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AbstratMetal lusters have attrated a growing attention during the past three deades.This interest is aused by the uniquely di�erent properties of these �nite systems inomparison to the orresponding bulk matter. The metalli evolution as a funtionof the luster size, and the intriguing interation of alkali metals with highly orientedpyrolyti graphite (HOPG) surfae are among the most widely studied topis withinthe luster physis. Carbon nanotubes, on the other hand, are very promising buildingbloks for nanoeletronis and hemial sensors.In this thesis, we employ the density funtional theory to examine the eletroniproperties and strutures of small magnesium lusters, alkali metals on a graphitesurfae and arbon nanotubes whih are funtionalized with yli maromoleules.The slow non-monotoni metalli evolution of magnesium lusters up to luster sizeMg13 was veri�ed with �magi� luster sizes of four and ten atoms that were partiu-larly stable beause of their losed eletron shells. The widely debated interation ofalkali metals with HOPG was found to be ioni, and the experimentally found over-layer onstrutions and the related physial and hemial properties of alkali metaladatoms as well as the anomalous behavior of sodium were studied. The modi�a-tion of eletroni properties of (4,4), (8,0), and (4,0) single-walled arbon nanotubeswith yli rown ether and ylodextrin maromoleules were studied by threadingthem on arbon nanotubes. It was found that this kind of polyrotaxane omplexeshave essentially the same eletroni properties as pristine nanotubes unless hemialross-linkage between the tube and the maromoleule is enfored. However, it wasfound that it is possible to tune the ondutivity of arbon nanotubes with hemialross-linking.

ii



List of PubliationsI J. Akola, K. Rytkönen, and M. Manninen, Metalli evolution of small magne-sium lusters, Eur. Phys. J. D 16, 21-24 (2001).II K. Rytkönen, J. Akola, andM. Manninen, Sodium atoms and lusters on graphiteby density funtional theory, Phys. Rev. B 69, 205404 (2004).III J. Akola, K. Rytkönen, and M. Manninen, Eletroni Properties of Single-WalledCarbon Nanotubes inside Cyli Supermoleules, J. Phys. Chem. B 110, 5186(2006).IV K. Rytkönen, J. Akola, and M. Manninen, Density funtional study of alkaliatoms and monolayers on graphite (0001), Phys. Rev. B, submitted.The author has performed main part of the numerial work in all the publiations,written drafts of the publiations II and IV, and partiipated in writing the publia-tions I and III.

iii



Contents1 Introdution 11.1 Atomi Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Role of Surfae In Cluster Researh . . . . . . . . . . . . . . . . . . . . 21.3 Carbon Nanotubes, Crown Ethers, Cylodextrins, and Their Complexes 31.4 About This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Quantum Mehanial Many-Body Problem: Foundation and Simpli-�ations 62.1 Time Independent Many-Body Shrödinger Equation . . . . . . . . . . 62.2 Born-Oppenheimer Approximation . . . . . . . . . . . . . . . . . . . . 72.3 Eletroni Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.4 Born-Oppenheimer and Car-Parrinello Moleular Dynamis . . . . . . . 103 Density Funtional Theory: Basis and Implementation 153.1 Hohenberg-Kohn Theorems . . . . . . . . . . . . . . . . . . . . . . . . 153.2 Kohn-Sham Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173.3 Loal Density and Gradient Correted Approximations . . . . . . . . . 193.4 Plane Wave Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.5 Pseudopotentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 Results 264.1 Small Magnesium Clusters . . . . . . . . . . . . . . . . . . . . . . . . . 264.2 Alkali Metals on Graphite . . . . . . . . . . . . . . . . . . . . . . . . . 304.3 Single-walled Carbon Nanotubes Inside Cyli Supermoleules . . . . . 395 Summary 45Referenes 47

iv



1 Introdution
1.1 Atomi ClustersAn atomi luster is an objet that omprises from few up to hundreds of thousandsof atoms of one or more elements. Even if the lass of lusters is de�ned with thestritest manner it still inludes a vast amount of objets, and even more if arbonnanotubes and maromoleules are ounted. Cluster researh is a moderately new �eldof physis whih has been growing explosively during the last few deades. Despite thisappliations of metal lusters have been around for hundreds of years as, for example,glass oloured with metal partiles was produed for the �amboyant window senesof hurhes.Until the early 1980's there was two di�erent views on the luster behavior: One wasthat the properties of lusters an be predited from the properties of single partilesand bulk matter by saling, and the other was that lusters behave like moleules,and that there is no relation between di�erent luster sizes and lusters with di�erentelements, so that every luster is essentially unique. This was hanged in 1984 asKnight et al. produed and deteted lusters of alkali metals with up to 100 atoms[1, 2℄. Their results revealed size-dependent behavior, where the eletroni strutureof lusters appeared to re�et that of a spherial potential well: Clusters in whihthe number of valene eletrons mathed to the spherial shell-losing numbers were

Figure 1.1: The atomi oordination in lusters di�ers usually from that in bulk: (a) The bulk hplattie of Mg, and (b) the geometry of Mg20 [5℄. 1



2 Introdution

Figure 1.2: (a) The struture of a graphene layer, and (b) three-dimensional graphite [6℄.more abundant in the spetrum. Ekardt predited this behavior theoretially virtuallysimultaneously [3, 4℄.Typial metalli features suh as a good heat and eletroni ondutane, formabil-ity, light re�etivity, and deloalization of eletrons (metalli bond) are bulk proper-ties that do not neessarily apply to zero-dimensional metal atoms or small lusters.Thereby, these objets do not have a band struture. Another ruial di�erene be-tween lusters and bulk material is that a large portion of the luster atoms, some-times all of them, an be onsidered as surfae atoms (see Fig. 1.1). Consequently, theatoms in lusters have fewer nearest-neighbor atoms, and they are exposed to theirsurroundings. At whih size the metalli properties emerge, and what are the prop-erties of small �sub-metalli� piees of metal need to be studied in order to ahievea fundamental understanding of materials. This is espeially important beause ap-pliations based on metal lusters, suh as funtionalized materials, nanodevies andeletri nanoiruits have been proposed, and to some extend already developed.1.2 Role of Surfae In Cluster ResearhSurfae siene is a wide researh area whih involves physiists, hemists and bi-ologists. It has its roots in solid state and moleular physis, physial and inorganihemistry, atalysis, miroeletronis, thin �lm tehnologies, eletrohemistry and var-ious other researh subjets. Proesses at solid surfaes an a�et industrial proessesboth pro�tably (e.g. atalysis) and harmfully (e.g. orrosion). Chemial reations attwo-dimensional solid surfaes an di�er remarkably from those in three-dimensions,and reation pathways with lower ativation energies an exist.



1.3 Carbon Nanotubes, Crown Ethers, Cylodextrins, and TheirComplexes 3In order to build planar nanostrutures, for example eletri iruits, some kind ofa substrate is usually needed. Similarly, studying the physial and hemial proper-ties of lusters is often easier when they are attahed on a substrate. Clusters andnanostrutures interat with the substrate, and their geometries and properties anhange. The luster-substrate interation an lead to novel materials and new use-ful appliations, but it an ause problems if the original features of the luster oronstruted nanostruture should be maintained. Therefore, to make ontrolled ex-periments a suitable substrate material has to be hosen. The planar, hemially inert,and layered struture of highly oriented pyrolyti graphite (HOPG, see Fig. 1.2) is inmany ases a potential andidate, beause one an split smooth and durable surfaesfrom it that an be leaned easily and used as a weakly interating (inert) substrate.A vast number of studies has been performed on alkali metals on graphite surfae(see review [6℄ and the referenes therein). Alkali metals are alled simple metals,beause they have only one valene eletron, and their behavior an be predited inmany respets from a simple �jellium� model. The interation with graphite is muhmore ompliated, though, and alkali metal adatoms prefer a di�erent binding site(hollow site) on the surfae than hydrogen (above a arbon atom), whih also has onevalene eletron [7℄. In fat, it is still under debate whether the binding between alkalimetals and graphite is of ioni, metalli, or ovalent type. So far, most studies haveonentrated on potassium, but reports on other alkali metals have emerged reently.However, there is still plae for researh as there are disrepanies between experi-mental and theoretial results, and even between di�erent theoretial approahes [6℄.This is due to the di�erent approximations that have to be inorporated in order tosimulate many-partile system onsisting of a nanosale objet (luster) sitting on amarosopi substrate.1.3 Carbon Nanotubes, Crown Ethers, Cylodextrins,and Their ComplexesCarbon nanotubes (CNTs) are one-dimensional, hollow, and tubular strutures whihare formed via self-assembly under ertain onditions, although the mehanism itselfis not yet fully understood [8, 9℄. The CNT walls an be desribed as graphene-likehexagonal arbon networks, and there are single-walled arbon nanotubes (SWNT)and multi-walled arbon nanotubes (MWNT). Experimentally, CNTs were observedalready by Morinobu Endo in 1970's [10℄, but it was only after the �nding of fullerenesby Kroto and Smalley (in 1985) [11℄, though, that Smalley speulated about the exis-tene of arbon nanotubes of dimensions omparable to C60. After Smalley's speula-tion Iijima reported in 1991 about his experimental observation of arbon nanotubesusing a transmission eletron mirosope [12℄.



4 Introdution

Figure 1.3: (a) The unrolled honeyomb lattie of arbon nanotube [13℄. If O and A, as well as Band B' are onneted, a hiral (4,2) arbon nanotube is obtained. Chirality is de�ned by a vetor
Ch = ~OA = (4,2), and T stands for a translation vetor (T = ~OB = (4,-5)). (b) Piture of threetypes of arbon nanotubes [13℄: an �armhair� (n,n) nanotube, a �zigzag� (n,0) nanotube and a �hiral�(n,m) nanotube (intermediate of the two former strutures).The CNT type is de�ned by the orientation of the hexagonal network in relation tothe tube axis (hirality, see Fig. 1.3). Carbon nanotubes have fasinating properties,suh as an exeptional mehanial strength and eletroni ondutane, and CNTs areeither ondutors, semiondutors or insulators depending on the hirality [13℄. Theyhave inspired various possible appliations, e.g. durable or eletronially ondutingfabris have been manufatured already, and their potential usage in nanoeletronis iswidely studied. Many of their fasinating properties an be explained by the graphene-like wall struture.Crown ethers and ylodextrins are other examples of self-assembled nanostruturesthat have appliations in physis and hemistry [14, 15℄. Both of them are irularmaromoleules (maroyles) with various radii. Maromoleules of the (-CH2CH2O-)ntype (n ≥ 4), i.e. onsisting of four or more ethyleneoxy units, are generally referred toas rown ethers beause of their rown-like appearane. Cylodextrins resemble a trun-ated one, and they onsist of gluopyranoe rings (seven of them in β-ylodextrin).These kind of irular moleules have inspired the onstrution of rotaxanes, wherea linear moleule is threaded through a irular moleule, and the ring is loked bybulky stoppers at both ends of the linear moleule (see Fig. 1.4) [16℄. Thereby, thesetwo moleules are prevented from dethreading by physial obstales while they donot have any hemial bonds between them. This kind of strutures give promise ofonstruting, for example, moleular engines and hemial sensors. Rotaxanes withmany irular moleules are alled as polyrotaxanes, and rotaxanes without any bulkystoppers are alled as pseudorotaxanes.
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Figure 1.4: Three onstrution mehanisms of rotaxane: (a) �lipping�, (b) �threading�, () �slippage�[17℄.The eletroni and mehanial properties of CNTs an be modi�ed with partile beamsand hemially (funtionalization). Furthermore, nanotubes an be adjusted so thatthey an be used as hemial sensors, or a one dimensional quantum dot network anbe assembled by embedding ions inside them. One possible way to funtionalize CNTsould be to use them in the role of the linear moleule in rotaxanes. Crown ethers andylodextrins ould then be threaded on them, beause they have both hydrophobiand hydrophili parts and tend to attah onto organi maromoleules.1.4 About This ThesisIn this thesis, we study the eletroni struture of various optimized nanostruturesby employing the Kohn-Sham (KS) formalism of the density funtional theory (DFT)in onjuntion with moleular dynamis and diret geometry optimization methods.This thesis onsists of this introdutory part and four publiations. In Chapter 2, atheoretial bakground for the quantum mehanial many-body problem and mole-ular dynamis methods are presented. In Chapter 3, the density funtional theory,and its appliations are introdued. The evolution of metallization and its india-tors are disussed in the ase of small magnesium lusters in Setion 4.1. The mainpart of this work onerns eletroni struture alulations of alkali metal atoms ona graphite surfae, and they are disussed extensively in Setion 4.2. Final topiof pseudorotaxane omplexes formed by threading irular maromoleules (rownethers, β-ylodextrin) on small SWNTs is disussed in Setion 4.3.



2 Quantum Mehanial Many-BodyProblem: Foundation andSimpli�ations
2.1 Time Independent Many-Body Shrödinger Equa-tionIn priniple, the eletroni struture and properties of a quantum mehanial many-body system an be solved from the time-independent many-body Shrödinger equa-tion

HΨ = EΨ, (2.1)where H is the Hamiltonian of the system, Ψ is the orresponding wave funtion and
E is the total energy. For a system of N eletrons and M nulei in a zero externalpotential, the Hamiltonian is of the form (atomi units)
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, (2.2)where ∇2

i and ∇2
I are di�erential operators whih operate with respet to the oor-dinates of eletron i (ri) and nuleus I (RI), MI is the ratio of the mass of nuleus

I to the mass of an eletron, ZI and ZJ are atomi numbers of nulei I and J , and
riI , rij and RIJ are the distanes between eletron i and nuleus I, eletrons i and j,and nulei I and J, respetively [18℄. The �rst two terms in Eq. (2.2) are the kinetioperators of eletrons and nulei, and the last three terms are the Coulomb interationbetween eletrons and nulei, eletrons, and nulei, respetively.
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2.2 Born-Oppenheimer Approximation 72.2 Born-Oppenheimer ApproximationSolving the many-body Shrödinger equation exatly is usually impossible, and sim-plifying approximations are needed. One of the most pratial approximations is theso-alled Born-Oppenheimer (BO) approximation [18℄, where the wave funtion Ψ ofthe whole system is separated into independent eletron and nuleon parts Ψelec and
Ψnucl, so that

Ψ = ΨelecΨnucl. (2.3)This separation is justi�ed as the mass of a nuleus is of the order of 103-105 largerompared to that of an eletron. Therefore, nulei move onsiderably slower thaneletrons, and they an be onsidered as �xed during the optimization of the eletronistruture if the studied time interval is short enough. Consequently, the eletroniand nulear problem an be separated, and the eletroni problem is desribed by theeletroni Shrödinger equation
HelecΨelec = EelecΨelec, (2.4)where the eletroni Hamiltonian is of the form
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. (2.5)Solving Eq. (2.4) gives then the eletroni state
Ψelec = Ψelec({ri}; {RI}), (2.6)where the eletroni oordinate ri is a variable, and the nulear oordinate RI is aparameter.After the eletroni energy Eelec is known, the total ground state energy an be al-ulated by adding the nulear Coulomb repulsion term to the eletroni energy,

Etot = Eelec +
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8 Quantum Mehanial Many-Body Problem: Foundation andSimpli�ationsThe eletroni problem is now solved by solving the Eqs. (2.4) and Eq. (2.7).The eletroni energy
Eelec = 〈Ψelec|Helec|Ψelec〉, (2.8)has a parametri dependene on the nulear oordinates,
Eelec = Eelec({RI}). (2.9)This gives rise to the useful Hellman-Feynman theorem [19, 20℄ in whih the foresating on nulei are derived from the lassial potential
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, (2.10)whih inludes all the Coulombi interations. By di�erentiating Eelec with respet tothe omponents of ioni oordinates RI,α, where α = x, y, z, we get the fores atingon nulei
FI,α = −∂Eelec({RI})

∂RI,α
= −〈Ψelec|

∂Helec

∂RI,α
|Ψelec〉

= −〈Ψelec|
∂V ({ri}; {RI})

∂RI,α

|Ψelec〉. (2.11)A more detailed derivation of this result is given in ref. [20℄.2.3 Eletroni SolutionGenerally, if an eletroni system is desribed by a state Ψ, the orresponding energyis
E[Ψ] =

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 , (2.12)



2.3 Eletroni Solution 9where Ψ does not have to be the ground-state wave funtion of the Shrödinger equa-tion [21℄. If the wavefuntion is normalized (〈Ψ|Ψ〉 = 1), then the energy is simplythe expetation value E[Ψ] = 〈Ψ|H|Ψ〉. Every state Ψ that satis�es the Shrödingerequation gives one of the eigenvalues of H , and therefore, if E0 is the ground stateenergy of the system, we have
E[Ψ] ≥ E0. (2.13)Consequently, a full minimization of the funtional E[Ψ] with respet to all allowed

N eletron states gives the ground state energy E0, and hene, the exat ground state
Ψ0. This is alled as the variational method.In pratie, it is too di�ult to perform the variational method exatly, and a trialwave funtion has to be onstruted. Minimization is then performed by optimizing theparameters of this trial wave funtion. The form of the trial wave funtion determineshow lose to the real ground state energy one an get. Most often the many-bodywave funtion is desribed in terms of separable single-partiles. This is done byintroduing a one-partile Shrödinger equation hiψi = εiψi, where hi is the one-partile Hamiltonian, ψi is the orresponding eigenfuntion, and εi is the eigenenergy.This 'trik' an not be done without ompliations as the eletron-eletron interationplays an important role in reality, and usually some kind of an e�etive potential hasto be inluded.Typial trial wave funtions have the origin in the quantum mehanial Hartree,Hartree-Fok (HF) and Con�guration Interation (CI) methods [18℄.In the Hartree method, the trial wave funtion is the so-alled Hartree produt (HP)

ΨHP (x1,x2, . . . ,xN) = ψi(x1)ψj(x2) . . . ψk(xN), (2.14)where xn (n=1,2,. . . ,N) inludes both the position and spin of the nth partile, and
{ψm(xn)} (m=i,j,. . . ,k) are the non-interating (orthonormal) single-partile spin or-bitals. This produt satis�es the above-mentioned single-partile Shrödinger equa-tions. The problem with the Hartree produt is that it does not ful�ll the antisym-metry requirement that omes from the Pauli exlusion priniple for fermions. Inthe Hartree-Fok (HF) theory, the normalized wave funtion is antisymmetrized byforming a Slater determinant
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det[ψi, ψj , . . . , ψk]. (2.15)Using this trial wave funtion in the alulation of the eletroni energy gives the so-alled Hartree-Fok energy (EHF ), whih di�ers from the real energy E. The di�erenebetween the real energy and the Hartree-Fok energy,

EHF
corr = E −EHF , (2.16)is alled the orrelation energy [18℄, and the determination of EHF

corr is a major problemin the many-body theory [21℄. The real energy an be alulated, in priniple, by theCI method whih uses an in�nite sum of determinants
Ψ = c0|Ψ0〉 +
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abc〉 + . . . , (2.17)where |Ψ0〉 is the ground state of the Hartree-Fok determinant. In |Ψr
a〉 eletron a isexited to the virtual state r, in |Ψrs

ab〉 eletron a is exited to the virtual state r andeletron b to the virtual state s, and so on. The orresponding oe�ients related tothese terms are c0, cra, crs
ab, and so on. In pratie, only the most important terms aretaken into onsideration.2.4 Born-Oppenheimer and Car-Parrinello Moleu-lar DynamisIn order to study the time evolution of an atomi or moleular system exatly, onehas to solve the time-dependent Shrödinger equation

i~
∂

∂t
Ψ({ri}, {RI}; t) = HΨ({ri}, {RI}; t). (2.18)



2.4 Born-Oppenheimer and Car-Parrinello Moleular Dynamis 11This is virtually impossible without signi�ant approximations. Even approximativemethods are omputationally expensive and, in many ases, too simpli�ed to give au-rate results. This is why most of the moleular dynamis studies up to date have beenbased on prede�ned potentials onstruted from empirial data or eletroni struturealulations for �xed systems. The advantages of these lassial moleular dynamismethods are obvious. They are fast ompared to the the quantum mehanial meth-ods, and it is possible to adjust them. This gives an experimental aspet throughthe possibility of playing with the potentials, and makes it easier to understand thebehavior of many-partile systems. The prede�ned potentials su�er, however, frommajor drawbaks. The parametrization beomes very ompliated in systems withmany types of atoms, where di�erent kinds of interatomi interations have to betaken into aount. Furthermore, lassial methods annot provide information aboutthe eletroni struture, and annot desribe hemially omplex systems where thebonding pattern hanges during the simulation (bond breaking/formation) [22℄.Drawbaks in the lassial moleular dynamis methods enouraged the developmentof the so-alled ab initio methods whih are based on quantum mehanis, and havea truly preditive power as the eletroni struture and the fores ating on nuleiare examined in parallel at eah time step during the dynamis. Methods diretlybased on the time-dependent Shrödinger equation (2.18) are demanding in pratie,beause the time evolution of eletrons and nulei have to be solved simultaneously.The eletroni movement is fast ompared to that of the nulei, and numerous timesteps are needed in order to see any signi�ant hanges in the atomi positions. This isthe reason why intermediate methods have been developed. The two methods appliedin this thesis are introdued next. First is the Born-Oppenheimer method, whih isbased on the time-independent Shrödinger equation and lassial fores, and theseond is the Car-Parrinello moleular dynamis, in whih the quantum dynamis ofslow nulei and fast eletrons is mapped onto a purely lassial problem.Born-Oppenheimer moleular dynamis is based on the BO approximation introduedin Setion (2.2), and does not involve solving the time-dependent Shrödinger equa-tion. The ore of the method are the equations [22℄:
MIR̈I(t) = −∇IminΨ0

{〈Ψ0|He|Ψ0〉} (2.19)
HeΨ0 = E0Ψ0, (2.20)where minΨ0

means a minimization with respet to the states Ψ0. Equation (2.19)gives the fores ating on nulei, whih are used to determine the movement of nulei,



12 Quantum Mehanial Many-Body Problem: Foundation andSimpli�ationsand the ground-state eletroni struture has to be alulated after every time stepfrom Eq. (2.20). One should note, that −∇I{〈Ψ0|He|Ψ0〉} is exatly the Hellman-Feynman fore (Eq. (2.11)) provided that the wavefuntion Ψ0 is an exat eigenfun-tion [22℄.Born-Oppenheimer moleular dynamis has been applied suesfully, for example, byRobert N. Barnett and Uzi Landman (1993), whose method was originally basedon the loal-spin-density approximation, non-loal, norm-onserving pseudopotentialsand a plane-wave basis (see Chapter 3) [23℄. Remarkable in this method is that it doesnot employ periodi boundary onditions (PBCs), whih makes it more appliablefor harged systems or systems with large multipole moments. For methods usingPBCs, the interation between the periodially repeated replias an a�et resultssigni�antly.Another, not so obvious but muh applied method was developed by Roberto Car andMihele Parrinello in 1985 [24℄. In the Car-Parrinello (CP) method, the self-onsistenteletroni optimization is not done after eah moleular dynamis step. However, themethod makes it possible to use larger time step than in the methods based on the �rstorder time-dependent Shrödinger equation. In lassial mehanis, the fore on nuleiis obtained from the derivative of a Lagrangian with respet to the nulear positions.The energy of the eletroni subsystem, 〈Ψ0|Ee|Ψ0〉 is a funtion of both nulearpositions {RI} and single-partile orbitals {ψi}, and Car and Parrinello suggestedthat a funtional derivative with respet to the orbitals gives the fore ating on theorbitals if a suitable Lagrangian is hosen.Car and Parrinello postulated the Lagrangian of the form
LCP =

∑

I

1

2
MIṘ

2

I +
∑

i

1

2
µi〈ψ̇i|ψ̇i〉 − 〈Ψ0|He|Ψ0〉 + constraints, (2.21)where the �rst two terms are the kineti energy of nulei and eletrons, third term isthe potential energy, and the last assures the orthonormality of orbitals. The inertiaparameters µi an be desribed as �titious masses of the orbitals ψi, and onstraintsare needed beause of the orthonormality requirement et. The assoiated Euler-Lagrange equations
d

dt

∂L

∂ṘI

=
∂L

∂RI
(2.22)



2.4 Born-Oppenheimer and Car-Parrinello Moleular Dynamis 13
d

dt

δL

δψ̇∗
i

=
δL

δψ∗
i ,
, (2.23)result in the Newtonian equations of motion, i.e. the Car-Parrinello equations of theform

MIR̈I(t) = − ∂

∂R I
〈Ψ0|He|Ψ0〉 +

∂

∂R I
{constraints} (2.24)

µIψ̈i(t) = − δ

δψ∗
i

〈Ψ0|He|Ψ0〉 +
δ

δψ∗
i

{constraints}, (2.25)where the onstraints are holonomi [24℄, and depend on {ψi} and {RI}. It shouldbe emphasized that the eletron dynamis above is �titious, and it is introdued inorder to get realisti nulear dynamis.Making a hoie between the BO and Car-Parrinello moleular dynamis is not anobvious deision [22℄. In the Car-Parrinello moleular dynamis, the eletroni degreesof freedom are treated together with nulear dynamis at eah time step, and as theequations of motion for nulei and eletrons are oupled the time step has to bereasonably small. In the BO moleular dynamis, the eletron dynamis is absent,whih is formally an order of magnitude advantage with respet to the CP moleulardynamis, at least if the nulear motion is slow. On the other hand, the eletronistruture has to be minimized for eah nulear on�guration in the BO moleulardynamis. The longer the time step used, the longer the eletroni optimization takesas the wavefuntion alulated during the previous time step (initial guess for theminimization) is further away from the new one.In the �rst artile of this thesis [I℄, we apply the Born-Oppenheimer loal-spin-densitymoleular dynamis (BO-LSD-MD) program developed by Robert N. Barnett and UziLandman [23℄. In this method, the ions move aording to lassial mehanis, and thefores are alulated using the generalized gradient-orreted approximation (GGA)for the exhange-orrelation energy funtional and pseudopotentials that desribe theion ores (see Setion 3.5). The eletron density as well as the orbitals are expandedusing a plane wave basis set (see Setion 3.4). The applied BO-LSD-MD method doesnot use periodi boundary onditions, and it is therefore an appropriate method forisolated lusters with onsiderable harges or multipole moments.



14 Quantum Mehanial Many-Body Problem: Foundation andSimpli�ationsIn the last three artiles of this thesis [II℄-[IV℄, we apply the Car-Parrinello moleulardynamis (CPMD) [24℄ ode originally introdued by Roberto Car and Mihele Par-rinello (see [25℄ for the latest version of the ode) whih applies periodi boundaryonditions, GGA for the exhange-orrelation energy funtional, and pseudopotentials.Again, plane waves are used as basis funtions for the eletron density and orbitals.Due to the fat that CPMD uses PBCs it is a natural hoie for periodi strutures(in this thesis the semimetalli graphite surfae and arbon nanotubes), and its usageis justi�ed for neutral lusters. In fat, the urrent implementation inludes an optionwhere PBCs an be swithed o�, whih enables simulations of �nite harged systemsas well. On the other hand, the �nite system alulations an produe inorret resultsfor marosopi objets (surfaes, bulk) whih have a band struture.



3 Density Funtional Theory: Basisand Implementation
3.1 Hohenberg-Kohn TheoremsThe Hamiltonian Helec of an N-eletron system an be written in the form

Helec = T + Uee + Vext, (3.1)where T is the kineti energy part of eletrons, Uee is the energy related to the eletron-eletron Coulombi repulsion, and Vext is the energy related to the interation betweeneletrons and an external potential v(r) whih inludes the potentials aused by nuleiand external �elds. The T + Uee part is universal to all N-eletron systems, and theexternal potential part Vext �xes the Hamiltonian. Thus, N and v(r) determine all theproperties of the ground state. If the HamiltonianH of the eletroni system is known,then the ground-state energy and wave funtion an be, in priniple, determined byminimizing the energy funtional E[Ψ] with respet to Ψ. It was the idea of Hohenbergand Kohn to replaeN and v(r) as basi variables with the eletron density ρ(r), whihan be written in the form
ρ(x1) = N

∫ ∫

. . .

∫

|Ψ(x1,x2, . . . ,xN)|2dx2 . . . dxN , (3.2)where dxi inludes di�erentials with respet to oordinates and spin, and N is thetotal number of eletrons
N =

∫

ρ(r)dr, (3.3)when Ψ is normalized. The energy funtional is then
E[ρ] = 〈Ψ[ρ]|H|Ψ[ρ]〉 = 〈Ψ[ρ]|T + Uee + Vext|Ψ[ρ]〉 = F [ρ] +

∫

ρ(r)v(r)dr, (3.4)15



16 Density Funtional Theory: Basis and Implementationwhere F [ρ] = 〈Ψ[ρ]|T + Uee|Ψ[ρ]〉 is a universal funtional for all N-eletron systems.This method where the energy is minimized as a funtional of the eletron density, isalled as the Density Funtional Theory (DFT).The �rst Hohenberg-Kohn theorem legitimizes the use of ρ instead of N and Ψ [26℄; itsays that the external potential v(r) is determined, within a trivial additive onstant, bythe eletron density ρ(r). AsN is determined by integrating ρ over spae, it follows that
ρ also determines the ground-state wave funtion Ψ and all the eletroni propertiesof the system. The proof of this theorem is very easy, if we assume that the groundstate of an N-eletron system is nondegenerate. This assumption is not neessary ifthe problem is investigated in detail, but by now it alleviates the proedure.Let us assume that there are two Hamiltonians H and H ' with potentials v and v',whih di�er more than by a onstant. Eah Hamiltonian gives the same ρ for itsground state although the normalized wave funtions Ψ and Ψ' are di�erent. By Eq.(2.13) we then have
E0 < 〈Ψ′|H|Ψ′〉 = 〈Ψ′|H ′|Ψ′〉+ 〈Ψ′|H −H ′|Ψ′〉 = E ′

0 +

∫

ρ(r)[v(r)− v′(r)]dr, (3.5)where E0 and E0' are the ground-state energies for H and H ', respetively. On theother hand
E ′

0 < 〈Ψ|H ′|Ψ〉 = 〈Ψ|H|Ψ〉+ 〈Ψ|H ′ −H|Ψ〉 = E0 −
∫

ρ(r)[v(r) − v′(r)]dr. (3.6)By adding these two equation together we get E0 + E ′
0 < E′

0 + E0, whih is on-traditory, and thus, there annot be two di�erent v that give the same ρ for theirground states. Consequently, ρ determines N and v unambiguously as well as all theproperties of the ground state.The seond Hohenberg-Kohn theorem provides the variational priniple by statingthat for a trial density ρ̃(r) ≥ 0,
E0 ≤ E[ρ̃], (3.7)where E[ρ̃] is the total energy funtional, and ∫

ρ̃(r)dr = N .The so-alled v-representable eletron density is assoiated with the antisymmetriground-state wave funtion of a Hamiltonian with some external potential v(r). There



3.2 Kohn-Sham Method 17are eletron densities that are not v-representable, but most studies are restrited tothe v-representability where there exists one-to-one mapping between the eletron den-sity and external potential. In pratie, the requirements are further weakened as onereplaes the v-representability by a ondition that is alled as the N-representability,whih means that ρ(r) is obtained from some antisymmetri wave funtion that ful�llsthe following requirements:
ρ(r) ≥ 0,

∫

ρ(r)dr = N, and ∫

|∇ρ(r) 1

2 |2dr <∞. (3.8)3.2 Kohn-Sham MethodThe most pratial implementation of DFT was introdued by Kohn and Sham in 1965[27℄. Their idea was to study �rst noninterating eletrons for whih the Hamiltonianis
Hs =

N
∑

i=1

hi =
N

∑

i=1

[−1

2
∇2

i + vs(r)], (3.9)where the external potential vs for a single partile is in this ontext the Coulombpotential of ion ores.The wave-funtion solved from the Shrödinger equation is then of the form of Eq.(2.15), and it is onstruted from the N lowest one-eletron states ψi that satisfy theequations
hiψi = [−1

2
∇2

i + vs(r)]ψi(r) = εiψi(r). (3.10)From these single-partile equations, the eletron density
ρ(r) =

N
∑

i=1

|ψi(r)|2, (3.11)an be ahieved. The idea of the Kohn-Sham (KS) method is to apply the exat kinetienergy funtional of the noninterating system,



18 Density Funtional Theory: Basis and Implementation
Ts[ρ] =

N
∑

i=1

〈ψi| −
1

2
∇2|ψi〉, (3.12)in the ase of interating eletrons. The orresponding energy funtional is then

E[ρ] = Ts[ρ] + Vne[ρ] + J [ρ] + Exc[ρ], (3.13)where
Vne[ρ] =

∫

v(r)ρ(r)dr (3.14)
J [ρ] =

1

2

∫ ∫

ρ(r1)ρ(r2)

r12
dr1r2 (3.15)

Exc[ρ] = 〈Ψ|T + Uee|Ψ〉 − Ts[ρ] − J [ρ] (3.16)are the the energy related to the interation between eletrons and an external po-tential (Vne[ρ]), the lassial eletron-eletron repulsion (J [ρ]), and the exhane andorrelation (Exc[ρ]). The Euler-Lagrange equation an be written in the form
µ =

δE[ρ]

δρ(r)
= veff(r) +

δTs[ρ]

δρ(r)
, (3.17)if we identify

veff(r) =:
δVeff [ρ]

δρ(r)
= v(r) +

δJ [ρ]

δρ(r)
+
δExc

δρ(r)
= v(r) +

∫

ρ(r′)

|r − r′|dr
′ + vxc(r), (3.18)where

Veff [ρ] = Vne[ρ] + J [ρ] + Exc[ρ]. (3.19)Now, veff has a similar role as vs in the ase of noninterating eletrons, and we obtain
ρ(r) that satis�es Eq. (3.17) by solving the N single-partile equations

{−1

2
∇2

i + veff (r)}ψi(r) = εiψi(r), (3.20)



3.3 Loal Density and Gradient Correted Approximations 19and setting
ρ(r) =

N
∑

i=1

|ψi|2. (3.21)As veff depends on ρ, Eqs. (3.18)-(3.21) have to be solved self-onsistently. In pratie,this means that a onstruted trial density is used to determine veff in Eq. (3.18),whih is then used to obtain ρ(r) from Eqs. (3.20) and (3.21), the obtained ρ(r) isused as a new trial density, and the whole proedure is repeated. This is done untilthe results onverge (self-onsisteny) after whih the total energy an be alulatedfrom Eq. (3.13).The eletron spin an be taken into onsideration in the KS method by de�ning thatthe eletron density is ρ(r) = ρ↓(r) + ρ↑(r), where ρ↓(r) and ρ↑(r) are the densities ofspin down and spin up eletrons, respetively, and
ρσ(r) =

Nσ
∑

i=1

|ψiσ|2, (3.22)where Nσ is the number of eletrons with spin σ = (↑, ↓). In this ase, we have theKS equations with orbitals ψiσ, and energies εiσ for both spins, and veff in Eq. (3.18)depends on the spin as vσ
xc = δExc/δρσ(r).3.3 Loal Density and Gradient Correted Approxi-mationsThe Kohn-Sham equations (3.18)-(3.21) are formally exat. The problem is, however,that the expliit form of the exhange-orrelation energy Exc[ρ] is unknown. It hasbeome evident that the searh of an aurate Exc[ρ] is the greatest hallenge in DFT[21℄ although several suesful approximations have been developed. Qualitativelysuesful yet simple approximation for Exc[ρ] is the loal-density approximation (LDA)

ELDA
xc [ρ] =

∫

ρ(r)εxc(ρ)dr, (3.23)where εxc(ρ) is the exhange-orrelation energy per partile of the uniform eletrongas with density ρ. This energy an be divided into separate exhange and orrelation



20 Density Funtional Theory: Basis and Implementationparts,
εxc(ρ) = εx(ρ) + εc(ρ). (3.24)The exhange part of the uniform eletron gas an be alulated using the Hartree-Fok theory [28℄, and the orrelation funtion an be interpolated based on the a-urate values reeived from the quantum Monte Carlo alulations [21℄. In the spin-dependent ase the exhange-orrelation energy εxc(ρ, ξ) depends on the polarization

ξ = (ρ↑ − ρ↓)/ρ, and an be written in the form
εxc(ρ, ξ) = εxc(ρ, 0) + f(ξ)[εxc(ρ, 1) − εxc(ρ, 0)], (3.25)where f(ξ) gives the polarization dependene between the fully polarized (ξ = 1) andunpolarized (ξ = 0) limits. The method where the spin is taken aount is alled asthe loal spin-density approximation (LSD). Beause of the nature of the LDA (orLSD) method, one would expet that it gives good results only for systems wherethe eletron density is nearly uniform. However, alulations have proved that LDAgives surprisingly realisti results also for systems with a onsiderable variation in theeletron density.The generalized gradient-orreted approximation (GGA) was developed in order toimprove the LSD method. The density inhomogeneties inExc are taken into aount byinluding the gradients of the spin-densities. In pratie, only a few terms are inludedin the gradient expansion, and slowly varying or small density variations are desribedless satisfatorily [29℄. This is problemati, for example, with the pseudopotentialtheory of simple metals where the linear-response limit is physially important.A parametrized analyti form of εxc is well established in the LSD method, but thebest desription of the gradient orretion is still under debate. A funtional that wasdesigned to ath the energetially signi�ant features was introdued by Perdew etal. in 1996 [29℄, and it is referred to as the PBE funtional. It desribes the uniformeletron gas better than the earlier GGA methods, it is onstruted so that it givesphysial results in the limits, and it has an analytial form whih has improved thenumerial e�ieny ompared to the earlier forms, suh as the one made by Perdewand Wang in 1991 [30℄. In the PBE sheme the orrelation energy is of the form
EGGA

c [ρ↑, ρ↓] =

∫

d3rρ[εc(rs, ξ) +H(rs, ξ, t)], (3.26)where rs is the loal Seitz radius (ρ = 3/4πr3
s = k3

F/3π
2), ξ = (ρ↑ − ρ↓)/ρ is the



3.4 Plane Wave Basis 21relative spin polarization, and t = |∇ρ|/2φksρ is a dimensionless density gradient,where φ(ξ) = [(1+ ξ)2/3 +(1− ξ)2/3]/2 is a spin-saling fator, and ks =
√

4kF/πa0 isthe Thomas-Fermi Sreening wave number (a0 = ~
2/me2). The gradient ontribution

H = (e2/a0)γφ
3 × ln{1 +

β

γ
t2[

1 + At2

1 + At2 + A2t4
]}, (3.27)where

A =
β

γ
[exp{−εc/(γφ

3e2/a0)} − 1]−1, (3.28)and β and γ are adjustable parameters, gives realisti results in the slowly varying,in the rapidly varying and in the high-density limits. The orresponding exhangeenergy is written as
EGGA

X =

∫

d3rρεx(ρ)FX(s), (3.29)where εx = −3e2kF/4π and the so-alled spin-polarized enhanement fator FX is
FX(s) = 1 + κ− κ/(1 + µs2κ), (3.30)where κ and µ are parameters. The PBE gradient orreted method desribed aboveshould produe the most important features of the real exhange-orrelation energy.It takes into aount the rapid density variations as a GGA method should, and in thelimit of uniform eletron gas it behaves as the LSD method whih is formally orret.3.4 Plane Wave BasisThe appliation of the KS method requires � auxiliary single-partile wave funtions.The expliit form of the KS wave funtions is, however, yet to be de�ned. They anbe represented by a basis set whih onsists of simple analyti funtions fν with well-known properties. In general, the expansion form of a periodi funtion ψi with respetto ertain basis funtions an be written as a linear ombination
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ψi(r) =

∑

ν

ciνfν(r; {RI}), (3.31)where ciν are the orbital expansion oe�ients. In quantum hemistry, the atom en-tered Slater- or Gaussian-type basis funtions have been typially used [22℄. However,a ompletely di�erent approah whih is suggested by the solid state theory of periodilatties is adopted here. Periodi boundary onditions impose periodiity on the ele-tron density. This implies that a plane wave basis might be a onvenient hoie as thegeneri basis set for expanding the periodi part of the orbitals as in the Bloh's Theo-rem. Plane waves are an appropriate hoie as they form a omplete and orthonormalset of funtions. The plane wave basis funtions an be written as
fPW
G

(r) =
1√
V

exp[iG · r], (3.32)where G is a reiproal vetor, r is a real spae vetor, and V is the volume ofthe periodi super-ell. By using plane waves with periodi boundary onditions, aperiodi wave funtion an be expanded into the form
ψ(r) = ψ(r + L) =

1√
V

∑

G

ψ(G) exp[iG · r], (3.33)where ψ(r) and ψ(G) are related by a three-dimensional Fourier transform, and L isa diret lattie vetor onneting the equivalent points in di�erent ells [22℄. Further-more, the KS orbitals an be written as
φi(r,k) =

1√
V

∑

G

ci(G,k) exp[i(G + k) · r], (3.34)where k is a vetor in the �rst Brillouin zone, and ci(G,k) are omplex numbers.Now, the expanded form of the density is
n(r) =

1√
V

∑

i

∫

dkfi(k)
∑

G,G′

c∗i (G
′,k)ci(G,k) exp[i(G + k) · r]

=
∑

G

n(G) exp[iG · r], (3.35)



3.5 Pseudopotentials 23where the sum over i runs over all the states, and the last sum over G vetors expandsover douple the range given by the wavefuntion expansion. In reality, the in�nite sumsover G and di�erent ells have to be trunated, and the integral over the Brillouinzone has to be approximated by a �nite sum over speial k-points
∫

dk →
∑

k

wk, (3.36)where wk are the weights of the integration points. The validity of the trunation isbased on the fat that the KS potential veff (G) onverges rapidly with inreasingthe modulus of G. This is why only the vetors G ful�lling the kineti energy uto�ondition
1

2
|k + G|2 ≤ Ecut (3.37)are inluded at eah k point.Plane waves are originless funtions, whih means that there is no dependene on theposition of the nulei {RI}. Thus, as long as the eletroni system has onverged to theground state plane waves do not ause an error alled the Pulay fore, that is ausedby the inomplete basis set in the ase of nulear position dependend funtions suhas the atom entered funtions mentioned previously [35℄. The fat, that plane wavesare deloalized in spae means also that they do not favor ertain regions over others,and they form a balaned and reliable basis. Another good feature is that di�erentialoperators in the real-spae are simply multipliations in the reiproal spae, andboth spaes an be e�iently onneted via the Fast Fourier Transforms (FFTs). Onthe other hand, the only way to improve the quality of the basis set is to add morebasis funtions, as the basis funtions an not be shu�ed into regions where theyare needed the most. This is a problem with strutures with strong inhomogeneities,suh as omplex supermoleules with large empty aps between the branhes of themoleule.3.5 PseudopotentialsEletroni orbitals feature strong and rapid osillations lose to the nulei due to thePauli exlusion priniple, whih enfores a nodal struture onto the wave funtion



24 Density Funtional Theory: Basis and Implementationthrough orthogonality of the orbitals. Representing these rapid osillations in theplane wave basis is problemati, whih has motivated the development of the so-alledpseudopotential approximation [31℄.The physial properties of atoms, espeially their hemial reativity, are governed bythe valene eletrons. This together with the fat that numerially the most onsum-ing problem of the many-body alulations is to alulate the oulombi interationbetween eletrons has enouraged to develop the pseudopotential approximation, inwhih the ioni ore of an atom (ore eletrons and nuleus) is desribed by an e�e-tive potential. In other words, the desription of the ompliated nodal struture inthe region of atom ores is avoided by replaing the atual potential of the nuleusand ore eletrons by an e�etive potential that produes the same usually smoothlyvarying plane wave-like wavefuntions outside the ore region [32℄.Pseudopotentials an be onstruted empirially by �tting theoretial results to ex-periments, or by the more advaned ab initio methods, where the pseudopotentials areonstruted from the quantum mehanial priniples. One of the most simple pseu-dopotentials is given by the so-alled Empty Core Model (ECM), where the unsreenedpseudopotential is taken to be zero inside a radius Re:
U(r) =

{

0 , for r < Re ;
−e2/r , for r > Re .

(3.38)Modern ab initio pseudopotentials are onstruted by using a spherial sreeningapproximation, and solving self-onsistently the radial Kohn-Sham equations [33℄
[−1

2

d2

dr2
+
l(l + 1)

2r2
+ V [ρ; r]]rRnl(r) = εnlrRnl(r), (3.39)where

V [ρ; r] = −Z
r

+ VH [ρ; r] + Vxc(ρ(r)) (3.40)is the self-onsistent one-eletron potential. The exhange-orrelation potential Vxc(ρ(r))is usually taken from LDA (GGA in this thesis), ρ is the sum of the eletron densities ofthe oupied wave funtions Rnl(r), and VH is the Hartree potential. There are usuallyfour riteria for the pseudopotentials onstruted this way [33℄. The �rst one is that



3.5 Pseudopotentials 25the valene pseudo-wave-funtions generated from the pseudopotentials should notontain nodes, i.e. the pseudopotentials should be smooth. Seondly, the normalizedatomi radial pseudo-wave-funtion has to be equal to the orresponding all-eletronwave funtion beyond a hosen uto� radius rcl, or it should onverge rapidly towardsthat value. Thirdly, the harge enlosed within rcl for the two wave funtions shouldbe equal. Finally, the valene all-eletron and pseudopotential eigenvalues must beequal. Pseudopotentials ful�lling these requirements are alled the �norm-onservingpseudopotentials�.The ultrasoft pseudopotentials have been developed to improve the transferability (i.e.the appliability in various physial and hemial environments) of pseudopotentials[34℄. For the ultrasoft pseudopotentials the norm-onserving onstraint does not apply,whih makes it possible to make nodal struture of the potential even smoother anduse less plane-waves with an inreased rcl.



4 Results
4.1 Small Magnesium ClustersCertain properties of small lusters (e.g. struture) are hallenging to study exper-imentally in a systemati manner. This is why theoretial alulations are needed.Theory an help the experiments in fousing on interesting e�ets, predit ahiev-able strutures, and provide interpretation for the measured data. In small partiles,however, quantum mehanial e�ets play an important � if not governing � role,whih requires that omputationally demanding ab initio methods have to be used.This alls for approximative methods as it is a well-known fat that solving the exatmany-body Shrödinger equation is pratially impossible for more than a few atoms.The �rst problem is to �nd the right luster geometry. The more atoms there arein the luster the more possible geometries it an adopt. These on�gurations whihrepresent loal minima of the potential energy surfae are separated from eah otherby energy barriers, and the system an get easily trapped into one of these valleys.Finding the ground-state geometry that orresponds to the global minimum of thepotential energy surfae is thus inreasingly di�ult.For small magnesium lusters the pursuit of �nding the global minimum an be han-dled with the so-alled simulated annealing strategy, where moleular dynamis isperformed at high temperature so that the atoms are extremely mobile. Time-to-timethe luster is ooled down to a loal minimum, and the geometries that are energet-ially favorable an then be seleted as starting geometries for more thorough DFTsimulations. Geometries obtained from other soures (intuition, geneti algorithm)should be tried as well, beause the simulated annealing proedure does not neessar-ily give all the low-energy geometries. However, this way there is a better hane to�nd the global minimum amongst the ever inreasing group of di�erent geometries.In this setion, the results for the neutral and ationi magnesium lusters in thesize range Mg2-Mg13, as well as the anioni lusters of the size range Mg8-Mg13, aredisussed. The eletroni struture alulations were made with the BO-LSD-MDmethod desribed previously in Setion 2.4. With small anions this method resultsin positive highest oupied moleular orbital (HOMO) eigenenergies, whih is thereason why only Mg8 and the larger lusters are onsidered. The main theme of thiswork (artile [I℄) was to investigate the metalli evolution in small magnesium lusters.26
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Figure 4.1: The lowest energy strutures of Mg9-Mg13 lusters. Note the presene of the trigonalprism unit in all the lusters.It was disovered that the insulator-to-metal transition is not a monotoni funtion ofthe luster size, it is not ompleted within the size-range studied, and that it is di�ultto �nd a reliable indiator for metallization. However, the evolution of various featuresin ombination an be used as an indiator, espeially beause our results follow thesame trends that were found in the experimental [36℄ and theoretial [37, 38℄ studiespublished soon afterwards.The ground state strutures of neutral magnesium lusters in the size range Mg4-Mg8 are found to be based on a tetrahedron or fused tetrahedrons. Furthermore,Mg7 and Mg8 an be desribed as a deahedron (biapped pentagon) and appeddeahedron, respetively. In the size range Mg9-Mg13, the strutures are based ona trigonal prism (see Fig. 4.1). These geometries agree well with the earlier studies[39, 40, 41℄, although for Mg12 and Mg13 slightly di�erent isomers were found to beenergetially favorable. Later studies on�rmed our results [37, 38℄. Strutures of theationi lusters are mainly based on the geometries of the neutral lusters but thereare also some di�erenes. The small ations appear linear until Mg+

4 , and both Mg+

9and Mg+
10 are based on the tetrahedron (or deahedron), whereas the neutral lustersare based on the trigonal prism, and even the energetially most favorable struturesof Mg+

11 and Mg+
12 are slightly di�erent from the orresponding neutral geometries.



28 ResultsIn many ases, the energy variation between di�erent isomers is so small that thedi�erenes ould be within the alulational error. The anioni lusters studied (Mg−8 -Mg−13) adopted neutral luster ground state strutures with the exeption of Mg−11 forwhih the most stable isomer di�ers slightly from that of the neutral luster.The evolution of the Mg luster properties is shown in Fig. 4.2. The �gure shows thetrends in binding energy (Eb), HOMO-LUMO gap (Eg), vertial ionization potential(vIP) and average nearest neighbour distane (〈d〉) as a funtion of the luster size.The seond derivative of the total energy of a luster with N atoms
−∆2E = (EN+1 − EN) + (EN−1 −EN ) = EN+1 + EN−1 − 2EN , (4.1)is shown as an inset. It is a measure of the relative stability of a luster with respetto the neighboring luster sizes.The trends in Fig. 4.2 show that the metalli evolution of Mg lusters is not monotonous.In general, Eb inreases, but Eg, vIP and 〈d〉 derease as a funtion of luster size.The large binding energies (Eb), high relative stability (−∆2E), and ompat geome-tries (small 〈d〉) of Mg4 and Mg10 �t to the simple jellium piture, aording to whihthey should be �magi� beause of their eletron numbers 8 and 20 (losed eletronshell). The strong binding in Mg4 and Mg10 is also in orrelation with the ompatgeometries of these two. The vertial ionization potentials are of the same magnitudeas reported by Jellinek and Aioli [37℄, but the relative values di�er. For example, ourtrend predits a dip in vIP for Mg4, whih is in ontradition with the intuition. Thissuggest that the eletron deloalization is di�erent in Mg4 than in the neighboringluster sizes. It is also evident that the metallization is still inomplete for the largestluster size studied (Mg13). Jellinek and Aioli suggested that the p-harater of thevalene eletron density may not be an adequate riterion for the size-indued metallitransition alone, as the degree of p-harater is about 50% in bulk magnesium, and itis observed to inrease slowly and nonmonotonially when going from a single atomtowards the bulk magnesium [37℄. Our results for the s- and p-omponents at theFermi energy are in agreement with this.
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Figure 4.2: Properties of small Mg lusters. From top to bottom: Binding energies (Eb), seondderivatives of total energies (−∆
2E, inset), HOMO-LUMO gaps (Eg), vertial ionization potentials(vIP) and average nearest neighbour distanes (< d >).



30 Results4.2 Alkali Metals on GraphiteOur work on alkali metals on HOPG onsists of two artiles: The �rst one onentrateson sodium atoms and lusters [II℄, while in the seond a systemati study of alkalimetal atoms, dimers, and monolayers (Li, Na, K, Rb, Cs) is onduted [IV℄. In thesestudies, we used the Car-Parrinello method (see Setion 2.4), whih employs periodiboundary onditions and is suitable for modelling an in�nite graphite surfae.For the sodium alulations [II℄, we tested various graphite model substrates andalulational methods. First, we studied a �nite slab onsisting of two to four freegraphene ��akes� where the dangling bonds of the peripheral arbons were termi-nated with hydrogen. The problem with this setup was that the graphene �akes wereinterloked (staking ABAB...), and onsequently, the system is not symmetri. Thisirregularity in geometry fored the layers to lean towards eah other on the one sideand away on the opposite side. Another possible ause of problems ould have beenthat graphite is atually a semimetal with a ompliated eletroni band struture,and a more proper way to simulate the substrate is an in�nite periodi surfae.Next, we applied periodi boundary onditions in an ortorhombi simulation box sothat the graphite surfae is ontinuous (in�nite) and the adsorbate is repliated peri-odially on it. The system size and the simulation box had to be large enough so thatthe interation between the repliated adsorbates and the repliated graphite slabs inthe diretion orthogonal to the surfae were negligible. Eah graphene layer omprised32 (or 60 in some alulations) arbon atoms in suh a manner, that the periodiityformed a ontinuous surfae. The maximum distanes between the adsorbate repliaswere 9.84 Å and 8.53 Å in the lateral diretions, and the perpendiular dimension ofthe simulation box was hosen so that there was 10-12 Å empty spae between thegraphite slab replias. In the harge transfer analysis, it beame evident that in orderto get rid o� the dipole-dipole interation we had to inrease the distane betweenthe slabs up to 20 Å.Again, two to four graphene layers were tested, and it was found that three layersare needed, as the binding of the Na atom turned out to be sensitive to the num-ber of graphene layers. For two graphene layers, the surfae separation is 0.16 Å(6.6%) larger than for three and four layers. In order to inorporate the graphite bandstruture, di�erent numbers of k-points were tried. As a manifestation of the bandstruture, a twisting of the graphite hexagonal geometry was found upon geometryoptimization with only one k-point (Γ-point). It was notied that in order to get theinteratomi fores right a 2×2 k-point mesh had to be adopted in the lateral dimen-sion, and for the energies a 5×5 k-point mesh was needed. In the latter work [IV℄,we adopted a hexagonal symmetry for the simulation box, after whih a 2×2 k-pointmesh turned out appropriate for alulating the total energies also, and the shortest
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Figure 4.3: Numbered loations of alkali metal adatoms on top of a graphite hexagon.distane between two repliated adatoms beame 9.84 Å in both lateral diretions.The positions of the arbon atoms were �xed in most simulations in order to reduethe omputational ost. Test alulations for Li atoms on graphite, where either fouror six nearest arbon atoms were set free, showed that this aused negligible hangesin the geometries as well as in the energies.Among alkali metals, sodium is found to have an anomalous behavior as it interatsrelatively weakly with the graphite surfae. This is espeially evident for Na2, whihhas a losed eletron shell (two valene eletrons), and it resides 3.05-3.95 Å apartfrom the surfae depending on the alignment. The energetis of Na favors lusteringproesses on HOPG, and the stability of lusters with an open valene eletron shellis inreased due to the spin-degeneray of the highest moleular orbital (odd-evenstaggering). For example, the formation energy of Na5 is 0.99 eV larger than that of�ve separate adatoms (∆E = 2.55 eV), and 0.52 eV larger than the formation energyof separated Na3 and Na2. The formation energy is de�ned as a sum of the adsorptionenergy per atom (∆E⊥) of a luster/monolayer and the binding energy (Eb) of anatom in a free luster/monolayer.The inreased stability of the odd luster sizes and the inertness of Na2 (losed shell)an be seen from the fat that the most stable on�guration of four Na atoms ongraphite is the pair Na3 and Na with a formation energy ∆E = 2.56 eV whih is 0.52eV higher than for four separate adatoms. The lowest formation energy is observedfor two separated Na2 lusters with ∆E = 1.92 eV. The geometries of Na4 and Na5deviated from planarity, but it is not lear whether this is related to the experimentallyobserved bukling of Na overlayers [42, 43℄.All the alkali metal adatoms are found to prefer the hollow site of the hexagonalgraphite sublattie (loation 0 in Fig. 4.3). Calulations on a few seleted loations(all loations in Fig. 4.3 for Na, loations 0, 1, 2, and 4 for the other alkali metal



32 Resultsadatoms) show, that the alkali metal adatoms an di�use almost freely on the graphitesurfae, as only lithium has a onsiderable di�usion barrier (Ediff = 0.21 eV). Thisis probably due to the small atomi radius of Li, while for the other alkali metaladatoms the di�usion barrier is almost negligible (Ediff 0.02-0.06 eV). Experimentshave shown, that Li forms interalated strutures readily, as it penetrates betweentwo graphene sheets and loalizes at the hollow site [6℄.The trends in the formation/adsorption energy and surfae separation of the alkalimetal adatoms and (2× 2) MLs are shown in Fig. 4.4. A omparison of the formationenergies reveals that in most ases the dispersed phase is energetially more stablethan (2×2) ML. This is in agreement with the experiments as there is no islandformation in the low overage regime. This is evident as for all the other alkali metalsbut Na, the formation energy per atom is larger for separate adatoms than for the(2×2) struture. However, when the overage is inreased so that the adatoms beomeloser to eah other the (2×2) onstrution is preferred for K, and it represents a stablephase for Rb and Cs under ertain irumstanes [6℄.Among the separated adatoms, lithium was found to have the largest adsorptionenergy ∆E⊥ = 1.21 eV, and sodium the smallest with ∆E⊥ = 0.55 eV. For K, Rb andCs the adsorption energy grows slowly as the atomi radius inreases, ∆E⊥ being 0.99eV, 1.02 eV and 1.04 eV, respetively. The distanes from the surfae grow steadilyas the atomi radius inreases: Li is losest to the surfae with d⊥ = 1.84 Å and Csfarthest with d⊥ = 3.75 Å. Experimental value d⊥ = 2.79 ± 0.03 Å for a K (2×2)layer [44℄ is loser to the value d⊥ = 2.72 Å that we obtain for a separated K atomthan the value d⊥ = 3.17 Å of for K (2×2) ML. This di�erene ould be aused bythe GGA funtional used for the exhange-orrelation energy or it ould be related tothe indiret evaluation method of the experimental layer spaing.The adsorption energies and the surfae separation show that the metal layer under-goes a deoupling from the surfae as the overage is inreased. This e�et is learlyseen as a drop in the adsorption energies and an inrease in the surfae separationwhen omparing separated adatoms with (2 × 2) MLs. A single potassium atom, forexample, has an adsorption energy ∆E⊥ = 0.99 eV, whereas the same for K (2 × 2)ML is only 0.25 eV per atom. For two monolayers, the adsorption energy is only 0.13eV per atom, whih is one half of the adsorption energy of one layer. This means thatthe total adsorption energy in the simulation box is the same for one and two layers,and the seond overlayer does not interat with the surfae. However, the formationenergy is almost exatly the same as for 1ML suggesting a stronger interation be-tween the K atoms as the overage is inreased. The weak interation between thesubstrate and metal �lm is further supported by the fat that the separation of thelower K overlayer (d⊥ = 3.11 Å) is almost the same as in the ase of one monolayer(d⊥ = 3.17 Å).
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Figure 4.4: Adsorption of alkali metal atoms and (2×2) monolayers on graphite: (a) the formationand adsorption energies per atom (∆E and ∆E⊥) and (b) the vertial separation from the substrate(∆E⊥).



34 ResultsTable 4.1: Comparison between di�erent DFT methods.Adsorbate Funtional ∆E (eV) d⊥ (Å) RefereneLi Atom PBE 1.21 1.84 This workPBE (LDA) 1.10 (1.68) 1.71 (1.63) Ref. [45℄, slab modelB3LYP 1.36 1.71 Ref. [46℄, luster modelLDA 1.60 1.64 Ref. [47℄, slab model(2×2) PBE 0.79 2.02 This workLDA 0.93 1.64 Ref. [47℄, slab modelNa Atom PBE 0.55 2.45 This workPBE 0.50 (0.69) 2.34 (2.42) Ref. [45℄, slab modelB3LYP 0.72 2.10 Ref. [46℄, luster modelPW91 2.32 Ref. [48℄, slab modelK Atom PBE 0.99 2.72 This workPBE (LDA) 0.88 (1.12) 2.65 (2.70) Ref. [45℄, slab modelBP86 (LDA) 1.49 (1.67) 2.81 (2.73) Ref. [49℄, luster modelB3LYP 1.06 2.51 Ref. [46℄, luster modelLDA 0.51 2.79 Ref. [50℄, slab modelLDA 0.78 2.77 Ref. [51℄, slab model (1 layer)(2×2) PBE 0.81 3.17 This workLDA 0.98 2.82 Ref. [50℄, slab modelLDA 0.48 2.82 Ref. [51℄, slab model (1 layer)We have evaluated the amount of harge transfer (∆q) by using the laterally averagedharge density di�erene (∆ρ⊥), where one integrates over the harge depletion areaaround (below) the alkali metal adatoms (layer). All the alkali metal adatoms donate0.4-0.5 e to the substrate. For (2 × 2) MLs, the eletron density redistribution uponadsorption is di�erent, and the amount of donated harge is approximately 0.1 e peradatom. Here, it should be notied that as in the experiments there are several waysto evaluate the harge transfer theoretially, and they an give varying results.The results for the formation energy and surfae separation in omparison with otherDFT studies are presented in Tab. 4.1. One an see that our results are mostly inagreement with the other studies, and espeially with the slab model alulationswhere the PBE funtional is used [45℄. The largest di�erenes are observed with theLDA studies: The LDA formation energy tends to be systematially higher and thedistane from the surfae lower whih is expeted as LDA has an over-binding har-ater. Exeptions to this pattern are presented by the LDA slab model alulations ofLamoen and Persson [50℄ and Anilotto et al. (one graphene layer only) [51℄, and forexample, the value ∆E = 0.51 eV from Ref. [50℄ is barely one half of the ∆E= 0.99 eV



4.2 Alkali Metals on Graphite 35in our study. The attration between graphene layers is mainly of the van der Waalsharater, and it is not reprodued by standard DFT. The over-binding harater ofLDA gives by hane a more realisti interlayer distane than GGA, and it is oftensuggested in the literature that LDA should give better results for the adatom bindingenergies and distanes. The di�erene an also be seen in the d⊥ values when om-paring our results to the LDA studies for Li [47℄ and K [50, 51℄. In general, our PBEresults are in reasonable agreement with the other studies, and we believe that ourresults are reliable due to the extensive testing.Fig. 4.5 shows the laterally averaged harge density di�erene (∆ρ⊥) of a K adatom,(2×2) ML, and two (2×2) overlayers on graphite. It an be seen, that even thoughthe amount of harge transferred to graphite is almost the same, there are signi�-ant di�erenes between the three urves. In the ase of a separate K atom, hargedepletes through the whole atomi volume of K and aumulates mostly over thetopmost graphene layer. For a (2 × 2) monolayer, the harge is depleted below themonolayer whih already implies a deoupling tendeny. The urves of 1ML and 2MLare pratially idential below the lower metal layer. Deoupling is further supportedby the harge redistribution of 2ML (aumulation between the K layers), and theorresponding eletroni density of valene states (DOS) is essentially a sum over theDOS of the separated metal layer and graphite substrate.More detailed utplane visualizations of the harge redistribution are given for lithiumin Fig. 4.6, and for two K monolayers in Fig. 4.7. From the upper part of Fig. 4.6, itan be seen learly that harge aumulates diretly below Li, and the orrespondingaumulation lobe re�ets the hexagonal symmetry of the graphite. Figs. 4.6(b-)demonstrate the experimentally known fat, that a (2×2) monolayer is not a preferredonstrution for Li: Fig. 4.6(b) shows that harge is depleted between the Li atoms(blue olor), and the eletron loalization funtion (ELF) [52℄ in Fig. 4.6() shows thatthere is no eletron overlap between the Li atoms (blue olor), i.e. the layer onsistsof separate adatoms, and it is not metalli. Corresponding visualizations of two Koverlayers (Fig. 4.7) show that harge is depleted below the K slab and aumulatedmostly above the C atoms of the topmost graphene layer (Fig. 4.7(a-b)), and in someextend between the K layers. The additional harge is transferred to the graphene
π-bands (atomi pz-orbitals), whereas depletion is observed in the sp2 hybridized σ-bands of the topmost layer. From the eletron density plot (not shown) it an be seen,that there is a sharp and �at boundary between the metal �lm and the �vauum�whih is in agreement with the He-sattering experiments [53℄.Figs. 4.7(-d) show that K forms a metalli layer (green olor indiates a metallibonding), and that there is no eletron overlap in the adsorbate-substrate interfae(blue region between the graphite and the metal layer). The blue rings around theindividual K atoms orrespond to the K 4s orbitals, and they indiate that the proba-bility of �nding two eletrons within this range is negligible. The 3p semiore eletrons
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Figure 4.5: Laterally averaged harge density di�erene (∆ρ⊥) of a K adatom (dotted urve), a(2×2) monolayer (dashed urve), and two (2×2) overlayers (solid urve) on graphite. The vertialbars denote the positions of graphene (thik bars) and K layers (thin bars). The harge densities havebeen alulated in an extended simulation box, so that the distane between the vertially repeatedperiodi graphite (GR) slabs is 20 Å.that are inluded in the valene are mostly loalized around the K atoms. A similarmetalli behavior (deloalization of valene eletrons within the metal layer) an beseen also in the orresponding �gures of Rb and Cs MLs. This is expeted as all thethree largest alkali metals are found to form ordered (2 × 2) strutures on graphite,and at least for K it is the most stable phase (monolayer).ELF in Fig. 4.6 and Fig. 4.7 does not show any hemial bonding between the adsor-bate and substrate as the interfae region between them is blue (no eletron overlap).This implies that the adsorbate-substrate interation should be viewed as ioni in thealkali-HOPG systems.
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Figure 4.6: Visualization of the Li (2×2) monolayer on HOPG. (a) Three isosurfaes for the au-mulated eletron density. The orresponding values are 0.001 (yellow), 0.002 (orange), and 0.004e/Å3(red), respetively. The Li atoms are marked by magenta spheres (b) Cutplane presentation of theharge density di�erene (xz plane), where the red olor orresponds to aumulation (0.0005e/Å3or more) and blue depletion (-0.0005e/Å3 or less). () The eletron loalization funtion (ELF, xzplane), where the red olor orresponds to full loalization (1.0, ovalent bonds), green is analogousto homogeneous eletron gas (0.5, metalli bonding), and blue equals to low loalization (0.0).
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Figure 4.7: Cutplane visualization of two K (2×2) overlayers on HOPG. (a-b) The harge den-sity di�erene is presented in xz and yz planes, where the red olor orresponds to aumulation(0.0005e/Å3 or more) and blue depletion (-0.0005e/Å3 or less). (-d) Similar presentation of theeletron loalization funtion (see the aption in Fig. 4.6).



4.3 Single-walled Carbon Nanotubes Inside Cyli Supermoleules 394.3 Single-walled Carbon Nanotubes Inside CyliSupermoleulesIn this setion, the results of various pseudorotaxane systems onsisting of arbon nan-otubes and rown ethers or β-ylodextrin are disussed (artile [III℄). Three typesof single-walled arbon nanotubes (SWNTs) have been onsidered: a metalli arm-hair (4,4) arbon nanotube (CNT(4,4)), a semionduting zigzag (8,0) nanotube(CNT(8,0)), and a metalli zigzag (4,0) nanotube. Their diameters are 5.51, 6.36 and3.38 Å, respetively. The �rst two SWNTs an be manufatured, whereas the existeneof the third one is still questionable. In our alulations, the CNT(8,0) is threadedthrough a 36-rown-12 ether (CE-12) moleule, CNT(4,4) through 30-rown-10 ether(CE-10), and CNT(4,0) through β-ylodextrin (β-CD), and the eletroni proper-ties of the omplexes are studied. These systems are named as CNT(8,0)�CE-12,CNT(4,4)�CE-10 and CNT(4,0)�β-CD, respetively. Furthermore, ross-linked ro-taxane systems are reated by substituting four or two rown ether O atoms with Nin the �rst two ases, and by abstrating two H atoms from the hydroxyl groups of
β-CD.The eletroni struture alulations are performed with the Car-Parrinello moleulardynamis (CPMD) pakage [22℄. Strutural optimization is done with simulated an-nealing using the Car-Parrinello option for moleular dynamis as desribed in Setion2.4 (Γ-point alulation). Periodi boundary onditions are applied, and the eletronistruture is alulated using 13 expliit k-points along the tube axis. The dimensionsof the simulation box are hosen so that three to �ve nanotube unit ells are inludedin order to keep the periodially repeated maroyles approximately 10 Å apart. Theoptimized box sizes along the tube axis are then 12.32 Å (80 C atoms), 12.82 Å (96C atoms) and 16.82 Å (64 C atoms) for CNT(4,4), CNT(8,0) and CNT(4,0), respe-tively. To avoid interations between the rotaxane omplexes, the perpendiular boxsize is hosen so that the minimum distane between replias is 8 Å or more.The optimized geometries of the CNT(8,0)�CE-12 and CNT(4,4)�CE-10 omplexes,and their ross-linked forms are shown in Fig. 4.8 (one replia inluded). The averageC-O distane of 1.43 Å, and C-O-C angle of 111.5◦ are lose to the orrespondinggas-phase values of 1.43 Å and 111.8◦. Small attration between CNT(8,0) and CE-12oxygens auses that the rown ether approahes the tube, whih leads up to 20-30◦hange in the O-C-C-O torsional angles. The repulsive fores that are aused bythe steri hindrane and strain are re�eted in the onsiderable intermoleular C-Odistanes of 3.52 Å, but the total omplexation energy is still slightly favorable (-0.12eV). In the ase of CNT(4,4)�CE-10 omplex, the onformation is similar, but thesmaller maroyle diameter auses an additional strain in CE-10. This is observedas an elongated C-O bond length of 1.45 Å and a positive omplexation energy of1.16 eV. The intermoleular C-O distanes of 2.86 Å are signi�antly shorter than
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Figure 4.8: Geometries of CNT(8,0) and CNT(4,4) omplexes before and after substitution of etheroxygens (red) with trifuntional nitrogens (blue). (a) CNT(8,0)�CE-12, (b) CNT(8,0)�CE-12N4,() CNT(4,4)�CE-10, and (d) CNT(4,4)�CE-10N2. The simulated systems are repliated one alongthe tube axis in order to show the separation of repeated maroyles.



4.3 Single-walled Carbon Nanotubes Inside Cyli Supermoleules 41those of CNT(8,0)�CE-12. The ross-linking of CNT(8,0)�CE-12 by substitutingsymmetrially four O atoms with N leads to a onsiderable hange in the systemgeometry (CNT(8,0)�CE-12N4). The ovalent C-N bonds between the maromoleuleand the tube fore the maromoleule into a square shape, and the bonding of theorresponding C atoms hanges from sp2 to sp3. The hange in the bonding shemean also be seen in the tube as elongated C-C distanes of 1.52 Å (in pristine tube1.42 Å), and the C-C-C angles of 103◦ and 112◦ are lose to the tetrahedral value of109.5◦. A similar C-N bonding sheme an be seen for CNT(4,4)�CE-10N2 also.The CNT(4,0)�β-CD omplex is shown from two perspetives in the harge au-mulation/depletion plot in Fig. 4.9. Maromoleule expands from its narrow end dueto the steri hindrane e�ets with the tube, but the total omplexation energy isonly slightly positive (0.08 eV). The irular symmetri hydrogen bond network ofthe gas-phase onformation is partially broken, so that the separation of the polarizedhydroxyl groups from the tube varies between 2.98 and 3.30 Å. There is no signi�antharge transfer between the tube and β-CD, and the interation should be onsideredas polarization, as was the ase with CNT(8,0)�CE-12 and CNT(4,4)�CE-10 sys-tems. The harge aumulation/depletion pro�le is dominated by the ovalent bondformation in the ross-linked ases. The ross-linked CNT(4,0)�β-CD omplex is ob-tained via a hydrogen abstration in two opposite hydroxyl groups, and the oxygensare fored to form ovalent C-O bonds of 1.45 Å with the tube. Again, the hybridiza-tion of the a�eted CNT arbons hanges from sp2 to sp3, and the tube diameterexpands 0.5 Å in the viinity of the ontats.The eletroni band strutures of CNT(8,0) and its omplexes with CE-12 and CE-12N4 are shown in Fig. 4.10. Simple analytial tight-binding alulations predit thatan (8,0) zigzag tube is semionduting [13℄, and our alulation result in a band gapof 0.5 eV at the Γ-point results from our alulations. Complexation with CE-12 doesnot perturb the band struture near the Fermi energy, and the only visible e�ets arethe dispersionless bands below -1.5 eV orresponding to the HOMOs of the isolatedCE-12. The band struture hanges onsiderably when the system is ross-linked. Themost important hange is the appearane of four bands near the Fermi energy, whihauses a peak in the orresponding DOS. The band gap has vanished, but there are noondution hannels available, and the system an be desribed as a semiondutor,despite the hanges produed by the ross-linking.Analytial onsiderations predit that the armhair CNT(4,4) tube is onduting [13℄.This is on�rmed by the eletroni band struture (Fig. 4.11), showing a Fermi energyrossing (ondution band) near the Brilloun zone (BZ) boundary at the X-point,and the orresponding DOS has a �nite weight. Our result is on�rmed by the DFTstudy of Rubio et al. [54℄. The band struture of CNT(4,4)�CE-10 omplex is almostidential to that of CNT(4,4) despite the slight polarization aused by the arti�iallyshort intermoleular C-O distanes. However, the ross-linking with CE-10N2 results



42 Results

Figure 4.9: Charge aumulation/depletion plot of CNT(4,0)�γ-CD omplex. (a) front view, (b)side view. The isosurfae has a value of 0.00045 e/Å3 both for aumulation (blue) and depletion(yellow).
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Figure 4.10: Eletroni band struture of CNT(8,0) with and without CE-12 omplexation (ross-linking). The dashed line at 0 eV orresponds to the Fermi energy. The simulation box inludes threeCNT(8,0) unit ells.in signi�ant hanges in both the valene and ondution bands. In ontrast to thepristine tube, there are bands of weak dispersion around the Fermi energy that giverise to a peak in DOS, and a new ondution hannel opens enhaning the metalliityof the system.In ontrast to the analytial predition for the zigzag tubes, the band struture of asmall-diameter CNT(4,0) in Fig. 4.12 shows that the system is metalli with threeondution hannels. The metalliity of SWNTs of diameters less than 5 Å has beenobserved in earlier studies [55℄, and it is suggested that this e�et arises beause of thesevere tube urvature that auses a strong σ∗-π∗ hybridization. Furthermore, it hasbeen proposed that the tubes of diameter 4 Å or less should be superonduting [56℄.However, a more detailed analysis by Ito et al. has shown that the main reason thatCNT(4,0) is metalli is the strong C-C bond alternation (1.38 and 1.47 Å) that lowers(stabilizes) the �rst unoupied π∗-band so that it rosses with the highest oupied
π-bands [57℄. We observe a similar phenomenon, and our values for the C-C bondsare 1.39 and 1.48 Å.As with previous ases, a nonovalent omplexation of CNT(4,0) with β-CD does nothange the harateristi band struture of the nanotube, whereas the ross-linkingwith two hydroxyl oxygens has a lear e�et. However, the ross-linking suppressesmetalliity in this ase as there are only two ondution hannels available, and theDOS has a smaller weight at the Fermi energy. The probable reason is the elongationof the C-C bonds at the ross-linking sites (1.50-1.55 Å), whih disturbs the symmetribond alternation pattern that auses the metalliity of CNT(4,0).
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Figure 4.11: Eletroni band struture of CNT(4,4) with and without CE-10 omplexation (ross-linking). The dashed line at 0 eV orresponds to the Fermi energy. The simulation box inludes �veCNT(4,4) unit ells.
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Figure 4.12: Eletroni band struture of CNT(4,0) with and without β-CD omplexation (ross-linking). The dashed line at 0 eV orresponds to the Fermi energy. The simulation box inludes fourCNT(4,0) unit ells.



5 SummaryThis thesis onsists of four separate artiles and three di�erent themes of researhwhih involve nanometer-sized moleular onstrutions. The �rst study onsiders smallmagnesium lusters and their peuliar size-dependent insulator-to-metal transition.The seond step was to study alkali metal adatoms, small alkali metal lusters and two-dimensional alkali metal monolayers on a graphite surfae. This subjet is overed inthe seond and fourth artiles. The third topi is the one-dimensional pseudorotaxaneomplexes onsisting of funtionalized arbon nanotubes and yli maromoleules.The ground-state geometries and eletroni properties of Mg lusters in size-rangeMg2-Mg13 were studied using the �rst priniples BO-LSD-MD simulation method[23℄, whih uses the DFT based KS formalism, PBE parametrization of the exhane-orrelation energy funtional, separable and nonloal pseudopotentials, and a planewave basis set. This method is espeially suited for studying isolated systems, suhas free lusters. The dynamis in the �nite-temperature simulation is handled withthe BO approximation in onjuntion with the lassial Hellman-Feynman theorem ofeletrostatis. The study of small magnesium lusters showed that their metallizationis slow and nonmonotoni, and it is not ompleted even for Mg13 whih was the largestluster size studied. Later studies have shown that metallization is not ompleted evenfor anioni Mg35 [36℄. It was notied that a reliable analysis of metallization has to bedone using various indiators, not just one.Carbon nanotubes and graphite are e�etively in�nite systems in one (tubes) or two(graphite surfae) diretions. The implemented periodi boundary onditions are thereason why Car-Parrinello moleular dynamis pakage (CPMD, [22℄) was applied intheir study. This �rst-priniples method exploits the DFT based KS formalism aswell in onjuntion with separable nonloal pseudopotentials, a plane wave basis set,and the PBE parametrization. The �nite-temperature simulations were performedusing the Car-Parrinello moleular dynamis in the ase of pseudorotaxanes, andpartially in the ase of studying alkali metals on a graphite surfae. Other geometryoptimization shemes, suh as the quasi-Newton approah (BFGS method [58℄) oronjugate gradients were also applied in the optimization of the alkali metal-graphitesystems.The alkali metal atoms, lusters, and monolayers (Li, Na, K, Rb, Cs) on a graphitesurfae were studied, beause their interation with HOPG is still under debate [6℄.It is found that after a ertain overage the alkali metals form metalli layers on45



46 Summarygraphite whih pronounedly deouple from the surfae. This an be seen as a dropin the adsorption energy, inrease in the surfae separation, and redistribution of theeletron density. The eletron loalization funtions of the system studied indiate thatthe adsorbate-substrate interation is of ioni harater. A single alkali metal atomhas a onsiderable adsorption energy, and it prefers the hollow site on the hexagonalsurfae. The di�usion barriers are negligible, exept for Li, and the alkali atoms arerelatively mobile on HOPG. This explains partially the tendeny of alkali metals tohave several di�erent phases depending on the overage and temperature.Both pristine and funtionalized nanotubes are at the enter of attration in nanosiene.On the other hand, rotaxanes have been suggested as potential andidates for mole-ular devies or sensors in future nanotehnology. This is the reason to study polyro-taxanes onsisting of small single-walled nanotubes and rown ether or β-ylodextrinmaromoleules. We found that the interation of the irular maromoleules withCNT is weak, and they did not a�et the eletroni properties of the nanotube onsid-erably. A ross-linking either by nitrogen substitution or hydrogen abstration hangesthe pattern ompletely suggesting that it an be used for adjusting the CNT ele-troni properties. This ould be exploited in nanoiruits and sensors, as ross-linkedmaromoleules ould form spei� binding sites for various hemial substanes. Non-hemially bonded maromoleules ould have an appliation in insulating nanotubesfrom eah other, whih ould solve their bundling problem. Whether this kind ofpolyrotaxanes an be onstruted in pratie is still unertain, but the �rst suesfulexperiments reported for self-organized CNT-polyrotaxanes are enouraging [59℄.
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