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Abstract

Metal clusters have attracted a growing attention during the past three decades.
This interest is caused by the uniquely different properties of these finite systems in
comparison to the corresponding bulk matter. The metallic evolution as a function
of the cluster size, and the intriguing interaction of alkali metals with highly oriented
pyrolytic graphite (HOPG) surface are among the most widely studied topics within
the cluster physics. Carbon nanotubes, on the other hand, are very promising building
blocks for nanoelectronics and chemical sensors.

In this thesis, we employ the density functional theory to examine the electronic
properties and structures of small magnesium clusters, alkali metals on a graphite
surface and carbon nanotubes which are functionalized with cyclic macromolecules.

The slow non-monotonic metallic evolution of magnesium clusters up to cluster size
Mg,3 was verified with "magic” cluster sizes of four and ten atoms that were particu-
larly stable because of their closed electron shells. The widely debated interaction of
alkali metals with HOPG was found to be ionic, and the experimentally found over-
layer constructions and the related physical and chemical properties of alkali metal
adatoms as well as the anomalous behavior of sodium were studied. The modifica-
tion of electronic properties of (4,4), (8,0), and (4,0) single-walled carbon nanotubes
with cyclic crown ether and cyclodextrin macromolecules were studied by threading
them on carbon nanotubes. It was found that this kind of polyrotaxane complexes
have essentially the same electronic properties as pristine nanotubes unless chemical
cross-linkage between the tube and the macromolecule is enforced. However, it was
found that it is possible to tune the conductivity of carbon nanotubes with chemical
cross-linking.
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1 Introduction

1.1 Atomic Clusters

An atomic cluster is an object that comprises from few up to hundreds of thousands
of atoms of one or more elements. Even if the class of clusters is defined with the
strictest manner it still includes a vast amount of objects, and even more if carbon
nanotubes and macromolecules are counted. Cluster research is a moderately new field
of physics which has been growing explosively during the last few decades. Despite this
applications of metal clusters have been around for hundreds of years as, for example,
glass coloured with metal particles was produced for the flamboyant window scenes
of churches.

Until the early 1980’s there was two different views on the cluster behavior: One was
that the properties of clusters can be predicted from the properties of single particles
and bulk matter by scaling, and the other was that clusters behave like molecules,
and that there is no relation between different cluster sizes and clusters with different
elements, so that every cluster is essentially unique. This was changed in 1984 as
Knight et al. produced and detected clusters of alkali metals with up to 100 atoms
[1, 2]. Their results revealed size-dependent behavior, where the electronic structure
of clusters appeared to reflect that of a spherical potential well: Clusters in which
the number of valence electrons matched to the spherical shell-closing numbers were

Figure 1.1: The atomic coordination in clusters differs usually from that in bulk: (a) The bulk hep
lattice of Mg, and (b) the geometry of Mgag [5].
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Figure 1.2: (a) The structure of a graphene layer, and (b) three-dimensional graphite [6].

more abundant in the spectrum. Ekardt predicted this behavior theoretically virtually
simultaneously [3, 4].

Typical metallic features such as a good heat and electronic conductance, formabil-
ity, light reflectivity, and delocalization of electrons (metallic bond) are bulk proper-
ties that do not necessarily apply to zero-dimensional metal atoms or small clusters.
Thereby, these objects do not have a band structure. Another crucial difference be-
tween clusters and bulk material is that a large portion of the cluster atoms, some-
times all of them, can be considered as surface atoms (see Fig. 1.1). Consequently, the
atoms in clusters have fewer nearest-neighbor atoms, and they are exposed to their
surroundings. At which size the metallic properties emerge, and what are the prop-
erties of small "sub-metallic” pieces of metal need to be studied in order to achieve
a fundamental understanding of materials. This is especially important because ap-
plications based on metal clusters, such as functionalized materials, nanodevices and
electric nanocircuits have been proposed, and to some extend already developed.

1.2 Role of Surface In Cluster Research

Surface science is a wide research area which involves physicists, chemists and bi-
ologists. It has its roots in solid state and molecular physics, physical and inorganic
chemistry, catalysis, microelectronics, thin film technologies, electrochemistry and var-
ious other research subjects. Processes at solid surfaces can affect industrial processes
both profitably (e.g. catalysis) and harmfully (e.g. corrosion). Chemical reactions at
two-dimensional solid surfaces can differ remarkably from those in three-dimensions,
and reaction pathways with lower activation energies can exist.
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In order to build planar nanostructures, for example electric circuits, some kind of
a substrate is usually needed. Similarly, studying the physical and chemical proper-
ties of clusters is often easier when they are attached on a substrate. Clusters and
nanostructures interact with the substrate, and their geometries and properties can
change. The cluster-substrate interaction can lead to novel materials and new use-
ful applications, but it can cause problems if the original features of the cluster or
constructed nanostructure should be maintained. Therefore, to make controlled ex-
periments a suitable substrate material has to be chosen. The planar, chemically inert,
and layered structure of highly oriented pyrolytic graphite (HOPG, see Fig. 1.2) is in
many cases a potential candidate, because one can split smooth and durable surfaces
from it that can be cleaned easily and used as a weakly interacting (inert) substrate.

A vast number of studies has been performed on alkali metals on graphite surface
(see review [6] and the references therein). Alkali metals are called simple metals,
because they have only one valence electron, and their behavior can be predicted in
many respects from a simple "jellium” model. The interaction with graphite is much
more complicated, though, and alkali metal adatoms prefer a different binding site
(hollow site) on the surface than hydrogen (above a carbon atom), which also has one
valence electron |7]. In fact, it is still under debate whether the binding between alkali
metals and graphite is of ionic, metallic, or covalent type. So far, most studies have
concentrated on potassium, but reports on other alkali metals have emerged recently.
However, there is still place for research as there are discrepancies between experi-
mental and theoretical results, and even between different theoretical approaches |6].
This is due to the different approximations that have to be incorporated in order to
simulate many-particle system consisting of a nanoscale object (cluster) sitting on a
macroscopic substrate.

1.3 Carbon Nanotubes, Crown Ethers, Cyclodextrins,
and Their Complexes

Carbon nanotubes (CNTs) are one-dimensional, hollow, and tubular structures which
are formed via self-assembly under certain conditions, although the mechanism itself
is not yet fully understood [8, 9]. The CNT walls can be described as graphene-like
hexagonal carbon networks, and there are single-walled carbon nanotubes (SWNT)
and multi-walled carbon nanotubes (MWNT). Experimentally, CNTs were observed
already by Morinobu Endo in 1970’s [10], but it was only after the finding of fullerenes
by Kroto and Smalley (in 1985) [11], though, that Smalley speculated about the exis-
tence of carbon nanotubes of dimensions comparable to Cgy. After Smalley’s specula-
tion lijima reported in 1991 about his experimental observation of carbon nanotubes
using a transmission electron microscope [12].
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Figure 1.3: (a) The unrolled honeycomb lattice of carbon nanotube [13]. If O and A, as well as B
and B’ are connected, a chiral (4,2) carbon nanotube is obtained. Chirality is defined by a vector
Ch = OA — (4,2), and T stands for a translation vector (I — OB — (4,-5)). (b) Picture of three
types of carbon nanotubes [13]: an “armchair” (n,n) nanotube, a zigzag” (n,0) nanotube and a ”chiral”
(n,m) nanotube (intermediate of the two former structures).

The CNT type is defined by the orientation of the hexagonal network in relation to
the tube axis (chirality, see Fig. 1.3). Carbon nanotubes have fascinating properties,
such as an exceptional mechanical strength and electronic conductance, and CNTs are
either conductors, semiconductors or insulators depending on the chirality [13|. They
have inspired various possible applications, e.g. durable or electronically conducting
fabrics have been manufactured already, and their potential usage in nanoelectronics is
widely studied. Many of their fascinating properties can be explained by the graphene-
like wall structure.

Crown ethers and cyclodextrins are other examples of self-assembled nanostructures

that have applications in physics and chemistry [14, 15]. Both of them are circular

macromolecules (macrocycles) with various radii. Macromolecules of the (-CH,CH,0-),
type (n > 4), i.e. consisting of four or more ethyleneoxy units, are generally referred to

as crown ethers because of their crown-like appearance. Cyclodextrins resemble a trun-

cated cone, and they consist of glucopyranoce rings (seven of them in §-cyclodextrin).

These kind of circular molecules have inspired the construction of rotaxanes, where

a linear molecule is threaded through a circular molecule, and the ring is locked by

bulky stoppers at both ends of the linear molecule (see Fig. 1.4) [16|. Thereby, these

two molecules are prevented from dethreading by physical obstacles while they do

not have any chemical bonds between them. This kind of structures give promise of
constructing, for example, molecular engines and chemical sensors. Rotaxanes with

many circular molecules are called as polyrotaxanes, and rotaxanes without any bulky

stoppers are called as pseudorotaxanes.
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Figure 1.4: Three construction mechanisms of rotaxane: (a) "clipping”, (b) "threading”, (c) ’slippage”
[17].

The electronic and mechanical properties of CN'Ts can be modified with particle beams
and chemically (functionalization). Furthermore, nanotubes can be adjusted so that
they can be used as chemical sensors, or a one dimensional quantum dot network can
be assembled by embedding ions inside them. One possible way to functionalize CN'Ts
could be to use them in the role of the linear molecule in rotaxanes. Crown ethers and
cyclodextrins could then be threaded on them, because they have both hydrophobic
and hydrophilic parts and tend to attach onto organic macromolecules.

1.4 About This Thesis

In this thesis, we study the electronic structure of various optimized nanostructures
by employing the Kohn-Sham (KS) formalism of the density functional theory (DFT)
in conjunction with molecular dynamics and direct geometry optimization methods.
This thesis consists of this introductory part and four publications. In Chapter 2, a
theoretical background for the quantum mechanical many-body problem and molec-
ular dynamics methods are presented. In Chapter 3, the density functional theory,
and its applications are introduced. The evolution of metallization and its indica-
tors are discussed in the case of small magnesium clusters in Section 4.1. The main
part of this work concerns electronic structure calculations of alkali metal atoms on
a graphite surface, and they are discussed extensively in Section 4.2. Final topic
of pseudorotaxane complexes formed by threading circular macromolecules (crown
ethers, S-cyclodextrin) on small SWNTs is discussed in Section 4.3.



2 Quantum Mechanical Many-Body
Problem: Foundation and
Simplifications

2.1 Time Independent Many-Body Schrodinger Equa-
tion

In principle, the electronic structure and properties of a quantum mechanical many-
body system can be solved from the time-independent many-body Schrodinger equa-
tion

HY = EV, (2.1)

where H is the Hamiltonian of the system, W is the corresponding wave function and
E is the total energy. For a system of N electrons and M nuclei in a zero external
potential, the Hamiltonian is of the form (atomic units)

M M

Zﬁ me ZZ (2.2)

7"
z_llll =1 5>t ij

I=1 J>1I

where V# and V? are differential operators which operate with respect to the coor-
dinates of electron i (r;) and nucleus I (R;), M is the ratio of the mass of nucleus
I to the mass of an electron, Z; and Z; are atomic numbers of nuclei [ and J, and
rir, Ti; and Rpy are the distances between electron ¢ and nucleus I, electrons 7 and j,
and nuclei I and J, respectively |18]. The first two terms in Eq. (2.2) are the kinetic
operators of electrons and nuclei, and the last three terms are the Coulomb interaction
between electrons and nuclei, electrons, and nuclei, respectively.
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2.2 Born-Oppenheimer Approximation

Solving the many-body Schrédinger equation exactly is usually impossible, and sim-
plifying approximations are needed. One of the most practical approximations is the
so-called Born-Oppenheimer (BO) approximation 18], where the wave function ¥ of
the whole system is separated into independent electron and nucleon parts V... and
W, uel, SO that

U = \Ilelec\llnucl- (23)

This separation is justified as the mass of a nucleus is of the order of 103-10° larger
compared to that of an electron. Therefore, nuclei move considerably slower than
electrons, and they can be considered as fixed during the optimization of the electronic
structure if the studied time interval is short enough. Consequently, the electronic
and nuclear problem can be separated, and the electronic problem is described by the
electronic Schrodinger equation

Helec\pelec = Eelec\pelew (24)

where the electronic Hamiltonian is of the form

Hepee = — Z V2 ZZ +ZZE‘ (2.5)

=1 I=1 Tl =1 3>t
Solving Eq. (2.4) gives then the electronic state
Vetee = \Ijelec({ri}; {RI})a (26)

where the electronic coordinate r; is a variable, and the nuclear coordinate R; is a
parameter.

After the electronic energy FEg.. is known, the total ground state energy can be cal-
culated by adding the nuclear Coulomb repulsion term to the electronic energy,

Etot elec + Z Z Z}QIZJJ (27)

I=1 J>I
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The electronic problem is now solved by solving the Egs. (2.4) and Eq. (2.7).

The electronic energy

Eelec - <\Ijelec‘Helec|\Ijelec>7 (28)

has a parametric dependence on the nuclear coordinates,

Eelec == EeleC({RI})' (29)

This gives rise to the useful Hellman-Feynman theorem |19, 20| in which the forces
acting on nuclei are derived from the classical potential

1% R N~ 212y 2.10
B 3 DECED 9 S ED 9 D AT
i=1 I=1 " i=1 j>i Tij I=1 J>I

which includes all the Coulombic interactions. By differentiating F.;.. with respect to
the components of ionic coordinates Ry ,, where a = z,y, z, we get the forces acting
on nuclei

OFcec({R1})
F, = _ZzdeeA UMYy
I,a aRLa < elec’

oV ({ri}; {Ra})
ORI

aI{elec

an \Ile ec
aRLa‘ )

- _<\Ijelec| “Ijelec>‘ (211)

A more detailed derivation of this result is given in ref. [20].

2.3 Electronic Solution

Generally, if an electronic system is described by a state W, the corresponding energy
is

(V|H|P)

E[V] = RN

(2.12)
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where U does not have to be the ground-state wave function of the Schrédinger equa-
tion [21]. If the wavefunction is normalized ((V|W) = 1), then the energy is simply
the expectation value E[U] = (V|H|V). Every state W that satisfies the Schrodinger
equation gives one of the eigenvalues of H, and therefore, if Fy is the ground state
energy of the system, we have

E[¥] > E,. (2.13)

Consequently, a full minimization of the functional E[¥] with respect to all allowed
N electron states gives the ground state energy Ej, and hence, the exact ground state
W,. This is called as the variational method.

In practice, it is too difficult to perform the variational method exactly, and a trial
wave function has to be constructed. Minimization is then performed by optimizing the
parameters of this trial wave function. The form of the trial wave function determines
how close to the real ground state energy one can get. Most often the many-body
wave function is described in terms of separable single-particles. This is done by
introducing a one-particle Schrédinger equation h;y; = £;1;, where h; is the one-
particle Hamiltonian, ¢; is the corresponding eigenfunction, and ¢; is the eigenenergy.
This ’trick’ can not be done without complications as the electron-electron interaction
plays an important role in reality, and usually some kind of an effective potential has
to be included.

Typical trial wave functions have the origin in the quantum mechanical Hartree,
Hartree-Fock (HF) and Configuration Interaction (CI) methods [18].

In the Hartree method, the trial wave function is the so-called Hartree product (HP)

VAP (x),%9, ..., xy) = Pi(x1)Y;(x2) . .. YR (Xn), (2.14)

where x,, (n=1,2,...,N) includes both the position and spin of the nth particle, and
{¥m(x,)} (m=ij,... k) are the non-interacting (orthonormal) single-particle spin or-
bitals. This product satisfies the above-mentioned single-particle Schrodinger equa-
tions. The problem with the Hartree product is that it does not fulfill the antisym-
metry requirement that comes from the Pauli exclusion principle for fermions. In
the Hartree-Fock (HF) theory, the normalized wave function is antisymmetrized by
forming a Slater determinant
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Yi(x1)  ¥i(x1) ... Ur(x)
1 Vi(x2)  i(x2) ... Yr(x2)

Gilxw) Gxw) - Grlxy)
1

= \/N‘det[¢i,¢j,...,¢k]. (215)

Using this trial wave function in the calculation of the electronic energy gives the so-
called Hartree-Fock energy (Epp), which differs from the real energy E. The difference
between the real energy and the Hartree-Fock energy,

EfF — E — Eyp, (2.16)

corr

is called the correlation energy [18], and the determination of EZE is a major problem

in the many-body theory [21]. The real energy can be calculated, in principle, by the
CI method which uses an infinite sum of determinants

U= co|To) + > i)+ ) |y + Y st Umh) + . (2.17)
a,r a<b a<b<c
r<s r<s<t

where |Ug) is the ground state of the Hartree-Fock determinant. In |[¥7) electron a is
excited to the virtual state r, in |[U7%) electron a is excited to the virtual state r and
electron b to the virtual state s, and so on. The corresponding coefficients related to
these terms are ¢y, ¢, c7, and so on. In practice, only the most important terms are

taken into consideration.

2.4 Born-Oppenheimer and Car-Parrinello Molecu-
lar Dynamics

In order to study the time evolution of an atomic or molecular system exactly, one
has to solve the time-dependent Schrodinger equation

ih%‘ll({ri}, (R;}:t) = HU({r,}, {R;}: ). (2.18)
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This is virtually impossible without significant approximations. Even approximative
methods are computationally expensive and, in many cases, too simplified to give accu-
rate results. This is why most of the molecular dynamics studies up to date have been
based on predefined potentials constructed from empirical data or electronic structure
calculations for fixed systems. The advantages of these classical molecular dynamics
methods are obvious. They are fast compared to the the quantum mechanical meth-
ods, and it is possible to adjust them. This gives an experimental aspect through
the possibility of playing with the potentials, and makes it easier to understand the
behavior of many-particle systems. The predefined potentials suffer, however, from
major drawbacks. The parametrization becomes very complicated in systems with
many types of atoms, where different kinds of interatomic interactions have to be
taken into account. Furthermore, classical methods cannot provide information about
the electronic structure, and cannot describe chemically complex systems where the
bonding pattern changes during the simulation (bond breaking/formation) |22].

Drawbacks in the classical molecular dynamics methods encouraged the development
of the so-called ab initio methods which are based on quantum mechanics, and have
a truly predictive power as the electronic structure and the forces acting on nuclei
are examined in parallel at each time step during the dynamics. Methods directly
based on the time-dependent Schrédinger equation (2.18) are demanding in practice,
because the time evolution of electrons and nuclei have to be solved simultaneously.
The electronic movement is fast compared to that of the nuclei, and numerous time
steps are needed in order to see any significant changes in the atomic positions. This is
the reason why intermediate methods have been developed. The two methods applied
in this thesis are introduced next. First is the Born-Oppenheimer method, which is
based on the time-independent Schrodinger equation and classical forces, and the
second is the Car-Parrinello molecular dynamics, in which the quantum dynamics of
slow nuclei and fast electrons is mapped onto a purely classical problem.

Born-Oppenheimer molecular dynamics is based on the BO approximation introduced
in Section (2.2), and does not involve solving the time-dependent Schréodinger equa-
tion. The core of the method are the equations [22]:

MR (t) = =V ming, {(Vo|He|¥o)} (2.19)

H. Uy = EyW,, (2.20)

where ming, means a minimization with respect to the states ¥,. Equation (2.19)
gives the forces acting on nuclei, which are used to determine the movement of nuclei,
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and the ground-state electronic structure has to be calculated after every time step
from Eq. (2.20). One should note, that —V;{(Wy|H.|¥,)} is exactly the Hellman-
Feynman force (Eq. (2.11)) provided that the wavefunction Wy is an exact eigenfunc-
tion |22|.

Born-Oppenheimer molecular dynamics has been applied succesfully, for example, by
Robert N. Barnett and Uzi Landman (1993), whose method was originally based
on the local-spin-density approximation, non-local, norm-conserving pseudopotentials
and a plane-wave basis (see Chapter 3) [23]. Remarkable in this method is that it does
not employ periodic boundary conditions (PBCs), which makes it more applicable
for charged systems or systems with large multipole moments. For methods using
PBCs, the interaction between the periodically repeated replicas can affect results
significantly.

Another, not so obvious but much applied method was developed by Roberto Car and
Michele Parrinello in 1985 [24]. In the Car-Parrinello (CP) method, the self-consistent
electronic optimization is not done after each molecular dynamics step. However, the
method makes it possible to use larger time step than in the methods based on the first
order time-dependent Schrédinger equation. In classical mechanics, the force on nuclei
is obtained from the derivative of a Lagrangian with respect to the nuclear positions.
The energy of the electronic subsystem, (Vy|E,|Wy) is a function of both nuclear
positions {R;} and single-particle orbitals {¢;}, and Car and Parrinello suggested
that a functional derivative with respect to the orbitals gives the force acting on the
orbitals if a suitable Lagrangian is chosen.

Car and Parrinello postulated the Lagrangian of the form

1 . 1 ..
Lop = Z §MIR§ + Z §Mi<¢i\¢i> — (Uo|H|Wy) + constraints, (2.21)
I i

where the first two terms are the kinetic energy of nuclei and electrons, third term is
the potential energy, and the last assures the orthonormality of orbitals. The inertia
parameters pu; can be described as fictitious masses of the orbitals ¢);, and constraints
are needed because of the orthonormality requirement etc. The associated Euler-
Lagrange equations

d OL oL

SO 2.92
dtoR, OR; (2.22)
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doL _ oL
dt gopr o7,

(2.23)

result in the Newtonian equations of motion, i.e. the Car-Parrinello equations of the
form

. 0 0 :
MiR;(t) = —a—RI<\D0]He\\IIO> + a—RI{constmmts} (2.24)
zﬁ-(t)——5<q;|H|\1/>+i{ traints} (2.25)
Lrwi\t) = 6%* old1e|Wo S constraintsy, .

where the constraints are holonomic [24], and depend on {¢;} and {R;}. It should
be emphasized that the electron dynamics above is fictitious, and it is introduced in
order to get realistic nuclear dynamics.

Making a choice between the BO and Car-Parrinello molecular dynamics is not an
obvious decision [22]. In the Car-Parrinello molecular dynamics, the electronic degrees
of freedom are treated together with nuclear dynamics at each time step, and as the
equations of motion for nuclei and electrons are coupled the time step has to be
reasonably small. In the BO molecular dynamics, the electron dynamics is absent,
which is formally an order of magnitude advantage with respect to the CP molecular
dynamics, at least if the nuclear motion is slow. On the other hand, the electronic
structure has to be minimized for each nuclear configuration in the BO molecular
dynamics. The longer the time step used, the longer the electronic optimization takes
as the wavefunction calculated during the previous time step (initial guess for the
minimization) is further away from the new one.

In the first article of this thesis [I|, we apply the Born-Oppenheimer local-spin-density
molecular dynamics (BO-LSD-MD) program developed by Robert N. Barnett and Uzi
Landman |23]. In this method, the ions move according to classical mechanics, and the
forces are calculated using the generalized gradient-corrected approximation (GGA)
for the exchange-correlation energy functional and pseudopotentials that describe the
ion cores (see Section 3.5). The electron density as well as the orbitals are expanded
using a plane wave basis set (see Section 3.4). The applied BO-LSD-MD method does
not use periodic boundary conditions, and it is therefore an appropriate method for
isolated clusters with considerable charges or multipole moments.
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In the last three articles of this thesis [I1|-[TV], we apply the Car-Parrinello molecular
dynamics (CPMD) [24] code originally introduced by Roberto Car and Michele Par-
rinello (see [25| for the latest version of the code) which applies periodic boundary
conditions, GGA for the exchange-correlation energy functional, and pseudopotentials.
Again, plane waves are used as basis functions for the electron density and orbitals.
Due to the fact that CPMD uses PBCs it is a natural choice for periodic structures
(in this thesis the semimetallic graphite surface and carbon nanotubes), and its usage
is justified for neutral clusters. In fact, the current implementation includes an option
where PBCs can be switched off, which enables simulations of finite charged systems
as well. On the other hand, the finite system calculations can produce incorrect results
for macroscopic objects (surfaces, bulk) which have a band structure.



3 Density Functional Theory: Basics
and Implementation

3.1 Hohenberg-Kohn Theorems

The Hamiltonian H,,.. of an N-electron system can be written in the form

Helec :T+Uee+‘/ea:t7 (31)

where T is the kinetic energy part of electrons, U, is the energy related to the electron-
electron Coulombic repulsion, and V,,; is the energy related to the interaction between
electrons and an external potential v(r) which includes the potentials caused by nuclei
and external fields. The T+ U, part is universal to all N-electron systems, and the
external potential part V., fixes the Hamiltonian. Thus, N and v(r) determine all the
properties of the ground state. If the Hamiltonian H of the electronic system is known,
then the ground-state energy and wave function can be, in principle, determined by
minimizing the energy functional EF[¥] with respect to W. It was the idea of Hohenberg
and Kohn to replace N and v(r) as basic variables with the electron density p(r), which
can be written in the form

p(x1) :N//.../|x1/(x1,x2,...,XN)PdXQ...de, (3.2)

where dx; includes differentials with respect to coordinates and spin, and N is the
total number of electrons

N = /p(r)dr, (3.3)

when U is normalized. The energy functional is then

Elp] = ([p]|H[¥[p]) = (Y [p)|T + Uee + Veur|¥[p]) = Flp] +/p(r)v(r)dr, (3.4)

15
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where F[p] = (V[p]|T + Uee|¥[p]) is a universal functional for all N-electron systems.
This method where the energy is minimized as a functional of the electron density, is
called as the Density Functional Theory (DFT).

The first Hohenberg-Kohn theorem legitimizes the use of p instead of N and ¥ [26]; it
says that the external potential v(r) is determined, within a trivial additive constant, by
the electron density p(r). As N is determined by integrating p over space, it follows that
p also determines the ground-state wave function ¥ and all the electronic properties
of the system. The proof of this theorem is very easy, if we assume that the ground
state of an N-electron system is nondegenerate. This assumption is not necessary if
the problem is investigated in detail, but by now it alleviates the procedure.

Let us assume that there are two Hamiltonians H and H’ with potentials v and v’,
which differ more than by a constant. Each Hamiltonian gives the same p for its
ground state although the normalized wave functions ¥ and ¥’ are different. By Eq.
(2.13) we then have

Ew%VWWSZNWﬂVHWWH—FW3=%+/MﬂMﬂ—WﬂWu@@

where Fjy and Ej," are the ground-state energies for H and H’, respectively. On the
other hand

By < (W|H'|) = (WH|Y) + (V| = H]) = B~ [ plo)lo(e) - o/ )ldr. - (36)

By adding these two equation together we get Ey + E| < E| + E,, which is con-
tradictory, and thus, there cannot be two different v that give the same p for their
ground states. Consequently, p determines N and v unambiguously as well as all the
properties of the ground state.

The second Hohenberg-Kohn theorem provides the variational principle by stating
that for a trial density p(r) > 0,

Ey < Ep], (3.7)

where E|p] is the total energy functional, and [ p(r)dr = N.

The so-called v-representable electron density is associated with the antisymmetric
ground-state wave function of a Hamiltonian with some external potential v(r). There
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are electron densities that are not v-representable, but most studies are restricted to
the v-representability where there exists one-to-one mapping between the electron den-
sity and external potential. In practice, the requirements are further weakened as one
replaces the v-representability by a condition that is called as the N-representability,
which means that p(r) is obtained from some antisymmetric wave function that fulfills
the following requirements:

p(r) > 0, / p(r)dr = N, and / Vp(r)} 2dr < oo. (3.8)

3.2 Kohn-Sham Method

The most practical implementation of DF'T was introduced by Kohn and Sham in 1965
[27]. Their idea was to study first noninteracting electrons for which the Hamiltonian
is

Ho= 3 =Y -5+ (o)l (3.9)

where the external potential vy for a single particle is in this context the Coulomb
potential of ion cores.

The wave-function solved from the Schrédinger equation is then of the form of Eq.
(2.15), and it is constructed from the N lowest one-electron states 1); that satisfy the
equations

1
hi; = [—§V? + s(r)]hi(r) = eqi(r). (3.10)
From these single-particle equations, the electron density
N
p(r) = |i(r), (3.11)
i=1

can be achieved. The idea of the Kohn-Sham (KS) method is to apply the exact kinetic
energy functional of the noninteracting system,
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Tlpl = (il - %VQW, (3.12)

=1

in the case of interacting electrons. The corresponding energy functional is then

Elp] = Ti[p] + Vielpl + Jp] + Exclpl, (3.13)

where

Vaelp] = /( (r)dr (3.14)

Jlp] = // - drr (3.15)

Epelp] = (V[T 4 Ue| W) — Ti[p] — J[p] (3.16)

are the the energy related to the interaction between electrons and an external po-
tential (V,.[p]), the classical electron-electron repulsion (J[p]), and the exchance and
correlation (E,.[p]). The Euler-Lagrange equation can be written in the form

_0E[p] _ oT[p]
H= Sp(r) = Vesr(r) + 5

(3.17)

if we identify

Vers(T) =: %&g’g] =o(r) + gpj([fg + :;;Z:; = ov(r) +/ ‘I:O(_r/zl‘dr' + vge(r), (3.18)

where

Verslo] = Vaelp] + Jp] + Euclpl. (3.19)

Now, v.s¢ has a similar role as v, in the case of noninteracting electrons, and we obtain
p(r) that satisfies Eq. (3.17) by solving the N single-particle equations

59 g (D) = 2ati(x), (3.20)
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and setting

p(r) = Z |l *. (3.21)

As v.fr depends on p, Egs. (3.18)-(3.21) have to be solved self-consistently. In practice,
this means that a constructed trial density is used to determine v.s; in Eq. (3.18),
which is then used to obtain p(r) from Egs. (3.20) and (3.21), the obtained p(r) is
used as a new trial density, and the whole procedure is repeated. This is done until
the results converge (self-consistency) after which the total energy can be calculated
from Eq. (3.13).

The electron spin can be taken into consideration in the KS method by defining that
the electron density is p(r) = p,(r) + p;(r), where p,(r) and p;(r) are the densities of
spin down and spin up electrons, respectively, and

No
po(r) =) |viol’, (3.22)
i=1

where NN, is the number of electrons with spin o = (7, ). In this case, we have the
KS equations with orbitals v;,, and energies ¢, for both spins, and v.¢s in Eq. (3.18)
depends on the spin as v, = 0E,./dp,(r).

3.3 Local Density and Gradient Corrected Approxi-
mations

The Kohn-Sham equations (3.18)-(3.21) are formally exact. The problem is, however,
that the explicit form of the exchange-correlation energy F,.[p] is unknown. It has
become evident that the search of an accurate E,.[p] is the greatest challenge in DFT
[21] although several succesful approximations have been developed. Qualitatively
succesful yet simple approximation for E,.[p] is the local-density approximation (LDA)

BEP] = [ plw)eaclpi (3.23)

where e,.(p) is the exchange-correlation energy per particle of the uniform electron
gas with density p. This energy can be divided into separate exchange and correlation
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parts,

exe(p) = €2(p) +ec(p)- (3.24)

The exchange part of the uniform electron gas can be calculated using the Hartree-
Fock theory [28], and the correlation function can be interpolated based on the ac-
curate values received from the quantum Monte Carlo calculations [21]. In the spin-
dependent case the exchange-correlation energy ,.(p, &) depends on the polarization
¢ = (p1 — py)/p, and can be written in the form

5xc(p> f) = gxc(p’ O) + f(g)[gxc(p’ 1) - gxc(p’ O)]’ (325)

where f(&) gives the polarization dependence between the fully polarized (£ = 1) and
unpolarized (¢ = 0) limits. The method where the spin is taken account is called as
the local spin-density approximation (LSD). Because of the nature of the LDA (or
LSD) method, one would expect that it gives good results only for systems where
the electron density is nearly uniform. However, calculations have proved that LDA
gives surprisingly realistic results also for systems with a considerable variation in the
electron density.

The generalized gradient-corrected approximation (GGA) was developed in order to
improve the LSD method. The density inhomogeneties in F,. are taken into account by
including the gradients of the spin-densities. In practice, only a few terms are included
in the gradient expansion, and slowly varying or small density variations are described
less satisfactorily [29]. This is problematic, for example, with the pseudopotential
theory of simple metals where the linear-response limit is physically important.

A parametrized analytic form of ¢, is well established in the LSD method, but the
best description of the gradient correction is still under debate. A functional that was
designed to catch the energetically significant features was introduced by Perdew et
al. in 1996 [29|, and it is referred to as the PBE functional. It describes the uniform
electron gas better than the earlier GGA methods, it is constructed so that it gives
physical results in the limits, and it has an analytical form which has improved the
numerical efficiency compared to the earlier forms, such as the one made by Perdew
and Wang in 1991 [30]. In the PBE scheme the correlation energy is of the form

ESS4[p, p)] = / Prplee(ra €) + H(ry, £,1)], (3.26)

where 7, is the local Seitz radius (p = 3/4mr? = k3./372), £ = (p; — py)/p is the
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relative spin polarization, and ¢t = |Vp|/2¢ksp is a dimensionless density gradient,
where ¢(&) = [(14&)%/3 + (1 —€)?/3]/2 is a spin-scaling factor, and k, = \/4kr/7ag is

the Thomas-Fermi Screening wave number (ag = h*/me?). The gradient contribution

3 1+ At?
H = (62/0’0)7¢3 X ln{l + ;tQ[l + At2 + A2t4

1}, (3.27)

where

A= g[exp{—ec/(vqﬁ?’eQ/ao)} — 1] (3.28)

and ( and v are adjustable parameters, gives realistic results in the slowly varying,
in the rapidly varying and in the high-density limits. The corresponding exchange
energy is written as

B = [ drpe.(p)Fx(), (3.29)
where ¢, = —362kp/47r and the so-called spin-polarized enhancement factor Fly is
Fx(s) =1+ kK — /(1 + psk), (3.30)

where x and p are parameters. The PBE gradient corrected method described above
should produce the most important features of the real exchange-correlation energy.
It takes into account the rapid density variations as a GGA method should, and in the
limit of uniform electron gas it behaves as the LSD method which is formally correct.

3.4 Plane Wave Basis

The application of the KS method requires fi auxiliary single-particle wave functions.
The explicit form of the KS wave functions is, however, yet to be defined. They can
be represented by a basis set which consists of simple analytic functions f, with well-
known properties. In general, the expansion form of a periodic function v; with respect
to certain basis functions can be written as a linear combination
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= cuf (i {Rr}), (3.31)

where ¢;, are the orbital expansion coefficients. In quantum chemistry, the atom cen-
tered Slater- or Gaussian-type basis functions have been typically used [22|. However,
a completely different approach which is suggested by the solid state theory of periodic
lattices is adopted here. Periodic boundary conditions impose periodicity on the elec-
tron density. This implies that a plane wave basis might be a convenient choice as the
generic basis set for expanding the periodic part of the orbitals as in the Bloch’s Theo-
rem. Plane waves are an appropriate choice as they form a complete and orthonormal
set of functions. The plane wave basis functions can be written as

xp[iG - r], (3.32)

where G is a reciprocal vector, r is a real space vector, and V is the volume of
the periodic super-cell. By using plane waves with periodic boundary conditions, a
periodic wave function can be expanded into the form

Y(r)=y(r+L)= \/_Zw ) expliG - ], (3.33)

where 9 (r) and ¢ (G) are related by a three-dimensional Fourier transform, and L is
a direct lattice vector connecting the equivalent points in different cells [22]. Further-
more, the KS orbitals can be written as

6i(r, k) = % 3" (G, k) expli(G + k) -], (3.34)

where k is a vector in the first Brillouin zone, and ¢;(G, k) are complex numbers.
Now, the expanded form of the density is

n(x) — fz [ k100 3 (6106 (G expli(G + k) -

GG’

= Z n(G) exp[iG - r], (3.35)

G
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where the sum over ¢ runs over all the states, and the last sum over G vectors expands
over douple the range given by the wavefunction expansion. In reality, the infinite sums
over G and different cells have to be truncated, and the integral over the Brillouin
zone has to be approximated by a finite sum over special k-points

/dk = wy, (3.36)

where wy, are the weights of the integration points. The validity of the truncation is
based on the fact that the KS potential v.;¢(G) converges rapidly with increasing
the modulus of G. This is why only the vectors G fulfilling the kinetic energy cutoff
condition

1

are included at each k point.

Plane waves are originless functions, which means that there is no dependence on the
position of the nuclei {R;}. Thus, as long as the electronic system has converged to the
ground state plane waves do not cause an error called the Pulay force, that is caused
by the incomplete basis set in the case of nuclear position dependend functions such
as the atom centered functions mentioned previously [35|. The fact, that plane waves
are delocalized in space means also that they do not favor certain regions over others,
and they form a balanced and reliable basis. Another good feature is that differential
operators in the real-space are simply multiplications in the reciprocal space, and
both spaces can be efficiently connected via the Fast Fourier Transforms (FFTs). On
the other hand, the only way to improve the quality of the basis set is to add more
basis functions, as the basis functions can not be shuffled into regions where they
are needed the most. This is a problem with structures with strong inhomogeneities,
such as complex supermolecules with large empty caps between the branches of the
molecule.

3.5 Pseudopotentials

Electronic orbitals feature strong and rapid oscillations close to the nuclei due to the
Pauli exclusion principle, which enforces a nodal structure onto the wave function
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through orthogonality of the orbitals. Representing these rapid oscillations in the
plane wave basis is problematic, which has motivated the development of the so-called
pseudopotential approximation [31].

The physical properties of atoms, especially their chemical reactivity, are governed by
the valence electrons. This together with the fact that numerically the most consum-
ing problem of the many-body calculations is to calculate the coulombic interaction
between electrons has encouraged to develop the pseudopotential approximation, in
which the ionic core of an atom (core electrons and nucleus) is described by an effec-
tive potential. In other words, the description of the complicated nodal structure in
the region of atom cores is avoided by replacing the actual potential of the nucleus
and core electrons by an effective potential that produces the same usually smoothly
varying plane wave-like wavefunctions outside the core region [32].

Pseudopotentials can be constructed empirically by fitting theoretical results to ex-
periments, or by the more advanced ab initio methods, where the pseudopotentials are
constructed from the quantum mechanical principles. One of the most simple pseu-
dopotentials is given by the so-called Empty Core Model (ECM), where the unscreened
pseudopotential is taken to be zero inside a radius R,:

_ 0 , for r<R. ;
U(r) = { —e2fr , for >R, (3.38)

Modern ab initio pseudopotentials are constructed by using a spherical screening
approximation, and solving self-consistently the radial Kohn-Sham equations |33]

[_ld_Q I(1+1)
2 dr? 272

+ Vip;sr|lr Ru(r) = enr Ru(r), (3.39)

where

Vipir) = =2 4 Vialoir] + Vaelo(r) (340

is the self-consistent one-electron potential. The exchange-correlation potential V,..(p(r))
is usually taken from LDA (GGA in this thesis), p is the sum of the electron densities of
the occupied wave functions R,,;(r), and Vy is the Hartree potential. There are usually
four criteria for the pseudopotentials constructed this way [33]. The first one is that
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the valence pseudo-wave-functions generated from the pseudopotentials should not
contain nodes, i.e. the pseudopotentials should be smooth. Secondly, the normalized
atomic radial pseudo-wave-function has to be equal to the corresponding all-electron
wave function beyond a chosen cutoff radius r., or it should converge rapidly towards
that value. Thirdly, the charge enclosed within r. for the two wave functions should
be equal. Finally, the valence all-electron and pseudopotential eigenvalues must be
equal. Pseudopotentials fulfilling these requirements are called the "norm-conserving
pseudopotentials”.

The ultrasoft pseudopotentials have been developed to improve the transferability (i.e.
the applicability in various physical and chemical environments) of pseudopotentials
[34]. For the ultrasoft pseudopotentials the norm-conserving constraint does not apply,
which makes it possible to make nodal structure of the potential even smoother and
use less plane-waves with an increased r.



4 Results

4.1 Small Magnesium Clusters

Certain properties of small clusters (e.g. structure) are challenging to study exper-
imentally in a systematic manner. This is why theoretical calculations are needed.
Theory can help the experiments in focusing on interesting effects, predict achiev-
able structures, and provide interpretation for the measured data. In small particles,
however, quantum mechanical effects play an important if not governing role,
which requires that computationally demanding ab initio methods have to be used.
This calls for approximative methods as it is a well-known fact that solving the exact
many-body Schridinger equation is practically impossible for more than a few atoms.

The first problem is to find the right cluster geometry. The more atoms there are
in the cluster the more possible geometries it can adopt. These configurations which
represent local minima of the potential energy surface are separated from each other
by energy barriers, and the system can get easily trapped into one of these valleys.
Finding the ground-state geometry that corresponds to the global minimum of the
potential energy surface is thus increasingly difficult.

For small magnesium clusters the pursuit of finding the global minimum can be han-
dled with the so-called simulated annealing strategy, where molecular dynamics is
performed at high temperature so that the atoms are extremely mobile. Time-to-time
the cluster is cooled down to a local minimum, and the geometries that are energet-
ically favorable can then be selected as starting geometries for more thorough DFT
simulations. Geometries obtained from other sources (intuition, genetic algorithm)
should be tried as well, because the simulated annealing procedure does not necessar-
ily give all the low-energy geometries. However, this way there is a better chance to
find the global minimum amongst the ever increasing group of different geometries.

In this section, the results for the neutral and cationic magnesium clusters in the
size range Mgo-Mgi3, as well as the anionic clusters of the size range Mgg-Mg;3, are
discussed. The electronic structure calculations were made with the BO-LSD-MD
method described previously in Section 2.4. With small anions this method results
in positive highest occupied molecular orbital (HOMO) eigenenergies, which is the
reason why only Mgg and the larger clusters are considered. The main theme of this
work (article [I]) was to investigate the metallic evolution in small magnesium clusters.

26
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Figure 4.1: The lowest energy structures of Mgg-Mg;3 clusters. Note the presence of the trigonal
prism unit in all the clusters.

It was discovered that the insulator-to-metal transition is not a monotonic function of
the cluster size, it is not completed within the size-range studied, and that it is difficult
to find a reliable indicator for metallization. However, the evolution of various features
in combination can be used as an indicator, especially because our results follow the
same trends that were found in the experimental [36] and theoretical |37, 38| studies
published soon afterwards.

The ground state structures of neutral magnesium clusters in the size range Mg,-
Mgg are found to be based on a tetrahedron or fused tetrahedrons. Furthermore,
Mgz and Mgg can be described as a decahedron (bicapped pentagon) and capped
decahedron, respectively. In the size range Mgg-Mgy3, the structures are based on
a trigonal prism (see Fig. 4.1). These geometries agree well with the earlier studies
[39, 40, 41], although for Mg, and Mgy slightly different isomers were found to be
energetically favorable. Later studies confirmed our results [37, 38]. Structures of the
cationic clusters are mainly based on the geometries of the neutral clusters but there
are also some differences. The small cations appear linear until Mg}, and both MgéF
and Mg, are based on the tetrahedron (or decahedron), whereas the neutral clusters
are based on the trigonal prism, and even the energetically most favorable structures
of Mg}, and Mg, are slightly different from the corresponding neutral geometries.
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In many cases, the energy variation between different isomers is so small that the
differences could be within the calculational error. The anionic clusters studied (Mgg -
Mg ;) adopted neutral cluster ground state structures with the exception of Mgy, for
which the most stable isomer differs slightly from that of the neutral cluster.

The evolution of the Mg cluster properties is shown in Fig. 4.2. The figure shows the
trends in binding energy (E;), HOMO-LUMO gap (E,), vertical ionization potential
(vIP) and average nearest neighbour distance ((d)) as a function of the cluster size.
The second derivative of the total energy of a cluster with N atoms

~A’E = (Exy1 — Ex) + (Exy_1 — Ex) = Exyy1 + Ex_ — 2By, (4.1)

is shown as an inset. It is a measure of the relative stability of a cluster with respect
to the neighboring cluster sizes.

The trends in Fig. 4.2 show that the metallic evolution of Mg clusters is not monotonous.
In general, E, increases, but E,, vIP and (d) decrease as a function of cluster size.
The large binding energies (F}), high relative stability (—A?E), and compact geome-
tries (small (d)) of Mg, and Mgy fit to the simple jellium picture, according to which
they should be "magic” because of their electron numbers 8 and 20 (closed electron
shell). The strong binding in Mg, and Mgy, is also in correlation with the compact
geometries of these two. The vertical ionization potentials are of the same magnitude
as reported by Jellinek and Acioli [37], but the relative values differ. For example, our
trend predicts a dip in vIP for Mgy, which is in contradiction with the intuition. This
suggest that the electron delocalization is different in Mg, than in the neighboring
cluster sizes. It is also evident that the metallization is still incomplete for the largest
cluster size studied (Mg;3). Jellinek and Acioli suggested that the p-character of the
valence electron density may not be an adequate criterion for the size-induced metallic
transition alone, as the degree of p-character is about 50% in bulk magnesium, and it
is observed to increase slowly and nonmonotonically when going from a single atom
towards the bulk magnesium [37]. Our results for the s- and p-components at the
Fermi energy are in agreement with this.
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Figure 4.2: Properties of small Mg clusters. From top to bottom: Binding energies (E;), second

derivatives of total energies (—A?E, inset), HOMO-LUMO gaps (E,), vertical ionization potentials
(vIP) and average nearest neighbour distances (< d >).
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4.2 Alkali Metals on Graphite

Our work on alkali metals on HOPG consists of two articles: The first one concentrates
on sodium atoms and clusters [II], while in the second a systematic study of alkali
metal atoms, dimers, and monolayers (Li, Na, K, Rb, Cs) is conducted [TV]. In these
studies, we used the Car-Parrinello method (see Section 2.4), which employs periodic
boundary conditions and is suitable for modelling an infinite graphite surface.

For the sodium calculations [II], we tested various graphite model substrates and
calculational methods. First, we studied a finite slab consisting of two to four free
graphene "flakes” where the dangling bonds of the peripheral carbons were termi-
nated with hydrogen. The problem with this setup was that the graphene flakes were
interlocked (stacking ABAB...), and consequently, the system is not symmetric. This
irregularity in geometry forced the layers to lean towards each other on the one side
and away on the opposite side. Another possible cause of problems could have been
that graphite is actually a semimetal with a complicated electronic band structure,
and a more proper way to simulate the substrate is an infinite periodic surface.

Next, we applied periodic boundary conditions in an ortorhombic simulation box so
that the graphite surface is continuous (infinite) and the adsorbate is replicated peri-
odically on it. The system size and the simulation box had to be large enough so that
the interaction between the replicated adsorbates and the replicated graphite slabs in
the direction orthogonal to the surface were negligible. Each graphene layer comprised
32 (or 60 in some calculations) carbon atoms in such a manner, that the periodicity
formed a continuous surface. The maximum distances between the adsorbate replicas
were 9.84 A and 8.53 A in the lateral directions, and the perpendicular dimension of
the simulation box was chosen so that there was 10-12 A empty space between the
graphite slab replicas. In the charge transfer analysis, it became evident that in order
to get rid off the dipole-dipole interaction we had to increase the distance between
the slabs up to 20 A.

Again, two to four graphene layers were tested, and it was found that three layers
are needed, as the binding of the Na atom turned out to be sensitive to the num-
ber of graphene layers. For two graphene layers, the surface separation is 0.16 A
(6.6%) larger than for three and four layers. In order to incorporate the graphite band
structure, different numbers of k-points were tried. As a manifestation of the band
structure, a twisting of the graphite hexagonal geometry was found upon geometry
optimization with only one k-point (I-point). It was noticed that in order to get the
interatomic forces right a 2x2 k-point mesh had to be adopted in the lateral dimen-
sion, and for the energies a 5x5 k-point mesh was needed. In the latter work [IV],
we adopted a hexagonal symmetry for the simulation box, after which a 2x2 k-point
mesh turned out appropriate for calculating the total energies also, and the shortest
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Figure 4.3: Numbered locations of alkali metal adatoms on top of a graphite hexagon.

distance between two replicated adatoms became 9.84 A in both lateral directions.
The positions of the carbon atoms were fixed in most simulations in order to reduce
the computational cost. Test calculations for Li atoms on graphite, where either four
or six nearest carbon atoms were set free, showed that this caused negligible changes
in the geometries as well as in the energies.

Among alkali metals, sodium is found to have an anomalous behavior as it interacts
relatively weakly with the graphite surface. This is especially evident for Nay, which
has a closed electron shell (two valence electrons), and it resides 3.05-3.95 A apart
from the surface depending on the alignment. The energetics of Na favors clustering
processes on HOPG, and the stability of clusters with an open valence electron shell
is increased due to the spin-degeneracy of the highest molecular orbital (odd-even
staggering). For example, the formation energy of Nas is 0.99 eV larger than that of
five separate adatoms (AE = 2.55 eV), and 0.52 eV larger than the formation energy
of separated Naz and Nay. The formation energy is defined as a sum of the adsorption
energy per atom (AFE,) of a cluster/monolayer and the binding energy (FEj) of an
atom in a free cluster/monolayer.

The increased stability of the odd cluster sizes and the inertness of Nay (closed shell)
can be seen from the fact that the most stable configuration of four Na atoms on
graphite is the pair Nag and Na with a formation energy AE = 2.56 eV which is 0.52
eV higher than for four separate adatoms. The lowest formation energy is observed
for two separated Nay clusters with AE — 1.92 eV. The geometries of Nay and Nag
deviated from planarity, but it is not clear whether this is related to the experimentally
observed buckling of Na overlayers [42, 43].

All the alkali metal adatoms are found to prefer the hollow site of the hexagonal
graphite sublattice (location 0 in Fig. 4.3). Calculations on a few selected locations
(all locations in Fig. 4.3 for Na, locations 0, 1, 2, and 4 for the other alkali metal



32 Results

adatoms) show, that the alkali metal adatoms can diffuse almost freely on the graphite
surface, as only lithium has a considerable diffusion barrier (Eyrr — 0.21 eV). This
is probably due to the small atomic radius of Li, while for the other alkali metal
adatoms the diffusion barrier is almost negligible (Eq4; ¢ 0.02-0.06 €V). Experiments
have shown, that Li forms intercalated structures readily, as it penetrates between
two graphene sheets and localizes at the hollow site [6].

The trends in the formation/adsorption energy and surface separation of the alkali
metal adatoms and (2 x 2) MLs are shown in Fig. 4.4. A comparison of the formation
energies reveals that in most cases the dispersed phase is energetically more stable
than (2x2) ML. This is in agreement with the experiments as there is no island
formation in the low coverage regime. This is evident as for all the other alkali metals
but Na, the formation energy per atom is larger for separate adatoms than for the
(2x2) structure. However, when the coverage is increased so that the adatoms become
closer to each other the (2x2) construction is preferred for K, and it represents a stable
phase for Rb and Cs under certain circumstances |6].

Among the separated adatoms, lithium was found to have the largest adsorption
energy AE, = 1.21 eV, and sodium the smallest with AE, = 0.55 eV. For K, Rb and
Cs the adsorption energy grows slowly as the atomic radius increases, AE, being 0.99
eV, 1.02 eV and 1.04 eV, respectively. The distances from the surface grow steadily
as the atomic radius increases: Li is closest to the surface with d;, — 1.84 A and Cs
farthest with d; = 3.75 A. Experimental value d; = 2.79 £ 0.03 A for a K (2x2)
layer [44] is closer to the value d; = 2.72 A that we obtain for a separated K atom
than the value d; = 3.17 A of for K (2x2) ML. This difference could be caused by
the GGA functional used for the exchange-correlation energy or it could be related to
the indirect evaluation method of the experimental layer spacing.

The adsorption energies and the surface separation show that the metal layer under-
goes a decoupling from the surface as the coverage is increased. This effect is clearly
seen as a drop in the adsorption energies and an increase in the surface separation
when comparing separated adatoms with (2 x 2) MLs. A single potassium atom, for
example, has an adsorption energy AE, — 0.99 eV, whereas the same for K (2 x 2)
ML is only 0.25 eV per atom. For two monolayers, the adsorption energy is only 0.13
eV per atom, which is one half of the adsorption energy of one layer. This means that
the total adsorption energy in the simulation box is the same for one and two layers,
and the second overlayer does not interact with the surface. However, the formation
energy is almost exactly the same as for 1ML suggesting a stronger interaction be-
tween the K atoms as the coverage is increased. The weak interaction between the
substrate and metal film is further supported by the fact that the separation of the
lower K overlayer (d, = 3.11 A) is almost the same as in the case of one monolayer

(d. = 3.17 A).
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Table 4.1: Comparison between different DFT methods.

Adsorbate Functional AE (eV)  dy (A) Reference

Li Atom  PBE 1.21 1.84 This work
PBE (LDA) 1.10 (1.68) 1.71 (1.63) Ref. [45], slab model
B3LYP 1.36 1.71 Ref. [46], cluster model
LDA 1.60 1.64 Ref. [47], slab model
(2x2) PBE 0.79 2.02 This work
LDA 0.93 1.64 Ref. |47, slab model
Na Atom PBE 0.55 2.45 This work
PBE 0.50 (0.69) 2.34 (2.42) Ref. |45], slab model
B3LYP 0.72 2.10 Ref. |46], cluster model
PWO1 2.32 Ref. [48], slab model
K Atom PBE 0.99 2.72 This work

PBE (LDA) 0.88 (1.12) 2.65 (2.70) Ref. [45], slab model
BP86 (LDA) 1.49 (1.67) 2.81 (2.73) Ref. [49], cluster model

B3LYP 1.06 2.51 Ref. |46], cluster model

LDA 0.51 2.79 Ref. |50], slab model

LDA 0.78 2.77 Ref. |51], slab model (1 layer)
(2x2) PBE 0.81 3.17 This work

LDA 0.98 2.82 Ref. [50], slab model

LDA 0.48 2.82 Ref. |51], slab model (1 layer)

We have evaluated the amount of charge transfer (Aq) by using the laterally averaged
charge density difference (Ap, ), where one integrates over the charge depletion area
around (below) the alkali metal adatoms (layer). All the alkali metal adatoms donate
0.4-0.5 e to the substrate. For (2 x 2) MLs, the electron density redistribution upon
adsorption is different, and the amount of donated charge is approximately 0.1 e per
adatom. Here, it should be noticed that as in the experiments there are several ways
to evaluate the charge transfer theoretically, and they can give varying results.

The results for the formation energy and surface separation in comparison with other
DFT studies are presented in Tab. 4.1. One can see that our results are mostly in
agreement with the other studies, and especially with the slab model calculations
where the PBE functional is used [45]. The largest differences are observed with the
LDA studies: The LDA formation energy tends to be systematically higher and the
distance from the surface lower which is expected as LDA has an over-binding char-
acter. Exceptions to this pattern are presented by the LDA slab model calculations of
Lamoen and Persson [50] and Ancilotto et al. (one graphene layer only) [51], and for
example, the value AE — 0.51 eV from Ref. [50] is barely one half of the AE— 0.99 eV
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in our study. The attraction between graphene layers is mainly of the van der Waals
character, and it is not reproduced by standard DFT. The over-binding character of
LDA gives by chance a more realistic interlayer distance than GGA, and it is often
suggested in the literature that LDA should give better results for the adatom binding
energies and distances. The difference can also be seen in the d; values when com-
paring our results to the LDA studies for Li [47] and K [50, 51|. In general, our PBE
results are in reasonable agreement with the other studies, and we believe that our
results are reliable due to the extensive testing.

Fig. 4.5 shows the laterally averaged charge density difference (Ap, ) of a K adatom,
(2x2) ML, and two (2x2) overlayers on graphite. It can be seen, that even though
the amount of charge transferred to graphite is almost the same, there are signifi-
cant differences between the three curves. In the case of a separate K atom, charge
depletes through the whole atomic volume of K and accumulates mostly over the
topmost graphene layer. For a (2 x 2) monolayer, the charge is depleted below the
monolayer which already implies a decoupling tendency. The curves of 1ML and 2ML
are practically identical below the lower metal layer. Decoupling is further supported
by the charge redistribution of 2ML (accumulation between the K layers), and the
corresponding electronic density of valence states (DOS) is essentially a sum over the
DOS of the separated metal layer and graphite substrate.

More detailed cutplane visualizations of the charge redistribution are given for lithium
in Fig. 4.6, and for two K monolayers in Fig. 4.7. From the upper part of Fig. 4.6, it
can be seen clearly that charge accumulates directly below Li, and the corresponding
accumulation lobe reflects the hexagonal symmetry of the graphite. Figs. 4.6(b-c)
demonstrate the experimentally known fact, that a (2 x2) monolayer is not a preferred
construction for Li: Fig. 4.6(b) shows that charge is depleted between the Ti atoms
(blue color), and the electron localization function (ELF) [52] in Fig. 4.6(c) shows that
there is no electron overlap between the Li atoms (blue color), i.e. the layer consists
of separate adatoms, and it is not metallic. Corresponding visualizations of two K
overlayers (Fig. 4.7) show that charge is depleted below the K slab and accumulated
mostly above the C atoms of the topmost graphene layer (Fig. 4.7(a-b)), and in some
extend between the K layers. The additional charge is transferred to the graphene
m-bands (atomic p.-orbitals), whereas depletion is observed in the sp? hybridized o-
bands of the topmost layer. From the electron density plot (not shown) it can be seen,
that there is a sharp and flat boundary between the metal film and the "vacuum”
which is in agreement with the He-scattering experiments [53].

Figs. 4.7(c-d) show that K forms a metallic layer (green color indicates a metallic
bonding), and that there is no electron overlap in the adsorbate-substrate interface
(blue region between the graphite and the metal layer). The blue rings around the
individual K atoms correspond to the K 4s orbitals, and they indicate that the proba-
bility of finding two electrons within this range is negligible. The 3p semicore electrons
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Figure 4.5: Laterally averaged charge density difference (Ap,) of a K adatom (dotted curve), a
(2x2) monolayer (dashed curve), and two (2x2) overlayers (solid curve) on graphite. The vertical
bars denote the positions of graphene (thick bars) and K layers (thin bars). The charge densities have
been calculated in an extended simulation box, so that the distance between the vertically repeated
periodic graphite (GR) slabs is 20 A.

that are included in the valence are mostly localized around the K atoms. A similar
metallic behavior (delocalization of valence electrons within the metal layer) can be
seen also in the corresponding figures of Rb and Cs MLs. This is expected as all the
three largest alkali metals are found to form ordered (2 x 2) structures on graphite,
and at least for K it is the most stable phase (monolayer).

ELF in Fig. 4.6 and Fig. 4.7 does not show any chemical bonding between the adsor-
bate and substrate as the interface region between them is blue (no electron overlap).
This implies that the adsorbate-substrate interaction should be viewed as ionic in the
alkali-HOPG systems.
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Figure 4.6: Visualization of the Li (2x2) monolayer on HOPG. (a) Three isosurfaces for the accu-
mulated electron density. The corresponding values are 0.001 (yellow), 0.002 (orange), and 0.004¢/A3
(red), respectively. The Li atoms are marked by magenta spheres (b) Cutplane presentation of the
charge density difference (zz plane), where the red color corresponds to accumulation (O.OOOSe/A3
or more) and blue depletion (-0.0005¢/A® or less). (c) The electron localization function (ELF, zz
plane), where the red color corresponds to full localization (1.0, covalent bonds), green is analogous
to homogeneous electron gas (0.5, metallic bonding), and blue equals to low localization (0.0).
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Figure 4.7: Cutplane visualization of two K (2x2) overlayers on HOPG. (a-b) The charge den-
sity difference is presented in zz and yz planes, where the red color corresponds to accumulation
(0.0005¢/A3 or more) and blue depletion (-0.0005¢/A3 or less). (c-d) Similar presentation of the
electron localization function (see the caption in Fig. 4.6).
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4.3 Single-walled Carbon Nanotubes Inside Cyclic
Supermolecules

In this section, the results of various pseudorotaxane systems consisting of carbon nan-
otubes and crown ethers or 3-cyclodextrin are discussed (article [I11]). Three types
of single-walled carbon nanotubes (SWNTs) have been considered: a metallic arm-
chair (4,4) carbon nanotube (CNT(4,4)), a semiconducting zigzag (8,0) nanotube
(CNT(8,0)), and a metallic zigzag (4,0) nanotube. Their diameters are 5.51, 6.36 and
3.38 A, respectively. The first two SWNTs can be manufactured, whereas the existence
of the third one is still questionable. In our calculations, the CNT(8,0) is threaded
through a 36-crown-12 ether (CE-12) molecule, CNT(4,4) through 30-crown-10 ether
(CE-10), and CNT(4,0) through (-cyclodextrin (8-CD), and the electronic proper-
ties of the complexes are studied. These systems are named as CNT(8,0)QCE-12,
CNT(4,4)@QCE-10 and CNT(4,0)@3-CD, respectively. Furthermore, cross-linked ro-
taxane systems are created by substituting four or two crown ether O atoms with N
in the first two cases, and by abstracting two H atoms from the hydroxyl groups of
G-CD.

The electronic structure calculations are performed with the Car-Parrinello molecular
dynamics (CPMD) package [22|. Structural optimization is done with simulated an-
nealing using the Car-Parrinello option for molecular dynamics as described in Section
2.4 (I-point calculation). Periodic boundary conditions are applied, and the electronic
structure is calculated using 13 explicit k-points along the tube axis. The dimensions
of the simulation box are chosen so that three to five nanotube unit cells are included
in order to keep the periodically repeated macrocycles approximately 10 A apart. The
optimized box sizes along the tube axis are then 12.32 A (80 C atoms), 12.82 A (96
C atoms) and 16.82 A (64 C atoms) for CNT(4,4), CNT(8,0) and CNT(4,0), respec-
tively. To avoid interactions between the rotaxane complexes, the perpendicular box
size is chosen so that the minimum distance between replicas is 8 A or more.

The optimized geometries of the CNT(8,0)QCE-12 and CNT(4,4)QCE-10 complexes,
and their cross-linked forms are shown in Fig. 4.8 (one replica included). The average
C-O distance of 1.43 A, and C-O-C angle of 111.5° are close to the corresponding
gas-phase values of 1.43 A and 111.8°. Small attraction between CNT(8,0) and CE-12
oxygens causes that the crown ether approaches the tube, which leads up to 20-30°
change in the O-C-C-O torsional angles. The repulsive forces that are caused by
the steric hindrance and strain are reflected in the considerable intermolecular C-O
distances of 3.52 A, but the total complexation energy is still slightly favorable (-0.12
eV). In the case of CNT(4,4)QCE-10 complex, the conformation is similar, but the
smaller macrocycle diameter causes an additional strain in CE-10. This is observed
as an elongated C-O bond length of 1.45 A and a positive complexation energy of
1.16 eV. The intermolecular C-O distances of 2.86 A are significantly shorter than
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Figure 4.8: Geometries of CNT(8,0) and CNT(4,4) complexes before and after substitution of ether
oxygens (red) with trifunctional nitrogens (blue). (a) CNT(8,0)0@QCE-12, (b) CNT(8,0)QCE-12N4,
(c) CNT(4,4)@QCE-10, and (d) CNT(4,4)@CE-10N2. The simulated systems are replicated once along
the tube axis in order to show the separation of repeated macrocycles.
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those of CNT(8,0)QCE-12. The cross-linking of CNT(8,0)QCE-12 by substituting
symmetrically four O atoms with N leads to a considerable change in the system
geometry (CNT(8,0)QCE-12N4). The covalent C-N bonds between the macromolecule
and the tube force the macromolecule into a square shape, and the bonding of the
corresponding C atoms changes from sp? to sp®. The change in the bonding scheme
can also be seen in the tube as elongated C-C distances of 1.52 A (in pristine tube
1.42 A), and the C-C-C angles of 103° and 112° are close to the tetrahedral value of
109.5°. A similar C-N bonding scheme can be seen for CNT(4,4)QCE-10N2 also.

The CNT(4,0)@3-CD complex is shown from two perspectives in the charge accu-
mulation/depletion plot in Fig. 4.9. Macromolecule expands from its narrow end due
to the steric hindrance effects with the tube, but the total complexation energy is
only slightly positive (0.08 eV). The circular symmetric hydrogen bond network of
the gas-phase conformation is partially broken, so that the separation of the polarized
hydroxyl groups from the tube varies between 2.98 and 3.30 A. There is no significant
charge transfer between the tube and 5-CD, and the interaction should be considered
as polarization, as was the case with CNT(8,0)QCE-12 and CNT(4,4)QCE-10 sys-
tems. The charge accumulation/depletion profile is dominated by the covalent bond
formation in the cross-linked cases. The cross-linked CNT(4,0)@Q3-CD complex is ob-
tained via a hydrogen abstraction in two opposite hydroxyl groups, and the oxygens
are forced to form covalent C-O bonds of 1.45 A with the tube. Again, the hybridiza-
tion of the affected CNT carbons changes from sp? to sp3, and the tube diameter
expands 0.5 A in the vicinity of the contacts.

The electronic band structures of CNT(8,0) and its complexes with CE-12 and CE-
12N4 are shown in Fig. 4.10. Simple analytical tight-binding calculations predict that
an (8,0) zigzag tube is semiconducting [13], and our calculation result in a band gap
of 0.5 eV at the I'-point results from our calculations. Complexation with CE-12 does
not perturb the band structure near the Fermi energy, and the only visible effects are
the dispersionless bands below -1.5 eV corresponding to the HOMOs of the isolated
CE-12. The band structure changes considerably when the system is cross-linked. The
most important change is the appearance of four bands near the Fermi energy, which
causes a peak in the corresponding DOS. The band gap has vanished, but there are no
conduction channels available, and the system can be described as a semiconductor,
despite the changes produced by the cross-linking.

Analytical considerations predict that the armchair CNT(4,4) tube is conducting [13].
This is confirmed by the electronic band structure (Fig. 4.11), showing a Fermi energy
crossing (conduction band) near the Brilloun zone (BZ) boundary at the X-point,
and the corresponding DOS has a finite weight. Our result is confirmed by the DFT
study of Rubio et al. [54]|. The band structure of CNT(4,4)QCE-10 complex is almost
identical to that of CNT(4,4) despite the slight polarization caused by the artificially
short intermolecular C-O distances. However, the cross-linking with CE-10N2 results
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Figure 4.9: Charge accumulation/depletion plot of CNT(4,0)@~-CD complex. (a) front view, (b)
side view. The isosurface has a value of 0.00045 e/A3 both for accumulation (blue) and depletion
(yellow).
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Figure 4.10: Electronic band structure of CNT(8,0) with and without CE-12 complexation (cross-

linking). The dashed line at 0 eV corresponds to the Fermi energy. The simulation box includes three
CNT(8,0) unit cells.

in significant changes in both the valence and conduction bands. In contrast to the
pristine tube, there are bands of weak dispersion around the Fermi energy that give
rise to a peak in DOS, and a new conduction channel opens enhancing the metallicity
of the system.

In contrast to the analytical prediction for the zigzag tubes, the band structure of a
small-diameter CNT(4,0) in Fig. 4.12 shows that the system is metallic with three
conduction channels. The metallicity of SWNTs of diameters less than 5 A has been
observed in earlier studies [55], and it is suggested that this effect arises because of the
severe tube curvature that causes a strong o*-7* hybridization. Furthermore, it has
been proposed that the tubes of diameter 4 A or less should be superconducting [56].
However, a more detailed analysis by Ito et al. has shown that the main reason that
CNT(4,0) is metallic is the strong C-C bond alternation (1.38 and 1.47 A) that lowers
(stabilizes) the first unoccupied 7*-band so that it crosses with the highest occupied

m-bands [57]. We observe a similar phenomenon, and our values for the C-C bonds
are 1.39 and 1.48 A.

As with previous cases, a noncovalent complexation of CNT(4,0) with 5-CD does not
change the characteristic band structure of the nanotube, whereas the cross-linking
with two hydroxyl oxygens has a clear effect. However, the cross-linking suppresses
metallicity in this case as there are only two conduction channels available, and the
DOS has a smaller weight at the Fermi energy. The probable reason is the elongation
of the C-C bonds at the cross-linking sites (1.50-1.55 A), which disturbs the symmetric
bond alternation pattern that causes the metallicity of CNT(4,0).
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Figure 4.11: Electronic band structure of CNT(4,4) with and without CE-10 complexation (cross-
linking). The dashed line at 0 eV corresponds to the Fermi energy. The simulation box includes five
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Figure 4.12: Electronic band structure of CNT(4,0) with and without 5-CD complexation (cross-
linking). The dashed line at 0 eV corresponds to the Fermi energy. The simulation box includes four

CNT(4,0) unit cells.



5 Summary

This thesis consists of four separate articles and three different themes of research
which involve nanometer-sized molecular constructions. The first study considers small
magnesium clusters and their peculiar size-dependent insulator-to-metal transition.
The second step was to study alkali metal adatoms, small alkali metal clusters and two-
dimensional alkali metal monolayers on a graphite surface. This subject is covered in
the second and fourth articles. The third topic is the one-dimensional pseudorotaxane
complexes consisting of functionalized carbon nanotubes and cyclic macromolecules.

The ground-state geometries and electronic properties of Mg clusters in size-range
Mgy-Mgy3 were studied using the first principles BO-LSD-MD simulation method
[23|, which uses the DFT based KS formalism, PBE parametrization of the exchance-
correlation energy functional, separable and nonlocal pseudopotentials, and a plane
wave basis set. This method is especially suited for studying isolated systems, such
as free clusters. The dynamics in the finite-temperature simulation is handled with
the BO approximation in conjunction with the classical Hellman-Feynman theorem of
electrostatics. The study of small magnesium clusters showed that their metallization
is slow and nonmonotonic, and it is not completed even for Mg;3 which was the largest
cluster size studied. Later studies have shown that metallization is not completed even
for anionic Mgss [36]. Tt was noticed that a reliable analysis of metallization has to be
done using various indicators, not just one.

Carbon nanotubes and graphite are effectively infinite systems in one (tubes) or two
(graphite surface) directions. The implemented periodic boundary conditions are the
reason why Car-Parrinello molecular dynamics package (CPMD, [22]) was applied in
their study. This first-principles method exploits the DFT based KS formalism as
well in conjunction with separable nonlocal pseudopotentials, a plane wave basis set,
and the PBE parametrization. The finite-temperature simulations were performed
using the Car-Parrinello molecular dynamics in the case of pseudorotaxanes, and
partially in the case of studying alkali metals on a graphite surface. Other geometry
optimization schemes, such as the quasi-Newton approach (BFGS method [58]) or
conjugate gradients were also applied in the optimization of the alkali metal-graphite
systems.

The alkali metal atoms, clusters, and monolayers (Li, Na, K, Rb, Cs) on a graphite
surface were studied, because their interaction with HOPG is still under debate [6].
It is found that after a certain coverage the alkali metals form metallic layers on
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graphite which pronouncedly decouple from the surface. This can be seen as a drop
in the adsorption energy, increase in the surface separation, and redistribution of the
electron density. The electron localization functions of the system studied indicate that
the adsorbate-substrate interaction is of ionic character. A single alkali metal atom
has a considerable adsorption energy, and it prefers the hollow site on the hexagonal
surface. The diffusion barriers are negligible, except for Li, and the alkali atoms are
relatively mobile on HOPG. This explains partially the tendency of alkali metals to
have several different phases depending on the coverage and temperature.

Both pristine and functionalized nanotubes are at the center of attraction in nanoscience.
On the other hand, rotaxanes have been suggested as potential candidates for molec-
ular devices or sensors in future nanotechnology. This is the reason to study polyro-
taxanes consisting of small single-walled nanotubes and crown ether or 3-cyclodextrin
macromolecules. We found that the interaction of the circular macromolecules with
CNT is weak, and they did not affect the electronic properties of the nanotube consid-
erably. A cross-linking either by nitrogen substitution or hydrogen abstraction changes
the pattern completely suggesting that it can be used for adjusting the CNT elec-
tronic properties. This could be exploited in nanocircuits and sensors, as cross-linked
macromolecules could form specific binding sites for various chemical substances. Non-
chemically bonded macromolecules could have an application in insulating nanotubes
from each other, which could solve their bundling problem. Whether this kind of
polyrotaxanes can be constructed in practice is still uncertain, but the first succesful
experiments reported for self-organized CNT-polyrotaxanes are encouraging [59].
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