplitudes.

The nuclear Hamiltonian of Eq. (1) can be written by using the quasiparticle
operators. In this way the Hamiltonian can be cast in a form

ﬁ:Hn+H02+H20+H22+H04+H13+H31+H40, (11)

where each term H,,, is proportional to the product aLlaLQ ---al, agag,---ag,. Here
the terms Hy;, Hyp and Hyy can be associated to a quasiparticle mean field with
quasiparticle energies F,. The rest of the terms represent residual interactions among
the quasiparticles. Numerical values of the occupation and unoccupation amplitudes
v, and u, and the quasiparticle energies F, can be calculated by using a variational
procedure. The variation is performed separately for protons and neutrons.

As mentioned, the BCS vacuum describes the ground state of an even-even nucleus.
In order to describe the excited states, or states of an odd-odd nucleus, one needs to
build two-quasiparticle excitations. The proton-neutron QRPA (pnQRPA) theory,
introduced by Hableib and Sorensen [5], describes the states of an odd-odd nucleus
as proton-neutron quasiparticle excitations built atop of the QRPA vacuum. These
proton-neutron quasiparticle excitations, coupled to good angular momentum J and
its z-projection M, can be written as |6, 7|

Al(pn, JM) = [ala!

p ”]JM;

A(pn, JM) = (—=1)"M (Al pn, JM))T . (12)

The one-phonon ansatz of the pnQRPA can be written by using the above defined
two-quasiparticle operators and it has the form

Qg (m) = [Xon (I, m) A (p, M) = You (T, m)Alpn, JM)| - (13)

where X, (Y,) is the so called forward- (backward-) going amplitude. Magnitudes of
the backward-going amplitudes Y, are a good measure of the amount of the pnQRPA
ground-state correlations.



The pnQRPA equations of motion have the general form

(5 2) ()=l 5)(v) w

The states of the double-odd nucleus can be obtained by solving the non-Hermitian
eigenvalue problem described by Eq. (14). The sub-matrices A and B of Eq. (14) are
defined as follows

Apnpt = OppOni (Ep + Ep) — 2gp,G(pnp'n', J) (Uptin Uty + 0pUn Uy Uy )
—2gon F (pnp'n’, J) (uptin vy vy + 0yt ) (15)
Bpnp = 2gppG(pnp'n’, J) (Uptin vy vy + 0pvn iy i)
—2gon F (pnp'n’, J) (upvn 0ty + 0yt Uy Uy ) (16)

where F, and F, are the proton and neutron quasiparticle energies. Furthermore,
G(pnp'n’, J) and F(pnp'n’, J) are the two-body particle-particle and particle-hole in-
teraction matrix elements defined by Baranger [8].

The coefficients g, and g, are scaling factors for the particle-particle and particle-
hole interaction strengths. The parameter g, is usually adjusted by the empirical data
on the energy of the Gamow-Teller giant resonance excitation. The coefficient g,
however, is often left as a free parameter of the theory. As a matter of fact, the sub-
matrix A in Eq. (14) is the pnQTDA matrix, which appears in a more simple theory
called the proton-neutron quasiparticle Tamm-Dancoff approximation. The pnQTDA
theory does not take into account the correlations of the ground state.

The 5~ and 37 type of decay amplitudes between a J™ pnQRPA one-phonon state
and the pnQRPA ground state can be expressed as |7]

(J7,m|[ My [|QRPA) = 80 Y (Pl M) [0 Xy (S, 10) + 0500 Yy (7, m)] , (17)

pn

(J7 ml [ M [|[QRPA) = =65 > (plIMlln) [ttty Xpn (J7, 1) + vty Y (7, )].(18)

pn



3 Weak interaction

In the first beta-decay experiments it was found that the outgoing electron has a
continuous energy distribution instead of a fixed value of energy. This seemed to go
against the conservation of energy. Moreover, beta decay also seemed to violate the
conservation of angular momentum. In order to conserve these quantities Wolfgang
Pauli suggested that there should be also another particle emitted in the beta de-
cay the neutrino. The neutrino was assumed to be neutral, massless and weakly
interacting. This lead Enrico Fermi to formulate his theory of beta decay [9].

The Fermi theory of beta decay was applied broadly to many phenomena. Besides
the beta decay of atomic nuclei, it was used to describe phenomena such as the decay of
a muon and several other particles, muon capture of the atomic nucleus, etc. However,
the drawback of the Fermi theory lies in the fact that it assumes the interaction to
be point-like. This leads to ultraviolet divergences and therefore Fermi theory is not
renormalizable.

The picture of the weak interaction got more accurate by the introduction of the
electro-weak interaction of the standard model [10]. In the standard model there are
three generations of leptons and quarks and, thus, three differed kinds of neutrino.
The neutrinos of the standard model are assumed to be massless Dirac particles, i.e.
the antineutrino is not the same particle as the neutrino. Furthermore, the standard
model also assumes lepton-number conservation for each generation separately.

Recent neutrino-oscillation experiments [11, 12, 13, 14| have revealed that the
standard model’s picture of the neutrinos is not sufficient. In these experiments it
has been observed that the flavour of a neutrino can change due to flavour oscillation.
Moreover, the flavour oscillation requires neutrino to have mass. Unfortunately, the
neutrino-oscillation experiments cannot access the absolute mass scale of the neutrino,
only the mass differences between the neutrino mass eigenstates. At the preset only
upper limits of the neutrino mass have been determined. The determination has
been done by cosmological observations [15] or by kinematical analysis of the electron
spectrum in beta decay [16]. In addition to the unknown mass of the neutrino, the
question of neutrino being either a Dirac or Majorana type of particle is still open.
However, the neutrinoless double beta decay can answer both of these questions.

The double beta decay is one of the slowest processes in nature. It can occur
in nuclei with even numbers of protons and neutrons. Due to the nuclear short-
range pairing forces, the binding energy of a double-odd nucleus may be smaller
than the binding energy of its double-even isobaric neighbour nuclei. In this kind
of situation it is possible that the ordinary beta decay of some double-even nuclei,
not located at the bottom of the valley of beta stability, is energetically forbidden.
In some cases the ordinary beta decay is energetically possible but highly forbidden
due to the large difference in angular momentum between the mother and daughter
states. Nevertheless, in this kind of situation the nuclear double beta decay allows a
double-even nucleus to decay directly to states of lower energy in the neighbouring



double-even isobaric nucleus. This is illustrated in Fig. 1, where the isobars A = 136
have been chosen as examples. As can be seen, ¥Xe cannot decay via ordinary beta
decay. The situation is also the same for *°Ce. However, both of these nuclei can
disintegrate via the double beta decay.

| A=136 N_d
800+ i
= P
3 a3
=
i |
d esof
4 Xe Cs L— Ce
ﬂx Ba %W/EEC/ECEC
-90.0+

53 54 55 56 57 58 59 60
Z

Figure 1: Mass excess of the A = 136 isobars as a function of the proton number Z.
The dashed arrows represent beta decays and the thick arrows represent double beta
decays.

There exist two different modes of double beta decay. The first mode, two-neutrino
double beta (2v(3(3) decay, conserves the lepton number and, therefore, is allowed in
the standard model’s framework. Thus, as the name indicates, the final state of the
2v(3(3 decay contains two neutrinos. The 2035 decay was first predicted by Maria
Goeppert-Mayer in 1935 [17]. The 2v(33 decay has been experimentally observed in
several nuclei, and the shortest observed half-lives are of the order of 10 y [18].

In contrast to the 2v33 decay, the neutrinoless double beta (0v3(3) decay violates
the conservation laws of the standard model. As the name indicates, there are no
neutrinos in the final state and therefore the lepton-number conservation is violated by
AL = 2. The existence of the Ov 3 decay was first proposed by Furry in 1939 [19]. The
Ov (3 decay allows the access to the mass scale of the neutrino. This is due to the fact
that the inverse of the Ov 33 half-life is proportional to the second power of the effective



mass (m,) of the neutrino. Moreover, according to the Schechter-Valle theorem [20],
the existence of the Ov33 decay implies that the neutrino is a Majorana particle with
non-zero mass. To extract the effective neutrino mass from the experiments, one needs
information about the involved nuclear matrix elements [7]. The absolute neutrino
mass can be obtained from the effective mass by using the available information about
the neutrino mixing [21]| and CP phases. There even exists a claim that the Ov 33 decay
has been observed in Ge with a half-life of 77, = (1.1970:37) x 10% y [22], leading
to an effective neutrino mass of (m,) = 0.2 — 0.6 eV. This result is, however, under
debate [23, 24]. The next-generation double-beta-decay experiments will probably
shed light on this issue.

The first attempts for nuclear-structure calculations of double-beta-decay rates
mostly concentrate on using the nuclear shell model as a starting point. Unfortu-
nately, due to the fact that the g3-decaying nuclei are medium-heavy or heavy nuclei,
severe truncations of the configuration space, or the use of the weak coupling limit,
are needed. For this reason, other methods have been used, the pnQRPA and its
variants being the most popular ones. However, as mentioned earlier in section 2.2
the disadvantage of the pnQRPA theory lies in the somewhat uncertain value of the
particle-particle interaction strength parameter g,,. The parameter g,, has strong
influence on theoretical predictions of the nuclear structure and, therefore, on the
calculated half-lives of the (3(3-decay.

In the theoretical description of the double beta decay the transitions proceed via
the states of the intermediate nucleus. In the case of the 2033 decay only the 1T states
of the intermediate nucleus are active, whereas in the case of the Ov33 decay, all the
J™ states of the intermediate nucleus are active. A reliable theoretical description of
the structure of these states is essential in theoretical calculations. As mentioned, the
gpp Parameter plays a crucial role in the §3-decay rate calculations.

In some works [7, 25| the values of the g,, parameter of the 53-decay calculations
have been adjusted by using the available data on the beta-decay or electron-capture
transitions. These transitions run from the intermediate nucleus to the final or ini-
tial state of the corresponding (35 decay. Unfortunately, this information is usually
available only for one state, typically the ground state of the intermediate nucleus.
Recently, it has been suggested to use the experimental data on the 2v33 decay half-
lives to obtain the nuclear matrix elements involved in the corresponding Ov 3 decays
[26]. However, there are some pitfalls in this method, as pointed out in |27]. It has
also been proposed that one could use charged-current neutrino-nucleus interactions
as a probe of the virtual transitions involved in the Ov33 decay [28]. Unfortunately,
due to the extremely small cross section of the neutrino-nucleus charged-current re-
action, the experimental setup would require neutrino-beam intensities which cannot
be achieved at the present.

One method to study the structure of the states of the intermediate nucleus of
double beta decay is to perform muon-capture experiments. The ordinary muon
capture (OMC) process allows to study one leg of the virtual transitions involved in
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Figure 2: A schematic illustration of the connection between the (3-decay and
ordinary muon capture. In the 2033 decay the transition proceeds via the 17 states of
the intermediate nucleus (solid lines), whereas in the Ov3[ decay all the intermediate
states are active (solid and dashed lines).

double beta decays. This is demonstrated in Fig. 2, where the 33 decay of "Ge
has been taken as an example. By measuring the OMC rates in transitions from
the ground state of "Se to the states of ®As one could gain information about the
structure of these states. In spite of the fact that the OMC probes only one of the two
branches involved in double beta decay, it can provide a lot of valuable information
which can be used in Gf3-decay calculations. Due to the large mass of the muon,
about 100 MeV, the final state of the OMC can be highly excited. Therefore, in
principle, it is possible to study all the relevant intermediate states of double beta
decay. Moreover, another consequence of the large mass of the muon is the fact that
forbidden transitions are not as suppressed as in the case of the electron capture or
beta decay. As a matter of fact, transition rates to some of the 27 states can even
be higher than transition rates to 11 states. This allows to study also intermediate
states with spin and parity other than 1*. These states are potentially relevant in the
OvfB6 decay [29].
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3.1 Ordinary muon capture

When a negative muon is stopped in matter, in the outer shells of atoms, it undergoes
several electromagnetic transitions to lower atomic orbitals, accompanied by emission
of muonic X-rays. Energies of these X-rays can reach up to an order of MeV in heavier
nuclei. Finally, the muon ends up into the K atomic orbit. As a result, it is possible
that the muon is captured by a nucleus in a process u~ + (4, 2) — v, + (A, Z - 1)),
where the asterisk denotes the possibility that the final nuclear state can be an excited
state. The OMC competes with the decay of the muon. In addition to the OMC there
exist also other processes in muonic atoms. In the radiative muon capture the final
state also contains a gamma-ray. Also, in the case of some heavy nuclei the muon
capture can lead to fission of the final nucleus.

There exists a phenomenological estimate by Primakoff to the total muon capture

rate Wiot:
A-Z7
Wtot — Zélf-le |:1 — X2 <7>:| 5 (19)

where Z.g is the effective charge of the nucleus [30|. Furthermore, the coefficients X,
can be fitted to the experimental data giving the values X; = 170 s and X, = 3.125.
However, this approach is not fruitful from the nuclear-structure point of view since
we need information on capture to individual nuclear states. In [31] the authors
calculated the total muon capture rates in the RPA basis and obtained results similar
to the ones coming from eq. (19). According to their calculations the RPA formalism
reproduces total OMC rates quite reliably.

The formalism needed for the calculation of the OMC rate was developed by Morita
and Fujii in Ref. [32]. In their work they started from the most general Hamiltonian
density

H= QZHH'(#P ) (20)
with

V2H = Y Cy WV'NM + @V’YA’YS?%}
—VPCa [ Aty + Ly,
+7°Cp [0 thy — Yoty
+0Chs [pp(Vuinatn) + pp(Uuinay’¥,)] (21)

where 0% = 1 [y29? — 42| and p, = (i0/0t , iV). However, due to the fact that the

weak magnetism coupling constant is proportional to the vector coupling constant,
Cu = Cvlpp — pn)/2M =~ 3.706C\/2M, there are actually only three independent
coupling constants, namely Cy,, Cy, and Cp.

In the shell-model calculations of beta-decay rates the coupling constants Cy and
C'4 are also present. In these calculations a typical value adopted for the ratio of the
vector coupling constant and the axial-vector coupling constant is Cy/Cy = —1.0,
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instead of the bare nucleon value C4/Cy ~ —1.25 [33, 34|. In the present work the
ratio C'4 /Cy = —1.0 has been used for the OMC calculations.

The value of the pseudoscalar coupling constant is fixed by the partially conserved
axial-vector current (PCAC) hypothesis, giving rise to a nuclear-model independent
estimate Cp/Cy =~ 7 (see e.g. [35]). However, the value of the pseudoscalar coupling
constant may need to be renormalized in the nuclear medium, like in the case of the
axial-vector coupling constant.

The transition rate for the OMC can be derived from the Hamiltonian density
of Eq. (20) [32]. The derivation is done by making the standard non-relativistic re-
duction of the nucleon operators. The lepton part is kept relativistic and the small
component of the muon bound state wave function has been set to zero. This approx-
imation is valid since in our calculated cases (aZ)? < 1, where « is the fine-structure
constant. The effect of the small component is of the order of a few percent [36].

By performing a summation over all magnetic quantum numbers and integrating
over the neutrino momentum one ends up with following expression for the transition
rate

2Jr +1 q
W =4P(aZm!)? 1—————— ) ¢ 22
(aZm,) 2Ji+1< m“—I—AM>q’ (22)
with
m —Wo
= —Wo) (1 - =2—— 23

and A being the mass number of the initial and final nuclei, Z the charge number
of the initial nucleus, and m;, the reduced muon mass. Furthermore, M denotes the
average nucleon mass and Wy, = Mg — M7 + me + E, with Mg and M; denoting the
final and initial atomic masses. The quantity P in Eq. (22) contains all the nuclear-
physics aspects of the reaction, in particular it contains the reduced nuclear matrix
elements M[kwu|. Definition of the term P can be found e.g. in Refs. [32, V]. The
term (aZm),)* in eq. (22) comes from the amplitude of the muon wave function at
the origin in the nonrelativistic case. The effect of the relativistic corrections in this
term are of the order of few per cent or less in our calculated cases, as deduced from
the expressions of [32|. The reduced matrix elements are defined as follows

A
_ /
/UJfo E € azm”Ts\IjsTiUJiMidrl . dTA
s=1

— Mlkuwu (i

p>](JiMiUMf—Mi!Jfo) , (24)

where Uy, and Uy, are the final and initial nuclear wave functions, respectively.
The factor U, is defined in Table 1. The quantity Y —in Table 1 is the vector
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spherical harmonic and it is defined as

Vowu = (4m) 2V (1), (25)
. 3
Mo = ;(1 —mwm-+ Mu MY M (§) - (26)

Table 1: Definition of the reduced matrix elements for the muon capture.
Matrix element U,

M{0wu] Gu(@) Vouts () Gun
M{twul jolar Vi " (7o)
M0wn] Gular)£aZ g, /p) s (ar) | Yo ™ ()0
M(twuz] [Gular)£aZ(mi,/p,)jus(ars) | Vo " (o)
M [0wup] ijw(qrs)yé\igMias * PsOuwu
M[1wup) (@) Vi (s, D)

The large momentum exchange in the muon-capture process, as compared to the
beta-decay or electron capture, emphasizes the role of the radial part of the nuclear
wave function. As seen in Table 1, the muon-capture matrix elements contain the
spherical Bessel function j,(gr), emerging from the Fourier-Bessel expansion of the
final-state lepton wave function. The strong oscillations of the Bessel function inter-
fere with the radial part of the mean-field single-particle wave function. Therefore,
the shape of the mean-field potential may have a significant impact on the calculated
single-particle transition matrix elements. Typically the muon capture matrix ele-
ments have been calculated in the harmonic-oscillator single-particle basis. However,
the realistic single-particle potential resembles more the Woods-Saxon potential than
the harmonic-oscillator potential. The Woods-Saxon potential can produce noticeable
effects on the calculated half-life when compared to the one calculated by using the
harmonic-oscillator basis [I].

3.2 Two-neutrino double beta decay

The two-neutrino double beta decay proceeds as virtual transitions via the 17 states
of the intermediate nucleus. The expression for the inverse half-life in the case of a
transition to the ground state of the final nucleus can be factorized as

2v -1 21/ 2
17 (0F = 0] =Godr | MEER T (27)
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where Ggé)T is an integral over the phase space of the leptonic variables |7, 37]. The

nuclear matrix element M](32é')T, corresponding to the 2v((3 decay, can be written as

ME) =3 OF 1152, 0T LD X2, 0()E [105)
bat (3Qps + En — M;)/me + 1 ’

(28)

n
where the transition operators are the usual Gamow-Teller type of operators for the g7
transitions, Qg is the 2v33-decay @) value, £, is the energy of the nth intermediate
state, M; is the mass energy of the initial nucleus, and m, is the rest-mass energy
of the electron. Contributions from the Fermi transitions can be neglected [7]. The
expression for the half-life in the case of transitions to the exited states of the final
nucleus is more complex and can be found in |7].

One could also consider contributions coming from the first-forbidden transitions
to the 2v(33 decay rate. These transitions proceed via the 07, 1~ and 2~ states of
the intermediate nuclei. In Ref. [38] the authors found notable contributions to the
nuclear matrix elements from the 0~ and 1~ channels. However, it has been shown
that due to the suppression of the associated phase-space integrals these channels can
be neglected |39]. In typical cases this suppression is of the order of 107 for the
first-forbidden channel and stronger for the higher forbidden channels. It has to be
mentioned that in the case of the neutrinoless double beta decay the intermediate
states other than 1% have a non-negligible contribution to the total half-life.

3.3 Neutrinoless double-beta-decay

The most general effective weak-interaction Hamiltonian density, relevant for charged
weak currents, can be written as |7, 37|

B — Gy cos O
v V2
where G is the Fermi coupling constant and 6 is the mixing angle of the Cabibbo-

Kobayashi-Maskawa mechanism for mixing quark flavours. The left- and right-handed
leptonic currents are given as follows

(et + i+ mjma T+ N ) +he,(29)

jLu = é’Yu (1 - 75) Vel (30)
Jru = €% (1+75) Ver s (31)

where the weak eigenstates of the neutrino are given in terms of the neutrino mass
eigenstates Njp g as

2N,

Vel = ZUeijLa (32)
j=1

2N,

Vin = Y VeiNjr, (33)
=1
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where N, is the number of the neutrino generations. The U and V matrices are the
mixing matrices between the weak eigenstates and mass eigenstates of the neutrino.
The summations in Egs. (32) and (33) run to 2N, due to the fact that the Majorana-
neutrino field Ny, /g contains the left- and right-handed neutrino fields. The hadronic
current of Eq. (29) can be written at quark level as

T =" (1 F75)d. (34)

By assuming the neutrino mass mechanism to be the dominant one in the Ov3s3
decay (i.e. the right-handed currents are neglected) one can write as a good approxi-
mation the inverse of the half-life as

2 2 2
(OV)} -1 o) [ (mw) (0v) gv (0v)
t =G M, — =] M, 35
[ 1/2 1 < Me GT ga F ’ ( )

where m, is the mass of the electron and

(my) =Y AT my U ? (36)

J

is the effective mass of the neutrino, )\fp being the CP phase. Furthermore, the

quantity G§°”> of Eq. (35) is the leptonic phase-space factor defined in [7]. The
double Gamow-Teller and double Fermi nuclear matrix-elements, which appear in the
expression of the Ov3( half-life, are defined as follows:

M = ST(0F e (o, E)110F) (37)
MEY = N (0514 oy B 0w - 0al[0F) . (38)

a

Here summation over a runs over all the intermediate states. The definition of the
neutrino potential hy (7, £,) can be found in Refs. |7, 37].

3.4 The OMC as a probe of double beta decay

As mentioned, the OMC can be used to probe the structure of the states of the
intermediate nucleus involved in the double-beta-decay transition. The used two-
body interaction, in particular the value of the parameter g,, in the case of the
pnQRPA, strongly affects the wave functions of the intermediate nucleus. This, in
turn, reflects on the one-body transition densities from the initial and final states
to the intermediate states of double beta decay. These transition densities are also
present in the calculation of the OMC rates to the intermediate states. Thus, by
comparing the calculated OMC rates to the experimental ones, one can estimate the
reliability of the nuclear matrix elements involved in the double beta decay. It is
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worth pointing out that there exists a rather direct bridge between the 2v33 decay
and the OMC. At the limit ¢, Z — 0 for the OMC matrix element it follows that

M([101] — Jf—l—?’MGT, (39)
4
where Mqr is the reduced Gamow-Teller matrix element appearing in the double-beta-
decay nuclear matrix element M](DQS)T of Eq. (28). For the Ov33 decay the situation is
more complicated. The calculation of the matrix elements MPQOV) and Méo%j) involves
one-body transition densities for all multipoles in both virtual legs.

There are, however, some drawbacks in the use of the OMC to probe the structure
of the states of the §3-decay intermediate nucleus. Firstly, the OMC probes only one
of the two legs of a double-beta-decay transition. Secondly, due to the important role
of the induced hadronic currents in the OMC, extraction of the relevant information
about the matrix elements from the experimental results is more complicated. Lastly,
in the nuclear medium the value of the pseudoscalar coupling constant may need to
be renormalised from the value given by the PCAC hypothesis. Nevertheless, the
OMC offers a versatile tool to study the structure of the intermediate nucleus. In
contrast to the beta-decay data, the OMC can be used to study also the exited states
of the intermediate nucleus. Moreover, the forbidden transitions in the OMC are
not as suppressed as in the case of the beta decay. This allows to study also the
intermediate states which are relevant for the Ov(3 decay.
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4 Calculations

4.1 Nuclear-structure calculations

In the case of the light nuclei, the studied double-beta-decaying isobars were A =
36,46,48,50. The structure of these nuclei was calculated by using the shell-model
code OXBASH. The used interactions in the case of the sd-shell A = 36 isobars were
the USD [1] and SDPOTA [40]. For the fp-shell isobars A = 46, A = 48 and A = 50
the interactions used were the FPBP [41] and FPMCC [42]. The structure of the
A = 46 isobars was calculated in the full fp model space, with no restrictions in the
number of configurations. Also for the A = 48 isobars the 2v3( rate calculations
were done in the full fp-space. In the case of the A = 50 nuclei the JT-dimensions
had to be reduced heavily due to computational limits. The truncation was done by
requiring the minimum particle occupancy in the f7/, orbital to be 8.

The structure for the medium-heavy nuclei was calculated by using the pnQRPA
theory. In the numerical computations the proton model space was taken to be 1p-
0f-2s-1d-0g-Ohy1 /2. On the neutron side the used model space for Se was the same
as on the proton side, and in the case of °°Cd the used model space for neutrons
was taken to consist of the 1p-0f-2s-1d-0g-2p-1f-Oh shells. The corresponding single-
particle energies were obtained from the Woods-Saxon well with its parametrization
taken from Ref. [43].

The nuclear Hamiltonian for the pnQRPA calculations was obtained from the
Bonn one-boson-exchange potential [2], complemented with an empirical renormal-
ization based on phenomenological pairing gaps, the giant Gamow-Teller resonance
and spectroscopic data on nuclei close to the relevant isobars. The proton-neutron
particle-particle interaction strength was scaled by the parameter g,, which can be
used as a free parameter.

4.2 Results for light nuclei

To begin with, the calculated partial OMC rates to the 1T states of the final nucleus,
as functions of the excitation energy of the final state, are presented in Fig 3. These
results are calculated in the harmonic-oscillators single-particle basis. The value for
the axial-vector coupling constant was taken to be go = —1 in all our calculations.
Furthermore, the ratio gp/ga = 7 was used for the pseudo-scalar coupling constant.
As can be seen, the strongest transition rates can be found among the few lowest 17
states for the case of 36Ar, 46Ti, and *®Ti. However, in the case of 5°Cr, the transition
rates are more diffused to the higher exited states.

The calculated OMC results can be compared with the ones calculated in the
Woods-Saxon single-particle basis. The parametrization for the Woods-Saxon single-
particle potential was taken from [43]. In Table 2 the calculated OMC transition
rates to the 17 states of ¥Sc and #8Sc are listed for both the harmonic-oscillator and
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Woods-Saxon cases. As can be seen, the transition rates for the different bases are
not far from each other, except for some scattered cases.

In Table 3 the calculated 2v303 rates for 36Ar, 46Ca, *8Ca, and ®°Cr are listed. In
these calculations the value g = —1.0 for the axial-vector coupling constant has been
adopted. In the case of the 2033 decay of *Ca the calculated result can be compared
with the available experimental one. The experimental result for the 2033 decay of

BCa is th/';) (0 — 0F) = 4.2%33 x 10" y [44]. By evaluating the phase-space integral

Ggé)T, the experimental value for the 2v33 nuclear matrix element can be obtained.
Using ga = —1.0, one then obtains M]gZé’)T(exp) = 0.038T0 0% In the case of the 2v303
decay of ®°Cr there exist an experimental limit ¢;5 > 1.3 x 10'® y for the half-life of
the STEC mode [45].

By comparing the experimental value of the 2v33-decay matrix element of “Ca to
the calculated one, it can be seen that the used interaction tends to overestimate the
value of the matrix element. The corresponding cumulative sum of the 2v33-decay
matrix element, plotted in Fig. 4, indicates that a few lowest intermediate states give
the biggest contribution to the total matrix element. This is partly explained by the
energy denominator suppressing the contribution of the higher-lying states. Another
reason is that the absolute value of the product of the two GT matrix elements in
Eq. (28) is much bigger for these low-lying states than for the other, higher-lying
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Figure 3: Calculated OMC rates to the 17 states of the final nucleus as a function
of the excitation energy for four different initial nuclei. The initial nucleus and the
used interaction are indicated in each panel. The ratio gp/ga = 7 was adopted in the
calculations.
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Table 2: Calculated partial OMC transition rates for the Woods-Saxon (WS) and
harmonic-oscillator (h.o.) single-particle bases using the FPBP interaction. The ratio
gp/ga = 7 with ga = —1.0 has been adopted.

W [10% 1/s] W [10% 1/s]
Parent JI h.o. WS Parent JI h.o. WS
BTy 17 2.032  3.433 || ®Ti 17 6.310 6.261

1; 15.123 12.538 1; 16.366 12.029
1; 1.780 1.754 1;{ 13.000 11.158
17 1.028 0.441 17 0.080 0.074
02 T T T T T T T T T T T 01 T T T T T T T T T T T T T
L 46 ] L 48 ]
016k Ca, FPBP | 008 L Ca, FPBP |
%;012 L ] %;0.06 L ﬂjﬁ\,\ ]
N [ 1N [ 1
S 008 i ) S 004 i )
0.04 4 o002Ff 1
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Figure 4: Calculated cumulative sum of the matrix element ]\/[](325)T of Eq. (28) as
a function of the excitation energy of the intermediate state. The 2v33 decaying

nucleus and the used interaction are indicated in each panel.

Table 3: Calculated DGT matrix elements, Q-values in units of the electron mass
(T = @/me), phase-space factors in units of inverse years, and the corresponding
half-lives in units of year for the considered double-beta transitions. The renormalized
value g4 = —1.0 has been used in all cases.

46Cq 48Ca 36 Ay 0Cr
FPBP FPBP USD (bare) | FPBP
T(3~37) | 1.94 8.36 T(ECEC) | 0.84 2.27
GEup | 4.8 x 107% ] 1.6 x 10717 GEar | 5.1 x 1072 | 4.9 x 1072
M3r | 0.108 0.058 MEr | 0.117 0.097
t12 | 1.7 x 10* | 1.8 x 10" tip | 1.4 x 102 | 2.1 x 10%

states. The same reasoning applies also to *6Ca, depicted in the left panel of Fig. 4.
Comparison of Figs. 3 and 4 shows that the same intermediate states are relevant
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for the OMC and 2v3( decay. Therefore, measurements of the partial OMC rates to
these low-lying states of the intermediate nucleus could give some valuable information
about the involved nuclear structure. This information is also useful in the case of
the Ovf33-decay rate calculations.

4.3 Medium heavy nuclei

In the case of the medium heavy nuclei the OMC rates were calculated for the nuclei
6Ge, 82Kr, 1R, 106Cd, 10Cd, 1*6Sn, 1%Xe, and ¥Ce. The OMC on these nuclei
leads to the odd-odd nuclei %As, Br, 10Tc, 106Ag MOAg U6[p 128] apd 13615,
which are involved as providing intermediate states in the double beta decays of the
nuclei "%Ge, #2Se, 1Mo, 196Cd, 10Pd, '16Cd, '*Te, and ®5Ce. Two of the decays,
namely 1%°Cd — Ag and ¥%Ce — 13Ba, are 373" type of transitions, while the
rest are 3~ 3~ type of transitions. All of the chosen isobaric triplets contain low-lying
1" or 27 states in the involved intermediate double-odd nucleus.

Table 4: Total muon-capture rates to the 17 or 2~ states (column 6) in the transitions
of column 5. The ratio gp/ga — 7 was used. The g, value of column 3 is chosen
such that the experimental log ft value [46| (column 2) can be roughly reproduced
(column 4) in a specific beta-decay transition (column 1).

log ft log ft Wit
Beta decay (exp) gpp (th.) Muon capture [10% 1/5]
As(17) — ™Se(0],) - 09 58 "Se — TAs(1t) 114
As(2;,) — "Se(0;) 0.7 1.0 87 T™Se — TAs(2") 1529
2Br(2;) — S2Kr (07, ) 89 1.0 89 ®Kr - ®Br(2") 1497
0Te(1f,) — 1OoRu(OJrs) 46 1.1 4.4 WORuy — 100T¢(1T) 3734
100Te(27) — 100Ru(0+ ) - 1.0 8.9 Ry — 100T¢(27) 1889
06Ag(15,) — 195CA(07,) >42 08 43 105Cd — %Ag(1Y) 4635
HOAg(1:.) — 10CA(0S,) 47 09 47 0Cd — WAg(1*) 4650
10Ag(2)) — 10Cd (05 ) S 10 9.2 100q — M0Ag(2) 1635
MIn(1f,) — 1165n(0+s) 4.7 1.0 4.7 1168n — 1167n(171) 5102
H61n(27) — Mﬁsm(OJr ) - 1.0 131 MoSp — M6[p(27) 1430
(1) — 128Xe(0+s) 6.1 1.0 6.3 2Xe — 28[(1T) 5835
57(21) — 125Xe (0}, ) S 10 9.4 2Xe — 12[(27) 1270
(14, ) — 135Ce(0F, ) S 10 82 13Ce — BLu(1t) 1423
136La(2) — 1%9Ce(0/,) - 1.0 9.7 135Ce — 36La(27) 1383

In Table 4 the calculated results for the total OMC rates to the 17 and 2~ final
states are presented. In these calculations the ratio gp/ga = 7 was used. The value of
the parameter g,, has been chosen such that the corresponding experimental log ft
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value can be roughly reproduced. As mentioned, the g, strongly affects the calculated
nuclear structure, in particular the wave function of the lowest 1% state. This can be
seen in Fig. 5, where the partial OMC rates to the 1] states of several final nuclei
have been plotted as functions of g,,. The same shown g, dependance can be found
in the 2v3(3 decay rates, and in fact the measured 2v33 half-lives can be reproduced
by suitably choosing the value of g, [47]

Fig. 5 also illustrates the break-down of the pnQRPA theory at large values of the
gpp Parameter. Due to the excessive growth of correlations in the pnQRPA ground-
state, the calculations produce unphysically large values for the capture rates. This
break-down of the pnQRPA theory can also be seen in the 33 matrix elements at
large values of g, [47].
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i I = TKr
.1 | R 100Ru
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10° . 116Cd
o r 3 * 116Cd
5 i
= I 1 1288n
g; I ] Xe
2+ i
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2 i
103 | 1 | 1 | 1 | 1 | 1 | I | I |

00 02 04 06 08 10 12 14
Ypp

Figure 5: Calculated OMC rates from the ground state of the indicated nuclei to the
17 states of the final nucleus as functions of the particle-particle interaction strength
parameter g,,. The ratio gp/ga = 7 has been used.

In addition to the parameter g, there is also another parameter present in the
capture rate calculations with somewhat uncertain value, namely the pseudoscalar
coupling constant gp. The capture rate W has a parabolic behavior as a function of
the gp. Thus, when a experimental measurement of the partial capture rate is made, it
translates to a certain area in the gp and g,, parameter spaces. By measuring partial
capture rates to few lowest states, the intersection of the corresponding parameter
spaces should hopefully become small enough to yield a rather restricted value for
these parameters.
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5 Discussion and conclusions

The main focus of the present work is in the nuclear-structure aspects of the OMC
process. Publication [I| discusses the effect of the mean-field parameters on the OMC
observables. The Publications [II-VI| concentrate on the use of the OMC as a probe
of virtual transitions of double beta decays. Due to the fact that the structure of
the intermediate states of double beta decay has a strong impact on the calculated
values of the matrix elements, for both 2v63 and Ov((3 decays, one needs a method
to evaluate the reliability of the used nuclear model. Publications [II-VI| demonstrate
how to use the OMC to probe one branch of the G transition. The nuclear models
employed in the OMC rate calculations of the present work are the nuclear shell-model
and the pnQRPA. These two models are also the ones most used in 3 calculations.

In Publication [I] the effect of the nuclear mean field on the muon capture observ-
ables was studied. Due to the interference of the oscillating Bessel function j,(qr)
and the single-particle wave function the shape of the mean field potential has an
impact on the calculated OMC matrix elements. The calculated results of the OMC
rates in the harmonic-oscillator and Woods-Saxon single-particle bases did show some
differences. However, differences were usually small and never significant. The same
was also pointed out in Publication [VI| in the case of the OMC of “°Ti and **Ti.
Also, the results for the angular correlation parameter z in [I| were found to be quite
similar in both single-particle bases.

Although the calculated values of the OMC rates depend on the used interaction,
it was found in |V| that in the case of the A = 36 isobars it there were no large
differences between the USD and SDPOTA interactions in the total capture rates to
1% states. This happened even though the transition rates to the individual states
differed. The same kind of phenomenon was also noted in the 2v33-decay matrix
element of *®Ar. The value of the total matrix element Ml()Qé)T was quite similar in
both cases, although there were some differences in the shape of the cumulative sum.

In the calculations of the fp-shell nuclei it was found that in the OMC of #6Ti
and 8Ti the biggest transition rates were among the transitions to the few lowest
17 final states. These states were also important in the 2v33 decay. The OMC rate
calculations of Publication |V] indeed indicate some differences between the FPBP
and FPMCC interactions. The OMC rates for “°Ti and *®Ti were also calculated
in [V]| with different values of the pseudoscalar coupling constant gp. These calcu-
lations indicate surprisingly small dependence on gp in many cases. This helps the
nuclear-structure analysis, when the calculated partial OMC rates are compared to
the experimental ones. The first experiments on the OMC of **Ti have been per-
formed at the PSI [48]. Concerning the OMC of °Cr it was found that the captures
favour more the higher energy 17 final states than in the other calculated cases. It
was also noted that the partial OMC rates did not wary much as functions of gp.

A number of 2vG[3 rates were calculated in [V]. In addition to the results quoted
in the previous section, the shape of the calculated cumulative sum of the matrix
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element M54 was studied also for 8Ca. It was found that the strong transitions

through few low-lying 17 states were mainly transition involving the 0f7,, orbital.
Contributions of transitions through the higher-lying 11 states typically decreased the
value of the total matrix element. The involved single-particle transitions were mainly
0f7/2 — 0f5/2 — 0f7/2. This same behaviour was seen for both the FPBP and FPMCC
interactions. In Publication [IV] it was noted that FPBP and FPMCC interactions
produce quite similar values for the total 2063 decay matrix element. However, the
shape of the cumulative sum had differences. Nevertheless, the common feature for all
the calculated cases of 2033 decay of °Ca and **Ca was that the transitions through
a few lowest 17 states dominated the total matrix element. This was also displayed
in Publications [IV, V] in the plot of the product of the two Gamow-Teller matrix
elements of Eq. (28) as a function of the excitation energy of the intermediate state.
For °°Cr it was pointed out in [V] that the experimental limit of [45] was far from the
calculated value of the half-life.

In the case of the heavier nuclei the individual OMC rates had a strong depen-
dence on the particle-particle interaction strength parameter g,,, as can be seen in
Publication [ITI|]. However, the strong dependence on g, tends to vanish when the
partial capture rates are summed up to the total capture rates to the 17 or 2~ states.
In |III| the involved matrix elements of the OMC were analyzed. It was found that
the matrix element M[101], involved in transitions to the 17 states, is typically more
sensitive to g,p than the matrix element M[112], which appear in transitions to the 2~
states. This also reflects in the partial capture rates. The break-down of the pnQRPA
at large values of g,, was also seen in some matrix elements. It was found that the
partial and total OMC rates clearly depend on the pseudoscalar coupling constant
gp. Thus, there are actually two relevant parameters in the calculations. The log ft
values of 3 decays of the intermediate nuclei to the ground states of the final or initial
nuclei of double beta decay were discussed in [ITI]. In many cases the experimental
log ft value was unknown.

In conclusion, the formalism of the OMC has been presented and its connection
to the double beta decay explored. It has been shown that the partial OMC rates
can be used to probe the intermediate states of double beta decay. Furthermore,
results on the partial OMC rates have been presented for several nuclei. The nuclear
structure for the light nuclei was handled with the nuclear shell model. In the case of
the heavier nuclei the pnQRPA was used for the nuclear-structure calculations. For
the lighter nuclei it was found that 17 states with large OMC transition rate were also
the ones which gave the dominant contributions for the 2v33 decay. The effect of the
mean field on the OMC rates was also discussed. For “®Ca the calculated 2v33-decay
rates were compared to the experiment. In the case of the heavier nuclei, strong
dependence of the OMC rates on the particle-particle interaction strength parameter
gpp Was found. Also, the role of the pseudoscalar coupling constant gp was discussed.

24



References

[I]  Publication I of this thesis.

[IT] Publication IT of this thesis.

[IITI] Publication IIT of this thesis.

[IV| Publication IV of this thesis.

[V] Publication V of this thesis.

[VI| Publication VI of this thesis.
[1] B.H. Wildenthal, Prog. Part. Nucl. Phys. 11 (1984) 5.
[2] K. Holinde, Phys. Rep. 68 (1981) 121.

[3] M.G. Mayer, Phys. Rev. 74 (1948) 235;
M. Goeppert Mayer, Phys. Rev. 75 (1949) 1969.

[4] B.A. Brown, A. Etchegoyen and W.D.M. Rae, the computer code OXBASH,
MSU-NSCL Report 524 (1988).

[5] J.A. Halbleib and R.A. Sorensen, Nucl. Phys. A 98 (1967) 542.
[6] J. Suhonen, T. Taigel and A. Faessler, Nucl. Phys. A 486 (1988) 91.
[7] J. Suhonen and O. Civitarese, Phys. Rep. 300 (1998) 123.
[8] M. Baranger, Phys. Rev. 120 (1960) 957.
9] E. Fermi, 7. Physik 88 (1934) 161.
[10] S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264.
[11] The Super-Kamiokande Collaboration, Phys. Rev. Lett. 81 (1998) 1562.
[12] The SNO Collaboration, Phys. Rev. Lett. 89 (2002) 011301.
[13] KamLAND Collaboration, Phys. Rev. Lett. 90 (2003) 021802.
[14] M. Appollonio et al., Phys. Lett. B 466 (1999) 415.
[15] D.N. Spergel et al., Astrophys. J. Suppl. 148 (2003) 175.
[16] Ch. Kraus et al., Eur. Phys. J. C 40 (2005) 447.

[17] M. Goeppert-Mayer, Phys. Rev. 48 (1935) 512.

25



[18] V. Tretyak and Y. Zdesenko, At. Data Nucl. Data Tables 80 (2002) 83.

[19] W.H. Furry, Phys. Rev. 56 (1939) 1184.

[20] J. Schecher and J.W.F. Valle, Phys. Rev. D 25 (1982) 2951.

[21] O. Civitarese and J. Suhonen, Nucl. Phys. A 729 (2003) 867.

[22] H.V. Klapdor-Kleingrothaus, Nucl. Phys. B (Proc. Suppl.) 143 (2005) 229.

[23] C.E. Aalseth et. al., Mod. Phys. Lett. A 17 (2002) 1475.

[24] Yu.G. Zdesenko, F.A. Danevich and V.I. Tretyak, Phys. Lett. B 546 (2002) 206.
[25] M. Aunola and J. Suhonen, Nucl. Phys. A 602 (1996) 113.

[26] V.A. Rodin, A. Faessler, F. Simkovic and P. Vogel, Phys. Rev. C 68 (2003)
044302.

[27] J. Suhonen, Nucl. Phys. A 752 (2005) 53.

28] C. Volpe, J. Phys. G 31 (2005) 903.

[29] O. Civitarese and J. Suhonen, Phys Lett. B 626 (2005) 80.

[30] D.F. Measday, Phys. Rep. 354 (2001) 243.

[31] E. Kolbe, K. Langanke and K. Riisager, Eur. Phys. J. A 11 (2001) 39.
[32] M. Morita and A. Fujii, Phys. Rev. 118 (1960) 606.

[33] J.S. Towner, Phys. Rep. 155 (1987) 263.

[34] B.A. Brown and B.H. Wildenthal, Ann. Rev. Nucl. Part. Sci 38 (1988) 29.

[35] A. de Shalit and I. Feshbach, Theoretical Nuclear Physics vol I, (Wiley & Sons,
1974).

[36] V. Gillet and D.A. Jenkins, Phys. Rev. 140 (1965) B32.

[37] M. Doi, T. Kotani and E. Takasugi, Prog. Theor. Phys. Suppl. 83 (1985) 1.
[38] C. Barbero, F. Krampoti¢ and A. Mariano, Phys. Lett. B 345 (1995) 192.
[39] O. Civitarese and J. Suhonen, Nucl. Phys. A 607 (1996) 152.

[40] B.A. Brown, W.A. Richter, R.E. Julies and B.H. Wildenthal, Ann. Phys. 182
(1988) 191.

[41] W.A. Richter, et al., Nucl. Phys. A 523 (1991) 325.

26



[42] J.B. McGrory, B.H. Wildenthal and E.C. Halbert, Phys. Rev. C 2 (1970) 186.

[43] A. Bohr and B.R. Mottelson, Nuclear structure, vol. T (Benjamin, New York,
1969).

[44] V.B. Brudanin, et al., Phys. Lett. B 495 (2000) 63.
[45] 1. Bikit, et al., Phys. Rev. C 67 (2003) 065801.

[46] R.B. Firestone, V.S. Shirley, S.Y. Chu, C.M. Baglin and J. Zipkin, Table of
Isotopes CD-ROM, 8th Ed. Version 1.0 (Wiley-Interscience, New York, 1996).

[47] J. Suhonen, Phys. Lett. B 607 (2005) 87.

[48] Ch. Briancon, et al., The R-97-03 Experiment and Its Extension (uCR4203) at
the PSI.

27



	Text3: ISBN 978-951-39-3167-4
	Text4: URN:ISBN:978-951-39-3167-4


