
���
� � � � � � � � � 	 �
 � �
 � � 	
 � 	 � � � � �

 � �

����������								��
��
�
�

��������	������	��
� !�"��#	�#����$�	���
� ��%&'����	��!"%��� �

����	�
��
���

Copyright © , by University of Jyväskylä

ABSTRACT

Turchyn, Pavlo
Adaptive meshes in computer graphics and model-based simulation
Jyväskylä: University of Jyväskylä, 2006, 27 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 71)
ISBN 951-39-2722-9
Finnish summary
Diss.

This work presents improvements to mesh generation algorithms employed in computer
graphics and numerical solution of boundary value problems of elliptic type.

The first part of the thesis concerns creation of the meshes with various polygonal
complexity, which are used in computer graphics to create an image of a given object.
This work contributes to the analysis of the sliding window progressive meshes algo-
rithm. Several improvements to the algorithm are suggested to solve its major problems.
The first problem is the cache-coherent access to the mesh vertices; it is solved with help
of heuristics-based reordering of triangles. The second problem is the excessive size of
resulting datasets. It is demonstrated that the datasets can be reduced using optimiza-
tion of mesh connectivity, via hierarchical data structures, and with help of special mesh
operators that remove several vertices at a time.

The second part of the thesis is focused on the a posteriori error estimation for finite
element approximations in terms of linear functionals. Here the role of mesh generation
is two-fold. First, the error value estimated with help of estimator naturally suggests mesh
refinement strategy. Second, the estimator requires solving an additional adjoint problem
on a mesh that does not coincide with the mesh used to solve the main problem. In order
to relief the requirements for the adjoint mesh, a new method to estimate the error is
developed and tested; the method not only accepts anisotropic adjoint meshes, but also
does not require extra regularity of the adjoint problem solution.

Keywords: continuous level-of-detail, sliding window progressive meshes, finite ele-
ment method, a posteriori error estimation, quantities of interest

Author Pavlo Turchyn
Department of Mathematical Information Technology,
University of Jyväskylä,
Finland

Supervisors Professor Pekka Neittaanmäki
Department of Mathematical Information Technology,
University of Jyväskylä,
Finland

Professor Sergey Repin
V.A. Steklov Institute of Mathematics,
St.-Petersburg, Russia

Reviewers Professor Nikolay Banichuk
The Institute for Problems in Mechanics of RAS,
Moscow, Russia

Dr. Satyendra Tomar
J. Radon Institute of Computational and Applied Math.,
Linz, Austria

Opponent Assistant Prof. Maxim Frolov
St.-Petersburg Polytechnical University,
Russia

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Prof. Pekka Neittaanmäki and Prof. Sergey
Repin for their continuous guidance and support. I would like to thank my colleagues Dr.
Sergey Korotov, as well as to Dr. Tuomo Rossi and Dr. Viktor Kalvin for encouraging
discussions. I am thankful to Prof. Nikolay Banichuk and Dr. Satyendra Tomar for
reviewing the thesis and making valuable suggestions, and to Markku Häkkinen for the
assistance with English language.

This work was carried out in the course of several projects. The major part of
polygonal mesh simplification code was developed within the framework of Agora Cen-
ter SIMPLY project supported by Elomatic Papertech Engineering Oy. The estimator
for linear elasticity problems was developed as a part of SCOMA project supported by
TEKES. Author was also supported by COMAS Graduate School of the University of
Jyväskylä, and the project 104409 of Academy of Finland.

Jyväskylä, 14th of December 2006
Pavlo Turchyn

LIST OF FIGURES

FIGURE 1 Examples of mesh operators 11
FIGURE 2 Sliding window progressive mesh 14

CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF FIGURES
CONTENTS
LIST OF INCLUDED ARTICLES

1 INTRODUCTION ... 9
1.1 Polygonal mesh simplification ... 9

1.1.1 Visual quality criterion .. 10
1.1.2 Iterative algorithm.. 11
1.1.3 Progressive meshes... 12
1.1.4 Sliding window progressive meshes 13
1.1.5 Memory-efficient SWPM... 14
1.1.6 SWPM and vertex caching ... 17

1.2 Mesh generation in adaptive numerical methods 17
1.2.1 Error estimates in terms of linear functionals.......................... 18
1.2.2 Error estimation by gradient averaging.................................. 19
1.2.3 New modus operandi .. 21

1.3 Conclusions ... 23

REFERENCES ... 24

YHTEENVETO (FINNISH SUMMARY) ... 27

INCLUDED ARTICLES

LIST OF INCLUDED ARTICLES

I Sergey Korotov and Pavlo Turchyn, Topology-Driven Progressive Mesh Construc-
tion for Hardware-Accelerated Rendering, Computer Graphics and Geometry,
6(3), pp. 100–119, 2004

II Pavlo Turchyn, Memory-Efficient Sliding Window Progressive Meshes, To appear
in Journal of WSCG, 2007

III Sergey Korotov and Pavlo Turchyn, A posteriori error estimation of ”Quantities
of Interest” on Tetrahedral Meshes, In CD-Rom Proceedings of ECCOMAS’2004,
the 4th European Congress on Computational Methods in Applied Sciences and
Engineering, Eds.: Neittaanmäki, P., Rossi, T., Korotov, S., Onate, E., Periaux, J.,
Knörzer, D., Volume II, Jyväskylä, Finland, 2004

IV Pekka Neittaanmäki, Sergey Repin, Pavlo Turchyn, A Posteriori Error Estimation
in Terms of Linear Functionals for the Linear Elasticity Problems, Revised version
to appear in Russ. J. Numer. Anal. Math. Modelling., 2007

1 INTRODUCTION

1.1 Polygonal mesh simplification

Virtual worlds with rich details require large amounts of information to be processed.
On the other hand, most interactive applications are limited to the computational capac-
ity of the computer hardware upon which they reside. Thus, one faces a fundamental
problem of computer science: the search for a balance between data size and processing
time. In particular, this problem arises when processing geometrical information during
image synthesis. Normally a large amount of information is discarded at the stage of
hidden surface removal using a variety of algorithms, such as view frustum culling, oc-
clusion culling, potentially visible sets, etc. However, even after removal of all invisible
geometrical primitives, the complexity of scene may still be excessive for the rendering
and display hardware. For instance, primitives with a projection size near one pixel may
cause noticeable noise due to aliasing; primitives with a sub-pixel projection size may be
simply invisible, and thus are a waste of processing time; the cost of geometry processing
may be too high for the underlying graphical hardware, so that interactive framerates are
impossible. The main approach for reducing geometrical complexity of the scene consists
of replacing the initially provided meshes with their reasonable approximations.

Let us give a formal description of the process of constructing an optimal approx-
imation of a given mesh. Let M0 = (V0,T0) be a given 2-manifold triangle mesh in R3,
where V0 is a set of vertices, and T0 is a set of triangles. We look for an optimal ap-
proximation Mr = (Vr,Tr) of the mesh M0 as the solution of the following combinatorial
optimization problem

Jα(Mr) = min
Mi∈M

Jα(Mi), (1)

where M = {M0,M1, . . . ,MN} is a set of all possible meshes constructed over a given
set of points P. One may set P = V0, or choose P as a set of points sampled within the
bounding volume of M0, etc. Typically, the following goal functional J is used

Jα(Mi) := αE(M0,Mi)+ (1−α)C(Mi),

where E(M0,Mi) is a metric that evaluates a visual difference between the meshes M0 and
Mi (the forms of this functional are described in the subsequent section), the functional

10

C(Mi) evaluates expenditures related to the image synthesis using the mesh Mi, and the
parameter α adjusts the relative importance.

In general, problem (1) is very complicated because the solution space M may
have an extremely large dimension. Many authors believe that the problem might be
NP-hard (see e.g. [LRC∗02, p.20]), which means that the polynomial-time algorithms for
solving this problem may not exist. Although some commercial systems claim to use
sophisticated optimization approaches, such as genetic algorithms, a generally accepted
approach is the use of greedy iterative algorithm, which is explained in the subsequent
sections. Although it is assumed that the mesh Mn, which is obtained with help of the
latter algorithm, is close to Mr, the exact difference between Mn and Mr is unknown.

1.1.1 Visual quality criterion

Assigning a numerical value to the visible difference between two polygonal approxima-
tions of a real-world object is not a trivial task. Aside from being subjective and context-
dependent, such difference is heavily influenced by human visual perception. Appearance
of an object depends on the region of retina at which its image is projected, on its motion
speed, on the distance at which the eyes are converged, etc. In practice, the large body of
these factors is disregarded, in particular due to the lack of widely available eye tracking
systems.

One way to measure visual difference between the meshes M0 and Mi is to create
two images I0 and Ii, respectively. Then, the metric E is a distance between two images,
e.g. RMS pixel-by-pixel difference [LH00].

Unfortunately, the image-based method is relatively slow. A faster approach is to
compute geometrical distance between two meshes, such as point-to-surface distance (see
e.g. [Hop96, CRS98])

E(M0,Mi) = ∑
v j∈Q

|v j−M v j|,

where Q is a set of points sampled on the surface of the mesh Mi, and the operator M maps
a point v j to the closest point on the surface of mesh M0. Since implementation of M
involves spatial proximity queries, this method is also relatively slow. A cheaper distance
measure is point-to-plane distance, such as quadratic error metric (QEM, see [GH98]).
QEM is defined as

E(M0,Mi) = ∑
v j∈Vi

∑
4k∈L(v j)

|v j−P(4k)v j|2,

where the operator P(4k) projects a point onto the plane of triangle 4k. Let S(v j) be
a subset of triangles of the mesh Mi that are incident to the vertex v j. Informally, the set
L(v j) includes the triangles of mesh M0 that form a part of the surface being approximated
by the surface formed by the triangles of S(v j). Correspondence between the sets L(v j)
and S(v j) is naturally established in the simplification process, so finding L(v j) is simple
and does not involve proximity queries.

Typically, mesh simplification is an iterative process with n steps that produces a
sequence of approximations M0 ≡ M(0),M(1), . . . ,M(n−1),M(n). One way of accelerat-
ing the computation of the metric E(M0,Mi) during the iterative process is to replace the

11

v1

v2

v3

v4

v5

v6
v7

v1

v2

v3 v5

v6

v1

v2

v3 v5

v6

 v1

v2

v3

v4

v5

v6
v7

a) M0 b) H (v7,v1)M0 c) R(v7)M0 d) E (v5,v7,v4,v6)M0

FIGURE 1 Examples of mesh operators

initial mesh M0 (which is relatively complex) with a simpler mesh produced at some pre-
ceding iteration. In other words, we use E(M(j),Mi) instead of E(M0,Mi). Surprisingly,
in some cases such a strategy not only results in a very small error increase, but even
leads to the improvement of the resulting mesh [LT99, Hop99a]. The latter is explained
by the fact that in practice E(M0,Mi) may demonstrate a complicated behavior; some se-
quences of meshes lead to its local minima. On the other hand, E(M(j),Mi) may be less
problematic for the optimization algorithm in use.

1.1.2 Iterative algorithm

As we have already noted, the problem (1) is often solved with help of an iterative algo-
rithm that generates a sequence of meshes M0 ≡M(0),M(1), . . . ,M(n) where

M(i) := O(Pi)M(i−1), (2)

where O denotes a mesh operator (the structure of such operator is explained below),
and Pi is a set of operator parameters. The process stops at the iteration n when the cost
C(M(n)) is below an application-defined threshold.

For O we take one of the following operators

• half-edge collapse operator H (vi,v j) replaces vertex vi with vertex v j in all trian-
gles of the mesh, and then removes resulting degenerate edge and corresponding de-
generate triangles from the mesh; Fig. 1b displays the result of applying H (v7,v1)
to the mesh M0 shown in Fig. 1a, so the edge (v1,v7) and the triangles (v6,v7,v1)
and (v1,v7,v3) are removed.

• vertex removal operator R(vi) deletes vertex vi and all the incident triangles from
the mesh and then re-triangulates resulting hole with a triangulation algorithm, such
as [BDE96, BS96]; the example is shown in Fig. 1c;

• edge swap operator E (vk,v`,vm,vn) replaces two triangles 4i = (vk,v`,vm) and
4 j = (v`,vk,vn), which share the common edge (vk,v`), with the triangles 4′

i =
(vk,vn,vm) and 4′

j = (v`,vm,vn) (see the example in Fig. 1d).

In our method we construct a sequence of meshes that generally satisfies the rule (2) by
choosing during each step the operators O and its parameters Pi such that they solve the
following combinatorial optimization problem

E(M(i)) = min
O(Pi)∈O

E
(

M0),O(Pi)M(i−1)
)

. (3)

12

Here the solution space O consists of the operators H , R, and E with all possible com-
bination of parameters. As we have discusssed, the parameters of H are the pairs of
vertices connected with an edge to be removed; the parameters of E are the vertices of
two triangles that share a common edge. Thus, the dimension of O is bounded

|O|< C N,

where N is the number of mesh vertices, and C is a constant that depends on mesh genus.
Thus, in principle, we can obtain the solution of (3) with help of the complete enumeration
strategy.

The iterative algorithm we describe is greedy. The latter term is used for only
locally-optimal algorithms that choose the best operation for a single iteration. The further
iterations are not taken into account.

1.1.3 Progressive meshes

It is typical that a graphical application creates not a single image, but a series of images.
The process (2) constructs a certain set of meshes M = {M(0),M(1), . . . ,M(n)}. In prac-
tice, it is typical that all elements of M may be required, so that the application could
choose the most appropriate approximation for a each image.

However the set M is too big to be effectively stored as an array of separate meshes.
Hoppe [Hop96] proposed to store only the initial mesh M(0) and the respective sequence
of operators with parameters (which is rather inexpensive to store). Assume that a variable
µ holds a mesh approximation M(i) ∈M. If an application want to use a coarser approxi-
mation, it applies the transformation O(Pi+1)µ , where the operator O and its parameters
Pi+1 are taken from the precalculated sequence. Otherwise, if an application wants to use
a finer mesh approximation, it applies the transformation O−1(Pi)µ , where O−1 is the
inverse of the respective operator O , e.g. the inverse of edge collapse operator is vertex
split operator. The required mesh approximation is obtained by progressively applying the
precalculated sequence of transformations, so this method is named progressive meshes.
However, this method may demonstrate several drawbacks explained below.

Some applications create images that contain several objects of the same type, e.g.
an image of a snowfall contains a big number of identical snowflakes. Such objects,
which are called instances, represent the same type of an object, so it is logical to use
the same mesh for each instance. Each instance has a given orientation and position
in space, so the mesh vertices need to be transformed by a corresponding linear operator.
Normally, each instance should use its own optimal mesh approximation, so each instance
needs a separate memory buffer to hold its own approximation (which is actually being
transformed). As the number of instances grows, the total required amount of memory
may become prohibitive.

Another drawback of the progressive meshes is as follows. The process of image
synthesis involves a certain processing performed per mesh vertex. Let V be a set of mesh
vertices. The basic processing is

ṽi = Avi, i = 1,2, . . . , |V |,
where A is the transformation matrix. Storing the vertices ṽ1, ṽ2, . . . , ṽ|V | would require
a memory buffer of the size |V |. One can avoid the additional memory expenditures

13

simply by not storing the processed vertices at all. Let T be a list (ordered set) of mesh
triangles. A graphical processor sequentially takes triangles from T , one-by-one. For each
triangle, the processor first transforms the triangles vertices, and then creates an image of
this triangle. After that the transformed vertices are simply discarded, and the processor
continues to the next triangle from the list T . The obvious disadvantage of this approach
is increased computational expenditures since each vertex, which is incident to several
triangles, will be processed multiple times.

In order to reduce the amount of computations the graphical processor keeps a small
number of recently processed vertices (typically, 16 vertices) in a memory buffer called
vertex cache (see [Hop99b]). If two subsequent triangles from the list T share a vertex,
the processor uses an already transformed vertex from the vertex cache when processing
the second triangle. High efficiency of such a caching strategy demands a specific or-
der of triangles in T . On the other hand, maintaining this order in progressive meshes
is a complicated task because triangles are removed or added as mesh level-of-detail
changes. Many authors discuss integration of vertex cache into progressive meshes (see
e.g. [ESAV99, Ste01, BG01, For01, SP03]). In order to obtain a feasible triangles order,
the approaches require an additional amount of processing.

1.1.4 Sliding window progressive meshes

Now we proceed to the description of our work. The scheme named sliding window
progressive meshes (SWPM) was developed by Forsyth [For01] to solve the instancing
problem of progressive meshes. However, the original algorithm has introduced several
problems itself. The main drawback was relatively poor utilization of the vertex cache.
Another problem was relatively high memory consumption; although the scheme offered
instancing without additional memory expenditures, the memory requirements for storing
a single (non-instanced) progressive mesh were high. In our work we propose several
improvements to SWPM that address both disadvantages.

The general idea of SPWM is as follows. The mesh operators H , R, E affect only
a small number of topologically connected mesh triangles. A patch is a set of triangles
that contains the triangles modified by an operator. Formally, we define a patch for the
operators H and R as follows. Let M = (V ,T) be a given mesh. Let S(vi) be the set of
the triangles incident to the vertex vi, i.e. S(vi) = {4`|4` 3 vi,4` ∈ T}. We call a subset
P(vi) a patch if S(vi) ⊆ P(vi) ⊆ T ; here vi is the inner vertex.

Let P = {P1,P2, . . . ,Pn} be a list (ordered set) of patches, such that all patches are
pairwise disjoint. Additionally,

P1∪P2∪·· ·∪Pn = T , (4)

so all triangles of the original triangulation T are included into the patches. For simplicity
we assume that each patch is a list of triangles, i.e. the order of the triangles in a patch
is defined in some manner. We define a list of simplified patches Q = {Q1,Q2, . . . ,Qn}.
Each simplified patch Qi ∈ Q is obtained by applying a simplification operator to the
corresponding patch Pi ∈ P, i.e. R(v j) : Pi(v j) 7−→ Qi, or H (v j,vk) : Pi(v j) 7−→ Qi,
where vk ∈ Pi(v j). We stress that a simplification operator removes the inner vertex only.
Thus, we can replace each Pi with Qi while maintaining conformity (i.e. no cracks or

14

T-joints) of the mesh.
We construct a memory buffer, where we put the elements of P followed by the

elements of Q. Now can obtain the required mesh approximation simply by choosing
the appropriate window in this buffer. This is illustrated in Fig. 2. The original mesh
M0 ≡M(0) is obtained using the window P1 · · ·Pn, the approximation M(1) is the window
P2 · · ·Q1, the approximation M(2) is the window P3 · · ·Q2, etc.

1P 2P 3P nP… 1Q 2Q 3Q nQ…
(0)T

(1)T
(2)T

FIGURE 2 Sliding window progressive mesh

1.1.5 Memory-efficient SWPM

First we derive the bounds for the size of SWPM memory buffer, which is shown in Fig. 2.
We denote the buffer as B0. One can interpret B0 as

B0 = P1∪P2∪·· ·∪Pn∪Q1∪Q2∪·· ·∪Qn.

The first part of the buffer, which contains the non-simplified patches from the list P,
forms triangles T (0) of the initial mesh M(0) = (V (0),T (0))

T (0) = P1∪P2∪·· ·∪Pn.

The last part of the buffer, which contains the simplified patches from the list P, forms
the triangles of the approximation M(n) = (V (n),T (n)) obtained at the last iteration of the
process (2)

T (n) = Q1∪Q2∪·· ·∪Qn.

Then, the number of triangles in the buffer B0 is a sum of the number of triangles in T (0)

and the number of triangles in T (n)

|B0|= |T (0)|+ |T (n)|.

In what follows we assume that the meshes are 2-manifolds without holes. The operator
H (or R) remove exactly two triangles from a patch, thus

|T (n)|=
n

∑
i=1
|Qi|=

n

∑
i=1

(|Pi|−2) = |T (0)|−2n, (5)

where n is the number of patches. Thus, one has to maximize n in order to minimize
|B0|. It follows from the definition of a patch that maximization of n is the maximum
independent set problem solved on a mesh connectivity graph; the set of inner vertices is
a maximum independent set. This is a classical NP-hard problem. There exist polynomial-
time algorithms for finding its approximate solution with a good accuracy. One greedy

15

algorithm for planar graphs is described by Shoeyink and van Kreveld [SvK97]. The
algorithm’s lower bound for the size of independent set is n > |V0|/6. It follows from the
Euler’s relation that

n >
|V (0)|

6
>
|T (0)|

12
(6)

On the other hand, we note that each patch contains at least three triangles, so

n 6 |T0|
3

. (7)

Combining (5)–(7), we obtain the bounds

1
3
|T (0)|6 |T (n)|< 5

6
|T (0)|. (8)

Thus, the number of triangles in the mesh M(n) is bounded. However, some applications
may need the approximations, which contains less triangles than the value of lower bound.
Therefore, one has to simplify M(n) further. Using M(n) as an initial mesh, we construct
another SWPM buffer. We denote this buffer B1. Again, the simplest triangulation within
the buffer B1 may not be sufficient for the application. Thus, one has to continue con-
structing SWPM buffers B2,B3, . . . ,Bz until the required mesh complexity is achieved.
Our main interest is estimating the parameter

β :=
z

∑
i=0
|Bi|,

which determines the amount of memory required for storing these buffers. The approx-
imation M(n) serves as an initial mesh when we construct the buffer B1. Let M(m) =
(V (m),T (m)) be the simplest approximation of the buffer B1. Following the same reason-
ing, which is used to obtain (8), we have

1
3
|T (n)|6 |T (m)|< 5

6
|T (n)|.

In order to obtain the upper bound for |T (m)|, for |T (n)| we take the upper bound provided
by (8). Then

|T (m)|< 5
6
|T (n)|<

(
5
6

)2

|T (0)|,
so

|B1|= |T (n)|+ |T (m)|< 5
6
|T (0)|+

(
5
6

)2

|T (0)|.

Generally,

|Bi|<
(

5
6

)i

|T (0)|+
(

5
6

)i+1

|T (0)|.

By summing up the inequalities for every |Bi|, we obtain the upper bound for β

β < |T (0)|+ 2
(

5
6

)
|T (0)|+ · · ·+ 2

(
5
6

)z−1

|T (0)|+
(

5
6

)z

|T (0)|.

16

We can interpret the right hand side as a converging geometric series. This is justified
since in practice z is relatively big. Thus, we conclude that

β < 11|T (0)|.

It is possible to derive the lower bound for β using a similar reasoning. Finally, we arrive
at the following inequalities

2|T (0)|6 β < 11|T (0)|. (9)

It is natural to express β as a size of initial mesh triangulation multiplied by a coefficient

β = |T (0)|λ ,

where λ ∈ [2,11) according to (9). We derive the bounds for the coefficient λ under rela-
tively general assumptions about the input mesh. However, memory-limited applications
require more precise estimation of λ for specific meshes. Thus, we have to derive an
estimate for λ that exploits properties of a particular mesh.

Degree of a mesh vertex is the number of triangles incident to this vertex. Let d be
a mean degree of the mesh vertices of maximum independent set. The value of d depends
mainly on the structure of triangulation. In what follows we assume that

1. the choice of simplification operators and their parameters preserves the structure
of initial triangulation, so d is approximately the same for any approximation M(i)

in (2);

2. the size of a patch is approximately equal to the degree of its inner vertex, thus d is
a mean patch size.

Under these assumptions, the number of patches is a ratio of total number of triangles to
d. Applying this relation to (5), it is easy to show that

|T (n)|= |T (0)|(1−2/d),

|B0|= |T (0)|+ |T (n)|= |T (0)|(2−2/d),

|Bi|= |T (0)|(2−2/d)(1−2/d)i.

Again, β is expressed as a converging geometric series

β = |T (0)|(d−1).

Thus, the size of resulting dataset is proportional to d, which is a mesh-dependent para-
meter. In some cases one may alter the structure of initial mesh triangulation in order to
minimize d. We investigate one possible re-meshing strategy in [Tur07]. Additionally, in
[Tur07] we discuss optimization at the level of data structures.

17

1.1.6 SWPM and vertex caching

The main drawback of the original algorithm described in [For01] was a poor usage of
the vertex cache. Forsyth represents each patch as a star of its inner vertex, i.e. P≡ S. Let
R be a set of the triangles, which are not included into such set of patches

R := T \
⋃

vi∈U

S(vi),

where T is the set of all triangles, and U is a set of inner vertices. The set R is usually
not empty. In order to satisfy the condition (4), Forsyth constructs the set of patches as
follows: P1 := R∪ S(v1), Pi := S(vi), where i = 2 . . . |U |. As a result, the patch P1 usu-
ally includes a large number of topologically disconnected triangles. This makes vertex
caching inefficient.

We use a different strategy to build the patches. First, we initialize the list of
patches; initially, each patch is a star of its inner vertex. Then, for each triangle of4i ∈ R,
we select the patch Pj ∈ P that share the maximum number of vertices with 4i; then we
add 4i to Pj. Resulting patches mainly consist of topologically connected triangles.

Forsyth defines the order of the patches in the list P according to the error caused by
the simplification of a patch (the patches simplified with the smallest error are at placed at
the beginning of the list). However, such strategy is hardly practical. In our work [KT04b]
we define the order of patches in P in such a manner that maximizes efficiency of the
vertex caching. Formally, the problem of defining such an order may be cast out as a
minimum linear arrangement problem (MLA) on a hypergraph (V ,E). A vertex vi ∈ V
identifies a patch Pi ∈ P, and a hyperedge e j = (va,vb, . . . ,vc) ∈ E connects the patches
that share a vertex. Let ϕ be a mapping ϕ : V →{1,2, . . . , |V |}. The length of a hyperedge
is defined as

|e j|ϕ = max(ϕ(va),ϕ(vb), . . . ,ϕ(vc))−min(ϕ(va),ϕ(vb), . . . ,ϕ(vc)).

We look for a mapping ϕp that solves the following problem

∑
ei∈E

|ei|ϕp = min
ϕ j

∑
ei∈E

|ei|ϕ j .

The mapping ϕp determines the position of each patch in the list P.
Typically, MLA is used to obtain cache oblivious order of patches, which means

the order of patches is determined under quite general assumptions about the underlying
hardware. It is a matter of common knowledge (see e.g. [BG01, YL06]) that the al-
gorithms, which take into account specific cache parameters (e.g. cache size), are often
more efficient. We discuss one such heuristics-based algorithm in [KT04b]. The use of
the latter algorithm improves vertex cache utilization nearly by a factor of two (comparing
to the original algorithm [For01]).

1.2 Mesh generation in adaptive numerical methods

Efficient mesh generation procedures are of high demand in modern applications that use
computer simulation of various applied problems. At present, it is a matter of common

18

knowledge that successful approximations of stationary and evolutionary problems should
be based not on a single computation performed on a certain a priori given mesh, but on
a sequence of consequently refined meshes adapted to specific features of a particular
solution.

It is clear that the efficient creation of a finer mesh Mh (h is a discretization step)
with help of an approximate solution computed on a coarser mesh MH (such that H > h)
requires an error indicator able to show where the errors are high and where they are
relatively small.

The main purpose of non-qualified estimates is to prove that the difference between
an exact solution u and an approximation uh found in a finite-dimensional subspace Vh
tends to zero as h → 0 (see e.g. [Cia78, SF73]). Derivation of these estimates was an
important step in the numerical analysis of a problem since it showed that the used ap-
proximation method is theoretically correct.

The estimates of another type are derived in the framework of the a priori error
estimation approach show the convergence rate. They have the general form

‖u−uh‖6 Chk, (10)

where C is a positive constant independent of h. Certainly, the constant C depends on the
solution u and structure of the approximations used. Estimates of the type (10) are often
called qualified asymptotic estimates. They show rates of convergence for the whole
set of approximate solutions computed with help of approximations of a particular type.
Unfortunately, such estimates are unable to reliably evaluate the error bound for a concrete
approximate solution. Moreover, a priori error estimates are applicable only to Galerkin
approximations and require extra regularity of the exact solutions. In many practically
important cases, such as for the problems in geometrically non-trivial domains with non-
smooth boundaries, it is impossible to guarantee such an extra regularity.

These reasons have led to the development of a posteriori error estimates that could
explicitly characterize the accuracy of approximate solutions. Nowadays, a posteriori
error estimates are an important part the modern numerical analysis.

1.2.1 Error estimates in terms of linear functionals

Typically, global error estimates provide a general idea about the quality of an approxi-
mate solution, and a stopping criteria for adaptive methods. However, from the viewpoint
of engineering purposes, this is often insufficient. In many cases, analysts are highly
interested in the errors over certain subdomains, lines, or at special points. One way to es-
timate such errors is to introduce a linear functional l, which is associated with a quantity
of interest. The error is estimated as the linear functional 〈l,u− ũ〉, where u is the exact
solution and ũ is the approximate one. A linear functional associated with a subdomain
ω is defined as

〈l,u− ũ〉=
∫

Ω
`ω(u− ũ)dx, (11)

where a function ` is often chosen as

`ω(x) =
{

1, if x ∈ ω
0, otherwise.

19

Many methods of a posteriori error control in terms of goal-oriented quantities (see
e.g. [AO00, BR96, OP01]) find estimates of 〈l,u− uh〉, where uh is a Galerkin approx-
imation of the problem considered, by employing an additional adjoint problem, whose
right-hand side is formed by the functional l. Having the Galerkin approximation of the
adjoint problem computed on the same mesh as the used for uh, one can express the
functional 〈l,u− uh〉 via a certain integral functional that can be estimated by using, for
example, equilibrated residual method (see e.g. [AO00, OP01]).

1.2.2 Error estimation by gradient averaging

In this section we describe the main idea of the method proposed in the paper [KNR03].
Let Ω be a bounded and connected domain Ω⊂R2 with a Lipschitz continuous boundary
∂ Ω. Consider the following problem

∇·A∇u f + f = 0 in Ω, ,

u f = 0 on ∂ Ω,

where A is a positive definite real matrix, and f ∈ L2(Ω) is a given function. The respec-
tive generalized solution u f satisfies the integral identity

∫

Ω

(A∇u f ·∇w− f w)dx = 0 ∀w ∈V0 ≡ H1
0 (Ω),

Let u f h ∈Vh be an approximate solution in the finite element space Vh ⊂V0 defined on the
simplicial mesh Mh = (Vh,Th). We need to estimate the quantity 〈l,u f −u f h〉, where the
functional l is in the space V ?

0 topologically dual to V0. Define u` by the relation
∫

Ω

A?∇u` ·∇wdx = 〈l,w〉 ∀w ∈V0,

where A? is the matrix adjoint to A. Then,

〈l,u f −u f h〉=
∫

Ω

A?∇u` ·∇(u f −u f h)dx =

=
∫

Ω

(f ·u`−A∇u f h ·∇u`)dx = E(u`,u f h). (12)

Thus, 〈l,u f −u f h〉 can be easily estimated provided that u` is defined. Certainly, in prac-
tice u` is replaced with an approximation u`τ ∈ Vτ in the finite element space Vτ defined
on adjoint mesh Mτ = (Vτ ,Tτ), which is may not coincide with Mh. If u`τ is a sharp ap-
proximation of u`, then the quantity E(u`τ ,u f h) could be a good indicator of the error. To
obtain a sharper estimator, we rewrite (12) in the form

〈l,u f −u f h〉= E(u`,u f h) = E0(u f h,u`τ)+ E1(u f ,u f h,u`,u`τ), (13)

where
E0(u f h,u`τ) :=

∫

Ω

(f u`τ −A∇u f h ·∇u`τ)dx

20

is a directly computable functional, and

E1(u f ,u f h,u`,u`τ) :=
∫

Ω

A(∇u f −∇u f h) · (∇u`−∇u`τ)dx.

In [KNR03, NR04], it was suggested to replace unknown functions ∇u f and ∇u` with the
post-processed gradients Gh∇u f h and Gτ∇u`τ , where

Gh :
(
L2(Ω)

)2 → (Vh)
2 and Gτ :

(
L2(Ω)

)2 → (Vτ)2

are the averaging operators that map gradients to the respective finite element spaces. It is
proved that under the standard assumptions that guarantee superconvergence of the primal
and adjoint approximations such a replacement leads to a higher order error. Thus, we use
the computable quantity

Ẽ1(u f h,u`τ) :=
∫

Ω

A(Gh∇u f h−∇u f h) · (Gτ∇u`τ −∇u`τ)dx

instead of E1. It can be proved (see the above cited papers) that under the standard as-
sumptions on the regularity of u f and u` and the respective meshes Mh and T` that guar-
antee superconvergence in both primal and adjoint problems the replacement of the exact
estimator (13) with the approximate estimator

Ẽ(u f h,u`τ) = E0(u f h,u`τ)+ Ẽ1(u f h,u`τ) (14)

leads the error that is of higher order with respect to the error we measure.
It is important to outline that the efficiency of the discussed estimator depends on

the mesh used to solve the adjoint problem. The use of the same mesh for both primal
and adjoint problems is not efficient. The number of degrees of freedom in the adjoint
problem should be minimal in order to minimize the cost of solving the adjoint problem
and, thus, the overall cost of the error estimation. If the functional l is a locally supported
integral functional, such as (11), then the adjoint solution may have complicated behavior
only in the support area. Thus, it is worth putting more degrees of freedom in the support
area, whereas other mesh regions may be coarser.

Moreover, the use of identical Mh and Mτ meshes implies worse accuracy of the
error estimation. The term E0 in (14) vanishes on coinciding meshes (due to Galerkin
orthogonality condition), so the error is expressed solely via the approximated term Ẽ1.

Thus, a success in the error estimation method discussed essentially depends on the
structure of the primal and adjoint meshes. In principle, the requirements we state for an
optimal (or quasi-optimal) mesh are the same as in computer graphics: a mesh must be
valid for representation (of a solution in scientific computing, or of a shape in graphics)
with sufficient accuracy and must contain minimal number of nodes. The major difference
is that the goal functional, which is used to evaluate mesh feasibility, is unknown for com-
putational meshes since, in principle, this functional includes a priori unknown solution
of the corresponding adjoint problem. Therefore, one has to construct a quasi-optimal
mesh in the process of step-by-step clarification of this solution.

It was verified (see [KNR03, KT04a, NRT07]) that the estimator (14) provides a
good indication of the goal-oriented error provided that the above formulated conditions

21

for the adjoint mesh are indeed satisfied. However, these conditions also raise concerns
about the regularity (quasi-uniformity) of the mesh used in the adjoint problem. Typi-
cally, the solutions of the primal problem are obtained using regular (or almost regular)
meshes where gradient averaging methods work stably and accurately. However, attempts
to construct an adapted mesh for the adjoint problem may be problematic since relatively
coarse meshes are usually strongly irregular. In the latter case it is impossible to guar-
antee superconvergence in the adjoint problem and, therefore, justify the error estimation
approach in use.

1.2.3 New modus operandi

In our work we have developed a new modus operandi that relieves the constrains on the
structure of adjoint mesh. We present the exact estimator (13) in a different form and, as
a result, suggest another way of its practical computation. This method is explained in
details in ([NRT07]). We explain the main idea of it below. We denote

σ` := A?∇u` and σ`τ := A?∇u`τ .

Then

E1(u f ,u f h,u`,u`τ) := ∑
4i∈Tτ

∫

4i

(∇u f −∇u f h) · (σ`−σ`τ)dx =

= ∑
4i∈Tτ




∫

4i

(u f h−u f)(`+ ∇·σ`τ)dx +
∫

∂4i

(u f −u f h)(σ`−σ`τ) ·νds


 ,

where ν is a unit outward normal. It is easy to show that

∑
4i∈Tτ

∫

∂4i

(u f −u f h)(σ`−σ`τ) ·νds = ∑
e j∈Eτ

∫

e j

(u f h−u f)[σ`τ ·νe j]e jds, (15)

where Eτ is the set of all edges in the adjoint mesh, νe is a unit outward normal to the
edge e, and [·]e is the jump of a quantity across the edge e

[g]e := ∑
4i3e

g|4i .

Hence, we observe that

E1(u f ,u f h,u`,u`τ) = E2(u f ,u f h,u`τ)+ E3(u f ,u f h,u`τ),

where
E2(u f ,u f h,u`τ) := ∑

4i∈Tτ

∫

4i

(u f −u f h)r(σ`τ)dx,

E3(u f ,u f h,u`τ) := ∑
e j∈Eτ

∫

e j

(u f h−u f)[σ`τ ·νe j]e jds,

and r(σ`τ) := `+ ∇·σ`τ is the residual of the equation related to the adjoint problem.

22

We stress that in this form the exact solution of the adjoint problem is completely
excluded from the goal-oriented error estimator. Thus, in order to justify the estimator,
we do not need to attract gradient superconvergence of the adjoint problem.

We still use superconvergence in order to replace the unknown solution of the primal
problem with explicitly computable quantity. Here we apply a post-processing method to
the solution u f h itself (not to the solution gradient A∇u f h). At this point we refer to
the work of Wang [Wan00] who investigated such type of post-processing methods. The
main result of [Wan00] is described below. Let Vµ be a finite element space consisting
of piecewise polynomials of degree r > 0 over the mesh Tµ defined on Ω0 ⊆ Ω with
mesh-size µ . Denote the L2 projection operator Sµ : L2(Ω0)→Vµ . It can be proved that

‖u f −Sµu f h‖0,Ω0 6 C hβ (h,µ ,r,k)
(∥∥u f

∥∥
r+1,Ω0

+
∥∥u f

∥∥
k+1,Ω

)
, (16)

where the exact solution u f ∈Hk+1(Ω)∩Hr+1(Ω0)∩V0 is Hs-regular with 1 6 s 6 k+1.
The rate is β > 2 when u f is regular enough, and Vµ is selected appropriately.

By the trace theorem, we can prove that the post-processed trace constructed by
averaging of the traces of Sµu f h on both sides of the inter-element boundary is also
superconvergent provided that the meshes for the primal problem do not degenerate (in
the sense of elements aspect ratio) in the process of mesh refinement.

Now, we replace E2 and E3 with approximations Ẽ2 and Ẽ3, respectively, where

Ẽ2(u f h,u`τ) := ∑
4i∈Tτ

∫

4i

(u f h−Sτu f h)r(σ`τ)dx,

Ẽ3(u f h,u`τ) := ∑
e j∈Eτ

∫

e j

(Sτu f h−u f h)[σ`τ ·νe j]e jds.

Thus, we obtain a computable estimator

Ê(u f h,u`τ) = E0(u f h,u`τ)+ Ẽ2(u f h,u`τ)+ Ẽ3(u f h,u`τ). (17)

Unlike the estimator (14), the estimator (17) neither exploits superconvergence in
the adjoint problem, nor needs superconvergence of the fluxes in the primal problem. The
only required post-processing procedure is related to the smoothing of the approximate
solution u f h, which is computed on a sufficiently regular mesh Mh. In the present research,
we performed numerical experiments that have confirmed the efficiency of the estimator
(17) and in many cases demonstrated its advantage with respect to the estimator (14).
These results are shown in the paper [NRT07].

Moreover, it was discovered that the quality of the error estimation can be sig-
nificantly improved if we apply a certain post-processing procedure to the function u`τ .
The operator Cτ constructs a C1-interpolant of the finite element solution u`τ , then we use
σC

`τ := A?∇Cτu`τ instead of σ`τ . We construct the interpolant using Hsieh-Clough-Tocher
triangles, which require (per triangle) the nodal values, the nodal derivatives, and the nor-
mal derivatives at the midpoints. For nodal values we take the nodal values of the finite
element solution. It is known that nodal values possess certain superconvergent properties
(see e.g. [BS01]). We choose remaining derivative-related degrees of freedom in such a

23

manner that the norm of residual ‖r(σC
`τ)‖Ω is minimized. The aim of the procedure de-

scribed is two-fold. First, we construct a smooth function Cτu`τ , so [σC
`τ ·νe]e = 0 on all

the edges, and the term Ẽ3 of the estimator vanishes. Second, minimization of the residual
should improve the quality of the estimator since the error in estimator, which arises due
to the replacement of u f by Sµu f h on each element, is equal to

∫

4i

(u f −Sµu f h)r(σ`τ)dx.

Thus, the third form of the goal oriented error estimator is

Ê(u f h,u`τ) = E0(u f h,Cτu`τ)+ Ẽ2(u f h,Cτu`τ). (18)

The results of numerical experiments in [NRT07] confirm high efficiency of the estimator
(18).

We have described the idea of a new goal-oriented error estimation method for a
case of the diffusion equation. However, it is equally applicable to other linear elliptic
problems. For instance, in [NRT07] we apply the estimators Ẽ and Ê for the linear elas-
ticity problem in the forms. In the latter case σ is the stress field, A is the tensor of elastic
coefficients and u is the displacement vector.

1.3 Conclusions

Our work makes several contributions in computer graphics and adaptive numerical meth-
ods.

We have addressed two major problems of the sliding window progressive meshes
described in Sec. 1.1.4–1.1.6. Namely, we have significantly improved vertex cache usage
in [KT04b], and reduced the size of the resulting datasets [Tur07].

We have tested the estimator (14) for the cases of three-dimensional Poisson equa-
tion [KT04a] and Lamé equation [NRT07]. New versions (17) and (18) of the estima-
tor were proposed and tested in [NRT07]. The methods developed in the framework of
the thesis can be used in various applications that provide reliable modelling of real life
objects with help of a posteriori error estimates and mesh adaptive procedures, such as
[INKT03, AHS∗04].

REFERENCES

[AHS∗04] ARKHIPOV B., HUTTULA T., SOLBALKOV V., LINDFORS A., SEPPÄNEN

J., KANGAS A., KOROTOV S., SALONEN K.: Experimental and numerical
investigation of circulation and thermal structure in lake jyväsjärvi: Short-
term variability. In Proceedings of ECCOMAS’04 (2004), Neittaanmäki P.,
Rossi T., Korotov S., Onate E., Periaux J.„ Knörzer D., (Eds.).

[AO00] AINSWORTH M., ODEN J. T.: A posteriori error estimation in finite element
analysis. Wiley and Sons, 2000.

[BDE96] BAREQUET G., DICKERSON M., EPPSTEIN D.: On triangulating three-
dimensional polygons. In SCG ’96: Proceedings of the twelfth annual sym-
posium on Computational geometry (1996), ACM Press, pp. 38–47.

[BG01] BOGOMJAKOV A., GOTSMAN C.: Universal rendering sequences for trans-
parent vertex caching of progressive meshes. In Proceedings of Graphics
Interface 2001 (2001), Watson B., Buchanan J. W., (Eds.), pp. 81–90.

[BR96] BECKER R., RANNACHER R.: A feed–back approach to error control in finite
element methods: Basic approach and examples. East–West J. Numer. Math.
4 (1996), 237–264.

[BS96] BAJAJ C., SCHIKORE D.: Error-bounded reduction of triangle meshes with
multivariate data. In Proc. SPIE (1996), Grinstein G., Erbacher R., (Eds.),
vol. 2656, pp. 34–45.

[BS01] BABUŠKA I., STROUBOULIS T.: The finite element method and its reliability.
The Clarendon Press, Oxford University Press, 2001.

[Cia78] CIARLET P. G.: The finite element method for elliptic problems. North Hol-
land, New York, Oxford, 1978.

[CRS98] CIGNONI P., ROCCHINI C., SCOPIGNO R.: Metro: Measuring error on sim-
plified surfaces. Computer Graphics Forum 17, 2 (1998), 167–174.

[ESAV99] EL-SANA J., AZANLI E., VARSHNEY A.: Skip strips: maintaining triangle
strips for view-dependent rendering. In Proceedings of the conference on
Visualization ’99 (1999), IEEE Computer Society Press, pp. 131–138.

[For01] FORSYTH T.: Comparison of vipm methods. In Game Programming Gems 2
(2001), DeLoura M., (Ed.), Charles River Media, pp. 363–376.

[GH98] GARLAND M., HECKBERT P. S.: Simplifying surfaces with color and texture
using quadric error metrics. In IEEE Visualization ’98 (1998), Ebert D., Hagen
H.„ Rushmeier H., (Eds.), pp. 263–270.

[Hop96] HOPPE H.: Progressive meshes. Computer Graphics 30, Annual Conference
Series (1996), 99–108.

25

[Hop99a] HOPPE H.: New quadric metric for simplifiying meshes with appearance at-
tributes. In Proceedings of the conference on Visualization ’99 (San Francisco,
California, 1999), pp. 59–66.

[Hop99b] HOPPE H.: Optimization of mesh locality for transparent vertex caching. In
Siggraph 1999, Computer Graphics Proceedings (Los Angeles, 1999), Rock-
wood A., (Ed.), Addison Wesley Longman, pp. 269–276.

[INKT03] IVANENKO S. A., NEITTAANMÄKI P., KOROTOV S., TURCHYN P.: Shallow
water model of the lake jyväsjärvi. University of Jyväskylä, Preprint B3/2003
(2003).

[KNR03] KOROTOV S., NEITTAANMAKI P., REPIN S.: A posteriori error estimation
of goal-oriented quantities by the superconvergent patch recovery. J. Numer.
Math 11 (2003), 33–59.

[KT04a] KOROTOV S., TURCHYN P.: A posteriori error estimation of quantities of
interest on tetrahedral meshes. In Proceedings of ECCOMAS’04 (2004), Neit-
taanmäki P., Rossi T., Korotov S., Onate E., Periaux J.„ Knörzer D., (Eds.).

[KT04b] KOROTOV S., TURCHYN P.: Topology-driven progressive mesh construc-
tion for hardware-accelerated rendering. Computer Graphics and Geometry
(Internet) 6, 3 (2004), 100–119.

[LH00] LINDSTROM P., HECKBERT G.: Image-driven simplification. ACM Transa-
tions on Graphics 19, 3 (2000), 204–241.

[LRC∗02] LUEBKE D., REDDY M., COHEN J., VARSHNEY A., WATSON B., HUEB-
NER R.: Level of Detail for 3D Graphics. Computer Graphics and Geometric
Modeling. Morgan Kaufmann, 2002.

[LT99] LINDSTROM P., TURK G.: Evaluation of memoryless simplification. IEEE
Transactions on Visualization and Computer Graphics 5, 2 (1999), 98–115.

[NR04] NEITTAANMÄKI P., REPIN S.: Reliable methods for computer simulation.
Error control and a posteriori estimates. Elsevier, New York, London, 2004.

[NRT07] NEITTAANMÄKI P., REPIN S., TURCHYN P.: A posteriori error estimation
in terms of linear functionals for the linear elasticity problems. Russian J.
Numer. Anal. Math. Modelling (submitted) (2007).

[OP01] ODEN J. T., PRUDHOMME S.: Goal-oriented error estimation and adaptivity
for the finite element method. Comput. Math. Appl. 41 (2001), 735–756.

[SF73] STRANG G., FIX G.: An analysis of the finite element method. Prentice Hall,
Englewood Cliffs, 1973.

[SP03] SHAFAE M., PAJAROLA R.: Dstrips: Dynamic triangle strips for real-time
mesh simplification and rendering. In Proceedings Pacific Graphics Confer-
ence (2003).

26

[Ste01] STEWART A. J.: Tunneling for triangle strips in continuous level-of-detail
meshes. In Proceedings of Graphics Interface (2001), Watson B., Buchanan
J. W., (Eds.), pp. 91–100.

[SvK97] SNOEYINK J., VAN KREVELD M. J.: Linear-time reconstruction of delaunay
triangulations with applications. In ESA ’97: Proceedings of the 5th Annual
European Symposium on Algorithms (London, UK, 1997), Springer-Verlag,
pp. 459–471.

[Tur07] TURCHYN P.: Memory-efficient sliding window progressive meshes. In Pro-
ceeding WSCG’07 (submitted) (2007).

[Wan00] WANG J.: A superconvergence analysis for finite element solutions by the
least-squares surface fitting on irregular meshes for smooth problems. J. Math.
Study 33, 3 (2000), 229–243.

[YL06] YOON S.-E., LINDSTROM P.: Mesh layouts for block-based caches. IEEE
Transactions on Visualization and Computer Graphics 12 (2006), 1213–1220.

YHTEENVETO (FINNISH SUMMARY)

Tässä väitöskirjassa esitetään parannuksia verkongenerointialgoritmeihin, joita hyödyn-
netään tietokonegrafiikassa ja elliptisten reuna-arvotehtävien ratkaisussa.

Väitöskirjan ensimmäinen osa käsittelee esineiden mallintamiseen käytettävien verk-
kojen luomista tietokonegrafiikassa. Työn erityinen kontribuutio liittyy ns. liukuvan ikku-
nan progressiiviseen verkkoalgoritmiin (engl. sliding window progressive meshes), jonka
suurimpien ongelmakohtien ratkaisemiseksi esitetään useita parannelmia. Ensimmäinen
ongelma on välimuistin tehokas käyttö (engl. cache-coherency) verkon kärkipisteiden
käsittelyssä. Tämä ratkaistann heuristiikkaan perustuvalla verkon kolmioiden uudelleen-
järjestämisellä. Toinen ongelma on tarvittavien datajoukkojen valtava koko. Väitöskir-
jassa osoitetaan, että datajoukkoja voidaan pienentää optimoimalla verkon konnektiivi-
suutta käyttämällä hierarkkisia tietorakenteita ja erityisiä operaattoreita, jotka poistavat
kerralla useita kärkipisteitä.

Väitöskirjan toinen osa keskittyy elementtimenetelmäratkaisuiden a posteriori vir-
hearviointiin. Verkon luonti liittyy tähän kahdella tapaa: Ensinnäkin estimaattorin an-
tama virhearvio antaa vihjeitä strategiasta verkon parantamiseen. Toisekseen estimaattori
tarvitsee ns. liitto-ongelman ratkaisemista eri verkolle kuin päätehtävässä käytetty. Liit-
toverkon vaatimusten lieventämiseksi väitöskirjassa kehitetään ja testataan uusi menetelmä,
joka hyväksyy anisotrooppiset liittoverkot eikä myöskään vaadi liitto-ongelman ratkaisulta
ylimääräistä säännöllisyyttä.

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	CONTENTS
	LIST OF INCLUDED ARTICLES
	1 INTRODUCTION
	1.1 Polygonal mesh simplification
	1.2 Mesh generation in adaptive numerical methods
	1.3 Conclusions
	REFERENCES
	YHTEENVETO (FINNISH SUMMARY)

	Text1: 951-39-2717-2 (PDF), 951-39-2722-9
	Text2:
	vaitos_tdk: Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
	vaitos_paikka: julkisesti tarkastettavaksi yliopiston Agora-rakennuksessa (Ag Aud. 3)
	vaitos_aika: joulukuun 28. päivänä 2006 kello 10.
	vaitos_tdk_en: Academic dissertation to be publicly discussed, by permission of
	vaitos_paikka_en: the Faculty of Information Technology of the University of Jyväskylä,
	vaitos_aika_en: in the building Agora, Ag Aud. 3, on December 28, 2006 at 10 a.m.
	vaitos_nimeke: Adaptive Meshes in
	vaitos_alanimeke1: k
	vaitos_nimeke2: Computer Graphics and
	vaitos_nimeke3: Model-based Simulation
	vaitos_alanimeke2: kk
	vaitos_alanimeke3: k
	vaitos_alanimeke4: kk
	vaitos_sarja: JYVÄSKYLÄ STUDIES IN COMPUTING 71
	vaitos_soihtu2: JYVÄSKYLÄ 2006
	vaitos_soihtu1a: UNIVERSITY OF
	vaitos_soihtu1b: JYVÄSKYLÄ
	vaitos_tekija: Pavlo Turchyn
	vaitos_verkkourn: URN:ISBN:9513927172
	vaitos_verkkoisbn: ISBN 951-39-2717-2 (PDF)
	vaitos_isbn: ISBN 951-39-2722-9 (nid.)
	vaitos_issn: ISSN 1456-5390
	vaitos_copyvv: 2006
	paino: Jyväskylä University Printing House, Jyväskylä
	vaitos_erkansi: and ER-Paino Ky, Lievestuore 2004
	vaitos_printvv: 2006
	vaitos_kuvaselite: kljkj
	vaitos_pagemakeupselite: kljlkj
	editorial_board:
	1: Jyväskylä Studies in Humanities
	2: Editorial Board
	4: Petri Karonen, Department of History and Ethnology, University of Jyväskylä
	3: Editor in Chief Heikki Hanka, Department of Art and Culture Studies, University of Jyväskylä
	5: Matti Rahkonen, Department of Languages, University of Jyväskylä
	6: Petri Toiviainen, Department of Music, University of Jyväskylä
	7: Minna-Riitta Luukka, Centre for Applied Language Studies, University of Jyväskylä
	8: Raimo Salokangas, Department of Communication, University of Jyväskylä

	vaitos_pdf_issn: ISSN 1459-4331
	e-box: Editors
Tommi Kärkkäinen
Department of Mathematical Information Technology, University of Jyväskylä
Irene Ylönen, Marja-Leena Tynkkynen
Publishing Unit, University Library of Jyväskylä
	editorial_board2:
	1: Jyväskylä Studies in Biological and Environmental Science
	2: Editorial Board
	4: Department of Biological and Environmental Science, University of Jyväskylä
	3: Jari Haimi, Timo Marjomäki, Varpu Marjomäki

