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Abstra
tMetal 
lusters have attra
ted a growing attention during the past three de
ades.This interest is 
aused by the uniquely di�erent properties of these �nite systems in
omparison to the 
orresponding bulk matter. The metalli
 evolution as a fun
tionof the 
luster size, and the intriguing intera
tion of alkali metals with highly orientedpyrolyti
 graphite (HOPG) surfa
e are among the most widely studied topi
s withinthe 
luster physi
s. Carbon nanotubes, on the other hand, are very promising buildingblo
ks for nanoele
troni
s and 
hemi
al sensors.In this thesis, we employ the density fun
tional theory to examine the ele
troni
properties and stru
tures of small magnesium 
lusters, alkali metals on a graphitesurfa
e and 
arbon nanotubes whi
h are fun
tionalized with 
y
li
 ma
romole
ules.The slow non-monotoni
 metalli
 evolution of magnesium 
lusters up to 
luster sizeMg13 was veri�ed with �magi
� 
luster sizes of four and ten atoms that were parti
u-larly stable be
ause of their 
losed ele
tron shells. The widely debated intera
tion ofalkali metals with HOPG was found to be ioni
, and the experimentally found over-layer 
onstru
tions and the related physi
al and 
hemi
al properties of alkali metaladatoms as well as the anomalous behavior of sodium were studied. The modi�
a-tion of ele
troni
 properties of (4,4), (8,0), and (4,0) single-walled 
arbon nanotubeswith 
y
li
 
rown ether and 
y
lodextrin ma
romole
ules were studied by threadingthem on 
arbon nanotubes. It was found that this kind of polyrotaxane 
omplexeshave essentially the same ele
troni
 properties as pristine nanotubes unless 
hemi
al
ross-linkage between the tube and the ma
romole
ule is enfor
ed. However, it wasfound that it is possible to tune the 
ondu
tivity of 
arbon nanotubes with 
hemi
al
ross-linking.
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1 Introdu
tion
1.1 Atomi
 ClustersAn atomi
 
luster is an obje
t that 
omprises from few up to hundreds of thousandsof atoms of one or more elements. Even if the 
lass of 
lusters is de�ned with thestri
test manner it still in
ludes a vast amount of obje
ts, and even more if 
arbonnanotubes and ma
romole
ules are 
ounted. Cluster resear
h is a moderately new �eldof physi
s whi
h has been growing explosively during the last few de
ades. Despite thisappli
ations of metal 
lusters have been around for hundreds of years as, for example,glass 
oloured with metal parti
les was produ
ed for the �amboyant window s
enesof 
hur
hes.Until the early 1980's there was two di�erent views on the 
luster behavior: One wasthat the properties of 
lusters 
an be predi
ted from the properties of single parti
lesand bulk matter by s
aling, and the other was that 
lusters behave like mole
ules,and that there is no relation between di�erent 
luster sizes and 
lusters with di�erentelements, so that every 
luster is essentially unique. This was 
hanged in 1984 asKnight et al. produ
ed and dete
ted 
lusters of alkali metals with up to 100 atoms[1, 2℄. Their results revealed size-dependent behavior, where the ele
troni
 stru
tureof 
lusters appeared to re�e
t that of a spheri
al potential well: Clusters in whi
hthe number of valen
e ele
trons mat
hed to the spheri
al shell-
losing numbers were

Figure 1.1: The atomi
 
oordination in 
lusters di�ers usually from that in bulk: (a) The bulk h
platti
e of Mg, and (b) the geometry of Mg20 [5℄. 1
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Figure 1.2: (a) The stru
ture of a graphene layer, and (b) three-dimensional graphite [6℄.more abundant in the spe
trum. Ekardt predi
ted this behavior theoreti
ally virtuallysimultaneously [3, 4℄.Typi
al metalli
 features su
h as a good heat and ele
troni
 
ondu
tan
e, formabil-ity, light re�e
tivity, and delo
alization of ele
trons (metalli
 bond) are bulk proper-ties that do not ne
essarily apply to zero-dimensional metal atoms or small 
lusters.Thereby, these obje
ts do not have a band stru
ture. Another 
ru
ial di�eren
e be-tween 
lusters and bulk material is that a large portion of the 
luster atoms, some-times all of them, 
an be 
onsidered as surfa
e atoms (see Fig. 1.1). Consequently, theatoms in 
lusters have fewer nearest-neighbor atoms, and they are exposed to theirsurroundings. At whi
h size the metalli
 properties emerge, and what are the prop-erties of small �sub-metalli
� pie
es of metal need to be studied in order to a
hievea fundamental understanding of materials. This is espe
ially important be
ause ap-pli
ations based on metal 
lusters, su
h as fun
tionalized materials, nanodevi
es andele
tri
 nano
ir
uits have been proposed, and to some extend already developed.1.2 Role of Surfa
e In Cluster Resear
hSurfa
e s
ien
e is a wide resear
h area whi
h involves physi
ists, 
hemists and bi-ologists. It has its roots in solid state and mole
ular physi
s, physi
al and inorgani

hemistry, 
atalysis, mi
roele
troni
s, thin �lm te
hnologies, ele
tro
hemistry and var-ious other resear
h subje
ts. Pro
esses at solid surfa
es 
an a�e
t industrial pro
essesboth pro�tably (e.g. 
atalysis) and harmfully (e.g. 
orrosion). Chemi
al rea
tions attwo-dimensional solid surfa
es 
an di�er remarkably from those in three-dimensions,and rea
tion pathways with lower a
tivation energies 
an exist.



1.3 Carbon Nanotubes, Crown Ethers, Cy
lodextrins, and TheirComplexes 3In order to build planar nanostru
tures, for example ele
tri
 
ir
uits, some kind ofa substrate is usually needed. Similarly, studying the physi
al and 
hemi
al proper-ties of 
lusters is often easier when they are atta
hed on a substrate. Clusters andnanostru
tures intera
t with the substrate, and their geometries and properties 
an
hange. The 
luster-substrate intera
tion 
an lead to novel materials and new use-ful appli
ations, but it 
an 
ause problems if the original features of the 
luster or
onstru
ted nanostru
ture should be maintained. Therefore, to make 
ontrolled ex-periments a suitable substrate material has to be 
hosen. The planar, 
hemi
ally inert,and layered stru
ture of highly oriented pyrolyti
 graphite (HOPG, see Fig. 1.2) is inmany 
ases a potential 
andidate, be
ause one 
an split smooth and durable surfa
esfrom it that 
an be 
leaned easily and used as a weakly intera
ting (inert) substrate.A vast number of studies has been performed on alkali metals on graphite surfa
e(see review [6℄ and the referen
es therein). Alkali metals are 
alled simple metals,be
ause they have only one valen
e ele
tron, and their behavior 
an be predi
ted inmany respe
ts from a simple �jellium� model. The intera
tion with graphite is mu
hmore 
ompli
ated, though, and alkali metal adatoms prefer a di�erent binding site(hollow site) on the surfa
e than hydrogen (above a 
arbon atom), whi
h also has onevalen
e ele
tron [7℄. In fa
t, it is still under debate whether the binding between alkalimetals and graphite is of ioni
, metalli
, or 
ovalent type. So far, most studies have
on
entrated on potassium, but reports on other alkali metals have emerged re
ently.However, there is still pla
e for resear
h as there are dis
repan
ies between experi-mental and theoreti
al results, and even between di�erent theoreti
al approa
hes [6℄.This is due to the di�erent approximations that have to be in
orporated in order tosimulate many-parti
le system 
onsisting of a nanos
ale obje
t (
luster) sitting on ama
ros
opi
 substrate.1.3 Carbon Nanotubes, Crown Ethers, Cy
lodextrins,and Their ComplexesCarbon nanotubes (CNTs) are one-dimensional, hollow, and tubular stru
tures whi
hare formed via self-assembly under 
ertain 
onditions, although the me
hanism itselfis not yet fully understood [8, 9℄. The CNT walls 
an be des
ribed as graphene-likehexagonal 
arbon networks, and there are single-walled 
arbon nanotubes (SWNT)and multi-walled 
arbon nanotubes (MWNT). Experimentally, CNTs were observedalready by Morinobu Endo in 1970's [10℄, but it was only after the �nding of fullerenesby Kroto and Smalley (in 1985) [11℄, though, that Smalley spe
ulated about the exis-ten
e of 
arbon nanotubes of dimensions 
omparable to C60. After Smalley's spe
ula-tion Iijima reported in 1991 about his experimental observation of 
arbon nanotubesusing a transmission ele
tron mi
ros
ope [12℄.
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Figure 1.3: (a) The unrolled honey
omb latti
e of 
arbon nanotube [13℄. If O and A, as well as Band B' are 
onne
ted, a 
hiral (4,2) 
arbon nanotube is obtained. Chirality is de�ned by a ve
tor
Ch = ~OA = (4,2), and T stands for a translation ve
tor (T = ~OB = (4,-5)). (b) Pi
ture of threetypes of 
arbon nanotubes [13℄: an �arm
hair� (n,n) nanotube, a �zigzag� (n,0) nanotube and a �
hiral�(n,m) nanotube (intermediate of the two former stru
tures).The CNT type is de�ned by the orientation of the hexagonal network in relation tothe tube axis (
hirality, see Fig. 1.3). Carbon nanotubes have fas
inating properties,su
h as an ex
eptional me
hani
al strength and ele
troni
 
ondu
tan
e, and CNTs areeither 
ondu
tors, semi
ondu
tors or insulators depending on the 
hirality [13℄. Theyhave inspired various possible appli
ations, e.g. durable or ele
troni
ally 
ondu
tingfabri
s have been manufa
tured already, and their potential usage in nanoele
troni
s iswidely studied. Many of their fas
inating properties 
an be explained by the graphene-like wall stru
ture.Crown ethers and 
y
lodextrins are other examples of self-assembled nanostru
turesthat have appli
ations in physi
s and 
hemistry [14, 15℄. Both of them are 
ir
ularma
romole
ules (ma
ro
y
les) with various radii. Ma
romole
ules of the (-CH2CH2O-)ntype (n ≥ 4), i.e. 
onsisting of four or more ethyleneoxy units, are generally referred toas 
rown ethers be
ause of their 
rown-like appearan
e. Cy
lodextrins resemble a trun-
ated 
one, and they 
onsist of glu
opyrano
e rings (seven of them in β-
y
lodextrin).These kind of 
ir
ular mole
ules have inspired the 
onstru
tion of rotaxanes, wherea linear mole
ule is threaded through a 
ir
ular mole
ule, and the ring is lo
ked bybulky stoppers at both ends of the linear mole
ule (see Fig. 1.4) [16℄. Thereby, thesetwo mole
ules are prevented from dethreading by physi
al obsta
les while they donot have any 
hemi
al bonds between them. This kind of stru
tures give promise of
onstru
ting, for example, mole
ular engines and 
hemi
al sensors. Rotaxanes withmany 
ir
ular mole
ules are 
alled as polyrotaxanes, and rotaxanes without any bulkystoppers are 
alled as pseudorotaxanes.
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Figure 1.4: Three 
onstru
tion me
hanisms of rotaxane: (a) �
lipping�, (b) �threading�, (
) �slippage�[17℄.The ele
troni
 and me
hani
al properties of CNTs 
an be modi�ed with parti
le beamsand 
hemi
ally (fun
tionalization). Furthermore, nanotubes 
an be adjusted so thatthey 
an be used as 
hemi
al sensors, or a one dimensional quantum dot network 
anbe assembled by embedding ions inside them. One possible way to fun
tionalize CNTs
ould be to use them in the role of the linear mole
ule in rotaxanes. Crown ethers and
y
lodextrins 
ould then be threaded on them, be
ause they have both hydrophobi
and hydrophili
 parts and tend to atta
h onto organi
 ma
romole
ules.1.4 About This ThesisIn this thesis, we study the ele
troni
 stru
ture of various optimized nanostru
turesby employing the Kohn-Sham (KS) formalism of the density fun
tional theory (DFT)in 
onjun
tion with mole
ular dynami
s and dire
t geometry optimization methods.This thesis 
onsists of this introdu
tory part and four publi
ations. In Chapter 2, atheoreti
al ba
kground for the quantum me
hani
al many-body problem and mole
-ular dynami
s methods are presented. In Chapter 3, the density fun
tional theory,and its appli
ations are introdu
ed. The evolution of metallization and its indi
a-tors are dis
ussed in the 
ase of small magnesium 
lusters in Se
tion 4.1. The mainpart of this work 
on
erns ele
troni
 stru
ture 
al
ulations of alkali metal atoms ona graphite surfa
e, and they are dis
ussed extensively in Se
tion 4.2. Final topi
of pseudorotaxane 
omplexes formed by threading 
ir
ular ma
romole
ules (
rownethers, β-
y
lodextrin) on small SWNTs is dis
ussed in Se
tion 4.3.



2 Quantum Me
hani
al Many-BodyProblem: Foundation andSimpli�
ations
2.1 Time Independent Many-Body S
hrödinger Equa-tionIn prin
iple, the ele
troni
 stru
ture and properties of a quantum me
hani
al many-body system 
an be solved from the time-independent many-body S
hrödinger equa-tion

HΨ = EΨ, (2.1)where H is the Hamiltonian of the system, Ψ is the 
orresponding wave fun
tion and
E is the total energy. For a system of N ele
trons and M nu
lei in a zero externalpotential, the Hamiltonian is of the form (atomi
 units)

H = −
N

∑

i=1

1

2
∇2

i −
M

∑

I=1

1

2MI
∇2

I −
N

∑

i=1

M
∑

I=1

ZI

riI
+

N
∑

i=1

N
∑

j>i

1

rij
+

M
∑

I=1

M
∑

J>I

ZIZJ

RIJ
, (2.2)where ∇2

i and ∇2
I are di�erential operators whi
h operate with respe
t to the 
oor-dinates of ele
tron i (ri) and nu
leus I (RI), MI is the ratio of the mass of nu
leus

I to the mass of an ele
tron, ZI and ZJ are atomi
 numbers of nu
lei I and J , and
riI , rij and RIJ are the distan
es between ele
tron i and nu
leus I, ele
trons i and j,and nu
lei I and J, respe
tively [18℄. The �rst two terms in Eq. (2.2) are the kineti
operators of ele
trons and nu
lei, and the last three terms are the Coulomb intera
tionbetween ele
trons and nu
lei, ele
trons, and nu
lei, respe
tively.
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2.2 Born-Oppenheimer Approximation 72.2 Born-Oppenheimer ApproximationSolving the many-body S
hrödinger equation exa
tly is usually impossible, and sim-plifying approximations are needed. One of the most pra
ti
al approximations is theso-
alled Born-Oppenheimer (BO) approximation [18℄, where the wave fun
tion Ψ ofthe whole system is separated into independent ele
tron and nu
leon parts Ψelec and
Ψnucl, so that

Ψ = ΨelecΨnucl. (2.3)This separation is justi�ed as the mass of a nu
leus is of the order of 103-105 larger
ompared to that of an ele
tron. Therefore, nu
lei move 
onsiderably slower thanele
trons, and they 
an be 
onsidered as �xed during the optimization of the ele
troni
stru
ture if the studied time interval is short enough. Consequently, the ele
troni
and nu
lear problem 
an be separated, and the ele
troni
 problem is des
ribed by theele
troni
 S
hrödinger equation
HelecΨelec = EelecΨelec, (2.4)where the ele
troni
 Hamiltonian is of the form

Helec = −
N

∑

i=1

1

2
∇2

i −
N

∑

i=1

M
∑

I=1

ZI

riI

+
N

∑

i=1

N
∑

j>i

1

rij

. (2.5)Solving Eq. (2.4) gives then the ele
troni
 state
Ψelec = Ψelec({ri}; {RI}), (2.6)where the ele
troni
 
oordinate ri is a variable, and the nu
lear 
oordinate RI is aparameter.After the ele
troni
 energy Eelec is known, the total ground state energy 
an be 
al-
ulated by adding the nu
lear Coulomb repulsion term to the ele
troni
 energy,

Etot = Eelec +
M

∑

I=1

M
∑

J>I

ZIZJ

RIJ

. (2.7)



8 Quantum Me
hani
al Many-Body Problem: Foundation andSimpli�
ationsThe ele
troni
 problem is now solved by solving the Eqs. (2.4) and Eq. (2.7).The ele
troni
 energy
Eelec = 〈Ψelec|Helec|Ψelec〉, (2.8)has a parametri
 dependen
e on the nu
lear 
oordinates,
Eelec = Eelec({RI}). (2.9)This gives rise to the useful Hellman-Feynman theorem [19, 20℄ in whi
h the for
esa
ting on nu
lei are derived from the 
lassi
al potential

V ({ri}; {RI}) = −
N

∑

i=1

M
∑

I=1

ZI

riI

+
N

∑

i=1

N
∑

j>i

1

rij

+
M

∑

I=1

M
∑

J>I

ZIZJ

RIJ

, (2.10)whi
h in
ludes all the Coulombi
 intera
tions. By di�erentiating Eelec with respe
t tothe 
omponents of ioni
 
oordinates RI,α, where α = x, y, z, we get the for
es a
tingon nu
lei
FI,α = −∂Eelec({RI})

∂RI,α
= −〈Ψelec|

∂Helec

∂RI,α
|Ψelec〉

= −〈Ψelec|
∂V ({ri}; {RI})

∂RI,α

|Ψelec〉. (2.11)A more detailed derivation of this result is given in ref. [20℄.2.3 Ele
troni
 SolutionGenerally, if an ele
troni
 system is des
ribed by a state Ψ, the 
orresponding energyis
E[Ψ] =

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 , (2.12)



2.3 Ele
troni
 Solution 9where Ψ does not have to be the ground-state wave fun
tion of the S
hrödinger equa-tion [21℄. If the wavefun
tion is normalized (〈Ψ|Ψ〉 = 1), then the energy is simplythe expe
tation value E[Ψ] = 〈Ψ|H|Ψ〉. Every state Ψ that satis�es the S
hrödingerequation gives one of the eigenvalues of H , and therefore, if E0 is the ground stateenergy of the system, we have
E[Ψ] ≥ E0. (2.13)Consequently, a full minimization of the fun
tional E[Ψ] with respe
t to all allowed

N ele
tron states gives the ground state energy E0, and hen
e, the exa
t ground state
Ψ0. This is 
alled as the variational method.In pra
ti
e, it is too di�
ult to perform the variational method exa
tly, and a trialwave fun
tion has to be 
onstru
ted. Minimization is then performed by optimizing theparameters of this trial wave fun
tion. The form of the trial wave fun
tion determineshow 
lose to the real ground state energy one 
an get. Most often the many-bodywave fun
tion is des
ribed in terms of separable single-parti
les. This is done byintrodu
ing a one-parti
le S
hrödinger equation hiψi = εiψi, where hi is the one-parti
le Hamiltonian, ψi is the 
orresponding eigenfun
tion, and εi is the eigenenergy.This 'tri
k' 
an not be done without 
ompli
ations as the ele
tron-ele
tron intera
tionplays an important role in reality, and usually some kind of an e�e
tive potential hasto be in
luded.Typi
al trial wave fun
tions have the origin in the quantum me
hani
al Hartree,Hartree-Fo
k (HF) and Con�guration Intera
tion (CI) methods [18℄.In the Hartree method, the trial wave fun
tion is the so-
alled Hartree produ
t (HP)

ΨHP (x1,x2, . . . ,xN) = ψi(x1)ψj(x2) . . . ψk(xN), (2.14)where xn (n=1,2,. . . ,N) in
ludes both the position and spin of the nth parti
le, and
{ψm(xn)} (m=i,j,. . . ,k) are the non-intera
ting (orthonormal) single-parti
le spin or-bitals. This produ
t satis�es the above-mentioned single-parti
le S
hrödinger equa-tions. The problem with the Hartree produ
t is that it does not ful�ll the antisym-metry requirement that 
omes from the Pauli ex
lusion prin
iple for fermions. Inthe Hartree-Fo
k (HF) theory, the normalized wave fun
tion is antisymmetrized byforming a Slater determinant
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ΨHF (x1,x2, . . . ,xN) =

1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψi(x1) ψj(x1) . . . ψk(x1)
ψi(x2) ψj(x2) . . . ψk(x2)... ... . . . ...
ψi(xN) ψj(xN ) . . . ψk(xN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

=:
1√
N !
det[ψi, ψj , . . . , ψk]. (2.15)Using this trial wave fun
tion in the 
al
ulation of the ele
troni
 energy gives the so-
alled Hartree-Fo
k energy (EHF ), whi
h di�ers from the real energy E. The di�eren
ebetween the real energy and the Hartree-Fo
k energy,

EHF
corr = E −EHF , (2.16)is 
alled the 
orrelation energy [18℄, and the determination of EHF

corr is a major problemin the many-body theory [21℄. The real energy 
an be 
al
ulated, in prin
iple, by theCI method whi
h uses an in�nite sum of determinants
Ψ = c0|Ψ0〉 +

∑

a,r

cra|Ψr
a〉 +

∑

a<b

r<s

crs
ab|Ψrs

ab〉 +
∑

a<b<c

r<s<t

crst
abc|Ψrst

abc〉 + . . . , (2.17)where |Ψ0〉 is the ground state of the Hartree-Fo
k determinant. In |Ψr
a〉 ele
tron a isex
ited to the virtual state r, in |Ψrs

ab〉 ele
tron a is ex
ited to the virtual state r andele
tron b to the virtual state s, and so on. The 
orresponding 
oe�
ients related tothese terms are c0, cra, crs
ab, and so on. In pra
ti
e, only the most important terms aretaken into 
onsideration.2.4 Born-Oppenheimer and Car-Parrinello Mole
u-lar Dynami
sIn order to study the time evolution of an atomi
 or mole
ular system exa
tly, onehas to solve the time-dependent S
hrödinger equation

i~
∂

∂t
Ψ({ri}, {RI}; t) = HΨ({ri}, {RI}; t). (2.18)
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ular Dynami
s 11This is virtually impossible without signi�
ant approximations. Even approximativemethods are 
omputationally expensive and, in many 
ases, too simpli�ed to give a

u-rate results. This is why most of the mole
ular dynami
s studies up to date have beenbased on prede�ned potentials 
onstru
ted from empiri
al data or ele
troni
 stru
ture
al
ulations for �xed systems. The advantages of these 
lassi
al mole
ular dynami
smethods are obvious. They are fast 
ompared to the the quantum me
hani
al meth-ods, and it is possible to adjust them. This gives an experimental aspe
t throughthe possibility of playing with the potentials, and makes it easier to understand thebehavior of many-parti
le systems. The prede�ned potentials su�er, however, frommajor drawba
ks. The parametrization be
omes very 
ompli
ated in systems withmany types of atoms, where di�erent kinds of interatomi
 intera
tions have to betaken into a

ount. Furthermore, 
lassi
al methods 
annot provide information aboutthe ele
troni
 stru
ture, and 
annot des
ribe 
hemi
ally 
omplex systems where thebonding pattern 
hanges during the simulation (bond breaking/formation) [22℄.Drawba
ks in the 
lassi
al mole
ular dynami
s methods en
ouraged the developmentof the so-
alled ab initio methods whi
h are based on quantum me
hani
s, and havea truly predi
tive power as the ele
troni
 stru
ture and the for
es a
ting on nu
leiare examined in parallel at ea
h time step during the dynami
s. Methods dire
tlybased on the time-dependent S
hrödinger equation (2.18) are demanding in pra
ti
e,be
ause the time evolution of ele
trons and nu
lei have to be solved simultaneously.The ele
troni
 movement is fast 
ompared to that of the nu
lei, and numerous timesteps are needed in order to see any signi�
ant 
hanges in the atomi
 positions. This isthe reason why intermediate methods have been developed. The two methods appliedin this thesis are introdu
ed next. First is the Born-Oppenheimer method, whi
h isbased on the time-independent S
hrödinger equation and 
lassi
al for
es, and these
ond is the Car-Parrinello mole
ular dynami
s, in whi
h the quantum dynami
s ofslow nu
lei and fast ele
trons is mapped onto a purely 
lassi
al problem.Born-Oppenheimer mole
ular dynami
s is based on the BO approximation introdu
edin Se
tion (2.2), and does not involve solving the time-dependent S
hrödinger equa-tion. The 
ore of the method are the equations [22℄:
MIR̈I(t) = −∇IminΨ0

{〈Ψ0|He|Ψ0〉} (2.19)
HeΨ0 = E0Ψ0, (2.20)where minΨ0

means a minimization with respe
t to the states Ψ0. Equation (2.19)gives the for
es a
ting on nu
lei, whi
h are used to determine the movement of nu
lei,
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hani
al Many-Body Problem: Foundation andSimpli�
ationsand the ground-state ele
troni
 stru
ture has to be 
al
ulated after every time stepfrom Eq. (2.20). One should note, that −∇I{〈Ψ0|He|Ψ0〉} is exa
tly the Hellman-Feynman for
e (Eq. (2.11)) provided that the wavefun
tion Ψ0 is an exa
t eigenfun
-tion [22℄.Born-Oppenheimer mole
ular dynami
s has been applied su

esfully, for example, byRobert N. Barnett and Uzi Landman (1993), whose method was originally basedon the lo
al-spin-density approximation, non-lo
al, norm-
onserving pseudopotentialsand a plane-wave basis (see Chapter 3) [23℄. Remarkable in this method is that it doesnot employ periodi
 boundary 
onditions (PBCs), whi
h makes it more appli
ablefor 
harged systems or systems with large multipole moments. For methods usingPBCs, the intera
tion between the periodi
ally repeated repli
as 
an a�e
t resultssigni�
antly.Another, not so obvious but mu
h applied method was developed by Roberto Car andMi
hele Parrinello in 1985 [24℄. In the Car-Parrinello (CP) method, the self-
onsistentele
troni
 optimization is not done after ea
h mole
ular dynami
s step. However, themethod makes it possible to use larger time step than in the methods based on the �rstorder time-dependent S
hrödinger equation. In 
lassi
al me
hani
s, the for
e on nu
leiis obtained from the derivative of a Lagrangian with respe
t to the nu
lear positions.The energy of the ele
troni
 subsystem, 〈Ψ0|Ee|Ψ0〉 is a fun
tion of both nu
learpositions {RI} and single-parti
le orbitals {ψi}, and Car and Parrinello suggestedthat a fun
tional derivative with respe
t to the orbitals gives the for
e a
ting on theorbitals if a suitable Lagrangian is 
hosen.Car and Parrinello postulated the Lagrangian of the form
LCP =

∑

I

1

2
MIṘ

2

I +
∑

i

1

2
µi〈ψ̇i|ψ̇i〉 − 〈Ψ0|He|Ψ0〉 + constraints, (2.21)where the �rst two terms are the kineti
 energy of nu
lei and ele
trons, third term isthe potential energy, and the last assures the orthonormality of orbitals. The inertiaparameters µi 
an be des
ribed as �
titious masses of the orbitals ψi, and 
onstraintsare needed be
ause of the orthonormality requirement et
. The asso
iated Euler-Lagrange equations
d

dt

∂L

∂ṘI

=
∂L

∂RI
(2.22)
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d

dt

δL

δψ̇∗
i

=
δL

δψ∗
i ,
, (2.23)result in the Newtonian equations of motion, i.e. the Car-Parrinello equations of theform

MIR̈I(t) = − ∂

∂R I
〈Ψ0|He|Ψ0〉 +

∂

∂R I
{constraints} (2.24)

µIψ̈i(t) = − δ

δψ∗
i

〈Ψ0|He|Ψ0〉 +
δ

δψ∗
i

{constraints}, (2.25)where the 
onstraints are holonomi
 [24℄, and depend on {ψi} and {RI}. It shouldbe emphasized that the ele
tron dynami
s above is �
titious, and it is introdu
ed inorder to get realisti
 nu
lear dynami
s.Making a 
hoi
e between the BO and Car-Parrinello mole
ular dynami
s is not anobvious de
ision [22℄. In the Car-Parrinello mole
ular dynami
s, the ele
troni
 degreesof freedom are treated together with nu
lear dynami
s at ea
h time step, and as theequations of motion for nu
lei and ele
trons are 
oupled the time step has to bereasonably small. In the BO mole
ular dynami
s, the ele
tron dynami
s is absent,whi
h is formally an order of magnitude advantage with respe
t to the CP mole
ulardynami
s, at least if the nu
lear motion is slow. On the other hand, the ele
troni
stru
ture has to be minimized for ea
h nu
lear 
on�guration in the BO mole
ulardynami
s. The longer the time step used, the longer the ele
troni
 optimization takesas the wavefun
tion 
al
ulated during the previous time step (initial guess for theminimization) is further away from the new one.In the �rst arti
le of this thesis [I℄, we apply the Born-Oppenheimer lo
al-spin-densitymole
ular dynami
s (BO-LSD-MD) program developed by Robert N. Barnett and UziLandman [23℄. In this method, the ions move a

ording to 
lassi
al me
hani
s, and thefor
es are 
al
ulated using the generalized gradient-
orre
ted approximation (GGA)for the ex
hange-
orrelation energy fun
tional and pseudopotentials that des
ribe theion 
ores (see Se
tion 3.5). The ele
tron density as well as the orbitals are expandedusing a plane wave basis set (see Se
tion 3.4). The applied BO-LSD-MD method doesnot use periodi
 boundary 
onditions, and it is therefore an appropriate method forisolated 
lusters with 
onsiderable 
harges or multipole moments.



14 Quantum Me
hani
al Many-Body Problem: Foundation andSimpli�
ationsIn the last three arti
les of this thesis [II℄-[IV℄, we apply the Car-Parrinello mole
ulardynami
s (CPMD) [24℄ 
ode originally introdu
ed by Roberto Car and Mi
hele Par-rinello (see [25℄ for the latest version of the 
ode) whi
h applies periodi
 boundary
onditions, GGA for the ex
hange-
orrelation energy fun
tional, and pseudopotentials.Again, plane waves are used as basis fun
tions for the ele
tron density and orbitals.Due to the fa
t that CPMD uses PBCs it is a natural 
hoi
e for periodi
 stru
tures(in this thesis the semimetalli
 graphite surfa
e and 
arbon nanotubes), and its usageis justi�ed for neutral 
lusters. In fa
t, the 
urrent implementation in
ludes an optionwhere PBCs 
an be swit
hed o�, whi
h enables simulations of �nite 
harged systemsas well. On the other hand, the �nite system 
al
ulations 
an produ
e in
orre
t resultsfor ma
ros
opi
 obje
ts (surfa
es, bulk) whi
h have a band stru
ture.



3 Density Fun
tional Theory: Basi
sand Implementation
3.1 Hohenberg-Kohn TheoremsThe Hamiltonian Helec of an N-ele
tron system 
an be written in the form

Helec = T + Uee + Vext, (3.1)where T is the kineti
 energy part of ele
trons, Uee is the energy related to the ele
tron-ele
tron Coulombi
 repulsion, and Vext is the energy related to the intera
tion betweenele
trons and an external potential v(r) whi
h in
ludes the potentials 
aused by nu
leiand external �elds. The T + Uee part is universal to all N-ele
tron systems, and theexternal potential part Vext �xes the Hamiltonian. Thus, N and v(r) determine all theproperties of the ground state. If the HamiltonianH of the ele
troni
 system is known,then the ground-state energy and wave fun
tion 
an be, in prin
iple, determined byminimizing the energy fun
tional E[Ψ] with respe
t to Ψ. It was the idea of Hohenbergand Kohn to repla
eN and v(r) as basi
 variables with the ele
tron density ρ(r), whi
h
an be written in the form
ρ(x1) = N

∫ ∫

. . .

∫

|Ψ(x1,x2, . . . ,xN)|2dx2 . . . dxN , (3.2)where dxi in
ludes di�erentials with respe
t to 
oordinates and spin, and N is thetotal number of ele
trons
N =

∫

ρ(r)dr, (3.3)when Ψ is normalized. The energy fun
tional is then
E[ρ] = 〈Ψ[ρ]|H|Ψ[ρ]〉 = 〈Ψ[ρ]|T + Uee + Vext|Ψ[ρ]〉 = F [ρ] +

∫

ρ(r)v(r)dr, (3.4)15
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tional Theory: Basi
s and Implementationwhere F [ρ] = 〈Ψ[ρ]|T + Uee|Ψ[ρ]〉 is a universal fun
tional for all N-ele
tron systems.This method where the energy is minimized as a fun
tional of the ele
tron density, is
alled as the Density Fun
tional Theory (DFT).The �rst Hohenberg-Kohn theorem legitimizes the use of ρ instead of N and Ψ [26℄; itsays that the external potential v(r) is determined, within a trivial additive 
onstant, bythe ele
tron density ρ(r). AsN is determined by integrating ρ over spa
e, it follows that
ρ also determines the ground-state wave fun
tion Ψ and all the ele
troni
 propertiesof the system. The proof of this theorem is very easy, if we assume that the groundstate of an N-ele
tron system is nondegenerate. This assumption is not ne
essary ifthe problem is investigated in detail, but by now it alleviates the pro
edure.Let us assume that there are two Hamiltonians H and H ' with potentials v and v',whi
h di�er more than by a 
onstant. Ea
h Hamiltonian gives the same ρ for itsground state although the normalized wave fun
tions Ψ and Ψ' are di�erent. By Eq.(2.13) we then have
E0 < 〈Ψ′|H|Ψ′〉 = 〈Ψ′|H ′|Ψ′〉+ 〈Ψ′|H −H ′|Ψ′〉 = E ′

0 +

∫

ρ(r)[v(r)− v′(r)]dr, (3.5)where E0 and E0' are the ground-state energies for H and H ', respe
tively. On theother hand
E ′

0 < 〈Ψ|H ′|Ψ〉 = 〈Ψ|H|Ψ〉+ 〈Ψ|H ′ −H|Ψ〉 = E0 −
∫

ρ(r)[v(r) − v′(r)]dr. (3.6)By adding these two equation together we get E0 + E ′
0 < E′

0 + E0, whi
h is 
on-tradi
tory, and thus, there 
annot be two di�erent v that give the same ρ for theirground states. Consequently, ρ determines N and v unambiguously as well as all theproperties of the ground state.The se
ond Hohenberg-Kohn theorem provides the variational prin
iple by statingthat for a trial density ρ̃(r) ≥ 0,
E0 ≤ E[ρ̃], (3.7)where E[ρ̃] is the total energy fun
tional, and ∫

ρ̃(r)dr = N .The so-
alled v-representable ele
tron density is asso
iated with the antisymmetri
ground-state wave fun
tion of a Hamiltonian with some external potential v(r). There



3.2 Kohn-Sham Method 17are ele
tron densities that are not v-representable, but most studies are restri
ted tothe v-representability where there exists one-to-one mapping between the ele
tron den-sity and external potential. In pra
ti
e, the requirements are further weakened as onerepla
es the v-representability by a 
ondition that is 
alled as the N-representability,whi
h means that ρ(r) is obtained from some antisymmetri
 wave fun
tion that ful�llsthe following requirements:
ρ(r) ≥ 0,

∫

ρ(r)dr = N, and ∫

|∇ρ(r) 1

2 |2dr <∞. (3.8)3.2 Kohn-Sham MethodThe most pra
ti
al implementation of DFT was introdu
ed by Kohn and Sham in 1965[27℄. Their idea was to study �rst nonintera
ting ele
trons for whi
h the Hamiltonianis
Hs =

N
∑

i=1

hi =
N

∑

i=1

[−1

2
∇2

i + vs(r)], (3.9)where the external potential vs for a single parti
le is in this 
ontext the Coulombpotential of ion 
ores.The wave-fun
tion solved from the S
hrödinger equation is then of the form of Eq.(2.15), and it is 
onstru
ted from the N lowest one-ele
tron states ψi that satisfy theequations
hiψi = [−1

2
∇2

i + vs(r)]ψi(r) = εiψi(r). (3.10)From these single-parti
le equations, the ele
tron density
ρ(r) =

N
∑

i=1

|ψi(r)|2, (3.11)
an be a
hieved. The idea of the Kohn-Sham (KS) method is to apply the exa
t kineti
energy fun
tional of the nonintera
ting system,



18 Density Fun
tional Theory: Basi
s and Implementation
Ts[ρ] =

N
∑

i=1

〈ψi| −
1

2
∇2|ψi〉, (3.12)in the 
ase of intera
ting ele
trons. The 
orresponding energy fun
tional is then

E[ρ] = Ts[ρ] + Vne[ρ] + J [ρ] + Exc[ρ], (3.13)where
Vne[ρ] =

∫

v(r)ρ(r)dr (3.14)
J [ρ] =

1

2

∫ ∫

ρ(r1)ρ(r2)

r12
dr1r2 (3.15)

Exc[ρ] = 〈Ψ|T + Uee|Ψ〉 − Ts[ρ] − J [ρ] (3.16)are the the energy related to the intera
tion between ele
trons and an external po-tential (Vne[ρ]), the 
lassi
al ele
tron-ele
tron repulsion (J [ρ]), and the ex
han
e and
orrelation (Exc[ρ]). The Euler-Lagrange equation 
an be written in the form
µ =

δE[ρ]

δρ(r)
= veff(r) +

δTs[ρ]

δρ(r)
, (3.17)if we identify

veff(r) =:
δVeff [ρ]

δρ(r)
= v(r) +

δJ [ρ]

δρ(r)
+
δExc

δρ(r)
= v(r) +

∫

ρ(r′)

|r − r′|dr
′ + vxc(r), (3.18)where

Veff [ρ] = Vne[ρ] + J [ρ] + Exc[ρ]. (3.19)Now, veff has a similar role as vs in the 
ase of nonintera
ting ele
trons, and we obtain
ρ(r) that satis�es Eq. (3.17) by solving the N single-parti
le equations

{−1

2
∇2

i + veff (r)}ψi(r) = εiψi(r), (3.20)
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al Density and Gradient Corre
ted Approximations 19and setting
ρ(r) =

N
∑

i=1

|ψi|2. (3.21)As veff depends on ρ, Eqs. (3.18)-(3.21) have to be solved self-
onsistently. In pra
ti
e,this means that a 
onstru
ted trial density is used to determine veff in Eq. (3.18),whi
h is then used to obtain ρ(r) from Eqs. (3.20) and (3.21), the obtained ρ(r) isused as a new trial density, and the whole pro
edure is repeated. This is done untilthe results 
onverge (self-
onsisten
y) after whi
h the total energy 
an be 
al
ulatedfrom Eq. (3.13).The ele
tron spin 
an be taken into 
onsideration in the KS method by de�ning thatthe ele
tron density is ρ(r) = ρ↓(r) + ρ↑(r), where ρ↓(r) and ρ↑(r) are the densities ofspin down and spin up ele
trons, respe
tively, and
ρσ(r) =

Nσ
∑

i=1

|ψiσ|2, (3.22)where Nσ is the number of ele
trons with spin σ = (↑, ↓). In this 
ase, we have theKS equations with orbitals ψiσ, and energies εiσ for both spins, and veff in Eq. (3.18)depends on the spin as vσ
xc = δExc/δρσ(r).3.3 Lo
al Density and Gradient Corre
ted Approxi-mationsThe Kohn-Sham equations (3.18)-(3.21) are formally exa
t. The problem is, however,that the expli
it form of the ex
hange-
orrelation energy Exc[ρ] is unknown. It hasbe
ome evident that the sear
h of an a

urate Exc[ρ] is the greatest 
hallenge in DFT[21℄ although several su

esful approximations have been developed. Qualitativelysu

esful yet simple approximation for Exc[ρ] is the lo
al-density approximation (LDA)

ELDA
xc [ρ] =

∫

ρ(r)εxc(ρ)dr, (3.23)where εxc(ρ) is the ex
hange-
orrelation energy per parti
le of the uniform ele
trongas with density ρ. This energy 
an be divided into separate ex
hange and 
orrelation
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tional Theory: Basi
s and Implementationparts,
εxc(ρ) = εx(ρ) + εc(ρ). (3.24)The ex
hange part of the uniform ele
tron gas 
an be 
al
ulated using the Hartree-Fo
k theory [28℄, and the 
orrelation fun
tion 
an be interpolated based on the a
-
urate values re
eived from the quantum Monte Carlo 
al
ulations [21℄. In the spin-dependent 
ase the ex
hange-
orrelation energy εxc(ρ, ξ) depends on the polarization

ξ = (ρ↑ − ρ↓)/ρ, and 
an be written in the form
εxc(ρ, ξ) = εxc(ρ, 0) + f(ξ)[εxc(ρ, 1) − εxc(ρ, 0)], (3.25)where f(ξ) gives the polarization dependen
e between the fully polarized (ξ = 1) andunpolarized (ξ = 0) limits. The method where the spin is taken a

ount is 
alled asthe lo
al spin-density approximation (LSD). Be
ause of the nature of the LDA (orLSD) method, one would expe
t that it gives good results only for systems wherethe ele
tron density is nearly uniform. However, 
al
ulations have proved that LDAgives surprisingly realisti
 results also for systems with a 
onsiderable variation in theele
tron density.The generalized gradient-
orre
ted approximation (GGA) was developed in order toimprove the LSD method. The density inhomogeneties inExc are taken into a

ount byin
luding the gradients of the spin-densities. In pra
ti
e, only a few terms are in
ludedin the gradient expansion, and slowly varying or small density variations are des
ribedless satisfa
torily [29℄. This is problemati
, for example, with the pseudopotentialtheory of simple metals where the linear-response limit is physi
ally important.A parametrized analyti
 form of εxc is well established in the LSD method, but thebest des
ription of the gradient 
orre
tion is still under debate. A fun
tional that wasdesigned to 
at
h the energeti
ally signi�
ant features was introdu
ed by Perdew etal. in 1996 [29℄, and it is referred to as the PBE fun
tional. It des
ribes the uniformele
tron gas better than the earlier GGA methods, it is 
onstru
ted so that it givesphysi
al results in the limits, and it has an analyti
al form whi
h has improved thenumeri
al e�
ien
y 
ompared to the earlier forms, su
h as the one made by Perdewand Wang in 1991 [30℄. In the PBE s
heme the 
orrelation energy is of the form
EGGA

c [ρ↑, ρ↓] =

∫

d3rρ[εc(rs, ξ) +H(rs, ξ, t)], (3.26)where rs is the lo
al Seitz radius (ρ = 3/4πr3
s = k3

F/3π
2), ξ = (ρ↑ − ρ↓)/ρ is the



3.4 Plane Wave Basis 21relative spin polarization, and t = |∇ρ|/2φksρ is a dimensionless density gradient,where φ(ξ) = [(1+ ξ)2/3 +(1− ξ)2/3]/2 is a spin-s
aling fa
tor, and ks =
√

4kF/πa0 isthe Thomas-Fermi S
reening wave number (a0 = ~
2/me2). The gradient 
ontribution

H = (e2/a0)γφ
3 × ln{1 +

β

γ
t2[

1 + At2

1 + At2 + A2t4
]}, (3.27)where

A =
β

γ
[exp{−εc/(γφ

3e2/a0)} − 1]−1, (3.28)and β and γ are adjustable parameters, gives realisti
 results in the slowly varying,in the rapidly varying and in the high-density limits. The 
orresponding ex
hangeenergy is written as
EGGA

X =

∫

d3rρεx(ρ)FX(s), (3.29)where εx = −3e2kF/4π and the so-
alled spin-polarized enhan
ement fa
tor FX is
FX(s) = 1 + κ− κ/(1 + µs2κ), (3.30)where κ and µ are parameters. The PBE gradient 
orre
ted method des
ribed aboveshould produ
e the most important features of the real ex
hange-
orrelation energy.It takes into a

ount the rapid density variations as a GGA method should, and in thelimit of uniform ele
tron gas it behaves as the LSD method whi
h is formally 
orre
t.3.4 Plane Wave BasisThe appli
ation of the KS method requires � auxiliary single-parti
le wave fun
tions.The expli
it form of the KS wave fun
tions is, however, yet to be de�ned. They 
anbe represented by a basis set whi
h 
onsists of simple analyti
 fun
tions fν with well-known properties. In general, the expansion form of a periodi
 fun
tion ψi with respe
tto 
ertain basis fun
tions 
an be written as a linear 
ombination
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ψi(r) =

∑

ν

ciνfν(r; {RI}), (3.31)where ciν are the orbital expansion 
oe�
ients. In quantum 
hemistry, the atom 
en-tered Slater- or Gaussian-type basis fun
tions have been typi
ally used [22℄. However,a 
ompletely di�erent approa
h whi
h is suggested by the solid state theory of periodi
latti
es is adopted here. Periodi
 boundary 
onditions impose periodi
ity on the ele
-tron density. This implies that a plane wave basis might be a 
onvenient 
hoi
e as thegeneri
 basis set for expanding the periodi
 part of the orbitals as in the Blo
h's Theo-rem. Plane waves are an appropriate 
hoi
e as they form a 
omplete and orthonormalset of fun
tions. The plane wave basis fun
tions 
an be written as
fPW
G

(r) =
1√
V

exp[iG · r], (3.32)where G is a re
ipro
al ve
tor, r is a real spa
e ve
tor, and V is the volume ofthe periodi
 super-
ell. By using plane waves with periodi
 boundary 
onditions, aperiodi
 wave fun
tion 
an be expanded into the form
ψ(r) = ψ(r + L) =

1√
V

∑

G

ψ(G) exp[iG · r], (3.33)where ψ(r) and ψ(G) are related by a three-dimensional Fourier transform, and L isa dire
t latti
e ve
tor 
onne
ting the equivalent points in di�erent 
ells [22℄. Further-more, the KS orbitals 
an be written as
φi(r,k) =

1√
V

∑

G

ci(G,k) exp[i(G + k) · r], (3.34)where k is a ve
tor in the �rst Brillouin zone, and ci(G,k) are 
omplex numbers.Now, the expanded form of the density is
n(r) =

1√
V

∑

i

∫

dkfi(k)
∑

G,G′

c∗i (G
′,k)ci(G,k) exp[i(G + k) · r]

=
∑

G

n(G) exp[iG · r], (3.35)



3.5 Pseudopotentials 23where the sum over i runs over all the states, and the last sum over G ve
tors expandsover douple the range given by the wavefun
tion expansion. In reality, the in�nite sumsover G and di�erent 
ells have to be trun
ated, and the integral over the Brillouinzone has to be approximated by a �nite sum over spe
ial k-points
∫

dk →
∑

k

wk, (3.36)where wk are the weights of the integration points. The validity of the trun
ation isbased on the fa
t that the KS potential veff (G) 
onverges rapidly with in
reasingthe modulus of G. This is why only the ve
tors G ful�lling the kineti
 energy 
uto�
ondition
1

2
|k + G|2 ≤ Ecut (3.37)are in
luded at ea
h k point.Plane waves are originless fun
tions, whi
h means that there is no dependen
e on theposition of the nu
lei {RI}. Thus, as long as the ele
troni
 system has 
onverged to theground state plane waves do not 
ause an error 
alled the Pulay for
e, that is 
ausedby the in
omplete basis set in the 
ase of nu
lear position dependend fun
tions su
has the atom 
entered fun
tions mentioned previously [35℄. The fa
t, that plane wavesare delo
alized in spa
e means also that they do not favor 
ertain regions over others,and they form a balan
ed and reliable basis. Another good feature is that di�erentialoperators in the real-spa
e are simply multipli
ations in the re
ipro
al spa
e, andboth spa
es 
an be e�
iently 
onne
ted via the Fast Fourier Transforms (FFTs). Onthe other hand, the only way to improve the quality of the basis set is to add morebasis fun
tions, as the basis fun
tions 
an not be shu�ed into regions where theyare needed the most. This is a problem with stru
tures with strong inhomogeneities,su
h as 
omplex supermole
ules with large empty 
aps between the bran
hes of themole
ule.3.5 PseudopotentialsEle
troni
 orbitals feature strong and rapid os
illations 
lose to the nu
lei due to thePauli ex
lusion prin
iple, whi
h enfor
es a nodal stru
ture onto the wave fun
tion



24 Density Fun
tional Theory: Basi
s and Implementationthrough orthogonality of the orbitals. Representing these rapid os
illations in theplane wave basis is problemati
, whi
h has motivated the development of the so-
alledpseudopotential approximation [31℄.The physi
al properties of atoms, espe
ially their 
hemi
al rea
tivity, are governed bythe valen
e ele
trons. This together with the fa
t that numeri
ally the most 
onsum-ing problem of the many-body 
al
ulations is to 
al
ulate the 
oulombi
 intera
tionbetween ele
trons has en
ouraged to develop the pseudopotential approximation, inwhi
h the ioni
 
ore of an atom (
ore ele
trons and nu
leus) is des
ribed by an e�e
-tive potential. In other words, the des
ription of the 
ompli
ated nodal stru
ture inthe region of atom 
ores is avoided by repla
ing the a
tual potential of the nu
leusand 
ore ele
trons by an e�e
tive potential that produ
es the same usually smoothlyvarying plane wave-like wavefun
tions outside the 
ore region [32℄.Pseudopotentials 
an be 
onstru
ted empiri
ally by �tting theoreti
al results to ex-periments, or by the more advan
ed ab initio methods, where the pseudopotentials are
onstru
ted from the quantum me
hani
al prin
iples. One of the most simple pseu-dopotentials is given by the so-
alled Empty Core Model (ECM), where the uns
reenedpseudopotential is taken to be zero inside a radius Re:
U(r) =

{

0 , for r < Re ;
−e2/r , for r > Re .

(3.38)Modern ab initio pseudopotentials are 
onstru
ted by using a spheri
al s
reeningapproximation, and solving self-
onsistently the radial Kohn-Sham equations [33℄
[−1

2

d2

dr2
+
l(l + 1)

2r2
+ V [ρ; r]]rRnl(r) = εnlrRnl(r), (3.39)where

V [ρ; r] = −Z
r

+ VH [ρ; r] + Vxc(ρ(r)) (3.40)is the self-
onsistent one-ele
tron potential. The ex
hange-
orrelation potential Vxc(ρ(r))is usually taken from LDA (GGA in this thesis), ρ is the sum of the ele
tron densities ofthe o

upied wave fun
tions Rnl(r), and VH is the Hartree potential. There are usuallyfour 
riteria for the pseudopotentials 
onstru
ted this way [33℄. The �rst one is that



3.5 Pseudopotentials 25the valen
e pseudo-wave-fun
tions generated from the pseudopotentials should not
ontain nodes, i.e. the pseudopotentials should be smooth. Se
ondly, the normalizedatomi
 radial pseudo-wave-fun
tion has to be equal to the 
orresponding all-ele
tronwave fun
tion beyond a 
hosen 
uto� radius rcl, or it should 
onverge rapidly towardsthat value. Thirdly, the 
harge en
losed within rcl for the two wave fun
tions shouldbe equal. Finally, the valen
e all-ele
tron and pseudopotential eigenvalues must beequal. Pseudopotentials ful�lling these requirements are 
alled the �norm-
onservingpseudopotentials�.The ultrasoft pseudopotentials have been developed to improve the transferability (i.e.the appli
ability in various physi
al and 
hemi
al environments) of pseudopotentials[34℄. For the ultrasoft pseudopotentials the norm-
onserving 
onstraint does not apply,whi
h makes it possible to make nodal stru
ture of the potential even smoother anduse less plane-waves with an in
reased rcl.



4 Results
4.1 Small Magnesium ClustersCertain properties of small 
lusters (e.g. stru
ture) are 
hallenging to study exper-imentally in a systemati
 manner. This is why theoreti
al 
al
ulations are needed.Theory 
an help the experiments in fo
using on interesting e�e
ts, predi
t a
hiev-able stru
tures, and provide interpretation for the measured data. In small parti
les,however, quantum me
hani
al e�e
ts play an important � if not governing � role,whi
h requires that 
omputationally demanding ab initio methods have to be used.This 
alls for approximative methods as it is a well-known fa
t that solving the exa
tmany-body S
hrödinger equation is pra
ti
ally impossible for more than a few atoms.The �rst problem is to �nd the right 
luster geometry. The more atoms there arein the 
luster the more possible geometries it 
an adopt. These 
on�gurations whi
hrepresent lo
al minima of the potential energy surfa
e are separated from ea
h otherby energy barriers, and the system 
an get easily trapped into one of these valleys.Finding the ground-state geometry that 
orresponds to the global minimum of thepotential energy surfa
e is thus in
reasingly di�
ult.For small magnesium 
lusters the pursuit of �nding the global minimum 
an be han-dled with the so-
alled simulated annealing strategy, where mole
ular dynami
s isperformed at high temperature so that the atoms are extremely mobile. Time-to-timethe 
luster is 
ooled down to a lo
al minimum, and the geometries that are energet-i
ally favorable 
an then be sele
ted as starting geometries for more thorough DFTsimulations. Geometries obtained from other sour
es (intuition, geneti
 algorithm)should be tried as well, be
ause the simulated annealing pro
edure does not ne
essar-ily give all the low-energy geometries. However, this way there is a better 
han
e to�nd the global minimum amongst the ever in
reasing group of di�erent geometries.In this se
tion, the results for the neutral and 
ationi
 magnesium 
lusters in thesize range Mg2-Mg13, as well as the anioni
 
lusters of the size range Mg8-Mg13, aredis
ussed. The ele
troni
 stru
ture 
al
ulations were made with the BO-LSD-MDmethod des
ribed previously in Se
tion 2.4. With small anions this method resultsin positive highest o

upied mole
ular orbital (HOMO) eigenenergies, whi
h is thereason why only Mg8 and the larger 
lusters are 
onsidered. The main theme of thiswork (arti
le [I℄) was to investigate the metalli
 evolution in small magnesium 
lusters.26
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Figure 4.1: The lowest energy stru
tures of Mg9-Mg13 
lusters. Note the presen
e of the trigonalprism unit in all the 
lusters.It was dis
overed that the insulator-to-metal transition is not a monotoni
 fun
tion ofthe 
luster size, it is not 
ompleted within the size-range studied, and that it is di�
ultto �nd a reliable indi
ator for metallization. However, the evolution of various featuresin 
ombination 
an be used as an indi
ator, espe
ially be
ause our results follow thesame trends that were found in the experimental [36℄ and theoreti
al [37, 38℄ studiespublished soon afterwards.The ground state stru
tures of neutral magnesium 
lusters in the size range Mg4-Mg8 are found to be based on a tetrahedron or fused tetrahedrons. Furthermore,Mg7 and Mg8 
an be des
ribed as a de
ahedron (bi
apped pentagon) and 
appedde
ahedron, respe
tively. In the size range Mg9-Mg13, the stru
tures are based ona trigonal prism (see Fig. 4.1). These geometries agree well with the earlier studies[39, 40, 41℄, although for Mg12 and Mg13 slightly di�erent isomers were found to beenergeti
ally favorable. Later studies 
on�rmed our results [37, 38℄. Stru
tures of the
ationi
 
lusters are mainly based on the geometries of the neutral 
lusters but thereare also some di�eren
es. The small 
ations appear linear until Mg+

4 , and both Mg+

9and Mg+
10 are based on the tetrahedron (or de
ahedron), whereas the neutral 
lustersare based on the trigonal prism, and even the energeti
ally most favorable stru
turesof Mg+

11 and Mg+
12 are slightly di�erent from the 
orresponding neutral geometries.



28 ResultsIn many 
ases, the energy variation between di�erent isomers is so small that thedi�eren
es 
ould be within the 
al
ulational error. The anioni
 
lusters studied (Mg−8 -Mg−13) adopted neutral 
luster ground state stru
tures with the ex
eption of Mg−11 forwhi
h the most stable isomer di�ers slightly from that of the neutral 
luster.The evolution of the Mg 
luster properties is shown in Fig. 4.2. The �gure shows thetrends in binding energy (Eb), HOMO-LUMO gap (Eg), verti
al ionization potential(vIP) and average nearest neighbour distan
e (〈d〉) as a fun
tion of the 
luster size.The se
ond derivative of the total energy of a 
luster with N atoms
−∆2E = (EN+1 − EN) + (EN−1 −EN ) = EN+1 + EN−1 − 2EN , (4.1)is shown as an inset. It is a measure of the relative stability of a 
luster with respe
tto the neighboring 
luster sizes.The trends in Fig. 4.2 show that the metalli
 evolution of Mg 
lusters is not monotonous.In general, Eb in
reases, but Eg, vIP and 〈d〉 de
rease as a fun
tion of 
luster size.The large binding energies (Eb), high relative stability (−∆2E), and 
ompa
t geome-tries (small 〈d〉) of Mg4 and Mg10 �t to the simple jellium pi
ture, a

ording to whi
hthey should be �magi
� be
ause of their ele
tron numbers 8 and 20 (
losed ele
tronshell). The strong binding in Mg4 and Mg10 is also in 
orrelation with the 
ompa
tgeometries of these two. The verti
al ionization potentials are of the same magnitudeas reported by Jellinek and A
ioli [37℄, but the relative values di�er. For example, ourtrend predi
ts a dip in vIP for Mg4, whi
h is in 
ontradi
tion with the intuition. Thissuggest that the ele
tron delo
alization is di�erent in Mg4 than in the neighboring
luster sizes. It is also evident that the metallization is still in
omplete for the largest
luster size studied (Mg13). Jellinek and A
ioli suggested that the p-
hara
ter of thevalen
e ele
tron density may not be an adequate 
riterion for the size-indu
ed metalli
transition alone, as the degree of p-
hara
ter is about 50% in bulk magnesium, and itis observed to in
rease slowly and nonmonotoni
ally when going from a single atomtowards the bulk magnesium [37℄. Our results for the s- and p-
omponents at theFermi energy are in agreement with this.
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Figure 4.2: Properties of small Mg 
lusters. From top to bottom: Binding energies (Eb), se
ondderivatives of total energies (−∆
2E, inset), HOMO-LUMO gaps (Eg), verti
al ionization potentials(vIP) and average nearest neighbour distan
es (< d >).



30 Results4.2 Alkali Metals on GraphiteOur work on alkali metals on HOPG 
onsists of two arti
les: The �rst one 
on
entrateson sodium atoms and 
lusters [II℄, while in the se
ond a systemati
 study of alkalimetal atoms, dimers, and monolayers (Li, Na, K, Rb, Cs) is 
ondu
ted [IV℄. In thesestudies, we used the Car-Parrinello method (see Se
tion 2.4), whi
h employs periodi
boundary 
onditions and is suitable for modelling an in�nite graphite surfa
e.For the sodium 
al
ulations [II℄, we tested various graphite model substrates and
al
ulational methods. First, we studied a �nite slab 
onsisting of two to four freegraphene ��akes� where the dangling bonds of the peripheral 
arbons were termi-nated with hydrogen. The problem with this setup was that the graphene �akes wereinterlo
ked (sta
king ABAB...), and 
onsequently, the system is not symmetri
. Thisirregularity in geometry for
ed the layers to lean towards ea
h other on the one sideand away on the opposite side. Another possible 
ause of problems 
ould have beenthat graphite is a
tually a semimetal with a 
ompli
ated ele
troni
 band stru
ture,and a more proper way to simulate the substrate is an in�nite periodi
 surfa
e.Next, we applied periodi
 boundary 
onditions in an ortorhombi
 simulation box sothat the graphite surfa
e is 
ontinuous (in�nite) and the adsorbate is repli
ated peri-odi
ally on it. The system size and the simulation box had to be large enough so thatthe intera
tion between the repli
ated adsorbates and the repli
ated graphite slabs inthe dire
tion orthogonal to the surfa
e were negligible. Ea
h graphene layer 
omprised32 (or 60 in some 
al
ulations) 
arbon atoms in su
h a manner, that the periodi
ityformed a 
ontinuous surfa
e. The maximum distan
es between the adsorbate repli
aswere 9.84 Å and 8.53 Å in the lateral dire
tions, and the perpendi
ular dimension ofthe simulation box was 
hosen so that there was 10-12 Å empty spa
e between thegraphite slab repli
as. In the 
harge transfer analysis, it be
ame evident that in orderto get rid o� the dipole-dipole intera
tion we had to in
rease the distan
e betweenthe slabs up to 20 Å.Again, two to four graphene layers were tested, and it was found that three layersare needed, as the binding of the Na atom turned out to be sensitive to the num-ber of graphene layers. For two graphene layers, the surfa
e separation is 0.16 Å(6.6%) larger than for three and four layers. In order to in
orporate the graphite bandstru
ture, di�erent numbers of k-points were tried. As a manifestation of the bandstru
ture, a twisting of the graphite hexagonal geometry was found upon geometryoptimization with only one k-point (Γ-point). It was noti
ed that in order to get theinteratomi
 for
es right a 2×2 k-point mesh had to be adopted in the lateral dimen-sion, and for the energies a 5×5 k-point mesh was needed. In the latter work [IV℄,we adopted a hexagonal symmetry for the simulation box, after whi
h a 2×2 k-pointmesh turned out appropriate for 
al
ulating the total energies also, and the shortest
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Figure 4.3: Numbered lo
ations of alkali metal adatoms on top of a graphite hexagon.distan
e between two repli
ated adatoms be
ame 9.84 Å in both lateral dire
tions.The positions of the 
arbon atoms were �xed in most simulations in order to redu
ethe 
omputational 
ost. Test 
al
ulations for Li atoms on graphite, where either fouror six nearest 
arbon atoms were set free, showed that this 
aused negligible 
hangesin the geometries as well as in the energies.Among alkali metals, sodium is found to have an anomalous behavior as it intera
tsrelatively weakly with the graphite surfa
e. This is espe
ially evident for Na2, whi
hhas a 
losed ele
tron shell (two valen
e ele
trons), and it resides 3.05-3.95 Å apartfrom the surfa
e depending on the alignment. The energeti
s of Na favors 
lusteringpro
esses on HOPG, and the stability of 
lusters with an open valen
e ele
tron shellis in
reased due to the spin-degenera
y of the highest mole
ular orbital (odd-evenstaggering). For example, the formation energy of Na5 is 0.99 eV larger than that of�ve separate adatoms (∆E = 2.55 eV), and 0.52 eV larger than the formation energyof separated Na3 and Na2. The formation energy is de�ned as a sum of the adsorptionenergy per atom (∆E⊥) of a 
luster/monolayer and the binding energy (Eb) of anatom in a free 
luster/monolayer.The in
reased stability of the odd 
luster sizes and the inertness of Na2 (
losed shell)
an be seen from the fa
t that the most stable 
on�guration of four Na atoms ongraphite is the pair Na3 and Na with a formation energy ∆E = 2.56 eV whi
h is 0.52eV higher than for four separate adatoms. The lowest formation energy is observedfor two separated Na2 
lusters with ∆E = 1.92 eV. The geometries of Na4 and Na5deviated from planarity, but it is not 
lear whether this is related to the experimentallyobserved bu
kling of Na overlayers [42, 43℄.All the alkali metal adatoms are found to prefer the hollow site of the hexagonalgraphite sublatti
e (lo
ation 0 in Fig. 4.3). Cal
ulations on a few sele
ted lo
ations(all lo
ations in Fig. 4.3 for Na, lo
ations 0, 1, 2, and 4 for the other alkali metal



32 Resultsadatoms) show, that the alkali metal adatoms 
an di�use almost freely on the graphitesurfa
e, as only lithium has a 
onsiderable di�usion barrier (Ediff = 0.21 eV). Thisis probably due to the small atomi
 radius of Li, while for the other alkali metaladatoms the di�usion barrier is almost negligible (Ediff 0.02-0.06 eV). Experimentshave shown, that Li forms inter
alated stru
tures readily, as it penetrates betweentwo graphene sheets and lo
alizes at the hollow site [6℄.The trends in the formation/adsorption energy and surfa
e separation of the alkalimetal adatoms and (2× 2) MLs are shown in Fig. 4.4. A 
omparison of the formationenergies reveals that in most 
ases the dispersed phase is energeti
ally more stablethan (2×2) ML. This is in agreement with the experiments as there is no islandformation in the low 
overage regime. This is evident as for all the other alkali metalsbut Na, the formation energy per atom is larger for separate adatoms than for the(2×2) stru
ture. However, when the 
overage is in
reased so that the adatoms be
ome
loser to ea
h other the (2×2) 
onstru
tion is preferred for K, and it represents a stablephase for Rb and Cs under 
ertain 
ir
umstan
es [6℄.Among the separated adatoms, lithium was found to have the largest adsorptionenergy ∆E⊥ = 1.21 eV, and sodium the smallest with ∆E⊥ = 0.55 eV. For K, Rb andCs the adsorption energy grows slowly as the atomi
 radius in
reases, ∆E⊥ being 0.99eV, 1.02 eV and 1.04 eV, respe
tively. The distan
es from the surfa
e grow steadilyas the atomi
 radius in
reases: Li is 
losest to the surfa
e with d⊥ = 1.84 Å and Csfarthest with d⊥ = 3.75 Å. Experimental value d⊥ = 2.79 ± 0.03 Å for a K (2×2)layer [44℄ is 
loser to the value d⊥ = 2.72 Å that we obtain for a separated K atomthan the value d⊥ = 3.17 Å of for K (2×2) ML. This di�eren
e 
ould be 
aused bythe GGA fun
tional used for the ex
hange-
orrelation energy or it 
ould be related tothe indire
t evaluation method of the experimental layer spa
ing.The adsorption energies and the surfa
e separation show that the metal layer under-goes a de
oupling from the surfa
e as the 
overage is in
reased. This e�e
t is 
learlyseen as a drop in the adsorption energies and an in
rease in the surfa
e separationwhen 
omparing separated adatoms with (2 × 2) MLs. A single potassium atom, forexample, has an adsorption energy ∆E⊥ = 0.99 eV, whereas the same for K (2 × 2)ML is only 0.25 eV per atom. For two monolayers, the adsorption energy is only 0.13eV per atom, whi
h is one half of the adsorption energy of one layer. This means thatthe total adsorption energy in the simulation box is the same for one and two layers,and the se
ond overlayer does not intera
t with the surfa
e. However, the formationenergy is almost exa
tly the same as for 1ML suggesting a stronger intera
tion be-tween the K atoms as the 
overage is in
reased. The weak intera
tion between thesubstrate and metal �lm is further supported by the fa
t that the separation of thelower K overlayer (d⊥ = 3.11 Å) is almost the same as in the 
ase of one monolayer(d⊥ = 3.17 Å).
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Figure 4.4: Adsorption of alkali metal atoms and (2×2) monolayers on graphite: (a) the formationand adsorption energies per atom (∆E and ∆E⊥) and (b) the verti
al separation from the substrate(∆E⊥).



34 ResultsTable 4.1: Comparison between di�erent DFT methods.Adsorbate Fun
tional ∆E (eV) d⊥ (Å) Referen
eLi Atom PBE 1.21 1.84 This workPBE (LDA) 1.10 (1.68) 1.71 (1.63) Ref. [45℄, slab modelB3LYP 1.36 1.71 Ref. [46℄, 
luster modelLDA 1.60 1.64 Ref. [47℄, slab model(2×2) PBE 0.79 2.02 This workLDA 0.93 1.64 Ref. [47℄, slab modelNa Atom PBE 0.55 2.45 This workPBE 0.50 (0.69) 2.34 (2.42) Ref. [45℄, slab modelB3LYP 0.72 2.10 Ref. [46℄, 
luster modelPW91 2.32 Ref. [48℄, slab modelK Atom PBE 0.99 2.72 This workPBE (LDA) 0.88 (1.12) 2.65 (2.70) Ref. [45℄, slab modelBP86 (LDA) 1.49 (1.67) 2.81 (2.73) Ref. [49℄, 
luster modelB3LYP 1.06 2.51 Ref. [46℄, 
luster modelLDA 0.51 2.79 Ref. [50℄, slab modelLDA 0.78 2.77 Ref. [51℄, slab model (1 layer)(2×2) PBE 0.81 3.17 This workLDA 0.98 2.82 Ref. [50℄, slab modelLDA 0.48 2.82 Ref. [51℄, slab model (1 layer)We have evaluated the amount of 
harge transfer (∆q) by using the laterally averaged
harge density di�eren
e (∆ρ⊥), where one integrates over the 
harge depletion areaaround (below) the alkali metal adatoms (layer). All the alkali metal adatoms donate0.4-0.5 e to the substrate. For (2 × 2) MLs, the ele
tron density redistribution uponadsorption is di�erent, and the amount of donated 
harge is approximately 0.1 e peradatom. Here, it should be noti
ed that as in the experiments there are several waysto evaluate the 
harge transfer theoreti
ally, and they 
an give varying results.The results for the formation energy and surfa
e separation in 
omparison with otherDFT studies are presented in Tab. 4.1. One 
an see that our results are mostly inagreement with the other studies, and espe
ially with the slab model 
al
ulationswhere the PBE fun
tional is used [45℄. The largest di�eren
es are observed with theLDA studies: The LDA formation energy tends to be systemati
ally higher and thedistan
e from the surfa
e lower whi
h is expe
ted as LDA has an over-binding 
har-a
ter. Ex
eptions to this pattern are presented by the LDA slab model 
al
ulations ofLamoen and Persson [50℄ and An
ilotto et al. (one graphene layer only) [51℄, and forexample, the value ∆E = 0.51 eV from Ref. [50℄ is barely one half of the ∆E= 0.99 eV



4.2 Alkali Metals on Graphite 35in our study. The attra
tion between graphene layers is mainly of the van der Waals
hara
ter, and it is not reprodu
ed by standard DFT. The over-binding 
hara
ter ofLDA gives by 
han
e a more realisti
 interlayer distan
e than GGA, and it is oftensuggested in the literature that LDA should give better results for the adatom bindingenergies and distan
es. The di�eren
e 
an also be seen in the d⊥ values when 
om-paring our results to the LDA studies for Li [47℄ and K [50, 51℄. In general, our PBEresults are in reasonable agreement with the other studies, and we believe that ourresults are reliable due to the extensive testing.Fig. 4.5 shows the laterally averaged 
harge density di�eren
e (∆ρ⊥) of a K adatom,(2×2) ML, and two (2×2) overlayers on graphite. It 
an be seen, that even thoughthe amount of 
harge transferred to graphite is almost the same, there are signi�-
ant di�eren
es between the three 
urves. In the 
ase of a separate K atom, 
hargedepletes through the whole atomi
 volume of K and a

umulates mostly over thetopmost graphene layer. For a (2 × 2) monolayer, the 
harge is depleted below themonolayer whi
h already implies a de
oupling tenden
y. The 
urves of 1ML and 2MLare pra
ti
ally identi
al below the lower metal layer. De
oupling is further supportedby the 
harge redistribution of 2ML (a

umulation between the K layers), and the
orresponding ele
troni
 density of valen
e states (DOS) is essentially a sum over theDOS of the separated metal layer and graphite substrate.More detailed 
utplane visualizations of the 
harge redistribution are given for lithiumin Fig. 4.6, and for two K monolayers in Fig. 4.7. From the upper part of Fig. 4.6, it
an be seen 
learly that 
harge a

umulates dire
tly below Li, and the 
orrespondinga

umulation lobe re�e
ts the hexagonal symmetry of the graphite. Figs. 4.6(b-
)demonstrate the experimentally known fa
t, that a (2×2) monolayer is not a preferred
onstru
tion for Li: Fig. 4.6(b) shows that 
harge is depleted between the Li atoms(blue 
olor), and the ele
tron lo
alization fun
tion (ELF) [52℄ in Fig. 4.6(
) shows thatthere is no ele
tron overlap between the Li atoms (blue 
olor), i.e. the layer 
onsistsof separate adatoms, and it is not metalli
. Corresponding visualizations of two Koverlayers (Fig. 4.7) show that 
harge is depleted below the K slab and a

umulatedmostly above the C atoms of the topmost graphene layer (Fig. 4.7(a-b)), and in someextend between the K layers. The additional 
harge is transferred to the graphene
π-bands (atomi
 pz-orbitals), whereas depletion is observed in the sp2 hybridized σ-bands of the topmost layer. From the ele
tron density plot (not shown) it 
an be seen,that there is a sharp and �at boundary between the metal �lm and the �va
uum�whi
h is in agreement with the He-s
attering experiments [53℄.Figs. 4.7(
-d) show that K forms a metalli
 layer (green 
olor indi
ates a metalli
bonding), and that there is no ele
tron overlap in the adsorbate-substrate interfa
e(blue region between the graphite and the metal layer). The blue rings around theindividual K atoms 
orrespond to the K 4s orbitals, and they indi
ate that the proba-bility of �nding two ele
trons within this range is negligible. The 3p semi
ore ele
trons
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Figure 4.5: Laterally averaged 
harge density di�eren
e (∆ρ⊥) of a K adatom (dotted 
urve), a(2×2) monolayer (dashed 
urve), and two (2×2) overlayers (solid 
urve) on graphite. The verti
albars denote the positions of graphene (thi
k bars) and K layers (thin bars). The 
harge densities havebeen 
al
ulated in an extended simulation box, so that the distan
e between the verti
ally repeatedperiodi
 graphite (GR) slabs is 20 Å.that are in
luded in the valen
e are mostly lo
alized around the K atoms. A similarmetalli
 behavior (delo
alization of valen
e ele
trons within the metal layer) 
an beseen also in the 
orresponding �gures of Rb and Cs MLs. This is expe
ted as all thethree largest alkali metals are found to form ordered (2 × 2) stru
tures on graphite,and at least for K it is the most stable phase (monolayer).ELF in Fig. 4.6 and Fig. 4.7 does not show any 
hemi
al bonding between the adsor-bate and substrate as the interfa
e region between them is blue (no ele
tron overlap).This implies that the adsorbate-substrate intera
tion should be viewed as ioni
 in thealkali-HOPG systems.
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Figure 4.6: Visualization of the Li (2×2) monolayer on HOPG. (a) Three isosurfa
es for the a

u-mulated ele
tron density. The 
orresponding values are 0.001 (yellow), 0.002 (orange), and 0.004e/Å3(red), respe
tively. The Li atoms are marked by magenta spheres (b) Cutplane presentation of the
harge density di�eren
e (xz plane), where the red 
olor 
orresponds to a

umulation (0.0005e/Å3or more) and blue depletion (-0.0005e/Å3 or less). (
) The ele
tron lo
alization fun
tion (ELF, xzplane), where the red 
olor 
orresponds to full lo
alization (1.0, 
ovalent bonds), green is analogousto homogeneous ele
tron gas (0.5, metalli
 bonding), and blue equals to low lo
alization (0.0).
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Figure 4.7: Cutplane visualization of two K (2×2) overlayers on HOPG. (a-b) The 
harge den-sity di�eren
e is presented in xz and yz planes, where the red 
olor 
orresponds to a

umulation(0.0005e/Å3 or more) and blue depletion (-0.0005e/Å3 or less). (
-d) Similar presentation of theele
tron lo
alization fun
tion (see the 
aption in Fig. 4.6).
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ules 394.3 Single-walled Carbon Nanotubes Inside Cy
li
Supermole
ulesIn this se
tion, the results of various pseudorotaxane systems 
onsisting of 
arbon nan-otubes and 
rown ethers or β-
y
lodextrin are dis
ussed (arti
le [III℄). Three typesof single-walled 
arbon nanotubes (SWNTs) have been 
onsidered: a metalli
 arm-
hair (4,4) 
arbon nanotube (CNT(4,4)), a semi
ondu
ting zigzag (8,0) nanotube(CNT(8,0)), and a metalli
 zigzag (4,0) nanotube. Their diameters are 5.51, 6.36 and3.38 Å, respe
tively. The �rst two SWNTs 
an be manufa
tured, whereas the existen
eof the third one is still questionable. In our 
al
ulations, the CNT(8,0) is threadedthrough a 36-
rown-12 ether (CE-12) mole
ule, CNT(4,4) through 30-
rown-10 ether(CE-10), and CNT(4,0) through β-
y
lodextrin (β-CD), and the ele
troni
 proper-ties of the 
omplexes are studied. These systems are named as CNT(8,0)�CE-12,CNT(4,4)�CE-10 and CNT(4,0)�β-CD, respe
tively. Furthermore, 
ross-linked ro-taxane systems are 
reated by substituting four or two 
rown ether O atoms with Nin the �rst two 
ases, and by abstra
ting two H atoms from the hydroxyl groups of
β-CD.The ele
troni
 stru
ture 
al
ulations are performed with the Car-Parrinello mole
ulardynami
s (CPMD) pa
kage [22℄. Stru
tural optimization is done with simulated an-nealing using the Car-Parrinello option for mole
ular dynami
s as des
ribed in Se
tion2.4 (Γ-point 
al
ulation). Periodi
 boundary 
onditions are applied, and the ele
troni
stru
ture is 
al
ulated using 13 expli
it k-points along the tube axis. The dimensionsof the simulation box are 
hosen so that three to �ve nanotube unit 
ells are in
ludedin order to keep the periodi
ally repeated ma
ro
y
les approximately 10 Å apart. Theoptimized box sizes along the tube axis are then 12.32 Å (80 C atoms), 12.82 Å (96C atoms) and 16.82 Å (64 C atoms) for CNT(4,4), CNT(8,0) and CNT(4,0), respe
-tively. To avoid intera
tions between the rotaxane 
omplexes, the perpendi
ular boxsize is 
hosen so that the minimum distan
e between repli
as is 8 Å or more.The optimized geometries of the CNT(8,0)�CE-12 and CNT(4,4)�CE-10 
omplexes,and their 
ross-linked forms are shown in Fig. 4.8 (one repli
a in
luded). The averageC-O distan
e of 1.43 Å, and C-O-C angle of 111.5◦ are 
lose to the 
orrespondinggas-phase values of 1.43 Å and 111.8◦. Small attra
tion between CNT(8,0) and CE-12oxygens 
auses that the 
rown ether approa
hes the tube, whi
h leads up to 20-30◦
hange in the O-C-C-O torsional angles. The repulsive for
es that are 
aused bythe steri
 hindran
e and strain are re�e
ted in the 
onsiderable intermole
ular C-Odistan
es of 3.52 Å, but the total 
omplexation energy is still slightly favorable (-0.12eV). In the 
ase of CNT(4,4)�CE-10 
omplex, the 
onformation is similar, but thesmaller ma
ro
y
le diameter 
auses an additional strain in CE-10. This is observedas an elongated C-O bond length of 1.45 Å and a positive 
omplexation energy of1.16 eV. The intermole
ular C-O distan
es of 2.86 Å are signi�
antly shorter than
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Figure 4.8: Geometries of CNT(8,0) and CNT(4,4) 
omplexes before and after substitution of etheroxygens (red) with trifun
tional nitrogens (blue). (a) CNT(8,0)�CE-12, (b) CNT(8,0)�CE-12N4,(
) CNT(4,4)�CE-10, and (d) CNT(4,4)�CE-10N2. The simulated systems are repli
ated on
e alongthe tube axis in order to show the separation of repeated ma
ro
y
les.
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ules 41those of CNT(8,0)�CE-12. The 
ross-linking of CNT(8,0)�CE-12 by substitutingsymmetri
ally four O atoms with N leads to a 
onsiderable 
hange in the systemgeometry (CNT(8,0)�CE-12N4). The 
ovalent C-N bonds between the ma
romole
uleand the tube for
e the ma
romole
ule into a square shape, and the bonding of the
orresponding C atoms 
hanges from sp2 to sp3. The 
hange in the bonding s
heme
an also be seen in the tube as elongated C-C distan
es of 1.52 Å (in pristine tube1.42 Å), and the C-C-C angles of 103◦ and 112◦ are 
lose to the tetrahedral value of109.5◦. A similar C-N bonding s
heme 
an be seen for CNT(4,4)�CE-10N2 also.The CNT(4,0)�β-CD 
omplex is shown from two perspe
tives in the 
harge a

u-mulation/depletion plot in Fig. 4.9. Ma
romole
ule expands from its narrow end dueto the steri
 hindran
e e�e
ts with the tube, but the total 
omplexation energy isonly slightly positive (0.08 eV). The 
ir
ular symmetri
 hydrogen bond network ofthe gas-phase 
onformation is partially broken, so that the separation of the polarizedhydroxyl groups from the tube varies between 2.98 and 3.30 Å. There is no signi�
ant
harge transfer between the tube and β-CD, and the intera
tion should be 
onsideredas polarization, as was the 
ase with CNT(8,0)�CE-12 and CNT(4,4)�CE-10 sys-tems. The 
harge a

umulation/depletion pro�le is dominated by the 
ovalent bondformation in the 
ross-linked 
ases. The 
ross-linked CNT(4,0)�β-CD 
omplex is ob-tained via a hydrogen abstra
tion in two opposite hydroxyl groups, and the oxygensare for
ed to form 
ovalent C-O bonds of 1.45 Å with the tube. Again, the hybridiza-tion of the a�e
ted CNT 
arbons 
hanges from sp2 to sp3, and the tube diameterexpands 0.5 Å in the vi
inity of the 
onta
ts.The ele
troni
 band stru
tures of CNT(8,0) and its 
omplexes with CE-12 and CE-12N4 are shown in Fig. 4.10. Simple analyti
al tight-binding 
al
ulations predi
t thatan (8,0) zigzag tube is semi
ondu
ting [13℄, and our 
al
ulation result in a band gapof 0.5 eV at the Γ-point results from our 
al
ulations. Complexation with CE-12 doesnot perturb the band stru
ture near the Fermi energy, and the only visible e�e
ts arethe dispersionless bands below -1.5 eV 
orresponding to the HOMOs of the isolatedCE-12. The band stru
ture 
hanges 
onsiderably when the system is 
ross-linked. Themost important 
hange is the appearan
e of four bands near the Fermi energy, whi
h
auses a peak in the 
orresponding DOS. The band gap has vanished, but there are no
ondu
tion 
hannels available, and the system 
an be des
ribed as a semi
ondu
tor,despite the 
hanges produ
ed by the 
ross-linking.Analyti
al 
onsiderations predi
t that the arm
hair CNT(4,4) tube is 
ondu
ting [13℄.This is 
on�rmed by the ele
troni
 band stru
ture (Fig. 4.11), showing a Fermi energy
rossing (
ondu
tion band) near the Brilloun zone (BZ) boundary at the X-point,and the 
orresponding DOS has a �nite weight. Our result is 
on�rmed by the DFTstudy of Rubio et al. [54℄. The band stru
ture of CNT(4,4)�CE-10 
omplex is almostidenti
al to that of CNT(4,4) despite the slight polarization 
aused by the arti�
iallyshort intermole
ular C-O distan
es. However, the 
ross-linking with CE-10N2 results
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Figure 4.9: Charge a

umulation/depletion plot of CNT(4,0)�γ-CD 
omplex. (a) front view, (b)side view. The isosurfa
e has a value of 0.00045 e/Å3 both for a

umulation (blue) and depletion(yellow).
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Figure 4.10: Ele
troni
 band stru
ture of CNT(8,0) with and without CE-12 
omplexation (
ross-linking). The dashed line at 0 eV 
orresponds to the Fermi energy. The simulation box in
ludes threeCNT(8,0) unit 
ells.in signi�
ant 
hanges in both the valen
e and 
ondu
tion bands. In 
ontrast to thepristine tube, there are bands of weak dispersion around the Fermi energy that giverise to a peak in DOS, and a new 
ondu
tion 
hannel opens enhan
ing the metalli
ityof the system.In 
ontrast to the analyti
al predi
tion for the zigzag tubes, the band stru
ture of asmall-diameter CNT(4,0) in Fig. 4.12 shows that the system is metalli
 with three
ondu
tion 
hannels. The metalli
ity of SWNTs of diameters less than 5 Å has beenobserved in earlier studies [55℄, and it is suggested that this e�e
t arises be
ause of thesevere tube 
urvature that 
auses a strong σ∗-π∗ hybridization. Furthermore, it hasbeen proposed that the tubes of diameter 4 Å or less should be super
ondu
ting [56℄.However, a more detailed analysis by Ito et al. has shown that the main reason thatCNT(4,0) is metalli
 is the strong C-C bond alternation (1.38 and 1.47 Å) that lowers(stabilizes) the �rst uno

upied π∗-band so that it 
rosses with the highest o

upied
π-bands [57℄. We observe a similar phenomenon, and our values for the C-C bondsare 1.39 and 1.48 Å.As with previous 
ases, a non
ovalent 
omplexation of CNT(4,0) with β-CD does not
hange the 
hara
teristi
 band stru
ture of the nanotube, whereas the 
ross-linkingwith two hydroxyl oxygens has a 
lear e�e
t. However, the 
ross-linking suppressesmetalli
ity in this 
ase as there are only two 
ondu
tion 
hannels available, and theDOS has a smaller weight at the Fermi energy. The probable reason is the elongationof the C-C bonds at the 
ross-linking sites (1.50-1.55 Å), whi
h disturbs the symmetri
bond alternation pattern that 
auses the metalli
ity of CNT(4,0).
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Figure 4.11: Ele
troni
 band stru
ture of CNT(4,4) with and without CE-10 
omplexation (
ross-linking). The dashed line at 0 eV 
orresponds to the Fermi energy. The simulation box in
ludes �veCNT(4,4) unit 
ells.
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Figure 4.12: Ele
troni
 band stru
ture of CNT(4,0) with and without β-CD 
omplexation (
ross-linking). The dashed line at 0 eV 
orresponds to the Fermi energy. The simulation box in
ludes fourCNT(4,0) unit 
ells.



5 SummaryThis thesis 
onsists of four separate arti
les and three di�erent themes of resear
hwhi
h involve nanometer-sized mole
ular 
onstru
tions. The �rst study 
onsiders smallmagnesium 
lusters and their pe
uliar size-dependent insulator-to-metal transition.The se
ond step was to study alkali metal adatoms, small alkali metal 
lusters and two-dimensional alkali metal monolayers on a graphite surfa
e. This subje
t is 
overed inthe se
ond and fourth arti
les. The third topi
 is the one-dimensional pseudorotaxane
omplexes 
onsisting of fun
tionalized 
arbon nanotubes and 
y
li
 ma
romole
ules.The ground-state geometries and ele
troni
 properties of Mg 
lusters in size-rangeMg2-Mg13 were studied using the �rst prin
iples BO-LSD-MD simulation method[23℄, whi
h uses the DFT based KS formalism, PBE parametrization of the ex
han
e-
orrelation energy fun
tional, separable and nonlo
al pseudopotentials, and a planewave basis set. This method is espe
ially suited for studying isolated systems, su
has free 
lusters. The dynami
s in the �nite-temperature simulation is handled withthe BO approximation in 
onjun
tion with the 
lassi
al Hellman-Feynman theorem ofele
trostati
s. The study of small magnesium 
lusters showed that their metallizationis slow and nonmonotoni
, and it is not 
ompleted even for Mg13 whi
h was the largest
luster size studied. Later studies have shown that metallization is not 
ompleted evenfor anioni
 Mg35 [36℄. It was noti
ed that a reliable analysis of metallization has to bedone using various indi
ators, not just one.Carbon nanotubes and graphite are e�e
tively in�nite systems in one (tubes) or two(graphite surfa
e) dire
tions. The implemented periodi
 boundary 
onditions are thereason why Car-Parrinello mole
ular dynami
s pa
kage (CPMD, [22℄) was applied intheir study. This �rst-prin
iples method exploits the DFT based KS formalism aswell in 
onjun
tion with separable nonlo
al pseudopotentials, a plane wave basis set,and the PBE parametrization. The �nite-temperature simulations were performedusing the Car-Parrinello mole
ular dynami
s in the 
ase of pseudorotaxanes, andpartially in the 
ase of studying alkali metals on a graphite surfa
e. Other geometryoptimization s
hemes, su
h as the quasi-Newton approa
h (BFGS method [58℄) or
onjugate gradients were also applied in the optimization of the alkali metal-graphitesystems.The alkali metal atoms, 
lusters, and monolayers (Li, Na, K, Rb, Cs) on a graphitesurfa
e were studied, be
ause their intera
tion with HOPG is still under debate [6℄.It is found that after a 
ertain 
overage the alkali metals form metalli
 layers on45



46 Summarygraphite whi
h pronoun
edly de
ouple from the surfa
e. This 
an be seen as a dropin the adsorption energy, in
rease in the surfa
e separation, and redistribution of theele
tron density. The ele
tron lo
alization fun
tions of the system studied indi
ate thatthe adsorbate-substrate intera
tion is of ioni
 
hara
ter. A single alkali metal atomhas a 
onsiderable adsorption energy, and it prefers the hollow site on the hexagonalsurfa
e. The di�usion barriers are negligible, ex
ept for Li, and the alkali atoms arerelatively mobile on HOPG. This explains partially the tenden
y of alkali metals tohave several di�erent phases depending on the 
overage and temperature.Both pristine and fun
tionalized nanotubes are at the 
enter of attra
tion in nanos
ien
e.On the other hand, rotaxanes have been suggested as potential 
andidates for mole
-ular devi
es or sensors in future nanote
hnology. This is the reason to study polyro-taxanes 
onsisting of small single-walled nanotubes and 
rown ether or β-
y
lodextrinma
romole
ules. We found that the intera
tion of the 
ir
ular ma
romole
ules withCNT is weak, and they did not a�e
t the ele
troni
 properties of the nanotube 
onsid-erably. A 
ross-linking either by nitrogen substitution or hydrogen abstra
tion 
hangesthe pattern 
ompletely suggesting that it 
an be used for adjusting the CNT ele
-troni
 properties. This 
ould be exploited in nano
ir
uits and sensors, as 
ross-linkedma
romole
ules 
ould form spe
i�
 binding sites for various 
hemi
al substan
es. Non-
hemi
ally bonded ma
romole
ules 
ould have an appli
ation in insulating nanotubesfrom ea
h other, whi
h 
ould solve their bundling problem. Whether this kind ofpolyrotaxanes 
an be 
onstru
ted in pra
ti
e is still un
ertain, but the �rst su

esfulexperiments reported for self-organized CNT-polyrotaxanes are en
ouraging [59℄.
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