
���

� � � � � � � � � 	 �
 � �
 � � 	
 � 	 � � � � �

 � �

����������								��
��
�
�

��	�����������	��� !"��#	��$
�	�!�%�$����	�#!�!���
&��	�!�%�$	�����!!����

�	����!'�(��	�))����%

����	�
���
���

JYVÄSKYLÄ STUDIES IN COMPUTING 52

Mauri Leppänen

An Ontological Framework and
a Methodical Skeleton

for Method Engineering

A Contextual Approach

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Agora-rakennuksessa (Ag Aud. 3)

elokuun 22. päivänä 2005 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,

in the Building Agora, (Ag Aud. 3), on August 22, 2005 at 12 o’clock noon.

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2005

An Ontological Framework and
a Methodical Skeleton

for Method Engineering

A Contextual Approach

JYVÄSKYLÄ STUDIES IN COMPUTING 52

Mauri Leppänen

An Ontological Framework and
a Methodical Skeleton

for Method Engineering

A Contextual Approach

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2005

Editors
Seppo Puuronen
Department of Computer Science and Information Systems, University of Jyväskylä
Pekka Olsbo, Marja-Leena Tynkkynen
Publishing Unit, University Library of Jyväskylä

ISBN 951-39-2133-6 (nid.)
ISSN 1456-5390

Copyright © 2005, by University of Jyväskylä

Jyväskylä University Printing House, Jyväskylä

ABSTRACT

Leppänen, Mauri
An Ontological Framework and a Methodical Skeleton for Method Engineering
– A Contextual Approach
Jyväskylä: University of Jyväskylä, 2005, 702 p.
(Jyväskylä Studies in Computing
ISSN 1456-5390; 52)
ISBN 951-39-2186-7
Finnish summary
Diss.

Method engineering (ME) is commonly carried out in an intuitive and improvising
fashion. This is largely due to the lack of explicit methodical support. The literature
does suggest an array of ME strategies, ME approaches, ME techniques, and ME
procedures, but the assistance they provide is not satisfying. It can be argued that the
ME field has not advanced far from its “pre-methodical” stage. An ISD method is an
abstract and multifaceted notion, and there exist quite diverging views on its nature,
structure, content, and significance. For this reason, to construct a feasible methodical
support to method engineering, it is necessary to anchor it upon a theoretically sound
and uniform conceptual foundation. The objective of this thesis is to construct an
ontological framework for conceiving, understanding, structuring, and representing
the phenomena related to an ISD method and its engineering, and to construct a
methodical skeleton to support the ME process. The thesis crafts two design artifacts,
OntoFrame and MEMES. OntoFrame is an ontological framework, comprising a
number of component ontologies with a multi-dimensional structure. These
components range from highly generic ontologies to ME-specific ones. Resulting from
the application of a contextual approach in ontology engineering, the ontologies
highlight, in a multi-faceted manner, contextual features of reality. The framework was
derived from multiple theories and existing ME artifacts with deductive and inductive
principles, and it is represented in UML-based meta models. MEMES is a normative
prescription for ME, structuring and guiding the accomplishment of ME work. It
consists of three ME workflows: ISD method requirements engineering, ISD method
analysis, and ISD method evaluation. For each of the ME workflows, ME approaches,
principles, and steps are suggested in MEMES. Both of the artifacts are evaluated
extensively in a number of comparative analyses of existing artifacts. MEMES is also
evaluated with empirical methods. The results of the thesis can be utilized in future
research to analyze and compare existing artifacts and to construct new ones for the
use of ISD and ME. MEMES can be applied in practice to support the engineering of
generic and domain-specific ISD methods. The research follows the design theory
paradigm and applies conceptual and empirical research methods.

Keywords: information systems development method, method engineering,
metamodeling, ontology engineering, contextual approach, abstraction, design
theory

ACM Computing Review Categories

D.2.1 Software Engineering: Requirements/Specifications
 Languages, Methodologies, Tools
D.2.2 Software Engineering: Design Tools and Techniques
 Object-oriented design methods
D.2.10 Software Engineering: Design
 Methodologies, Representation
H.1.0 Models and Principles: General
H.1.2 Models and Principles: User/Machine Systems
 Human information processing
I.6.5 Simulation and Modeling: Model Development
 Modeling methodologies

Author’s address Mauri Leppänen
 University of Jyväskylä
 Department of Computer Science and
 Information Systems
 P.O. Box 35 (Agora)
 FIN-40014 Jyväskylä, Finland
 Email: mauri@cs.jyu.fi

Supervisor Professor Kalle Lyytinen
 Department of Information Systems
 The Weatherhead School of Management
 Case Western Reserve University
 Cleveland, USA

Reviewers Professor Juhani Iivari
 Department of Information Processing Science
 University of Oulu
 Oulu, Finland

 Professor John Krogstie
 The Norwegian University of Science and Technology
 (NTNU)
 Trondheim, Norway

Opponent Professor Richard Welke
 Georgia State University
 Atlanta, USA

ACKNOWLEDGEMENTS

The road to this doctoral dissertation has been exceptionally long, partly due to
the challenges caused by the broad scope of the thesis and partly due to my
other obligations. Nevertheless, now the thesis is ready, and it is time to thank
all of those who have made this possible.
 First of all I would like to thank my supervisor, Professor Kalle Lyytinen
for his encouragement, comments and constructive conversations. Not even the
vast Atlantic Ocean between us could hinder his advice reach me and help
finish the thesis.
 I would also like to record my gratitude to the external reviewers of the
thesis: Professor Juhani Iivari from University of Oulu and Professor John
Krogstie from The Norwegian University of Science and Technology (NTNU).
Their constructive comments and suggestions helped me improve my work.
 In addition, I would like to express my gratitude to Professor Eero Peltola,
who was the supervisor of my licentiate thesis. He was the one from whom I
learned how to make conceptual research in a strict and thorough fashion.
 Many of my colleagues have also contributed to my work. I participated in
many research projects with Professor Vesa Savolainen, and we coauthored
several articles. Tennis games with Vesa acted as a good counterbalance to
research work. With Esa Auramäki I investigated the essence of exceptions and
their modeling in information systems. In the last couple of years I have had
most interesting discussions, often about philosophical issues, with Veikko
Halttunen who has the same inquisitiveness into the fundamental subject
matters as I do. I want also to thank Steve Legrand for checking the language.
 This research was partly funded by COMAS Graduate School and the
INFWEST.IT program. I express my gratitude to people in these organizations.
 Finally, I would like to express my special thanks to my wife Leena for her
continuous understanding and support throughout the long research process.
Moreover, without her skills and patience I would have lost the battle with
Word. And as a notice to Reija and Olli, perhaps now I have time for those
other “projects”.

Jyväskylä
May 2005

Mauri Leppänen

FIGURES

FIGURE 1 Multi-layered structure of the research domain............................27
FIGURE 2 MEMES and OntoFrame ...30
FIGURE 3 Research framework ..37
FIGURE 4 Research process...39
FIGURE 5 Structure of the thesis ..50
FIGURE 6 An overall structure of the ontological framework.......................64
FIGURE 7 An overall structure of the core ontology.......................................88
FIGURE 8 Generic ontology ..90
FIGURE 9 The semiotic framework as the meaning triangle92
FIGURE 10 Semiotic ontology...92
FIGURE 11 Horizontal shift in the semiotic framework93
FIGURE 12 Intension/extension ontology ..96
FIGURE 13 Language ontology ..97
FIGURE 14 State transition ontology ...99
FIGURE 15 UoD ontology ...101
FIGURE 16 Meta model of the concepts and relationships of

classification..105
FIGURE 17 Meta model of the concepts and relationships of

classification in the case of generic and meta type concepts107
FIGURE 18 Meta model of the concepts and relationships of

generalization ...110
FIGURE 19 Meta model of the concepts and relationships of

composition...114
FIGURE 20 Special types of composition based on the degree of sharing ...115
FIGURE 21 Special types of composition based on the degree of

dependence or alternatively on the variety of parts115
FIGURE 22 Meta model of the concepts and relationships of grouping118
FIGURE 23 Special kinds of grouping ...119
FIGURE 24 A type-level example of applying four principles of the

first-order abstraction ..121
FIGURE 25 Integrated meta model of the key concepts and relationships

of classification, generalization, composition and grouping.....121
FIGURE 26 Meta model of the primary and secondary things123
FIGURE 27 Core ontology ...131
FIGURE 28 Meta model of the relevant part of the Frisco framework134
FIGURE 29 Meta model of the relevant part of the BWW model..................136
FIGURE 30 Focus of Chapter 4..145
FIGURE 31 Engeström’s activity model ..158
FIGURE 32 Contextual framework ..165
FIGURE 33 Three views on the “nucleus” of the context168
FIGURE 34 Meta model of the purpose domain ..170
FIGURE 35 Meta model of the actor domain..174
FIGURE 36 Meta model of the action domain ..177

FIGURE 37 The action act seen from the viewpoints of three generic
structures ...182

FIGURE 38 The process p1 of the action act seen on three levels of
action structures ...183

FIGURE 39 Meta model of the object domain ..185
FIGURE 40 Meta model of the facility domain...188
FIGURE 41 Meta model of the location domain...190
FIGURE 42 Meta model of the time domain...192
FIGURE 43 Overview of inter-domain relationships195
FIGURE 44 Focus of Chapter 5..205
FIGURE 45 Meta model of information processing related concepts
 and relationships ..207
FIGURE 46 Meta model of layer-related concepts and relationships219
FIGURE 47 Information processing as primary and development
 actions ..221
FIGURE 48 Interplay between IS actions, ISD actions, ME actions, and

RW actions...224
FIGURE 49 Actions and contexts at the processing layers225
FIGURE 50 US’s at four processing layers ..228
FIGURE 51 OS’s at four processing layers ..229
FIGURE 52 Focus of Chapter 6..232
FIGURE 53 Perspective ontology..233
FIGURE 54 Dimensions and perspectives...235
FIGURE 55 Perspective ontology in the overall settlement............................238
FIGURE 56 Meta model of the IS systelogical perspective (the tool

viewpoint) ...243
FIGURE 57 A rough meta model of the IS systelogical perspective

(the service viewpoint) ..244
FIGURE 58 Meta model of the IS infological perspective...............................245
FIGURE 59 Meta model of the IS conceptual perspective247
FIGURE 60 Meta model of the IS datalogical perspective249
FIGURE 61 Meta model of the IS physical perspective covering a part

of the CIS ...252
FIGURE 62 A general view of the relationships between the IS

perspectives...254
FIGURE 63 A detailed view of the relationships between the IS

perspectives...255
FIGURE 64 Focus of Chapter 7..278
FIGURE 65 Main types of models and modeling actions281
FIGURE 66 Classifications of the models within three contexts282
FIGURE 67 Concept levels...286
FIGURE 68 Main part of the model level ontology..288
FIGURE 69 Levels of models and languages ..289
FIGURE 70 Gategorizations of models and meta models based on the

contextual domains and the perspectives.....................................291

FIGURE 71 Essence of and relationships between the contextual
ontologies ..298

FIGURE 72 An integrated view of the contextual models at three
 processing layers and on three model levels299
FIGURE 73 Basis and structure of the ISD ontology..303
FIGURE 74 Overview of the structure of the ISD ontology............................314
FIGURE 75 Meta model of the ISD purpose domain.......................................315
FIGURE 76 Meta model of the ISD actor domain ..318
FIGURE 77 Meta model of the ISD action domain ..325
FIGURE 78 IS modeling actions in the vertical (perspective) and

horizontal (contextual domain) dimensions333
FIGURE 79 Meta model of the ISD object domain...336
FIGURE 80 Meta model of ISD inter-domain relationships338
FIGURE 81 Meta model of the ISD systelogical perspective341
FIGURE 82 Meta model of the ISD infological perspective............................342
FIGURE 83 Meta model of the IS data model from the ISD conceptual

perspective ..344
FIGURE 84 Meta model of the ISD datalogical perspective346
FIGURE 85 ISD inter-perspective relationships ...348
FIGURE 86 Basis and structure of the ISD method ontology.........................374
FIGURE 87 Framework for classifying ISD methods379
FIGURE 88 Relationships between the types of the ISD methods.................383
FIGURE 89 Methodical views ...386
FIGURE 90 An overall picture of the ISD method ontology388
FIGURE 91 ISD contextual models...392
FIGURE 92 ISD perspective models...393
FIGURE 93 IS contextual meta models ..394
FIGURE 94 Basis and contents of an ISD methodical skeleton397
FIGURE 95 Scopes of the artifacts supporting ISD ..398
FIGURE 96 Classification scheme for the components408
FIGURE 97 Simple interfaces of two method components.............................411
FIGURE 98 Contextual interface of the method component412
FIGURE 99 ISD models of the use case technique ...414
FIGURE 100 ISD models of the sequence diagramming technique416
FIGURE 101 Meta model of the goal model..417
FIGURE 102 Meta data model of the integrated method components420
FIGURE 103 Bases and structures of the ME ontology and

the ME method ontology ..431
FIGURE 104 Framework of the ME strategies and ME processes439
FIGURE 105 Relationships between the ME context and other contexts444
FIGURE 106 Meta model of the ME purpose domain.......................................447
FIGURE 107 Meta model of the ME actor domain...450
FIGURE 108 Meta model of the ME action domain...453
FIGURE 109 Meta model of the ME object domain ...457
FIGURE 110 Meta model of ME inter-domain relationships............................459

FIGURE 111 Meta model of the ME systelogical perspective461
FIGURE 112 Meta model of the ME infological perspective463
FIGURE 113 Processing layers and meta levels with some examples465
FIGURE 114 Meta models of the ME conceptual perspective concerning

(a) the ISD data model and (b) the IS meta data model..............467
FIGURE 115 Meta model of the ME datalogical perspective469
FIGURE 116 ME inter-perspective relationships..470
FIGURE 117 An overall structure of the ME method ontology473
FIGURE 118 Intention, basis and contents of MEMES481
FIGURE 119 Prior contexts related to MEMES...485
FIGURE 120 Mixed ME strategies ..488
FIGURE 121 ME workflows ..491
FIGURE 122 ME workflows and their main deliverables.................................492
FIGURE 123 ME workflows in the development, customization and

configuration contexts ...493
FIGURE 124 Tasks of the ISDM RE workflow..494
FIGURE 125 Meta model of a contingency framework.....................................495
FIGURE 126 Two approaches to the ISDM analysis..508
FIGURE 127 Models applicable to the infological ISD modeling511
FIGURE 128 Processes (a) in the ISD action-driven approach and (b) in

the ISD deliverable-driven approach ..511
FIGURE 129 IS ontology engineering approaches and IS perspectives..........515
FIGURE 130 (a) The functional approach and (b) the conceptual

approach ..520
FIGURE 131 Meta model of issues related to the evaluation of

an ISD method ..522
FIGURE 132 Iteration between the RW process and the reflection

process ...539
FIGURE 133 A detailed description of the cyclic ME process..........................541

TABLES

TABLE 1 Core ontology ...65
TABLE 2 Contextual ontologies..66
TABLE 3 Layer-based ontologies..67
TABLE 4 Method ontologies ...68
TABLE 5 Names, purposes, sub-domains and representation forms
 of the reviewed artifacts ..75
TABLE 6 Scopes and emphases of the reviewed artifacts compared

to the component ontologies of OntoFrame...................................79
TABLE 7 Other relevant literature..82
TABLE 8 Summary of the first-order abstraction...120
TABLE 9 Summary of the predicate abstraction ..124
TABLE 10 Summary of the objectives, ontological positions and

basic structures of the presentations ...129
TABLE 11 Concepts of the core ontology, the Frisco framework, and
 the BWW model ...139
TABLE 12 Steps in the semiotic ladder ..151
TABLE 13 Contextual concepts in the reviewed theories and

approaches ..162
TABLE 14 Intra-domain and inter-domain relationships199
TABLE 15 Contextual IS classifications ...212
TABLE 16 Summary of the comparative review..216
TABLE 17 Contexts at four processing layers characterized from

three viewpoints ...227
TABLE 18 Perspectives at four processing layers ..240
TABLE 19 Overview of the frameworks and their perspectives..................260
TABLE 20 Comparative analysis of the perspectives262
TABLE 21 Comparative classification of the concepts of the

frameworks according to the perspectives...................................270
TABLE 22 Comparative analysis of the systems of levels in the

ISD literature...293
TABLE 23 Overview of the artifacts...352
TABLE 24 Summary of the concepts and relationships of the ISD

purpose domain ...357
TABLE 25 Summary of the concepts and relationships of the ISD

actor domain ...359
TABLE 26 Summary of the concepts and relationships of the ISD

action domain ...361
TABLE 27 Summary of the concepts and relationships of the ISD

object domain..367
TABLE 28 Nature of the ISD method as seen in the ISD literature385
TABLE 29 Notion of the ISD method seen from the structural

viewpoint in the ISD literature...386

TABLE 30 Summary of the comparative review of the literature on
the ISD methods ...403

TABLE 31 Summary of the comparative analysis of the notions of
 method component ..422
TABLE 32 Issues addressed in the ME context, structured through
 ME perspectives and ISD perspectives ...482
TABLE 33 Examples of contingency factors..501
TABLE 34 Overall analysis of the ME artifacts...549
TABLE 35 Analysis of the ME artifacts in terms of ME workflows.............554
TABLE 36 Analysis of the ME artifacts in terms of perspectives and

contextual domains..555
TABLE 37 Research problems and contributions...565

CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
FIGURES
TABLES
CONTENTS

1 INTRODUCTION ...19

1.1 Background and Motivation ..19
1.2 Research Domain ...25
1.3 Research Questions and Objectives ..30
1.4 Research Framework...36
1.5 Research Methodology ...39

1.5.1 Research Process..39
1.5.2 Research Methods ...42

1.6 Key Research Qualities ...43
1.6.1 Problem Relevancy..43
1.6.2 Research Contributions ..44
1.6.3 Design Evaluation ...45
1.6.4 Limitations..48

1.7 Structure of the Dissertation ..49

2 OVERVIEW OF ONTOFRAME... 53
2.1 Needs for an Ontological Framework ..53
2.2 Theoretical Backgrounds ..57
2.3 Outline of OntoFrame ...62

2.3.1 Sub-Domains..63
2.3.2 Overall Structure ...64
2.3.3 Presentation..69

2.4 Approach and Process of Engineering OntoFrame70
2.5 Comparative Review...73
2.6 Summary...81

3 CORE ONTOLOGY ..84
3.1 Related Work..84
3.2 Overall Structure..87
3.3 Generic Ontology...89
3.4 Semiotic Ontology ...91
3.5 Intension/Extension Ontology ..94
3.6 Language Ontology...96
3.7 State Transition Ontology...98
3.8 UoD Ontology ..99

3.9 Abstraction Ontology..101
3.9.1 Abstraction Categories ...101
3.9.2 First-Order Abstraction ..103

3.9.2.1 Classification ..104
3.9.2.2 Generalization..108
3.9.2.3 Composition ...112
3.9.2.4 Grouping...117
3.9.2.5 Synthesis and Integration...120

3.9.3 Predicate Abstraction..122
3.9.4 Summary and Discussions...125

3.10 Comparative Analysis...126
3.10.1 Categorization of Relevant Literature127
3.10.2 Targets and Goals of Analysis ...127
3.10.3 Results of Analysis ..128

3.10.3.1 Overview ..128
3.10.3.2 Concepts and Constructs..130
3.10.3.3 Counterparts and Coverage...138

3.10.4 Conclusions ..141
3.11 Summary...142

4 CONTEXT ONTOLOGY..144
4.1 Contextual Approach..145

4.1.1 Definition ..146
4.1.2 Application Domain..146
4.1.3 Objectives..148

4.2 Theoretical Basis ..148
4.2.1 On the Notion of a Context ..149
4.2.2 Relevant Theories ..150
4.2.3 Semantics ..152
4.2.4 Pragmatics ..154
4.2.5 Theories of Human and Social Action......................................157
4.2.6 Context-Related Approaches...158
4.2.7 Elicitation of Contextual Domains..160
4.2.8 Summary...163

4.3 Elaborating the Notion of a Context and Contextual Domains........163
4.4 Contextual Domains..169

4.4.1 Purpose Domain ..169
4.4.2 Actor Domain...173
4.4.3 Action Domain...175
4.4.4 Object Domain ...184
4.4.5 Facility Domain..188
4.4.6 Location Domain ...189
4.4.7 Time Domain..191

4.5 Inter-Domain Relationships ..194
4.6 Implicit Relationships ...198
4.7 Summary and Discussions ...203

5 LAYER ONTOLOGY..205
5.1 Information Processing ...206

5.1.1 Basic Concepts ...206
5.1.2 Information System...209
5.1.3 Utilizing System...211
5.1.4 Object System...213
5.1.5 Relationships between the OS, IS, US and CS.........................213
5.1.6 Comparative Review...215

5.2 Information Processing Layers ..219
5.2.1 Primary and Development Actions ..219
5.2.2 Processing Layers ..222

5.3 US and OS at the Processing Layers ...226
5.4 Summary...230

6 PERSPECTIVE ONTOLOGY AND IS PERSPECTIVES...................................231

6.1 Perspective Ontology ..232
6.1.1 System of Perspectives..232
6.1.2 Definitions of Perspectives...235

6.2 Perspectives at the Processing Layers...238
6.3 IS perspectives..242

6.3.1 IS Systelogical Perspective ...242
6.3.2 IS Infological Perspective ...244
6.3.3 IS Conceptual Perspective..246
6.3.4 IS Datalogical Perspective ..248
6.3.5 IS Physical Perspective ...251
6.3.6 Relationships between the IS Perspectives253

6.4 Comparative Analysis of IS Perspectives...257
6.4.1 Overview of the Perspectives ..259
6.4.2 Detailed Analysis of the Perspectives261
6.4.3 In-Depth Analysis of the Concepts in the Perspectives268

6.5 Summary and Discussions ...276

7 MODEL LEVEL ONTOLOGY...278

7.1 Model and Modeling...279
7.1.1 Basic Concepts ...279
7.1.2 Classifications of Models..281

7.2 Levels...285
7.3 Comparative Analysis of Systems of Levels..292
7.4 Models at the Processing Layers ...297
7.5 Summary and Discussions ...301

8 ISD ONTOLOGY...302

8.1 ISD Paradigms and ISD Approaches ..303
8.1.1 ISD Paradigms ...304
8.1.2 ISD Approaches ...305

8.2 Definition of ISD and ISD ontology ..311
8.3 ISD Domains...313

8.3.1 ISD Purpose Domain...314
8.3.2 ISD Actor Domain ...317
8.3.3 ISD Action Domain ...322
8.3.4 ISD Object Domain..334
8.3.5 ISD Inter-Domain Relationships ...337
8.3.6 Summary...339

8.4 ISD Perspectives...340
8.4.1 ISD Systelogical Perspective ..340
8.4.2 ISD Infological Perspective ..341
8.4.3 ISD Conceptual Perspective...343
8.4.4 ISD Datalogical Perspective ...345
8.4.5 ISD Inter-Perspective Relationships ...347

8.5 Comparative Analysis...348
8.5.1 Relevant Work ...349
8.5.2 Overall Analysis ..351
8.5.3 ISD Purpose Domain...355
8.5.4 ISD Actor Domain ...358
8.5.5 ISD Action Domain ...359
8.5.6 ISD Object Domain..366
8.5.7 Conclusions from the Analysis..369

8.6 Summary and Discussions ...371

9 ISD METHOD ONTOLOGY..373

9.1 Why to Use an ISD Method?..374
9.2 Methodology vs. Method ...377
9.3 ISD Method as a ‘Carrier of ISD Knowledge’......................................378
9.4 Definition of the ISD Method...384
9.5 Definition of the ISD Method Ontology...387
9.6 Methodical Support...395

9.6.1 Range of Artifacts ..395
9.6.2 Requirements for an ISD Method ...400

9.7 Comparative Analysis of ISD Artifacts ..402
9.8 ISD Method Component...407

9.8.1 Definition of the ISD Method Component407
9.8.2 Classifications of Method Components408
9.8.3 Granularity Levels of Method Components............................410
9.8.4 Interface of the Method Component ..411
9.8.5 Examples of ISD Method Components413
9.8.6 Comparative Analysis of Conceptions of ISD Method

Component ...421
9.8.7 Summary of Method Components ...427

9.9 Summary and Discussions ...427

10 ME ONTOLOGY AND ME METHOD ONTOLOGY..................................430
10.1 Motivations for Method Engineering ...431

10.1.1 Problems in Methods and Method Use....................................431
10.1.2 Other Factors Propelling Method Engineering.......................434
10.1.3 Summary...435

10.2 ME Context ...435
10.2.1 About the Notion of Method Engineering...............................436
10.2.2 Categorization of ME Contexts ...437
10.2.3 Definitions of ME and ME Context...442
10.2.4 Summary...445

10.3 ME Domains ...445
10.3.1 ME Purpose Domain...446
10.3.2 ME Actor Domain ...449
10.3.3 ME Action Domain..452
10.3.4 ME Object Domain ..457
10.3.5 ME Inter-Domain Relationships..459
10.3.6 Summary...460

10.4 ME Perspectives ...460
10.4.1 ME Systelogical Perspective ..461
10.4.2 ME Infological Perspective...463
10.4.3 ME Conceptual Perspective ...464
10.4.4 ME Datalogical Perspective ...468
10.4.5 Inter-Perspective Relationships...468
10.4.6 Summary...470

10.5 ME Method Ontology ...471
10.5.1 Definition of the ME Method...471
10.5.2 ME Method Ontology ...472

10.6 Summary...475

11 MEMES - METHODICAL SKELETON FOR ME ...478

11.1 Need for Methodical Support to ME ..478
11.2 Definition of the ME Methodical Skeleton...479
11.3 Background of MEMES...483
11.4 Application Area..487
11.5 Goals of MEMES ..489
11.6 ME Workflows ...490
11.7 ISDM Requirements Engineering..493

11.7.1 Decide on the Feasibility of a Contingency Framework........495
11.7.2 Analyze the ME Context at hand ..498
11.7.3 Characterize the Target Contexts ..500
11.7.4 Analyze Prior Contexts...502
11.7.5 Specify ISDM Requirements ..503
11.7.6 Analyze Existing Method(s)...504
11.7.7 Determine ME Goals...505

11.8 ISDM Analysis..507
11.8.1 Approaches...508
11.8.2 Infological ISD Modeling ...510
11.8.3 Conceptual ISD Modeling..514
11.8.4 Inter-Perspective ISD Modeling ..518

11.9 ISDM Evaluation..521
11.10 Summary..525

12 EVALUATION OF MEMES ..527

12.1 Evaluation Context ..527
12.2 Evaluation through the OSSAD Project ...529

12.2.1 Research Setting...529
12.2.2 OSSAD Process ..530
12.2.3 OSSAD Methodology ...534
12.2.4 Findings and Lessons..536

12.3 Evaluation through the MEMES Effort ..538
12.3.1 Research Setting...538
12.3.2 MEMES Process ...540
12.3.3 Findings and Lessons..543

12.4 Comparative Analysis of ME Artifacts...545
12.4.1 Overall Analysis ..547
12.4.2 Coverage and Emphases of the ME Artifacts..........................552
12.4.3 Conclusions from the Comparative Analysis560

12.5 Summary and Discussions ...561

13 CONTRIBUTIONS AND FURTHER RESEARCH.......................................564

13.1 Contributions..565
13.1.1 Overview ..565
13.1.2 OntoFrame..567
13.1.3 Core Ontology..570
13.1.4 Contextual Ontologies ..571
13.1.5 ISD ontology...573
13.1.6 ISD Method Ontology...574
13.1.7 ME Ontology ..575
13.1.8 ME Method Ontology ...576
13.1.9 MEMES ...576
13.1.10 Discussion of the Contributions ...578

13.2 Further Research ..579

REFERENCES..584
APPENDIX 1: VOCABULARY...647
APPENDIX 2: ONTOLOGY REPRESENTATION LANGUAGE........................699
FINNISH SUMMARY..701

1 INTRODUCTION

In this chapter we will first describe the background of and motivation for the
thesis. Second, we will define our research domain and decompose it into five
sub-domains. We will also give an overview of those disciplines upon which
this thesis has been built. Third, we will define the main research problem,
research questions, and research objectives. In addition, we will introduce the
main contributions, an ontological framework and a methodical skeleton for
method engineering, and specify concrete objectives for them. Fourth, we will
describe our research framework based on the design-science paradigm. Fifth,
we will represent the cyclic and multi-domain research process and outline the
research methods used in the thesis. Sixth, we will assess our research in terms
of problem relevance, research contributions, design evaluation, and
limitations. Finally, we will present the structure of the dissertation.

1.1 Background and Motivation

Information System Development Methods

Organizations have become highly dependent on advanced information
technology (IT). High volumes of business transactions, huge amounts of data
in databases and data warehouses, exceedingly complex calculation and
inference rules, and needs for communication with ‘instantaneous’ concurrency
among thousands of sites around the world cannot be coped with without the
large-scale use of IT and high quality information systems.

Information systems are considered investments that have, besides
operational importance, also strategic significance. This entails high demands
for information systems development (ISD). A development process should be
accomplished in an efficient and productive way. It should also yield an
information system that satisfies organizational requirements (e.g. security,
robustness, extendibility, maintainability, cost-effectiveness) as well as user

20

requirements (e.g. functionality, acceptability, accuracy, timeliness, user-
friendliness, reliability, usability, personalizability).

To support efficient and productive development of information systems,
hundreds or even thousands of methods have been engineered during the last
four decades. An ISD method is a prescription used in ISD to make
organizational and technical changes in an IS possible or more productive.
More specifically, an ISD method is a composition of paradigmatic
assumptions, approaches, concepts, notations, models and guidelines. It
conveys collective knowledge and experience of ISD process, application
domain, IC technology, and human and social issues (cf. Iivari et al. 2001),
externalized in the form of text books, manuals, or pro forma documents, and
disseminated on paper, CD-rom, World-Wide-Web, etc.

Numerous empirical studies report on how methods can benefit ISD. The
use of methods improves productivity (Fitzgerald 1998a, 318; Rahim et al. 1998,
975; Grant et al. 2003; Hardy et al. 1995) and communication (Palvia et al. 1993;
Rahim et al. 1998, 975; Wastell 1996), and increases user involvement and
fulfillment of user requirements (Schönström et al. 2003; Rahim et al. 1998, 975;
Hardy et al. 1995). The methods enable the use of skills more effectively through
skill specialization and division of labor (Fitzgerald 1998a, 318). They are seen
as organizational memories (Stolterman 1994; Fitzgerald 1998a) that form useful
vehicles of organizational and individual learning (Iivari et al. 2001, 183),
advance process standardization (Roberts et al. 1998, 64; Avison et al. 1995a, 423)
and improve project management (Avison et al. 1995a; Fitzgerald 1998a;
Chatzoglou 1997).

However, there are a many empirical studies that indicate severe
problems in the use of ISD methods. First, there are studies that show that
method use is not as frequent as believed (Hardy et al. 1995; Russo et al. 1996,
Chatzoglou 1997; Fitzgerald 1998a; Iivari et al. 1998b). Second, a large variety of
explanations have been presented for having problems in the method use.
Methods are perceived to be prescriptive, burdensome and difficult to apply
(Middleton 1994, 474) and often too massive and complex to be easily adopted
and adapted to a specific situation (Hidding 1997, 104). Rahim et al. (1998, 957)
and Kautz et al. (1994) found out that the difficulty to learn the method was the
most pressing problem. There exist also disappointments in productivity
(Avison et al. 2003). The methods are seen to be monolithic (Hidding 1997) or
one-dimensional (Avison et al. 2003, 81), advocating a single path or approach,
which is often conceived as one-size-fit-all. Methods are not contingent on the
type or size of a project, nor upon the technology environment and
organizational context (Avison et al. 2003). Sometimes they are seen too detailed
to efficiently support the planning of a project (Hidding 1997). Many methods
are documented only on paper, making their use awkward and their
customization difficult. Tools advocated by method proponents can be costly
and they may require highly technical skills. Other reported problems include
the inability of the method to cover the whole life cycle of software projects and
the failure of the method to reduce project completion time.

21

There are also problems in a way methods are applied. According to
Wastell (1996), methods may be applied in a ritualistic way, which inhibits
creative thinking. Developers proceed in slavish and blind adherence to
methods and lose sight of the fact that development of an actual system is the
real objective (Fitzgerald 1994; Fitzgerald 1996b; Wastell 1996).

Part of the problems in method use can be traced back to human,
organizational or technical settings. For example, without proper training a
method can be totally ignored or only partly utilized. Incompatibility of the
approach of a method with organizational culture and traditions may also
cause unsolved problems. Further, the use of a method may be experienced as
a nuisance and a waste of time, if there is no CASE tool supporting ISD work.
Excluding all the problems due to these environmental issues, there still remain
many problems that result from unsatisfactory features of existing methods.

More challenges to ISD and ISD methods are brought about by continuous
evolution (a) in business and its environment, (b) among application areas, and
(c) in approaches and technologies of development environments. Business
processes are changing in various dimensions (e.g. flexibility, interconnectivity,
coordination style, autonomy) due to market conditions, organizational models,
and usage scenarios of information systems. They are required to act more
effectively in shorter time-frames (Fitzgerald 1997). At the same time, business
processes are getting more complex and difficult to manage. Businesses are
increasingly moving towards extensive automation of their private and public
processes. Increasing domestic and global competition and changing economics
pressure to deliver information systems “yesterday” to exploit business
opportunities (Wynekoop et al. 1997).

Resulting from evolution in business and its environment as well as from
advancements in IT, novel application areas have emerged. Examples of the
new areas are: e-commerce, m-commerce, www-information systems,
multimedia information systems, trustworthy systems, bioinformatics, and
ubiquitous systems. Typical for new areas is that they amalgamate
organizational, conceptual and technical issues from several research fields, in
the way bioinformatics does from biological data management, genomic
information retrieval and bio data mining.

Rapid progress of technology has resulted in new architectural
frameworks and platforms for information systems, e.g. J2EE, Visual Studio
.NET, XML-based technology, service-oriented architectures, peer-to-peer
technology, model-driven architecture (MDA), and grid computing technology.
This has led to the birth and diffusion of new computing and development
approaches and paradigms, e.g. object-oriented approach, agent-based
approach, fuzzy approach, anywhere/any time/any means paradigm,
generative programming approach, aspect-oriented approach, ontology &
service oriented (OSO) programming approach, soft computing approach, peer-
to-peer computing paradigm, etc. Especially, the component-based approach
with reusable components has established a firm foothold in ISD. Companies
rely far less on in-house development of systems, and buy software packages or

22

outsource ISD instead (Bansler et al. 1994). This might be referred to as the
industrialization of ISD.

Parts of the systems are less likely to require large-scale, long-term
development projects, and more likely to be smaller, short term, incremental
projects (Baskerville et al. 2001; Fitzgerald et al. 2002; Baskerville et al. 2004).
With the emergence of light web-based applications, new birth of ”quick and
dirty” approaches, currently called agile approaches or short cycle time systems
development, are getting popular (Agile Alliance 2002; Cockburn 2001; Astels et
al. 2002; Baskerville et al. 2004). These emphasize e.g. individuals and
interactions over processes and tools, working software over comprehensive
documentation, and customer collaboration over contract negotiation. Also,
emergent organizations require new practices for ISD, such as continuous
analysis of IS applications, dynamic requirements negotiations, and continuous
redevelopment (Truex et al. 1999).

New technologies also enable new ways of working in ISD projects.
Besides advanced CASE (Computer-Aided Systems Engineering) tools and
environments (e.g. Rational Rose, Select Enterprise, Silverrun, Prosa, etc.1),
there are tools, called CAME (Computer-aided Method Engineering) (e.g.
RAMATIC (Bergsten et al. 1989), ConceptBase (Jarke 1992), Navigator (Ernst &
Young 1995), MetaEdit+ (Kelly et al. 1996)), with which the methods and
environments can be tailored according to the needs of projects. Many kinds of
tools to further cooperation and coordination of ISD have also been taken into
use.

To summarize, ISD methods appear to be useful both to ISD processes and
their outcomes. However, there are several problems in methods and method
use that should be overcome. In addition, although numerous methods of
different kinds already exist, more methods with new features are still desired.
This process of engineering new methods and customizing existing ones is
propelled by the everlasting changes in organisational and technological
environments of ISD.

Method Engineering

Method engineering (ME) means all those actions by which an ISD method is
developed, and later customized and configured to fit the needs of an
organization and/or an ISD project. The contents of, and relationships between,
ME actions vary depending on the target, strategy and organizational context of
ME. First, the ME may aim to produce a generic method, a domain-specific
method, an organization-specific method, or a project-specific method. Second,
the strategy of the ME may be “from scratch”, or adapting and/or integrating
(parts of) existing methods. Third, the ME or parts thereof can be accomplished
outside or inside the organization for which the method is to be engineered.
Fourth, ME actions can be variously scheduled in relation to corresponding ISD

1 See Index of CASE tools: http://www.cs.queensu.ca/Software-Engineering/

tools.html .

23

actions. Due to this heterogeneous nature, the process of ME is difficult to piece
together and structure, and in particular to manage.

ME has appeared to be problematic in many ways. One set of problems
arises from a variety of conceptions about the nature and role, which the
method is seen to have in ISD (e.g. Wastell 1996; Baskerville et al. 1992;
Baskerville 1996). For example, ISD can be seen as a transformation process
(Wand 1988a; Tracz et al. 1993), a problem solving process (Sol 1992), a decision
making process (Iivari 1982; Jarke et al. 1990; Grosz et al. 1997), or a learning
process (Iivari et al. 1987; Lyytinen et al. 1999; Ramesh et al. 1994). It is very
challenging to engineer a method that can successfully serve in roles of such a
variety. Another set of problems stems from the contents and structure of the
methods. Next, we discuss these problems in relation to ME actions in which
they are encountered. We use the following taxonomy of ME actions: (a)
analysis of current methods, (b) characterization of a target ISD context, and (c)
adaptation and integration.

In practice the ME never starts with ”an empty table”. Although ME
would not end up to heavily utilizing existing methods, reviewing them is an
integral part of every ME effort. Current methods largely differ from each other
in terms of their assumptions, approaches, concepts, notations, coverage,
flexibility, formality, etc. Also, ways of describing methods vary from narrative
texts used in text-books (e.g. Yourdon 1989; Skidmore et al. 1992) to semi-formal
specifications of the syntax and semantics of notations (cf. UML, Booch et al.
1999). Often it is difficult to gain a clear conception of what approaches and
terms in a method really mean. Yet more difficult it is to make precise and
neutral comparisons between the methods. Although there is a large set of
literature on feature lists, taxonomies, and frameworks for comparative reviews
(e.g. Olle et al. 1983; Olle et al. 1986), the support they provide to the analysis is
inadequate in many respects. In addition, to make reliable assessments on the
methods, some knowledge of their proved applicability is needed. However,
experiences from ISD efforts executed in organizations are not structured and
recorded in a way that enables their effortless utilization. In contrast,
knowledge of former ISD efforts is usually unstructured in the heads of ISD
analysts and designers who have, in the worst case, left the organization. To
summarize, there should be some uniform framework that could be used in
analyzing current methods and contexts in which the methods have been used.

ME commonly aims to produce an ISD method for a specific project. To be
able to select among existing methods and customize the one for the use of the
project, the target ISD context should be characterized properly. There is a large
set of contingency frameworks composed of factors to be used for the
characterization (e.g. Naumann et al. 1980; Davis 1982; Burns et al. 1985; Louadi
et al. 1991; van Swede et al. 1993; van Slooten et al. 1996; Punter et al. 1996;
Harmsen 1997; Roberts et al. 1998; Yadav et al. 2001). There are, however, many
problems related to the use of such frameworks (cf. Kumar et al. 1992; Avison
1996; Tolvanen 1998; Zhu 2002). What is needed here is a conceptual foundation
on the basis of which upcoming ISD contexts could be described in a way that is

24

comparative to the descriptions of the application areas of the ISD methods and
accomplished ISD efforts.

Method engineering is, to a large extent, conceived as an intuitive and
creative effort that is hard to systematize. An ISD method seems to be quite
abstract to perceive and difficult to deal with. This has often resulted in ad hoc –
like decisions and actions in ME. For instance, one may “rush” for a new
method, mainly inspired by advertisements or recommendations of consultants,
without properly contemplating whether the features of the method and the
needs of the project really match. Second, neglects in ME may lead to adherence
to the current method, though there is strong evidence, got from previous
projects, that improvements into the method are urgent. Third, it may be
decided to exclude some parts of the current method without considering
consequences for the usability of the rest of the method. The same kinds of
concerns pertain to regardless extensions of the current method with
components taken from other method(s).

When done carefully ME needs time and resources, which are less and less
available in contemporary organizations living in the “hectic” world. The
selection, customization and configuration of a new method for an organization
can be organized as a separate ME project, which pilots the method in some ISD
project(s). This kind of ME is in a better position in ensuring resources. In
contrast, an ME effort that is carried out in parallel with an on-going ISD project
is experienced as extra work that unnecessarily burdens the budget of the ISD
project. For this reason, adaptation should be able to be accomplished as
systematically and efficiently as possible.

To make ME more efficient, computer-aided engineering environments
(CAME) and MetaCase tools have been developed. From those dating back to
the 1980’s (PLS/PSA (Teichroew et al. 1977; Teichroew et al. 1980), MetaView
(Sorenson et al. 1988), RAMATIC (Bergsten et al. 1989)), tools and environments
have advanced (Maestro II (Merbeth 1991), ConceptBase (Jarke 1992), Navigator
(Ernst & Young 1995), MetaEdit+ (Kelly et al. 1996), Decamerone (Harmsen
1997), and MERU (Gupta et al. 2001), but still they have severe shortcomings in
functionalities, user-friendliness, flexibility, process support, etc.

To summarize, an ISD method is conceived to be an abstract artifact that is
very difficult to engineer. But because methods have been, are, and will be
significant to the success of ISD, it is extremely important to support their
development, adaptation, integration, customization, and configuration. There
are many kinds of problems, which complicate method engineering e.g. in
analysis and comparison of methods, characterizing prior and target ISD
contexts, and in integrating and adapting existing methods or parts thereof. The
ME literature suggests various ME strategies and ME approaches (e.g. Kumar et
al. 1992; Oei 1995; Harmsen 1997; Tolvanen 1998; Saeki 1998; Leppänen 2000;
Ralyte et al. 2003), metamodeling languages (e.g. Chen 1976; Nijssen et al. 1989;
Smolander 1991; Heym et al. 1992a; Jarke et al. 1995; Kelly et al. 1996; Harmsen
1997; Bandinelli et al. 1993; Deiters et al. 1994; Christie 1993), ME techniques (e.g.
van Slooten et al. 1993; Kinnunen et al. 1996; Punter et al. 1996; Saeki 2003) and

25

ME procedures (e.g. Vlasblom et al. 1995; Nuseibeh et al. 1996; Song 1997;
Harmsen 1997; Tolvanen 1998; Gupta et al. 2001). Suggested ME strategies, ME
approaches, ME techniques and ME procedures constitute an unrelated and
incompatible set of artifacts that does not nullify the fact that the current
methodical support to ME is hopelessly inadequate to overcome prevailing
problems in ME.

Conclusions

We have above discussed information systems development and experience
from the use of methods in ISD. Despite disputable problems in method use
and temptations to amethodical approaches (Truex et al. 2000), the ISD methods
are undoubtedly needed and used in the future. Rapid and pervasive changes
in business, application and technological environments increase pressure to
renew current methods, as well as to develop new kinds of methods.

Method engineering is often seen to be an “unnecessary nuisance” to be
accomplished with minimum efforts. It is, however, so complicated and
multifaceted array of intentions, actors, actions, deliverables and tools that it
has to be taken seriously. Otherwise, problems in methods and method use may
disperse negative impacts, via failures in ISD, to information systems and to
business processes in the organization(s) as well. Although ME is highly
interrelated to ISD endeavors, it has to be appreciated as an “independent”
effort that is entitled to have proper methodical support. But to develop
methodical support that goes beyond the present state of the art, we also need a
uniform and consistent conceptual foundation, which provides appropriate
concepts and conceptual “building blocks” from which profitable support to
ME can be constructed.

In conclusion, we argue that there is the need for (1) a conceptual foundation
that provides concepts and constructs to conceive, understand, structure and represent
phenomena related to an ISD method and its engineering, and for (2) a methodical
support with which the process of method engineering can be accomplished in a more
structured and productive manner.

1.2 Research Domain

A research domain is the subject matter under study in a research effort
(Nunamaker et al. 1991, 91). In this section we describe the research domain of
our study, starting from the identification of the main subject of the study and
then describing sub-domains related to it. We also discuss the theoretical
foundations and the research fields underlying our research domain.

The main research subject of this thesis is an ISD method. We are
interested in what kind of artifact an ISD method is, what the conceptual
contents, structure and representation of an ISD method are, and in particular,

26

how an ISD method can be or should be engineered. Hence, our research domain
is composed of all those sub-domains that are related to an ISD method.

An ISD method is the main deliverable of ME actions. To understand the
underlying intentions of, and assumptions behind, an ISD method, it is
necessary to know, how the method has been engineered, by whom, why,
where, and when. This part of the research domain is called the ME domain.
Second, an ISD method describes / prescribes contexts in which the ISD
method is to be used, that is to say ISD contexts. To make sense of the essence of
the ISD context, we need a conceptual foundation, which enables us to
recognize, structure, represent, manage, and assess phenomena related to the
information systems development. We call this sub-domain the ISD domain.
Third, through describing deliverables of an ISD, here called the IS models, an
ISD method also semantically structures contexts in which the IS models are
implemented and utilized. Hence, also IS users with their intentions, IS
processes with their logical and temporal relations, and IS deliverables with
their contents and meanings are relevant for our study. This sub-domain is
called the IS domain.

Hence, our research domain constitutes a multi-layered structure that
comprises, at least, the IS domain, the ISD domain, and the ME domain. But
there are still more sub-domains. First, we need concepts and constructs with
which the nature, structure and representation of an ISD method itself can be
conceived. Second, to engineer methodical support for ME, we need concepts
and constructs with which the nature, structure and representation of an ME
method can be understood. With these complements we have achieved the
structure of sub-domains, which covers four processing layers (Figure 1). The
topmost layer corresponds to this research work (RW). The other layers are
method engineering (ME), information systems development (ISD) and
information system (IS). In Figure 1 the main deliverables are represented by
rectangles on each layer. Ellipses stand for processes, which produce the
deliverables. The layers are related to each other through the
describes/prescribes relationships. The research work produces RW
deliverables that embrace an ontological framework and a methodical skeleton
for ME. Next, we discuss the nature of these two deliverables and the research
fields underlying them, first for the ontological framework and then for the
methodical skeleton.

Ontological Framework (OntoFrame)

In order to understand, analyze, compare and engineer ISD methods, we need a
consistent and coherent set of concepts and constructs. Information systems
science is a rather young discipline. For this reason, views and concepts in the
field greatly differ between schools and approaches. Even for key notions such
as ‘information system’, ‘object system’ and ‘ISD method’ there are dozens of

27

RW deliverables
RW

ISD method
ME

IS models
ISD

IS data
IS

describes/prescribes

describes/prescribes

describes/prescribes

FIGURE 1 Multi-layered structure of the research domain

different interpretations (Ein-Dor et al. 1993; Mentzas 1994; Carvalho 1999;
Barron et al. 1999; Avison et al. 1996; Avison et al. 1995a). This is partly due to
the fact that theories and concepts in them have been established by scientists,
who have come from different disciplines. Difficulties in finding a common
“language” result in frequent misunderstandings. This necessitates conceptual
and terminological preciseness and clarity. These are subject matters in
particular in two disciplines. The disciplines are: (a) conceptual modeling, and
especially metamodeling, and (b) ontology engineering.

Conceptual modeling means describing some aspects of the physical or
social world around us for the purposes of understanding, explanation,
prediction, reasoning, and communication (cf. Kangassalo 2002, VI). A
conceptual model is intended to provide an accurate, complete representation
of someone’s or some group’s perceptions of the semantics underlying a
domain or some part of a domain (Bodart et al. 2001). Typically, models of the
same domains share, on a general level, some concepts and constructs. These
similarities can be modeled resulting in models of models, or meta models. A
discipline studying meta models, languages to represent meta models, and
procedures to produce meta models, is called metamodeling. Metamodeling is
also the name of a process, which takes place on one level of abstraction and
logic higher than modeling process (cf. Tolvanen 1998, 82).

28

Ontology is the study of existence, of all kinds of things – abstract or
concrete - that make up the world (Sowa 2000, 51). It concerns “what is out
there” (Quine 1953). Ontology is an explicit specification of a conceptualization
of some part of reality that is of interest (cf. Gruber 1993, 199). A specification
can be presented in the form of a vocabulary, a taxonomy, a thesaurus, a
framework, or a theory (Sugumaran et al. 2002, 253). An ontology provides
“glasses” through which one can perceive, conceive, and structure the world -
in our case the research domain. Ontology engineering is a discipline, which
studies ontologies, ontology representation languages and procedures for
engineering ontologies.

Hence, both metamodeling and ontology engineering can be used in
building a well-defined conceptual foundation. Both of them can be performed
as a structured process to yield explicitly defined concepts, terminology and
rules to represent consensual knowledge about relevant domains. A meta
model as well as an ontology can be presented on a level that is general enough
to abstract away specificities of a single application area, an ISD context or an
ME context. Metamodeling and ontology engineering support one another in
many respects. A meta model facilitates communication about an ontology,
reveals inconsistencies and anomalies within an ontology, streamlines the
comparison of ontologies, enables ontology engineering and supports ontology-
based method engineering (Davies et al. 2003). For these reasons, we build our
conceptual foundation upon these disciplines. To indicate our adherence to
ontology engineering we name our conceptual foundation the ontological
framework, shortly OntoFrame. OntoFrame is an ontological framework,
comprising a number of component ontologies with a multi-dimensional
structure. These components range from highly generic ontologies to ME-
specific ones.

Methodical Skeleton (MEMES)

Next, we turn our discussion on the nature and the underlying research fields
of our second RW deliverable that is a methodical skeleton for ME (see Figure
1). As mentioned above, the ME literature suggests only some ME strategies,
ME approaches, metamodeling languages, ME techniques and ME procedures.
To have an overall picture of, and to manage the whole process of method
engineering, we need a more comprehensive support for ME. With that aim we
suggest the ME methodical skeleton, called MEMES (Method Engineering
MEthodical Skeleton). The ME methodical skeleton is a normative prescription of
the ME context, structuring and guiding the ME process. To elaborate the
notion of the methodical skeleton and to position it among the other artifacts in
the literature describing / prescribing an ME effort, we compare it with the
notions of an ME conceptual framework and an ME methodical framework. An
ME conceptual framework provides generic concepts and constructs for
conceiving and structuring ME contexts, or parts thereof. Similar frameworks
are used at the ISD layer, for instance, to evaluate and compare ISD methods
(e.g. Iivari et al. 1983; Essink 1986; Iivari 1994; Jayaratna 1994; Tudor et al. 1995).

29

An ME methodical framework is built up from meta models. In a simple form, the
framework is composed of ISD meta models that are used to semi-formally
describe the abstract syntax of the ISD models. Meta models provide the
concepts and constructs used in an ME effort but only for the part that concerns
phenomena in the ISD domain. In a more comprehensive form, the ME
methodical framework also includes ME meta models that describe ME process
models on a general level. Corresponding frameworks at the ISD layer are
suggested by e.g. Henderson-Sellers et al. (1999c) and Hruby (2000b)2.

Both of the ME artifacts introduced above are descriptive and contain no
normative ingredients. The ME methodical skeleton provides all that have been
mentioned above, and in addition major constructs for a skeleton-like structure
of an ME process. This structure integrates and gives normative meanings for
the meta models mentioned above. The methodical skeleton is not, however, a
complete ME method. Instead, an ME method can be derived from MEMES.

MEMES has been firmly grounded on OntoFrame, as seen in Figure 2. In
the figure the left side describes MEMES in its intentional and functional
environment. MEMES is to be applied in an ME context to engineer an ISD
method, which in turn is to be deployed in an ISD context to develop an IS. The
right side in the figure describes the structure of OntoFrame from the viewpoint
of the ME method ontology3. The ME method ontology includes the ME
ontology, the ISD method ontology, the ISD ontology, and the IS ontology. The
arrows denote how OntoFrame has been deployed to engineer the components
of MEMES, an ISD method and IS models. We can see that the structure of
MEMES has been adapted from the ME method ontology. The main
components of MEMES are ME models, ISD meta models and IS meta models4.
The ME models have been specialized and instantiated from the ME ontology.
They describe/prescribe what is to be done, with which and why in the ME
context. The ISD meta models and the IS meta models have been selected and
adapted from the ISD ontology and the IS ontology, correspondingly. Likewise,
the structure of an ISD method is to be adapted from the ISD method ontology.
The ISD models are specialized and instantiated from the ISD ontology. The
concepts and constructs of the IS meta models are selected and adapted from
those belonging to the IS ontology. The IS models are specialized and
instantiated from the IS ontology.

The research field studying issues relevant to the ME methodical skeleton,
and more generally the nature, structure, contents and engineering of methods,
is known as method engineering (ME)5. Method engineering is also regarded
as an approach to, or a process of, analysis, design, implementation and

2 The term ‘methodical framework’ is sometimes (cf. Krogstie et al. 1996) used to mean

a conceptual framework in terms of our taxonomy.
3 The ontologies within OntoFrame will be defined later in this thesis.
4 In Chapter 11 we will give a more detailed view of the structure of MEMES.
5 Kumar and Welke (1992), the “godfathers” of ME, used the term ‘methodology

engineering’ to refer to “a meta-methodology for designing and implementing ISD
methodologies” (ibid p. 257).

30

adaptedFrom

input/output

instanceOf

IS models

ME models

ISD/IS meta models

ME context

ISD context

ISD models

IS meta models

ME method ontology

ME ontology

ISD method ontology

ISD ontology

IS ontology

OntoFrame

ISD method

IS

MEMES

FIGURE 2 MEMES and OntoFrame

evaluation of ISD methods (cf. Brinkkemper et al. 1999, 209; ter Hofstede et al.
1997, 401; Tolvanen et al. 1996, 296; Harmsen 1997, 25). Since an ISD method is
often modeled in an early phase of ME, metamodeling is an essential part of
method engineering. It provides the concepts and notations for IS meta models
and ISD meta models, as well as rules for using them.

1.3 Research Questions and Objectives

The main research problem of the thesis is: “How to conceive and methodically
support the engineering of an ISD method?” This problem can be decomposed into
the following research questions:
• What is the conceptual foundation with which phenomena in the research

sub-domains can be conceived, understood, structured and presented?
• What are the nature, contents and structure of an ISD method?

31

• How to structure and support the process of method engineering?

As seen from the above, the most essential single subject matter in this study is
a method, considered from two viewpoints. First, a method appears as the main
target of method engineering. Second, a method is needed to support and guide
the process of method engineering. In the former case, we are interested in the
nature, contents, structure, and models of an ISD method. In the latter case, we
are challenged with constructing a methodical artifact, which contains the
essentials of an ME method. But before we can pursue a unified and sound
view of these issues, we need a comprehensive, consistent and coherent
conceptual foundation that covers the relevant research sub-domains and
reveals, in particular, the meanings of those issues.

To be able to conceive meanings of phenomena in the sub-domains we
apply a contextual approach, based on the notion of a context. A context is a
suitable notion for many reasons. First, it is highly universal, known and
applied in a number of disciplines, including formal logic (e.g. Costa 1999),
knowledge representation and reasoning (e.g. Brezillon et al. 1998; Sowa 2000),
machine learning (e.g. Matwin et al. 1996), pragmatics (e.g. Levinson 1983),
computational linguistics (e.g. Berthouzoz 1999), sociological linguistic (e.g.
Halliday 1978), problem solving (e.g. Motschnig-Pitrik et al. 2001),
organizational theory (e.g Weick 1995), cognitive psychology (e.g. Kokinov
1999), and information systems (Kyng et al. 1997). Second, it is a common term
also in the ordinary speech. Third, the most common aim of the use of context
in various disciplines is to consider a focal thing or an event of interest as a part
of the environment (i.e. context) in order to understand its nature and meaning
(Duranti et al. 1992). That is precisely what we wish to achieve with OntoFrame.

From the aforementioned research problems we can infer the main
objectives of this study: (1) to construct an ontological framework for conceiving,
understanding, structuring, and representing phenomena in an IS, an ISD, an ISD
method, an ME, and an ME method with contextual concepts, and (2) to construct a
methodical skeleton to support the ME context.

The research area is very large. Therefore, we are forced to exclude,
completely or partly, many interesting research issues. For instance, as we have
adopted a methodical view on ME, we exclude subject matters that are related
to IS/ISD technology and technical support to method engineering. Second, we
mainly focus on “operational” processes of method engineering, not on
managerial issues. Although we recognize the importance of project
management and identify generic structures of it, we are neither aiming to
specialize nor instantiate them into the use of the ME context.

Next, we define more concrete objectives for the ontological framework
(OntoFrame) and the methodical skeleton (MEMES).

OntoFrame

OntoFrame is a result from the application of approaches and principles in two
disciplines: conceptual modeling and ontology engineering. Thereby it has also

32

inherited quality measures from them. In conceptual modeling the quality of a
model is measured in terms of adequacy or completeness (e.g. Amberg 1996;
Bajaj et al. 1999; Moynihan 1996; Chaves et al. 1996; Moody 2003b), readability or
legibility (e.g Hardgrave et al. 1995; Chaves et al. 1996), and easy-to-use or
efficiency (e.g. Kramer et al. 1991; Bock et al. 1993; Kim et al. 1995; Bajaj 2001;
Gemino et al. 2002). In addition to the single criteria mentioned above, research
in conceptual modeling has produced comprehensive frameworks of quality
criteria (e.g. Lindland et al. 1994; Krogstie 1995; Krogstie et al. 2000).

In ontology engineering, there are no such well-established quality criteria
(Weinberger et al. 2003). Gruber (1995), for instance, proposes clarity, coherence,
extendibility, minimal coding bias, and minimal ontological commitment. Fox
(1998) defines functional completeness, generality, efficiency, perspicuity,
precision/granularity, and minimality. Uschold et al. (1996) apply the qualities
of clarity, coherence, and extendibility. Weinberger et al. (2003) distinguish
between conceptual coverage, utility and usability. Ruiz et al. (2004) require that
ontology is clear, precise, coherent and consistent.

In specifying objectives for the ontological framework we should also
learn from qualities specified for conceptual frameworks (e.g. Iivari et al. 1983;
Bodart et al. 1983; Brodie et al. 1983; Essink 1986; van Swede et al. 1993;
Falkenberg et al. 1998). Brodie et al. (1983), for instance, brings out the following
requirements for an ISD method framework: general, precise, comprehensive,
balanced, flexible, and unbiased. The Frisco6 framework (Falkenberg et al. 1998)
has been built by five principles (ibid p. 10): global consistency, generality,
simple is beautiful, anchoring information system concepts in related fields, and
a conceptual foundation to be build upon.

Based on the works in conceptual modeling and ontology engineering, as
well as taking into account qualities related to conceptual frameworks, we
specify the following objectives for OntoFrame:
1. Comprehensiveness
 OntoFrame should cover all the sub-domains mentioned above (i.e. IS,

ISD, ISD method, ME, and ME method). Due to their extensiveness, all the
phenomena contained in them cannot, of course, be addressed in the
framework.

2. Contextuality
OntoFrame should enable to contextualize phenomena of reality, that is to
treat them as contexts, or as parts of a context.

3. Consistency
 In OntoFrame there should be no contradictions between the definitions of

concepts and constructs.
4. Coherence
 In OntoFrame each concept should be related, directly or indirectly, to

every other concept in a well-established way.

6 Frisco = A FRamework of Information System COncepts.

33

5. Generality
 OntoFrame is meant to be as general as possible, in order to be shared by

various communities and to help find the right level of generality at which
modeling approaches can be related to each other and to which new
emerging modeling approaches can be attached. This objective cannot be
fully achieved due to great discrepancies between views of schools and
approaches.

6. Clarity
 OntoFrame should effectively communicate the intended distinctions

between the concepts. This means that ambiguity should be minimized in
the definitions.

7. Naturalness
OntoFrame should be based on mental structures that are inherently
typical for human conceptions and abstractions.

8. Generativeness
 OntoFrame should be established in a way that allows one to derive

specific concepts of the framework from more general concepts by
specialization.

9. Extensibility
 OntoFrame should be extendable with new and more specialized

concepts. Extensions should be possible without the revision of existing
definitions. In this sense the purpose of the framework is to serve as a kind
of “crystallization kernel” (cf. Falkenberg et al. 1998).

10. Modularity
 OntoFrame should be composed of well-defined modules, which together

constitute an integrated whole.
11. Theory bases
 OntoFrame should be anchored on relevant and sound theories, such as

semiotics, semantics, pragmatics, and systems theory.
12. Applicability
 OntoFrame should be applicable for three kinds of intentions, descriptive,

analytical and constructive intentions. In the descriptive sense OntoFrame
should offer concepts and a terminology for conceiving, understanding,
structuring and presenting phenomena in the concerned sub-domains. In
the analytical sense OntoFrame should provide the key concepts and
constructs for the analysis and comparison of existing artifacts. An artifact
here means an ontology, a meta-model, a framework, a frame of reference,
a method, etc. of the concerned sub-domains. In the constructive sense
OntoFrame should support the construction of other artifacts, in particular
ISD methods and ME methods, by providing a conceptual foundation for
these artifacts.

OntoFrame is composed of ontologies at various levels. Therefore, we next
consider the aforementioned objectives from the viewpoint of ontology

34

engineering7. The main purpose of an ontology is to advance communication
between people. To fulfill this aim, the concepts and constructs in each part of
OntoFrame should be natural and clear (Gruber 1995; Uschold et al. 1996). The
view provided by an ontology about a slice of reality should be comprehensive,
consistent and coherent (Gruber 1995; Uschold et al. 1996; Fox 1998; Ruiz et al.
2004). These objectives can be furthered by building an ontology upon relevant
and sound theories. Some of these theories should lay the foundation for
viewing phenomena of reality as contexts or parts of a context. Resulting from
the contextual approach applied in this thesis, the comprehensiveness is not
interpreted as a quantitative measure, evaluated in the numbers of concepts
and constructs, but in terms of how faithfully an ontology, or a set of ontologies,
is able to reflect contextual features in reality. To be applicable in more than one
specific situation, an ontology should capture general semantics of reality (Fox
1998). To balance between specificity and generality demanded by the sub-
domains, OntoFrame should be composed of ontologies at several levels of
generality. No single ontology, neither any ontological framework, can ever
become complete (Gruber 1995; Uschold et al. 1996). To ease making extensions
and still maintaining the coherence and consistence of the structure, OntoFrame
should be generative and modular. And last but not least, OntoFrame should be
applicable. An ontology that fulfils all the other goals but fails to provide
support for the intended purposes is useless. That is why we want to emphasize
this goal in particular

The objectives are interrelated in many ways. On one hand, there are
objectives that have positive influence on the other objectives. For instance, the
derivation of concepts from more generic concepts helps establish and maintain
the framework consistent and coherent. Rooting the concepts on the proper
theories contributes to the naturalness of the framework. Furthermore,
extensibility can be advanced by the modular structure and the generativeness
of the framework. On the other hand, there are objectives that are, at least to
some degree, contradictory to the other objectives. For instance, the more
comprehensive the framework becomes, the more difficult it is to fulfil the
objectives of clarity, consistence and coherence.

To build a comprehensive and uniform conceptual foundation for our
research domain is very challenging. This was experienced, although on a much
smaller scale, by the Frisco group (Falkenberg et al. 1998), when it was building
a conceptual foundation for the IS domain. Difficulties are multiplied here, as
we extend the scope of the conceptual foundation far beyond the IS domain. We
agree with Harmsen (1997, 144) that no universal foundation can be established,
partly due to the relative immaturity of the information system science.
Therefore, we pursue a foundation that is a coherent and consistent
representation of the research domain and that can also be used to relate
varying views. We strive for these objectives with the following means. First,
we carefully select those views that are in harmony with one another. By this

7 OntoFrame could be, respectively, considered from the viewpoint of conceptual

modeling as well.

35

we try to ensure that among the concepts based on the views there are no
inherent inconsistencies. Second, we apply the integration strategy to couple
aggregates of view-based concepts together. Whenever bare integration is not
enough, we adapt concepts to get them properly connected to our framework.

The ontological framework is presented in two forms, informally and
semi-formally. Every concept and construct within the framework is defined in
natural language. The definitions are embedded in the text and also included in
the vocabulary in Appendix 1. We use meta models to give an overview of the
concepts and constructs in each part of the sub-domains. This form is also used
to specify constraints imposing the relationships between the concepts. Meta
models are presented in a UML based language. For some core parts of
OntoFrame we also use the first order predicate calculus to define axioms.

MEMES

While the ontological framework provides concepts and constructs for the sub-
domains, MEMES aims at providing methodical “building blocks” and
guidelines to carry out an ME effort. MEMES is not intended to be a method in
a strict sense. To build a comprehensive method would require the specification
of ingredients, such as models with notations, techniques with a large variety,
quality metrics, procedures for ME project management, etc (cf. Graham et al.
1997, 2). To reach such a level of concreteness and comprehensiveness would be
impossible in this study.

The ISD literature suggests artifacts that come close to the notion of a
methodical skeleton. In the Unified Process (Jacobson et al. 1999) the notion of a
process is defined to refer to “a concept that works as a template that can be
reused by creating instances of it” (ibid p. 24). It is compared to a class form,
which can be used to create instances. The OPEN framework (Graham et al.
1997) is “a framework for third-generation OO software development methods”
(ibid p. 4). It is “a methodical framework”, which can be instantiated to have
specific methodological processes (Henderson-Sellers et al. (1999b, 40)8. Besides
instantiable meta models, the Unified Process and the OPEN framework
provide descriptions of ISD actions and ISD deliverables on a rather detailed
level.

Both the Unified Process and the OPEN framework concern ISD, whereas
MEMES is to support ME. Regardless of this dissimilarity, we compose, as is
done in the Unified Process and the OPEN framework, MEMES from meta
models. We also include prescriptive models in MEMES (see Figure 2).
Resulting from anchoring MEMES upon the conceptual basis provided by
OntoFrame, we pursue the categorizations and structures of views, actions, and
deliverables of ME, which makes MEMES much more modular and flexible for
adaptations and instantiations, as compared to the OPEN framework and the
Unified Process.

8 The OPEN framework is also called “a methodological metamodel of process” and

“architecture of a process metamodel” (Henderson-Sellers 1999, 63).

36

There are a large variety of criteria suggested for the evaluation and
comparison of ISD methods in the ISD literature (e.g. CRIS9 conferences,
EMMSAD10 workshops, UML Conferences). Some of them are common in the
frameworks mentioned above. Because MEMES is not a method, we have
selected only a small set of criteria to be used as the objectives of MEMES. The
objectives of MEMES are as follows:
1. MEMES should be based on a solid and sound view on the sub-domains.

The methodical skeleton should be built upon a conceptual foundation
that is anchored on sound theories. Satisfying this objective is furthered by
the use of the concepts and constructs in OntoFrame for conceiving and
structuring the target and the process of method engineering with
contextual concepts.

2. MEMES should be modular and flexible.
MEMES should be composed of structural and functional components that
facilitate the elaboration, customization and configuration of the skeleton
into a specific ME method. Despite the modular structure, MEMES should
constitute a uniform, consistent and coherent totality.

3. MEMES should be applicable.
MEMES should be applicable for framing, constructive and analytical
intentions. The framing intension means that MEMES should provide
concepts and constructs to help make sense of and structure phenomena
in ME in reality. The constructive intention means that MEMES should
support the engineering of an ISD method, or parts thereof. The analytical
intention means that MEMES should provide concepts and constructs for
the analysis and comparison of existing ME artifacts. ME artifacts here
mean ME strategies, ME approaches, ISD meta models, ME techniques,
and ME procedures.

MEMES is to be presented in natural language, supported with diagrams
illustrating structural and functional features of the skeleton.

1.4 Research Framework

Up till now, we have described the background and the motivation of this
study, outlined the research domain and defined the research questions and
objectives. In this section we position and characterize our study with the
research framework of Hevner et al. (2004).

According to Hevner et al. (2004), there are two paradigms within the
research in the information systems discipline. These paradigms are the
behavioral-science paradigm and the design-science paradigm. The behavioral-

9 CRIS = Comparative Review of Information Systems (e.g. Olle et al. 1983; Olle et al.

1986; Olle et al. 1988b).
10 EMMSAD = Evaluation of Modeling Methods in Systems Analysis and Design.

37

science paradigm tries “to develop and verify theories that explain or predict
human or organisational behaviour” (ibid p. 75). The design-science paradigm
seeks “to extend the boundaries of human and organizational capabilities by
creating new and innovative artifacts” (ibid p. 75). It is fundamentally a
problem solving paradigm (Simon 1996), in which knowledge and
understanding of a problem domain and its solution are pursued by the
building and application of the designed artifacts. During the last decade the
design-science paradigm has matured as a respectable and supported paradigm
(e.g. Walls et al. 1992; March et al. 1995; Markus et al. 2002; Gregor 2002; Iivari
2003; Gregor et al. 2003; Hevner et al. 2004).

Our research clearly belongs to the design-science paradigm. We are
pursuing the ontological framework (OntoFrame) and the methodical skeleton
(MEMES), which both are design artifacts intended for the use of ME. To make
the conception of the paradigm more concrete, we consider the research
framework (Hevner et al. 2004) in Figure 3. We describe the main parts of the
framework and characterize our study in the light of it.

The research framework is composed of three related main parts:
environment, IS research and knowledge base. Environment ”defines the
problem space in which reside the phenomena of interest”(ibid p. 79). In our
case the environment means purposes, actors, actions, deliverables, and tools
involved in method engineering. From this environment arise the needs for the
engineering of specific methodical support.

Environment

Method engineering
- ME purpose
- ME actors
- ME actions
- ME deliverables
- ME tools

IS research Knowledge Base

Develop / Build

Justify / Evaluate

Foundations
- Theories

- Frameworks
-Instruments
- Constructs

- Models
- Methods

- Instantiations

Methodologies:
- Techniques
- Formalisms
- Measures

- Validation criteria

Needs Applicable

knowledgeAssess Refine

Application in Additions to

FIGURE 3 Research framework (cf. Hevner et al. 2004, 80)

Knowledge base ”provides the raw materials from which and through which
research is accomplished” (ibid p. 80). It is composed of foundations and
methodologies. Foundations contain theories, frameworks, instruments,
constructs, models, methods, and instantiations. For our study the foundations
contain theories (e.g. semiotics, semantics, pragmatics, systems theory),
frameworks for IS and ISD, meta models and meta meta models, modeling
languages, ontologies, and so on. Methodologies provide guidelines to justify

38

and evaluate the designed artifacts. These embrace methods for conceptual and
empirical research, measures, and validation criteria.

IS research means the process by which a research effort is accomplished. It
is composed of two complementary parts: development/build and
justify/evaluate. The former means designing and, in some cases,
implementing artifacts to be applied in the environment. The latter comprises
actions with which designed artifacts are evaluated and justified.

Three main parts are related to one another, as denoted by arrows in
Figure 3. The environment defines needs or “problem” for a research. The
knowledge base provides applicable knowledge to be used, advanced and
accumulated in the research. The IS research contributes design artifacts to be
applied in the environment, thus benefiting it. The research also contributes to
the knowledge base with new or improved frameworks, instruments,
constructs, models, methods, etc.

March et al. (1995) and Hevner et al. (2004) distinguish between four kinds
of design artifacts: constructs, models, methods, and instantiations. Constructs
provide “the vocabulary and symbols used to define problems and solutions”,
thus impacting on the way in which tasks and problems are conceived (Hevner
et al. 2004, 83). They constitute a conceptualization of a domain (March et al.
1995). Models use constructs to represent a real world situation. Models are
composed of “propositions or statements expressing relationships among
constructs” (March et al. 1995)11. Methods define processes and provide
guidelines to perform tasks (Hevner et al. 2004; March et al. 1995). Instantiations
“show that constructs, models, or methods can be implemented in a working
system” (Hevner et al. 2004, 79).

Our research contributes two kinds of design artifacts: a construct and a
method. OntoFrame is a comprehensive construct composed of ontologies,
which provide vocabularies to conceive, understand, structure and represent
phenomena in the sub-domains. MEMES is a method – according to the
terminology of the design-science - containing prescriptions for the
accomplishment of an ME effort.

Next, we apply three parts of the research framework to characterize our
study. The environment of the research and needs for the study were discussed
in Section 1.1 (Background and Motivation). We concluded that there is a need
for a conceptual foundation and a methodical support. These needs were
targeted to and “packaged” into the forms of the ontological framework and the
methodical skeleton in Section 1.2. Concrete objectives of the artifacts were
detailed in Section 1.3.

As the research domain of this study is very large, our knowledge base
includes a large array of fundamentals and methodologies. We have made
numerous surveys of the relevant literature, analyzed them for their
applicability for our purposes, and compared them to our artifacts. The results
from these surveys and analyses are reported in appropriate sections in the

11 Note that the meaning given by March et al. (1995) to the notion of a model differs

from which we later associate to the notion in this study.

39

thesis. For example, to establish the contextual approach in Chapter 4, we made
a comprehensive search for theories addressing the notion of a context, and
built, based on them, a foundation for distinguishing between seven contextual
domains.

The research process itself has been very complicated and iterative. We
will describe the process and research methods applied during the process in
Section 1.5. Hevner et al. (2004) suggest seven guidelines for making and
reporting on research based on the design-science paradigm. We will apply
guidelines to consider problem relevancy, research contributions, design
evaluation, and limitations as the key research qualities of our study in Section
1.6.

1.5 Research Methodology

A research methodology consists of the combination of the process, methods, and
tools that are used in conducting research in a research domain (Nunamaker et
al. 1991, 91). In this section we first discuss the process by which our research
has been conducted and then describe research methods that we have followed.

1.5.1 Research Process

To illustrate the process of this study, we use a simple grid of four subfields
(Figure 4). The subfields are: ME practice, evaluation, ME method engineering,
and ontology engineering. Our research process has progressed across the
subfields in a cyclic manner. The process started with engineering ontological
constructs and continued with putting them in practice and evaluating
experience from that. In certain stage, we entered the sub-field of ME method
engineering, reengineered ontologies, tested them in practice, and so on. The
figure is not meant to portray an exact registration of all the stages of the
process but rather a symbolic presentation of iterations between different kinds
of research approaches and fields. In the following we first discuss our research
process in each subfield and then summarize the description.

FIGURE 4 Research process

Evaluation ME method
engineering

ME practice Ontology
engineering

40

ME practice stands for all those efforts in which the researcher has been
involved in developing an ISD method in practice. There are four projects that
belong to this subfield. The first attempt was made, when we developed a
language and a “design model” for conceptual data base design based on the
linguistic approach (Leppänen 1984a). In the language essential pragmatic (i.e. a
sender, a receiver, a sending time, a receiving time, a mode), semantic (i.e.
entity type, relationship type, attribute, property type, time, constraints) and
syntactical elements were distinguished. The design model was built from
generic constructs (e.g. workflow structure, system decomposition structure,
abstraction structures, problem solving structure). The model was composed of
two layers: a frame layer consisting of generic concepts and constructs, and a
core layer standing for instantiated concepts and constructs.

The second attempt was related to a large international Esprit12 project,
called OSSAD (Office Support Systems Analysis and Design) into which the
research group (Vesa Savolainen, Mauri Leppänen) from the University of
Jyväskylä was accepted in 1986. The other project partners were from France
(D. Conrath CETME Aix-en-Provence, P. Dumas CETMA Toulon, G.
Charbonnel CETMA Toulon), Italy (V. de Antonellis University of Milan, C.
Simone University of Milan, G. de Petra IPACRI Rome, C. de Santis IPACRI,
Rome), and Germany (S. Sorg IOT Munchen, E. Beslmuller IOT Munchen). The
purpose of the project (1985-1989) was to develop a method for the analysis and
design of office support systems. The researcher’s role in the project was to
comment on, and ideate, the conceptual foundation of the method, to contribute
to some specific parts of the method, as well as to field test the method in a case
organization (Leppänen et al. 1988; Leppänen et al. 1989a). The project
engineered the comprehensive method that was published in the manual
(Conrath et al. 1989) and in numerous articles (e.g. Beslmuller et al. 1986;
Beslmuller et al. 1987; Conrath et al. 1988; Charbonnel et al. 1991; Conrath et al.
1992; Vincent et al. 1992; Conrath et al. 1999; Savolainen 1999).

The third attempt dates back to 1988/1989 when the researcher
participated in a large consulting project to plan an information technology and
service strategy for the city of Jyväskylä. For the project, a method, called SPITS
(Strategic Planning of Information Technology and Services) (Leppänen et al.
1991), was first engineered. In the method, the process of strategic planning is
decomposed into three parts: analyzing the service strategy, planning the IS
strategy, and planning the implementation of the IS strategy. For each part,
several design techniques were selected from existing methods and customized
to fit the needs of the project. Researchers acted as teachers, mentors and partly
as designers in the project. Experiences of the applicability of the method were
collected by interviews, although they were not reported in public.

The fourth attempt to method engineering in practice concerned
engineering a method for database application design for the purposes of
teaching. The first version of the method was developed during 1985-1993
(Leppänen 1993). The method was based on a view of the centralized

12 Esprit = European Strategic Program for Research in Information Technology.

41

architecture and the use of the Ingres database management system. The second
version was engineered for web-based database application design with Oracle
8i (Leppänen 2001). Both of the methods were constructed by selecting and
customizing models and techniques from existing methods. The methods were
used by students in their designing and implementing small-scale database
applications in project groups of 2 – 4 members. The course has been lectured
seven times so far, and about 100 projects have been accomplished with the
methods.

Ontology engineering means establishing a conceptual foundation for
conceiving, understanding, structuring and representing phenomena in the
domains of IS, ISD, ISD method, ME, and ME method. The first concepts and
constructs were defined for the core part of OntoFrame in Leppänen (1984a).
The work continued with elaborating definitions of core concepts, abstraction
structures and abstraction strategies (Leppänen 1984b). Later the ontology was
extended and refined by establishing a contextual approach, which recognizes
concepts within seven contextual domains. This work laid the ground for the IS
ontology. In the last stages, the ontological framework was extended to cover
the ISD domain and the ME domain as well. During the cyclic process,
definitions and categorizations of new and old concepts and constructs have
been modified and elaborated several times.

Evaluation comprises two kinds of actions: (1) making analyses and
comparative reviews of definitions, classifications, models, frameworks, and
methods presented in the literature, and (2) reflecting from the practice of
method engineering. The purpose in the first case has been to learn existing
knowledge in the research sub-domains and compare it to artifacts produced in
each stage of this study. Examples of the early work on these issues are a
classification of research methods (Leppänen et al. 1988), an analysis of the
OSSAD method (Leppänen 1989a), and a conceptual analysis of socio-technical
methods (Leppänen 1989b). The OSSAD method was analyzed on the basis of
its core concepts and abstraction constructs. Socio-technical methods were
analyzed with the concepts of seven contextual domains. Later, several
comparative analyses have been conducted related to the IS ontology, the ISD
ontology, ISD method ontology, and the ME method ontology. Also
suggestions for ME strategies, ME approaches, ME techniques, and ME
procedures have been evaluated. The results of these analyses are reported in
this study. The evaluation of experience from the application of the artifacts of
this work has been made with two empirical methods. First, we applied
retrospective analysis (cf. Fitzgerald 1991) to investigate documents and notes
from the OSSAD project and to elicit findings and lessons to be used in
elaborating the artifacts. Second, we applied the reflection-in-action approach
(Schön 1983) to constructing MEMES with applying MEMES itself. Results from
these analyses are reported in this thesis.

The first serious attempts to contribute to ME method engineering were
made in 1994, when a technique for describing, analyzing and refining
conceptual relationships of ISD techniques and ISD models within an ISD

42

method was developed (Kinnunen et al. 1994; Kinnunen et al. 1996). This
technique was applied to test the interoperability between techniques of the
SPITS method (Leppänen et al. 1991). Next, activities, benefits and pitfalls of
metamodeling were distinguished based on an early version of the ontological
framework (Leppänen 1994). Later, a model integration technique, analogous to
a view integration technique (Batini et al. 1992), was developed to ensure the
consistency in integrating an ISD method from method components (Leppänen
2000). Also a set of ME approaches were defined. In the last few years, the
research was extended to cover more comprehensive methodical and
procedural structures of ME. This work was based on the established
OntoFrame and experiences got from ME practice.

Engineering a methodical skeleton itself was, in fact, an instance of ME
effort. This effort did not aim to build an ISD method but an artifact that is a
kind of pre-stage of an ME method. Nevertheless, the engineering process of
MEMES should apply exactly the same structural and dynamic building blocks
that are included in MEMES itself. This observation made us to decide to
systematically follow MEMES while the incremental and cyclic process went
along. Instant feedbacks substantially contributed to the theoretical part of
method engineering.

To summarize, our research process has been highly iterative, crossing
four sub-fields. The work has been interplay between theoretical considerations,
analysis of literature, empirical work and its evaluation. The process reflects a
learning cycle (Checkland 1981, 254) in which each deliverable (i.e. an ontology,
an ME technique, and a methodical skeleton) is created, applied, learned from,
and refined.

1.5.2 Research Methods

To support the research process we have applied two kinds of research
methods. The first method is conceptual. By this method we have defined
OntoFrame and MEMES and conducted a large set of comparative analyses of
the existing literature to show how our framework differs from other artifacts
(i.e. ontologies, meta-models, frameworks, and frames of reference). Second, we
have applied several empirical methods. During the OSSAD project, a field test
was carried out to collect experiences on applying the OSSAD method in
practice (Leppänen et al. 1988). The application of the SPITS method in a large
municipal organization was carried out as a case study. Experiences from users
were collected here too. The use of the database application design method by
students corresponds to a laboratory experiment in a sense that all the project
groups (ca. 100 groups in seven years) applied the same method (in two
versions) in application design. However, no specific research setting was
defined neither used in these situations. Nevertheless, the researcher got a very
“rich” picture of the applicability of the method during the guidance hours that
were provided for groups in each of 5 – 6 phases, as well as through exhaustive
documentations produced by each project group.

43

We do not explicitly report on the results from the aforementioned
investigations in this study. Instead, we have selected two efforts to be analyzed
here in more depth. They are the OSSAD project and the MEMES effort. We
apply the retrospective analysis (cf. Fitzgerald 1991) to make sense of the
process and outcomes of the OSSAD project. In the analysis we use MEMES as
a frame to find out essential features and approaches of the OSSAD project, to
discover possible problems, and speculate how these could have been avoided
with a methodical support such as MEMES. Second, we apply the retrospective
analysis to describe and evaluate, how MEMES performs as a prescription for
the engineering process of MEMES itself. The process is conducted according to
reflection-in-action approach (Schön 1983). The major characteristics of this
approach are a fluid and reflective process model and the use of a generative
metaphor in situation framing (Heiskanen 1995).

1.6 Key Research Qualities

Hevner et al. (2004) suggest seven guidelines for the design science to be
determined “when, where, and how to apply each of them in a specific research
project” (ibid p. 82). Guidelines are based on the view according to which
design science is inherently a problem solving science. These guidelines concern
design artifacts, problem domain, contributions, design evaluation, research
contributions, design as a search process, and communication of research. In
this section we apply the guidelines to consider our study from the viewpoint
of design science. We discuss problem relevancy, research contributions, design
evaluation, and limitations of this study.

1.6.1 Problem Relevancy

According to Hevner et al. (2004), the objective of research should be “to acquire
knowledge and understanding that enable the development and
implementation of technology-based solutions to heretofore unsolved and
important business problems” (ibid p. 84). The most essential words in the
statement are ‘unsolved’ and ‘important’ problems.

We described the background and the motivation of our study in Section
1.1. We arrived at the following conclusions: There are severe problems in methods
and method use in practice, and more methods with new approaches and features are
required to provide methodical support for emerging application areas. On the other
hand, method engineering in practice suffers from serious problems, which complicate
and hamper the analysis, design, and implementation of ISD methods. The current ME
literature provides a large array of ME artifacts, but they are inadequate to overcome
the problems. No single artifact among them can be seen to come even close to the ME
method as the notion is generally understood. Concluded from the above, we argue
that there are clearly unsolved problems, which we are addressing in our study.

44

The ISD community has divergent conceptions and opinions of the nature,
role and significance of a method in ISD (Baskerville et al. 1992; Wastell 1996;
Pfleeger et al. 1997; Truex et al. 2000; Fitzgerald et al. 2002; Chang et al. 2002). On
the basis of the large review made in this study among the ISD literature, we
argue that methods, in one form or another, are needed in practice. Considering
a huge number of information systems, their diffusion into a vast spectrum of
application fields, and their significance to business, we can conclude that
getting some of the problems solved in method engineering is clearly of
considerable importance. Later in this study we show the problem areas to
which we have in particular contributed.

1.6.2 Research Contributions

Hevner et al. (2004) argue that design-science research “must provide
contributions in the areas of the design artifact, design construction knowledge
(i.e. foundations) and/or design evaluation knowledge (i.e. methodologies)”
(ibid p. 87). This study contributes to foundations (see Figure 3). We suggest the
extensive ontological framework (OntoFrame) and the methodical skeleton
(MEMES) to be used in ME. Contributions can be evaluated in terms of their
novelty, generality, and significance (Hevner et al. 2004). Here we consider our
contributions with the first two criteria. The third criterion is relevant for
considerations at the end of this study, after the design artifacts have been
described in more detail.

We will show in the following chapters that at present there is no unified,
coherent and theory-based framework that would support the understanding
and structuring of phenomena in the sub-domains. Furthermore, there is a large
set of aspects in individual sub-domains that are poorly understood and/or
covered in artifacts. Our response to this situation is to apply the principles of
ontology engineering in building a coherent and unified framework.
Furthermore, we anchor the framework upon generic and relevant theories (e.g.
semiotics, semantics, pragmatics, systems theory) to ensure the
comprehensiveness of the framework. The main “yardstick” used in the
evaluation of comprehensiveness is, resulted from our contextual approach,
how well the framework covers contextual features of the subject matters.
These approaches make our ontological framework (OntoFrame) quite novel
and different from all other suggestions.

MEMES stands out from the others, first due to the approach deployed to
engineer it, and second due to its structure and contents. Most of the ME
artifacts at present have been engineered by externalizing ME conventions in
practice. This is the inductive approach to the ME research. The ME practice is,
however, still in its infancy, and so many of the established conventions are
undeveloped and not worth of writing into prescriptions in ME artifacts. We
have adopted another approach. Still taking into account the experience and
lessons from ME practice, we have started to engineer the main functional and
modeling structures of MEMES on the grounds of the ontological framework.
Hence, we apply the deductive approach to the ME research. This way we are

45

able to look at ME efforts with “new eyes” and find solutions that have not been
discovered earlier. As mentioned above, the ME literature provides inadequate
support to ME efforts. Although MEMES is not a complete method, it
nevertheless covers the most essential parts of ME. For these parts it provides
both generic specifications in meta models and specific guidelines for the
accomplishment of ME actions. Many of these suggestions are novel.

OntoFrame and MEMES are intended for the general use. OntoFrame is
composed of a large number of ontologies, each of which can be used to
conceive, understand, structure, and represent phenomena in an appropriate
sub-domain. Also in the selections of approaches and views underlying the
ontologies we have aimed for generality. MEMES is a methodical skeleton that
provides generic support for ME, whatever ME strategy (i.e. “from scratch”,
integration, adaptation) is followed. Guidelines and steps contained in MEMES
are described in the way, which enables their deployment in a large variety of
situations.

1.6.3 Design Evaluation

Hevner et al. (2004) state that “the utility, quality, efficacy of a design artifact
must by rigorously demonstrated via well-executed evaluation methods” (ibid
p. 85). In this section we consider the evaluation of OntoFrame and MEMES in
terms of verification and validation.

The outcomes of this research are conceptual and highly abstract.
Verification and especially validation of these kinds of artifacts have been
recognized to be problematic, both in ontology engineering (e.g. Gomez-Perez
1995; Gruninger et al. 1995; Guarino 1997; Shank et al. 2003) and in method
engineering (e.g. Fitzgerald 1991; Schipper et al. 1996). Therefore, we first
discuss the notions of validation and verification in general and then describe
how our outcomes are verified and validated.

In the ME field, validation has been discussed in relation to e.g. models
and techniques. According to Flon Arnesen et al. (2002), the validity of a model
“means that all statements made in the model are correct relative to the
domain” (ibid p. 68). Schipper et al. (1996) state that validation of a modeling
technique “is a means to determine whether the technique serves its intended
purpose” (p. 1). According to Fitzgerald (1991) the term ‘validation’ is used “to
mean the justification of the technique in terms of its power, effectiveness and
practicality in relation to its purpose and objective” (p. 659). He emphasizes in
particular well-foundedness, soundness, and applicability of a technique to the
case or circumstances.

In this study, we distinguish between two dimensions to the evaluation of
the artifact: validation and verification (Weinberger et al. 2003). Validation
means a process of seeking evidence of the applicability of the artifact to the
predefined intentions of use (cf. Schipper et al. 1996, 1). The features of the
artifact affecting the applicability are called external features. Verification means
a process of acquiring evidence that the artifact fulfills the objectives related to
internal features of the artifact. Examples of internal features are consistence

46

and coherence of the concepts (Weinberger et al. 2003). Hence, in both cases, it is
a question about the evaluation of the features of the artifact based on the
predefined objectives. In the following we first use the term ‘evaluation’ when
discussing the assessment of the properties of the artifact in general. After that,
we show in which case evaluation means verification and in which case it is a
question about validation of the artifact in our work.

Evaluation should start with describing the researcher’s intentions for the
use of the artifact (Schipper et al. 1996, 7). Next, objectives in terms of internal
and external features should be derived. That is exactly what we have reported
on in Section 1.3. There are many ways to derive and express the features (cf.
Sol 1983, 4). In the simplest case, features are presented in a list without any
clear connection to intentions. There are many examples of this kind of lists in
the literature (see e.g. Olle et al. 1983; Olle et al. 1986). A better way is to
prioritize the features based on the intentions or other explicated grounds. The
third way is to use an “idealized” artifact as a “frame of reference” of
assessments (Sol 1983, 4). An idealized artifact is usually developed by deriving
it from features of existing artifacts, e.g. including “best properties” of the
existing artifacts in the artifact. Instead of, or besides, the existing artifacts,
derivation can be based on some underlying theory (cf. the socio-cybernetic
framework in Iivari et al. (1983)).

Evaluation can be done conceptually or empirically. Conceptual
evaluation can be conducted in two ways: (a) focusing on the artifact only, or
(b) comparing it to some other artifact(s). In the first case evaluation concerns
the artifact and/or the process of engineering. In a comparative analysis, the
artifact is evaluated by comparing it to one or more existing and comparable
artifacts (e.g. Henderson-Sellers et al. 1999a; Kabeli et al. 2002; Kavakli et al.
2003). This way one tries to prove that the artifact is “better” than the others in
some relevant terms (e.g. comprehensiveness). Conceptual evaluation can be
supported by formalization. For instance, consistence and coherence of the
artifact can be more easily proven through formal definitions and axioms (ter
Hofstede et al. 1998, 521). Besides enforcing the defining of concepts into a more
rigorous direction, a successful completion of formalization itself gives an
evidence of ‘formalizability’ of the ideas underlying the artifact (ter Hofstede et
al. 1992; ter Hofstede et al. 1998). Yet stronger evidence can be got implementing
the artifact into e.g. a software tool (e.g. Harmsen 1997; Gupta et al. 2001).
Successful implementation provides evidence of the implementability of the
ideas included in the artifact. However, it is important to point out that even a
successful implementation of the artifact into a software tool does not prove
that the artifact is useful. To evidence that requires empirical tests of the tool.

Empirical evaluation is based on experiences got from using the artifact in
one or more contexts. Contexts can differ from each other in four ways. First,
the context can be hypothetic or real. A hypothetic context may concern
hypothetic and often simplified problems to be solved in a laboratory or the
like. A real context is a working situation solving real problems in an
organization. Second, users of the artifact from whom experiences are collected

47

can be developers of the artifact (e.g. in Fitzgerald 1991), students, or real
workers in an organization. The strongest evidence can be got from real
workers (e.g. in Moynihan (1996) and Grant et al. (2003)) but due to problems in
involving them, it is common to recruit students into the work (e.g. Shoval et al.
1997; Chaves et al. 1996). Third, the artifact can be deployed as a whole or for
some part only in a context. If the artifact is large, like a method, it is common
to concentrate on features related to some part (e.g. Moody 2003a). Fourth,
evaluation in a context can be carried out as one time action or as a sequence of
assessments. In the latter case, evaluation can be included as an inherent part of
evolutionary engineering of the artifact (e.g. Tolvanen 1998).

Next, we consider, based on the taxonomies and definitions given above,
how the features of OntoFrame and MEMES are evaluated. We apply two
kinds of research methods in this work. The first method is conceptual and it
concerns verification of the qualities. The second method is empirical and it is
used in validation. In what follows we discuss verification and validation of the
framework and skeleton with relation to the objectives stated in Section 1.3.

To support the achievement and evaluation of clarity, consistency and
coherency of the concepts and constructs within OntoFrame, we use semi-
formal meta models in presenting the ontologies. In addition, we make cross-
checking among the definitions of the concepts. Generality of the framework is
supported by the stratified structure of the framework in which specialized
concepts are derived from the fundamental concepts. We demonstrate the
suitability of OntoFrame to relating concepts of different approaches by
numerous comparisons. Generativeness and modularity result from the process
by which we establish the framework. Extensibility is furthered by
generativeness and modularity. To obtain strong evidence of the naturalness of
the framework would require tests in real contexts, with real workers, and we
do not do it here. Instead, we argue for the naturalness of OntoFrame by
referring to the nature of theories underlying the framework. The fact that the
framework is theory-based becomes evident from the use of theories.

All the evaluation means discussed above are examples of verification of
the internal features of OntoFrame. In contrast, the evaluation of
comprehensiveness and applicability presumes validation. Comprehensiveness
is evaluated in two ways: (a) founding on and comparing to the relevant
theories, and (b) making comparative analyses of existing artifacts. OntoFrame
is aimed to be applicable for three kinds of intentions. As to the analytical
intentions, we refer to the results from the comparative analyses to claim for
applicability. To gain evidence from the applicability of OntoFrame in the
constructive sense, OntoFrame is applied to construct MEMES. To validate the
applicability of OntoFrame in the descriptive sense would require empirical
tests. These are not made in this study.

For MEMES it has been stated that it has to be based on a solid and sound
view on the domain area. Reaching this objective is aided by anchoring MEMES
to the theory-based ontological framework. The fact that MEMES is component-
based becomes evident by viewing its structure. Validation of the applicability

48

of MEMES is carried out conceptually and empirically. Conceptual validation is
carried out with a comparative analysis of existing ME artifacts (cf. the
analytical intention of use). Empirical validation is accomplished in two ways:
(b) by the retrospective analysis of the process and outcome of the OSSAD
project (cf. the framing intension of use), and (b) by the retrospective analysis of
the process of applying MEMES in the engineering of the skeleton itself
according to the reflection-in-action approach (Schön 1983) (cf. the constructive
intention of use). In addition, experience from all those efforts in which the
researcher has been involved has been utilized in engineering MEMES.

1.6.4 Limitations

This thesis is quite large and addresses a number of sub-domains. Even so there
are some limitations that we have made during the study. First, both
OntoFrame and MEMES could have been refined further. We have consciously
excluded some less essential parts from the lower levels of OntoFrame in order
to keep the size of the framework reasonable. Formalization of the framework
could have been augmented by more axioms to specify rules and constraints
more precisely. The scope of MEMES has been limited to cover three ME
workflows (i.e. the ISD method (ISDM) requirements engineering, the ISDM
analysis, and the ISDM evaluation) out of five. Although this is enough to have
an overview of method engineering and to cope with decisions on methodical
structures on a general level, the skeleton could have been extended to deal
with the other workflows (i.e. the ISDM design and the ISDM implementation)
with equal weight. Also more procedures and guidelines, for instance, for
alternative ways of engineering, could have been included in MEMES.

 Second, there are some limitations in our research methodology. One of
the most severe limitations in this study is that the method skeleton is not
properly tested in a real context. We do have heavily utilized experience on ME
practices in which we have been involved, as described above. We have also
applied MEMES in a step-by-step process of engineering of the skeleton itself.
But these contexts do not fully satisfy requirements presumed from the
empirical validation of MEMES in terms of applicability and usefulness. For
this reason, the skeleton should be first elaborated into a specific ME method,
and then this ME method should be used in an ME effort to engineer a specific
ISD method. This way we could obtain a more reliable conception of how
MEMES performs. In fact, to have a strong evidence of the applicability and
usefulness of MEMES, validation should also address the use of the ISD method
engineered in the development of some specific information system. Due to the
largeness of this study, it was not possible to include these kinds of case studies
in the thesis. They will be subjects of future research.

49

1.7 Structure of the Dissertation

The thesis is organized into thirteen chapters. The structure of the chapters 2 –
13 is illustrated in Figure 5. The arrows between the boxes express how the
subject matters dealt with in the chapters are based on the considerations in
preceding chapters. In Chapter 2 we will present an overview of OntoFrame.
After motivating needs for the framework and describing its theoretical
foundations, we will outline the modular structure of the framework. For each
part the intention and the domain are described. After that we will portray the
approach and the process applied in ontology engineering. Finally, we present
a comparative review of the most relevant artifacts in the IS literature.

Chapter 3 defines the fundamental concepts of the research domain as the
core ontology. The core ontology is composed of seven sub-ontologies: the
generic ontology, the semiotic ontology, the intention/extension ontology, the
language ontology, the state transition ontology, the UoD ontology, and the
abstraction ontology. After reviewing the relevant works and describing the
overall structure, we will present meta-models with concept definitions for each
of the sub-ontologies. Concepts are widely compared to those presented in the
literature. In addition, we will present a comparative analysis of two most-well
known artifacts, namely the Frisco framework and the BWW model. In the
analysis we compare the objectives, ontological positions, basic structures,
coverage, and emphases of the artifacts with the core ontology.

Chapter 4 presents the context ontology. First, we will define the
contextual approach and characterize its application domain and objectives.
Next we will review the literature to establish a theoretical basis for the
contextual approach. Deriving from the selected theories (e.g. semiotics,
semantics, pragmatics and some theories of human and social action), we will
elaborate the notions of a context and a contextual domain. For each contextual
domain, we will present a meta-model and define their contextual concepts and
constructs. In addition, we will define inter-domain and implicit relationships.

Chapter 5 specifies the layer ontology. First, we will define the basic
concepts related to information and information processing. We will also
distinguish between the information system, the object system, the utilizing
system, and the controlled system. Next we will recognize the primary actions
and the development actions in information processing. Deriving from this
dichotomy, we will define the system of four processing layers: information
system, information system development, method engineering, and research
work. Each layer will be characterized from the teleological, functional and
structural viewpoints. The contents of and relationships between the contexts
positioned at the layers will be discussed, and the notions of the utilizing
system and object system will be specialized to concern each of the processing
layers.

50

RW process

Chapter 2:
Overview of
OntoFrame

Chapter 3:
Core Ontology

Chapter 4::
Context Ontology

Chapter 6:
Perspective

Ontology and IS
Perspectives

Chapter 5::
Layer Ontology

Chapter 7::
Model Level

Ontology

Chapter 8:
 ISD Ontology

Chapter 9:
ISD Method

Ontology

Chapter 10:
ME Ontology and

ME method
Ontology

Chapter 11
MEMES-

Methodical
Skeleton for ME

Chapter 12
Evaluation of

MEMES

Contextual
ontologies

OntoFrame

Chapter 13
Contributions and
Further Research

MEMES

FIGURE 5 Structure of the thesis

51

Chapter 6 addresses the perspective ontology. We will start with defining the
perspective ontology by establishing the system of perspectives along particular
dimensions and by defining the contents of five perspectives (i.e. systelogical,
infological, conceptual, datalogical, and physical perspectives). We will
consider how the perspectives are applied at the four processing layers. Next
we will define the IS perspectives and relationships between them. Finally, we
will present a comparative analysis of IS perspectives suggested in the IS/ISD
literature. The analysis is composed of three parts, giving an overview of and
revealing the conceptual contents and detailed concepts of the perspectives.

Chapter 7 presents the model level ontology. Here we will first define the
notions of model and modeling and present the main classifications of the
models. Second, we will extend our considerations to concern models at meta
levels. We will also derive classifications of models and meta models based on
the contextual domains and the perspectives. Third, we will present a
comparative analysis of conceptions about the meta levels in the ISD literature.
Fourth we will examine in more detail how the contextual ontologies are
related to one another.

Chapter 8 addresses the ISD ontology. We will start with discussing and
classifying the ISD paradigms and the ISD approaches and give a
comprehensive definition of ISD. Second, we specify the first part of the ISD
ontology, which is composed of meta models and concept definitions within
four ISD domains (i.e. ISD purpose domain, ISD actor domain, ISD action
domain, and ISD object domain). Also an overview of the inter-domain
relationships will be provided. Third, we will present the second main part of
the ISD ontology, which consists of four ISD perspectives. The perspectives are
the ISD systelogical perspective, the ISD infological perspective, the ISD
conceptual perspective, and the ISD datalogical perspective. Also the inter-
perspective relationships will be discussed. Fourth we will make a comparative
analysis of artifacts (i.e. frameworks, meta models and the like) presented in the
literature. The purpose of the analysis is to obtain an overview of the artifacts,
to find out how they differ from one another, and compare them with the ISD
ontology in terms of comprehensiveness and focus.

Chapter 9 presents the ISD method ontology. First we will consider why
the ISD methods are actually needed and used in practice by reviewing
empirical studies. Second, we will discuss the difference between the terms
‘methodology’ and ‘method’. Third, we will delineate the concept of the ISD
method as a ‘carrier’ of ISD knowledge and specify basic classifications of ISD
methods. Fourth, we will define seven fundamental views from which the ISD
method can be conceived, and present an integrative definition of the ISD
method that highlights the essential features of the method from all seven
views. Fifth, we will establish the ISD ontology that is composed of parts
corresponding to the seven views. Sixth, we will apply the ISD method
ontology to consider, from a larger perspective, a range of methodical support
and specify a taxonomy of methodical artifacts. We will also discuss the criteria
for acknowledging an artifact as an ISD method. Seventh, we will make a

52

comparative analysis of frameworks and categorizations of the ISD methods
proposed in the literature. Eighth, we will consider the notion of method
component in more detail. We will define the notion, present a classification
scheme and specify a contextual interface of the method component. We will
also discuss the integration of method components, illustrate the discussion
with examples, and make a comparative analysis of the conceptions of the
method component in the literature.

Chapter 10 defines the ME ontology and the ME method ontology. First,
we will describe needs for method engineering and reasons behind them. Based
on a short literature survey we will present basic classifications of ME strategies
and ME processes and derive a fundamental categorization of ME contexts
from them. We will also provide a definition of the ME context that integrates
various contextual aspects of method engineering. Next we will present the first
main part of the ME ontology addressing four ME domains. For each ME
domain the concepts and constructs will be defined and described in ME meta
models. After that we will provide the second main part of the ME ontology
including four ME perspectives. Finally we will define the notion of ME method
and derive the ME method ontology from the ISD method ontology established
in Chapter 9.

Chapter 11 presents the methodical skeleton for ME. First, we will argue
for the needs for methodical support to ME and define MEMES in terms of its
intention, basis and contents. Also relations between MEMES and OntoFrame
will be demonstrated. Second, we will derive the views and structure of
describing MEMES in this work. Third, we will describe the background and
application area of MEMES and state the goals for MEMES. Fourth, we will
present the overall structure of MEMES in terms of ME workflows. Fifth, we
will describe the approaches and steps of three ME workflows (i.e. the ISD
method requirements engineering, the ISD method analysis, and the ISD
method evaluation).

Chapter 12 provides evaluations of MEMES. First, we will apply MEMES
itself to make plans for the evaluation. Second, we will report on the
retrospective analysis and reflection-in-action approach applied to evaluate
MEMES in two ME efforts (i.e. the OSSAD project and the MEMES effort). The
OSSAD project engineered a method for office support systems analysis and
design (Conrath et al. 1989). The MEMES effort means the process of
engineering MEMES itself. Third, we will use MEMES as an analytical
framework to make a comparative analysis of those artifacts, which are aimed
to provide methodical support to ME.

In Chapter 13 we will summarize the results of the thesis, discuss their
implications to research and practice, and describe directions for future
research.

2 OVERVIEW OF ONTOFRAME

Method engineering needs a comprehensive and uniform foundation, a kind of
conceptual “platform”, upon which conceptions and representations of an ISD
method and a process of engineering an ISD method can be established. The
purpose of this chapter is to present an overview of such a foundation. We call
it the ontological framework, and shortly OntoFrame.

This chapter is organized as follows. In Section 2.1 we discuss needs for an
ontological framework. Next, we consider the suitability of metamodeling and
ontology engineering for theoretical grounds of OntoFrame. In Section 2.3 we
describe the domain and overall structure of Ontoframe. In addition, we discuss
and select forms in which OntoFrame will be presented. In Section 2.4 we
delineate the approach and the process by which OntoFrame has been
engineered. In Section 2.5 we make a comparative review of the relevant
literature in order to give an overview of the state of the art and to show how
our framework differs from the others. The chapter ends up with a summary.

2.1 Needs for an Ontological Framework

Becoming aware of phenomena in reality and understanding their meaning
necessitates that a human being has a mental structure that gives a means to
focus, structure, and organize perceptions (cf. Koskinen 2000, 77). The more
abstract thinking a work requires, the more necessary it is to hold and utilize
well-defined concepts in doing the work. Concepts are not separate but
constitute webs of associations in which each concept has its specific roles and
constraints. These webs are called conceptual frameworks. A conceptual
framework means a structure of named and defined concepts, views, etc. by
means of which an individual or group conceives and communicates ideas (cf.
Webster 1989). It is a kind of intellectual structure, which determines which
phenomena are meaningful to us and which are not.

54

Our ontological framework is a conceptual framework. Its purpose is to
provide a unified conceptual foundation for conceiving, understanding,
structuring, and representing phenomena in ME. But what is actually ME?
What are those features it holds, which we should become aware of and which
we should be able to communicate about? That is what we try to figure out in
this section, in order to grasp the baseline and premises for the ontological
framework.

The most essential individual thing in ME is an ISD method. It is the main
target of engineering. An ISD method is a highly abstract and multifaceted
notion about which there are quite different conceptions. It is ‘externalized’ in
the form of a manual, a textbook, or a Power Point slice show, and marketed as
written documentation, consultant services, part of a CASE tool, etc. This
concrete side of an ISD method is easy to understand and agree on. But what
are the nature and contents of an ISD method? Which kinds of phenomena do
texts and diagrams in manuals, textbooks, and slices refer to? What actually
happens in ISD and what is the role of an ISD method in this process? These are
examples of questions that should be asked when engineering an ISD method,
and not only asked but also pursued to obtain “right” answers. As said above,
in the literature there are quite different views (answers) on these issues. In
what follows, we give examples of these views to demonstrate the variety of
conceptions and to motivate our search for a unified conceptual foundation.

An ISD method is commonly considered to contain collective knowledge
and experience of ISD (Tolvanen 1998; Fitzgerald et al. 2002; Schönström et al.
2003). There are, however, varying conceptions on a degree to which an ISD
method as a “knowledge base” can convey and provide knowledge for ISD
developers (Wastell 1996; Wordsworth 1999; Truex et al. 2000). Those that are
the most optimistic think that all the ISD knowledge can be thought to reside
outside the ISD practice – in books and in learned institutions, whereas some
others see the most relevant knowledge reside in ISD practice itself (cf. method-
in-action). Some part of the community appreciates formal methods (e.g. Jones
1986; Pfleeger et al. 1997; Wordsworth 1999), whereas others stand on the side of
informal and even amethodological approaches (Wastell 1996; Ciborra 1999;
Truex et al. 2000). This confusion is not much relieved by results from empirical
studies of the nature and significance of ISD methods to ISD work (cf.
Stolterman 1992; Hardy et al. 1995; Fitzgerald 1996a; Chatzoglou 1997; Hidding
1997; Rahim et al. 1998; Avison et al. 2003), as they are partly contradictory.

An ISD method is defined to be an approach (e.g. Brinkkemper 1996;
Truex et al. 2000; Russo et al. 1996), a way of accomplishing (Kruchten 2000), a
description of a technique (Hirschheim et al. 1995), a procedure (Kitchenham et
al. 1999), and a system (Jones et al. 1988; Krogstie 1995). From the structural
viewpoint, an ISD method is seen as “a collection of procedures, techniques,
tools, and documentation aids” (Avison et al. 1995a, 10), as “a collection of
procedures and heuristics” (Nuseibeh et al. 1996, 269), as “an organized
collection of concepts, methods, beliefs, values and normative principles” (Iivari
et al. 1998a, 165), and as “a system of rules, techniques, and tools” (Krogstie

55

1995, 13). Implied from these samples, there seem to be quite different
conceptions about the structure of an ISD method. Which of the aforementioned
parts are mandatory to acknowledging an artifact as an ISD method is also an
open question.

Having considered an ISD method from the structural viewpoint, we next
turn to examine its contents. The view of what an ISD method contains depends
on what kind of effort we think ISD is, and that, in turn, is affected by adopted
paradigmatic assumptions (Hirschheim et al. 1989; Iivari 1991; Hirschheim et al.
1992a), schools of though (Iivari 1991; Iivari et al. 1998a), and ISD approaches
(Wood-Harper et al. 1982; Lyytinen 1986; Hirschheim et al. 1995). ISD can be
seen, for instance, as a transformation process (e.g. Lundeberg et al. 1981;
Lehman 1984; Moynihan 1993; Tracz et al. 1993; Jacobson et al. 1999), as a
decision making process (e.g. Jarke et al. 1990; Wild et al. 1991; Grosz et al. 1997),
as a problem solving process (e.g. Bodart et al. 1983; Sol 1992; Blum 1994;
Jayaratna 1994), as a learning process (e.g. Iivari et al. 1987; Ramesh et al. 1994;
Lyytinen et al. 1999), or as a cooperative process containing negotiations,
bargaining, power and social interactions (e.g. Keen 1981; Markus 1983;
Newman et al. 1990; Chang et al. 2002). There are also ISD approaches, which
differ from one another in how they emphasize certain parts in ISD or how they
structure the ISD process (cf. Wood-Harper et al. 1982; Bracchi et al. 1984; Barbic
et al. 1985; Graham 1989; Vessey et al. 1994). The “world views” reflected by
these approaches seem to be so far from one another that it is difficult to
distinguish what is common to them. Perhaps one common denominator is a
conception about ISD as a context where people carry out specific actions, with
the support of tools, to produce IS models and their implementations. If this is
the case, we have still a problem: what is a context?

Context plays an important role in many disciplines, such as in formal
logic, knowledge representation and reasoning, machine learning,
computational linguistics, organizational theory, sociology, neurology, etc. Also
in the IS field there are several approaches that consider the notion of a context
important (e.g. Searle 1979; Auramäki et al. 1988; Sowa 1984; Engeström 1999;
Kuutti 1991; Motschnig-Pitrik 1995; Motschnig-Pitrik 1999; Rolland et al. 1995).
Which view of these disciplines should we prefer, and what are the essential
ingredients of a context according to such a view?

Developing information processing in an organizational context is a
complex endeavour. To manage the complexity, different viewpoints, levels of
abstraction, and perspectives have been specified and deployed (e.g. Welke
1977; Olive 1983; Essink 1986; Olle et al. 1988a; Iivari 1989a; Avison et al. 1990;
Sol 1992; Sowa et al. 1992; van Swede et al. 1993; Freeman et al. 1994; ISO 1996;
Booch et al. 1999). With a set of well-established perspectives it is easier to
determine scopes within which development issues are taken into consideration
in a step-by-step fashion. But which of the defined viewpoints and perspectives
are beneficial and suitable for the premises and selections we have made
before?

56

ISD work produces and deploys a large variety of IS models. What is
actually a model? How is it produced and represented? What kinds of models
exist and for which kinds of purposes they are suitable? Different kinds of
conceptions about these issues have been suggested (c.f. Minsky 1965;
Checkland 1981; Gigch 1991; Wijers 1991; Krogstie 1995; Hirschheim et al. 1995;
Falkenberg et al. 1998; Ramesh et al. 2001; Rosemann et al. 2002). Models appear
at several meta levels, and surprisingly, divergent conceptions exists also about
sets of meta levels (e.g. Bergheim et al. 1989; ISO 1990; Brinkkemper 1990; Gigch
1991; Wijers 1991; Heym et al. 1992a; Jarke 1992; Harmsen 1997; Falkenberg et al.
1998; OMG 2002).

We have raised, up till now, a number of questions to which answers
should be sought – and found - in order to establish a coherent and consistent
conceptual foundation. To succeed in this task, still more fundamental issues
must, however, be considered first. These issues are related to views of and
conceptions about reality in general: How do we conceive structural and
behavioral features of reality? How do we present our conceptions, and how do
we use abstraction mechanisms to derive generic conceptions from instances
and details? About these fundamentals also there are divergent assumptions
and suggestions in the literature (cf. Aristotles, Kant, Husserl, Peirce, Ogden &
Richards, Lyons, Morris). Commitment to certain assumptions and views has a
substantial effect on what kinds of approaches and viewpoints are applicable in
considering more IS-specific and ISD-specific issues.

In conclusion, method engineering may seem to be a well-structured effort
with a confined scope. In practice, the situation is far from that. Method
engineering involves, through the ISD method under construction, a huge
collection of issues, ranging from the nature, structure and contents of an ISD
method to the fundamentals of reality. With the short review of the literature
presented above we have shown that there exists a large variety of assumptions
and viewpoints about almost every single issue. To ensure a unified, coherent
and consistent conceptual foundation for ME, it is necessary that the questions
and issues raised above are carefully contemplated and answered, and
“compatible” conceptual constructs are established and integrated.

That is what we are going to do in this work. The conceptual foundation is
presented as an ontological framework, called OntoFrame. In Section 1.3 we
defined the goals for OntoFrame, requiring that it should be comprehensive,
contextual, consistent, coherent, and general. Further, we presume that
OntoFrame is clear, natural, generative, extensible, modular and based on
sound theories. Finally, we require that OntoFrame has to be applicable for
three intentions. First, it should offer concepts and constructs for conceiving,
understanding, structuring and representing phenomena in the concerned sub-
domains (the descriptive intention). Second, it should serve as a conceptual
foundation for the analysis and comparison of existing artifacts (the analytical
intention). An artifact here means an ontology, a meta-model, a framework, a
frame of reference, a technique, a method, etc. in the sub-domains. Third,
OntoFrame should support the construction of other artifacts, in particular ISD

57

methods and ME methods, by providing a conceptual foundation for the
artifacts.

The literature reviews and comparative analyses made in this study show
that regardless of numerous frameworks, frames of references, meta models,
etc. suggested in the literature, there is none that would come even close to
satisfying the stated goals (see the conclusions from the reviews and analyses in
Sections 2.5, 3.10, 5.1.6, 6.4, 7.3, 8.5, 9.7, 9.8.6, and 12.2). They mostly cover only
one or two sub-domains, and also in these sub-domains they address only part
of the essential phenomena.

2.2 Theoretical Backgrounds

The purpose of this section is to shortly describe those disciplines, on which
OntoFrame has been established, and derive fundamental views and principles
of the framework from them. The disciplines are metamodeling and ontology
engineering. For both of these disciplines we describe main concepts,
approaches, principles and processes.

Metamodeling

Metamodeling is a discipline that studies models of models, called meta
models, languages to represent meta models, and procedures to produce meta
models. Generally speaking, a model is a thing that is used to help or enable the
understanding, communication, analysis, design and/or implementation of
some other thing to which the model refers. A representation of a model is
called a model denotation (cf. Falkenberg et al. 1998, 55). A model denotation is
presented in some modeling language. A meta model is a specification of the
abstract syntax of a modeling language (cf. Oei 1995, 113). Also a meta model is
represented in some language that is called a meta modeling language or a
meta language. The abstract syntax of that language is specified by a model
called a meta meta model.

Metamodeling is also seen as a process. It takes place on one level of
abstraction and logic higher than the application modeling process (cf. Gigch
1991; Tolvanen 1998, 82). It comprises several sub-processes: e.g. abstracting
from existing models, transforming from another meta model, translating from
another meta model denotation, revising an existing meta model, and
integrating other meta models. Metamodeling can be used to compare methods
(e.g. Hong et al. 1993; Rossi 1996), to support standardization efforts (e.g. Booch
et al. 1999), and to establish linkages between ISD methods (e.g. Ramackers
1994; Song 1997; Saeki 1998; Pohl et al. 1999).

Depending on what is the target of metamodeling, we can distinguish
between different kinds of meta models: e.g. meta data models, meta process
models, meta actor models, meta goal models, etc. Respectively, there are

58

processes of meta data modeling, meta process modeling, meta actor modeling,
and meta goal modeling.

The first attempts in metamodeling focused on data models (Teichroew et
al. 1980). Meta models were built on some variants of semantic models (Hull et
al. 1987), mostly on ER-based models (Sorenson et al. 1988; Welke 1988;
Smolander 1991; Venable 1993) or NIAM–based models (Bommel et al. 1991; ter
Hofstede et al. 1992; ter Hofstede et al. 1993a). Meta data modeling languages
are based on set-theoretic constructs (Bergsten et al. 1989), predicate logic
(Brinkkemper 1996; Harmsen 1997), attribute grammar (Katayama 1989), or
object-oriented constructs (e.g. Object-Z, Saeki et al. 1994). Examples of specific
meta data modeling languages are ASDM (Heym et al. 1992a), CoCoA (Venable
1993), GOPRR (Kelly et al. 1996), Telos (Jarke et al. 1990; Nissen et al. 1996), and
MEL/MDM (Harmsen 1997). More about meta data modeling languages and
differences between them can be found in Venable (1993), Saeki et al. (1994),
Harmsen et al. (1996), and Tolvanen (1998, 155).

In the meta process modeling we can recognize several approaches to
process modeling (Curtis et al. 1992; McChesney 1995; Heineman et al. 1994):
e.g. process programming approach, functional approach, plan-based approach,
Petri-net approach, and system dynamic approach. There are also different
perspectives into processes (Curtis et al. 1992): functional, behavioral,
organizational, and informational perspectives. Numerous languages for
process modeling have been suggested (e.g. Bandinelli et al. 1993; Deiters et al.
1994; Christie 1993; Shepard et al. 1992; Dutton 1993; Kaiser et al. 1993). These
are based on e.g. logic based rules, attribute grammars, state transition
diagrams, Petri nets, etc. (Curtis et al. 1992; Armenise et al. 1993; Finkelstein et al.
1994; McChesney 1995). Some evaluations of and comparisons between process
modeling languages are reported e.g. in Söderström et al. (2002).

Regardless of whether the purpose is to produce a meta data model, a
meta process model, etc., three metamodeling approaches can be distinguished:
top-down, bottom-up, and mixed approaches. In the top-down approach,
concepts and constructs of a meta model are derived from relevant theories
and/or generic views and assumptions on the relevant domains. The bottom-
up approach focuses on modeling selected models generalizing their concepts
and constructs. In the mixed approach, both generic views and existing models
are sources for producing meta models.

To illustrate a process of metamodeling, we next apply the bottom-up
approach and the ER model (Chen 1976). The process starts with the selection of
models for metamodeling and with the decision on the aims of metamodeling.
The aims can be related to evaluation, comparison, integration, mapping, etc. of
models. They determine the level of detail, focus and emphasis of
metamodeling. Second, main concepts in the models are identified and named.
For example, in the DFD model (Yourdon 1989) the main concepts are ‘process’,
‘store’ and ‘external’. They are regarded as entity types. Also main relationships
between the concepts are recognized. In the DFD model, there is only one
relationship called ‘data flow’ that relates externals, stores, and processes to one

59

another. It is called the relationship type in the ER model. Third, main
properties identifying or characterizing entity types or relationship types are
recognized and named. These properties are attributes. For ‘store’ we can find
two attributes, ‘identifier’ and ‘name’. Further, roles that entities can play in
relationships are identified. In the DFD model there are two roles, ‘input’ and
‘output’. Fourth, constraints imposing on the concepts and the relationships are
defined. In the DFD model there is a constraint that does away with a ‘data
flow’ to directly relate ‘external’ and ‘store’ to one another. The steps described
above are performed in an iterative way and in parallel with presenting the
resulting meta model in a graphical notation. The process also comprises
evaluation, refinements and restructuring of the meta model. If a target of
metamodeling is large, like an ISD method, special steps are needed to integrate
meta models (e.g. Song 1997; Harmsen 1997; Leppänen 2000).

Ontology Engineering

The notion of ontology appears in two meanings in the literature. It means, on
one hand, a branch of philosophy dating back to 17th century13. In this sense,
ontology is the study of existence, of all kinds of entities – abstract or concrete –
that make up the world (Sowa 2000, 51). It concerns “what is out there” (Quine
1953) and “the basic traits of the world” (Bunge 1974, 38). Ontology engineering
here means a discipline, which studies ontologies, ontology representation
languages and procedures for engineering ontologies. On the other hand, the
notion of ontology is used to refer to an ontology of some application or
domain. In that sense, an ontology is regarded as “consensual knowledge
represented in a generic and formal way to be reused and shared across
applications and by groups of people” (Corcho et al. 2003, 44). Ontologies are
kinds of frameworks unifying different viewpoints and serving as a basis for
the communication between people, between people and systems, and between
systems. Thus they function in a way like a lingua-franga (Chandrasekaran et al.
1999). Ontology engineering is a process, which aims to capture that consensual
knowledge.

We define an ontology to mean an explicit specialization of a
conceptualization of some part of reality that is of interest (cf. Gruber 1993, 199).
A specialization can be presented in the form of a vocabulary, a taxonomy, a
thesaurus, a conceptual framework, and a theory. A vocabulary or a glossary is a
list of terms that have been enumerated explicitly. Each term has been defined
or at least characterized properly. A taxonomy or a taxonomic skeleton is a
classification of terms based on similarities in their meanings. In a taxonomy the

13 Actually, one of the first philosophers having interests in ontological contemplations

is said to be Heraclitus in the sixth century B.C.. He distinguished, among others, a
set of top-level ontological categories (Sowa 2000, 56).

60

terms are related with subsumption or generalization relations14. A taxonomy
mostly takes a form of a tree structure, but it can also have a lattice structure, or
be in the form of multi inheritance graph. A thesaurus is a networked collection
of vocabulary terms with associative relationships. A conceptual framework is a
graph with concepts, relationships and rules for combining concepts (cf.
Sugumaran et al. 2002, 253). A theory, commonly in an axiomatic form, defines
concepts, relationships and rules formally with axioms (Guarino et al. 1995).
Ontologies that are mainly in the form of taxonomies are called lightweight,
and ontologies that model the domain in a deeper way and provide more
restrictions on domain semantics are called heavyweight ontologies (Corcho et
al. 2003, 44).

Another way of classifying ontologies is based on the level of generality
(Guarino 1998, 7; van Heijst et al. 1997). Top-level ontologies describe very general
concepts like space, time, matter, object, event and action, independently of a
particular problem or domain. Domain ontologies and task ontologies describe,
respectively, the vocabulary related to a generic domain (like medicine, or
automobiles) or a generic task or activity (like diagnosing or selling). The
concepts in those ontologies are specialized from the ones introduced in the
top-level ontology. Application ontologies describe concepts depending both on a
particular domain and task, and they are often specializations of both of the
aforementioned ontologies. The boundaries between the kinds of ontologies are
vague (van Heijst et al. 1997).

Further, we can distinguish between a meta ontology and an instance
ontology. A meta-ontology provides concepts, relationships, and rules to specify
instance ontologies (cf. Uschold et al. 1996, 15). In other words, a meta-ontology
specifies semantics of an ontology language. In the simplest case, a meta-
ontology is composed of concepts such as class, entity, and relation15.

An ontology is represented in a language that can be informal or formal. A
degree of formality varies from informal definitions of concepts expressed in a
natural language to definitions stated in a formal language. Uschold et al. (1996)
distinguish between highly informal, semi-informal, semi-formal, and
rigorously formal ontologies. A highly informal ontology is loosely expressed in
a natural language. A semi-informal ontology is expressed in a structured form
of a natural language. A semi-formal ontology is expressed in an artificial,
formally defined language. In a rigorously formal ontology the terms are
meticulously defined with semantics and theorems.

Formality required from the ontology language is, to a large extent,
dependent on the degree of automation in the tasks, which the ontology is to
support. If an ontology is to be a framework for communication among people,

14 In some cases, concepts within a taxonomy may also be related by the whole-part

and type instance relationships.
15 The term ’meta-ontology’ is involved by synonym and homonym problems. van

Heijst et al. (1997), for instance, use the term ‘representation ontology’ to mean meta-
ontology (see also Davies et al. 2003), and Wand (1996, 281) calls any domain-
independent ontology, like the ontology of his own, a meta ontology.

61

the representation of an ontology can be informal. If an ontology is to be used
by software tools or intelligent agents, the semantics of an ontology must be
made much more precise. Formal ontology languages include so-called
traditional ontology languages, such as enriched first-order predicate logic (e.g.
CycL, KIF, KL-ONE), frame-based languages (e.g. Ontolingua, F-logic, OCM),
and description logic based languages (e.g. Loom) (Su et al. 2002, 4). In addition,
there are web standards (e.g. XML, RDF) and web-based ontology languages
(e.g. OIL, DAML+OIL, OWL, SHOE, XOL). Furthermore, graphical languages
like CLEO (a graphical language for expressing ontologies (Falbo et al. 1998a)),
LINGO (Falbo et al. 1998b) and UML (Cranefield et al. 1999; Kitchenham et al.
1999; Baclawski et al. 2001) have been used to present ontologies.

In the ontology engineering literature a variety of ontology engineering
approaches are suggested (Noy et al. 2001, 6; Uschold et al. 1996, 20-22). The
most common classification of the approaches is: top-down approach, bottom-
up approach, and middle-out (or mixed) approach. A top-down engineering
process starts with the definition of the most general concepts in the domain
and continues with subsequent specializations of the concepts. A bottom-up
engineering process starts with the definition of the most specific concepts, i.e.
the leaves of the hierarchy, and continues with subsequent abstractions of these
concepts into more general concepts. A middle-out or mixed engineering process
is a combination of the two others. According to it, one defines the most
important concepts first and then generalizes and specializes them
appropriately.

Further, a large range of principles, guidelines, and even methods have
been presented for ontology engineering (e.g. Uschold et al. 1995; Uschold 1996;
Gruninger et al. 1995; Swartout et al. 1997; Fernandez-Lopez et al. 1999; Staab et
al. 2001)16. However, none of the methods is fully mature if compared to
methods in software engineering and knowledge engineering fields (Corcho et
al. 2003). It is also common that each proposal applies its own approach.
Nevertheless, we present next an outline of a process, which contains typical
activities of ontology engineering (cf. Uschold et al. 1996).

The process starts with deciding why the ontology is wanted, what it will
be used for and what kind of scope it has. Next, building the ontology is
started. First, key concepts and relationships in the domain of interest are
identified and defined (‘capture phase’). Also terms with which to refer to such
concepts and relationships are determined. Second, concepts and relationships
as well as constraints related to them are presented in a chosen ontology
representation language (‘coding phase’). During the capture phase and/or the
coding phase, possibilities to integrate parts of existing ontologies are
examined, and if found beneficial, integration is carried out. The ontology
engineered is evaluated based on defined criteria such as clarity, consistency
and reusability. The ontology together with assumptions about the main

16 See also: Falbo et al. 1998a; Guarino et al. 2000; Noy et al. 2001; Schuster et al. 2001;

Zhou et al. 2002; Kayed et al. 2002.

62

concepts is documented. Also the primitives used to express the definitions in
the ontology (i.e. the meta-ontology) should be recorded.

Conclusions

Our objective is to build a conceptual framework by which knowledge about an
ISD method and its engineering can be conceived, understood, structured and
represented. This body of knowledge is related to five sub-domains: IS, ISD,
ISD method, ME, and ME method. The knowledge should be able to be
represented with generic concepts and easy-to-read notations in order to
facilitate its general use.

Concluded from the descriptions of two disciplines above, we can state
that both metamodeling and ontology engineering can provide theoretical
“building blocks” for our framework. Metamodeling creates, extends, modifies,
and integrates models of models that describe / prescribe particular sub-
domain(s). Ontology engineering in turn collects, organizes and represents
“consensual” knowledge of the concerned sub-domains. Ontologies can serve
as unifying frameworks for different viewpoints. Both of these disciplines
suggest languages to present artifacts, i.e. meta models and ontologies,
respectively. The languages are specified with meta meta models in meta
modeling and with meta ontologies in ontology engineering. These two
disciplines allow a range of formality with which artifacts can be presented.

For the aforementioned reasons, we deploy concepts, approaches,
principles and processes of metamodeling and ontology engineering in this
work. To emphasize the “ontological roots” of our framework, we call it the
ontological framework. The framework is a kind of “umbrella” comprising a
generic ontology and a large set of domain-specific ontologies. The generic
ontology is anchored in the philosophy of science. Most of the domain-specific
ontologies are rooted on contextual concepts. The ontologies are presented in
meta models composed of concepts, relationships and constraints. Some of the
domain-specific ontologies (e.g. the model level ontology) are directly
established on main constructs and principles of metamodeling. A process of
engineering the domain-specific ontologies has been adapted from processes
used in ontology engineering (see more closely in the next section). In the
integration of the ontologies principles common in metamodeling are deployed.

2.3 Outline of OntoFrame

OntoFrame is an ontological framework, comprising a number of component
ontologies with a multi-dimensional structure. These components range from
highly generic ontologies to ME-specific ones. In this section we outline the
framework by describing its sub-domains, structure and representation.

63

2.3.1 Sub-Domains

OntoFrame is a conceptual framework that should provide concepts and
constructs for conceiving, understanding, structuring, and representing
phenomena in ME as contexts and/or within contexts. In Section 2.1 we showed
that the scope of the framework is very large, addressing several sub-domains.
In this section we introduce the sub-domains by describing how reality is
conceived through different views in this work.

We start with the most generic view according to which a human being
lives in the ‘physical’ reality (the objective reality) and he/she has personal
conceptions (the subjective reality) about it. He/She becomes aware of
phenomena in reality through perceiving and interacting with it17. Interaction
changes the subjective reality and often the objective reality as well. From this
viewpoint, the reality “appears” to be single phenomena that are here called
things (Bunge 1977). Taking a more specific viewpoint, things can be seen to be
related to one another, thus constituting structures.

A still more specific view of reality is obtained when considering how
human beings become to conceive reality and get their conceptions represented.
This is facilitated by the use of the concepts of semiotics (Ogden et al. 1923), as
well as of the notions of extension and intension. Furthermore, if there is a need
to make sense of signs and their relations and meanings, basic concepts
pertaining to the syntax and semantics of a language are taken into the use
(Lyons 1977). Up till now, no view has been introduced to aid the recognition of
changes in reality. For this purpose, the concepts of state and transition, known
in systems theories (e.g. Klir 1969), can be used. Human beings have excellent
abilities to build and maintain complex concept structures, infer from them and
make abstractions from them. To understand abstractions and to support
human beings in that requires a special view with abstraction concepts.

To conceive and make sense in more depth about how things are related
to one another in reality and what are the meanings of those relationships,
things must be viewed within meaningful contexts. Hence, it is necessary to
have the notion of a context that clearly distinguishes the essential constituents
of the context. At this stage reality manifests itself so complex and multifaceted
that it is also necessary to have means to define and apply well-structured
perspectives. It also becomes evident that phenomena are related to information
processing at different layers and conceptualized by concepts at different meta
levels. Hence, we need views that help us distinguish and structure processing
layers and meta levels.

A still more specific view is needed if focusing on phenomena related to
information systems and their development. These are special kinds of contexts,
with particular kinds of purposes, actors, actions and outcomes. ISD methods,
in turn, are prescriptions for ISD contexts. To conceive, understand, structure
and represent features of ISD methods we need still another view, which offers

17 Note that other human beings are part of the ‘physical reality’ and interacting with

that also comprises the interplay with other human beings.

64

specific concepts and constructs related to e.g. the nature and structure of an
ISD method. Also method engineering is a special kind of context. To make
sense of phenomena related to that we need specific concepts and constructs.

In conclusion, conceiving reality in more depth necessitates the
availability and use of more specific views. Views enable the recognition and
representation of phenomena in a number of sub-domains. Implied from the
above, we can distinguish between five sub-domains: IS, ISD, ISD method, ME
and ME method. In addition, there is the generic sub-domain underlying and
integrating the other sub-domains.

2.3.2 Overall Structure

OntoFrame is composed of four main parts that are: the core ontology, the
contextual ontologies, the layer-based ontologies, and the method ontologies.
Decomposition of the framework into the main parts has been made according
to specificity of the ontologies (Guarino 1998, 7). Each main part is further
divided into several sub-parts that are called component ontologies. The overall
structure of the framework is presented in Figure 6. Arrows between the
rectangles representing the main parts denote from which more specific
concepts have been derived. In the following, we describe each of the main
parts and their component ontologies in terms of their purpose, domain, and
theoretical foundation (see Tables 1-4).

Core ontology
- Generic ontology
- Semiotic ontology
- Intension/extension
 ontology
- Language ontology
- State transition
 ontology
- UoD ontology
- Abstraction ontology

Contextual
ontologies

- Context ontology
- Layer ontology
- Perspective ontology
- Model level ontology

Method
ontologies

- ISD method ontology
- ME method ontology

Layer-based
ontologies

- IS ontology
- ISD ontology
- ME ontology

FIGURE 6 An overall structure of the ontological framework

The purpose of the core ontology is to provide the key concepts and constructs
for conceiving, understanding, structuring and representing fundamentals of
reality. It comprises seven component ontologies, each of which has its own
purpose and role in the core ontology. The component ontologies are: the
generic ontology, the semiotic ontology, the intension / extension ontology, the

65

language ontology, the state transition ontology, the UoD ontology, and the
abstraction ontology (Table 1).

TABLE 1 Core ontology

Ontology Purpose Domain Theories
Generic ontology To provide the most

generic concepts from
which all the other
concepts can be derived

Reality Philosophy of
science

Semiotic ontology To provide concepts for
the recognition of
semiotic phenomena

Linguistic,
conceptual and
physical reality

Semiotics

Intension/extension
ontology

To provide concepts for
categorizing concepts
and defining their
semantic meanings

Conceptual and
physical reality

Philosophy of
science

Language ontology To provide concepts for
defining the syntax and
semantics of a language

Language Linguistics

State transition
ontology

To provide concepts for
the recognition of
dynamic phenomena

Static and
dynamic
phenomena

Systems theory

UoD ontology To provide consolidated
concepts for conceiving
from a selected
viewpoint

Subjective view Systems theory,
Philosophy of
science

Abstraction
ontology

To provide concepts for
abstraction

Abstraction Philosophy of
science,
Abstraction theory

The generic ontology provides the most generic concepts from which all other
concepts can be derived by instantiation and/or specialization. This ontology
corresponds to the top ontology in Guarino (1998). The most elementary
concept is ‘thing’, which means any phenomenon in the ‘objective’ or subjective
reality. The core ontology has roots in philosophy of science, especially in
Bunge (1977). The semiotic ontology defines concepts that are needed to
recognize semiotic phenomena. The main concepts, adopted from semiotics
(Ogden et al. 1923), are ‘concept’, ‘sign’, and ‘referent’. The intension / extension
ontology serves a conceptual mechanism to specialize the notion of a concept
and define its semantic meanings. The notions of intension and extension
enable to differentiate between e.g. ‘basic concept’, ‘derived concept’, ‘abstract
concept’, ‘concrete concept’, ‘instance concept’ and ‘type concept’.
Considerations of the intension / extension ontology are mainly based on the
philosophical basis by Hautamäki (1986).

The language ontology provides concepts for defining the syntax and
semantics of a language. Based on linguistics (e.g. Morris 1938), it contains
concepts such as ‘language’, ‘alphabet’, ‘symbol’, and ‘expression’. The state
transition ontology is composed of concepts and constructs for the recognition of

66

dynamic phenomena in reality in terms of states, state transitions, and events.
The view of the ontology is based on systems theory (e.g. Klir 1969). The
universe of discourse ontology, shortly the UoD ontology, is composed of
consolidated concepts through which reality can be conceived as a totality
determined by a selected viewpoint. These concepts are ‘UoD state’, ‘UoD
behavior’ and ‘UoD evolution’. On a general level, this ontology is based on
systems theory and philosophy of science. The abstraction ontology serves
concepts and constructs to abstraction by classification, generalization,
aggregation, and grouping. Rooted on the intension / extension ontology, it
also distinguishes between the first order abstraction and the second order
abstraction (or predicate abstraction). It is based on the philosophy of science
and abstraction theories.

The contextual ontologies help us recognize, understand and model
phenomena in reality as contexts and within contexts. Among the contextual
ontologies, there are four component ontologies. The ontologies are: the context
ontology, the layer ontology, the perspective ontology, and the model level
ontology (Table 2). The component ontologies are orthogonal to one another.

TABLE 2 Contextual ontologies

Ontology Purpose Domain Theories
Context
ontology

To provide concepts to
conceive phenomena as
contexts and within
contexts

Social and human
contexts

Pragmatics,
Theories of human
and social action

Layer ontology To provide concepts to
structure and relate
information processing
and its development

Information
processing and its
development

Systems theory,
Information
systems science

Perspective
ontology

To provide concepts for
distinguishing and
applying perspectives

Information
processing in the
organizational
context

Systems theory,
Semantics,
Abstraction theory

Model level
ontology

To provide concepts for
the creation,
specification and
presentation of models

Modeling,
modeled, and
model utilization
contexts

Linguistics,
Philosophy of
science

The most essential ontology among the contextual ontologies is the context
ontology. It recognizes seven contextual domains, called the purpose domain,
the actor domain, the action domain, the object domain, the facility domain, the
location domain, and the time domain. For each contextual domain, essential
concepts and constructs are provided. The ontology is rooted on semantics,
pragmatics and some theories of human and social action (Leont’ev 1978;
Vygotsky 1978; Engeström 1987; Kuutti 1991). The layer ontology helps us
structure and relate, on a general level, phenomena of information processing
and its development at several layers. The layers are: information system (IS),
information systems development (ISD), method engineering (ME), and

67

research work (RW). This ontology is based on systems theory and information
systems science. The perspective ontology provides a set of well-defined
perspectives to focus and structure the perceptions of contextual phenomena.
The perspectives are: systelogical, infological, conceptual, datalogical, and
physical perspectives. The perspective ontology is based on systems theory,
semantics, and abstraction theory. With the model level ontology, one is able to
create, specify and present models, in different modes, about reality. The kernel
in this ontology is a hierarchy composed of instance models, type models, meta
models, meta meta models, etc. The ontology is based on linguistics and
philosophy of science.

The third main part of OntoFrame is called the layer-based ontologies. While
the layer ontology gives the basic structures for distinguishing between the
processing layers and relating them to one another and the context ontology
provides the generic concepts for recognizing contextual phenomena in any
context, the layer-based ontologies elaborate the views on the IS, ISD and ME
domains. These ontologies are: the IS ontology, the ISD ontology and the ME
ontology (Table 3).

TABLE 3 Layer-based ontologies

Ontology Purpose Domain Theories
IS ontology To provide concepts to

conceiving, structuring
and representing
contextual phenomena
in the IS

IS context IS theories

ISD ontology To provide concepts to
conceiving, structuring
and representing
contextual phenomena
in ISD

ISD context IS & ISD theories

ME ontology To provide concepts to
conceiving, structuring
and representing
contextual phenomena
in ME

ME context

The IS ontology helps us conceive, understand, structure, and represent
phenomena in information-intensive contexts. Besides the information system,
the ontology recognizes systems that are related to the IS (i.e. the object system,
the utilizing system, and the controlled system). The ISD ontology provides
concepts for the perception, understanding, structuring and representing of
contextual phenomena in information processing development. The concepts
are categorized along the perspective ontology. The ISD ontology has been built
by selecting, abstracting, modifying and integrating concepts from multiple
theories in the IS and ISD domains. Respectively, the ME ontology provides
concepts to the perception, understanding, structuring and representing of

68

contextual phenomena in method engineering. These concepts are also
categorized along the perspectives. The ontology has been built on the basis
provided by rather general and insufficient ME literature.

The fourth main part of the framework is called the method ontologies
(Table 4). It provides concepts and constructs by which one can conceive,
understand, structure, and represent the nature, structure and contents of a
method. Instead of defining a generic method ontology, we define the ISD
ontology and the ME ontology. This is done for two reasons. First, we are
particularly interested in methods for development of information processing at
various layers, and not in methods for product design, manufacturing, or the
like. Second, ME is commonly seen to be analogous to ISD (Olle et al. 1988a;
Kumar et al. 1992; Tolvanen 1998), and thus deriving the ME method ontology
from the ISD method ontology is assumed to be a straightforward effort. In
building the ISD and ME method ontologies, we have deployed the contextual
ontologies and concepts from the ISD and ME domains, respectively.

TABLE 4 Method ontologies

Ontology Purpose Domain Theories
ISD method
ontology

To provide concepts for
conceiving, under-standing
and representing of the
nature, structure and
contents of an ISD method

ISD method IS & ISD theories

ME method
ontology

To provide concepts for
conceiving, under-standing
and representing of the
nature, structure and
contents of an ME method

ME method

To summarize, the rationale to the decomposition of the ontological framework
into the main parts and further into component ontologies is based on types of
phenomena that are seen relevant to conceive and structure separately.
According to the most generic view, reality is seen as being composed of things.
This view is gradually specialized by applying several theories: philosophy of
science, semiotics, semantics, pragmatics, and theories of human and social
action. Finally, the views are “contextualized” into the domains of information
systems, information system development and method engineering.

The modular structure of the framework benefits the building and use of
OntoFrame in many ways. It helps us manage the complexity inherently
resulting from a myriad of concepts and constructs. As seen from the above,
there are multiple “dimensions” within the framework along which the
concepts are situated. Without this modular structure it would be almost
impossible to guarantee the coherence and consistence of the concepts and
constructs. When applying the framework, the modular structure also guides
the user to select the component ontology that is the most useful to his/her
problem at hand.

69

2.3.3 Presentation

There are four degrees of formality by which the ontologies can be presented:
highly informal, semi-informal, semi-formal and rigorously formal (Uschold et
al. 1996). OntoFrame is mainly aimed at a means for the perception and
communication between human beings. It is not aimed at the communication
between people and computers, neither at the interaction between computers.
On the other hand, the framework comprises a very large set of concepts and
constructs, and most of them are highly abstract. For these reasons it is
important to present the framework in a concise but understandable form. We
have decided to deploy two forms of representation: semi-formal and highly
informal. The semi-formal form is used to give an overview of the framework
and facilitate communication between human beings with different
backgrounds. This form is also used to specify constraints imposing the
concepts and relationships. From a variety of semi-formal languages we have
chosen a graphical language (see arguments by Guizzardi et al. 2001a, 2). Due
to the inability of a graphical language to express details and deep meanings of
things we also use a natural language to give a precise definition for each
concept and construct. The definitions are embedded in the text and enclosed in
Appendix 1.

There are many options for a graphical language. The first choice could
have been made among special ontology representation languages, such as
CLEO (a Graphical Language for Expressing Ontologies, Falbo et al. 1998a),
LINGO (Falbo et al. 1998b), DAML+OIL (McGuinness et al. 2002) and OWL18.
Most of these languages are designed to express deep generalization or
subsuming hierarchies of concepts that are typical for ontologies built in
artificial intelligence. The second choice could have been made among
“traditional” graphical notations used in conceptual modeling, such as e.g. the
ER notation (Chen 1976), the EER notation (e.g. Elmasri et. al. 2000), the NIAM
notation (Nijssen et al. 1989), the GOPRR notation (Kelly et al. 1996), and the
conceptual graph language (Sowa 2000). These notations have been designed to
express a large range of relationship types, not only the generalization
relationships. In addition, in these it is possible to include roles and multiplicity
constraints in the graphical representations.

We, however, decided to select the UML language. UML (Unified
Modeling Language) is a graphical language for visual object modeling. It has
been standardized by OMG (Object Management Group) first in 1998, and the
latest standardized version, UML 2.0, is from 2003 (OMG 2003). There are many
reasons for this selection (cf. Kogut et al. 2002). UML has a very large and
rapidly expanding user community, which guarantees that OntoFrame is easier
to understand than if we represented it in some ontology representation
language or in a traditional ER-like notation. UML has an intrinsic mechanism
for defining extensions for specific domains, like for ontology modeling. The
UML is supported by widely adopted CASE tools, which are more accessible

18 http://www.w3.org/TR/2003/PR-owl-guide-20031215/ .

70

than current ontology tools such as Ontolingua19 and Protégé20, which require
expertise in knowledge representation. Further, some research projects have
also applied UML for ontology representation (e.g. Cranefield et al. 1999;
Bergenti et al. 2000; Wang et al. 2001; Baclawski et al. 2002).

UML defines several types of diagrams that can be used to model static
and dynamic features of a system (Booch et al. 1999). Because our framework is
static, we apply the notation of the class diagram. The notation is very
expressive. Although it is based on few key concepts (object class, association,
role), it contains a large variety of specialized constructs, e.g. generalization,
aggregation, and composition relationships. Constraints related to associations
can be presented by multiplicities (1, 0..1, * , 1..*). If necessary, the special
constraint expression language, called OCL (Object Constraint Language), can
be used to formulate well-formed logic-based expressions

The class diagram contains many concepts that are not needed in the
presentation of OntoFrame (e.g. class association, dependency association,
operation/method etc.). Therefore, we separate a subset of the concepts of the
class diagram, like OMG has done in defining the MOF (Meta Object Facility)
model (OMG 2002). The MOF model is aimed at modeling the UML language
itself, CWM (Common Warehouse Metamodel), and CCM (CORBA Component
Model)21. Even from the set of the concepts and constructs of the MOF model
we exclude some concepts, such as attribute, as unnecessary for our purposes.
Our UML-based language for ontology representation is specified in Appendix
2.

An ontology representation language is a meta-ontology (Uschold et al.
1996, 15). By selecting the subset of UML as our graphical notation does not
mean that we adopt the corresponding concepts as the concepts of our meta-
ontology. As said above, our meta-ontology is the generic ontology, which is
based on the notions such as ‘thing’ and ‘relationship’. We only use UML as the
notation and do not commit to its concepts.

In addition to constraints visible in the diagrams of the meta models, we
define axioms to make some constraints within the component ontologies in the
core ontology more explicit. Axioms are presented in the first-order predicate
logic.

2.4 Approach and Process of Engineering OntoFrame

In this section we first describe what kinds of approaches and strategies to
ontology engineering we have applied in building OntoFrame and why.
Second, we describe the process by which we have engineered the component
ontologies.

19 http://www.ksl.stanfrod.edu/sns.shtml
20 http://www.smi.stanford.edu/projects/protégé
21 www.dstc.edu.au/Research/Projects/MOF/Tutorial.html

71

Ontology engineering comprises categorizing, naming and relating things
in an explicit way. There are two sources of ontological categories (Sowa 2000,
51): observation and reasoning. Observation provides knowledge of the
physical world, and reasoning makes sense of observation by generating a
framework of abstraction. This work is not based on observation of the
physical world. Instead, we have extensively utilized and reasoned from the
literature on the relevant sub-domains.

We distinguish between two approaches to the utilization of literature in
ontology engineering. In the inductive approach, source material is collected from
individual instance-level artifacts, i.e. ontologies, frameworks, and methods. A
more generic framework is then abstracted from these artifacts. In the deductive
approach some universal-like theoretic constructs are first selected from the
literature and then used as underlying structures for a framework. We have
applied both of these approaches. First, in building the core ontology we have
made a thorough analysis of generic frameworks and ontologies (e.g. Bunge
1977; Wand 1988a; Wand et al. 1990a; Falkenberg et al. 1998) and derived by
selection, integration, and customization our ontology from them. In contrast,
in engineering the context ontology we have first searched for disciplines and
theories (e.g. pragmatics (Levinson 1983) and theories of human and social
action (e.g. Leont’ev 1978; Engeström 1987)) that address social contexts and
derived from them the fundamental categorization of concepts into seven
contextual domains. After that we have enriched the contents and structure of
each domain deriving from existing artifacts. The elementary structures in the
perspective ontology, the model level ontology and the layer ontology have also
been derived from the relevant theories. For the rest of OntoFrame we have
applied the deductive approach to derive lower-level ontologies from higher-
level ontologies. In this process we have also heavily utilized the existing
literature to complete and customize the derived concepts and constructs to fit
in the concerned sub-domains.

We can find two pure representatives of the aforementioned approaches
in the literature. Harmsen (1997) has built his MDM model (Methodology Data
Model) by deriving from existing classifications and frameworks. The use of the
inductive approach has resulted in a large set of IS-specific and ISD-specific
concepts that are justified through their source artifacts. A drawback of this
approach is that it does not encourage bringing forward new and innovative
insights. In the BWW model22 (Wand et al. 1990a; Wand et al. 1995b) for
modeling information systems, fundamental concepts and constructs have been
adapted from Bunge’s ontology (Bunge 1977). By the use of the deductive
approach the model pursues “universality” of concepts and constructs. The
rationale behind the selection of Bunge’s ontology has been (cf. Wand et al.
1995a, 287): An IS is a representation of another (“real-world”) system. Because
ontology is a branch of philosophy dealing with modeling reality, it is suitable
to model information systems concepts. However, there is always a risk in
selecting theories that have not originally been crafted for the field concerned.

22 Here we consider the representation model only.

72

As Wand, Monarchi, Parson and Woo (1995) present, Bunge’s “ontology is not
generally accepted ontology, it seems to assume an ‘objective reality’, and it
does not deal with the organisational and behavioural aspects of IS”. Green and
Rosemann (2000, 82) raise a question about whether the BWW model “is over-
engineered”, that is to say, whether it includes constructs that are not relevant.
Further, Wand and Weber (1993) and Weber (1997) have recognized problems
in understandability, comparability, and applicability of the BWW
representation model constructs.

We have tried to overcome the aforementioned kinds of problems by
applying both of the approaches. Theory-based constructs give underlying
structures that are “tested”, enhanced and elaborated by the inductive
derivation from current artifacts. The use of theories advances not only the
soundness of the framework but also innovations.

Another way to characterize the process of ontology engineering is to use
the categorization of the approaches into top-down, bottom-up and mixed
approaches (Uschold et al. 1996; Noy et al. 2001, 6). Our process has mainly
followed the top-down approach. The process can be divided into four stages:
(1) building the core ontology, (2) deriving the contextual ontologies, (3)
deriving the layer-based ontologies, and (4) deriving the method ontologies (see
Figure 6). The first versions of the abstraction ontology were made based on
some preliminary assumptions and constructs within the generic, semiotic, and
intension/extension ontologies (Leppänen 1984b). The process to define
concepts and constructs was iterated and extended to cover the whole core
ontology. Next, a comprehensive search for theories that address the notion of a
context with the purpose of explicating the meaning of a thing was carried out.
As a result the fundamental categorization of contextual domains was specified
and later enhanced with contextual concepts and constructs integrating and
adapting existing artifacts. Also some refinements in the core ontology were
made at this stage. Third, the concepts and constructs of the ISD and ME
domains were defined and structured to establish the ISD and ME ontologies,
respectively. Finally, the method ontologies (the ISD method ontology and the
ME method ontology) were defined based on the “lower” level ontologies.

The main strategies for ontology engineering are: (a) creation “from
scratch”, (b) adaptation of existing ontologies, and (c) integration of existing
ontologies, or parts thereof. The ontology engineering literature most
commonly applies the first strategy. Due to our source material and the
multiplicity of sub-domains addressed in our work, we preferred to apply the
integration strategy whenever it was possible. In this way we could import
existing knowledge from sub-domains in which views and concepts are more
stabilized and fit the overall premises. Adaptation was carried out when
needed.

In line with aforementioned approaches and strategies we have specified a
procedure of ontology engineering, which we have used in engineering each of
the component ontologies in OntoFrame. The procedure is composed of the
following steps:

73

• Determine the purpose and domain of the ontology.
 Decide for what purposes the ontology is to be used and what is the

domain the ontology should address.
• Consider reusing existing artifacts.
 Review existing literature to find parts in ontologies for exploitation,

preferably through integration and/or adaptation. Consideration of their
usefulness is based on their fit in terms of purpose and domain.

• Conceptualization.
 Based on the review and analysis of the existing literature, identify key

concepts and relationships of the ontology. Decide on terms for concepts
and relationships and resolve possible synonym and homonym problems.
Formulate definitions for the concepts. If some part can be extracted from
existing ontologies, carry out actions to integrate that part to the body of
the framework.

• Formalization.
 Present the concepts and relationships as well as constraints in the

graphical form in UML. Sophisticated constraints are presented with
axioms in the first-order predicate logic.

• Evaluation.
 Evaluate the ontology with a set of predefined criteria (i.e. clarity,

consistency, coherence, extensibility).
• Documentation.
 Report on source materials used in the reviews as well as on decisions,

with argumentations, made in the identification, selection and definition
of concepts and constructs in the ontology.

For the whole framework, the description of the purposes and sub-domains
given in Section 2.3.1 corresponds to the outcome of the first step. For each
component ontology, the purposes and domains are shortly mentioned in
Section 2.3.2. More detailed discussions of them are given for each component
ontology in next chapters.

2.5 Comparative Review

The purpose of this section is to briefly describe relevant models, meta-models,
and frameworks, called artifacts in short, and compare them with OntoFrame.
First, we define the criteria for the selection of artifacts into our review and
specify the issues to be considered. Then we report on the results of the review
carried out at two levels of detail. The purpose of the review is to portray a
general picture of the related work. This picture will be sharpened in next
chapters where comparative analyses will be carried out in relation to specific
component ontologies.

74

The literature suggests hundreds of frameworks, meta models, frames of
reference and ontologies concerning IS, ISD, ISD methods, and/or ME. Merely
for the assessment and comparison of ISD methods there are dozens of artifacts.
Many of them are not ontological. They may just provide a list of features for
characterizing ISD methods, or bring forward a set of taxonomies for the
recognition and definition of approaches and viewpoints. To be ontological
means that an artifact is composed of well-defined concepts and constructs
addressing essential features of specific sub-domains.

We apply four criteria in the selection of artifacts for our review. The
criteria are: purpose, coverage, familiarity, and specificity. Purpose means a
reason for which an artifact has been developed. The purpose of an artifact
must match with at least one of the intentions of OntoFrame (i.e. descriptive,
analytical, and constructive intentions). Coverage means the sub-domain(s) that
an artifact covers. The minimum requirement for coverage is that the concerned
sub-domains of the artifact must belong to the set of sub-domains of our
framework. In addition, we prefer artifacts with a large scope in this sense.
Familiarity means that an artifact is well-known, i.e. published in a recognized
journal or in the proceeding of a recognized conference. Specificity means that
concepts and constructs within an artifact are defined in a specific way, and
preferably supported by formal or semi-formal (graphical diagrams)
representations. This criterion excludes those artifacts that only contain lists of
features (e.g. Brandt 1983; Maddison et al. 1984). The use of the criteria led to the
selection of 15 artifacts. Among them there are three models, nine frameworks
and four meta models23.

The comparative review is carried out in two parts. In the first part for
each artifact, name, purpose, sub-domains and representation form are found
out. Purpose of an artifact can be e.g. classification, categorization, analysis,
comparison, evaluation, selection, integration, construction, etc. Sub-domain
encompasses issues referred to by an artifact. It can be BS (business system), IS,
ISD, ISD method, ME, and/or ME method. A business system means a system
that utilizes the IS. Representation form means a way in which the concepts and
constructs of an artifact are represented. Alternative forms are e.g. defined in a
natural language, presented in a graphical notion, specified by axioms, etc.
The summary of the first part of the review is presented in Table 5 (in the
alphabetic order of the name of the first author or editor).

The fifteen artifacts can be classified into four groups according to the sub-
domains they primarily address. The groups are: (1) comprehensive artifacts,
(2) BS / IS domain-based artifacts, (3) ISD domain-based / ISD method-based
artifacts, and (4) ME domain-based artifacts. In the following we shortly
describe and analyze the artifacts within each group.

There are only two artifacts that can be considered comprehensive. They
are the MDM (the Methodology Data Model) by Harmsen (1997) and the Frisco
framework by Falkenberg et al. (1998). The MDM contains concepts referring to

23 One artifact (Heym et al. 1992a; Heym et al. 1992b) is composed of a framework and a

model.

75

TABLE 5 Names, purposes, sub-domains and representation forms of the reviewed
artifacts

Nr. Name/

Reference
Purpose Sub-

domain
Representation form

[1] MADIS
framework
(Essink 1986,
Essink 1988)

“aimed at providing
capability for matching
available methods and
techniques to particular
problem classes”.
..“aimed at providing
means to integrate
elements of different
methods” (Essink 1988,
354)

IS, ISD Definitions in English for
some concepts.
Concept classification in
the matrix form.

[2] Frisco-
framework
(Falkenberg et
al. 1998)

“To provide an ordering
and transformation
framework allowing to
relate many different IS
modeling approaches to
each other”
(ibid p. 1)

IS Definitions in English
and in the first order
predicate logic.

[3] Organizational
metamodel
(Freeman et al.
1994)

“to represent all aspects
of an information system,
necessary for system
understanding and
software maintenance at
four levels of abstraction”
(ibid p. 283)

IS Definitions in English.
The meta-model in an
extended ER diagram
with some additional
notational devices (no
cardinalities).

[4] Process meta-
model
(Grosz et al.
1997)

“an overview of the
process theory for
modeling and
engineering the RE
process” (ibid p. 115)

ISD, ME Definitions in English. A
process meta-model in an
ER-like notation.

[5] MDM
(Methodology
Data Model)
(Harmsen
1997)

“To describe parts of ISD
methods, thus
supporting method
engineering”
(Harmsen et al. 1996, 218)

IS, ISD,
ISD
method
ME

Definitions in English,
supported with the use of
first order predicate
calculus, extended with
functions and operators.

[6] Framework
and ASDM (a
Semantic Data
Model)
(Heym et al.
1992a, 1992b)

a framework for
describing ISD, and a
semantic data model
(ASDM) for describing
ISD methods (Heym et al.
1992a, 215-16)

ISD, ISD
method

Definitions in English.
Semantic data model in a
graphical notation
(Lindtner 1992).

(continues)

76

TABLE 5 (continues)

Nr Name/
Reference

Purpose Sub-
domain

Representation
form

[7] Conceptual
framework
(Iivari 1989a)

to facilitate “the systematic
recognition, comparison and
synthesis of different
perspectives on the concept
of an information system”
(ibid p. 323)

BS, IS Definitions in
English, the
framework in the
OS (object system)
graphs (Iivari et al.
1983).

[8] Hierarchical
spiral
framework
(Iivari 1990b)

”a hierarchical spiral
framework for IS and SW
development including
evolution dynamics, main-
phase dynamics, learning
dynamics related to each
other” (ibid p. 451)

ISD Conceptual
structures of ISD
actions defined in
English and partly
described with
diagrams and in a
formal syntax.

[9] Framework for
understanding
(Olle et al.
1988a)

“a framework for tacking
systems planning, analysis
and design, into which many
existing methodologies can
be fitted” (ibid p. vi)

BS, IS Definitions in
English.
The framework in
data structure
diagrams.

[10] Decision-
oriented meta-
model
(Gupta et al.
2001)

a decision-oriented meta-
model to be used for
instantiating a method
representation

ISD, ISD
method

Definitions in
English. Essential
concepts and
relationships in ER-
like graphic
diagrams; in
addition a formal
language (MRSL).

[11] Meta-model
(Saeki et al.
1993)

“a meta-model for
representing software
specification and design
methods” (ibid. p. 149)

ISD Definitions in
English. The meta-
model in an ER-like
notation.

[12] Framework
(Song et al.
1992)

“A framework for aiding the
understanding and handling
the complexity of methods
integration and thus making
integration more systematic”
(ibid. p. 116).

ISD, ISD
method

Definitions in
English, a
schematic ER
diagram for ISD
method
components.

[13] ISA framework
(Sowa et al.
1992)

to provide “a taxonomy for
relating the concepts that
describe the real world to the
systems that describe an
information system and its
implementation” (ibid p. 590)

BS, IS Concepts partly
defined in English.
The framework
partly presented in
an ”ER style”
graph.

 (continues)

77

TABLE 5 (continues)

Nr Name/
Reference

Purpose Sub-
domain

Representation form

[14] Framework
(van Swede et
al. 1993)

“for classifying ISD
modelling techniques, to
assess the modelling
capacity of development
methods, and as a
checklist for project
leaders to construct
project scenarios” (ibid p.
546)

IS Definitions in English
for most of the
concepts, grouped by
perspectives.

[15] BWW model
(Wand 1988a;
Wand et al.
1989)

“is aimed at to be used as
an ontology to define the
concepts that should be
represented by a
modelling language, that
is the semantics of the
language” (Wand et al.
1995a, 287)

IS Original definitions of
concepts in English
(Wand 1988a), later
partly formalized with
a mathematic notation
(Wand et al. 1990a),
and presented in an
ER-like notation
(Rosemann et al. 2002).

IS, ISD and ISD method and, to some extent, to ME. The Frisco framework
focuses on the IS domain, but because it explicitly defines a very large set of
concepts and constructs within it, thus covering several component ontologies
within our framework, we regard it as a comprehensive artifact.

The BS / IS domain-based artifacts (Essink 1986; Essink 1988; Freeman et
al. 1994; Iivari 1989a; Olle et al. 1988a; Sowa et al. 1992; van Swede et al. 1993;
Wand et al. 1995a) contain concepts and constructs that facilitate the
recognition, understanding and representation of structural and dynamic
features of BS’s and IS’s. All but Wand et al. (1995a) also provide a set of
perspectives to classify and structure the features according to pre-defined
viewpoints. The artifacts in this group aim at e.g. “providing means to integrate
elements of different methods” (Essink 1988, 354), “the systematic recognition,
comparison and synthesis of different perspectives on the IS” (Iivari 1989a,
323), “relating the concepts that describe the real world to the systems that
describe an IS and its implementation” (Sowa et al. 1992, 590), and “classifying
ISD modeling techniques, assessing the modeling capacity of development
methods and enabling a checklist for project leaders to construct project
scenarios” (van Swede et al. 1993, 546).

The third group is composed of those artifacts, which provide concepts
and constructs for the ISD domain (Essink 1988; Iivari 1990b; Grosz et al. 1997;
Saeki et al. 1993) and / or for the ISD method (Heym et al. 1992a; Gupta et al.
2001; Song et al. 1992). For the ISD domain, Iivari (1990b) and Grosz et al. (1997)
apply mainly a process view, whereas Heym et al. (1992a), Gupta et al. (2001),
and Song et al. (1992) take a broader perspective on the ISD context. The

78

purpose of the artifacts in this group is mostly to describe, assess, compare and
integrate ISD methods or techniques.

In the literature, there are very few artifacts that describe structural and
dynamic features of the ME domain. Among the artifacts reviewed here, such
artifacts are those developed by Grosz et al. (1997) and Harmsen (1997). Grosz
et al. (1997) apply a process meta-model for structuring ”meta-way-of-working”
in the meta-processes of the ME. Harmsen (1997) presents some conceptual
structures that belong to the ME domain.

In all the artifacts the concepts are defined in English. In addition, some
artifacts are represented in a graphical notion, based on an ER-like model
(Freeman et al. 1994; Grosz et al. 1997; Gupta et al. 2001; Saeki et al. 1993; Song et
al. 1992; Sowa et al. 1992) or on a more specific model (Heym et al. 1992a; Iivari
et al. 1989; Iivari et al. 1990b; Olle et al. 1988a). Some artifacts also use more
formal forms, such as first-order predicate calculus (Harmsen 1997) and a
formal language (MRSL in Gupta et al. 2001). The BWW model, originally
defined in English (Wand 1988a; Wand et al. 1989), was later formalized in a
mathematical notation (Wand et al. 1990a) and presented in a graphical notation
based on the extended ER model (Rosemann et al. 2002; Davies et al. 2003).

In the second part of the review we analyze the scope and emphases of the
artifacts, using the overall structure of OntoFrame as the basis for the
comparison. We give grades between 0 and 5 to show a degree to which the
concepts and constructs in the artifact correspond, in terms of scope and
quantity, to the concepts and constructs in our component ontology. The
grades have the following meanings: 0 = not considered, 1 = considered
slightly, 2 = considered fairly, 3 = considered equally, 4 = considered more, 5 =
considered most. Note that the comparison is proportional to our framework,
not to other parts of the artifact, neither to other artifacts. Still more detailed
analyses will be presented in the next chapters, where we will look for concept-
level correspondences. The overview of the results of the analysis is presented
in Table 6. The numbers in the title row refer to the order numbers used in
Table 5. Next, we discuss the results in the order of the main parts of
OntoFrame.

Only five artifacts provide concepts and constructs belonging to the core
ontology (comprises the first seven component ontologies in Table 6). The most
comprehensive artifact in this respect is the Frisco Framework (Falkenberg et al.
1998), which addresses all seven component ontologies. However, concepts and
constructs related to abstraction are only slightly covered. Next in
comprehensiveness is the BWW model (Wand 1988a; Wand et al. 1989), which
provides a rather large set of fundamental concepts and constructs (cf. the
generic ontology) and a particularly deep consideration of phenomena related
to states and state transitions. In contrast, it overlooks phenomena related to
semiotics and language. The third artifact addressing the core ontology is
Iivari’s (1989a) framework. It is rather strong in defining concepts and

79

TA

BL
E

6

Sc
op

es
 a

nd
 e

m
ph

as
es

 o
f t

he
 re

vi
ew

ed
 a

rt
ifa

ct
s

co
m

pa
re

d
to

 th
e

co
m

po
ne

nt
 o

nt
ol

og
ie

s o
f O

nt
oF

ra
m

e
 O

nt
ol

og
y

[1
]

[2
]

[3
]

[4
]

[5
]

[6
]

[7
]

[8
]

[9
]

[1
0]

[1

1]

[1
2]

[1

3]

[1
4]

[1

5]

G
en

er
ic

 o
nt

ol
og

y
0

3
0

0
1

0
0

0
0

1
0

0
0

0
3

Se
m

io
tic

 o
nt

ol
og

y
0

3
0

0
0

0
0

0
0

0
0

0
0

0
0

In
te

ns
io

n/
 e

xt
en

si
on

on

to
lo

gy

0
2

0
0

0
0

0
0

0
0

0
0

0
0

0

La
ng

ua
ge

 o
nt

ol
og

y
0

3
0

0
0

0
0

0
0

0
0

0
0

0
0

St
at

e
tr

an
si

tio
n

on
to

lo
gy

0

3
0

0
3

0
2

0
0

0
0

0
0

0
5

U
oD

 o
nt

ol
og

y
0

2
0

0
0

0
2

0
0

0
0

0
0

0
1

A
bs

tr
ac

tio
n

on
to

lo
gy

0

1
0

0
1

0
0

0
0

0
0

0
0

0
1

C
on

te
xt

 o
nt

ol
og

y
2

2
1

0
2

0
3

0
2

0
1

1
3

1
0

La
ye

r o
nt

ol
og

y
1

0
0

1
2

0
0

0
0

0
0

0
0

0
0

Pe
rs

pe
ct

iv
e

on
to

lo
gy

2

0
2

0
0

0
3

1
2

0
0

0
2

2
0

M
od

el
 le

ve
l o

nt
ol

og
y

1
2

0
1

2
1

0
0

0
0

0
0

0
0

0
IS

D
 o

nt
ol

og
y

0
0

0
2

1
3

0
1

1
1

1
0

0
0

0
IS

D
 m

et
ho

d
on

to
lo

gy

0
0

0
0

2
3

0
0

0
2

0
1

0
0

0
M

E
on

to
lo

gy

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
M

E
m

et
ho

d
on

to
lo

gy

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

80

constructs belonging to the state transition ontology and the UoD ontology but
does not consider the other parts of the core ontology. In the MDM (Harmsen
1997) some fundamental concepts and abstraction concepts are defined. In
addition, it contains a few concepts and constructs related to the state transition
ontology. The decision-oriented meta-model, presented by Prakash (1999) and
refined by Gupta et al. (2001), is derived from “the simplest meta-model”
(Gupta et al. 2001, 140). The meta-model is composed of the concepts ‘thing’ and
‘is_related’, which have their counterparts in our generic ontology.

All the artifacts, except the BWW model (Wand 1988a; Wand et al. 1989),
provide concepts related to our four contextual ontologies (i.e. the context
ontology, the layer ontology, the perspective ontology, the model level
ontology). The most comprehensive treatment is given in artifacts, which are
focused on the BS / IS domain. The context ontology and the perspective
ontology are most strongly addressed by the frameworks of Iivari (1989a) and
Sowa et al. (1992). Other artifacts defining concepts and constructs of those
component ontologies are the frameworks of Essink (1986, 1988) and Olle et al.
(1988a). Falkenberg et al. (1998) and Harmsen (1997) define a large set of
concepts and constructs related to the context ontology but they offer nothing to
the perspective ontology. The two other contextual ontologies, the model level
ontology and the layer ontology, are addressed by Essink (1986, 1988),
Falkenberg et al. (1998); Grosz et al. (1997), Harmsen (1997) and Heym et al.
(1992a), but on a rather general level.

Concepts and constructs related to the ISD ontology and/or to the ISD
method ontology are defined on a detailed level in Heym et al. (1992a), while
the artifacts of Harmsen (1997) and Gupta et al. (2001) remain in their
definitions on a coarse level. The other artifacts addressing these ontologies,
although only slightly, are Grosz et al. (1997), Iivari (1990b), Olle et al. (1988a),
Saeki et al. (1993), and Song et al. (1992).

The only artifacts that reach the ME ontology are the process meta-model
by Grosz et al. (1997) and the Methodology Data Model by Harmsen (1997).
Their definitions for concepts and constructs cover, however, only a small part
of the ME domain.

To summarize, among the reviewed artifacts there is none that would
come even close to OntoFrame when regarding the coverage of the concerned
sub-domains. In this phase we must, however, to point out that most of the
artifacts have been published in articles for which space allowed in journals or
proceedings is quite limited. Thus, it is not fare to expect these artifacts to be as
coverable as those presented in dissertation theses or the like24. With these
words in mind, we conclude that the most comprehensive artifact is the MDM
by Harmsen (1997) but it also ignores many of the essential ontologies (e.g. the

24 There are some researchers (e.g. Falkenberg, Iivari, Jarke) and research groups (e.g.

Wand and Weber), which have contributed to several sub-domains in separate
articles. Because the articles have been published at different times, they do not
necessarily form unified and coherent wholes. It has not been possible for us to
analyze those collections of articles in this work.

81

semiotic ontology, the intension/extension ontology, the language ontology,
the perspective ontology) and addresses some others too superficially. The
Frisco framework (Falkenberg et al. 1998) contains a large set of concepts but the
concepts are exclusively related to the core ontology, the context ontology and
the model level ontology.

We have above considered the comprehensiveness of artifacts in terms of
their coverage of the IS, ISD, ISD method, and ME domains. We have good
reasons for that. In the IS/ISD literature, coherence and uniformity among the
basic concepts is commonly demanded. Our review showed in a concrete way
that this demand is far from being fulfilled. Some artifacts concentrate on the
fundamental concepts, while others define concepts and constructs related to
e.g. the ISD domain or the ME domain. In the definitions on the “lower levels”
the fundamental concepts are taken as granted thus jeopardizing the
consistence and coherence of the defined concepts. Our approach aims to assure
that all the ontologies, from top to bottom, share the same basic assumptions
and views. Deriving specific concepts from fundamental concepts on the
“bottom levels” helps us guarantee the consistence and coherency of the
concepts and constructs within all fifteen component ontologies.

As said above, we will refer to the reviewed artifacts and compare them
with OntoFrame in more detail in the next chapters. Besides those artifacts
considered here, we will widely discuss a large number of other presentations
that are not comprehensive enough to be catered in this section. To show the
literature foundation on which we have built OntoFrame, we present references
to the most relevant literature in Table 7. It is a small sub-set of those, which
will be referred in the next chapters. The references are grouped according to
the ontologies in OntoFrame and presented in the alphabetic order. We do not
distinguish the IS ontology here, because it mostly shares the literature
mentioned in relation to the context ontology. There are hardly any articles,
which specifically address the ME method ontology. In Table 7 we mention
some works, which we have used when deriving the ME method ontology from
the ISD method ontology.

2.6 Summary

The purpose of this chapter was to give an overview of OntoFrame. First, we
motivated OntoFrame with needs for a unified, coherent, and consistent
conceptual foundation. Second, we anchored OntoFrame on the theoretical
foundations of metamodeling and ontological engineering. Both disciplines are
interested in shared knowledge and its representation in meta models or
ontologies, respectively. Third, we outlined OntoFrame by describing various
views from which reality can be conceived for specific purposes and
distinguished a multi-layered structure of sub-domains that OntoFrame should
address. Fourth, we described the overall structure of OntoFrame. It is

82

TABLE 7 Other relevant literature

Ontology References
Core ontology Berztiss 1999, Dominques et al. 1997, Goldstein et al. 1999,

Hautamäki 1986, Henderson-Sellers et al. 1999a, Kangassalo 1982,
Krogstie 1995, Mattos 1988, Motschnig-Pitrik et al. 1999, Motschnig-
Pitrik et al. 1995, Mylopoulos et al. 1990, Opdahl et al. 1994, Schrefl et
al. 1984, Sowa 2000, Wand et al. 1999.

Context ontology Barros 1991, Baskerville 1996, Bittner et al. 2002, Engeström 1999,
Fillmore 1968, Herbst 1995, Koubarakis et al. 2000, Kavakli et al.
1999, Kerola 1980, Levinson 1983, Liu et al, 2002, Loucopoulos et al.
1998, McDermott 1982, Mesarovic et al. 1970, Ramackers 1994,
Randell et al. 1989, Sowa 2000, Searle 1979, Stamper, 1975, Yu et al.
1997, Zhou et al. 2000.

Layer ontology Bertalanffy 1974, Falkenberg et al. 1992a, Gasser 1986, Nonaka 1994,
Stamper 1996, Verrijn-Stuart 1989, Welke et al. 1982.

Perspective
ontology

Avison et al. 1996, van Griethuysen 1982, ISO 1996, Langefors et
al.1975, Olive 1983, Peirce 1955, Sol 1992, Welke 1977.

Model level
ontology

Bergheim et al. 1989, Brinkkemper 1990, Gigch 1991, ter Hofstede et
al. 1997, ISO 1990, Jarke 1992, OMG 2002, Wijers 1991.

ISD ontology Baskerville 1989, Boehm 1988, Bracchi et al. 1984, Checkland 1988,
Cysneiros et al. 2001, Glasson 1989, Goldkuhl et al. 1993, Hirschheim
et al. 1989, Hirschheim et al. 1992, Iivari 1991, Iivari et al. 2001, Jarke
et al. 1992, Kruchten 2000, Lyytinen 1986, Nature Team 1996, Saeki
1998, Simon 1960, Thayer 1987, Vlasblom et al. 1995, Wood-Harper
et al. 1982.

ISD method
ontology

Avison et al. 1996, Fitzgerald et al. 2002, Hidding et al. 1993,
Hirschheim et al. 1995, Iivari 1983, Iivari et al. 2001, Karam et al.
1993, Lyytinen 1986, Mathiassen et al. 1986, Schön 1983, Stamper
1973, Tolvanen 1998, Vlasblom et al. 1995, Zhang et al. 2001.

ME ontology Backlund et al. 2003, Brinkkemper et al. 1999, Henderson-Sellers et
al. 1999c, Hidding et al. 1993, Kruchten 2000, Kumar et al. 1992,
Vlasblom et al. 1995, Ralyte 2002, Ralyte et al. 2001, Ralyte et al. 2003,
Rolland et al. 1996, Saeki 1998, van Slooten et al. 1993, Song 1997,
Tolvanen 1998, Zhang et al. 2001, Veryard 1987.

ME method
ontology

Harmsen 1997, Iivari et al. 2001, Kinnunen et al. 1996, Rossi et al.
2005, Saeki 2003, van Slooten et al. 1993, Stamper 1973.

composed of four main parts, called the core ontology, the contextual
ontologies, the layer-based ontologies, and the method ontologies. Each main
part was further divided into component ontologies. For each component
ontology, the purpose, domain and theoretical foundations were described.
Theories in this work include e.g. philosophy of science, semiotics, semantics,
pragmatics, theories of human and social action, systems theory, and
information systems science.

Fifth, we discussed alternative forms of presenting OntoFrame and
decided to present definitions in English and meta models in a sub-set of UML.
Sixth, we described various approaches and strategies to engineering
OntoFrame and selected to use the mixed approach and the integration
strategy. We also presented a procedure for engineering component ontologies.

83

Seventh, we presented a comprehensive review of the artifacts in the literature,
to give an overview of the related work and to compare the scope and
emphases of the artifacts with OntoFrame. From the analysis we concluded that
there is no artifact that would come even close to OntoFrame when regarding
the coverage of the concerned sub-domains. Even the most comprehensive
artifact, the one by Harmsen (1997), ignores many essential ontologies and
addresses many other sub-domains too superficially. Some artifacts concentrate
merely on the fundamental concepts, while the others define concepts and
constructs for “lower-level” domains, such as ISD and ME. In the latter case, the
fundamental concepts are taken as granted, thus jeopardizing the consistence
and coherence of the totality. Our approach aims to assure that all the
ontologies, from top to bottom, share the same basic assumptions and views.

3 CORE ONTOLOGY

The purpose of this chapter is to present the core ontology that constitutes the
topmost level in OntoFrame. The core ontology provides key concepts and
constructs to conceiving, understanding, structuring and representing the
fundamentals of reality. It is composed of seven component ontologies: the
generic ontology, the semiotic ontology, the intension/extension ontology, the
language ontology, the state transition ontology, the UoD ontology, and the
abstraction ontology.

The chapter is organized as follows. First, we make a short survey of the
related work. Second, we describe the overall structure of the core ontology. In
the next seven sections we present the component ontologies. For each
component ontology, the concepts and constructs are defined and described in
meta models. Also, relevant literature is extensively referred to and compared.
After presenting the component ontologies, we provide a categorization of the
relevant literature and make a comparative analysis of two of the most
prominent presentations. The purpose of the analysis is to reveal the objectives,
ontological positions, basic structures, coverage and emphases of the
presentations. The chapter concludes with a summary.

3.1 Related Work

What are things? What is the essence that remains inside things even when they
change in color, size, etc? How are things related? Do concepts exist outside our
mind? These are questions that Ontology has tried to answer for thousands of
years. Work of philosophers and scientists has resulted in a large variety of
categorizations and generic ontologies, providing primitive concepts for
making sense of the essence of things and of their existence. In this thesis it is
not possible, or even reasonable, to discuss widely various schools of thought
and approaches of engineering generic ontologies. Instead, to relate the core
ontology to the prior work, we present a short overview of philosophical

85

positions, well-known categories and generic ontologies. A more detailed
analysis of two presentations is presented in Section 3.10.

In defining the fundamental concepts for perceiving and conceiving the
essentials of reality one has to commit oneself to some philosophical or
metaphysical positions and assumptions (“Weltanschauung”). In the past few
decades, there has been a vivid discussion going on, also in the information
system field, about these paradigmatic assumptions (e.g. Klein et al. 1987; Floyd
1987; Nurminen 1988; Hirschheim et al. 1989; Iivari 1991; Stamper 1999;
Orlikowski et al. 1991; Hirschheim et al. 1992a; Dahlbom et al. 1993; Iivari et al.
1998a; Chen et al. 2004). This discussion has yielded various classifications of
the assumptions about e.g. the nature of reality (ontology), and what is human
knowledge and how it can be acquired (epistemology). Here we consider the
ontological assumptions as presented in Falkenberg et al. (1998)25:
• Objectivism. There is one reality, independent of any observer and

interpreter. That is why reality and perceived reality are the same.
• Constructivism. There is one reality, independently of any observer. Each

human being perceives and conceives reality differently. That is why
reality and perceived reality are not exactly the same.

• Mentalism. There is more than one reality, because reality is perceived and
conceived solely by the senses of human beings, and hence reality is
completely dependent on the observer.

One of the first philosophers, Aristotle, distinguished between different modes
of being and defined a system of categories. Aristotle’s categories include
substance, quality, quantity, relation, activity, having, situatedness, spatiality,
and temporality26. Later, Immanuel Kant presented his categorization (Kant
1787), which is organized into four classes each of which presents a triadic
pattern: quantity (unity, plurality, totality), quality (reality, negation,
limitation), relation (inherence, causality, community) and modality (possible,
existence, necessity). Since then, there have been several categorizations made
in the philosophy of science (e.g. Husserl, Whitehead, Pierce, and Heidegger).

In recent decades, research into fundamental categorizations, or
ontologies, has extended into the fields of Artificial Intelligence (AI) and
Information Systems (IS). In AI, some of the best known top-level ontologies, or
upper ontologies, are Sowa (2000), Cyc and SUMO. Sowa’s top-level ontology
(Sowa 2000) includes the basic categories and distinctions derived from a
variety of sources in logic, linguistics, philosophy, and artificial intelligence.
The ontology, containing 27 concepts, has a lattice structure where the top
concept is the universal type. The universal type contains all the possible

25 The trichotomy is based on three semantic principles presented by Stamper (1992b,

28). There are several other options for the classification, especially in the philosophy
of science (e.g. Niiniluoto 1999). Here, we are satisfied with the one in Falkenberg et
al. (1998) because it is simple enough for our purposes.

26 This system of categories was presented in the Categories, the first treatise in
Aristotle’s collected works (cf. Sowa 2000, 56).

86

instances of the ontology. The direct subclasses of the universal type are:
independent, relative, mediating, continuant, physical, abstract, and occurrent.

Cyc’s upper ontology aims to provide the most general concepts of human
consensus reality (Lenat et al. 1990). The Cyc Knowledge Base contains
thousands of terms and millions of assertions. In the following we only mention
the most generic terms in the ontology (see more in http://www.cyc.
com/cycdoc/vocab/vocab-toc.html). The class ‘thing’ is the root of the
ontology. A thing can be an individual, a partiallyIntangible or a
mathematicalOrComputationalThing. An individual is a temporalThing, a
spatialThing, or a partiallyIntangibleIndividual. A temporal thing can be
somethingExisting or a timeInterval. The upper ontology also contains terms
such as event, situation, relation, attributeValue, predicate, role, and collection.

SUMO27 (Suggested Upper Merged Ontology) is promoted by the IEEE
Standard Upper Ontology Working Group and was officially approved as an
IEEE standard project in December 2000. The root of the ontology is entity that
can be either physical or abstract. A physical entity is either an object or a
process. An abstract entity can be a quality, an attribute, a class, a relation, a
proposition, a graph, or a graphElement.

Also in the IS field some suggestions for top-level ontologies have been
made (e.g. Wand et al. 1990a; Falkenberg et al. 1998). The BWW model (e.g.
Wand 1988a; Wand et al. 1989; Wand et al. 1990a; Wand et al. 1990b) is based on
Bunge’s ontology (Bunge 1977) according to which the world is made of things
that possess properties. Things are concrete or conceptual. Properties are
intrinsic or mutual. Properties of conceptual things are termed attributes.
Attributes are characteristics assigned to things according to human
perceptions. The Frisco28 framework (Falkenberg et al. 1998) aims to provide an
ordering and transformation framework to allow relating different IS modelling
approaches to each other. The concepts in the framework have been derived
from one single concept, thing, by specialization (Falkenberg et al. 1998, 34). The
other primitive concepts include predicator, predicated thing, composite thing,
elementary thing, relationship, state, transition, entity, type, etc.

There are several other, not so well-known, presentations which aim to
establish a common foundation for modelling the real world. For instance,
Opdahl et al. (1994), based on some modifications of the DFD language, propose
primitive concepts such as item, attribute, value, domain, substance, and data.
Krogstie (1995, 8) defines elementary concepts for modelling computerized
information systems. He starts with defining the notion of a phenomenon to
mean “something as it appears in the mind of a person” (ibid p. 8). Related to a
phenomenon he defines the notions of property, state, transition and event.

Ontologies differ from one another in terms of their purpose,
extensiveness and contents. They also differ in how they view changes in
reality. Static ontologies primarily describe what things exist, their attributes
and relationships (Mylopoulos 1998, 136). Dynamic ontologies view dynamic

27 http://suo.ieee.org/
28 Frisco = FRamework of Information Systems Concepts.

87

aspects in terms of states, state transitions and processes. There are also
ontologies in which things and events are equally treated (e.g. Feibleman 1951;
Brody 1980; Tiles 1981). Mylopoulos (1998) also distinguishes the intentional
ontologies and the social ontologies. The intentional ontologies address the
world composed of agents and things agents believe in, want, prove or
disprove, and argue about. The social ontologies cover settings, permanent
structures or shifting networks of alliances and interdependencies. They are
characterized in terms of actors, positions, roles, authorities, commitments, etc.
These two kinds of ontologies provide views that go beyond the scope of our
core ontology.

In defining the core ontology we have utilized those existing ontologies
that have been engineered in particular for the IS field. To ensure the
uniformity and coherence of the core ontology, we have been obliged to fill
some ‘gaps’ not addressed by any existing ontologies, and make some
adaptations to get the “pieces” fit together.

3.2 Overall Structure

The purpose of the core ontology is to provide key concepts and constructs for
conceiving, understanding, structuring and representing fundamentals in
reality. It is composed of seven component ontologies: the generic ontology, the
semiotic ontology, the intension/extension ontology, the language ontology,
the state transition ontology, the UoD ontology, and the abstraction ontology
(see Figure 7). In the following, each component ontology and its theoretical
basis are discussed.

The generic ontology aims to provide the most generic concepts from
which the concepts of all other ontologies in OntoFrame can be derived. The
most generic concept is thing. Derivation of the concepts of the other ontologies
from the generic concepts is carried out by instantiation and specialization. The
core ontology has its roots in the philosophy of science.

The semiotic ontology is based on the basic concepts in the theory of signs
– semiotics (Ogden et al. 1923; Peirce 1955; Morris 1946). The semiotic ontology
specializes the notion of a thing into three semiotic notions: sign, concept and
referent. Between the notions there are three well-defined relationships:
signifies, refersTo, and standsFor. In the intension/extension ontology the
notion of a concept, in turn, is elaborated into more specialized concepts, such
as basic concept, derived concept, individual concept, and generic concept.

In the language ontology the focus is on the notion of a sign represented in
a language. Based on the linguistics, a language is defined as a composition of a
vocabulary, syntax and semantics, and sub-concepts of a sign are specialized.
To enable distinguishing between static and dynamic features in reality, the
state transition ontology with the notions of state, transition and event are
defined. The concepts in this ontology have been established on general system

88

Intension / extension
ontology

State transition
ontologyLanguage ontology

Abstraction ontology

Semiotic ontology

Concept

ReferentSign

Generic ontology

Thing

UoD ontology

FIGURE 7 An overall structure of the core ontology

theory (von Bertalanffy 1968; Klir 1969). The UoD ontology provides concepts
related to the universe of discourse (UoD): UoD state, UoD behavior and UoD
evolution. Through these concepts, personal or inter-personal points of view on
reality can be distinguished, discussed and compared. The UoD ontology is
rooted on theories of conceptual modelling (e.g. van Griethuysen 1982; Brodie et
al. 1984).

The abstraction ontology specializes the notion of a concept, providing
sub-concepts for four kinds of abstraction: classification, generalization,
composition, and grouping. Abstraction, rooted in Aristotelian philosophy,
means ignoring irrelevant things to uncover the features relevant to the
problem at hand. Depending on whether the things are entities with at least
some independence or predicates merely used to characterize the entities, we
can distinguish between the first-order abstraction and the predicate abstraction
(or the second-order abstraction).

In Figure 7 the seven component ontologies of the core ontology are
depicted with six rectangles and one triangle. For the generic ontology and the
semiotic ontology the most essential concepts are also presented. Later in
Section 3.10 also the other “boxes” are filled by the concepts defined in the next
sections. The relationships between the ontologies are presented with arrows
standing for specialization. Because the figure is highly simplified, all
relationships are not made visible.

89

3.3 Generic Ontology

The generic ontology provides the most generic concepts from which the
concepts of all the other component ontologies in Ontoframe can be derived.

Reality is anything that exists, has existed or will (possible) exist. We
distinguish between the subjective reality and the objective reality (Bunge 1977;
Lyons 1977)29. The subjective reality (or the perceived reality) is the result from
our mental processes. The physical reality (or the reality in short) is independent
of any human thinking. It is the source of sense data, which we obtain, and it is
thus external to us. We agree that it is not possible to say anything sure about
the physical reality, because our conceptions of it are ultimately dependent on
our senses, skills of understanding and personal points of view. However, there
is no doubt that some kind of physical reality really exists, independently of us,
and that reality manifests itself through a huge variety of phenomena.
Conceptions an individual has about the physical reality may be quite different
from the ones other individuals have. That does not prevent us from trying to
distinguish and name the phenomena of reality. Consequently, we accept the
constructivist position (cf. Stamper 1992b; Falkenberg et al. 1998).

We define a thing30 to mean any phenomenon in the physical or subjective
reality. That is all we can say about the physical reality. Saying more would
require the use of more specialized concepts and structures, which necessarily
means using perceptions and conceptions of a human being31, that is, becoming
part of the subjective reality. A thing may be a ball, the weight of the ball, the
intention of a player running to reach the ball, or the number on the back of the
player.

In the subjective reality things are characterized with one or more
properties. A property is a thing that is used to characterize other thing(s). A

29 Habermas (1984, 100) divides reality into three worlds: objective world (the totality

of all entities about which true statements are possible), subjective world (the totality
of the experiences of the speaker to which he/she has privileged access), and social
world (the totality of all legitimately regulated interpersonal relations). According to
Wand et al. (1995a, 290) the physical reality can be replaced by an “inter-subjective”
reality when necessary.

30 We have selected the term ’thing’ to stand for the most elementary concept for two
reasons. First, many well-known ontologies in the field (e.g. Wand et al. 1990a; Lenat
et al. 1990; Miller 1990; Falkenberg et al. 1998) use the same term, yet with somewhat
different meanings, to denote the elementary concept. Second, another alternative,
‘object’, is overloaded with other kinds of use, also in this study. Besides ‘thing’ and
‘object’, other terms are also suggested in the literature (e.g. ’phenomenon’ in
Krogstie (1995, 8)), but we consider them instances of specific approaches with no
large support.

31 Actually, seeing the physical reality consisting of things is also an assumption, which
contains mental interpretation. But we want to have some concept with which we
can refer to phenomena in reality. Falkenberg et al. (1998, 29) talk about “parts” or
“aspects” of the “world”.

90

characterized thing is a thing that is characterized by at least one property. A ball
is a thing that is characterized by the property weight. Things may be related to
other things in many ways. A relationship is a thing that relates two or more
characterized things together, each one associated with one property
characterizing the role of that thing within that relationship. A role is a property
that reflects a position the thing holds, or a function the thing conducts, in the
relationship32. Serving is the relationship that relates a player and a ball, and
ownership is the relationship, which shows that a shirt belongs to a player.
Because the relationship is a thing, relationships between relationships can also
be recognized. A characterized thing can be related through one or more
relationships, and a relationship can relate two or more things (see Figure 8).

Role

Thing

PropertyCharacterizedThing

Relationship

1..* 1..*
characterizes

Point of view1..*

1..*

conceivedFrom

Framework

1..*

2..*

2..*

Reality

1..*

Physical Subjective

FIGURE 8 Generic ontology

A thing can be perceived and conceived in various ways. Let the thing be the
player with the number 9 on his back. He is known as 'John Smith', having a six
years career in professional football teams in the UK. He is also known as a
partner of the company investing on young talented players. Third, the thing is
conceived as a close relative, who should take care of his injured knee.
Consequently, for the same thing in the physical reality there are at least three
different conceptions: one possessed by the TV-commentator, the other by a

32 There is a large number of literature considering the nature, characteristics and

evolution of role (e.g. Kaasboll 1995; Lindgreen 1995; Gottlob et al. 1996; Halpin 1998;
Steinmann 2000; Dahchour et al. 2002; Coulondre et al. 2002). It is not possible here to
discuss them further.

91

young player dreaming of a professional career, and the third one by his wife
looking at TV. The human mind produces a variety of subjective conceptions
from the same thing in the physical reality, depending on the point of view
adopted.

The notion of a point of view is vague in everyday life as well as in
scientific treatises. Here we see it as a way to view or consider something (cf.
Webster 1989). To put it more precisely, we can say that every thing has many
properties, and to adopt a point of view is to consider some of these properties
relevant. Using a point of view, some things and some properties of the thing(s)
are selected because they are more relevant than others. When a statement is
made from that point of view, then the reasons for the statement are just
selected properties (cf. Hautamäki 1986, 65). A point of view itself is, of course,
a thing.

Applying a point of view leads to a more or less limited or "predefined"
conception of certain things and their properties in reality. To derive and relate
the views, a framework is commonly deployed. A framework is a thing that
guides a human being to select the points of view that are the most appropriate
for the case or the problem at hand. A framework can be intuitive or formally
established, vague or rigid. The framework relating the viewpoints of the
human beings interested in the thing on the football field is an example of the
intuitive and vague framework. It could be called the "sociometrical"
framework by which one explores what members of a group perceive, think
and feel about the other members of the group. The categorization of the reality
into two parts, subjective and physical, is based on the philosophical
framework. It is more rigid because it is grounded on the ontological and
epistemological theories, which state the possible points of view, their
conceptual contents and relations. Another example of the rigid framework is
the semiotic framework, which we shall apply in the next section.

3.4 Semiotic Ontology

The semiotic ontology provides concepts and constructs to recognize semiotic
things in reality. It specializes things according to the semiotic framework based
on the theory of signs - semiotics33. In semiotics, three realms are distinguished:
the realm of signs, the realm of concepts, and the realm of referents. By
applying Ogden's and Richards' meaning triangle (Ogden at al. 1923), the
semiotic framework can be illustrated such as in Figure 934.

33 The semiotics, as sketched by Peirce (1955) and de Saussure (1931) and elaborated by

Morris (1946), concerns signs and their relations to the other things that are essential
to the creation, use and understanding of the signs. The term "semiotics" originates
from Greek in which "semeion" means a sign or a mark.

34 We use Ogden's and Richards' meaning triangle instead of other alternatives (e.g.
Morris 1946; Peirce 1955) because of its simplicity and familiarity.

92

Concept

signifies

Sign
stands for

Referent

refers to

FIGURE 9 The semiotic framework as the meaning triangle

Using the semiotic framework, we can distinguish between three kinds of
things: concept things, sign things and referent things. Concepts are mental
things, words of mind (cf. Hautamäki 1986). In philosophy and psychology they
are regarded as ideas, thoughts or mental constructs by means of which the
mind apprehends or comes to know things. They are basic epistemological
components of human knowledge. We call wholes, which are composed of
related concepts, constructs. A referent is a thing in reality to which a concept
refers. It can be a physical thing, a process, an event, Wonderland that Alice
visited, or the like. A sign or a symbol is any thing, which can stand for
something else. It is a representation of a concept expressed in a symbolic or
iconic language. Our world is full of things that are used as signs: words,
pictures, facial expressions, body postures, films, traffic lights, etc. Here we
mainly consider verbal representations.35.

In the meaning triangle the relationships between the concepts, the
referents and the signs are denoted by the edges. Based on the triangle we
present the semiotic ontology in the meta model in Figure 10. A sign signifies or
designates a concept. A concept refers to a referent. A sign stands for a referent,
but it is not directly associated with a referent because a sign may have several
meanings leading to different referents36.

Concept

ReferentSign

0..*

signifies

0..*

1..*

refersTo

0..*

0..*

standsFor

1..*

FIGURE 10 Semiotic ontology

35 We want to be faithful to the original term ‘sign’ although its denotation may give

rise to a conception of a more elementary linguistic thing.
36 It is only the case of an idealized observation in which it is assumed that each

referent in reality leads to at most one sensation or concept construct, and each
sensation has at most one sign.

93

We can distinguish between three elementary human processes through which
the semiotic things are produced (cf. Falkenberg et al. 1998, 46-47). Perceiving
means a process whereby a human being observes reality with his/her senses
and forms a specific pattern of visual, auditory or other sensations of it in
his/her mind. Conceiving means a process whereby perceptions are organised,
abstracted and derived to form concepts. Representing means a process whereby
a human being describes some of his/her concepts in a language.

Three points of view based on the semiotic framework lead to the certain
comprehension of the arrangement of things: (a) the things under the
observation or consideration are in the position of referent things, (b) abstract
things produced from these through perception and other mental processes are
concept things, and (c) the things used to signify concept things are sign things.

The significance of the semiotic framework becomes more obvious when
several contexts are concerned. A thing seen as the sign thing Sign1 in the
context Cxt1 in Figure 11 may be regarded as a referent thing in the context
Cxt2. Further, the referent thing in the context Cxt2 is referred by another
concept thing and signified by another sign thing (Sign2 in Figure 11). The
semiotic framework is here horizontally shifted37.

 Concept2 Concept1

 Sign2 Referent2 = Sign1 Referent1

 Cxt2 Cxt1

FIGURE 11 Horizontal shift in the semiotic framework

In everyday language, the term 'thing' is commonly used to mean a referent.
Therefore, also in this study the term 'thing' is used to denote a referent
whenever there is no danger of confusion. Otherwise, more precise terms like
'sign (thing)’, 'concept (thing)’, and 'referent (thing)’ will be used. To distinguish
between the names of various kinds of things, quotation marks are used in the
following way. The signs are enclosed in simple quotes (e.g. 'John'). The names
of referents are expressed in double quotes (e.g. "John"). The names of concepts

37 We call the shift horizontal when a sign is seen as a referent or a referent is seen as a

sign in another context. The shift is vertical when a concept is seen as a referent (see
more in Section 7.2).

94

are expressed without any quotes (e.g. John). We use initial capital letters in the
names of the things in the examples.

3.5 Intension/Extension Ontology

The intension/extension ontology provides concepts and constructs to specialize
the notion of a concept into more specific notions such as basic concept, derived
concept, individual concept, generic concept, etc. It is established upon the
concepts of intension and extension (cf. Lyons 1977). In the philosophy,
intension and extension are related to the concept things, whereas in the
linguistics they are envisioned as associated with the sign things. Here the
concepts are defined from the philosophical viewpoint.

The intension or comprehension of a concept consists of all its concept
predicates, shortly predicates. Predicates are concepts, which are used to
characterize the (original) concept (cf. Hautamäki 1986, 37). They are properties
of things referred by the concept. They determine the applicability of the
concept38. For instance, the concept Animal is a predicate of the concept Cat. An
intension makes up an idea, and none of its constituent parts can be removed
without destroying the idea (cf. Arnauld 1964). The core intension of a concept
consists of all those peculiar predicates (earmarks) that are essential to handle
the concept. Usually, a working definition of the concept is based on the core
intension (Bunge 1977, 67).

To put it more formally, the intension of the concept ci, IN(ci), can be
defined as follows39:

 IN(ci) = <pi1,...,pin>,

where pik is a predicate constructed from the characteristics of the concept ci.

The extension of a concept is the set of all (referent) things to which the
intension of the concept applies. The things exist, have existed in the past, or
will possibly exist in the future40. The population of a concept is the set of the

38 According to Wiggins (1980) there are two kinds of predicates: sortal predicates and

non-sortal predicates. Sortal predicates are divided into substantial (like apple or
human being) and non-substantial (like food and student) predicates, while non-
sortal predicates include generic predicates such as thing and characterizing
predicates such as red.

39 Predicates within the intension are interrelated in many ways, constituting
complicated concept structures (cf. Kangassalo 1982, 150). To explicitly define those
structures would require the mobilization of a much more comprehensive set of basic
concepts. This goes beyond this study. Here the intension is defined as a whole of
concept predicates. The notion of a whole is defined in Section 3.9.2.3.

40 In the literature, two kinds of views of the notion of extension are presented.
According to the first view, the extension refers to the set of the existing referents
(e.g. Kangassalo 1982, 155; Bubenko et al. 1984, 131, 286; Tsichritzis et al. 1982). This

95

existing (referent) things to which the intension of the concept applies. The
formal definition for the extension of the concept ci is:

 EXT(ci) = {ri1 ,…, rim,…},

where rij means a referent to which the concept ci applies. The extension of a
concept may be a finite set, as it is in the case of John’s shirt, or an infinite set, as
it is in the case of natural numbers.

If two concepts have the same intension, then they always have the same
extension. In fact, they can be considered to be the same concept. Two concepts
may have the same extension, but have different intensions.

A concept can be defined analytically or extensionally41. An analytic
definition specifies the meaning by providing a concept with the intension. An
extensional definition specifies the range of application, or an extension of the
concept. Often extensions are sets that are too unwieldy to be observed in their
entirety, so they cannot serve as a basis of practical definitions.

A basic concept (or primitive concept, Dominques et al. 1997) is a concept
the intension of which is specified without using other concepts in question (i.e.
based only on epistemological knowledge). A derived concept is a concept the
intension of which is derived from predicates of other concepts.

For some concept, one corner of the meaning triangle may be absent: a
person may have a concept referring to a referent thing for which he knows no
sign, or he may have a sign for a concept that has no (real) extension. The
concepts with no referent things are called abstract concepts. An example of the
abstract concept is a Unicorn. It is defined as a mammal with one horn in the
middle of its forehead, but because it does not exist (or exists in one’s
imagination), its (real) extension is an empty set. The other concepts are called
concrete concepts. The concepts, which can only refer to one thing, are called
individual concepts or particulars. The concepts referring to many things are
generic concepts or universals.

In the fields of conceptual modelling (e.g. Chen 1976), information systems
(e.g. Olle et al. 1982; Olle et al. 1983) and knowledge engineering (e.g. Brodie et
al. 1984; Meersman et al. 1990), a generic concept is called a type concept, or
shortly a type. It is normally specified by an analytical definition. Elements of
the extension of a concept type are called instances.

We have above defined the extension of a concept as being composed of
“real” referents to which the concept refers. In some cases it is beneficial to

set is also called denotation (Sowa 1984; Stachowitz 1985). The second view regards
the extension as the set of all possible referents to which the intension of the concept
may apply (e.g. Carnap 1956; Falkenberg 1976). In this case, the concept of
population is used to refer to the set of existing referents (Falkenberg 1976, 22;
Gustafsson et al. 1982, 8; Falkenberg et al. 1998). We prefer to apply this latter view.
Bunge (1974, 68) uses the terms 'total extension' and 'actual extension', or 'population'
to make the distinction between the two views.

41 Smith and Medin (1981) discuss these further in terms of classical, probabilistic and
prototype definition.

96

deploy the notion of a conceptual extension (cf. Hautamäki 1986, 37). A
conceptual extension is composed of those referent concepts that apply to the
intension of the type concept. We discuss this notion further in Chapter 7.

In Figure 12 the concepts and relationships of the intension/extension
ontology are presented in the meta model.

Concept

Basic concept

1

1..*

has

Derived concept Individual concept Generic concept Abstract concept Concrete concept

Intension Extension

1..*

0..*
1

1

definedBy

Predicate
1..*

1..*

FIGURE 12 Intension/extension ontology

3.6 Language Ontology

The language ontology provides concepts and constructs to specify the syntax
and the semantics of a language. In the discussion above a sign is used to mean
any thing that signifies a concept and stands for a referent. Here, we specialize
the notion of a sign and associate it with a language.

A sign is always represented in some language. A language is an abstract
thing that is used in communication among people, between people and
computers, or among parts of the computers42. A language is composed of
syntax and semantics43. Syntax consists of two parts: an abstract syntax and a
concrete syntax. An abstract syntax gives the conceptual components of a
language and rules for connecting them, leaving out representational details
(ter Hofstede et al. 1998, 520). A concrete syntax gives notational elements, called
the symbols in the vocabulary of a language, and rules for connecting them
with one another and with the concepts (cf. signification rules). Semantics of a
language defines the relations of symbols to the referents to which the symbols
are applicable (Morris 1938). It is composed of inter-subjectively agreed rules of
what the different expressions mean (cf. Krogstie et al. 1996, 285). A vocabulary
of a language is a non-empty and finite set of symbols (Falkenberg et al. 1998,
47). A symbol is a special sign used as an undividable part of an expression
(Falkenberg et al. 1998, 47). Examples of symbols are “cat” and “,” in the English

42 There is also communication between animals but we ignore that.
43 In some literature (e.g. Levinson 1983), the definition of a language includes

pragmatics, too.

97

language and an arrow in the graphical language of UML. A linguistic
expression is a sign of a language and a non-empty and finite “arrangement” of
symbols taken from a vocabulary, constricted by the syntax and semantics of
the language. An arrangement can be - like in case of a natural language – a
sequence of symbols, or multi-dimensional, like in case of a graphical language.

A formal language is a language with a precisely defined syntax and
semantics. A semi-formal language is a language with a precisely defined syntax
(Krogstie et al. 1996, 285). An information language is neither formal nor semi-
formal (Krogstie 1995, 475). There are many alternative approaches to define a
formal semantics. It can be defined as translational semantics, operational
semantics, denotational semantics, and axiomatic semantics (Meyer 1990; ter
Hofstede et al. 1998, 520). Sometimes semantics is seen as a composition of two
parts: static semantics and dynamic semantics. The static semantics of a
language defines how an instance of a concept construct should be connected to
other instances to be meaningful, and the dynamic semantics define the
meaning of a well-formed construct. The meaning of an expression written in
the language is defined if the expression is well formed (i.e. if it fulfills the rules
defined in the static semantics).

A label is an elementary sign used to signify a particular concept in an
elementary way. If there are several labels signifying the same concept, the
labels are called synonyms. If the same label signifies several concepts, it is a
homonym situation (Falkenberg et al. 1998, 49). If a label signifies a particular, it
is called a proper name. If a label signifies a universal, it is called a common noun.

In Figure 13 the concepts and relationships of the language ontology are
presented in the meta model.

Formal

Sign

* memberOf

*

1..*

belongsTo

Expression

Language

Label

Common nounProper name
Vocabulary

Concrete syntaxSemantics Symbol

1

1

* 1..*
memberOf1

0..* 0..*

1..*

Abstract syntax

1 1

Semi-formal Informal

FIGURE 13 Language ontology

98

3.7 State Transition Ontology

Until now we have discussed the things without considering at all whether they
are static or dynamic. Most of the concepts derived from the notion of a thing
equally apply to structural things (e.g. person) and dynamic things, such as
events (e.g. marriage ceremony) and processes (e.g. car driving). The state
transition ontology provides concepts and constructs for conceiving static and
dynamic things in reality44.

Some things are conceived as having a static existence. A state is a thing,
which is seen to have some duration. For instance, “John is waiting for Mary” is
a state, as is also “Bell is ringing”. A common type of state is a so-called state of
existence. The state of existence can be instance-level, like “John exists” meaning
that the person called John really exists, or type-level, like “Person exists”,
meaning that the concept Person is recognized through the more or less
persistent intension. The state of existence can be related to any structural thing.

Some other things are conceived as changes of states. A transition is a
binary relationship between two different things, called the pre-state and the
post-state of that transition (Falkenberg et al. 1998). The pre-state of a transition
is the state valid before that transition. The post-state of a transition is the state
that is valid after that transition. In the transition, at least one part of the pre-
state must not be included in the post-state, or vice versa (Falkenberg et al. 1998,
38). Examples of transitions are the relationship between the states “John is
waiting for Mary” and “John and Mary enter the restaurant Estrella”, and the
relationship between the states “Bell is ringing” and “Bell is quiet”.

An event is a thing, which may trigger a transition from the pre-state to the
post-state (Falkenberg et al. 1998). It is an instantaneous happening with no
(significant) duration. Examples of events are “Mary arrives” and “the button is
pressed”. An event does not necessarily mean the transition because it may
require occurrences of other events as well as some specific conditions become
true. For example, after Mary has arrived, she and John enter the restaurant,
provided that they like the menu outside the door. There are several kinds of
events. Some of them may be caused by transitions from certain pre-states to
certain post-states.

Transitions can be related to each other to form transition structures. Given
the transitions [transition]: tx (s1, s2) and [transition]: ty (s3, s4), we can
distinguish between three basic transition structures (Falkenberg et al. 1998, 38):
1. sequence

sequence(tx , ty) is a sequence of transitions if s3 is a part of s2. The
resulting state-transition structure has s1 as pre-state and s4 as post-state.

2. choice
choice(tx , ty) is a choice of transitions if the intersection of s1 and s3 is not
empty, and the result is either transition tx or ty, but not both.

44 Note that it may depend on the selected point of view whether a certain thing is

regarded as a static thing or a dynamic thing.

99

3. concurrence
concur(tx , ty) means concurrent transitions if the intersection of s1 and s3
is not empty and the transition tz can be defined with the pre-state ‘s1
union s3 ‘ and the post-state ‘s2 union s4 ‘.

Further, we can distinguish between an elementary transition and a composite
transition. A composite transition is a transition structure with a unique pre-state
and a unique post-state. An elementary transition does not contain any transition
structure (Falkenberg et al. 1998, 39).

For each basic concept in the state transition ontology defined above, type
and instance concepts can be distinguished. Thus, we have a state type and a
state instance, a transition type and a transition instance45, and an event type
and an event instance.

A life cycle of a thing consists of all the states, state transitions and events
that are related to the existence of a thing (e.g. John), starting from the event of
coming into existence (e.g. birth), continuing with changes in its states (e.g. in
the marital status), discretely or continuously, and ending up with the event of
termination (cf. Sakai 1983). A life cycle can be linear or contain some cyclic
parts.

The main concepts and relationships of the state transition ontology are
presented in the meta model in Figure 14.

Thing

Transition Structure

EventTransitionState

*

*triggers
*

*causedBy

1

*

resultsIn

1

*

precedes

1..*

1..*

1..*
0..*

Life cycle

Elementary Composite

1..*

1..*

1

1

has

FIGURE 14 State transition ontology

3.8 UoD Ontology

Human beings become conscious of reality through the concepts and constructs
they possess and apply. Depending on a situation, they select and deploy points
of view through which they “look at “ reality. Through the adoption of a point

45 A transition instance is called a transition occurrence in Falkenberg et al. (1998, 39).

100

of view, a basic set of concepts and constructs becomes selected. We call a
universe of discourse (UoD) a subjective reality that becomes relevant from the
point of view adopted. The notion of UoD is formally defined as follows.

 UoD := <cij >,

meaning that the UoD is a whole consisting of concepts. The UoD is defined as
a whole to emphasize that the concepts included in the UoD are highly
interrelated (see the definition of the notion of a whole in Section 3.9.2.3). The
UoD ontology provides concepts and constructs for perceiving and conceiving
the UoD’s, UoD states, UoD behavior, and UoD evolution from a certain point
of view.

Based on the concepts defined in the preceding section, we can say that a
UoD state is composed of all the related states of those (concept) things that are
included in the UoD. Let the UoD be the slice of reality concerned by a secretary
responsible for order processing. So the UoD consists of products, customers,
orders, reorders, invoices, etc. The UoD state is composed of the states in which
orders are (e.g. to be issued, processed, delivered, invoiced, or paid), in which
products in the inventory are, etc.

Transitions from UoD states to other UoD states reflect the dynamic
nature of the UoD. There are two kinds of transitions occurring in the UoD:
extensional and intensional. Extensional transitions encompass e.g. emergence
of new things of certain type (e.g. new products have been ordered), shifts of
things from one type to another (e.g. from invoicedOrder to paidOrder),
changes in certain qualities or quantities (e.g. decrease in quantity_on_hand),
etc. Thus, extensional transitions in the UoD concern the population of the thing
types in the UoD. They constitute the UoD behavior. Intensional transitions affect
the intensions of the types in the UoD. More types may emerge and existing
types may be changed, reinterpreted or vanish. In the example of order
processing, intensional transitions may be caused by emergence of a new type
of things, say Suppliers (earlier all the products were manufactured in the
enterprise), a new way of paying (ePaying), or by some changes in the
intensions of current types. These kinds of transitions constitute the UoD
evolution46. It goes without saying that the borderline between extensional
transitions and intensional transitions depends on the chosen point of view. The
UoD of our work will also evolve along the elaborations accomplished into
OntoFrame.

The concepts and relationships of the UoD ontology are presented in the
meta model in Figure 15. In the figure we can see that the UoD is composed at
least one UoD state. If it contains several states, it may also involve extensional
transitions (the UoD behavior) and/or intensional transitions (the UoD

46 Ramackers et al. (1990) distinguish between the first-order and second-order

dynamics in the IS. Falkenberg et al. (1992a, 1992b) define the concepts of first-order
evolution and second-order evolution. In the former, types can be changed, and in
the latter, also meta types can be changed.

101

evolution) in the states. The UoD ontology, in a sense, integrates the other
component ontologies in the core ontology. The notion of UoD state reflects all
kinds of structural phenomena in the UoD perceived from the selected point of
view. Likewise, UoD behavior and UoD evolution stand for all kinds of changes
occurring in the UoD. Due to this integrative nature, the meta model of the UoD
ontology is presented in a general level in Figure 15.

UoD

UoD evolutionUoD behaviorUoD state

2.. *

Concept

Point of view
1..*

conceivedFrom
1

FIGURE 15 UoD ontology

3.9 Abstraction Ontology

Conceiving is a complex process that is carried out by epistemological methods
to organize knowledge. Doing this, human beings unconsciously apply some
abstraction, which permits one to suppress details of particular things and to
emphasize those features that are pertinent to the problem at hand. Besides
organizing, abstraction is a fundamental means for producing knowledge. To
take a full advantage of abstraction requires that the concepts and principles
underlying it are made explicit and deployed consciously.

The purpose of this section is to explicitly define the concepts and
principles of abstraction. First, the main categories of the principles are
presented based on the general definition of abstraction. Second, the concepts
and principles in the first category, called the first-order abstraction, are
intensionally and extensionally defined. Third, the principles are jointly
discussed to highlight their interrelations. Fourth, the concepts and principles of
the second category, called the second-order abstraction or the predicate
abstraction, are defined. This section ends with the summary and discussions.

3.9.1 Abstraction Categories

Abstraction is not an easy concept to pin down. It means different things to
different people and tends to be used in an incantatory rather than a scientific

102

manner. The term comes from Latin47 and means a withdrawal or a removal. It
has long roots in the history of science48. It is used to mean abstraction from
unnecessary details, abstraction from the “how” to the “what”, abstraction from
instance-level to type-level, and so on. On the other hand, abstraction is used to
refer to a mental and representational process, or to a principle for, or to a result
of, that process. In this study, abstraction is seen as the principle by which
irrelevant things are ignored and the things relevant to understanding some
problem of interest are uncovered. Abstraction is used to manage the
complexity. This implies that some information is lost. If this is not the case,
then there is no abstraction, just a transformation. The principle inverse to
abstraction is called concretizing.

Abstraction can be performed in many ways. In the following, some
examples are given. Instead of looking at individual persons (John, Mary, and
Paul), the attention can be entirely focussed on Persons in general, or more
specifically, on Systems Analysts and System Designers in which roles John,
Mary and Paul are acting. Likewise, a Machine with its functional features may
be of interest, and not its Components. For a discussion a Labor Union with its
properties can be more relevant than Persons as its members. These cases
exemplify abstraction, which concerns things in different scopes and meanings:
e.g. as types, subtypes, wholes, and groups. This kind of abstraction that
concerns the concept things and their abstraction relationships is called the first-
order abstraction.

On the other hand, there are cases in which only some properties about
the things are interesting. For instance, what a customer wants to know about a
Machine may be related to its functional properties only. Characteristics related
to its electrical wiring and other physical features are irrelevant for him/her.
Likewise, somebody may be interested in the financial status of a Person. For
someone else, the physical skills that a Person possesses are more relevant.
Mental health is an example about still another aspect abstracted from a large
variety of properties related to a Person. Essential to all these cases is that
abstraction here concerns predicates of the given thing (a Machine or a Person).
The process of abstraction is guided by a specific criterion. In the case of a
Machine, the criterion is related to independence from the physical structure.
The cases of a Person illustrate specific criteria related to finance, physics or
healthy. The abstraction, which mainly concerns predicates of the concept
things, is called the predicate abstraction or the second-order abstraction.

The main abstraction categories, the first-order abstraction and the
predicate abstraction, are closely intertwined. As will be shown in Section 3.9.3,
the predicate abstraction mostly behaves like the first-order abstraction, except

47 Trahere, abstrahere, abstractio means “to pull”, “to separate”, and “to draw from”.
48 In Aristotelian philosophy, abstraction is a form of inquiry by which the mind

separates “form” from “matter” in search of the “universals” (Reese 1980). To Locke
is attributed the following definition: “Abstraction takes place by drawing out what
is common to a group of individual things, on the basis of a comparison of their
similarities and differences” (Baldwin 1940).

103

that it operates with the predicates (i.e. the so-called secondary things).
Furthermore, these main categories of abstraction are shown to be un-
orthogonal.

Abstraction is of major importance to all kinds of human action. Therefore,
it is widely discussed in the AI and IS literature (e.g. Smith et al. 1977a; Smith et
al. 1977b; McLeod et al. 1980; Brachman 1983; Winston et al. 1987; Mattos 1988;
Iivari 1992; Motschnig-Pitrik et al. 1995; Mylopoulos 1998; Motschnig-Pitrik et
al. 1999; Goldstein et al. 1999; Wand et al. 1999). Unfortunately, the discussion
has brought out insights that are, to a considerable extent, vague and confusing.
First, there are quite divergent views on the principles and concepts of the basic
forms of abstraction49. Second, there are different opinions about what
conceptual mechanisms are included in abstraction. Mylopoulos (1998), for
instance, considers contextualization, materialization, parameterization, and
normalization to be instances of abstraction mechanisms. It goes beyond the
scope of our study to analyze and compare discrepancies among the
suggestions in the literature. Our aim here is to build a uniform and coherent
abstraction ontology, which provides concepts and constructs for abstraction. It
should be strongly rooted on the concepts in more elementary parts of the core
ontology defined above, and specify in a simple and comprehensible fashion
structural and behavioral features of abstraction.

3.9.2 First-Order Abstraction

In this section we define four main principles of the first-order abstraction. They
are: classification, composition, generalization and grouping50. All these
principles are semantically irreducible modeling primitives that enable us to
conceive reality more clearly. To provide a proper understanding of the
abstraction principles, it is necessary to specify the structural properties, explicit
or derived, of the principles, in a formalized way. To meet this requirement, the
definitions of the principles of classification, generalization, composition and
grouping are divided into three subsections. For each type of the first-order
abstraction, we shall first define structural rules. In doing this, we introduce the
basic concepts and constructs. Second, we shall complete the structural rules by
specifying structural constraints. Third, we specify rules for the intensional and
extensional derivation of predicates in each kind of abstraction51.

49 To give just one example, Ralyte et al. (2003, 108), for instance, regard abstraction as a

reverse principle to instantiation, and consider specialization/generalization and
aggregation/decomposition to be separate from abstraction.

50 Goldstein et al. (1999, 296) calls classification and generalization with the common
term ‘inclusion abstraction’.

51 Defining completely the semantics of the abstraction principles would also require
the discussion of operations, which create, change and dismiss each instance
structure. This study, however, does not aim at conceptualizing the environment of
the ontology engineering. Therefore, we regard it adequate to use the structural
constraints, including minimum and maximum multiplicities, to bring out a
necessary set of behavioral properties of the abstraction principles.

104

3.9.2.1 Classification

Classification is the principle of abstraction by which the concept cty, called the
type, is generated from other concepts ciin, called instances. By classification,
features special to individual things are ignored to uncover features common to
all the things of interest. Thus, the type is a generic characterization of all the
predicates shared by each instance of that type. Respectively, a thing is an
instance of the type if it has all the predicates defined in the type, and at least
some of them are instantiated. The principle inverse to the classification is
called instantiation. It is used to obtain instances that conform to the constraints
associated with the predicates specified by the type. Classification serves two
primary functions: cognitive economy (indexing instances to facilitate storage
and retrieval) and inference (reasoning about instances based on the types to
which they are assigned) (Rosch 1978; Smith 1988).

Consider the example of Person and John. Person is a type characterized
by the predicates hasName, hasAddress and isMarriedTo. John is an instance of
the type Person. It is characterized by the predicates [hasName]:John and
[hasAddress]:MainStreet3.

Based on the informal definition above, we can define the instanceOf
relationship to be the relationship between an instance ciin and a type cty as
follows:

 instanceOf (ciin, cty)

The relationship above was defined intensionally. Defining it
extensionally would require the enumeration of all the instances that are
considered to apply the intension of the type. The extension of a type stands for
the set of things, each of which fulfils the intension determining that type. The
relationship instanceOf is non-reflexive, non-transitive and non-symmetric.

The semantics of the concepts of type (cty) and instance (cjin) can be
elaborated by the following axioms52:

Axiom 1. for each i,j: partOf (pi, IN(cty)) -> partOf (pi, IN(cjin))

Axiom 2. for each i,j exist k: partOf (pi,IN(cty)) -> (instanceOf (pijk, pi) and
 partOf (pijk, IN (cjin)))

By Axiom 1 we state that all the predicates pi contained in the intension of the
type cty are also contained by the intensions of all the instances cjin. Axiom 2
states that at least some of the predicates of the type must be included as being
instantiated in the intension of each instance.

In Figure 16 the basic concepts and relationships related to the principle of
classification are presented in a metamodel. Let us consider it with a simple
example. Assume that the type is Person and an instance is John. Then the

52 In the axioms we use the partOf relationship that will be defined in Section 3.9.2.3.

105

TypeExtension consists of all those persons, including John, who are referred to
by the instance concepts of the type Person. The concepts of Type and Instance
are defined by their intensions, which are composed of predicates,
TypePredicates and InstPredicates, respectively. All the predicates in the
TypeIntension (e.g. hasName, hasAddress, hasTwoLegs) are included in the
InstIntension, some of them being instantiated (e.g. [hasName]: John).

TypePredicate

ReferentInstanceInstIntensionInstPredicate

TypeExtensionTypeTypeIntension

1

0..1
instanceOf

1..*

1..*
instanceOf

1..*

1

has

1..*

0..1

refersTo

1..*

1..*

*

1

1

definedBy

1..*

1..*
memberOf

1

1

definedBy1..*

1..*

FIGURE 16 Meta model of the concepts and relationships of classification

Applying the principle of classification iteratively, a hierarchy of concepts with
the instanceOf relationships is established. Hence, also a type can be regarded
as an instance of some other thing. For instance, a Person is an instance of the
type Concept. A Concept is defined, as we have learned in Section 3.3, by the
intension composed of predicates. When instantiating a Concept into a Person,
the predicates characteristics to a Person have to be specified. When
instantiating a Person, in turn, still more specific predicates have to be
provided. To make the difference between a type (Person) and its types
(Concept), we take into use the term ‘meta type’. A meta type is a type, instances
of which are types.

Structural Constraints

Until now, the relationships between the concepts pertaining to the
classification have been considered on a general level. Here, we elaborate the
concepts by considering structural constraints enforced to them53. The
constraints are presented as multiplicity constraints in Figure 16. Let us start
with a simple case and then extend it with diverging assumptions.

In Figure 16 we can see that there may be one or more instances that apply
to the intensional definition of the certain type. A thing can be an instance of
one or more types. For a type, there is one and only one TypeExtension. It can
be empty or include several referents. An instance that is related to a certain
type, refers to only one referent, if any. A referent can be referred to by several
instances, provided that the instances apply to different types. Likewise, a

53 We are aware that there are various classification theories and models (cf. Rosch

1978; Smith et al. 1981; Sowa 2000) that have different conceptions about what classes
and instances are. Our aim is here to consider the structural constraints on a general
level.

106

referent can be a member of several TypeExtensions. A TypeIntension is
composed of one or more type-level predicates. An InstIntension is composed
of one or more predicates that are either type-level predicates or instance
predicates (InstPredicates). Instance predicates are instantiations of some type-
level predicates (TypePredicates).

The meta model presented in Figure 16 is based on four basic
assumptions: it reflects (a) one person's view (b) at a certain time. Further, it is
assumed that (c) each instance applies to at least one type, and (d) an instance is
an individual concept. Accepting or rejecting one or more of these assumptions
affects how the principle of classification is understood. This means that a set of
specializations of the principle of classification emerges. It is worth of noticing
that cases, which deviate from the basic assumptions, are commonly conceived
as exceptions and therefore either ignored or handled in an inadequate way in
the literature. Let us see to what kinds of specialized forms the deviations from
the assumptions lead.

First, each person interprets phenomena in reality subjectively.
Consequently, from the inter-subjective viewpoint, for a type there may be
several TypeExtensions. For instance, different persons may conceive a
Customer in various ways. Thus, we can distinguish between the objective
classification and the subjective classification. Second, comprehensions about the
meanings of the concepts can evolve in time. This implies that we may have an
instance, which refers to more than one referent. To cope with this, we need the
dichotomy of the permanent classification and the evolving classification.

Third, the assumption of associating an instance to at least one type is
questioned in several fields of information processing. Especially, in the object-
oriented programming (e.g. Borning 1986; Liberman et al. 1988; Sciore 1989)
there are approaches that, instead of the strict classification of instances, prefer
to postpone typing as late as possible54. Consequently, we can distinguish
between the strict classification and the non-strict classification.

Fourth, we consider a case in which an instance concept is a generic
concept and the corresponding type concept is a meta type (see Figure 1755).
Let the instance be Person and the type Concept. Like above, the type has its
TypeExtention but an instance (e.g. Person) does not refer to one referent only.
Therefore in the meta model there is InstExtension. Note that in this case
TypeExtension does not contain (real) referents referred to by its instances. In
some literature (e.g. Hautamäki 1986, 37) TypeExtension is said to contain

54 In the object-oriented programming (e.g. Bertino et al. 1995) approaches such as

instance_by_instance approach, explorative programming, and template-approach
are suggested. In the information modeling field Parsons and Wand (1997, 2000)
suggest a two-layered approach where instances (things, objects, or entities) are not
tied to particular classes. This approach affords flexibility in accommodating
multiple views, evolving the views, and integrating information from different
sources.

55 Note that the meta model in Figure 17 does not reflect subjective differences between
conceptions about extensions, nor evolution of the extension in time.

107

instance concepts (e.g. TypeExtension of Concept contains Person, Car,
Building etc.), meaning that TypeExtension is conceptual56. We adopt this view.

Type

InstExtensionInstance

TypeExtension
1..*

1

has

1

*
instanceOf

*

1

memberOf

1..*

1

has

FIGURE 17 Meta model of the concepts and relationships of classification in the case of

generic and meta type concepts

Predicate Derivation

As defined in Section 3.5, each concept is defined by its characterizing concepts,
called predicates. These predicates are included in the intension of a concept.
Some of the predicates are derived from predicates of some other concepts. This
is traditionally called "property inheritance" (e.g. Smith et al. 1977b). In this
study, "inheritance" is discussed more generally under the notion of predicate
derivation. For each principle of the first-order abstraction there are specific
rules for predicate derivation. Before discussing the derivation in conjunction
with classification, we distinguish between two kinds of predicates, factual and
definitional (cf. Mylopoulos et al. 1980, 188; Schrefl et al. 1984, 121).

Factual predicates mainly contain individual concepts. Definitional predicates
are composed of solely generic concepts expressed in common nouns. Most of
the predicates of the type are definitional, while individual concepts have also
factual predicates. In fact, factual predicates are instances of some definitional
predicates of the type. For instance, while John is instantiated from the type
Person, Age and Salary, as predicates of Person, are instantiated into the
predicates [Age]: 45 and [Salary]: 5000.

There are two kinds of predicate derivation, intensional and extensional.
In the intensional predicate derivation, each predicate of the type is expected to
apply to the corresponding instance concepts. Thus, the derivation proceeds
downwards from the type to its instance concepts. Derived predicates are
usually definitional although factual predicates are also possible. For example,
the predicate "The manager earns at least 500 dollars more than his
subordinates" should be true for each individual Manager. Sometimes in
defining a new generic concept, the predicate derivation can proceed from the
bottom up: individual predicates of the instances effect the selection and

56 Note that Concept can be associated to Person with two kinds of relationships:

instanceOf and isA. If the relationship between Person and Concept was the isA
relationship, the TypeExtension would contain the real referents (i.e. real persons).

108

specification of predicates of a new type. This approach may be called "concept
prototyping".

On the other hand, we can logically infer some properties of a population.
Note that the populations are also concepts. Assume that Age and Salary are
predicates of the concept Person. Then Average_Age and Maximum_Salary can
be predicates of the type PersonPopulation. For a specific PersonPopulation,
factual predicates can be derived from the factual predicates of the instances
included in the extension of PersonPopulation. This kind of derivation is known
as the extensional predicate derivation.

3.9.2.2 Generalization

Generalization is the principle of abstraction by which differences between some
types, called subtypes cisb, are suppressed and a new type, called a supertype csp,
is generated based on the commonalities of the subtypes. By generalization the
number of predicates in the intension is reduced, and hereby the extension is
enlarged. The inverse principle, called specialization, is used to achieve subtypes
from a supertype.57

By generalization one can focus on the things on a proper level in the
specific/generic dimension. For example, instead of considering a Vehicle as
the type, Trucks, Helicopters, Cars or Gliders may be regarded as being more
appropriate for considerations. Through the subtypes it is also possible to
specify, elaborate and employ the point of view that best suits the problem at
hand. The supertypes offer a means to integrate "local" views. For example,
features of Vendors, Customers, Employees and Employers can be joined with
the supertype Person. Our work contains more examples of the use of
generalization/specialization. The generic concept Thing has been first
specialized by the semiotic framework into the notions of Concept, Referent
and Sign. Further, Abstract and Concrete Concepts, as well as an Individual
Concept and a Generic Concept are derived from the concept of Concept
through specialization based on the notions of intension and extension.

The relationship between the subtype cisb and its supertype csp is called the
isA relationship. It is formally defined as follows:

 isA(cisb ,csp).

The isA relationship is reflexive, non-symmetric and transitive58. The semantics
of the isA relationship between the subtype cisb and the supertype csp is
elaborated by the following axioms:

57 ter Hofstede and van der Weide (1993b, 71) state that because specialization and

generalization originate from different axioms in set theory and have a different
expressive power, they are not inverse to each other. We do not agree with them.

58 In the literature various meanings to the isA relationship are given. Brachman (1983),
for instance, presents a list of ten different meanings, containing a kind_of
relationship, conceptual containment, role value restriction, set membership,

109

Axiom 3. for each i,j: partOf (pi, IN(csp)) -> partOf (pi, IN(cj sb))

Axiom 4. for each k,j: memberOf (rkj, EX(cjsb)) -> memberOf (rkj, EX(csp))

The first (intensional) axiom states that all the predicates of csp are also
contained by the intension of each cisb. According to the second (extensional)
axiom, known also as the specialization constraint (Gomez et al. 2002, 469),
referents rkj of each subtype must be members of the extension of the supertype.
The extension of the supertype and the extension of the subtype are named the
superset and the subset, correspondingly.

The principle of specialization itself can be specialized based on the
criteria used in specialization. Subtypes can be specified according to (a) factual
predicates (called discriminators in the UML terminology (Booch et al. 1999)),
(b) specifications given by users, or (c) operators used in the specialization (cf.
McLeod et al. 1980; Hammer et al. 1981). For example, using Sex of a Person as
the criterion results in the subtypes Man and Woman. A particular type of
specialization by factual predicates is the case in which a subtype is derived
from the population of the subtype excluding those instances that belong also to
the extension of some other subtype. For instance, Unmarried may be defined
as a subtype of Person, excluding Married (Gomez et al. 2002, 470). User-
specified subtypes do not depend on any particular predicate but on the
personal views or opinions stated explicitly (e.g. Excellent_student,
Good_student, Poor_student). These two subtypes of specialization are
intensional by their nature. An example of the extensional one is a set operator-
defined subtype. It is established by set operations over the population of the
type (e.g. Vehicles_owned_by_John).

If a predicate is used as a criterion for the specialization, the predicate of
the supertype must be the supertype of the corresponding predicates of the
subtypes (cf. Mylopoulos et al. 1980, 195). For example, when the predicate Age
is used to specialize the supertype Person into the subtypes Adult and Child,
Age is the supertype of the subtypes Age_of_Adult (e.g. 18-100) and
Age_of_Child (e.g. 0-17 years).

A supertype may be regarded, from another point of view, as a subtype of
another supertype. For instance, a Customer is a Person, which, in turn, is a
Living_thing. Thus, the iterative use of the principle of generalization generates
a hierarchy of concepts within which the concepts are interrelated with each
other by the isA relationships. Each subtype hierarchy must have a unique root,
and no cycles are allowed in the hierarchy59.

predication, abstraction, etc. However, he also includes into his list some forms of
abstraction that are here considered to be classification (e.g. set membership). In this
study we cannot go into details of his taxonomy.

59 The formal definitions of the aforementioned axiomatic rules are omitted here (see
more in Dart et al. (1988, 279).

110

In Figure 18 the meta model of the concepts and relationships related to
generalization / specialization is presented. The figure shows only those
relationships that are essential to the principle of abstraction. Next, we shall
consider the multiplicities of the relationships.

SPPredicate

SBExtensionSubtypeSBIntensionSBPredicate

SPExtensionSupertypeSPIntension

1..*

0..*

isA

1..*

1

has

1..*

1

refersTo

1..*

1..*

1

1

definedBy

1..*

memberOf

1

1

definedBy1..*

1..*

SPReferent

SBReferent

*

1..*

memberOf

1
equalsTo 0..1

*

FIGURE 18 Meta model of the concepts and relationships of generalization

Structural Constraints

Just as with classification, structural constraints for generalization are also
specified through the multiplicities of the relationships between the key
concepts (Figure 18). Based on the kind of the isA relationship between the
supertype and the subtype, we can distinguish between the one-type
specialization, the hierarchical specialization, and the lattice specialization. In the first
case, for each supertype there is only one subtype. In the second case, for each
supertype there are several subtypes. In the lattice specialization, for a subtype
there may be two or more supertypes. The isA relationship is depicted
according to lattice specialization in Figure 18.

Based on the multiplicity of the equalsTo relationship between a
SPReferent and a SBReferent, we can distinguish between the total
specialization and the partial specialization. In the total specialization, for each
SPReferent there is always one SBReferent (e.g. Hourly_Employee and
Salaried_Employee). In the partial specialization, there may be SPReferents for
which there are no SBReferents (e.g. Person can be Secretary, Technician,
Engineer, or some other that is not specified).

Based on the kind of relationship between the extensions (SBExtension
and SPExtension), we can define the disjoint specialization and the overlapping
specialization. Let SBExtensioni stand for the extension of the subtype cisb.
Specialization is disjoint if the following axiom holds:

Axiom 5. for each i, j (i # j):

isA(cisb ,csp) and isA(cjsb ,csp) ->
SBExtensioni ∩ SBExtensionj = {Ø }

111

Otherwise specialization is overlapping. Hence, there are four basic compound
types of specialization: disjoint and total, disjoint and partial, overlapping and
total, and overlapping and partial (Elmasri et al. 2000). In some cases, a special
name is used for specialization with certain specific properties. Gomez et al.
(2002, 469), for instance, calls specialization that is both disjoint and complete
the partition.

Predicate Derivation

How predicate derivation is carried out in conjunction with generalization
depends on the form of the generalization structure. Here, we first discuss
predicate derivation in the hierarchical specialization and then describe how it
is carried out in conjunction with the lattice specialization.

The predicate derivation, originally introduced as property inheritance in
the artificial intelligence (Brachman 1983), refers to the principle by which all
the predicates of a supertype are passed on to all of its subtypes. Thus, since
Name is a predicate of Person, it is also a predicate of Engineer, Secretary and
Trucker. Likewise, the definitional predicate "Person can be married only to one
Person at a time" implicitly obliges the instances of every subtype of Person.
The intensional definitions of subtypes can be further particularized by the
predicates that are specific for the subtypes. So the intensional predicate
derivation proceeds from the top to the bottom. The axiom for the intensional
predicate derivation can be formulated as follows:

Axiom 6. for each i, j:
 (isA (cisb, csp) and partOf (pj, IN(csp))) -> partOf (pj, IN(cisb)),

where cisb is a subtype, csp is its supertype and pj is a predicate. Extensional
predicate derivation in conjunction with generalization occurs such as in
classification.

There are three basic modes of predicate derivation, known as the strict
derivation, the default derivation and the exceptional derivation. In the strict
derivation, the relationship isA (cisb, csp) implies that cisb necessarily inherits all
the predicates of csp, without any exception60. In reality some exceptions always
appear (cf. the well-known example about a Bird and a Penguin: a Penguin is a
Bird but it does not fly). A way to manage them is to take the derivation as a
default, and allow some of the predicates of the supertype to be overridden.
This is called the default derivation (cf. Borgida et al. 1984, 92-93; Mylopoulos
1998). A special case of this is the way in which a predicate is refined during
derivation. For example, a predicate of Person is "Age is between 0 and 120". A
Student is a Person but its predicate is "Age is between 16 and 60"61. Another

60 The strict derivation is also called the is_a –derivation (Zdonik et al. 1990). The non-

strict derivation is called the is_like –derivation or the a kind_of –derivation (Wegner
1987).

61 Mylopoulos (1998, 141) uses the term ‘strict’ for this kind of inheritance.

112

way to prepare for the exceptions is to explicitly specify the exception types as
the special kinds of types (Mylopoulos et al. 1980; Borgida 1988, 438).

For the lattice specialization, the derivation principles presented above are
refined by special rules. The most common form of predicate derivation here is
the multiple derivation (cf. Wagner 1988, 270), which provides a mechanism to
derive predicates from multiple higher-level supertypes (cf. Peckham et al. 1988,
161) applying special derivation strategies. By the AND-strategy, a subtype
inherits all the predicates of each supertype (e.g. Amphibious_Vehicle vs.
Land_Vehicle and Sea_Vehicle). In the OR-strategy the predicates of only one
supertype are inherited by a subtype (e.g. Owner vs. Person and Company).

3.9.2.3 Composition

Composition62 is the principle of abstraction by which a type, called a whole type
cw, is composed of other types, called part types cp. Composition can also be
used to abstract part instances into whole instances. For example, Work_Station is
a whole type composed of part types Processor, Main_Memory, Display, etc. In
the composition, predicates of and relationships between the parts are
abstracted to form a whole. Besides the abstracted predicates, the intension of a
whole contains predicates that characterise the whole itself. These are called
emergent predicates (cf. Bunge 1997; Wand et al. 1999; Varzi 1996). Processing
power of Work_Station is an emergent predicate because it depends on
qualities of several parts. The inverse to composition is decomposition by which a
whole (type) is decomposed into inter-related part(s) (types). A thing that
cannot be decomposed is called an elementary thing (cf. Falkenberg et al. 1998).

Essential to a whole is that its parts are interrelated, in contrast to a group
whose “elements” are considered to be unrelated (see Section 3.9.2.4). Parts can
be characterized by one or more of the following properties (Motschnig-Pitrik et
al. 1999, 781): (a) spatial and/or temporal proximity with respect to one another
and/or the whole; (b) propagation of some structural and behavioral properties
from a part to a whole; (c) propagation of some structural and behavioral
properties from a whole to a part; and (d) particular ordering or constellation of
parts.

Composition can concern sign things or non-sign things. For example, a
Vehicle can be seen as a whole that is composed of the following parts:
Identification_Number, Manufacturer, Price, Weight, Medium_Category and
Propulsion category (Smith et al. 1977b, 114). This kind of composition is
known as the syntactic composition. The semantic composition deals with the non-

62 This is also called the aggregation (e.g. Smith et al. 1977a; Goldstein et al. 1999),

whole-part (Barbier et al. 2001), part-whole and meronymic relation (see Opdahl et al.
2001b)

113

sign things. For example, a Train is seen as being composed of an Engine and a
number of Coaches and/or Wagons.63

The relationship between the part (type) cnp and the whole (type) cw is
referred to as the partOf relationship. It is defined as follows:

 partOf (cnp,cw)

For example, a Term is a part of a Formulae, and a Coach is a part of a Train.
The partOf relationship is irreflexive and antisymmetric. The semantics of the
principle of composition can be elaborated by the following axioms:

Axiom 7. IN(cw) = E U X IN(cip)

Axiom 8. WExtension ⊆ X PExtensioni

where cw is a whole (type), cip is a part (type) of cw, E stands for the emergent
predicates and X is used for Cartesian product. The first axiom expresses how
the intension of a whole is constructed. As can be seen, the intension is much
more complicated that the union of the intensions of the parts. According to the
second axiom, the extension of the whole is a subset of Cartesian product of the
extensions of the parts (cf. Furtado et al. 1986, 81)64.

Also a whole (type) can be regarded, from another viewpoint, as a part
(type) of another whole (type). For example, a Piston is a part of a Motor, and a
Motor is a part of a Car. The principle of composition thus generates a
composition hierarchy in which the concepts are interrelated with one another
by the partOf relationships. Each composition hierarchy may have multiple
roots but it cannot contain any cycles. In the hierarchy, the partOf relationship
may be transitive, but only in cases where the parts and the wholes are of the
same kinds. According to Winston et al. (1987) there are at least six kinds of
whole-part relationships: (a) component / object (e.g. Processor / Computer);
(b) member / collection (e.g. Conductor / Orchestra); (c) portion / mass (e.g.
Slice / Pie); (d) stuff / object (e.g. Steel / Bike); (e) feature / activity (e.g. Spoon
/ Eating); (f) place / area (e.g. Helsinki / Finland)65. For transitivity of the
partOf relationship, this means that, for instance, partOf(Conductor_arm,
Conductor) and partOf(Conductor,Orchestra) does not imply that
partOf(Conductor_arm, Orchestra) (Motschnig-Pitrik et al. 1999, 781).

63 Iivari (1992) distinguishes between aggregation as a conceptual abstraction and

aggregation as a linguistic abstraction. This division corresponds to our dichotomy of
the semantic composition and the syntactic composition.

64 To consider the issue more deeply would call for the introduction of concepts such as
conceptual containment, sum and product (Kauppi 1967; Kangassalo 1982). It is not
possible to go into such detail here.

65 Note that only some of the kinds of the partOf relationships listed by Winston et al.
(1987) actually are partOf relationships in our terminology.

114

In Figure 19 the meta model of the concepts and relationships related to
the principle of composition is presented. Next, we consider the multiplicities of
the relationships in more detail.

WPredicate

Part InstancePart typePIntensionPPredicate

Whole instanceWhole typeWIntension

0..*

0..*
derivedFrom

1..*

1..*

instanceOf

1..*

1..*

instanceOf

1..*

1..*

1

1

definedBy

1

1

definedBy1..*

1..*

1..*

1..*

1..*

1..*

FIGURE 19 Meta model of the concepts and relationships of composition

Structural Constraints

The multiplicities of the partOf relationship depend on the nature and
properties of the relationship. In the literature several classifications for the
partOf relationship are presented (e.g. Winston et al. 1987; Motschnig-Pitrik
1993; Odell 1994; Gerstl et al. 1996; Saksena et al. 1998; Henderson-Sellers et al.
1999a; Motschnig-Pitrik et al. 1999; Snoek et al. 2001; Barbier et al. 2001; Albert et
al. 2003). Henderson-Sellers and Barbier (1999a) and Barbier et al. (2001) base
their classification on the division of the properties of the partOf relationship
into primary properties and secondary properties. A primary property is such
that any form of the partOf relationship must own it. Secondary properties are
used to distinguish between special kinds of partOf relationships. The primary
properties are: (a) there exist emergent predicates, (b) there exist resultant
predicates, (c) the relationship is irreflexive at the instance level, (d) the
relationship is antisymmetric at the instance level, and (e) the relationship is
antisymmetric at the type level. Resultant properties require collaborations
between wholes and parts while emergent properties do not. For instance in the
case of an egg, its freshness is an emergent property and its taste is a resultant
property (Barbier et al. 2001, 22). Irreflexivity at instance level means that no
thing can be a part of the thing itself. Antisymmetry at instance level and at
type level means that if a thing A is related through the partOf relationship
with another thing B, then B cannot be a part of A.

The idea of the primary and secondary properties of the partOf
relationship can be further refined with two dimensions distinguished by
Motschnig-Pitrik et al. (1999). The dimensions are: degree of sharing and degree
of dependence. The degree of sharing indicates to which extent a part can be
shared by more than one whole. This dimension gives rise to purely static
constraints. The degree of dependence means how mandatory and persistent is
the relationship between a part and a whole. Based on the degree of sharing we
can distinguish two extremes, namely total exclusiveness and arbitrary sharing.
The partOf relationship is total exclusive if a thing can be a part of only one

115

whole. For example a Motor can be a part of only one Car (see Figure 20). The
partOf relationship is arbitrary shared if a thing can be a part in arbitrary many
wholes. For example, a Figure can be a part of a Book_Chapter, an Article and a
Documentation (Motschnig-Pitrik et al. 1999, 785).

Whole

Part Part

Whole Whole type Whole instance

Part type Part instance
1..*

instanceOf

1 0..* 0..*
0..1

1..*

instanceOf

Total exclusive Arbitrary sharing Selectively exclusive

FIGURE 20 Special types of composition based on the degree of sharing

Depending on whether the partOf relationship is considered to hold between
the types (type level relationship) or the instances (instance-level relationship),
the impacts of the degree of sharing on the relationship vary. Type-level
sharing - or interclass sharing as Motschnig-Pitrik et al. (1999, 785) call it -
means that although a certain Motor cannot be used as a part of more than one
Car, Motors of certain type can be used as parts in Cars of more than one type.
An example of type-level exclusiveness is the case in which a Windows
message may be part of several Windows programs, but not of anything else.
Further, we can distinguish selectively exclusive sharing (Motschnig-Pitrik et al.
1999, 786), which means that a thing can be a part of one whole but of more
than one alternative type (e.g. parts like Screw and Battery).

Within the dimension of the degree of dependence we have two extremes
(see Figure 21). The partOf relationship can bind a part to the whole with a
lifetime dependence, meaning that the existence of a part instance totally
depends on the existence of the whole instance. In another case, there may be
things of certain part type that are related to things not of the whole type. This
kind partOf relationship is called optional.

Part instance

Whole instance

1..1

Part type

Whole type

1..1

Whole instance

Part instance

1..*

Whole type

Part type

1..*

Whole instance

Part instance

0..1

Optional Essential Immutable Homogeneous Heterogeneous

FIGURE 21 Special types of composition based on the degree of dependence or

alternatively on the variety of parts

116

Related to the degree of dependence is the notion of essentiality. The partOf
relationship between a part type and a whole type is essential (or mandatory) if
each part instance must be interconnected to at least one arbitrary whole
instance of that type. Thus, essentiality imposes a weaker constraint, and forms
a prerequisite to the lifetime dependence. For instance, a Module must be a
part of some Workspace. The extreme kind of lifetime dependence requires
that since its “birth” the thing is permanently related to the whole (cf. the
composition relationship in UML (Booch et al. 1999)). This kind of relationship
is called immutable66.

Until now we have considered the kinds of partOf relationships from the
viewpoint of a part. Similar treatment can be made from the viewpoint of a
whole. Hence, we can recognize the following kinds of wholes. A homogeneous
whole is a thing that is composed of things of one part type (e.g. a Puzzle). A
heterogeneous whole is a thing that is composed parts of several part types (e.g. a
Train). A single-part whole is a thing that contains only one thing of a certain part
type (e.g. a Train with one Engine). A multi-part whole is a thing that contains
several things of a certain part type. A flexible-structure whole is a thing in which
parts of some part type can be missing (e.g. a Room without a Window). A
fixed-structure whole is a thing, which must be composed of one or more parts of
all the defined part types (e.g. a Train with an Engine and at least one Wagon).

Predicate Derivation

Predicate derivation within the composition hierarchy is not so common as in
conjunction with generalization. Values of quantitative predicates of non-sign
things can increase or decrease when going upwards in the composition
hierarchy. For example, the weight of a whole can be derived accumulating the
weights of the parts. This kind of predicate is monotonically increasing (cf.
Mattos 1988, 343). There are also monotonically decreasing predicates. An
example of semantic derivation rules is the one declaring that the Name of a
Family is determined according to the Name of the Mother or the Father (cf.
Stamper 1978b, 303-304).

Intensional predicate derivation is suggested in the literature (e.g. Brodie
1978), especially in conjunction with sign things. But in the most cases the real
essence of predicate derivation is misunderstood. For instance, Brodie (1978, 4)
argues that "each property of a constituent (i.e. part) becomes a constituent
property of the aggregate”. If this would be the case, there would be no
abstraction. Unfortunately, it is not possible here to discuss these issues further.

66 Motschnig-Pitrik et al. (1999, 789-790) further distinguish between three kinds of

immutable relationships.

117

3.9.2.4 Grouping

Grouping67 is the principle of abstraction by which a concept, called a group type
cg, is generated from other concepts, called member types cim. Grouping can also
be used to abstract a group instance from member instances. By grouping, a
group (type) as a unity is examined rather than its members (member types)
and the features of members (member types) are abstracted away to obtain the
essentials of the group (type). The principle inverse to grouping is called
individualization by which a member (type) is distinguished from a group (type)
for a more detailed consideration.

Examples of groups are a Labor_Union whose members are Employees, a
School consisting of Departments, and an Enterprise comprising Divisions.
Essential to grouping is that the members of a group are of one type, and there
is no internal structure between the members within a group.

The relationship between a member (type) and a group (type) is called the
memberOf relationship. It is defined as follows:

 memberOf (cim, cg)

meaning that cim is a member (type) of a group (type) cg . The relationship is
irreflexive, antisymmetric and intransitive. The semantics of the principle of
grouping can be elaborated by the following axioms:

Axiom 9. IN(cg) = A U E , where partOf (A, IN(cim))

Axiom10. for each i, exists j: (memberOf (cm, cg) and instanceOf (cim, cm) and
 instanceOf (cjg, cg)) memberOf (cim, cjg)

At the type-level the first axiom states that the intension of a group type is
composed of some part (A) of the intension of the member type (cim), as well as
of the predicates (E) specific to the group type as such (e.g. Name, Address and
Budget of a Labor Union). Correspondingly, at the instance level the axiom
states that the intension of a group is composed of some part of the intensions
of the members, as well as of the predicates specific to a group. This makes the
notion of a group different from the notion of a set. While two sets are equal if
and only if they have the same members, this is not necessarily so for groups.
Two groups having the same members, for example, two specific clubs, may
differ in their internal identifiers or by the values of some predicates associated
with the group. Such a predicate can be the minimum age required to become a
member of a club (Motschnig-Pitrik et al. 1995, 153). The second axiom binds the
type-level concepts and the instance-level concepts together by stating that if a
type cm is a member of another type cg, then there is the memberOf relationship

67 This principle is also called set membership (Falkenberg et al. 1998), association

(Brodie 1981; Peckham et al. 1988; Goldstein et al. 1999), partitioning, and cover
aggregation (Schrefl et al. 1984) (see also Potter et al. 1988).

118

between each instance of the member type and some instance of the group type.
This holds, of course, only if the grouping is mandatory.

A membership rule for a group is either predicate-defined or user-defined.
The predicate-defined membership is stated explicitly in the intension of a
group type while the membership of the second type is determined instance-by-
instance by a human being.

A group can be regarded, from another point of view, as a member of
another group. For instance, Unions can form an organisation called
United_Unions. Thus, the principle of grouping generates a hierarchy of
concepts within which the concepts are interrelated with each other by the
memberOf relationships. Note that as the relationship is intransitive, an
Employee is a member of a Union but not a member of a United_Unions.

Figure 22 presents the meta model of the key concepts and relationships of
grouping.

Group type Group instance

Member type Member instance

1..*

1..*

instanceOf

0..*

1..*

memberOf

1..*

1..*

instanceOf

1..1

1..*

memberOf

FIGURE 22 Meta model of the concepts and relationships of grouping

Structural Constraints

Based on the multiplicity constraints related to the memberOf relationships in
Figure 22, we can distinguish between different kinds of grouping. We illustrate
these with examples presented in the meta models in Figure 2368. Let us first
consider type level variations. In homogeneous grouping, for a group type there is
only one member type. In heterogeneous grouping a group can be formed from
members of several member types. Groups can also differ in type-level sharing
(Motschnig-Pitrik et al. 1995, 160). In categorical grouping a member type is
related to one group type at a time. In shared grouping a thing can be a member
type of several group types. For example, an Employee may be a member of a
Union as well as a member of a Working group.

A set of kinds of grouping can be enlarged with instance-level discussions.
Disjoint grouping means that an instance cannot be a member of more than one

68 The meta models in Figure 23 are not aimed to be complete specifications of the

“subtypes” of grouping. Multiplicity constraints are presented in those ends of the
partOf relationships, which are specific to the types. For instance, for a mandatory
grouping it is essential that each member instance is related to at least one group
instance.

119

1..1memberOf

Group type

Member type Member type

Group type

1..*
memberOf

Group type Group type

Member type Member type

1..1

memberOf

1..*

memberOf

Homogeneous Heterogeneous Categorical Shared

Member instance

Group instance

Member instance

Group instance

0..*
memberOf

Group instance

Member instance

Group instance

Member instance

1..*
memberOf

0..1
memberOf

1..*
memberOf

 Disjoint Overlapping Mandatory Optional

FIGURE 23 Special kinds of grouping

group (of the same or different type). In overlapping grouping an instance is
allowed to be a member of several groups (of the same or different type). In
mandatory grouping, each member must belong to some group, whereas in
optional grouping an instance can exist without any memberOf relationship.

Predicate Derivation

Predicate derivation within the grouping hierarchy is addressed in only a few
studies (see Mattos 1988, 338; Schrefl et al. 1984, 122). This would indicate that
derivation is not possible in conjunction with grouping. Contrary to this
opinion, we can recognize both extensional and intensional predicate
derivation, although derivation rules are case-specific. Some factual predicates
of a group instance can be derived e.g. by counting the number of its members
(i.e. cardinality), or by applying aggregate functions (e.g. Avg_Age,
Max_Salary) to the factual predicates of member instances. This kind of
extensional predicate derivation proceeds in the bottom-up manner. Likewise,
as Brodie et al. (1983, 597) suggests, predicates of a member type can establish a
basis for the specification of predicates of the group type (cf. Axiom 9). The
intensional predicate derivation proceeds upwards. For example, the
intensional specification of a Union states that persons of a certain kind (e.g.
employees) can become members of a Union.

120

3.9.2.5 Synthesis and Integration

In the sections above we have defined the principles, the key concepts, and the
structural rules of four kinds of abstraction and discussed predicate derivation
related to them. A variety of things in the reality is so immense that it is
impossible to expect any set of abstraction principles to completely cover all the
occurrences of abstraction to which a human being is capable in his/her
observing and conceiving reality. We have identified the most basic kinds of
principles of abstraction – as a matter of fact, by applying abstraction by
generalization among the abstraction principles. In doing so we have not
considered all the details and interpretations related to various principles of
abstractions (cf. Brachman’s (1983) taxonomy for the isA relationship). To sum
up the discussions, we present the names of the principles, the inverse
principles, the relationships and the key concepts of the first-order abstraction
in Table 8.

TABLE 8 Summary of the first-order abstraction

Abstraction
principle

Concretizing
principle

Relationship Key concepts

Classification Instantiation instanceOf
 (ciin, cty)

instance, type

Generalization Specialization isA (cisb ,csp). subtype, supertype

Composition Decomposition partOf (cnp ,cw) part (type)
whole (type)

Grouping Individualization memberOf (cim,cg) member (type),
group (type)

The principles of abstraction are seldom applied one at a time. Most typically,
two or more principles are deployed in an integrated fashion. For instance,
Person is seen as a type, of which Mary and John are instances. At the same
time Person is a supertype for Man and for Woman, in the role of Secretary in
Project organization, as well as a member type of the group type Union. To
illustrate the integration of the principles of the first-order abstraction at the
type level, a conceptual model is presented in Figure 24, which contains
examples of each abstraction relationship.

To have an integrated view on the abstraction principles on the meta level,
we present below an integrated meta model of the key concepts and
relationships of the first-order abstraction. As seen in Figure 25, the common
basis for all the abstraction principles is the concept Thing (see Section 3.4.)
from which all the concepts of abstraction are specialized. Classification is used
to distinguish between the types and the instances (and the meta types).
Generalization concerns the types only. The principles of composition and
grouping can be formulated specifically for the types and the instances. As
shown in the sub-sections above, the multiplicities of the relationships vary

121

substantially depending on the nature and structure of abstraction. In Figure 25
we present the multiplicities of the most common structures.

Car

LandVehicle

WheelMotor

Amphibious

0..1

memberOf

1..*

memberOf

Man

SeaVehicle

VehiclePerson
1

0..*

owns

1 4

Woman

Employee

Secretary Professor

Union

UnionOfProfessors

John

1

1

instanceOf

1

instanceOf

1..*

0..1

1

FIGURE 24 A type-level example of applying four principles of the first-order abstraction

TypeInstance

SupertypeSubtype

Whole (type)

1..*

1..*

instanceOf

1..*

1..*
memberOf

Part (type)

Group (type)

Member (type)

(Concept) Thing

1..*

1..*

isA

1..*

1..*

FIGURE 25 Integrated meta model of the key concepts and relationships of classification,

generalization, composition and grouping

122

3.9.3 Predicate Abstraction

Hitherto, four principles of the first-order abstraction have been specified. The
first–order abstraction can also be called the vertical abstraction because in
carrying out an abstraction process one perceives and builds structures of
things (i.e. instances, types, wholes, and groups) on several abstraction levels.
There is, however, another kind of abstraction in which one proceeds to another
direction. For example, from the chosen things all the features except those
causing financial consequences are abstracted away. This kind of abstraction
concerns the predicates of (concept) things and is called the predicate
abstraction or the second-order abstraction or the horizontal abstraction. The
purpose of predicate abstraction is to hide irrelevant predicates in order to reveal
the predicates significant for the issues addressed.

As implied from the definitions given for the concepts of a point of view
and a thing in Section 3.3, the predicates can also be treated as things. For
example, the instance John of the type Person is characterized by the predicates:
[Age]: 20, [Lenght]: 190, [Eyes_Color]: Blue. The predicate [Eyes_Color]: Blue
can be regarded as an instance of the predicate type Eyes_Color. Further,
Eyes_Color is a subtype of the predicate type Color. So, it clearly depends on
the selected point of view what phenomena are regarded as things. To express
explicitly the chosen point of view, the former things (e.g. Person) are called the
primary things, and the latter things (e.g. Eyes_Color) are called the secondary
things. Respectively, the predicates of the secondary things can be seen as the
tertiary things. For example, the secondary thing Eyes_Color is characterized by
the "value set" and the semantic rules for the interpretation of this secondary
thing. Some of the characterizing predicates may be values69.

We can conclude that the predicates can be regarded as secondary,
tertiary, etc. things (see Figure 26), and consequently, the principles of predicate
abstraction can now quite simply be derived by specializing from the principles
of the first-order abstraction.

In this section, we first define the principles of predicate abstraction and
give some examples of them. Second, we consider consequences of predicate
abstraction to the primary things. We show that the vertical and horizontal
abstractions are not orthogonal. The section ends with some conclusions.

By predicate classification the features special to individual predicates are
ignored in order to uncover features common to all the predicates of interest. A
predicate type is a generic characterization of all the features (i.e. secondary
predicates) shared by each predicate instance. For example, [Has_Color]:Blue is

69 The notion of a value is philosophically extremely vague (Bunge 1974) and has

different meanings in various fields (cf. Kent 1978; MacLennan 1982). The definitions
of values such as numbers are usually implicitly contained in some branch of the
mathematical or logical theory (Bunge 1974). They may also contain a set of auxiliary
rules, which express in a specific context certain properties of the value class (e.g.
Max_Value). It is beyond the scope of our study to examine this issue further.

123

Primary thing Secondary thing

Intension
*

1

1

has

(Concept) Thing

1..*

FIGURE 26 Meta model of the primary and secondary things

a predicate instance of the predicate type Has_Color. Likewise, Owned_by is a
predicate type, and one of its instances might be [Owned_by]:John. In Section
3.9.2.1, the concepts of definitional predicate and factual predicate were
introduced. Now we can state that the predicate classification means the
definitionalization of the predicate instances into the predicate types, and the
predicate instantiation means the factualization of the predicate types into the
predicate instances.

Since the intensional definition of a concept is composed of predicates, it is
obvious that predicate abstraction directly affects the concept formulation. Let
Ball be a type and one of its concept predicates be Has_Color. Factualization of
this predicate type to e.g. the predicate instance [Has_Color]:Blue creates a new
primary type Blue_Ball, which is a subtype of the type Ball. The type Ball has
many other predicates. Each act of factualization restricts the extension of the
type so that finally we get one instance of the primary type. Thus we can say
that definitionalization and factualization of predicates are closely related to
abstraction and concretizing of the primary things.

By predicate generalization special features of predicate subtypes are
ignored in order to uncover the features common to all the predicate subtypes.
This results in a predicate supertype. For instance, the primary type Enterprise
has the concept predicate Owned_by. Predicate subtypes of that are
Owned_by_Person and Owned_by_Organization. Likewise, the predicate type
Has_Weight of the primary thing type Automobile has at least two predicate
subtypes: Has_Gross_Weight and Has_Net_Weight. Another predicate type of
Automobile is Owned_by_Person. This can be specialized into two subtypes:
Owned_by_Man and Owned_by_Woman. These examples show that the
predicate generalization and specialization can have varying effects upon the
corresponding primary types. Generally speaking, predicate specialization
induces the first-order specialization. This is exemplified in the case of
Enterprise: a new primary type Enterprise_owned_by_Person is specialized
from the type Enterprise. But this does not hold for all cases. In the example of
Weight no changes to the primary type is caused, because for each Automobile

124

it applies to specify Gross_Weight and Net_Weight. What happens instead is
that the specification of the predicate type is made more precise. Also non-strict
predicate derivation causes exceptions to the general principle mentioned
above.

By predicate composition a predicate as an entire construct, called a
predicate whole (type), rather than its predicate part(s) (types) is/are examined.
Predicate decomposition backgrounds a part of the predicate whole (type) for a
more detailed consideration. For example, the predicate whole type
Born_in_Date of the primary type Person can be decomposed into
Born_in_Year, Born_in_Month and Born_in_Day. The same can be done for the
predicate whole type Living_in_Address. Predicate composition/
decomposition has usually no direct effect upon the abstraction of the
corresponding primary types. Only predicate(s) (types) may become more
detailed.

By predicate grouping a predicate group (type) rather than its predicate
member(s) (types) is/are examined. The inverse process is predicate
individualization. For example, the predicate type Has_Color_Composition70
contains a reference to the predicate group type Color_Composition, which can
be individualized into member colors. It is worth of noting that as far as only
the colors themselves are concerned we use grouping. But if portions that colors
have in the composition are of any importance, the predicate abstraction
follows the principle of composition resulting in the predicate part types Color
and Portion. Predicate grouping/individualization has no direct effect on the
first-order abstraction.

To conclude, we have defined the key concepts for each principles of the
predicate abstraction and given illustrative examples. The principles, the
relationships and the key concepts are summarized in Table 9. The discussion
has been firmly based on the presumption that the predicates are special kinds
of concept things (i.e. isA (p, c)). This has given us a reason to argue that the
structural rules and constraints, as well as the rules for predicate derivation
given for the primary things, hold for the predicates, too. Due to this generative

TABLE 9 Summary of the predicate abstraction

Predicate abstraction
principle

Relationship Key concepts

Predicate classification

Predicate generalization

Predicate composition

Predicate grouping

instanceOf (piin, pty)

isA (pisb , psp)

partOf (pip, pw)

memberOf (pim, pg)

predicate instance,
predicate type
predicate supertype,
predicate subtype
predicate part (type),
predicate whole (type)
predicate group (type),
predicate member (type)

70 Color composition is a common expression in English. Unfortunately, it refers to the

other principle of abstraction, viz. composition.

125

nature of the abstraction framework, the space required for formulating the
predicate abstraction is less than the significance of this issue would suggest.

3.9.4 Summary and Discussions

In this section we have defined the abstraction ontology that is based on two
basic categories of abstraction. The first-order abstraction concerns the primary
things and their basic relationships. The second-order abstraction or the
predicate abstraction concerns the predicates and their relationships. We have
distinguished between four basic abstraction principles: classification,
generalization, composition, and grouping. For each type of principle we have
provided the definitions of the key concepts, the structural rules, and
discussions about the predicate derivation. This has been done first for the first-
order abstraction, and then for the predicate abstraction. Finally we have also
discussed the relationships between the first-order abstraction and the predicate
abstraction. To promote the consistence and coherence of the abstraction
ontology we have presented the key concepts and relationships of each
abstraction principle in meta models. As far as we know, this has not been done
in any earlier work.

As mentioned above, in the IS literature there are quite divergent views on
the principles and concepts of the basic forms of abstraction. It has not been
possible for us to analyze or compare divergent conceptions here. Instead next
we shortly consider conceptual mechanisms that are suggested to involve
abstraction, although they do not belong to any single basic category.

Mylopoulos (1998) includes into the abstraction “mechanisms”, besides
classification, generalization, and aggregation, also materialization,
contextualization, normalization, and parameterization. Materialization,
originally introduced by Pirotte et al. (1994), relates a class, such as Car_Model,
to a more concrete class, such as Car. The Car_Model class contains
information, such as Model_Name, Sticker_Price, and available options for
Engine_Size. The class Car models information about individual cars, such as
Manufacture_Date, Serial_Number, and Owner. The formal properties of
materialization constitute a combination of those of classification and
generalization (Pirotte et al. 1994, Pirotte et al. 2004).

The term contextualization is used to cover a large variety of ways to
apply a certain point of view. It means “an abstraction mechanism which allows
partitioning and packaging of the descriptions being added to an information
base” (Mylopoulos 1998, 142-143). Mechanisms to apply points of view
comprise partitioned networks in knowledge representation (e.g. Hendrix
1979), workspaces, versions and configurations in CAD and software
engineering (e.g. Katz 1990), views in data bases (e.g. Elmasri et al. 2000;
Motschnig-Pitrik et al. 1996), perspectives in hypertext bases (e.g. Prevelakis et
al. 1993), and viewpoints (e.g. Finkelstein et al. 1992). In terms of our abstraction
ontology, contextualization means abstraction with multiple principles of the
first-order abstraction as well as of the predicate abstraction.

126

Normalization means “normal-case first abstraction” (Borgida 1985)
where the common things, states and events are first modeled, while special
and exceptional situations are later dealt with. Exceptions are discussed in
programming languages (e.g. Borgida 1988) as well as in specifications (e.g.
Schoebbens 1993). Abstracting exceptional things and aspects away is a very
complicated process, which can only partly be supported by the basic principles
of abstraction. Parameterization is a common mechanism to enhance
reusability in programming and specification languages. Parameters, such as
resource and customer, can be used in programs, which are to be used, for
instance, in a library (book and libraryUser) and a car rental company (car,
renter). Parameterization can be modeled by the principles of generalization.

There are also presentations that discuss the so-called “role-abstraction”
(e.g. Albano et al. 1993; Li et al. 1994; Wieringa et al. 1995; Kaasboll 1995;
Steinmann 2000; Dahchour et al. 2002). Dahcjour et al. (2002), for instance,
present a generic role model, which is based on the role relationship that
connects a superclass (e.g. Person) to more than one role classes (e.g. Student,
Employee). Unlike in generalization, each instance of the superclass can be
related to any number of role classes.

Finally, Olive (2002, 675) uses the term ‘generic relationship type’ to mean
relationship types that may have several realizations in a domain. He includes
abstraction relationships such as the partOf and memberOf relationships but
also the materialization relationship (e.g. Pirotte et al. 1994) and the owns
relationship (e.g. Yang et al. 1994).

These examples concretely show how complex and multifaceted concept
abstraction is. They also exhibit to what extent abstraction and its all modes
have been addressed and used in knowledge representation, information
systems, data bases, programming languages, etc. We believe that our ontology,
although covering only two categories and four basic principles promotes the
understanding and application of abstraction. Parts of abstraction that are
excluded from the abstraction ontology are partly addressed through the
notions of point of view (Section 3.3) and of perspective (Chapter 6).

3.10 Comparative Analysis

Conceiving reality and its phenomena with fundamental concepts and
constructs is widely discussed in the literature. It is not possible for us here to
make an extensive review of the relevant literature. Instead, we first present a
general categorization of the literature and give some examples of each
category. Second, we select two presentations for a more detailed analysis. We
define the goals of the analysis, describe the selected presentations and compare
them with one another, as well as with the core ontology.

127

3.10.1 Categorization of Relevant Literature

The relevant literature can be sub-divided into three categories. The first
category comprises universal, top-level ontologies that aim to provide
conceptual foundations for the representation of common sense knowledge.
Examples of the presentations belonging to this category are the top-level
ontologies of Bunge (1977), Chisholm (1996), Feibleman (1951), Brody (1980)
and Tiles (1981). This category also includes upper ontologies developed for
artificial intelligence and knowledge representation, such as Cyc (Lenat et al.
1990), SUMO71 (Suggested Upper Merged Ontology), and Sowa’s categorization
(Sowa 2000).

The second category contains comprehensive conceptual frameworks and
ontologies established for the IS field. The best representatives in this category
are the Frisco framework (Falkenberg et al. 1998) and the BWW model (Wand
1988a; Wand et al. 1990a). Other presentations are Telos (Mylopoulos et al. 1990),
Opdahl et al. (1994), and Krogstie (1995).

The third category is composed of those presentations in the IS field that
cover only some part of our core ontology. From a large array of this kind of
presentations we mention here only those that address the abstraction ontology.
We can distinguish two kinds of presentations. First, there are suggestions that
give a comprehensive consideration for multiple principles of abstraction. The
most notable presentations of this kind are Schrefl et al. (1984), Mattos (1988),
Kaasboll (1995), Mylopoulos (1998), and Goldstein et al. (1999). Second, there
are presentations that address only some of the abstraction principles, such as
classification (e.g. Parsons et al. 2000), generalization (e.g. Smith et al. 1977b;
Brachman 1983; Gomez et al. 2002), composition (e.g. Smith et al. 1977a; Winston
et al. 1987; Mostchnig-Pitrik 1993; Motschnig-Pitrik et al. 1999; Varzi 1996; Gerstl
et al. 1996; Guarino et al. 1996; Henderson-Sellers et al. 1999a; Opdahl et al.
2001b; Barbier et al. 2001), and grouping (e.g. Motschnig-Pitrik et al. 1995).

3.10.2 Targets and Goals of Analysis

From the aforementioned categories we regard the second one (i.e.
comprehensive conceptual frameworks and ontologies for the IS field) as the
most relevant for our purposes. From instances of this category we select two
most prominent presentations for our comparative analysis. They are the Frisco
framework and the BWW model. The Frisco framework (Falkenberg et al. 1998)
is the result of the work of the IFIP WG 8.1 Task Group FRISCO (FRamework of
Information System COncept), established in 1988. The framework “provides a
reference background for scientists and professionals in the IS field comprising
a consistent and coherent system of concepts and a suitable terminology..”
(Falkenberg et al. 1998, 2). The Frisco framework has been selected for the
analysis because it is the most serious attempt to reach an agreement on the
common terminology and conceptual foundation in the IS field. It lasted for

71 http://suo.ieee.org/

128

approximately ten years and involved a large community of distinguished
scientists. The BWW model (Wand 1988a; Wand et al. 1989; Wand et al. 1990a;
Wand et al. 1990b; Wand et al. 1993; Wand et al. 1995b) is based on Bunge’s
ontology (Bunge 1977). It consists of three models: the representational model,
the state-tracking model, and the good decomposition model. We consider here
only the representational model. It is aimed to be used “as an ontology to define
the concepts that should be represented in an IS modeling language, that is the
semantics of the language” (Wand et al. 1995a, 287). The BWW model has been
selected for the comparative analysis because it is the only presentation in the IS
field that is firmly based on a universal ontology. The model has also been
widely applied for more than ten years.

The comparative analysis is composed of two parts. In the first part we
present an overview of objectives, ontological positions, and structures of the
presentations. Objectives refer to purposes for which the presentations are
aimed. Ontological positions are analyzed by using the trichotomy of
objectivistic, constructivistic and mentalistic viewpoints (Stamper 1992b;
Falkenberg et al. 1998). The basic structure means a way in which the sets of
concepts are sub-divided and organized in the presentations. The aim of the
second part is to reveal the coverage and emphases of the presentations. For
this purpose we distinguish their key concepts and constructs, and using the
core ontology as a “yardstick” we consider which parts are missing in the
presentations and which parts are missing from our ontology, compared to the
presentations. Emphases are seen in numbers of concepts and constructs
defined for certain domains.

3.10.3 Results of Analysis

3.10.3.1 Overview

Table 10 summarizes the general features of the core ontology, the Frisco
framework and the BWW model in terms of objectives, ontological positions
and basic structures. The core ontology is aimed to provide key concepts and
constructs for conceiving, understanding, structuring and representing
fundamentals in reality, and to derive more specific concepts from them. It has
been constructed based on the assumptions of the constructivist position. The
core ontology is composed of seven parts, each having its own particular view
on reality. The generic ontology provides the minimal set of concepts to
conceive things, their relationships and properties in reality. The semiotic
ontology applies a universal theory, the semiotics, to distinguish between three
realms. The extension/intension ontology serves as a conceptual mechanism to
specialize the notion of a concept and to define its semantic meaning. This
ontology is needed in particular for establishing the abstraction ontology. The
language ontology provides concepts for defining the syntax and semantics of a
language. The state transition ontology is composed of concepts and constructs
for the recognition of dynamic phenomena in reality. The UoD ontology is
composed of consolidated concepts through which reality can be perceived as a

129

totality, whether static, dynamic or evolving, determined by a selected point of
view. Finally, the abstraction ontology serves a rich collection of concepts and
constructs with which human beings can cope with the complexity of reality.

TABLE 10 Summary of the objectives, ontological positions and basic structures of the

presentations

 Core ontology Frisco framework BWW model
Objective “to provide the key

concepts and
constructs to
conceive,
understand,
structure and
represent
fundamentals in
reality”

“to provide an
ordering and
transformation
framework to relate
different IS modeling
approaches to each
other” (Falkenberg et
al. 1998, 1)

“is aimed to be used as
an ontology to define the
concepts that should be
represented by a
modeling language, that
is the semantics of the
language” (Wand et al.
1995a, 287).

Position Constructivist
position

Constructivist position Objectivist position

Structure Modular structure:
generic ontology,
semiotic ontology,
extension/intension
ontology, language
ontology, state
transition ontology,
UoD ontology,
abstraction ontology

Layered structure:
fundamental layer,
layer of actors, actions
and actands, layer of
cognitive and semiotic
concepts (+ two more
layers)

No (explicitly) defined
structure

The Frisco framework is aimed “to provide an ordering and transformation
framework to relate different IS modeling approaches to each other”
(Falkenberg et al. 1998, 1). It is also hoped that “based on the definitions of basic
concepts, it will be possible to achieve a clear understanding of the various
kinds of information systems” ... “and to provide a bridge between the various
disciplines involved, in particular between computer science and social
sciences” (ibid p. 1). The framework has adopted the constructivist position
according to which reality exists independently of any observer, but the
observer is aware of the fact that we only have access to our own (mental)
“conceptions” (ibid p. 26). The only concepts referring to the physical reality are
domain (a domain comprises a “part” or “aspect” of the “world” under
consideration (ibid p. 46)), domain component, and domain environment. All
the other concepts are related to the mental reality.

The framework is composed of several layers. At the bottom there is the
fundamental layer, which “specifies universal and generic view” (ibid p. 32).
The layer contains concepts such as thing, relationship, entity, type, state,
transition, and time. From the concepts at this fundamental layer, all the other
concepts are derived. The other layers are: the layer of actors, actions, and
actands, the layer of cognitive and semiotic concepts, the layer of system

130

concepts, and the layer of organizational and information systems. From these
layers three lowest ones contain concepts that correspond to concepts in our
core ontology. The layer of actors, actions and actands is motivated with the
need to consider explicitly what causes transitions (i.e. actions performed by
actors). The cognitive and semiotic concepts, in turn, are needed to represent
one’s conceptions of some domain.

The BWW (Bunge-Wand-Weber) model is “aimed at to be used as an
ontology to define the concepts that should be represented by a modeling
language, that is the semantics of the language” (Wand et al. 1995a, 287). It can
be used to evaluate the capability of a method by examining the mapping
between ontological constructs and the constructs of the method. The
fundamental premise is that any modeling grammar must be able to represent
all things in the real world that might be of interest to users of information
systems; otherwise, the resultant model is incomplete (Rosemann et al. 2002,
78). The model has been applied, for instance, to evaluate relational and object-
oriented schema diagrams (Sinha et al. 1995), NIAM model (Weber et al. 1996),
various ISAD grammars (Green 1997), modeling constructs within the OPEN
Modeling Language (OML) (Opdahl et al. 2001a), and views in the Architecture
of Integrated Information Systems (ARIS) (Green et al. 2000).

The BWW model is based on Mario Bunge’s ontology (Bunge 1977), which
is premised on assumptions of objectivists, who believe that the real world
exists independently of any observer and merely needs to be mapped to
adequate descriptions. The BWW model distinguishes between the real word,
composed of things, and the world we know via the models of things, that is
the mental world.

In the BWW model no clear internal structure among the key concepts has
been defined. However, there is a set of fundamental concepts (i.e. thing,
property, state, transition, and stable state) from which all other concepts have
been derived (Wand et al. 1990b; Wand et al. 1995b, 211). We can also
distinguish concepts that are related to (a) things and their properties, (b) states
(e.g. laws and lawful states), (c) history (e.g. event, coupling), and (d) systems
(Wand et al. 1990b). These divisions are, however, not based on any explicitly
defined principle.

3.10.3.2 Concepts and Constructs

In this section we present the key concepts and constructs in the core ontology,
the Frisco framework and the BWW model. Since the core ontology has already
been defined in the preceding section, we present here only the integrated meta
model of its concepts. For the two other presentations, we present the
definitions of the concepts and constructs as they are given in the original
references and described in meta models.

131

A. Core Ontology

The meta model in Figure 27 gives an overview of the structure and contents of
the core ontology and illustrates its generative and modular nature. We can see
that the generic ontology with the fundamental concepts gives the basis from
which first the semiotic concepts (i.e. sign, concept, and referent) and later the
other particular concepts are specialized. The semiotic ontology is in an
important position in differentiating things into signs, concepts and referents.
The extension/intension ontology serves as the basis for the fundamental
categorizations of concepts on which the abstraction ontology, in turn, builds

Concept

Basic concept

1

1..*
has

Derived concept

Individual concept Generic concept

Abstract concept Concrete concept

Intension

Extension

1..* 0..*
11

definedBy

UoD

ReferentSign

UoD state

0..* 1..*memberOf

Expression

Language

Label

Common nounProper name

Concrete syntax

Abstract syntax

Semantics

Symbol

1

1

1

1

UoD behavior

UoD evolution
1..*

1..*

1..*

1..*

1..*
1..*

signifies

0..*

standsFor

1..*
refersTo

Type

Instance

SubtypeSupertype

Whole (type)

1..*
instanceOf

1..*

memberOf

Part (type)

Group (type) Member (type)

1..*

isA

Predicate
0..*

1..*

0..*

0..*

0..*
memberOf

Framework

Vocabulary

1

*belongsTo

1..*
1..*

Thing

Relationship

Point of view

Role

PropertyCharacterizedThing

1..* 1..*
characterizes

2..*

2..*

conceivedFrom
Reality

conceivedFrom

1..*

Transition Structure

EventTransitionState
triggers

causedBy

resultsIn

precedes
1..* 0..*

Life cycle
1..*

1..*

1..*

1..*

1..*

1

has

0..*

1..*

1..*

1..*

1..*

1..*

*

*

* *

* *

0..*0..*

0..*

1

1

FIGURE 27 Core ontology

132

more specialized concept structures. The state transition ontology concerns the
behavior of things. The UoD ontology gives means to integrate relevant
conceptions into a totality, known as the universe of discourse, which is
perceived either from the static, behavioral or evolutionary viewpoint. The
language ontology derives its language-related concepts from the concept of a
sign. In the large abstraction ontology the common base of the principles of
abstraction is the concept thing, from which all the concepts of abstraction are
specialized. Classification is used to distinguish between types and instances.
Generalization concerns types. Composition and grouping can be applied to
types and instances. The principles, concepts and constructs of the first-order
abstraction mostly apply to the predicate abstraction, which concerns predicates
in the intentions of the primary concept things.

B. Frisco Framework

The Frisco framework is composed of almost 100 well-defined concepts on five
layers. The layers are: the fundamental layer, the layer of actors, actions, and
actands, the layer of cognitive and semiotic concepts, the layer of system
concepts, and the layer of organizational and information system concepts.
From the concepts, those on the three lowest layers are mostly relevant for the
analysis here. Next, we first present the definitions of the comparable concepts,
as they are given in Falkenberg et al. (1998), and then describe the meta model
of the concepts and constructs.

A thing is any part of a conception of a domain. The set of all things under
consideration is the conception of the domain. A predicator is a thing, used to
characterize or qualify other things. A predicated thing is a thing being
characterized or qualified by at least one predicator. A relationship is a special
thing composed of one or several predicated thing(s), each one associated with
one predicator characterizing the role of that predicated thing.

A set membership is a special relationship between a thing, characterized by
the predicator called ‘has-element’, and another thing, characterized by the
predicator called ‘is-element-of’. An elementary thing is a thing, not being a
relationship and not being characterized by the predicator ‘has-element’. A
composite thing is a thing, not being an elementary thing. An entity is a
predicated thing as well as an elementary thing. A type of things is a specific
characterization applying to all things of that type. A population of a type of
things is a set of things, each fulfilling the type characterization. An instance of
a type of things is an element of a population of that type.

A transition is a special binary relationship between two different
composite things, called the pre-state and the post-state of that transition. A
state is a composite thing, involved as pre-state or as post-state in some
transition. Transitions can be related to each other, to form state-transition
structures. A composite transition is a state-transition structure with a unique pre-
state and a unique post-state. A transition occurrence is a specific occurrence of a
transition. A rule determines a set of permissible states and transitions in a
specific context.

133

An actor is a special thing conceived as being “responsible” or
“responsive” and as being able to “cause” transitions. An action is a transition
involving a non-empty set of actors in its pre-state. An actand is a thing
involved in the pre-state or post-state of an action. A human actor is a
responsible actor.

A domain comprises any “part” or “aspect” of the “world” under
consideration. A perception is a special actand resulting from an action whereby
a human actor observes a domain with his senses and forms a specific pattern
of visual, auditory or other sensations of it in his mind. A perceiving action is a
special action of a human actor having a domain as input actand and a
perception as output actand. A perceiver is a human actor involved in a
perceiving action. A conception is a special actand resulting from an action
whereby a human actor aims at interpreting a perception in his mind. A
conceiving action is a special action of a human actor having a perception and
possibly some action context as input actand and a conception as output actand.
A conceiver is a human actor involved in a conceiving action.

A symbol is a special entity used as an undivisible element or a
representation in a language. An alphabet of a language is a non-empty and
finite set of symbols. A symbolic construct is a non-empty and finite
“arrangement” of symbols taken from an alphabet. A language is a non-empty
set of permissible symbolic constructs. A representation is a special actand
describing some conception(s) in a language. A representation action is a special
action of a human actor having a conception and possibly some action context
as input actand(s) and a representation as output actand. A representer is a
human actor involved in a representing action. A label is a special entity being
an elementary representation and used to referring to some conception in an
elementary way. A reference is a special binary relationship between a
conception and a representation used to refer to that conception.

In Figure 28 concepts on three layers of the Frisco framework are
metamodeled. Bold lines are used to show boundaries between the layers. The
upper part contains the concepts of the fundamental layer. The lower part
contains the cognitive and semiotic concepts (i.e. the third layer). The concepts
not surrounded by the bold line belong to the layer of actors, actions and
actands (i.e. the second layer)72. Although these concepts do not belong to the
scope of the core ontology, we have included them in the meta model, because
they form the important “bridge” through which the relevant cognitive and
semiotic concepts have been defined. The meta model is not aimed to be a
precise presentation of relationships between the concepts for two reasons.
First, the definitions in the Frisco Report (Falkenberg et al. 1998) do not provide
an unambiguous basis for such a presentation, in particular as to the
multiplicity constraints. Second, we are not going to go into such details in our
analysis. Based on the meta model we can now make the following general
remarks about the Frisco framework.

72 Note that this layer in the Frisco framework contains many other concepts. They are

not included here because they correspond to the context ontology in OntoFrame.

134

Thing

CompositeTransition

StateTransitionStr

Transition

SetMembership

Rule

EntityState

ElementaryThing

CompositeThing

PredicatedThingPredicator

Relationship

PopulationType

*
setMembership

1

1

of

2..*

1..* 1..*
characterizes

1

*
poststate

1

*
prestate

*
*

coverns

*
*

coverns

1..*

Actor

TransitionOccurence

1

1..*
occurenceOf

Action

HumanActor

Actand

PerceivingAction

Perception

ConceivingAction

1..*

output

Conception

1..*

1..*

input

1..*
output

RepresentingAction

Representation

1..*
input

1..*
output

1..* 1
perceiver

1..*

1 conceiver

1..*

1 representer

Symbol

Alphabet Language Label

SymbolicConstraint

1..*

1..*

reference

1..*
presentedIn

1..*

setMembership

1..*
setMembership

1..*

1..*

arrangement1

1

has

*

causes

*

2..*

Instance
of 1..

setMembership
1

1..*

involved1..*

Domain
1

of

1..*

1..*
1..*

*

*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

FIGURE 28 Meta model of the relevant part of the Frisco framework

On the fundamental layer, the most focal concept is thing, which is defined via
the relation to conception, that is to say, to concern the mental world.
Connections between the mental world and the physical world remain vague.
The most fundamental concepts (thing, relationships, predicator, predicated

135

thing) are related to one another in the way that is similar to ours. The
fundamental layer also contains concepts for states and transitions.

The cognitive and semiotic concepts are structured according to basic
mental processes: perceiving, conceiving, and representing. To relate them
through the input/output relationships the concepts of action, actor, and actand
are defined. In this the aim is to emphasize the human nature of processes and
their outputs (perceptions, conceptions, representations). The language-related
concepts are defined based on the notion of representation.

C. BWW Model

The BWW (Bunge – Wand – Weber) model has been described and applied in
several studies (e.g. Wand 1988a; Wand 1988b; Wand et al. 1989; Wand et al.
1990a; Wand et al. 1990b; Paulson et al. 1992; Wand et al. 1993; Parsons et al.
1993; Wand et al. 1995a; Wand et al. 1995b; Wand 1996; Green 1997; Weber et al.
1996; Weber 1997; Wand et al. 1999; Green et al. 2000; Parsons et al. 2000; Opdahl
et al. 2001a; Soffer et al. 2001; Rosemann et al. 2002). During more than ten years
the terminology in, and the contents of, the BWW model have, to some extent,
evolved. The model is also rather extensive. Thus, to make a condensed and
coherent description of the model is very challenging. Although there are some
BNF representations of the BWW constructs (e.g. Wand et al. 1993; Weber 1997),
it is not easy to transform them into the form of a meta model. Rosemann et al.
(2002) present a meta model of some of the most essential BWW constructs in
the form of an extended ER model, called eERM (Scheer 1998), but the meta
model covers only a part of those concepts that are relevant to this study.
Nevertheless, we make here an attempt to present a short overview of the
model and describe it in a meta model. We base our presentation on Wand et al.
(1993), Wand et al. (1995b), Green et al. (2000), and Rosemann et al. (2002). First,
we present the definitions of those concepts in the representational model (i.e.
one of the three models in the BWW model), which are embraced by the scope
of the core ontology73. We also describe the selected part of the model in the
meta model (see Figure 29). At the end of the section we present general
remarks of the described model.

The world is made up of things that possess properties. There are concrete
things, which are called substantial individuals or entities, and conceptual things
(e.g. mathematical concepts). Domain modelling is based upon someone’s view
of the existing or possible reality. The notion of a concrete thing applies to
anything perceived as a specific object by someone, whether it exists in the
physical reality or only in someone’s mind.

There are no things without properties. Moreover, properties are always
attached to things. Properties of concrete things are called substantial properties.
Properties of conceptual things are called formal properties, attributes or
predicates. There are two kinds of properties: intrinsic properties that depend

73 Due to the selected scope we have excluded e.g. system-related concepts of the

representational model from our consideration.

136

Primitive

Thing

Composite

Property

Intrinsic

Mutual

Emergent

Hereditary

Attribute

Substantial Formal

*

1..*

modelled

1..*

1..*possesses

Concrete

Conceptual

Kind Class

State

State law

Transformation

StableUnstable

History

External

Internal

Event

1

1..*

concerns

1..*

1

setOf

1..*

1

setOf

1..*

1..*

changes

1

*

pre

1

*

post

1..* 1..*
regulates

World

Mind
*

1..*perceivedBy

1

1..*
madeOf

Well-defined

Poorly-defined

1

1has

1..*

1

2..*

*

FIGURE 29 Meta model of the relevant part of the BWW model

on one thing only (e.g. the Height of a Person), and mutual or relational
properties that depend on two or more things (e.g. being a University_Student).
Properties themselves cannot have properties. The properties of a thing include
laws, which are constraints on other properties and can specify relationships
among properties (e.g. a “law” connecting Rank and Salary of an Employee). A
class is a set of things that can be defined only via their possessing a single
property. A sub-class is a set of things that can be defined via their possessing
the set of properties in a class plus an additional set of properties. A kind is a set
of things that can be defined only via their possessing two or more properties.

Things can associate to form composite things, whether of composite or
primitive things. If things associate to form a thing, then each of the former is a
component of the latter. A property of a composite thing can be inherited (i.e. a
property of a component) or be emergent (i.e. a property of none of the
components). A property that belongs to a component thing is called a
hereditary property. A composite thing must possess emergent properties.

The properties of a thing exist, whether or not humans are aware of them.
Human conceive of things, however, in terms of models of things. Such models
are conceptual things. Properties of conceptual things are termed attributes.
Attributes are characteristics assigned to (models of) things according to human
perceptions. For example, people attribute Color to a thing while the real

137

property is the reflection of some wavelength. Every property can be modelled
as an attribute but not every property will be described in terms of attributes.
The same property might be represented by more than one attribute, and
several properties might map into one attribute (for example, the notion of IQ
reflects many properties of a human being). Not every attribute has to represent
a property (e.g. the Name of a Person).

An attribute is represented as a function from a set of things and a set of
‘observation points’ (in particular time) into a set of values. This is the basis for
defining a model of a thing as a functional schema, which is a set of attribute
functions defined over a certain domain. The state of a thing comprises the
values of the functions in the functional schema at a given time point in a
certain domain. Because of the laws, called state laws, not all possible
combinations of state function values represent valid states of a thing. A lawful
state space is the set of states of a thing that comply with the state laws of the
thing.

Every change is tied to things and every thing changes. When a thing
changes, some of its properties must change. An event is a change of a state of a
thing. An event space is the set of all possible events that can occur in the thing.
An external event is a change of state due to the actions of other things. An
internal event is a change in the state of a thing due to a transformation inside
the thing. A well-defined event is an event in which the subsequent state can
always be predicted given that the prior state is known; otherwise an event is a
poorly defined event. A transformation is a mapping from one state to another
state. A lawful transformation defines which events in a thing are lawful. An
unstable state is a state that will be changed into another state by virtue of the
action of transformation in the system; otherwise, the state is a stable state. It
follows from above that a thing can change state from a stable state only due to
an external event. The history of a thing means the chronologically ordered
states that a thing traverses.

Figure 29 presents the meta model of the concepts and relationships of the
selected part of the BWW model. We can make the following remarks on the
basis of the meta model. First, the most fundamental concepts are thing and
property. There is no isA relationship between them. Both the things and the
properties are specialized in several ways. Things are either concrete or
conceptual, and either composite or primitive. Properties are substantial or
formal, emergent or hereditary, and intrinsic or mutual. In the BWW model
there is no basic concept referring to relations between things. A relation is
regarded as a special kind of property, that is, mutual property. A class and a
kind are defined extensionally. A special feature of the BWW model is that it
provides two concepts for characterizing “thing”, namely property and
attribute. An attribute is a “mental” counterpart to a “physical” property.
Besides the aforementioned fundamental concepts, the selected part of the
BWW model contains concepts related to states and transformations from one
state to another. Via these concepts the BWW model extends to provide a large
set of system-related concepts. These are excluded from this presentation.

138

3.10.3.3 Counterparts and Coverage

To have a more concrete view about how the core ontology, the Frisco
framework, and the BWW model compare with one another we present
concepts organized according to the structure of the core ontology in Table 11.
The table also helps to analyze the coverage and emphases of the three
presentations. It should be noted that although some concepts are located in the
same rows, it does not mean that the meanings of the concepts are exactly the
same. The suggestion made here is that the concepts are, to a large extent,
comparable. We are not going to discuss differences between the meanings in
details (for the definitions see the preceding sections). Those concepts in the
Frisco framework and the BWW model, for which there are no counterparts in
the core ontology, are presented in the last row in Table 11.

The Frisco framework addresses mainly the subjective reality (through
conceptions) but it does also recognize the physical world, although it refers to
it in a “vague” way (i.e. domain, “world”). All the concepts specialized from
thing concern the subjective reality. The most fundamental concepts (i.e. thing,
relationship, predicator, predicated thing) have direct counterparts in our
ontology. The notion of a role is not explicitly defined but substituted with the
use of predicator. The Frisco framework does not define the concepts ‘point of
view’ and ‘framework’. Neither does it recognize the specific semiotic concepts.
The only concept in the intension/extension ontology that is defined in the
framework is population.

Because we have used the Frisco framework to elaborate our language
ontology, it is natural that there are many similarities between these two
presentations as regards this part74. It is, however, worth of noting that in the
Frisco framework the conceptual basis for the language-related concepts is
tightly bound to concepts of a human actor and his mental processes. In
contrast, we have derived the concepts directly from the semiotic concepts and
delayed the introduction of the “contextual” aspects to the next upper level of
OntoFrame.

Also for the state transition ontology the concepts of the core ontology and
the Frisco framework are similar to one another. The only exception is the
notion of an event, which is missing from the Frisco framework. The concepts of
the UoD ontology are not included in the Frisco framework either. The
abstraction ontology is covered quite superficially in the Frisco framework. The
only concepts defined are: type/instance, composite thing/component and set
membership. These are definitely not enough when considering the importance
abstraction has in mental processes.

In addition to the concepts having counterparts in the core ontology, the
Frisco framework defines a number of concepts that are mostly related to
mental processes of a human being and their outcomes. We save the notion of

74 Actually, we established the language ontology before the Frisco framework was published, but we

later noticed needs to refine it according to the Frisco framework.

139

an entity for the specific use in modeling the UoD (see Chapter 6). The notions
of rule, actor, action and actand are given counterparts in the context ontology
(Chapter 4).

The BWW model recognizes clearly the physical world, due to its
objectivist position, and provides several concepts for characterizing and
structuring it. A bridge between the physical world and the “mind” is

TABLE 11 Concepts of the core ontology, the Frisco framework, and the BWW model

Core ontology Frisco framework BWW model
Generic ontology
 physical reality domain, “world” world
 subjective reality mind
 thing thing thing
 relationship relationship mutual property
 property predicator intrinsic property, attribute
 characterized thing predicated thing
 role
 point of view
 framework
Semiotic ontology
 sign
 concept
 referent
Intension/extension ontology
 predicate
 intension
 extension population
 population
 basic concept
 derived concept
 abstract concept conceptual thing
 concrete concept
 individual concept
 generic concept
Language ontology
 language language
 semantics
 abstract syntax
 concrete syntax
 vocabulary alphabet
 symbol symbol
 expression representation,

symbolic construct

 label label
 proper name
 common noun

 (continues)

140

TABLE 11 (continues)

Core ontology Frisco framework BWW model
State transition ontology
 state state state
 transition transition transformation
 event event
 transition structure state-transition structure
 sequence sequence
 choice choice
 concurrence concurrence
 elementary transition elementary transition
 composite transition composite transition
 life cycle
UoD ontology
 Universe of Discourse
 UoD state
 UoD behavior history
 UoD evolution
Abstraction ontology
Classification
 instOf
 type type class, kind
 instance instance
Generalization
 isA
 supertype
 subtype
Composition
 partOf
 whole composite composite
 part component
Grouping
 memberOf set membership
 group
 member
Not included in the core
ontology

transition occurence,
elementary thing, entity,
rule, actor, action, actand,
human actor, perceiving
action, conceiving action,
representing action,
perception, conception

concrete thing, primitive
thing,
substantial property, formal
property, hereditary
property,
emergent property,
state law, external event,
internal event, well-defined
event, unstable state, stable
state, poorly defined event

constructed via the notion of an attribute that is a characteristic assigned to
things according to human perceptions. The model does not contain the notion

141

of a relationship. Instead, it links two or more things together with the notion of
a mutual or relational property.

The BWW model does not address the semiotic ontology, the
intension/extension ontology nor the language ontology. Instead, it provides a
substantial consideration for states and transformations from one state to
another. This area is important for the model due to its system-theoretic basis.
Only some of the concepts in the UoD ontology and the abstraction ontology
are recognized and defined.

Due to the differences between the approaches of the core ontology and
the BWW model, the BWW model contains several concepts that are not
included in our core ontology. The BWW model provides, for example, rich
sub-categorizations for the notions of property, event and state.

We consider it important to distinguish between two realities, the physical
reality and the subjective reality. Likewise, we see it necessary to have specific
concepts for identifiable beings (thing), their characteristics (property) and
relations (relationship). Conceiving a phenomenon in reality as a thing, a
property, or a relationship, depends on the selected point of view, which in turn
may be determined by a selected framework. Furthermore, it is important to
make the semiotics, as a universal theory, visible in the core ontology.
Therefore, we have used the semiotic ontology as a focal point from which the
specializations of the notion of a concept, on one hand, and the derivation of
language-related concepts, on the other hand, have started. The
intension/extension ontology contains rich categorizations of concepts and
provides a foundation for deriving specific concepts and constructs of the
abstraction ontology. In the core ontology abstraction is strongly emphasized
for several reasons. First, abstraction is vital to human conceiving and thinking.
Second, abstraction, in all its forms, is the major mechanism with which all the
concepts in the extensive OntoFrame have been derived.

The language ontology provides concepts that are fundamental for the
presentation of concepts and constructs. The state transition ontology gives
means to distinguish between static and dynamic phenomena in reality. The
UoD ontology is needed to couple together the phenomena that are relevant
from an adopted point of view.

3.10.4 Conclusions

To conclude from the comparative analysis, we can state that the Frisco
framework is, to a large extent, similar to the core ontology of OntoFrame as
regards the generic ontology, the language ontology and the state transition
ontology. In contrast, it provides insufficient support for perceiving,
understanding, structuring and presenting phenomena that are addressed by
the semiotic ontology, the intension/extension ontology, the UoD ontology, and
in particular the abstraction ontology. The BWW model differs from the two
others as regards its objectivist position. It provides rich concepts for the
domains of the generic ontology and the state transition ontology, but much
less support for the other domains. The core ontology of OntoFrame provides

142

the most comprehensive support for those domains, which have above been
argued to be important. A large number of concepts included in the core
ontology have been specialized from one single concept (thing), thus ensuring
coherence and consistency, and structured into component ontologies, thus
promoting the modularity of the ontology.

3.11 Summary

In this chapter we defined the core ontology to be the ”heart” of OntoFrame.
The core ontology is composed of seven component ontologies: the generic
ontology, the semiotic ontology, the intension/extension ontology, the
language ontology, the state transition ontology, the UoD ontology, and the
abstraction ontology. For each component ontology, the concepts and
relationships were defined and presented in meta models in our ontology
representation language. Following a generative approach, the concepts of the
core ontology were specialized from those defined in more generic component
ontologies. This yielded a modular structure, which helps the interpretation,
use and integration of the concepts and constructs. The related work was
widely referred and compared with each component ontology. In addition, an
extensive comparative analysis of the two most prominent presentations, the
Frisco framework and the BWW model, was made to find out their objectives,
ontological positions, basic structures, coverage and emphasizes. The analysis
showed that the core ontology provides the most comprehensive and
modularized set of concepts for perceiving, structuring and presenting
fundamentals in reality.

Our goal has been to engineer the core ontology that is as generic as
possible. In addition, the ontology should reflect, in a multifaceted fashion, the
diversified phenomena in reality, without going too much into details in any
specific domains. Starting with these aims, we first applied a very general view
according to which reality means just things. With a slightly more specific
viewpoint we recognized properties of things and relationships between things.
A conception about whether to have a thing, a property or a relationship
depends on the selected point of view. Having built the generic foundation (i.e.
the generic ontology), we selected and applied universal theories - semiotics,
linguistics and systems theory. Based on these theories we can trust that the
corresponding component ontologies remain sufficiently general. To achieve
more specific concepts in the essential domains, we finally applied the notions
of intension, extension, UoD, and abstraction to derive the rest of the
component ontologies in the core ontology.

As far as we know, this kind of approach is quite rare in the literature. The
Frisco Group (Falkenberg et al. 1998) did use a generative approach to derive
specific concepts from elementary concepts. Its outcomes cover, however, only
a part of the scope of our core ontology. In the other prominent presentation,

143

the representational model, as a part of the BWW model (Wand et al. 1989,
Wand et al. 1990a), has been engineered based on Bunge’s ontology, in which
some kind of generative approach has also been applied. The representational
model is, however, quite “unstructured” and ignores many of the essential
aspects of reality. Although the Frisco framework and the BWW model are two
of the most notable presentations, they have not been compared earlier to this
degree. Hence, this chapter also contributes to knowledge about similarities in
and differences between them.

4 CONTEXT ONTOLOGY

In Chapter 3 we defined the core ontology, which provides the most
fundamental concepts, in a modular structure, for perceiving reality. In the core
ontology, individual things are related to other things through basic viewpoints
and frameworks, thus establishing conceptual constructs with which one can
make sense of phenomena in reality. In the semiotic ontology, for instance,
things are related to one another through the semiotic relationships. In the state
transition ontology things are conceived as states, transitions between states, or
events triggering transitions. The points of view and frameworks applied in the
core ontology are, however, too simple to provide an adequate support for the
understanding of complex phenomena related to human and organizational
actions. We need a new, more sophisticated approach and framework. In this
chapter we define a contextual approach and an ontology, called the context
ontology, which applies the contextual approach.

The general objective of the context ontology is to provide concepts and
constructs, which help us understand the nature, purposes and meanings of
individual things. The basic idea in the ontology is to aid the conceiving of an
individual thing as a part of a whole, called a context. Thus, instead of viewing
the UoD as a generic structure of things, the context ontology guides us to see
things in special roles or meanings in a context. The context ontology is one of
four contextual ontologies, the other ontologies being the layer ontology, the
perspective ontology, and the model level ontology (Figure 30). All these
ontologies have been derived from the core ontology. The three other
ontologies will be presented in the next chapters.

This chapter is organized as follows. First, we define the contextual
approach, characterize its application domain and objectives, and establish the
theoretical basis for the approach. After a comprehensive literature review and
discussion, the contextual approach is anchored on the underlying theories,
including semantics, pragmatics, and theories of human and social action.
Second, we elaborate the notion of a context and its conceptual structure.

145

Layer ontology

Context ontology

Perspective ontology

Model level ontology

Core ontology

FIGURE 30 Focus of Chapter 4

A context is defined as a construct that is composed of concepts within seven
contextual domains. Third, we define key concepts and relationships for all the
seven contextual domains and present them in meta models. We also make
plenty of references and comparisons to the relevant works. Fourth, we define a
large set of inter-domain relationships and consider how implicit relationships
between the contextual domains and between the contexts can be inferred from
the basic relationships. The chapter ends with a summary and discussions.

4.1 Contextual Approach

In defining component ontologies on lower levels of OntoFrame our aim is to
find approaches and sets of concepts that enable us to capture more specific
aspects and meanings of things in reality. In this chapter our point of departure
is the notion of a context and its potential to support our aim. A context seems
to be a suitable notion for many reasons. First, it is a highly universal concept
that is known and applied in a large number of disciplines, raging from formal
logic and computational linguistic to organizational theory and information
systems. Second, it is a common term also in the normal speech. Third, the most
common aim of the use of context in various disciplines is to consider a focal
thing or an event of interest as a part of the environment (context) in order to
understand its nature and meaning (Duranti et al. 1992). That is precisely what
we wish to achieve with our ontology.

In this section we define the approach, referred to as the contextual
approach that is based on the notion of a context. This approach is of high
importance, not only to the context ontology, by also to OntoFrame as a whole.
Therefore, we want to make a serious attempt to define the approach in a way,

146

which firmly anchors it on the relevant theories and provides an advantageous
baseline to establishing the context ontology.

4.1.1 Definition

We start with considering the notion of an approach. Generally speaking, an
approach is seem something that provides generalized principles, which help us
conceive reality, recognize problems and/or find potential solutions in it.
Implied from the above, we can distinguish between the conception-oriented
approaches, the problem-space oriented approaches, and the solution-space
oriented approaches. These approaches are interrelated: the problem-space
oriented approaches are based on conception-oriented approaches, and the
solution-space oriented approaches are based on the application of some
problem-space oriented approaches. Metaphorically put, we can say that an
approach sets a path or a road along which goals set for conceiving or problem
solving can be approached.

The contextual approach is a conception-oriented approach. A general
definition of the contextual approach goes as follows: the contextual approach is a
conception-oriented approach, which serves the recognition, understanding
and specification of the purposes, meanings, and effects of things, through
considering them to be contexts and/or parts within contexts. To elaborate the
definition, the following issues need to be addressed: (a) an application domain
at which the contextual approach is aimed, (b) objectives of the approach, (c)
theories underlying the approach, and (d) conceptual contents of the approach.
In addition, (e) some examples of outcomes from applying the approach should
be provided.

In defining the contextual approach we proceed in a top-down fashion.
First, we characterize the application domain (Section 4.1.2) and specify the
objectives for the contextual approach (Section 4.1.3). Second, we establish the
theoretical foundation for the approach (Section 4.2) from which the content of
the approach is then derived (Section 4.3). Third, we elaborate the contents of
the context ontology by explicitly defining the contextual concepts and
constructs (Sections 4.4-4.6). The definitions form direct outcomes of applying
the contextual approach. More evidence of the applicability of the approach will
be provided in the following chapters.

4.1.2 Application Domain

The goal of our study is to develop a conceptual foundation for the analysis,
design, and implementation of information systems development methods.
This goal addresses a number of sub-domains such as information systems,
information systems development, and method engineering. These sub-
domains are parts of the application domain of the contextual approach. These
all embody, to a high degree, human and social action. In the following we
characterize the application domain on two levels, first as a generic human and
social action, and then more specifically as the analysis, design, and

147

implementation of ISD methods. Human and social action has been subject to a
wide array of research in several fields, e.g. in anthropology, philosophy,
psychology, linguistics, organizational theories, sociology, economics, politics,
law, statistics, library science, cybernetics, systems theory, computer science,
and information systems. Here, we content ourselves only with common
insights and views.

Human and social action can be characterized in terms of six intrinsic
properties. The most significant property of a human being is his/her ability to
use a semantically and pragmatically rich language. It enables one to observe,
conceive, understand, and describe relevant features of reality. Second, a
human being is able to analytically, heuristically or intuitively make
conclusions, based on his/her observations, in order to promote his/her
understanding and management of the environment. Third, a human being is,
to a high degree, oriented towards the goals emerging from the needs of
his/her own, on one hand, and from the expectations of the environment, on
the other hand. Fourth, a human being is able to learn in several areas including
language usage, sensations, norms, etc. This, together with his/her orientation
to goals, facilitates the application, construction and reconstruction of norms
and rules. Fifth, human beings make their most prominent achievements in
cooperation with others, under the goals, norms and values they have jointly
established. A prerequisite for cooperation is a common language, understood
and cultivated by all members in the society. Sixth, a great deal of human and
social action is primarily concerned with information. Information is essential in
rendering human and social actions effective.

The view of the application domain of the contextual approach becomes
more concrete when relating to information processing. The application domain
comprises people developing and applying rules, norms and facilities to collect,
process, store, distribute, and utilize information in order to make actions of the
others and/or of their own possible or more effective (cf. Nissen 1980). This
kind of human and social action is visible at several processing layers. At the
root layer (IS), information is collected, processed, transmitted and utilized in
order to make “right” decisions on business actions. At the next layer (ISD),
information is collected, processed, transmitted and utilized in order to make
“right” decisions on designing and implementing IS’s. At the third layer (ME),
information is collected, processed, transmitted and utilized in order to make
“right” selections and adjustments of ISD methods. Finally, at the highest layer
(RW), information is collected, processed, transmitted and utilized in order to
engineer ME methods. For all four layers it is important that the nature and
meaning of information processed and of actions performed are adequately
understood.

148

4.1.3 Objectives

The contextual approach is a conception-oriented approach, which aims at the
following objectives:
1. The approach should be natural.
 The approach should reflect an intuitive view, held by a human being, on

the structure and aspects of reality.
2. The approach should be easy and flexible to apply.
 The approach should be easy to learn and use, and flexible by its

conceptual structure, in order to enhance its applicability for different
purposes.

3. The approach should have a sound theoretical basis.
 The approach should be based on sound theories on information

processing as well as on human and social action.
4. The approach should cover essential aspects of a context.
 The approach should guide us to conceive, structure and represent the

most essential aspects of the contexts.
5. The approach should help perceive the nature, meaning and effect of individual

things in a totality.
 This means, for instance, that the meaning of data can only be understood

if knowledge is available of those situations in which the data is created,
processed and/or utilized. Likewise, it is hard to understand the essence
of action if the action is not connected, at least, to its objectives, to objects
that are involved, and to subjects conducting the action (cf. Kuutti 1991). It
seems equally evident that the ultimate intentions of persons can only be
revealed by observing their behavior in real situations.

The contextual approach is not intended for the studies of specific features or
structures of facilities, persons or any other elementary things alone. Instead, its
purpose is to bring the things together and provide a framework to interrelate
them, in order to help us find out their purposes and meanings.

4.2 Theoretical Basis

The purpose of this section is to establish the theoretical basis for the notion of
context. We approach this along three paths: (a) we make a short survey of the
literature to find out those disciplines for which context is an essential research
issue, (b) we make a review of those theories that pursue the same contextual
objectives as we do, and (c) we search for studies which, although lacking any
theory, work with concepts which can be considered to be essential parts of a
context. After that we are ready to make a synthesis and complete the
definitions of the context and the contextual approach in Section 4.3.

149

4.2.1 On the Notion of a Context

The notion of a context75 plays an important role in many disciplines, such as in
formal logic (e.g. Costa 1999), knowledge representation and reasoning
(Brezillon et al. 1998; Sowa, 2000; Ghidini et al. 1999), machine learning (Matwin
et al. 1996), pragmatics (Levinson 1983), computational linguistics (Clark et al.
1981; Berthouzoz 1999), sociological linguistic (Halliday 1978), problem solving
(Motschnig-Pitrik et al. 2001), organisational theory (Weick 1995), sociology
(Layder 1993), neurology, cognitive psychology (Kokinov 1999), and
information systems (Kyng et al. 1997). Due to the large variety of research
fields, it is no surprise that there is no general agreement on a unique, shared
notion of a context. Rather the interpretation of the notion itself is context-
sensitive. Linguists may see it as a psychological construct, a subset of a
hearer’s assumptions about the world that is used in interpreting an utterance.
To an organisational theorist context is a social environment in which actions
are taken. To a sociologist, a context is provided by macro-social forms, such as
gender, national ethos, and economic maturity of a society (Berztiss 1999). Even
within the same discipline, conceptions of context may vary a lot. In
philosophy, for instance, it is questioned, whether context is internal, part of the
state of the mind, or external, part of the state of reality. Is it explicitly
represented in the human mind or just implicitly (Kokinov 1999)? Because of
this large variety of interpretations, it would be better to speak of “family-
resemblance” concept (Penco 1999, 269).

Some of the confusion results from an ambiguity in the English word
‘context’. According to Webster’s Encyclopedic Unabridged Dictionary
(Webster 1989), context means (1) “the parts of a written or spoken statement
that precede or follow a specific word or passage, usually influencing its
meaning or effect”, and (2) “the set of circumstances or facts that surround a
particular event, situation, etc.”. Hence, the notion of a context can refer to the
text, to the information contained in the text, to the thing that the information is
about, or the possible uses of the text, the information, or the thing itself (cf.
Sowa 2000). The ambiguity results from which of these aspects happen to be the
central focus.

In spite of inconsistencies and diverging interpretations, a context is of
vital importance in many disciplines, especially in that sense in which we are
interested about it, that is to say in revealing meanings of things. As Klemke
(1999, 481) states, psychologist perform memory test to analyze the effect of a
context on the remembrance of words (Srinivas 1997). Researchers from
machine learning study the effects of a context on the automatic learning of
concepts (Matwin et al. 1996). Organizational research people use
communication models to investigate the role of a context in information
product evaluation (Murphy 1996) and cognitive scientists stress the
importance of a context for expertise (Raccah 1997). In artificial intelligence, the

75 In Latin contexere means weaving or joining together.

150

notion of a context was introduced in a logic framework by McCarthy as early
as in 1971 in his Turing Award talk (Massacci 1996).

Due to its importance and universality, we adopt a context as the most
essential concept of our contextual framework. Also, the way a context is used
as the environment through which the meanings of its parts are explained
encourages us to the use of the concept (Duranti et al. 1992). A context is
characterized with the following generic features: (a) It is determined and
shaped by one or more focal parts of which making sense is important. (b) It is
composed of parts, which all have specific roles of their own. (c) It is a totality
in which each part gets its meaning through the position it holds in the whole
and through the relationships it has with the other parts. In the next sections,
our aim is to elaborate these general characterizations into the precise
definitions of the context and the contextual approach.

4.2.2 Relevant Theories

In this section we make a review of those basic theories that pursue the same
contextual objectives as we do. From the viewpoint of our study, the most
promising theories are those, which have their focus on human and social
action, and for which features of information and data processing are essential.
In general, the semiotics as a theory of signs meets these requirements. Peirce
(1991) divided semiotics into three branches: syntactics, semantics, and
pragmatics76. Semiotics itself is, however, too general and superficial in its
treatment of contextual aspects. Stamper (1973, 1996) has extended the set of
three semiotic branches into the semiotic ladder, which builds a bridge between
the physical world and the social word and helps to distinguish between the
different conceptions of meaning. The steps in the ladder are: physical world,
empirics, syntactics, semantics, pragmatics, and social world. In Table 12 for
each step, essential things and conceptions of meanings are presented (cf.
Falkenberg et al. 1998, 140-145).

Elements in the physical world are physical signals and marks. They have
almost nothing to do with meaning. In the empirics, the considerations are
focused on a process of encoding of messages, transmission of them over a
channel, disrupted by noise and entropy, and finally of decoding messages
back. “Meaning” in this environment stands for the equivalence of codes, and
so the view of meaning is highly technical and narrow. Syntactic “meaning” can
be manifested through transformations of symbolic forms to other forms
according to the rules. Not until on the semantic step of the semiotic ladder are
meanings discussed in the real sense. As it is known, there are several theories
of semantic meaning (Alston 1980; Lyytinen 1985; Holm et al. 1995). Most of
them maintain a view of a dictionary-like or universal meaning of words that
ignores effects an individual interpreter has on the meaning. More close to the
subjective meaning can be reached in pragmatics, which considers a

76 The words syntactics (or syntax), semantics, and pragmatics were introduced by

Charles Morris (1964) in his presentation of Peirce’s three branches of semiotics.

151

TABLE 12 Steps in the semiotic ladder

Steps of the ladder Things Meaning
Physical world signals, marks, traces,… equivalence of signals
Empirics codes, entropy, channel,… equivalence of codes
Syntactics signs, formal structures,

production rules,…
through transformation rules

Semantics meaning, objective reality,... mapping from syntactic
structures onto features of real
world77

Pragmatics intentions, communication,
speakers, utterances,
contexts

defined in terms of the actual
social consequences which stem
from communication

Social world beliefs, expectations, norms,
attitudes, commitments

defined in terms of social
norms involved

relationship between the signs as meaningful utterance and the behaviour of
responsible agents78. This view interlinks information, expression, message, or
whatever, to a context in which that something is expressed and interpreted by
someone, at the concrete time and place. The most in-depth consideration of
meaning is possible when conducted in conjunction with the social world. The
social world embraces norms of many kinds, ways of behaving, sets of values,
shared models of reality, common attitudes, organisational cultures, etc.

As said above, we are interested in theories which focus on information
and its meaning, as well as on the understanding of human and social action.
Thus our concern is related to the upper part of the semiotic ladder, i.e.,
semantics, pragmatics and social world. Compared to the meanings Webster
Dictionary provides for a context, we can see that the first two (i.e. semantics
and pragmatics) are more or less related to the first conception, and the social
world is related to the second conception in Webster (1989).

Next, we shortly describe theories of semantics, pragmatics and social
world with the aim to recognize their essential principles and concepts that
could elaborate our conceptions of the contextual approach and the context. We
also describe some approaches based on the theories.

77 Note that this view is maintained in the objectivistic position. Another view,

favoured by the constructivist position, considers meaning as being “constructed and
continuously tested and repaired through people using syntactic structures to
organise their co-ordinated actions” (Falkenberg et al. 1998, 143).

78 The semantics-pragmatics distinction is commonly discussed in linguistics and in the
philosophy of language. However, it is not altogether clear; see, for example, the
discussion in Levinson (1983, Chapter 1). For present purposes, we say that
semantics is concerned with context-free meaning, while pragmatics is concerned
with context-dependent meaning.

152

4.2.3 Semantics

Semantics is the study of meaning. Due to a variety of semantic theories, there
is a spectrum of “meanings” of meaning in the linguistic literature. Alston
(1980) classifies the theories of meaning into three groups, which he calls
referential, ideational and behaviour theories. Lyytinen (1985) defines five
“language views” that have resulted in different conceptions of meanings. The
views are: the Fregean core, the Chomskyan grammar, Piage’s schema, the
Skinnerian response, and Ordinary speaking. Holm et al. (1995) distinguish
between the referential theory, the ‘traditional’ theory, the ideational theory, the
stimulus-response theory, and meaning in use. Generally speaking, meaning
can be considered as a function from signs to reality (Stamper 1992b). We apply
here the classification of semantic principles presented by Stamper (1996).
Stamper distinguishes between the objectivist principle, the mentalistic
principle, and the constructivist principle.

According to the objectivist meaning, an observer ‘sees’ the objective
connection between the sign and the referent that is independent of the
observer. There is only one reality, independently of any observer and
interpreter. Meaning is what a sign refers to, or stands for (Lyons 1981), in other
words, meaning is the relation between the sign and what is referred to.
According to the mentalistic meaning, there is no one (physical) reality, because
reality is conceived and perceived solely by the senses of human beings.
Meaning of the sign is the idea or concept, associated with it in the mind of
anyone who knows it (Lyons 1981). According to the constructivist meaning, a
community establishes and alters the relationship between the sign and the
referent. There is one reality but that is perceived and conceived differently.
The meaning of the sign is the way it is used. Of the three semantic principles,
first two clearly belong to semantics, while a major part of the constructivist
principle concerns the issues that we regard as belonging to pragmatics. This is
how we deal with them below.

Next, we consider two semantic approaches based on the objectivist
principle. These are: case grammar and conceptual graphs. In both of them, one
can see the purpose “to create a mapping from natural language sentences into
a formal specification of a grammar” (cf. the Chomskyan grammar view in
Lyytinen (1985)) and “to create a formal language such that every fact in the
world corresponds to a structure in the formal language” (cf. the Fregean core
view in Lyytinen (1985)).

Case Grammar

Fillmore (1968) introduced a case grammar as a representation of a universal
semantics of a natural language. He distinguishes between the surface level
cases corresponding to grammatical functions and the deep level cases (called
semantic cases) corresponding to underlying roles that the sentence participants
play with respect to the main verb. The case grammar is founded on a set of

153

semantic cases and a set of rules, which can provide the semantics for simple
sentences describing actions.

According to Fillmore (1968) “the case notions comprise a set of universal,
presumably innate, concepts which identify certain types of judgments human
beings are capable of making about the events which are going on around them,
judgments about such matters as who did, who it happened to, and what got
changed”(ibid p. 24). The sentence in its basic structure consists of a verb and
one or more noun phrases, each associated with the verb in a particular case
relationship. The notion of case is a language element that is more stable than
surface-level grammatical terms such as subject and object. For this reason, the
case grammar is sometimes said to reveal the “deep structure” of a sentence.
Fillmore (1968, 24-25) defines six cases:
• Agentive. The case of the typically animate perceived instigator of the

action identified by the verb.
• Instrumental. The case of the inanimate force or object causally involved in

the action or state identified by the verb.
• Dative. The case of the animate being affected by the state or action

identified by the verb.
• Factitive. The case of the object or being resulting from the action of state

identified by the verb, or understood as a part of the meaning of the verb.
• Locative. The case, which identifies the location or spatial orientation of the

state or action identified by the verb.
• Objective. The case, which identifies the things, which are affected by the

action or state identified by the verb.

In his article, Fillmore (1968) did not preclude a possibility that “additional
cases will be needed” (ibid p. 25). So, the set of cases is open ended. None of the
cases can be interpreted as matched by the surface-level relations, subject and
object, in any particular language. Consequently, the same word can
correspond to different cases in different sentences. In the basic structure of
sentences, Fillmore distinguishes between what he calls the ‘proposition’, a
tenseless set of relationships involving verbs and nouns, and what he calls the
‘modality’ constituent. This latter includes such modalities on the sentence-as-a-
whole as negation, tense, mood, and aspect.

Fillmore’s case grammar has been criticised (e.g. Platt 1971; Nijholt 1988),
especially as to the notion of case itself and the criteria on which cases are
identified. Likewise, there are many presentations, which suggest different
notions of case and different sets of cases (e.g. Schank 1973; Wilks 1977;
Simmons 1973; Dik 1989). Nevertheless, the grammar has been widely applied,
including in the fields of information systems and computer science. For
instance, Rolland and Proix (1992) propose a natural language approach to
requirements engineering. The approach adapts the notion of case to make it
applicable, not only to words, but also to clauses in sentences. The set of cases
includes: owner, owned, actor, target, constrained*, constraint*, localization*,
action*, and object, in which * denotes the cases that are applicable to clauses,

154

too. Rolland and Achour (1998) present an approach to guide the construction
of use case specifications, which is based on a set of linguistic patterns derived
from case grammars by Fillmore (1968), Dik (1989), and Simmons (1973).

Conceptual Graphs

Conceptual graphs form a knowledge representation language based on
linguistics, psychology, and philosophy (Sowa 1984, 69). They are an extension
of Peirce’s existential graphs (Sowa 2000, 476). Besides Peirce’s primitives,
conceptual graphs provide means of representing case relations, generalized
quantifiers, indexicals, and other aspects of natural languages. They were first
proposed as a mechanism for representing database semantics (Sowa 1976).
Later, the emphasis has been on the AI field, and this is where they have
received the most attention.

In a conceptual graph, the boxes are called concepts and the circles are
called conceptual relations. Sowa (1984, 2000) presents a set of primitive
concepts and relations. The set can be extended with user-defined ones.
Examples of concepts are (Sowa 1984): ACT (an event with an animate agent),
ARRIVE (a mobile entity arrives at a place), PLACE (a role played by a
stationary entity), STATE (has duration, as opposed to events), and TOOL (an
entity that plays the role of an instrument for some act). Examples of relations
are (Sowa 1984): agent (links an actor to an act), destination (links an act to an
entity towards which the act is directed), instrument (links a tool to an act),
location (links something to a place), object (links an act to an entity, which is
acted upon), and point-in-time (links something to a time at which that
something occurs). In addition, Sowa (2000) provides the concept of context. It
stands for a nested conceptual graph that describes the referent.

Conceptual graphs are widely applied, also in the IS field. To give just
some examples, Bezivin et al. (2001) use the conceptual graphs to clarify
metamodeling layers and OMG/MDA architecture. Kayed et al. (2002) extract
ontological concepts for tendering conceptual structures. de Moor et al. (2001)
apply conceptual graphs in workflows. Moulin and Creasy (1992) extend the
conceptual graph approach for data conceptual modelling.

4.2.4 Pragmatics

The modern usage of the term ‘pragmatics’ is attributable to the philosopher
Charles Morris (1964) who distinguished three branches of inquiry within the
semiotics: syntactics, semantics, and pragmatics. His conception about the
pragmatics was very broad, covering psychological, biological and sociological
phenomena, which occur in the functioning of signs. Thus, it would include
disciplines which are now known as psycholinguistics, sociolinguistics,
neurolinguistics and many more besides. Since Morris' introduction, the term
has been treated and defined in many ways (see Levinson 1983). Our intention
here is first to generally characterize the scope of pragmatics, and then bring up
those issues in pragmatics which could benefit us in elaborating the contextual

155

approach. In addition, we select one theory, the speech act theory, for
considerations in more detail.

Generally speaking, pragmatics is the study of language use. Assuming
that semantics is concerned with the statements of truth conditions, we can say
that pragmatics deals with all those aspects of meaning that are not captured in
a truth-functional semantics. One of the most favoured definitions in the
linguistic literature is as follows: “pragmatics is the study of the ability of
language users to pair sentences with the contexts in which they would be
appropriate” (Levinson 1983, 23). This definition forms a first indicator of the
significance of context to the pragmatics.

Instead of trying to define analytically the concept of pragmatics, we can
enumerate issues that are addressed in pragmatics. According to Levinson
(1983, 27), pragmatics is the study of deixis, implicature, presuppositions,
speech acts and aspects of discourse structure. There are also other suggestions
for the list. Especially the relation to sociolinguistics (e.g. conversational
structure) is vague. Nevertheless, deixis is, in most cases, included in
pragmatics.

We conclude that pragmatics is the study of the relations between
language and context. In such a study one of the most essential issues deals
with deixis. Deixis concern the ways in which “languages encode or
grammaticalize features of the context of expressions or speech events, and thus
also concern ways in which the interpretation of expressions depends on the
analysis of that context of expressions” (Levinson 1983, 54). Traditional
categories of deixis are person, place and time deixis79.

Person deixis concerns the encoding of the role of participants in the
speech event. The category 'first person' is the grammaticalization of the
speaker's reference to herself, 'second person' the encoding of the speaker's
reference to one or more addresses, etc. Such participant-roles are encoded in
pronouns in a language. Time deixis concerns the encoding of temporal points
and periods relative to the time at which an expression was presented. This
kind of deixis is grammaticalized in deictic adverbs of time like now, then,
yesterday and this year. Place deixis concerns the encoding of spatial locations
relative to a location of the participants in the speech event. It is
grammaticalized in demonstratives like this and that, and in deictic adverbs of
place like here and there.

Above, deixis was mainly considered from the grammatical point of view.
Although we are not interested in the ways the deixis are organized in
language, their explicit appearance in the expressions makes us convinced that

79 Besides the traditional categories considered above, two more deixis aspects have

been lately distinguished (Levinson 1983): discource deixis and social deixis. The
former concerns the encoding of reference to the portions of the unfolding discourse
in which the expression is located, and the latter concerns the encoding of social
distinctions that are relative to participant-roles (cf. honorifics). These kinds of deixis
aspects go beyond our interests.

156

they are also conceptually of vital importance. That is to say, the concepts
underlying the deixis are good candidates for contextual concepts.

Speech Act Theory

Speech act theory is the systematic study of linguistic regularities and the
meaning of utterance. It is concerned with the pragmatic use of language. The
speech act theory originated with Austin (1962) and was further elaborated by
Searle (Searle 1969; Searle 1979; Searle et al. 1985). The basic notion is that
people do things with words. Words change the world, rather than merely
describe it. Uttering a sentence is the performance of an act, called a speech act.

By uttering a sentence, four concurrent acts occur: propositional act,
illocutionary act, utterance act, and perlocutionary act (Searle et al. 1985). A
propositional act expresses the propositional contents of a message. An
illocutionary act is performed when a speaker utters a sentence in an
appropriate context with certain intentions. A propositional act always occurs
as part of an illocutionary act. An utterance act refers to the simple uttering of a
sentence. A perlocutionary act means producing effects on the feelings,
attitudes and behaviour of the hearer.

The most important type of speech act, especially for us, is that of the
illocutionary act. It is composed of three constituents: context, content, and
illocutionary force. All these constituents are essential for constructing and
understanding the meaning of a sentence. Content refers to the propositional
content of the message. Context is defined in terms of speaker, hearer, time,
place, and the possible world. The first four define a context in which a speaker
utters something to a hearer sometimes and somewhere. The possible world
refers to the residual features of the context. It is something more than the
“actual world”, and it enables to talk about “what could be”. An illocutionary
force covers several issues. Here we are interested in the concept of
commitment. According to the speech act theory, commitments are created
through communication. Depending on types of illocutionary acts, different
kinds of commitments can be distinguished: assertives, directives, commissives,
declaratives, and expressives.

Along the application of the speech act theory to the IS research the
prevailing language perspective changed from a referential one to
communication oriented one. The speech act based approaches, recently called
language/action approaches, have been explored and elaborated (see e.g.
Proceedings of Language/Action Conferences), but also criticized, extensively.
Proponents of the approach are, for instance, Auramäki et al. (1988) and
Auramäki et al. (1992a) who suggest methods and principles for analyzing
offices as systems of communicative action according to the SAMPO (Speech-
Act based office Modeling aPprOach) approach. De Cindio et al. (1986)
developed a coordinator, called CHAOS, based on the language/action
approach. Dietz (1992, 1994, 1999, 2003) presents the DEMO approach and
framework to model open active systems and business processes. The approach
makes a distinction between subjects, which are the active elements of the

157

system, and objects to be acted upon. Woo et al. (1992) present an approach to
facilitate the automation of semi-structured and recurring negotiations in
organizations. Janson et al. (1995) use the speech act theory to compare IS
development tools and methods.

The speech act theory has been criticized as a philosophical and linguistic
theory as such and due to problems with a rationalistic design of work
(Ljungberg et al. 1996). Wand et al. (1995a, 295) argue that the speech act theory
lacks a comprehensive overall picture of how actions fit and relate to each
other. They also state that the theory focuses on unidirectional speech act
performance and is restricted to spoken discourse. In spite of the criticism, the
speech act theory provides views of the meaning and related concepts that are
beneficial for our study.

4.2.5 Theories of Human and Social Action

The complexities of organisational practice in information systems put
demands on research and knowledge. There are many conceptual approaches
aiming to describe and explain these complex phenomena. Some of the
approaches emphasize the action concept. According to them, it is difficult, or
even impossible, to create good scientific descriptions and explanations about
organizational practice without acknowledging actions. Although such
approaches may have differing theoretical perspectives, they have a unifying
interest in the action concept and its explanatory power. Examples of such
approaches are activity theory (Engeström 1987, 1999), actor-network theory
(Latour 1999; Monteiro 2000), and structuration theory (Giddens 1984). There
are also other approaches, which have theoretical influences of more or less
explicit action orientation, such as social phenomenology, symbolic
interactionism, ethnomethodology, soft systems theory, critical social theory,
hermeneutics, social semiotics, socio-pragmatism, situated cognition theory,
practice theory and affordance theory. Along with this interest in action comes
also an interest in many related issues, such as knowledge, language,
communication, social interaction, social institutions, coordination, artefacts,
power and values.

A prominent representative of approaches pertaining to social and
organizational issues is the activity theory. The activity theory presents highly
general propositions of the nature of human activity incorporating several
psychological, educational, cultural and developmental approaches (Leont’ev
1978; Vygotsky 1978). It is a philosophical framework for studying different
forms of human praxis as developmental processes, at both individual and
social levels interlinked at the same time (cf. Kuutti 1991, 530). According to the
theory, there exists a fundamental type of context, called an activity. Activity is
a minimal meaningful context for individual actions. Relations within an
activity are direct ones but are mediated by various artifacts such as
instruments, signs, procedures, machines, methods, laws, forms of work
organization, etc. These artifacts have been created and transformed by humans
during the development of the activity itself (Kuutti 1991, 531).

158

Based on the theory, Engeström (1987, 1999) developed an applicable
model of the systemic structure of human activity. The fundamental concepts of
the model are (see Figure 31): subject, object, tool (mediating artifact), rules,
community, division of labor, as well as outcome from the activity. The
concepts are interrelated in terms of mediating: the relationship between subject
and object is mediated by tools, the relationship between subject and
community is mediated by rules, and the relationship between object and
community is mediated by the division of labor. An activity consists of actions
or chains of actions, which in turn consist of operations. Actions are related to
goals.

 Tool

 Subject Object Outcome

 Rules Community Division of labor

FIGURE 31 Engeström’s activity model (Engeström 1999)

The activity theory has been applied and elaborated in various sub-fields of
information systems, e.g. in user interface design (e.g. Bodger 1987; Nardi 1996),
information systems development (e.g. Korpela et al. 2000; Korpela et al. 2002),
computer-supported collaborative work (e.g. Kuutti 1991; Kuutti 1994; Bardram
1998), product concept design (e.g. Tuikka 2002), knowledge management (e.g.
Boer et al. 2002), and method engineering (e.g. Kaasboll et al. 1996).

4.2.6 Context-Related Approaches

Context is used as a key concept also in other fields, although without any
explicitly defined context-based theories. Here we make a short review of the
studies which aim to specify and understand the meaning of things through the
notion of a context.

In databases, Motschnig-Pitrik (1999, 2000) proposes a context mechanism
for object-oriented database languages, extending the functionality of views.
Individual views are interpreted as context for drawing entities or objects
visible from these views and intentionally neglecting others. Contexts are
associated with relativized naming, authorization, and channels for change
propagation. Contexts are objects in their own right, and they can be classified,
associated with properties, enclosed in contexts and dealt with like ordinary
objects.

159

Enterprise modeling aims to capture essential enterprise knowledge, in
order to provide a clear, unambiguous picture of how the enterprise functions
currently and what are the requirements and the reasons for change
(Loucopoulos et al. 1998; Loucopoulos 2000; Kirikova 2000). An enterprise
knowledge model can serve as a means of understanding and communication
between the different participants. The model covers e.g. goals, actors,
activities, physical and informational objects, business rules, and their
interrelations within a totality, which could be called a context.

Workflow means “the automation of a business process, in whole or part,
during which documents, information or tasks are passed from one participant
to another for action, according to a set of procedural rules” (Workflow
Management Coalition 1999, 8). Workflow management system (WfMS) is a
system that “defines, creates and manages the execution of workflows through
the use of software..” (ibid p. 9). To analyze, design and compare WfMS’s,
metamodels (e.g. Rosemann et al. 1997; Lei et al. 1997) and reference models (zur
Muhlen 1999) have been engineered. Based on them, workflow systems address
persons, organizations, positions, roles, tasks, resources, objects, and their
relationships in a complex manner (Mentzas et al. 2001; Chiu et al. 1999).

User modeling has produced new theories and methods to analyze and
model computer users in short and long-term interactions. A user model is an
explicit representation of properties of individual users or user classes. It allows
the system to adapt its performance to user needs and preferences. Methods for
personalizing human-computer interaction based on user models have been
successfully developed, applied and evaluated in a number of domains, such as
information filtering, e-commerce, adaptive natural language and hypermedia
presentation, and tutoring systems. Recently user modelling has also addressed
problems of personalized interaction in mobile, ubiquitous and context-aware
computing (e.g. Abecker et al. 2000). A user context can be composed of an
environment context, a personal context, a task context, a social context, and a
spatiotemporal context (Myrhaug 2001)

Process modeling aims at systematic analysis, design and implementation
of processes. Some of the approaches look at processes through the notion of a
context. In the NATURE project (Rolland et al. 1995; NATURE Team 1996) a
process theory for modeling and engineering the requirements engineering
process was crafted. According to the approach, a requirements engineer is
commonly in a situation where his/her reaction depends on both the situation
and the intention he/she has in mind, that is to say, it depends on the context
he/she is placed in. A context is the association of a given situation and the
decision, which can be taken on it. A situation is defined as being a part of the
product it makes sense to make decision on. There are three kinds of contexts:
executable contexts, choice contexts, and plan contexts. At the most detailed
level, the execution of the requirements engineering process can be seen as a set
of transformations performed on the product under development, each
transformation resulting from the execution of a deterministic action. The
process theory pertaining to NATURE has been later applied and elaborated in

160

many studies (e.g. Rolland et al. 1996; Grosz et al. 1997; Rolland et al. 1999;
Rolland et al. 2000).

For information systems architectures Zachman (1987) introduced a
framework that was later extended by Sowa and Zachman (1992). It contains
two dimensions, views and aspects, and is described by a matrix with rows and
columns. The views are determined through the perspectives of different
stakeholders. The stakeholders having particular views on an information
system are a planner, an owner, a designer, a builder, and a component sub-
contractor. The aspects of an information system are data, function, network,
people, time, and motivation, thus realizing the set of interrogatives presented
originally by Zachman (1987): “Why”, “Who”, “What”, “Where”, “When” and
“How”80. In the framework, presented in the form of matrix, essential concepts
and conceptual relations are named for each of 30 cells. The framework has
been applied and refined in many studies. Short (1991) has used the framework
with six aspects to propose a framework for a classification of ISD methods.
Evernden (1996) has extended the framework into the Information FrameWork
that is aimed at managing information. Martin et al. (2000) have formalized the
structure of the framework based on the notion of a frame. Garner et al. (1999)
have enhanced the framework to elicit and manage the complexity of IS
requirements.

4.2.7 Elicitation of Contextual Domains

In the previous sections, we have reviewed theories and approaches that share
our aim to promote the understanding of the meaning of things in a whole. The
theories and approaches for the review were selected from the topmost steps of
the semiotic ladder (i.e. semantics, pragmatics and social world), on one hand,
and from a large set of literature, which, yet lacking in-depth theories, aim at
“contextual thinking”. To conclude from the review we argue that the basic
contextual domains are related to purpose, actor, action, object, facility,
location, and time. The arrangement of these domains into a context can be
illustrated by the following contextual view, also called the seven S’s view:

”For Some purpose, Somebody does Something for Someone with Some
means, Sometimes and Somewhere”

Next, we justify our argument by summarizing the review. For the summary
we select seven major theories or approaches from which we extract the most
essential concepts and locate them in those contextual domains to which they
primarily belong. The summary is presented in Table 13.

80 There is a large set of studies, which also use the same set of interrogatives (‘5Ws and

H’) for various purposes; e.g. Bull (1989), Curtis et al. (1992), Zultner (1993), Couger et
al. (1993), Krogstie et al. (1996), Fitzgerald et al. (1998), Söderström et al. (2002), and
Zhu (2002).

161

In the case grammar by Fillmore (1968), we can identify the following
correspondences between the cases and the contextual domains. An action is
expressed by a main verb, an actor corresponds to agentive (i.e. an animate
instigator of the action), and an object stands for objective (i.e. a thing affected
by the action). Further, a location means locative (i.e. the location or spatial
orientation). The cases of dative and factitive are not so clear. We associate
dative to the object domain because it is defined as an animate affected by the
action. Because factitive can be understood as part of the meaning of the verb
(Fillmore 1968), we regard it as part of the object domain. In addition to the
named cases, the case grammar contains the modality constituents that reflect
time (tense) and purpose (mood or aspect).

In pragmatics (Levinson 1983) several obvious counterparts to the
contextual domains can be found. Person deixis, place deixis and time deixis
correspond to actor, location and time, respectively. A verb mostly expresses
action in the context. In addition, there are other essential concepts that can be
classified into the domains: e.g. intention (purpose), speaker and hearer (actor),
performative act (action), utterance (object), as well as coding and receiving
time (time) which can be seen as specialized concepts, each having been derived
from one of the seven generic contextual domains.

In speech act theory (Searle 1969; Searle 1979; Searle et al. 1985), illocution
within an illocutionary act corresponds to purpose. A speaker and a hearer are
actors who are concerned with speech acts (action). The concept of context in
speech act theory is composed of time, place and the possible world. The first
two have their counterparts among the contextual domains.

In activity theory (Engeström 1987) an activity is regarded as the
fundamental type of context. Individual actions and operations get their
meanings within an activity. Subject refers to an individual or a group, whose
agency is chosen as the point of view. Object refers to the raw material or
problem space at which the activity is directed and which is molded and
transformed into an outcome. Tool is an intermediating artifact, physical or
symbolic, external or internal, which is used to transform the object. Subject,
object and tool have their counterparts within the domains. The other concepts
of the activity model, namely rules, community, division and outcome, are
more specialized concepts or constructs in the contextual domains, and
therefore they are not included in the table. Note that there are various
derivatives of the original activity theory (e.g. Kuutti 1994; Korpela et al. 2000),
which may have somewhat different counterparts in contextual domains.

In enterprise modeling, especially in the one based on the EKD approach
(Loucopoulos et al. 1998), the concepts of goal, actor, activity, object and
temporal event are defined and applied. Also a large set of relationships
between the concepts are introduced to address the structure and behavior of
an enterprise.

In the NATURE approach (NATURE Team 1996; Grosz et al. 1997) context
is the “central generic” notion for representing ways-of-working. A context is
composed of decisions in a certain situation. A situation is a part of the product

162

 T
A

BL
E

13

C
on

te
xt

ua
l c

on
ce

pt
s

in
 th

e
re

vi
ew

ed
 th

eo
ri

es
 a

nd
 a

pp
ro

ac
he

s

D
om

ai
ns

C

as
e

gr
am

m
ar

(F

ill
m

or
e

19

68
)

Pr
ag

m
at

ic
s

(L
ev

in
so

n
19

83
)

Sp
ee

ch
 a

ct

th
eo

ry

(S
ea

rl
e

19
79

)

A
ct

iv
ity

 th
eo

ry

(E
ng

es
tr

öm

19
87

)

EK
D

 A
pp

ro
ac

h
(L

ou
co

po
ul

os
 e

t
al

. 1
99

8)

N
A

TU
R

E
(R

ol
la

nd
 e

t a
l.

19
95

)

So
w

a
et

 a
l.

(1
99

2)

C
on

te
xt

co
nt

ex
t

co
nt

ex
t

ac
tiv

ity

co

nt
ex

t

Pu
rp

os
e

ill
oc

ut
io

n
go

al

go
al

in

te
nt

io
n

en
ds

A
ct

or

ag
en

tiv
e

pe
rs

on

de
ix

is

sp
ea

ke
r,

he
ar

er

su
bj

ec
t

ac
to

r

ag
en

t

A
ct

io
n

m
ai

n
ve

rb
,

fa
ct

iti
ve

ve

rb

sp
ee

ch
 a

ct

ac
tio

n,

op
er

at
io

n
ac

tiv
ity

ac

tio
n

fu
nc

tio
n

O
bj

ec
t

ob
je

ct
iv

e,

da
tiv

e

ob

je
ct

ob

je
ct

pr

od
uc

t
en

tit
y

Fa
ci

lit
y

in
st

ru
m

en
ta

l

to
ol

ag

en
t

Lo
ca

tio
n

lo
ca

tiv
e

pl

ac
e

de
ix

is

pl
ac

e

no
de

Ti
m

e

tim
e

de
ix

is

tim
e

te

m
po

ra
l e

ve
nt

tim
e

163

(object). A decision reflects a choice a requirements engineer can make and
refers to an intention (purpose). An intention expresses what the engineer
wants to achieve. An executable context implements a decision, meaning that its
intention is realized by an action (action). An action changes a product part
(object).

In the framework for information systems architecture (Sowa et al. 1992)
the aspect dimension is based on six interrogatives ‘why’ (motive), ’who’
(people), ’how’ (function), ‘what’ (data), ’where’ (network) and ‘when’ (time).
On a general level, they correspond to the following contextual domains:
purpose, actor, action, object, location, and time, respectively. In Table 13 the
generic terms for each aspect are used instead of the aspect names. Note that
location is seen as a node of the network, and agent can also be a software
component.

4.2.8 Summary

The purpose of this section was to build the theoretical foundation for the
contextual approach. For this purpose, we started with outlining a general
conception of a context, and then explored disciplines and approaches for
which the purposes, meanings and effects of things, as well as the notion of a
context are important. On the basis of the semiotic ladder, we confined
ourselves to consider theories and approaches on the three topmost steps of the
ladder (i.e. semantics, pragmatics and social world). In addition, we analyzed a
set of context-related approaches that, although not building on any specific
theories, share our aims at understanding and specifying the meaning of things
through the notion of a context. The comparative review of this literature gave
us justification for the importance of context, as well as for the division of
contextual issues into seven domains: purpose, actor, action, object, facility,
location, and time. In the next section we will elaborate the contextual
approach and the contents of those domains.

4.3 Elaborating the Notion of a Context and Contextual Domains

In this section we first give the elaborated definition of a context and outline the
contents of the contextual domains. Second, we define the contextual
framework and discuss different variations of contexts with the notion of a
contextual role. Third, we consider whether there are domains that are
compulsory or particularly essential to perceiving the UoD as a context. Finally,
we present classifications of contexts.

In Section 4.2.1 we characterized a context with the following words: (a) It
is determined and shaped by one or more focal parts of which making sense is
important. (b) It is composed of parts, which all have specific roles of their own.
(c) It is a totality in which each part gets its meaning through the position it
holds in the whole and through the relationships it has with the other parts.

164

After establishing the theoretical basis of the contextual approach, we can
now present a more elaborated definition. It is composed of two parts, the
teleological part and the structural part:

A context is a conceptual or intellectual construct that can help us
understand, analyze, and design natures, meanings, and effects of more
elementary things in the concerned environment or circumstance.

A context is a whole, which is determined by the focal thing(s) of which
making sense is important. It is composed of interrelated things, each of
which represents a certain contextual domain.

The contextual domains are: purpose, action, actor, object, facility, location, and
time. In the following the contents of the domains are outlined:
• Purpose domain consists of those concepts and constructs which refer,

directly or indirectly, to goals, motives, or intentions of someone or some
thing. They may also express reasons for why someone exists, why
something has been done, why someone is used, etc. in a context.

• Actor domain consists of those concepts and constructs, which refer to
individuals, groups, positions, or organizations. Actors have an active role
in a context.

• Action domain consists of those concepts and constructs which refer to
functions, activities, tasks, or operations carried out in a context.

• Object domain consists of those concepts and constructs which refer to
something which an action is targeted to. The object can be material or
informational.

• Facility domain consists of those concepts and constructs which refer to
means by which something can be done or is done. The facility can be a
tool or a resource.

• Location domain consists of those concepts and constructs which refer to
parts of space occupied by someone or something. The location can be
physical, like a room or building, or logical, like a site in a communication
network.

• Time domain consists of those concepts and constructs which refer to
temporal aspects in a context.

To concretize a view of the relationship between the contextual approach and
the core ontology we present Figure 32. According to the core ontology, and in
particular on the basis of the UoD ontology (Section 3.8), reality is seen as a
universe of discourse (UoD), which is composed of concepts. According to the
contextual approach, a UoD is seen as a context, which is composed of concepts
from seven contextual domains. In Figure 32 the outermost rectangles stand for
the contextual domains, and the innermost rectangles correspond to the generic
concepts that are here used as the representatives of the other contextual concepts
of the concerned domains. The contextual concepts are inter-related to one

165

another through contextual relationships, including intra-domain, inter-domain
and inter-context relationships. In Figure 32 inter-domain relationships are only
depicted.

Action

Actor

Purpose

Object

Facility

Location

Time

Context

Domain

UoD

Concept

*

*

*

*

*

*

* 1..*

1..*

1..*

1..*

Contextual framework

FIGURE 32 Contextual framework

In Section 3.3 (the generic ontology) we defined a framework to mean a thing
that guides a human being to select the points of view that are the most
appropriate for the case or the problem at hand. Here we specialize the notion
and define the contextual framework as follows: The contextual framework is a
framework, which is composed of contextual concepts related with one another
through contextual relationships, and which is used to conceive things as
contexts and/or within contexts. Furthermore, we can derive the definition of
the context ontology: The context ontology provides concepts and constructs for
conceiving, understanding, structuring, and representing things as contexts
and/or within contexts, in order to promote our understanding of the nature,
purposes, and meanings of the things.

166

Next, we move on to consider the notions of contextual role and role
constraint, which further clarify our conceptions about a context and the
contextual concepts.

A context is a whole composed of things. Each thing has a specific role in a
context. For instance, a librarian is an actor in his/her searching for a copy of a
book, asked by a customer, and a ladder is a facility, by the help of which a
librarian tries to reach the upper shelf. A role, which a thing plays when being
part of a context, is called a contextual role. There are certain constraints as to
what things can play in which of the contextual roles. These are called role
constraints. In the following, we consider the role constraints.

First, the same contextual role can be held by one or more things. For
instance, in a communication context a sender sends a message to a receiver. A
sender and a receiver are both actors. Likewise, in the context where John is
collecting and analyzing samples of insects, and in the context where goods are
transmitted from one location to another, there are two things from the same
domain. Note that this does not mean that their specific roles would be the
same.

Second, the same thing cannot be in the different contextual roles in the
same context. For instance, it is not possible that a thing is an actor and an
object in the same context81. Instead, it is quite possible that a thing is in
different roles in different contexts. For instance, a stool is a facility for the
librarian but an object of manufacturing in a factory. Likewise, Mary acts as a
librarian (actor) and visits a hairdresser (as an object).

Third, it is not possible for any thing to act in all the contextual roles. For
instance, a thing belonging to the action domain cannot be in the role of actor in
the same or different context. In fact, there are two domains the concepts of
which can, only to a very limited extent, participate in the roles of the other
domains. These are purpose and action. Among the contextual domains the
following intersections, presented in pairs, are allowed: actor – object; object -
purpose; object – action; object - facility; object – location; location – facility;
time – object82.

Next, we consider whether some domains are more essential than others,
perhaps even to such a degree, that without things of those domain(s), the UoD
cannot be interpreted as a context at all. Phrased in terms of the abstraction
ontology, it is a question about the essentiality in the composition (cf. Section
3.9.2.3): Is a context a whole with essential partOf relationships with contextual
parts? If yes, what is the “nucleus” of the context?

We distinguish between three different views of the “nucleus” of a
context, based on three approaches. The approaches are: the semantic approach,

81 In fact, there are contexts in which this general constraint does not hold. For instance,

a person can think about himself/herself or hit himself/herself, meaning that the
person is an actor and an object in the same context. These kinds of cases are,
however, exceptional.

82 The time system of one context can be an object of creation, integration, revision, etc.
in another context.

167

the pragmatic approach, and the approach based on the activity theory. A
characteristic of the semantic approach is its aim to reveal the meaning of an
expression through the analysis of its deep structure (e.g. Chomsky 1966;
Fillmore 1968). For this purpose many semantic approaches concentrate on the
main verbs. The verbs commonly correspond to concepts in the action domain.
Besides the verbs, the subjects (mostly corresponding to the actors) and the
objects (mostly corresponding to the objects) are also considered. Adjectives
and adverbs (viz. purpose, facility, time, and location) are not seen so
important.

According to the pragmatic approach, one focuses on revealing the
meaning of a linguistic expression through looking at the situations in which
the expression is created, transmitted and interpreted. Therefore, the most
important part of a context is, as a matter of course, the object (i.e. expression),
but knowledge on the actors (speaker, hearer), the (linguistic or instrumental)
actions and the purposes (intention) are also needed. Concepts of the location
domain and the time domain are not seen as important. Concepts of the facility
domain are also insignificant in the pragmatic approach.

For the approach based on the activity theory, it is important to get a
comprehensive and rich picture of an activity (viz. context and action). Thus,
besides the action domain, which constitutes the very core of a context, the
actor (subject), object (object) and facility (tool) domains are focal to the
approach. The purpose, location and time domains are on the “outer level”.

The views of the three approaches are illustrated in Figure 33. In the
figure, for each view the contextual domains are divided onto three layers, of
which the inmost one stands for the “nucleus” of a context. It is important to
note that a context from the viewpoint of the semantic approach is interpreted
through the contents of a linguistic expression. In contrast, a context from the
viewpoint of the pragmatic approach is a situation in which expressions are
uttered and used. For the approach based on the activity theory, a context is a
situation in which objects of any kind are handled or dealt with otherwise. The
arrows in the figure denote the signifies relationships between the linguistic
objects and their conceptual referents.

Implied from the above, we can conclude that there is no universally fixed
domain or set of domains, which should always be included in a context. A
context itself is a choice (Dilley 1999). However, depending on the purpose for
which the contextual framework is to be used, a context should contain at least
concepts from the action domain (the semantic and activity theoretic
approaches) and from the object domain (the pragmatic approach). Concepts
from the actor domain may also prove essential. It is important to notice that to
obtain a deep understanding of the meaning of some part in a context, other
domains should also be involved, one way or another. Further, as for any
whole that is composed of parts, the intension of a context must also contain so-
called emergent predicates, to ensure right interpretation of the features of the
UoD. In this chapter, we introduce the concepts of all the domains without
giving any preferences for the domains.

168

Action

Purpose

Action

Time

Facility TimeLocationPurpose

Actor Object

Object

Actor

Location TimeLocation

Action

Actor

Purpose

Object

Facility

Pragmatic view Activity theoretic view

Semantic view

FIGURE 33 Three views on the “nucleus” of the context

At the end of this section, we present some classifications of the contexts.
Depending on which of the contextual domains is the most essential, we can
distinguish between the purpose-centered contexts (cf. i* model (Yu et al. 1995)),
the actor-centered contexts, the action-centered contexts (cf. activity theory
(Engeström 1987), the framework of activity analysis (Korpela et al. 2000)), the
object-centered contexts, the facility-centered contexts, and the location-
centered contexts. Based on the role the action and time domains have in the
consideration, we can identify the static contexts and the dynamic contexts.

Furthermore, we can use the inter-context relationships to categorize the
contexts. Assume a situation where a thing is an output from an action in one
context and an input to another context. Extending the classification of Kuutti
(1991, 536-537) we can now say that there are at least six different kinds of
contexts:

169

• Goal-producing context. One context produces something which is used as a
goal statement or a requirement in another context.

• Actor-producing context. One context ”produces” objects (e.g. more skilled
persons) which act as actors in another context.

• Rule-producing context. One context produces objects which are used as
rules for another context (e.g. a method engineering context vs. an ISD
context).

• Object-producing context. One context produces objects (e.g. services) which
are utilized in another context (cf. an IS context vs. a business system
context).

• Facility-producing context. One context produces objects which are utilized
as tools or resources in another context (cf. an ISD context producing
software vs. a business context).

• Location-producing context. One context produces objects which are used as
locations in another context.

4.4 Contextual Domains

Having established the contextual approach and the contextual framework, we
next define the concepts and constructs within each contextual domain,
specializing from the notion of a concept defined in the core ontology. After
that we specify inter-domain and inter-context relationships. The context
ontology embraces all the concepts and constructs in the contextual domains, as
well as the inter-domain and inter-context relationships. In each sub-section, we
also discuss the relevant literature to demonstrate an extent to and a manner in
which the concepts and constructs are recognized and interpreted in the
literature.

4.4.1 Purpose Domain

The purpose domain embraces all those concepts and constructs that refer to
goals, motives, or intentions of someone or something. The concepts are also
used to express reasons for which something exists or is done, made, used, etc.
(Webster 1989). They may show a direction toward which it is due to proceed,
or a state that needs to be attained or avoid (cf. Loucopoulos et al. 1998; Sutcliffe
2000). They can also exhibit reasons to use or apply a facility, a time (system), or
a location. The concepts are commonly named with terms such as objective,
goal, intention, target, end, reason, aim, etc. We use purpose as the general term
in this domain83.

83 Purpose is one of the key concepts in philosophy. Aristotle used the word telos,

which is the goal or final cause of an action. Peirce argued that purpose is the
Thirdness that relates some mind or mindlike entity (first), which directs the course of
a process (second) toward some goal (third) (Sowa 2000, 265)

170

The purpose domain is important to our UoD, in which conscious human
beings are conducting purposeful acts to attain desirable states. Explicit
capturing of purposes is essential because it enables us to represent, not only
“what” information, but also “why” information” (cf. Koubarakis et al. 2000,
144). However, we are not claiming that every act or event in the UoD is
purposeful. There are lots of human and social activities, like chattering in a
corridor, that are not pre-determined. There are a large variety of occurrences
that are mere incidences.

Purpose can be expressed or can manifest oneself in many ways. On one
hand, it can be regarded as an objective or goal (of e.g. an actor or action)
meaning a desired state of affairs. It can also be related to an object, a facility, a
location or a time (system), meaning the purpose, which they are aimed at. On
the other hand, purpose can be expressed indirectly through a reason for
something or someone. A reason is a basis or cause for some action, fact, event
etc. (Webster 1989). A reason can be a requirement, a problem, a strength/a
weakness and/or an opportunity/a threat. Between a goal and a reason there is
the dueTo relationship meaning that a reason gives an explanation, a justification
or a basis for setting a goal. In the following we define the sub-concepts of goal
and reason. The meta model of the purpose domain is presented in Figure 34.

Purpose

Requirement

Strategic

Tactic

OperationalSoft

Hard

ReasonGoal

Functional

Problem

Strength/Weakness

Opportunity/Threath

Non-functional

Structured

Unstructured

*

*

dueTo

influence

refinement

*
*

*

*

Semi-structured

*

influence

*
*

refinement

*

*

causalTo

Criterion
1..*

evaluatedBy

*

1..*

FIGURE 34 Meta model of the purpose domain

Since a goal can be considered as a desired state (Loucopoulos et al. 1998, 9;
Koubarakis et al. 2000, 144), we can specialize the goals based on their lifespan.
Strategic goals are kinds of missions, answering questions such as “What is the
direction of an enterprise in the future”. Their spans are generally 5 – 10 years.

171

Tactic goals show how to attain strategic goals. They are defined by some
measurable factors within a shorter time frame. Operative goals are generally
determined as concrete requirements that are to be fulfilled by a specified point
of time. An example of the operative goal is “improvement of delivery time
with 10% next year”. The more concrete the goals are, the more close to
operational rules they are in dictating how to fulfill the goals (Wangler et al.
1993, 190). The goals can also be categorized based on whether it is possible to
define clear-cut criteria for the assessment of the fulfillment of goals. Hard goals
have pre-specified criteria, and soft goals have not (Lin et al. 1999). A criterion is a
standard of judgment presented as an established rule or principle for
evaluating some thing. Further, the goals can be classified based on kinds of
contexts they appear. There are business goals, information system goals,
project management goals, etc. (Kueng et al. 1996, 100).

In some cases, purposes are expressed in terms of requirements.
Requirements mean something that are necessary and needed. They are
statements about the future (NATURE Team 1996, 525). Actually, the goals and
the requirements are two sides of a coin: some of the stated requirements can be
accepted to be goals to which actors want to commit. Also for the requirements
there are many categorizations. One of them divides the requirements into the
functional requirements and the non-functional requirements. A functional
requirement can be achieved by performing a sequence of operations (cf. Lee et
al. 2001, 125). A non-functional requirement is defined in terms of constraints, to
qualify the functional requirement related to it. Non-functional requirements
can involve e.g. performance, safety, quality, maintainability, portability,
usability, reliability, confidentiality, security, and accuracy.

Instead of directly referring to a desirable state, a purpose can also be
expressed through an indirect reference to problems that should be solved
(Berztiss et al. 1995, 189). A problem is the distance or a mismatch between the
prevailing state and the state reflected by the goal (cf. Goldkuhl et al. 1988;
Jayaratna 1994, 242). To reach the goal, the distance should be eliminated or at
least reduced. Associating the problems to the goals expresses reasons, or
rationale, for decisions or actions towards the goals (cf. Ramesh et al. 1994, 296).
The problems are commonly divided into structured, semi-structured and
unstructured problems (e.g. Simon 1960; Gorry et al. 1971)84. Structured problems
are those that are routine, and can be solved using standard solution
techniques. Semi-structured and unstructured problems (sometimes called wicked
problems (Rittel et al. 1984; Hevner et al. 2004, 81)), however, do not usually fit a
standard mold, and are generally solved by examining different scenarios, and
asking “what if” type questions.

Other expressions for the reasons, of not so concrete kind, are strengths,
weaknesses, opportunities and threats related to something for which goals are
set or are to be set (cf. SWOT-analysis, e.g. Johnson et al. 1989). Strength means
something in which one is good, something that is regarded as an advantage

84 Checkland (1981) divides the problems into well-structured and ill-structured

problems.

172

and thus increasing the possibilities to gain something better. Weakness means
something in which one is poor, something that could or should be improved or
avoided. Opportunity is a situation or condition favourable for attainment of a
goal (Webster 1989). Threat is a situation or condition that is a risk for
attainment of a goal. Strengths and weaknesses are internal factors, while
opportunity and threat are external to the UoD.

Next we shall define intra-domain relationships in the purpose domain,
first those relating the goals and then those related to the requirements and the
problems.

A general goal is refined into more concrete goals. The refinement
relationship between the goals establishes goal hierarchies, meaning that a goal
can be reached when the goals below it (so-called sub-goals) in the hierarchy
are fulfilled. Sub-goals are means (“how”) to more general goals (“what”), for
which the goals at still upper levels express “why”. Consequently, the
relationship can be called goal/means –relationship (e.g. Lindland et al. 1994),
goal operationalisation, or goal satisfying –relationship, relating a satisfied goal
and a satisfier goal (Kavakli et al. 1999, 192; Jarke et al. 1992, 25). In some cases,
a sub-goal may contribute to the achievement of two or more general goals. In
this case, the resulting structure is a goal graph, rather than a goal hierarchy. To
specify which sub-goals are contributing in each case, AND and OR operators
are used in the specifications. The refinement relationship is irreflexive, non-
symmetric and transitive.

To indicate that the achievement of a goal has some influence on the
achievement of another goal, the influence relationship85 is used. Influence can be
positive or negative (cf. Berztiss et al. 1995, 189; Loucopoulos et al. 1998, 10;
Kavakli et al. 1999, 192). A positive influence between two goals means that the
achievement of one goal assists the achievement of another goal. A negative
influence means that the achievement of one goal hampers, jeopardizes or
obstructs the achievement of another goal. Based on the kind of influence, the
relationship may be referred to as the conflict relationship or the support
relationship (Kavakli et al. 1999, 192; Lee et al. 2001, 128). 86

As mentioned above, the goals and the requirements are two sides of a
coin. Therefore, also the relationships between the requirements are similar to
those between the goals. Consequently, a requirement can influence on another
requirement, and a requirement can be a refinement of another requirement.
The relationships between the problems manifest causality, and they can be
analyzed with the aid of problem matrices (e.g. Lundeberg et al. 1981) or
problem graphs. The causalTo relationship between two problems means that the
appearance of one problem is at least a partial reason for the occurrence of the
other problem.

85 Liu et al. (2002, 40) call this relationship the contribution link.
86 Liu et al. (2002, 40) define also the relationships of correlation and dependency.

173

4.4.2 Actor Domain

The actor domain consists of all those concepts and constructs that refer to
human and active parts in a context87. Among other things actors perform, own,
communicate, borrow, send, receive objects in the contexts. They are
responsible for and/or responsive to triggering and causing changes in the
states of objects in the same context or in other contexts. They are aware of their
intentions and able to react to fulfill their goals. Their actions and reactions can
be routine or intuitively caused.

Depending on a viewpoint, an actor is seen as a human actor or as an
administrative actor. A human actor can be an individual person or a group of
persons. A person is a human being, characterized by his/her consciousness,
emotions, personality, beliefs, desires, intentions, social relationships, and
behavior patterns conditioned by his/her culture (cf. Bratman 1987; Padgham et
al. 1997). A person may be a member of none or several groups. An
administrative actor is a position or a set of positions. A position is a post of
employment occupied by a human actor. It is a set of addressable role
expectations with the following properties: (a) it is occupied by a human actor,
(b) it is to take care of given responsibilities, and (c) it has limited
communication possibilities with other positions (cf. van Aken 1982)88. The
occupiedBy relationship between a position and a human actor is antisymmetric,
irreflexive, and intransitive (see Figure 35).

A position is occupied by zero or many human actors. If an actor occupies
more than one position, it should be ensured that the positions have no
opposing roles, resulting in role conflicts. For each position, specific
qualifications in terms of skills, demands on education and experience, etc.
are specified. Also many other specific constraints are related to the
assignments but they are not discussed here.

An organizational role, shortly a role89, is a collection of responsibilities,
stipulated in an operational or structural manner. In the former case, a role is
composed of tasks that a human actor occupying the position with that role has
to perform. These kinds ofroles are called the process roles (Workflow
Management Coalition 1999). In the latter case, a role is charged with

87 Note that our notion of actor cannot be a non-human thing. In this respect, our

approach differs from many others (e.g. agent in Sowa (2000, 330), and actor in
Ramackers (1994, 227) and Falkenberg et al. (1998)). Krogstie (1995, 10-11)
distinguishes between a social actor, which can be an individual or an organization,
and a technical actor that is a computational actor (hardware or software) or some
other device (e.g. a clock). We regard a technical actor as a facility.

88 Zur Muchlen (1999, 5, 11) defines also the concept of position type (e.g. secretary),
because for a certain position type there may be several positions (instances) and a
specific position (instance) is occupied by a person. This viewpoint is common in the
workflow systems.

89 We defined the notion of a role to be a part of the generic ontology. Here, a role
means an organizational role. We use the shorter term when there is no risk for
confusion.

174

responsibilities for some objects. The role of a database administrator, for
instance, is charged with responsibilities, which focus on databases of the
enterprise. A role can be played by many persons through the position(s) they
hold. A role also summarises a set of skills or capabilities necessary to discharge
the responsibilities required by the role.

Actor

Organizational roleGroupPerson

Organization

Organization unitPositionHuman actor

1..*

1..*

1..*

1

1..*

1

1..*

*

memberOf

* subordinate

1

supervisor

supervision
*

*

occupiedBy

FIGURE 35 Meta model of the actor domain

The positions are related, directly or indirectly, with each other. An indirect
relationship between the positions is established through relationships to and
between other concepts. For instance, an intentional dependency (Kavakli et al.
1999, 193, called a goal dependency in Loucopoulos et al. 1998) reflects the fact
that the achievement of a goal that a position is about is dependent on the
achievement of a goal of another position. These kinds of indirect relationships
are discussed in Section 4.6. Here, we next define the most essential direct
relationship between the positions, namely the supervision relationship.

The supervision relationship involves two positions in which one is a
supervisor to another that is called a subordinate. A supervisor position has
responsibility and authority to make decisions upon the positions subordinate
to it, and those occupying the subordinate positions have responsibility for
reporting on one’s work and results to those occupying the supervisor position.
Responsibility is the obligation owed by subordinates to their supervisors for
exercising authority delegated to them in a way to accomplish results expected
(cf. Koontz et al. 1972). It is assigned to the position at the time the position is
created or modified. Authority is the degree of discretion in positions
conferring actors occupying these positions the right to use their judgment in
decision making (Koontz et al. 1972). The supervision relationship is irreflexive
and antisymmetric. The transitiveness of the relationship depends on the type
of organizational structure and policy.

An organization is an administrative arrangement or structure established
for some purposes, manifesting the division of labor into actions and the
coordination of actions to accomplish the work. It can be permanent and
formal, established with immutable regulations, procedures and rules. Or it

175

may be temporally set up, like a project organization, for specific and often
short-range purposes. Further, an organization may be informal and
continuously evolving as those driven by the social relations emerged through
informal interactions between individuals.

An organization is an extremely multifarious and complex concept. It
involves human, social, juridical, economical, technical, cultural, etc. aspects.
An organizational structure is reflected by many kinds of artifacts. An artifact is
an object made by people, usually with skills, for subsequent use (Baskerville
1996, 10). It has a physical persistence but not necessarily physical embodiment.
Artifacts represent different rules and protocols by which the members of the
organization may choose to behave. These are, for instance, organization charts,
personnel policies, workplace divisions, and union agreements (Baskerville
1996, 12). Human behavior quite commonly conflicts with its artifacts. For
example, in many organizations the CEO’s secretary wields real power more
than authorized by superiors (Baskerville 1996, 10). The interaction between
the structure and the human and organizational behavior occur through social
processes; changing the structure influences the behavior and vice versa. Here
we are not able to model an organization with all its special characteristics but
view the notion through the elementary artifacts.

An organization can be enterprise-wide or established for some part of the
enterprise. In the latter case, we use the term ‘organizational unit’. Hence, we
have organizational units of Marketing, Financing, and Data Administration.
An organizational unit is composed of positions with the established supervision
relationships, and an organization is composed of organizational units. The
supervision relationships between the organizational units are derived from the
ones between the positions in the concerned units. The organizational units
with their positions and supervision relationships establish an organizational
structure.

There are a large variety of organizational structures. Traditionally,
organizational structures are divided into autocratic, participative, and
egalitarian organizations, corresponding to the well-known theories of X, Y and
Z (McGregor 1960; Ouchi 1981). Looking from a more technical viewpoint, we
can distinguish between hierarchical and matrix-like organizations, as well as
some hybrid forms. In a hierarchical organization structure, for each
subordinate there is only one superior, except for the one that has the power
over all the other positions. The positions are organized strictly according to the
main functions, which justifies the use of the term ‘functional organization’. In a
matrix –like organization, for one subordinate there can be several superiors
with different authorities.

4.4.3 Action Domain

The action domain comprises all those concepts and constructs that refer to deeds
or events in a context, that is, to state transitions in reality. Action is used as the
generic concept to refer to things belonging to the action domain. Actions can
be autonomous or cooperative. They can mean highly abstract work like studies

176

in mathematics, or at the other extreme, physical execution of a step-by-step
procedure with detailed routines. They can be momentary or last hours, days or
even years. The most essential characteristic of actions is that they somehow
change the world, that is to say, execute state transitions (cf. Section 3.7), in
either physical or mental sense. The former are called causal actions and the
latter knowledge-producing actions (Koubarakis et al. 2002, 304-305). The
knowledge-producing actions are perceptual or communicative actions.
Although it is difficult to describe actions independently from related
contextual domains90, we here consider the concepts and relationships of the
action domain separately from the other domains. Later in Section 4.5 the
concepts of the action domain will be related to concepts of the other domains.

The actions can be classified according to several criteria. There are a large
number of action structures, which an action is a part of. We divide the action
structures into specific structures and generic structures. The specific structures
are the management – execution (Mgmt-Exec) structure and the problem
solving structure. The generic structures comprise the decomposition structure,
the control structure and the temporal structure. An essential notion related to
all the action structures is a rule. In the following, we will first discuss the
specific structures, then the notion of a rule and finally the generic action
structures (see the meta model of the action domain in Figure 36).

It is a commonplace to distinguish between the management actions and
the execution actions91. The management – execution structure is composed of
one or more management actions and those execution actions that implement
prescriptions provided by the management actions. The management –
execution structure is one of the cornerstones in systems theories (e.g.
Mesarovic et al. 1970), which are concerned with control and coordination, as
well as of organizational theories (Weick 1995). The dichotomy is so far-
reaching that the kinds of actions can be considered to mold conceptions of the
contexts in which they are. Consequently, we can talk about the management
contexts and the execution contexts. The management actions aim to provide
execution actions with prescriptions and resources. This means planning,

90 In some approaches (e.g. Loucopoulos et al. 1998; Kavakli et al. 1999, 191), processes

as individual occurrences of actions are perceived as composites of four key
components: the roles, the activities, the objects, and the rules.

91 For instance, Kerola and Järvinen (1975) distinguish between eight functions in ideal-
seeking purposeful systems, including logistic functions, managerial or control
functions, and supporting functions. Iivari (1989a) defines the conversion function
(involves changes in quality, quantity, place and/or time of objects) and the
development/rearrangement function (reorganizing authority relationships,
reallocation of action into positions, etc.). van Slooten et al. (1993, 179) divide the
processes into three categories: primary processes (transform inputs to outputs
which are useful for the environment), regulative processes (regulate primary
processes, like policy making, planning, control), and maintenance processes (obtain
and maintain the means (e.g. staff, machines) of the organization). Verrijn-Stuart
(1995, 271) presents a functional categorization into (a) productive activities (primary
or core business) and (2) control, coordination and supportive activities.

177

ActionMgmt-Exec str

EventCondition

Control str

Problem solving str

Action structure

Rule

1..* 1..*

*

governs

*

*

raisedBy

Temporal strDecomposition str

Overlapping strDisjoint strParallel strIteration strSelection strSequence str

Management

Controlling

Directing

Staffing

Organizing

Planning

Execution

1..*

1..*
*

Choice

Design options

Intelligence

*

* *
*

* *
*

Temporal event

*

Process

1..*

1

instanceOf

Work procedure
1..*

*

1..*

FIGURE 36 Meta model of the action domain

organizing, staffing, directing and controlling the actions of the execution
contexts, in order to ensure the achievement of goals and constraints given from
the environment (cf. Cleland et al. 1972; Sisk 1973). The management actions
deploy procedures, practices, technologies, and know-how to make their
courses of action effective. The purpose of the execution actions is to implement
the prescriptions with the given resources.

The management actions are further divided into planning, organizing,
staffing, directing and controlling actions (e.g. Thayer 1987). Planning consists of
all those management actions that lead to the creation, assessment, and
selection of alternative future courses of action and the program for carrying
out the actions. It involves the definition of objectives and constraints as well as
the development of strategies, policies, and procedures to achieve the
objectives. Strategies define long-range goals and incorporate methods to obtain
those goals. Policies are concerned with predetermined management decisions
about e.g. personnel recruitment. Procedures establish customary ways of
handling future actions and thereby allow little if any discretion.

Organizing contains all those management actions that result in the design
of a formal organization structure of actions and authority relationships. It
determines and decomposes actions required to achieve the objectives and
arranges these actions into logical groups called roles and positions. The
essential part of organizing is the creation of position titles, the descriptions of
each organizational position, and the definition of the scopes, duties,

178

authorities, and relationships for each position. Staffing consists of all those
management actions required to fulfill and sustain filled positions that were
established by organizing. This includes selecting candidates for the positions,
making formal assignments, and training or otherwise developing both
candidates and incumbents to accomplish their tasks effectively.

Directing consists of all those management actions dealing with the
interpersonal aspects through which the personnel come to understand and
contribute to the achievement of organizational goals. Once selected,
assignments are clarified to the subordinates. The actors are guided, motivated,
led and stimulated towards improved performance. Controlling is all those
management actions that ensure the actual work goes according to the plans. It
measures performance against the goals and the plans, shows when a deviation
occurs, and by putting in motion corrective or complementary actions, helps
ensure the accomplishment of plans. Controlling means observing and
comparing the performance against the set standards.

As the PSC model (Kerola 1980) suggests, the pair of management and
execution actions can be recognized in different contents and forms in
organizations, depending on a point of view. As a matter of fact, the pair may
also be recognized within a management action as well as within an execution
action. Thus, there is a hierarchy of management and execution actions in
which upper structures are concerned with long run policies and objectives and
lower structures are implementing short run goals. A control lifespan means a
time period for which plans are made and during which their execution is
controlled. According to the control lifespan, the actions can be categorized
into strategic level, tactic level and operational level actions (cf. strategic
planning, management control, and operational control in Anthony (1965)).

The other kind of the specific action structure is the problem solving
structure. It is based on the stages of problem solving (Simon 1960).
Consequently, the problem solving structure is composed of three kinds of
actions: intelligence, design options, and choice. Intelligence means actions that
search the environment for conditions calling for a decision. They collect
information based on which a decision can be made. Design consists of actions
of inventing, shaping and specifying alternatives for possible courses of action.
If the available information is found insufficient, the problem solver may
choose to go back to the intelligence stage before making any further move.
Choice means the evaluation and comparison of each alternative and the
selection among them. The choice is complicated by multi-preferences,
conflicting interests, and uncertainty. If needed, more information is collected,
more alternatives are specified and/or specifications are further refined or
revised. Hence, the stages constitute an iterative rather than a sequential
process.

The action structures are enforced by rules. A rule is a principle or
regulation governing a conduct, action, procedure, arrangement, etc (Webster
1989). It is composed of four parts (Herbst 1995, 187; Herbst et al. 1994, 29),
event, condition, thenAction, and elseAction, leading to the well-known ECAA
structure. An event is an instantaneous happening in the context, or in its

179

environment, that is significant for the behaviour of the context. It means
anything that has happened, happens, or can happen. An event has no
duration. A condition is a prerequisite for triggering an action. A thenAction is an
action that is done when the event occurs and if the condition is true. An
elseAction is an action that is done when the event occurs but the condition is
not true.

The parts of a rule are inter-related in many ways. First, both an event and
a condition can be decomposed into more elementary parts with the logical
operators AND and OR (cf. Herbst 1995, 188-189). Also thenAction and
elseAction can be at any decomposition level. The execution of an action may
raise a new event, which in favorable circumstances (e.g. the pre-defined
conditions are true) leads to the execution of new actions. This is the way the
rules enforce the implementation of the control structure of actions. For
instance, consider the following rule: When a damage is reported and if the
information about the damage is available, then a claims handler in the
insurance company registers the damage provisionally and raises the event
‘Damage-provisional-registered’; else he sends the damage form to the policy
holder and raises the event ‘Damage-Form-Sent’ (Herbst et al. 1997, 123).

The rules can be classified in many ways (Krogstie 1995). A dynamic rule
restricts the allowable transitions between the pre-states and the post-states. A
static rule restricts the allowable states. An analytic rule is a rule that cannot be
broken by an inter-subjectively agreed definition of the terms used in the rule
(e.g. the age of a person is never below 0). An empirical rule is a rule that cannot
be broken according to shared explicit knowledge (e.g. no one can travel faster
than the speed of light). Analytic and empirical rules are rules of necessity, in
other words they must always be satisfied. Deontic rules are socially agreed
among the persons. Thus, a deontic rule can be violated without redefining the
terms in the rule. The deontic rules can be classified into obligations,
recommendations, permissions, discouragements, and probibitions (Krogstie et
al. 1994).

As said above, the execution of an action causes one or more state
transitions92. Every state transition is a potential event triggering another action.
We can distinguish between three kinds of events (cf. Brinkkemper 1990, 54,
Loucopoulos et al. 1998, 32): internal, external and temporal events. An internal
event is an occurrence happening inside the context (e.g. A stock item passes the
re-order level). An external event is an occurrence happening in the environment
of the context (e.g. A client phones for information on a particular stock item). A
temporal event is an occurrence having time as its impulse (e.g. On 31st of
December at 12.00 a list of the total inventory has to be printed). A temporal
event can be internal or external.

In practice many kinds of exceptions are experienced. An exception is “ a
case to which a rule, general principle, etc. does not apply” (Webster 1989).
Exceptions can be classified according to their relations to “normal” cases

92 Note that there are state transitions which are not necessarily caused by actions; e.g.

catching fire as a result from lightning.

180

(Auramäki et al. 1989, 172-175). Here, it is not possible discuss the exceptions in
more detail. Next, we move on to define the generic action structures that are
the decomposition structure, the control structure and the temporal structure.

In the decomposition structure, actions are divided into sub-actions, these
further into sub-sub-actions, etc. Sub-actions may be functions, activities, tasks,
operations, etc. Decomposition aims at reaching the level of elementary actions,
where it is not possible or necessary to further decompose. The level of
elementary actions depends on a point of view. Functional decomposition
yields a hierarchical structure, which reveals the parts of each action, not their
selection criteria neither the order in which they are to be performed.

A more specific view on the relationships between the actions can be
obtained by looking at the control structure. The control structure indicates the
way in which the actions are logically related to each other and the order in
which they are to be executed. The control structures are: sequence, selection,
and iteration93. The sequence relationship between two actions act1 and act2 means
that after selecting the action act1 the action act2 is next to be selected. This
implies that act1 logically precedes act2. For example, in order to go in, a door
must be opened, and sending a submitted paper to referees requires that the
paper is first received by the program chairman. In information processing the
sequence relationship is commonly a manifestation of the need of the action act2
to have at least part of the output from action act1 as its input. The sequence
relationship is antisymmetric and irreflexive. The relationship can be indirect or
direct. It is direct if there is no other action act3 between the actions act1 and act2
in the sequence order. The direct sequence relationship is not transitive,
whereas the indirect sequence relationship is transitive.

The selection relationship means that after selecting the action act1 there is a
set of alternative actions act2,.., actn from which one action (or a certain number
of actions) is to be selected. For example, after receiving reviews from the
referees, an acceptance letter or a rejection letter is sent to the author(s). A
selection is made based on contextual criteria. The criteria can be quite complex.
They may prescribe to select one, two or several alternative actions. If several
can be selected, the criteria can state which of them are mandatory or
prioritized.

The iteration relationship means that after selecting the action act1 the same
action is selected once more. The selection is repeated until the stated
conditions become true. For instance, a referee writes a review report for all the
papers he/she has got for review. There can be different reasons for iterations:
revision of an object due to better knowledge (“re-do”); iteration for the same
object, each time on a more detailed level (“refine”); performing the action, each

93 The terms ‘sequence’, ‘selection’ and ‘iteration’ are adopted here due to the tradition

in programming languages (e.g. Hoare et al. 1973), although some of them are a bit
problematic. For instance, the term ‘sequence’ gives an impression of a temporal
relationship according to which one action cannot start before the other action has
finished. The temporal aspect is not, however, involved here.

181

time for different objects, due to, for instance, lack of processing capacity in
terms of manpower, facilities, or space (“repeat”) (cf. Goldkuhl et al. 1993).

Note that a part of the control structure can also contain an inner control
structure. For instance, the sequence relationship can associate two actions,
which in fact are complex actions including compositions of actions with, say,
another sequence relationship or an iteration relationship. Likewise, among a
set of alternative actions, there can be an inner control structure specifying, for
instance, in which logical order selected actions should be executed.

The third generic action structure is the temporal structure. The temporal
structure is like the control structure but with temporal conditions and events. A
temporal condition means a condition, which contains at least one temporal
expression. A temporal event is a time-driven event. In the temporal structure,
the actions are bound to the time axis, with either absolute or comparative
terms. An absolute term signifies a time unit (time point or time interval) in
some time system; e.g. at 10.00 pm. Conditions and events are expressed in
comparative terms if they signify, for instance, the beginning or ending events
of some other actions; e.g. act2 should not start before the end of the action act1.
Hybrid terms contain absolute and comparative parts: e.g. if an order is not
assembled within 20 days after the order is registered, remind the responsible
clerk (Herbst 1995, 188),

The temporal structures are specified using temporal constructs94, such as
during, starts, finishes, before, overlaps, meets, and equal. Constructs are used
to specify the relationships between the starting and/or ending events, or
between the durations of the actions. With these constructs, overlapping,
parallel, disjoint (non-parallel) and overlapping executions of actions can be
distinguished. Two actions are said to be overlapping if the durations of their
executions overlap; i.e. the action act2 starts before the action act1 ends. The
actions are (strictly) parallel if the durations are equal or the duration of one
action is included in the duration of the other action. Two actions are said to be
disjoint if their durations do not overlap. The actions are strictly sequential, if
the action act2 starts exactly after the action act1 ends; i.e. there is no elementary
time unit between the ending event and the starting event. More temporal
concepts and relationships will be defined in Section 4.4.7.

The generic action structures can be positioned in a continuum to reflect
an extent to which the relationships between actions are constrained. Consider
the action structures in Figure 37. In the decomposition structure the
relationships between the actions are specified on the most general level. The
action act is decomposed into four parts and one part further into three
subparts. No other relationships, except the partOf relationships, are specified.
On the next general level (the control structure), the parts are also interrelated
by logical relationships (an arrow describes a sequence, a box containing parts
describes a selection, and an arrow returning to the part stands for an iteration).
On the most specific level (the temporal structure) the parts are bound to the

94 The temporal constructs will be specified in Section 4.4.7.

182

time axis, in this case with comparative terms (i.e. without explicit references to
time units).

act1
act22

act21

act1

act23

act3 act4

Decomposition structure

Control structure

Temporal structure

act1

act2

act3 act3 act3

act4

Time

act

act4act3act2act1

act21 act22 act23

act2

FIGURE 37 The action act seen from the viewpoints of three generic structures

An aggregate of related rules constitutes a work procedure (cf. Iivari 1989a, 333),
which prescribes how the course of action should proceed. Depending on the
knowledge of, and a variety of, actions, work procedures may be defined at
different levels of detail. Hoc (1988) identifies three kinds of modes of
prescriptions: declarative, functional and procedural. Declarative prescriptions
express the desired state of the UoD, often in terms of expected outcomes (i.e.
“What”). Procedural prescriptions give more explicit, often step-by-step,
guidance for the course of actions (i.e. “How”). An intermediate type of
prescriptions, termed the functional prescriptions, establishes relations between
the actions and the positions but does not have the status of prescriptions for
operational procedures.

The considerations above have dealt with the concepts and relationships
in the action domain at the type level. Due to the importance of the actions in

183

the context ontology and a large variety of instance-level occurrences of actions,
we next consider the actions at the instance level.

An instance of an action is called a process. For one action, several process
enactments can occur. A process may have sub-processes, which may have sub-
sub-processes, etc. A process can occasionally terminate and after a while
resume. Another process can be enacted, one after another, as a new iteration of
the same action. Consequently, a variety of instance-level structures, which the
process enacted from the certain action may have, is very large but all of them
have to comply with the structures and rules specified for the action. To
illustrate the relationships between an action and its processes as well as a
variety of processes of an action, we present the process p1 of the action act on
the decomposition, control and temporal levels in Figure 38. We can see that in
the process p1 two sub-sub-processes p121 and p122, corresponding to the sub-
actions act21 and act22, are enacted. The sub-process p13 is executed with
iteration, leading to the enactment of three sub-sub-processes p131, p132 and
p133.

p1

p122

p121
p11

p13p12p11

p13 p14

p121 p122

Decomposition structure

Control structure

Temporal structure

p11

p121

p122 p131 p132

p14

Time

p14

p133

FIGURE 38 The process p1 of the action act seen on three levels of action structures

184

Due to the fact that action is such a focal notion to information processing, even
more classifications for actions are presented in the IS literature. Most of them
can be categorized based on the contextual domains. Hence, depending on
whether the actor of an action is a human being, a computerized tool or both,
the actions can be classified into manual, automatic or semi-automatic actions.
Manual actions are totally performed by human beings, whereas automatic
actions are executed by a computerized tool (e.g. auto pilot system in an air
plane). Linguistic actions (cf. speech acts in Searle et al. (1979)) deal with
linguistic objects, whereas instrumental actions concern physical objects with no
representational function. Personal actions are conducted by individuals, while
collaborative actions presume group work. Based on the time domain, we can
distinguish between non-recurring actions and recurring actions. Further, we
can recognize centralized actions and decentralized actions.

4.4.4 Object Domain

The object domain contains all those concepts and constructs that refer to
something, which an action is directed to. It can be a message, a decision, an
argumentation, a list of problems, a program code, CASE tool graphics on the
screen, a workstation, etc. In general, an object can be a conception in a human
mind, the data represented in some carrier, or physical material such as timber,
a machine or a house (cf. the semiotic realms). Also a person as a physical thing
can be an object as is the case when a person is in the barber. In the literature an
object is called an information/material set (Olle et al. 1988a), material/
information (Iivari 1989a), a dataset (Harmsen 1997), data (van Swede et al.
1993), a document (Ang et al. 1993), a resource (Freeman et al. 1994), and an
actand (Falkenberg et al. 1998). We use ’object’ as the generic term to signify
any concept in the object domain.

Based on the nature of the objects we can distinguish between material
objects and informational objects. Material objects do not carry or present any
information, whereas informational objects do. For us, objects of special interest
are in the form of data or information. We call them data objects, or linguistic
objects, and information objects or conceptual objects, respectively95. Service is
something tangible or intangible, composed of material and/or informational
objects, made or given for someone from which it benefits.

Linguistic objects can be classified according to languages in which they
are presented. They can be formal, semi-formal or informal (cf. the language
ontology in Section 3.6). Informational objects can be classified based on the
intentions by which the objects are provided and used. Our aim here is to
develop a simple (lattice) taxonomy that serves as a basis to elaborate further
the object domain. The taxonomy has benefited from the classifications of
Stamper (1973, 1975, 1978a), Searle et al. (1985), and Lee (1983). Next we define

95 This division is in accordance with the well-know distinction between a datum as ”a

representation of information” and information as “an interpretation of a datum” (cf.
Langefors 1971).

185

the concepts included in the taxonomy (see Figure 39 for the meta model of the
object domain).

Object

Plan

PrescriptionDescription

Service

Linguistic

Informational objectMaterial object

CommandRulePredictionAssertion

1..*

*

*

versionOf

0..1

*

copyOf
*supports

*

*

0..1

*
0..1

Formal

Semi-formal

Informal

predAbstract

Conceptual

*

1..*

signifies

UoD construct
1..*

1..*

FIGURE 39 Meta model of the object domain

Stamper (1978a) distinguishes between the denotative and affective modes of a
language. Accordingly, there are informational objects, which merely signify
objects in the UoD, and those which affect upon the human feelings. We
constrain ourselves to discuss mainly the informational objects in the denotative
mode. These informational objects can be descriptive or prescriptive. A
descriptive object, called a description, is a representation of information about a
slice of the UoD (the actual or possible world). It provides a picture of reality to
enable an actor as a planner or as a decision maker to take actions even if
he/she is at some distance from the "world" in question. A prescriptive object,
called a prescription, is a representation of the established practice or an
authoritative regulation for action. It is information that says what must or
ought to be done. It can be in the form of an order or an instruction, a rule or a
regulation, a recommendation or an advice.

A distinction between a description and a prescription can be illustrated
and elaborated by the direction of fit (Searle et al. 1985). The direction of fit
discloses how the propositional content of an informational object relates to
reality. Three main cases are: (a) The propositional content fits a state of affairs
in reality; (b) States of affairs are changed to fit the propositional content; (c)
The propositional content induces the intended alteration in the state of affairs.
The two first cases correspond to the descriptions and the prescriptions,
respectively. The third case stands for declarations, which are not distinguished
in our ontology.

186

An informational object can be descriptive in various ways. An assertion is
a description, which asserts that a certain state has existed or exists, or a certain
event has occurred or occurs. The propositional content of the assertion fits a
past or existing state of affairs. A prediction is a description of a future possible
world with the assertion that the course of events in the actual world will
eventually lead to this state (cf. Lee 1983).

Also the prescriptions can be specialized. First, a prescription can be
expressed in different forms. Most commonly a prescription can be reduced
into the ECAA form: If Event and Condition, then Action1; else Action2 (Herbst
1995). As defined in Section 4.4.3, a prescription with at least two parts ((E or C)
and A) is called a rule. A prescription with neither an event part nor a condition
part is called a command. Second, the prescriptions are different from one
another in regard to their stability. On one hand, we have prescriptions that, to
a high degree, remain unchanged. A good example of these is the rule which
forbids Muslims from eating pork. On the other hand, there are prescriptions
that are subject to periodic or occasional changes (e.g. the tax legislation). Third,
we can distinguish between first-order and second-order prescriptions
(Stamper 1978a). Second-order prescriptions are used to modify first-order
prescriptions in certain contexts.

An informational object may possess aspects of several intentional
subtypes. For instance, a plan is, on one hand, a description about what is
intended. It can also be regarded as a kind of prediction, which is augmented
with intentions of action. It is assumed that the future possible world described
in the plan would not normally come out, except for the intended actions (cf.
Lee 1983). On the other hand, no plan is prepared without considering its
implementation. Consequently, it contains a requirement to act in order to
change the states of affairs. As regard to the states in which a plan can appear
during the courses of action, we can distinguish possible, probable, proposed,
and approved plans (cf. Glasson 1986, 272).

There are many important relationships between the objects. Except the
abstraction relationships, most of the relationships are type-specific. In the
following we consider five generic relationships between the informational
objects, which are: the versionOf relationship, the copyOf relationship, the
supports relationship, the predAbstract, the signifies relationship, and the
partOf relationship.

An object is often produced gradually through several iterations. A version
is a result of an iterative or phased action toward the final outcome. It can be a
preliminary or tentative object, the final product itself, or something between
them. The versionOf relationship holds between two objects obj1 and obj2, if
properties of, and experience from, the object obj1 have influenced the creation
of another object obj2 intended for the same purposes and if the objects refer to
the same UoD (cf. the is_derived_from relationship in Katz (1990)). In some cases,
the objects are considered versions albeit the purpose has evolved. The creation
can get its start from “scratch” or it can be based on updating, elaborating or
improving the earlier version. The versionOf relationship is irreflexive,
antisymmetric, and transitive. The versions can establish a version tree, in

187

which several alternative versions are made from one object and one of the
versions is selected for further development. The process of producing versions
is iterative.

We may have several copies from an object. A characteristic of the copyOf
relationship is that the original object and a copy object are exactly, or to an
acceptable extent, similar. Depending on the nature of the original object, there
may be some or even millions of copies (cf. an e-mail message forwarded as a
copy to thousands of users through a public mailing list). If the copies are equal
to the original object, there is no need to maintain the knowledge about which
of the objects is original. In this case the copyOf relationship is reflexive,
symmetric, and transitive. Otherwise, the relationship is irreflexive,
antisymmetric and intransitive.

The supports relationship involves two informational objects, obj1 and obj2,
such that the information “carried” by the object obj1 is needed to produce the
object obj2. For instance, to place an order, it is necessary to know what the
current quantity-on-hand of the product is, who the potential suppliers are,
what the prices of the products are, what the delay of supplying is, etc. The
supports relationship is irreflexive, antisymmetric and intransitive. We can
distinguish between two subtypes of the supports relationships. Depending on
the role in which the information conveyed by the object obj1 plays in
producing the object obj2, the relationship can be the data supports relationship
or the control supports relationship. In the data supports relationship, obj1 means
“raw data” that is converted into obj2. In the control supports relationship, obj1
means “control data”, i.e. rules, policies, principles or other prescriptions,
according to which the object obj2 is to be produced. The versionOf relationship
is a subtype of the data supports relationship.

The predAbstract relationship between two informational objects means that
one object is more abstract that the other object in terms of predicate abstraction
(see Section 3.9.3) and both of the objects signify the same thing(s) in the UoD.
For instance, a document containing the description of functional properties of
a machine is more abstract, in terms of predicate abstraction based on the
realization criterion, than another document, which contains a diagram of
electric wiring. The predAbstract relationship is irreflexive and antisymmetric.
In a hierarchical system of predicate abstraction levels, the relationship is also
transitive.

The signifies relationship defines the conceptual meaning of the linguistic
object in terms of UoD constructs, which the object signifies. The relationship is
a specialization of the relationship between a sign and a concept, defined in the
semiotic ontology (Section 3.4)96. The UoD construct means any conceptual
construct in the same or different context97. Above we distinguished between
five kinds of informational objects: assertion, prediction, plan, rule and
command. They reflect various illocutionary forces (Searle 1969, 1979) or
“pragmatic meanings”. It would be possible to specialize the signifies

96 We use the term ‘signifies’ for the relationship here in spite of this specialization.
97 The notion of a UoD construct will be discussed more closely in Section 6.3.3.

188

relationship into five special relationships between a specific linguistic object
and a UoD construct, one for each of the object kinds. This is not done here.

The partOf relationship in the object domain means that the object is
composed of two or more other objects that are called object parts (cf. product
elements or sub-products in Schmitt (1993, 238)).

4.4.5 Facility Domain

The facility domain contains all those concepts and constructs that refer to the
means by which something can be accomplished, i.e. something, which makes
an action possible, more efficient or effective. We distinguish between two main
kinds of facilities: tools and resources (see the meta model of the facility domain
in Figure 40).

Configuration
Manpower

Computerized

Facility

Resource

Component

Tool

Manual

Computer aided

Money

Energy

1..*

*

versionOf

1
configured

*

1..**

*

**

compatibility

*

*

compatability

1

FIGURE 40 Meta model of the facility domain

A tool is a thing that is designed, built, installed, etc. to serve in a specific action
affording a convenience, efficiency or effectiveness. A tool may be, for instance,
a simple and concrete instrument held in hand and used for cutting or hitting.
Or, it may be a highly complicated computer system supporting an engineer in
his/her controlling a nuclear power station. In contrast to an actor, a tool has a
supportive role in the context: it is activated or taken “into hand” when needed
by a skilled actor. In a technical context, a tool may have a major role in action
(cf. an auto pilot in the air plane), but there also it is assumed to be under the
control of a human being98. Tools can be manual, computer aided, or computerized.

98 By this standpoint, we strongly support McGregor (1960) who points out a difference

between a human being and a machine: ”The distinctive potential contribution of the

189

A resource is a kind of source of supply, support, or aid. It can be money,
energy, capital, goods, manpower, etc. (Barros 1991, 539). The resources are not
interesting in terms of pieces, e.g. in individual coins or men, but rather in
terms of amount. When a resource is used, it is consumed, and when
consuming, the amount of the resource diminishes. Thus, a resource is a thing,
about which the main concern is how much it is available (cf. Liu et al. 2002, 39).
In this respect, the notion of a resource sharply differs from the notion of a tool.

There are a great number of relationships between the concepts within the
facility domain, representing functional, structural and other kinds of
connections. As we do not want to emphasize too much technical aspects of a
context, we content ourselves with defining some examples of the relationships
among the computer aided and computerized tools. These are: compatibility,
versionOf, and configuration.

For being operative and useful, the tools should be compatible. Two tools
are compatible if their interfaces are structurally and functionally interoperable.
The compatibility relationship is reflexive and sometimes symmetric.
Compatibility can be considered from several viewpoints. For instance, the
basic reference model of Open Systems Interconnection (OSI), developed by
ISO (1984), establishes an architecture with seven compatible layers. On each
layer, a particular viewpoint is applied to establish compatibility for data
communication between components of information processing systems. In this
case compatibility is not symmetric. Besides on data, compatibility can be based
on presentation, control, and process of the tools (Thomas et al. 1992).

Tools are commonly composed of one or more components. Components
develop through consecutive versions. Only some versions of a component are
compatible with certain versions of the other component. To manage
compositions of components of different versions, the notion of a configuration
is used. A configuration is a whole that is composed of the components with
compatible versions. For instance, a software house must manage customized
configurations of software for specific platforms or for other special
requirements of customers (see Pohl (1994) for discussions of upwards and
downwards compatibility).

4.4.6 Location Domain

The location domain contains all those concepts and constructs that refer to parts
of space occupied by someone or something. A location can be physical or
logical. A physical location, such as a room, a building or a city, is a spatial thing,
which is placed in a region of space and which can, through its spatial
attachment, provide a place for some other thing (e.g. a person in a building).
We distinguish between spatial things and the space they are placed in (Borgo
et al. 1996; Bittner 1999). A spatial thing may be a building, a street, a river or the

human being in contrast to the machine, at every level of an organization, stems from
his capacity to think, to plan, to exercise judgment, to be creative, to direct and to
control his own behavior.

190

like, that is to say, some thing that is necessary or beneficial to localize. A region
is a part or division of space99. A point is the elementary unit in space specified
by a single coordinate with reference to a system of two or three geographical
dimensions. An area is any particular extent of space specified with at least two
coordinates. A geographical dimension means any dimension within which space
can be specified. A geographical system is a system of two or three geographical
dimensions. A spatial thing is associated with a region by the placedIn
relationship. Distinguishing a spatial thing from a region it is placed in is
important to enable recognizing that something is moved across space
(Shanaham 1995). Depending on the match between the granularities of the
spatial things and the regions of space, the placedIn relationship can denote an
exact place, a part place or a rough place (Bittner et al. 2002).

A logical location, like a site within a computer network, is a space that is
not attached to any geographical point or area. We make a clear distinction
between a location as a space and the contents of the location. The latter can,
depending on a viewpoint, be an actor, an object, or a facility. Next, we define
relationships in the location domain (see the meta model of the location domain
in Figure 41).

Location

Region
Area

Spatial thing

Logical locationPhysical location

1..*

placedIn

*

*

*

*

*

*

*

*

*

topological relationship

* *
Point

1 1

Geogr. dimension

Geogr. system

2..3

1..*

specifiedBy

1..*
1..*

connectedTo

1..*

FIGURE 41 Meta model of the location domain

With the expansion of geographical information systems (GIS’s) and other
location-aware applications, e.g. in 3G networks, it has become more and more
necessary to collect, model, store and analyze information originating from

99 There are many alternative ways to divide space. Sowa (1995, 670), for example,

defines three elementary “geographical features” with which space can be divided:
area, line, and point.

191

maps, digital images, satellites, roads, transportation networks, etc. A
prerequisite for these is that the relationships between the locations are strictly
defined. There is a special theory of parts, called mereology (e.g. Varzi 1996),
which defines wholes and parts and their location-based relationships. The
most essential relationships are the partOf relationship, also called the parthood
relationship, and the topological relationships. The geographical partOf
relationship associates both the spatial things and the regions of spaces. Cities
contain buildings, which comprise apartments, which consist of rooms, etc.
Granularity of the regions depends on the scale and metrics relevant from the
adopted viewpoint100. Regions are measured as areas along the geographical
dimensions or abstracted as points in spatial space101.

Geometrical dimensions enable to establish various topological
relationships between the regions. A topological relationship between two regions
states how the regions are related in terms of geographical points or areas along
two or three geometric dimensions. Depending on the spatial theory applied,
various primitive relationships have been defined. Randell’s theory (e.g.
Randell et al. 1989), based upon Clarke’s (1981) calculus of individuals, for
instance, assumes the primitive dyadic relationship ‘connects’, which means
that the connected regions share a common point. Based on this primitive, other
relationships like disconnected, externally connected, partial overlap, being a
tangential part of the other, etc. can be defined. Based on different spatial
theories, relationships such as separates, contains, surrounds, above, below, to
the side of, etc. can be defined (cf. Stamper 1978a, 67). The topological
relationships are used in topological operations, such as interpolation and
proximity analysis, to make inferences.

For the logical locations, e.g. terminal sites, we propose different
relationships. For instance, in an electronic mail system, it is necessary to
maintain knowledge about all possible sites and connections between them. The
connectedTo relationship means that two sites can communicate with each other
through exchange of messages.

4.4.7 Time Domain

The time domain contains all those concepts and constructs that refer to the
temporal aspects of the UoD. Time is indefinite, unlimited duration in which
something is considered as happening in the past, present, or future (Webster
1989). Most of our knowledge is founded in time and expressed in terms of time
units. The two fundamental time units are the time point and the time interval.
The time point is the primitive as an indivisible point on the time continuum
(e.g. Kahn et al. 1977). The time interval is an abstraction of time points,

100 There is a specific set of literature that deals with different classifications in this

respect (see for an overview in Freundschuh et al. 1997).
101 The approaches in topology literature differ from one another in their view of what

are the primitives. Some regard the regions as primitives (Clarke 1981), whereas
others operate with more elementary particulars like lines and points.

192

manifesting duration of something. Note that a point in time is relative,
dependent on the chosen point of view. For instance, a day is, in one context, a
time point, and, alternatively, a time interval in some other contexts.

There are many different time theories in the literature. Based on Hayes
(1995) we distinguish between (a) instant-based theories (e.g. McDermott 1982,
Shoham 1987), which operate with time points, (b) interval-based theories (e.g.
Allen 1984), which are founded on intervals, and (c) temporal theories (e.g.
Bochman 1990), which treat both time points and intervals as independent
primitives. Here we follow the instant-based approach, because it is more
natural to regard an interval as being composed of time points. Next we
consider the sub-concepts of, and the relationships between, the time units. The
meta model of the time domain is presented in Figure 42.

Time unit

Time system

Non-convex interval

Calendar timeClock-time

Time intervalTime point

Convex interval

1..*
belongsTo

*

temporal relationship

1..*
1..*

relatedTo

Time

2..*

1..*

*

1..*

FIGURE 42 Meta model of the time domain

There are many kinds of time intervals. First, there are convex time intervals
and non-convex time intervals (Zhou et al. 2000). A convex time interval is an
interval that consists of continuous time points (e.g. January 3, 2002). A non-
convex time interval is an interval with some “holes” (e.g. Wednesday). Further,
we can distinguish the regular non-convex time intervals. “Every Wednesday in
September”, for instance, consists of 4 or 5 connected intervals, each of which
represents a Wednesday.

Time expressions can be definite or indefinite (Oberweis et al. 1988). To a
definite expression, only one predicator applies whereas for an indefinite
expression, like “something happens before or during the time unit tim1”,
several predicators combined with OR-operators are used. Time expressions
can make absolute or comparative references to time units. Absolute references

193

contain only concepts in the time domain, whereas the interpretation of
comparative references, such as “something happens after the action act1 is
accomplished”, applies concepts in the other contextual domains (e.g. in the
action domain), too.

It is common to all human and social behavior that time is perceived in
relation to some socially constructed time system. A time system is a totally
ordered set of time units (Clifford et al. 1988). It is always based on a certain
time resolution or granularity, which is selected to suit the purposes in hand. In
physics, one of the billion fractions of a second is a relevant time unit, whereas
in paleontological research, units of millions of years are used to express eras, in
which prehistoric organisms have lived and evolved. The most universal time
systems are Julian and Gregorian calendars. A more customized time system is
a fiscal time containing fiscal year and fiscal month, which may vary in
different countries. Another universal time system is the clock time system that
enables reckoning and measuring time through the natural and prominent
cycles of day and night. For organizational contexts, a composition of the
common calendar date with the clock time system suffices. Because time is also
said to be “the system of those sequential relations that any event has to
another” (Webster 1989), we consider time as a generic concept generalized
from the concepts of time unit and time system.

The relationships between the time systems may grow to very
complicated constructs. To define a relatedTo relationship between the time
systems usually requires that some elementary time system is established; e.g. a
continuous number line with real numbers. The time systems form hierarchies
in which a time point in one time system at a higher level (e.g. Calendar-Year) is
seen a time interval from the perspective of another time system on a lower
level (a Calendar-Month). It is much more difficult, however, to relate the
systems containing weeks or other not so straightforward time units to the
other time systems. For our study, the relationships between the time systems
are not an essential issue and therefore we do not discuss it more.

A large set of temporal relationships can be defined for the time points and
the time intervals. Three binary relationships defined for the time points are:
before, after and equal-point. Following Allen’s time theory (Allen 1984), we can
further define a minimal set of relationships between the time intervals (intv)102:
• during (intv1, intv2). intv1 is fully contained with intv2.
• starts (intv1, intv2). intv1 shares the same beginning as intv2, but ends

before intv2 ends.
• finishes (intv1, intv2). intv1 shares the same end as intv2, but begins after

intv2 begins.
• before (intv1, intv2). intv1 is before intv2, and they do not overlap in any

way.
• overlaps (intv1, intv2). intv1 starts before intv2 and they overlap.

102 There are also other suggestions (e.g. De et al. 1982) that contain even 28 temporal

relationships.

194

• meets (intv1, intv2). intv1 is before intv2, and there is no period between
them.

• equal (intv1, intv2). intv1 and intv2 are the same interval.

There is also a large set of axioms that define the semantics of the relationships
(Allen 1984). It can be proved, for instance, that the overlapping intervals have a
common sub-interval and the temporal relationships are transitive. In addition,
there are a large variety of functions on the time points and the time intervals
(e.g. Year_of, Hour_of, Starting_point, Co_Start, etc.). We are not able to
consider them here in more detail.

4.5 Inter-Domain Relationships

Until now we have defined only those contextual relationships which associate
concepts in the same contextual domain. There is, however, a large set of
contextual relationships that relate concepts in different domains. For example,
an actor carries out an action, an object is an input to an action, and a facility is
situated in a location. We call them the inter-domain relationships.

Figure 43 presents an overview of the inter-domain relationships. The
space is divided into seven areas corresponding to seven contextual domains,
with the action domain being in the centre. In each sub-areas we present the
concerned generic concepts to be related with the inter-domain relationships.
In the following we define the inter-domain relationships, starting from those
that involve the concepts of the purpose domain, and then continue, domain-
by-domain, with defining the relationships that concern concepts within the
other domains.

A. Purpose

expressedBy(Actor,Purpose)
The relationship means that an actor has expressed a goal, a requirement, a
problem, or the like concerning the context as a whole or some of its part (e.g.
actions, objects, locations), in the same or different context.

motivatedBy(HumanActor,Purpose)
When associated with a human actor, a purpose means a subjective or inter-
subjective motive or an inner drive that makes a person or a group to do
something or behave as he/she/it does. A purpose may be a far-reaching or
near-reaching goal, idealistic or realistic, nevertheless it is something for which
a human actor is ready and willing to struggle. Individuals may have their own
“selfish” goals, for instance, to advance their personal career, which differ from
the goals of the organizational unit they are working for.

195

Action

Time

Actor

Org.Role

Object

Tool

Location
Human
actor

Facility

Purpose

Position

Resource

strivesFor motivatedBy

carryOut

occursAt

input
existsAt

intendedFor

performsuses

situatedIn

situatedIn

usedToMake

existsAt

situatedIn

ownedBy
viewedBy

useAbility

intendedFor
existsAt

intendedFor

existsAt

output

responsibleFor

expressedBy

UoD
construct

signifies
involvedBy

existsAt

FIGURE 43 Overview of inter-domain relationships

strivesFor(Action,Purpose)
When associated with an action, a purpose means a goal for which an action
strives. A goal can be strategic, policy-level, or highly operative and concrete.
Unlike for the objects, here a purpose through the strivesFor relationship
particularly means a goal for a process, not for its outcome.

intendedFor(Object,Purpose)
When associated with an object, a purpose means a goal or a reason for which
an object has been made, is made, or is to be made. For instance, an IS should be
used to support invoicing, and customer data should be correct and timely
enough to serve the customer relationship management.

intendedFor(Facility,Purpose)
When associated with a facility, a purpose means a goals or reason for which a
facility has been made/acquired, is made/acquired, or is to be made/acquired.
Commonly used purposes of a facility are: to make an action more efficient and
easier, to make a service more available, etc.

intendedFor(Location,Purpose)
When associated with a location, a purpose means a goal or reason for which a
location has been made/acquired, is made/acquired, or is to be made/
acquired.

196

existsAt(Purpose,Time)
The relationship defines time for the existence of a purpose.

B. Actor

carryOut(Actor,Action)
The relationship means that an actor carries out an action. The relationship is
considered general enough to cover all kinds of functioning and behavior in
various temporal and modal forms. Actor is here used as a generic concept
meaning a human actor or a position occupied by a human actor.

responsibleFor(Org.Role,Action)
The relationship defines the functional contents of an organizational role.
Depending on a level of detail on which an action is expressed, the role
specification can include a general outline of responsibilities for an action, or a
composition of operations in the form of decomposition, control or temporal
structures. There are a large variety of principles and rules guiding and
constraining the composition of actions to make organizational roles and the
composition of organizational roles to establish positions. A position should,
for instance, facilitate some job autonomy, variety and rotation of work among
a set of positions. Positions should also constitute natural units of work, and be
clearly defined and organized (Mumford et al. 1979; Hedberg 1980; Steenis
1990).

ownedBy(Object,Actor)
The relationship defines that an actor is an “owner” of an object, and therefore,
he/she has some responsibilities for and authority over an object. Depending
on organizational agreements and policies, an actor takes care of an object, can
utilize an object, or can grant privileges to some other actors for using or
modifying an object (e.g. granting permissions to access to data), etc.

viewedBy(Object,Actor)
The relationship defines that an object presents views, insights, opinions, etc. of
a certain actor. If associated with a person or a group of persons, an object
represents a subjective or inter-subjective view, whereas if associated with a
position, an object reflects an organizational view or a so-called ‘official’ view.
Through this relationship it is possible to present differences between and
conflicts among the views (see views in data bases (e.g. Motschnig-Pitrik 2000),
in the socio-technical theory (Mumford et al. 1979), in the Softsystems theory
(Checkland 1981), and in the political theories (e.g. Robey 1984; Ciborra 1998)).

useAbility(Actor,Facility)
The relationship defines that it is possible for an actor to use a facility. If a
facility is a tool, this means that he/she has the required skills and rights for its
use. If a facility is a resource, the relationship means that he/she is authorized
to use or make decisions on the acquirement and use of the resource.

197

situatedIn(HumanActor,Location)
The relationship defines that a human actor (a person or a group) is situated in
a location.

existsAt(Actor,Time)
The relationship defines the time for the existence of an actor. Through this
relationship the lifespan of an actor (i.e. a person, a group, a position, or an
organizational unit) is established.

C. Action

The inter-domain relationships between the actions and the objects may be
highly complex. In the literature, two major approaches have been applied in
modeling action structures connected to the objects. In the implicit approach,
the input and output relationships are used as such (e.g. Ramackers 1994; Sowa
et al. 1992) or the particular concept of a flow is used (e.g. Olle et al. 1988a;
Harmsen 1997). In the explicit approach, a special construct is defined for the
action structure. This construct can be a whole (e.g. Communication in
Falkenberg et al. (1998), Transaction in Verrijn-Stuart et al. (1992, 486), Business
exchange in Sowa et al. (1992)), or an objectified relationship (e.g.
Organizational channel in Iivari (1989a)). Heym and Österle (1992a, 233) define
input usage and output usage constructs to enable the expression of the
purpose (output create, output modify) for which the usage occurs. In this
study we contend ourselves with a simple approach, which is based on defining
the separate input and output relationships between the actions and the objects.

input(Object,Action)
The relationship defines that an object is used as an input to an action. An object
is called an input object, and the corresponding action is called a consumer or a
destination.

output(Action,Object)
The relationship defines that an action produces an object as its output. An
action is called a provider or a source, and an object is called an output object.

involvedBy(UoD-construct,Action)
The relationship defines that a UoD construct is involved by an action through
informational objects that signify a UoD construct. Involving may mean
creating, modifying, utilizing, or deleting informational objects.

performs(Tool,Action)
The relationship defines that an action is performed by a tool.

uses(Action,Resource)
The relationship defines that an action uses certain resources. The level of detail
in which resources are referred to may vary a lot.

198

occursAt(Action,Time)
The relationship defines when an action is done, has been done or will be done.

D. Object

usedToMake(Facility,Object)
The relationship defines that a certain facility, a tool or a resource, is used to
produce an object. The relationship could be specialized according to a kind of
facility, a nature of the use, amount (of certain resources) used, etc.

situatedIn(Object,Location)
The relationship defines that an object is situated in a certain location.

existsAt(Object,Time)
The relationship defines when an object exists or has existed.

E. Facility

situatedIn(Facility,Location)
The relationship defines that a facility is situated in a given location.

existsAt(Facility,Time)
The relationship defines when a facility exists or has existed.

F. Location

existsAt(Location,Time)
The relationship defines when a location exists or has existed.

To have an overall picture of the intra-domain relationships and the inter-
domain relationships defined above, we present the relationships in Table 14.
The intra-domain relationships, containing all but the generalization (isA) and
composition (partOf) relationships, are presented in the diagonal, and the inter-
domain relationships are located in the cells below the diagonal. The
abbreviations used in the expressions are assumed to be self-describing.

4.6 Implicit Relationships

Based on the intra-domain and inter-domain relationships defined above, a
large set of implicit contextual relationships can be derived. In this section, we first
give examples of these relationships and then illustrate the implicit inter-
context relationships with examples. The implicit relationships are not
included, on the individual level, in the context ontology.

199

TA
BL

E
14

In

tr
a-

do
m

ai
n

an
d

in
te

r-
do

m
ai

n
re

la
tio

ns
hi

ps

Pu

rp
os

e
A

ct
or

A

ct
io

n
O

bj
ec

t
Fa

ci
lit

y
Lo

ca
tio

n
Ti

m
e

Pu
rp

os
e

in
flu

en
ce

 (

go
al

,g
oa

l)
re

fin
em

en
t

 (
go

al
,g

oa
l)

du
eT

o(
go

al
,re

as
on

)
ca

us
al

To

 (
pr

ob
,p

ro
b)

re

fin
em

en
t(r

eq
,re

q)

in
flu

en
ce

(r
eq

,re
q)

A
ct

or

ex
pr

es
se

dB
y

 (
pu

r,a
ct

r)

m
ot

iv
at

ed
By

 (

ph
ys

A
ct

r,p
ur

)

oc
cu

pi
ed

By

 (
po

s,
hu

m
A

ct
r)

su

pe
rv

is
io

n
 (

po
s,

po
s)

m

em
be

rO
f

 (
pe

r,
gr

ou
p)

A
ct

io
n

st
ri

ve
sF

or

 (
ac

tn
,p

ur
)

ca
rr

yo
ut

 (

ac
tr

,a
ct

n)

re
sp

on
si

bl
eF

or

 (
ro

le
,a

ct
n)

go
ve

rn
s

 (
ru

le
,a

ct
n)

ra

is
ed

By

 (
ev

en
t,a

ct
n)

in

st
O

f(p
ro

c,
ac

tn
)

O
bj

ec
t

in
te

nd
ed

Fo
r

 (
ob

j,p
ur

)
ow

ne
dB

y
 (

ob
j,a

ct
r)

vi

ew
ed

By

 (
ob

j,a
ct

r)

in
pu

t(o
bj

,a
ct

n)

ou
tp

ut
(a

ct
n,

ob
j)

in
vo

lv
ed

By

 (
U

oD
,a

ct
n)

ve
rs

io
O

f(o
bj

,o
bj

)
co

py
O

f(o
bj

,o
bj

)
su

pp
or

ts
(o

bj
,o

bj
)

pr
ed

A
bs

tr
ac

t
 (

ob
j,o

bj
)

si
gn

ifi
es

(lo
bj

,U
oD

)

(c

on
tin

ue
s)

200

TA
BL

E
14

 (
co

nt
in

ue
s)

Pu
rp

os
e

A
ct

or

A
ct

io
n

O
bj

ec
t

Fa
ci

lit
y

Lo
ca

tio
n

Ti
m

e
Fa

ci
lit

y
in

te
nd

ed
Fo

r
 (

fa
c,

pu
r)

us

eA
bi

lit
y(

ac
tr

,fa
c)

us

es
(a

ct
n,

re
s)

pe

rf
or

m
s

 (
to

ol
,a

ct
n)

us
ed

To
M

ak
e

 (
fa

c,
ob

j)
co

nf
ig

ur
ed

 (

co
nf

,to
ol

)
ve

rs
io

nO
f

 (
co

m
,c

om
)

co
m

pa
ta

bi
lit

y
 (

co
m

,c
om

)
co

m
pa

ta
bi

lit
y

 (
to

ol
,to

ol
)

Lo
ca

tio
n

in
te

nd
ed

Fo
r

 (
lo

c,
pu

r)

si
tu

at
ed

In

 (
hu

m
A

ct
r,l

oc
)

si

tu
at

ed
In

 (

ob
j,l

oc
)

si
tu

at
ed

In

(fa
c,

lo
c)

pl

ac
ed

In

 (
sp

at
Th

in
g,

re
gi

)
to

po
lo

gi
ca

lR
el

at
i

on
sh

ip
(r

eg
i,r

eg
i)

co
nn

ec
te

dT
o

 (
lo

gL
oc

,lo
gL

oc
)

Pu
rp

os
e

ex

is
ts

A
t(p

ur
,ti

m
)

ex
is

ts
A

t(a
ct

r,t
im

)
oc

cu
rs

A
t

 (
ac

tn
,ti

m
)

ex
is

ts
A

t
 (

ob
j,t

im
)

ex
is

ts
A

t(f
ac

,ti
m

)
ex

is
ts

A
t(l

oc
,ti

m
)

te
m

po
ra

l
re

la
tio

ns
hi

p
 (

tim
,ti

m
)

be
lo

ng
sT

o
 (

tim
,ts

ys
)

re
la

te
dT

o
 (

ts
ys

,ts
ys

)

201

The organizational role has been previously defined as a collection of
responsibilities and authorities. Based on the relationships that a role has to an
action (responsibleFor), an action has to a purpose (strivesFor), and an action
has to an object (input, output) and to time (occursAt), we can derive (implicit)
dependencies between the roles. An intentional dependency between the roles
reflects the fact that the achievement of a goal that one role brings about is
dependent on the achievement of a goal of another role (Kavakli et al. 1999,
193). A coordination dependency expresses the need for one role to wait for
completion of another role’s responsibilities before it can complete its own
(Loucopoulos et al. 1998, 19-20; Kavakli et al. 1999, 193). A resource dependency
illustrates the need for one role to use a resource that can be provided by
another role. For instance, a construction service requires material that is under
the supervision of warehousing services (Loucopoulos et al. 1998, 19; Yu et al.
1995).

Further, an actor is a tool user, if he/she carries out an action, which is
partly performed by a tool. An information provider is an actor who carries out
actions that produce informational objects that are used as input to actions
carried out by another actor. A facility provider is an actor who carries out
actions to produce an object that is used as a tool by a tool user. A schedule for
the actions can be derived from a set of the occursAt relationships.

Implicit relationships can also associate the contexts. For instance, there is
a managing relationship between two contexts if the actions of the
management-execution structure are divided in such a way that the
management actions belong to one context and the execution actions belong
to the other. A context is a provider if its actions produce objects for the use of
another context. For instance, an information system is a provider context for a
business context. We can also distinguish between a signifying context and a
signified context. The former context produces and/or uses informational
objects that signify some things in the latter context. Further, the temporal
relationships between two contexts follow from the temporal relationships
between the corresponding actions, and the topological relationships between
two contexts follow from the topological relationships between the locations.

Abstraction among the parts of the contexts also results in abstraction
relationships between the contexts, as the following examples show. By
classification individual contexts are abstracted into a context type. By the
inverse process, a context is instantiated. Consider the following example:

[Context: Cxt || [Actor: Secretary], [Action: Stores],
[Object: Document]]

By instantiating any of the three contextual concepts (Secretary, Stores,
Document), a more concrete context is achieved:

[Context: Cxt1 || [Actor: Mary], [Action: Stores], [Object:
Document]]

202

[Context: Cxt2 || [Actor: Secretary], [Action: Stores],
[Object: Document#123]]

Hence, we have derived the implicit inter-context relationships instanceOf
(Cxt1, Cxt) and instanceOf (Cxt2,Cxt).

Let us next consider generalization. Assume the contexts Cxt3 and Cxt4
below:

[Context: Cxt3 || [Actor: Secretary], [Action: Stores],
[Object: Document]]
[Context: Cxt4 || [Actor: Secretary], [Action: Stores],
[Object: DesignDocument]]

Generalizing any of the three contextual concepts in the contexts Cxt3 and Cxt4
results in a more generalized context as follows:

[Context: Cxt || [Actor: Person], [Action: Stores],
[Object: Document]]

Hence, we have derived the implicit relationships isA (Cxt3,Cxt) and isA
(Cxt4,Cxt).

Abstraction among the contextual concepts does not always imply the
corresponding abstraction among the contexts. Consider the following example
about grouping:

[Context: Cxt5 || [Actor: Committee], [Action: Makes]
[Object: Decision]]

Let us assume that there is the relationship memberOf (Representative,
Committee). From this it does not necessarily follow that

[Context: Cxt6 || [Actor: Representative], [Action: Makes]
[Object: Decision]],

because decisions are made by the committee as a collective unit, not by
individual representatives. There are, however, cases, in which grouping
among the contextual concepts indeed implies a grouping relationship among
the contexts. For example, if

[Context: Cxt7 || [Actor: Committee], [Action: TravelsTo]
[Location: London]],

then it is quite possible to derive a context in which an individual
representative travels to London. Note, however, that this does not necessarily

203

hold for instantiated contexts, because it is not certain that every representative
of the committee visits London.

4.7 Summary and Discussions

The purpose of this chapter was to present the context ontology, as the first
component among the so-called contextual ontologies. The context ontology
provides the concepts and constructs to conceive, understand, structure and
represent things in reality as contexts and/or within contexts. For engineering
the ontology, we first specified a particular approach, called the contextual
approach. We characterized the application domain at which this approach was
aimed, defined the objectives, searched for theories underlying the approach,
and crafted the notion of a context. A context and the contextual approach are
vital, not only to the context ontology, but also to the whole ontological
framework. Therefore, we made a serious attempt to construct a solid
theoretical and conceptual basis for that.

The contextual approach is a conception-oriented approach, which helps
us understand and specify purposes, meanings, and effects of things, through
considering them as parts of a context. It is a kind of abstraction mechanism by
which we can reveal what is relevant for what we aim to explain and exclude
all other that does not offer the requested explaining power (Sharfstein 1989).
The notion of a context is widely used in e.g. formal logic, pragmatics,
computational linguistics, sociological linguistics, organizational theory,
cognitive psychology, and information systems. We were particularly interested
in context-related theories that are situated on the three topmost levels of the
semiotic ladder (Stamper 1973; Stamper 1996). They are semantics, pragmatics
and theories of human and social world. Each of these theories was considered
and several approaches based on them were described and evaluated for
applicability. In addition, we reviewed a large variety of studies that use the
notion of a context, although without any explicitly defined context-related
theories. These studies are related to data bases, enterprise modeling, workflow
management, user modeling, process modeling, and information systems
architecture.

Building on this theoretic basis, we defined a context to be a complex
construct that is composed of concepts from seven contextual domains. The
domains are: purpose, actor, action, object, facility, location, and time. Although
there is no universally fixed aggregate of domains, which should always be
included in the context, we recognized domains that commonly form the so-
called “nucleus” of the context. Depending on a selected point of view, these
domains are the action domain, the object domain, and the actor domain.

The context ontology is composed of concepts and constructs that are
related with one another through a number of intra-domain, inter-domain and
inter-context relationships. For each contextual domain, we defined the

204

concepts and relationships and presented them in meta models. We also made
plenty of references to the relevant literature and compared existing
suggestions with ours. In addition, we defined a large set of inter-domain
relationships and considered what kinds of implicit relationships between the
domains and between the contexts can be inferred and how.

The context ontology provides a means to substantially detail the view of
reality that was formed with the core ontology in Chapter 3. Things that were
seen in the core ontology to be elementary and “instrumental” get now
particular contextual meanings. The context ontology has been derived, in a
transparent fashion, from the core ontology by specializing and elaborating its
concepts and constructs.

As the context ontology has a focal role in OntoFrame, we next consider
the ontology with the quality criteria given in Section 1.3. The contextual
approach and the context ontology are rooted on universal theories, thus
contributing to naturalness and comprehensiveness. Most of the terms we use
are common and self-evident without wordy definitions. The context ontology
is comprehensive, assessed in terms of the coverage of the contextual domains
and the features derived from the theories for. The comprehensiveness can also
be argued with comparisons to the corresponding artifacts in the literature (e.g.
Olive 1983; Zachman 1987; Iivari 1989a; Sowa et al. 1992; Olle et al. 1988a; van
Swede et al. 1993; Freeman et al. 1994; Harmsen 1997). This kind of comparison
will be presented in Section 5.6.

The context ontology can be easily extended specializing existing concepts
and constructs. Due to the large size of the ontology we have been obliged to
exclude several specific areas that can be, if necessary, equipped with new
concepts and constructs and integrate into the context ontology. Such areas may
concern, for instance, tools (e.g. computer architecture, communication
network) and organizations (e.g. group working dynamics, informal
organizational forms).

The context ontology is applicable to comparative analyses, as will be
demonstrated in Section 5.6 (cf. the analytical intention of use). The ontology is
also of vital importance in engineering more specific component ontologies of
OntoFrame in the next chapters (cf. the constructive intention of use). The
notion of a context with its seven contextual domains becomes clearly visible in
all the lower-level component ontologies.

5 LAYER ONTOLOGY

In the previous chapter we defined the context ontology, which provides a
comprehensive set of concepts and constructs to conceive, understand,
structure, and represent the structure and behavior of the contexts in general.
Applying the context ontology we can make sense of the meanings of the things
by considering them to be a context or part of a context. In this chapter we will
focus on more specialized contexts, namely on contexts the purpose of which is
solely information processing. We define the layer ontology, which provides
concepts and constructs to conceive, understand, structure and represent static
and dynamic features of information processing at four layers. The ontology is
derived from the context ontology by specialization (Figure 44).

Core ontology

Level ontologyLayer ontology

Perspective ontology

Context ontology

FIGURE 44 Focus of Chapter 5

The layer ontology is composed of two parts. The first part provides concepts
and constructs related to information processing in general. The second part of
the ontology shows how information processing is structured and related onto
four layers according to a predefined system of layers.

206

The chapter is organized into four sections. In Section 5.1 we define the
basic concepts pertaining to information and information processing. We also
distinguish between the information system, the object system, the utilizing
system, and the controlled system, define them and discuss relationships
between them. In Section 5.2 we recognize the primary actions and the
development actions in information processing. Deriving from this dichotomy
we define the system of four processing layers. The layers are: information
system, information system development, method engineering, and research
work. Each layer is characterized from the teleological, functional and structural
viewpoints. We also discuss the contents of, and the relationships between, the
contexts positioned at these layers. In Section 5.3 we specialize the notions of
utilizing system and object system to concern each of the processing layers. The
chapter concludes with a summary.

5.1 Information Processing

To enable the considerations of information and information processing in
various forms and on various layers we need special concepts and constructs.
We start this section by defining the notions of knowledge, data, information,
and information processing. Then we distinguish between four contexts, which
are related to information processing. Because it is commonplace in the IS field
to regard those contexts as systems, we call them the information system (IS),
the object system (OS), the utilizing system (US) and the controlled system (CS).
After defining them and discussing the relationships between them, we make a
comparative analysis of the relevant literature. Figure 45 presents the meta
model of the concepts and relationships that will be defined in this section. It
also shows how the concepts are related to the generic concepts defined in the
context ontology. This meta model is the first part of the layer ontology.

5.1.1 Basic Concepts

Human and social actions are based on expertise and its accumulation mainly
through communication. Expertise is knowledge, which is a relative stable and
sufficiently consistent set of (conceptual) informational objects owned by single
human actors (cf. Falkenberg et al. 1998, 66). There are two kinds of knowledge:
explicit knowledge and tacit knowledge (Nonaka et al. 1995). Explicit knowledge
can be articulated in a natural or formal language, which makes it ‘easy’ to
transmit knowledge between people (cf ‘shared knowledge’ in Falkenberg et al.
1998, 71). Tacit knowledge is a body of knowledge that is embedded in personal
experience and therefore cannot be (easily) represented externally. It shows up
only in the actions of the person having that knowledge.

207

Context

Action ObjectActor

System

Facility Location TimePurpose

Knowledge

OS

Informational object

DataInformation

IS US CS

1 1..*signifies

Information service

1..* 1..*affects

1..*
provides

1..*
exploits

HIS CIS

Inf. processing *

*

input

*

*

output

1..* 1..*

FIGURE 45 Meta model of information processing related concepts and relationships

Knowledge represented in a language is called data (Falkenberg et al. 1998, 66).
Information is the knowledge increment brought about by receiving data, by
observing reality, or by inner thought processes by which a person organizes,
compares, assesses his/her knowledge (cf. Falkenberg et al. 1998, 68)103. Besides
that, information is an increment into the body of knowledge, it is commonly
assumed (hoped) to be usable and profitable (cf. correct, timely, etc.). Notice
that also knowledge that increases the reliability of some conception, already
possessed by a human being, is regarded as an increment, and thus as a piece of
information.

Information processing means action(s) by which informational objects are
collected, stored, processed, disseminated and interpreted. The informational
objects can be in the linguistic or conceptual form (cf. Section 4.4.4). The generic

103 Our definition of information extends the one given in Falkenberg et al. (1998).

Among the IS researchers conceptions about information differ greatly. For instance,
Stamper (1992b; 1999) regards norms and attitudes as essential parts to information.
Hirschheim et al. (1995, 14) contrast information with a speech act conveying
intentions and argue that “items of information are meanings that are intended to
influence people in some way”.

208

notions used above to enumerate information processing actions can be further
specialized into a large variety of more specific actions, such as discovering,
procuring, interviewing, recording, maintaining, editing, transforming,
translating, converting, modeling, ordering, eliminating, decomposing,
integrating, deriving, abstracting, concretizing, reviewing, verifying, validating,
etc. We will return to some of these in the next chapters when defining more
specific ontologies.

We can distinguish between four kinds of contexts which are closely
related to information processing: (a) those, which information is about, (b)
those collecting, storing, processing and disseminating information, (c) those
utilizing information, and (d) those, which are controlled and possibly changed
on the basis of the disseminated and utilized information. In the IS field, these
contexts are commonly discussed in terms of systems (e.g. Langefors et al. 1975;
Welke 1977; van Griethuysen 1982; Essink 1988; Hirschheim et al. 1995).
Therefore, we next define the generic notion of a system and then discuss these
contexts as systems.

‘System’ comes from the Greek term ’Syn histanai’ which means ’to put
together’. A system, as conceived in the general system theory (cf. Klir 1969;
Ackoff 1971; von Bertalanffy 1974), is defined as “a set of elements in
interrelations among themselves and with the environment” (von Bertalanffy
1974, 17). The definition highlights the three most essential concepts in the
systems theory: element, relation, and environment. An element itself can be a
system, and so can an environment as well. A relation between elements stands
for any structural, functional or behavioral relationship. Besides the elements, a
system is characterized by so-called emergent predicates (or “systemic
properties”, Falkenberg et al. 1998, 60) that concern a system as a whole.

In our terminology, a system is defined to mean a conceptual construct
through which phenomena in reality can be conceived as a whole (system),
contained in the environment, characterized by emergent predicates, and
composed of parts (elements). A system is a kind of system-theoretic
abstraction from a context. It does not help reveal roles or functions the
elements have in a system, unlike the notion of context does. In the following,
we use the term ‘system’ in situations where it is commonplace. To emphasize
the contextual nature of the UoD, we still signify it via the term ‘context’.

Based on the above definitions, we can now use the following terms about
the four kinds of contexts related to information processing: (a) the object
system (OS), (b) the information system (IS), (c) the utilizing system (US), and
(d) the controlled system (CS) (see Figure 45). In the following sub-sections, we
discuss and define these notions. Moreover, we consider complicated
relationships between the systems and the role that the controlled system plays
in relation to the other systems. We also compare our notions to those presented
in the literature.

209

5.1.2 Information System

Information system has remained a vague and controversial notion in the IS
literature (cf. Avison et al. 1995b; Carvalho 1999; El-Sayed 1999). Traditionally,
the information system has been regarded as a computer-based system,
composed of hardware and software, storing, processing and transmitting
formal data (e.g. Hicks 1993; Falkenberg et al. 1992a; Ein-Dor et al. 1993). Those
favoring opposite conceptions emphasize the organizational and social nature
of the information system embracing human information processing (e.g.
Ahituv et al. 1990; Jayaratna 1994; Hirschheim et al. 1995; Stamper 1996;
Franckson 1994; Falkenberg et al. 1998; Korpela et al. 2000, 198). Verrijn-Stuart
(1989) and Verrijn-Stuart et al. (1992) distinguish between the notions of
information system narrow and information system broad. The information
system narrow (ISN) corresponds to the traditional conception covering “all the
aspects of a computerized system […] allowing storage, updating, manipulation
and retrieval of data” (ibid p.481). The system standing for the latter conception
is known as the information system broad (ISB). It covers “all informational
aspects of the organisational system, irrespectively of the availability of
computerized support as such” (Verrijn-Stuart et al. 1992, 481).

Stamper (1996) extends the aforementioned dichotomy by presenting the
“organizational onion” composed of three layers of information systems one
within each other. At the outer layer there is the informal information system,
in which most of the organized behavior is informal. People generate and
interpret messages without conscious effort. They know what other people
mean and what they intend without having to apply any explicit method of
analysis. The next layer stands for the formal information system, which means
organisational behavior that takes place according to formalised or structured
rules. This kind of information processing is appropriate when tasks are
performed repetitively and the workload is heavy. The inmost layer stands for
the technical information system, in which all actions are automated and
performed by a computer system. A prerequisite for automation is that the
rules for behaviour can be completely formalized.

For our study it is enough to distinguish between two kinds of
information systems that are the computerized information system and the
human information system. The computerized information system (CIS) is a
system in which all information processing is automated, that is to say,
performed by one computer system or by several of them. The human
information system (HIS) is a system, in which human actors play the only role in
the accomplishment of actions to process information in a structured way. For
the HIS, a CIS is just one tool among others used to enable human information
processing, or make it more efficient and effective. When there is no need to
make a clear distinction between the CIS and the HIS, we use the generic term
‘information system’ (IS), which stands for the HIS and/or the CIS.

210

The notion of the information system is commonly defined in terms of
functions or attributes (Ein-Dor et al. 1978; Ein-Dor et al. 1993; Hirschheim et al.
1995, 11). In the former case a definition expresses what the system does. In the
latter case the view of a definition is focused on the components the information
system comprises. These ways of defining correspond to the functional view
and the structural viewpoint, respectively. There is still another viewpoint, the
teleological viewpoint (von Wright 1971), which addresses the purpose for
which the system exists. In the following, we first give definitions of the IS
from the structural, functional and teleological viewpoints104, with references to
those advocating the viewpoints concerned. After that we present the general
definition integrating the viewpoints.

• Structural viewpoint. The IS consists of actors, actions, information/data,

facilities (incl. software and hardware), and locations, constituting a
cohesive information processing system, which serves organizational
purposes or functions (cf. Davis et al. 1985; Kroenke et al. 1987; Hirschheim
et al. 1995).

• Functional viewpoint. The IS is a functional unity, which collects, stores,
processes, and disseminates information/data on the state of affairs in
reality (cf. Buckingham et al. 1987, 18; Hirschheim et al. 1995, 11; Alter
1996, 2).

• Teleological viewpoint. The IS exists for providing high-quality information
that is correct, relevant, timely, etc., in order to satisfy the needs of the
users at a variety of organizational levels and the requirements of business
actions they are engaged in. (cf. Aktas 1987; Olle et al. 1988a, 229; Parker
1989, 10; Iivari 1991, 250).

Hence, whereas the structural viewpoint reveals the elements the system is
composed of, the functional viewpoint considers the actions of information
processing and their outcomes. The teleological viewpoint emphasizes that the
information system is not an end itself but that the reason for its existence is a
set of services it provides for the utilizing system (cf. Nilsson 2000, 280).

Integrating the three viewpoints, we arrive at the following holistic
definition of the information system: The information system is a system,
composed of actors, information/data, facilities and locations, which collects,
stores, processes and distributes information about the relevant parts of reality,
called the object system, in order to enable and/or improve actions in the other
context, called the utilizing system.

Information systems appear in practice with different functions,
capabilities, performance and social consequences. They also differ in their
components, inputs, outputs, and the support they can provide for the users.
Ein-Dor and Segev (1993) identify seventeen major types of information

104 These three viewpoints correspond, on a coarse level, to the main points of view in

Kerola and Järvinen (1975, 15-18), known as the pragmatic point of view, the
semantic point of view, and the constructive point of view.

211

systems and define them by vectors of their attributes and functions. Mentzas
(1994) presents a functional taxonomy for classifying computer-based IS (CBIS)
along three dimensions indicating the extent to which the systems support
information processes, decision processes, and communication processes.
Barron et al. (1999) present an analytical framework based on semiotics to help
understand, classify and compare information systems of various generations.
The framework consists of ten features that can be used to characterize the
relationships between the IS and its users, and to represent and organize the
system’s contents. The features are: application domain, action complexity,
social consequence, acquisition complexity, acquisition scope, input usability,
output usability, justification, real world relationship, and representation.

Classifications reviewed above distinguish a large variety of information
systems: e.g. management information systems, decision support systems,
office information systems, executive information systems, expert systems,
electronic meeting systems, group support systems, strategic information
systems, computer aided manufacturing, etc. Classifications with their notions
and terms are, however, “children of their time”. Information system types
evolve especially by accretion of technologies (Ein-dor et al. 1993, 185-6). The
point at which a set of technologies is considered distinct and requires a new
name is somewhat arbitrary, and largely a matter a convenience. Therefore, we
argue that it is more beneficial to base a classification of IS’s on the contextual
domains. This can be done in two ways. On a general level, it is possible to
attach an information system type to the domain that is the strongest
determinant for the type (e.g. for a voice processing system it is the object
domain). For more wide-ranging types of information systems it is possible to
make an analysis to reveal their features with contextual concepts of more
domains.

As we are not able here to have a comprehensive discussion on the issue,
we content ourselves with outlining contextual IS classifications (the first way).
In Table 15 information system types are attached to contextual domains, the
special features of which are the major determinants for the types. For instance,
integral to the sub-division into personal, groupware and organizational IS’s is
a number of users and a kind of their relationships in interactions. The action
domain gives the basis to classify the IS’s according to the actions that are the
most essential in the IS’s: processing (transaction processing system, process
control system), querying (information retrieval system), analyzing (data
mining system), etc. On the basis of objects processed by IS’s, we can
distinguish between document management systems (documents), multimedia
IS (multimedia objects), relational database system (relations), object database
system (objects), voice processing system (voices), geographical IS (spatial
objects), etc.

5.1.3 Utilizing System

We define the utilizing system (US) to mean a system, which exploits
information services, provided by the information system, in its decision

212

TABLE 15 Contextual IS classifications

Domain Types of information systems
Purpose Strategic, tactic vs. operational IS

Actor Personal, groupware vs. organizational IS

Action Transaction processing system, data mining system, information

retrieval system, communication system, etc.
Object Document management system, multimedia IS, relational database

system, object database system, voice processing system, geographical
IS, etc.

Facility Manual, computer-aided vs. computerized IS
One-tier, two-tier, three-tier vs. n-tier IS

Location Centralized vs. distributed IS
Mobile vs. locational IS

Time Real-time vs. batch processing system
Historical, recovery vs. temporal database system

making or operational actions, in order to make plans and execute changes (i.e.
state transitions) in the controlled system. The controlled system is a system,
which the utilizing system has control over. Actors in the US are users of the IS.
Information service is a service that is composed of informational objects. A user
of the IS is an actor who potentially increases his/her knowledge about some
phenomena in the object system with the help of the IS (cf. Krogstie et al. 1996,
286). This also amends his/her abilities to fulfil the goals concerning the
controlled system. We can distinguish between two kinds of users (cf. Krogstie
et al. 1996)105. End-users increase their knowledge by interacting directly with
the CIS. Indirect users increase their knowledge by getting results from the CIS
through other users of the information system (cf. Krogstie et al. 1996, 286).

In the IS literature, various terms with different meanings are given to the
US. Welke et al. (1982, 42), for instance, define a user system to mean “one or
more individuals cooperating on the accomplishment of one or more functions
in an organization”. Olle et al. (1988a, 229) state that the ”IS supports a business
activity (or group of them) by providing the information it needs or by
automating some or all of it”. In Iivari (1989a, 327) the host organization “means
the organizational context of an IS”. Kaasboll et al. (1996, 113) define the notion
of the application domain (of a computer system) to be composed of the users,
the organisational context, and the work in which the computer system is used.
Elements of the application domain include employees, the coordination of
work, communication, power structures, ad-hoc organized work, interruptions
in work, etc. One of the four worlds distinguished by the NATURE Team (1996)
is the usage world, which “describes how systems are used to achieve work,
including stakeholders who are system owners, indirect or direct users, and

105 Cotterman et al. (1989, 1315) distinguish between the consumers and the

producers/consumers.

213

their organizational context” (ibid p. 517). This world is regarded as the major
source of user-defined goals and requirements.

The utilizing systems also can be classified according to various criteria.
The US can be situated on the strategic, tactical or operational level.
Correspondingly, the actors in it can be in the roles of executives, middle
management or grass-root level workers. The primary products of the US
actions may be material (e.g. automobiles) or informational (e.g. insurances).
The US may function in local or global markets.

5.1.4 Object System

The object system (OS) means a system about which the IS, due to the interests of
the US, collects, stores, processes and disseminates information (services) for
the US. As implied from the definition, the boundary of the object system is
totally determined by the interests of the US.

In the literature different terms are used to signify the object system. Iivari
(1989a) defines the universe of discourse to mean something, which the
information types of an IS refer to or imply to (ibid p. 327, 335). The NATURE
project (NATURE Team 1996) uses the term ‘subject world’ to mean something
that “contains knowledge of the real-world domain that the information system
is intended to maintain information about” (ibid p. 517). Brinkkemper (1990,
23) see a universe of discourse to be “a system of concrete entities, which were,
are or will be relevant with respect to a given objective”.

About the object system there are also divergent conceptions. The object
system is seen, for example, as the target of the ISD (i.e. the target system). This
implies that the object system is part of the reality that is aimed to be changed
through the ISD. Hirschheim et al. (1995) state that the ISD is “a change process
taken with respect to object systems in a set of environments” (ibid p. 15)106.
According to van Slooten et al. (1993) “the object system, or universe of
discourse, is the part of reality considered as problem area for the development
of an information system” (ibid p. 169). In these cases the object system is not
considered from the viewpoint of the IS, as we do here, but from the
perspective of the ISD. We shall return to these conceptions in Section 5.3 when
discussing the notions of US and OS at different processing layers.

5.1.5 Relationships between the OS, IS, US and CS

The information system, the object system, the utilizing system, and the
controlled system are inter-related in the way that is shown in Figure 45. Let us
first consider the relationship between the information system and utilizing
system. As stated above, the information system provides information services
to its utilizing system. IS services can be supplied in two modes, which we call

106 ISD as “a change process occurring over time with respect to an object system ...”

was first defined by Welke (1982) and later by Lyytinen (1986, 74). Here we refer to
Hirschheim et al. (1995) because it is more available than the two others.

214

the descriptive mode and the prescriptive mode (cf. representational and
normative roles in Wieringa (1989, 33)). The information services in the
descriptive mode means descriptions that are, to a large extent, “input data”
that the information system collects, processes (‘enriches’) and finally supplies
to the utilizing system. The information describes the states of affairs or events
in the object system, and the users in the US can do with it as they like (e.g. an
inventory system supplies information about quantity-on-hands, suppliers,
prices, etc. of the products in the inventories). Another kind of information
service supplied by the information system is in the mode of prescriptions. In
recent years more and more business rules are included in the CIS to support
the utilizing system. In the process industry, such as in a paper mill, the process
is, to a high degree, under the control of a computerized system. Information
about exceptions and malfunctions as well as “pre-programmed” rules of
handling them are considered prescriptions for personnel in charge. Another
example concerns an inventory system, which, triggered by pre-specified alarm
limits, requires end-users to send supply orders to the concerned suppliers. In a
small-scale, linear menu structures in user interfaces, often accompanied by
wizards, guide and prescribe end-users to accomplish their work with the CIS
in a step-by-step fashion.

 Where does the line go between the IS and the US? An answer to the
question depends on the adopted viewpoint, but it is also affected by the nature
of the systems. We can distinguish between the following cases. If the US
mainly works with material objects, making the difference between the US and
the IS is easy. Second, if the actions of the US are mainly managerial and the IS
is operative by its nature, the systems can be well separated. This kind of
arrangement is described in Carvalho (1999) with three autonomous sub-
systems: managerial sub-system (cf. US), informational sub-system (cf. IS), and
operational sub-system (cf. OS & CS). An example of this kind is strategic
decision making based on the information that is provided by an operational
information system. The third case concerns a situation where the US is mainly
an information-intensive context, such as an insurance company, a software
house, or an architecture design office. In this case, it may be difficult to draw
the line between the IS and the US. There may be the same persons conducting
actions of the US and the IS. Some (informational) objects are dealt with both in
the US and the IS, and actors conduct their actions in the same locations in both
of the systems. The crucial issue to separating the systems is their purposes. The
US aims at fulfilling its “business” goals and that is the only reason for
inquiring and utilizing information from the IS. In case the IS is a CIS and there
is no HIS actors neither HIS actions mediating information to the US actors, the
IS and the US can be clearly separated on the basis of what a computer does and
a human being does.

Next, we consider how the OS is related to the other systems. The most
fundamental relationship is the signifies relationship between the IS and the
OS, meaning that objects of the information system signify things in the OS.
Also informational US objects signify things in the OS. The relationships

215

between the OS and the other systems depend on whether the systems are
overlapping or disjoint. We can distinguish between four different cases with
regard to an extent to which the OS share parts of the other systems. In the first
case, the OS is totally disjoint with the other systems. That means, for instance,
that information is gathered from completely different things compared to
those affected by the US. This is, of course, a very rare situation107. In the second
case, the OS overlaps with the controlled system. For example, an inventory is a
source of information that is used to control it. In the third case, the OS overlaps
with the US. In this case the information system is used, for instance, to plan,
control or develop work in the US (cf. project management system). Finally, the
OS can overlap with the IS. For example, a web-based order system may
contain a part, which records information about successful and failed issuing. In
this case, the dividing line between the OS and the IS depends on how the IS is
conceived: Is it regarded as a whole system, containing also the recording part,
or a constellation of sub-systems, one of which is the (separate) recording sub-
system?

5.1.6 Comparative Review

The notions of OS, IS, US, and CS are of vital importance to the understanding
of information processing as an action and as a context. They are also key
concepts in the IS field. Because there are quite divergent conceptions of the
notions in the IS literature, we make a short comparative review of them in this
section. We have collected a large set of references, ranging over three decades,
and compared their basic concepts to our notions. A summary of the review is
represented (in the temporal order) in Table 16. ‘X’ means that there is a
considerable match with our notion. In the ‘IS’ column we show if the notion in
the literature corresponds to CIS.

We start with Langefors and Sundgren (1975). They first outlined the
notion of an object system as “a system we wish to inform about” (ibid p. 8).
Later, they elaborated a characterization providing a narrow conception and a
broad conception of an object system (ibid p. 209-210). An object system in a
more restrictive sense, called the object system proper, consists of two parts: the
observed object system and the controlled object system. The observed object
system is a part of reality to which a database refers. The controlled object
system means a slice of reality that is consciously affected by the decisions,
taken by the users and based on the information objects of the database. An
object system in a broader sense means the part of reality that has significance
for the existence and functioning of the database (Langefors et al. 1975, 209).
This notion embraces, besides the two parts already mentioned, also the
database itself, data base administration, database designers and so one. We
ignore this as being too large a conception.

107 For a weather forecast, information is collected from the object system (i.e.

atmosphere), which is not affected, at least directly, by the utilizing system.

216

TABLE 16 Summary of the comparative review

Concepts OS IS US CS
Langefors et al. (1975)
- observed object system
- controlled object system
- information system

 X

 X

 X

Welke (1977)
- data processing system
- information system
- user sub-system

CIS
 IS

 X

van Griethuysen (1982)
- UoD: abstraction system
- UoD: object system
- information system

 X
 X

CIS

Olive (1983)
- object system
- information system

 X

 X

 X

 X

Essink (1986, 1988)
- object system
- information system

 X

 X

 X

Iivari (1989a)
- universe of discourse
- information system
- host organization

 X

 CIS

 X

Hirschheim et al. (1995)
- object system
- information system

 X

 X
 X

 X

 X

Kaasboll et al. (1996)
- problem domain
- application domain
- computer system

 X

 CIS

 X

 X

NATURE team (1996)
- subject world
- system world
- usage world

 X

 CIS

 X

Carvalho (1999)
- operational sub-system
- informational sub-system
- managerial sub-system

 X

 X

 X

 X

Welke (1977, 149) argues that a system is a view of something (real or abstract)
and that “something” is called an object system. There are two kinds of
perceivers. The first class of perceivers is associated with the production of
information. Their object system is called the data processing system (DPS). The
second class of perceivers is associated with the use of the data (information).
Their object system is some subset of organization and/or organizational
environment, and is called the user-subsystem (USS). The information system,
as an object system, is the intersection of the DPS with the USS.

217

According to van Griethuysen (1982), the universe of discourse (UoD) is
that portion of the real world or postulated world that is being modeled. An
abstraction system is that portion of the universe of discourse which includes
the classes, rules, etc, of the UoD relevant from the viewpoint of the information
base, and which changes relatively slowly. An object system is that part of the
UoD not contained in the abstraction system (ibid p. 5). This means that an
object system and an abstraction system correspond to our instance-level and
type-level OS, respectively.

Olive (1983) argues that “an IS is always designed to give service to or
exercise control over another: its object system” (ibid p. 66). When an IS is
implemented it is embedded in the OS. That implies that the object system is
actually regarded as the controlled system and the utilizing system whose
functions should be defined to determine “what information the IS should
provide”.

Essink provides slightly inconsistent conceptions about the object system
in his two articles (Essink 1986; Essink 1988). On one hand, the meaning of the
object system is said to be threefold (Essink 1986, 58): (a) it depicts the desired
contribution of the IS to the organizational processes, (b) it answers the question
with regard to what phenomena in the real world information is needed, and
(c) it defines the desired contribution of the goals of the organization and the
demands the proposed IS lays upon the organization. On the other hand, the
object system is said to be part of the organization that is considered to be the
problem area for which a new system is desired. This part of reality is studied
to acquire knowledge about the dynamic and static characteristics: about goal
structures, environmental interaction, business processes, etc. (Essink 1988,
356).

Iivari (1989a, 237-238) presents three levels of abstraction: the host
organization, the UoD, and the abstract technology of the IS. The host
organization defines the organizational context of the IS. The UoD expresses the
propositional/conceptual meaning of information processed by the IS. For the
IS no explicit definition is given, but we here assume it to correspond to our
notion of the CIS.

Based on Welke et al. (1982), Hirschheim et al. (1995, 15) define the notion
of an object system from a broad viewpoint. An object system consists of any
phenomena ‘perceived’ by members of an ISD development group. This implies
that ‘object’ in this case is the target of the ISD, as can be seen from the
definition given for an ISD: “a change process taken with respect to object
systems in a set of environments…” (p. 15). Thus, the object system stands for
the OS, the IS, the US and the CS in our terminology

Mathiassen et al. (2000, 6) argue that the system’s context can be viewed
from two complementary perspectives: the system models something (the
problem domain) and it is operated by the users (the application domain). A
problem domain means that part of a context that is administrated, monitored
and controlled by a system. An application domain means the organization that
administrates, monitors and controls a problem domain. Kaasboll et al. (1996,

218

113) extend the dichotomy in Mathiassen et al. (2000) by defining a computer
system to include its application program, data/object base, user interface
module, and communication modules.

Based on the suggestion originally presented in Mylopoulos et al. (1990,
340-342), the NATURE approach (NATURE Team 1996, 517) organizes the
domain context (of what kinds of requirements exists) according to four worlds.
Each of the worlds holds a family of related models with a different perspective
on the ISD. The subject world “contains knowledge of the real-world domain
that the information system is intended to maintain information about” (ibid p.
517). The usage world “describes how the systems are used to achieve work,
including stakeholders who are system owners, indirect and direct users, and
their organizational context” (ibid p. 517). The system world “contains
descriptions of the technical entities, events, processes, etc. representing the
system world in the required system” (ibid p. 517). The fourth world is the
development world, which stands for the ISD.

Carvalho (1999) uses an arrangement of three sub-systems to classify
information systems. The sub-systems are: operational, managerial and
informational. The operational sub-system includes those activities that
perform actions directly related to the system’s purpose or mission. The
managerial sub-system includes the activities that manage (organize, plan,
control, coordinate etc.) the operational activities. The informational sub-system
establishes communication among the other two sub-systems.

To conclude from the review, we can state that an object system is the
most controversial concept (of those considered here) in the literature. On one
hand, the term ‘object system’ means different things. In Olive (1983), for
example, the OS stands for the US and the CS, and in Hirschheim et al. (1995)
the OS means any slice of reality perceived by ISD stakeholders. On the other
hand, the concept of the object system is signified with different terms. For
instance, it is called the abstraction system & the object system (van
Griethuysen 1982), the universe of discourse (Iivari 1989a) and the subject
world (Mylopoulos et al. 1990, NATURE Team 1996). We argue that the notion
of the object system is worthy of a special term and regardless of ambiguity
related to the term ‘object system’ we prefer to use it here.

Most of the presentations deploy the general notion of the IS, but there are
also those that use the more confined notion of the CIS. The utilizing system has
been signified by various terms such as the user-subsystem (Welke 1977), the
object system (Olive 1983; Essink 1986; Essink 1988), the host organization
(Iivari 1989a), the application domain (Kaasbol et al. 1996), and the managerial
sub-system (Carvalho 1999). We argue that the term ‘utilizing system’ expresses
the most essential nature of the system, namely utilizing information services
supplied by the information system. Only Langefors et al. (1975) provide a
special term for the controlled system (controlled object system). Some others
include the CS in larger contexts (e.g. Olive 1983, Hirschheim et al. 1995,
Carvalho 1999). In our opinion, it is important to recognize the notion with a
special term, although the CS shares parts of the IS and/or the US.

219

5.2 Information Processing Layers

Up till now we have considered information processing at a general level, on
one hand, and in association with the notion of the IS, on the other hand.
Besides being related to the IS, information processing is essential to many
other kinds of efforts. In this section we distinguish between various processing
layers. For each layer, the concepts defined in Section 5.1 apply, although
adapted with layer-specific features. The overall structure of the layer ontology
is presented in Figure 46. In what follows, we will discuss and define the
concepts in the meta model. In Section 5.2.1 we distinguish between the
primary actions and the development actions in information processing. In
Section 5.2.2 we define, deriving from this dichotomy, the system of four
processing layers. The layers are: information system, information system
development, method engineering, and research work. Each layer is
characterized from the teleological, functional and structural viewpoints. We
also discuss the contents of and relationships between the contexts positioned at
these layers.

Context

RWMEISDIS

A. at the higher layer

System of layersLayer

1..*

1..*
Action

Macro-level

Primary action Development action

Mid-levelMicro-level

4

1

A. at the lower layer

Informational object

1
positionedAt

1

1output

1..*

prescribes

1..*

1..*

1..* 1..*positionedAt

FIGURE 46 Meta model of layer-related concepts and relationships

5.2.1 Primary and Development Actions

Above we have considered information processing to be part of an IS context,
which aims to provide the users in the US with high-quality information. Some
part of information processing is carried out with random and opportunistic

220

processes, and in unique and idiographic forms. But there are situations in
which this way of working is not efficient, or even acceptable. For example, if
the same kinds of situations recur, or processing requires considerable amount
of resources, or there are strict demands on delivery times and quality of
information, it is better to structure, at least some part of information
processing, into a manageable and controllable process guided by predefined
prescriptions. Prescriptions, as operational instructions or general guidelines,
dictate who will do what, why, for which, when and/or where.

For practical work the prescriptions are never all-inclusive and complete,
for several reasons. First, it is impossible to produce prescriptions that would
apply to all the situations. Reality is just too multifarious to be “pre-
programmed”. The prescriptions have to be adapted in a contextual fashion.
Second, reality changes and evolves all the time. The states of affairs having
existed at time when the prescriptions were produced no longer exist when
applying them. Organizations, persons, technologies, markets, etc. may have
changed. The more there is task uncertainty, the more probable it is that
exceptions to and deviations from the prescriptions are needed (Galbraith
1973). Hence, customization and re-specification of prescriptions occur
frequently and in parallel to routine information processing. We call the
routine-like information processing carried out according to the prescriptions
the primary actions (cf. Gasser 1986). Respectively, making changes in routines of
the primary actions is called the development actions.

Figure 47 illustrates the division of information processing into the
primary actions and the development actions. The primary actions proceed in
the form of daily routines. Every now and then, there is a need to deviate from
the customary ways, or it is found out that there exist no guidelines for the
situation at hand. It is also possible that guidelines and rules are on such a
general level that they cannot be followed as such but are presumed to be
specialized and/or instantiated. This situation corresponds to what Carroll
(2004) calls “completing design in use”. Due to this, before carrying out primary
actions, it is necessary to decide on how to carry them out, that is to say, to
develop a plan of action for them. In the figure the vertical dimension stands for
the comprehensiveness of these development actions. The comprehensiveness
can be expressed in terms of (a) duration of carrying out a development action,
(b) resources (money, manpower, energy, etc.) needed for the work, (c) a
number and quality of personnel involved in the work, and (d) the scope with
which a development action affects the primary action(s).

For simplicity, we categorize the occurrences of development actions into
three classes according to their comprehensiveness. First, there are small-scale
tasks that are normally carried out in conjunction with daily routines by
individuals themselves. These are called the micro-level development. Second,
discussion groups or working groups of two or three persons are established,
informally or formally, to consider how to deal with deviating or problematic
situations. Solutions serve as new or renewed prescriptions for the primary
action(s) from that point forward. These kinds of actions are called the mid-level

221

Comprehensiveness

 Development actions

 Primary actions

Time

FIGURE 47 Information processing as primary and development actions

development. In some cases, it is seen necessary to deliberate more carefully, not
only over ways of working, but also how to organize working, how to obtain
benefits from applying new technology, how to better compete in the markets,
etc. This calls for a pre-planned, controlled and coordinated development
endeavor that involves several individuals with various skills, takes weeks or
months, sometimes years, and may cost a lot of money. This kind of work is
called the macro-level development. Due to its wide scope and complexity,
development actions at the macro-level are commonly organized as a project
work with pre-specified goals, organization, resources, and schedule.

The borderlines between the classes of the development actions are not
clear-cut. For instance, informal projects can be established to carry out some
development work in a couple of weeks with resources that may be decided on
during the work. The agile approaches, for example, blur a dividing line
between an ad’hoc –like action and project-like development (e.g. Agile
Alliance 2002; Cockburn 2001; Astels et al. 2002). The approaches of evolving
information systems (e.g. Falkenberg et al. 1992a; Jarke et al. 1992; Oei et al. 1994;
Nguyen et al. 1996), in turn, enable to make “on-fly” changes in a current
information processing. There are, however, certain factors, which add needs
for a project-like working: (a) The scope of problems encountered in existing
information processing is large; (b) The variety and profoundness of changes
that will be caused by new technology adoption in an organization are
estimated to be substantial; (c) Due to the specificity of problems, application
area, applied technology etc., a large number of people with special skills are
needed; (d) Acquirement (of hardware, software and “peopleware”) required
by planned changes are significant; (e) There is a definite need to reach the
goals in time and with given resources. In the following we mainly consider the
development action(s) that are accomplished in an organized project. That
means those development actions that are placed above the broken line in
Figure 47.

The division of information processing into two or three types of work is
common in the IS literature. Checkland (1981) identifies two domains of inquiry

222

in ISD: the problem system and the problem solving system. Iivari (1989a)
distinguishes between conversion functions, corresponding to our notion of the
primary action, and development and rearrangement functions. The latter
involve “changes in the prescribed organizations, for instance reorganization
concerning the authority relationships, reallocation of organization functions to
organizational positions, etc” (ibid p. 333). Gasser (1986) distinguishes between
the primary work addressing agendas of the work situation and the articulation
work, which “serves to establish, maintain, or break the coordinated
intersection of task chains in the primary work (ibid p. 211)108. Conradi et al.
(1993) distinguish between software production processes and software meta-
processes. The former carry out software production activities, and the latter
improve and evolve the whole software process. The software meta-processes
are in charge of several activities (e.g. process requirements analysis, process
design, and process assessment). Nonaka (1994, 1995) presents an
organizational model, the hypertext organization, for the organizational
knowledge creation process. The hypertext organization supports
organizational knowledge creation in all its stages and contexts. The model
consists of three layers: business-system layer, project-system layer, and
knowledge–based layer. The business-layer is the bureaucratic structure, which
is responsible for performing the routine work. The project-system layer is the
layer where project groups concentrate on knowledge creation and sharing
through dialogues. The results of this layer are internalized and used in routine
work. At the knowledge-base layer the knowledge created in the two layers is
stored.

5.2.2 Processing Layers

In the previous section we considered the division of information processing
into the primary actions and the development actions in conjunction with the
IS. In that context the macro-level development is called information systems
development (ISD). The dichotomy of the primary action and the development
action can be recognized within the ISD, too (cf. Iivari 1989a, 333).
Consequently, some part of ISD proceeds as routine-like actions109. That part
forms the primary action of ISD. Every now and then there is a need to deviate
from routines, resulting in that prescriptions given for ISD need to be
customized and new ways of modeling, working, organizing, etc. have to be
created. This ‘development of IS development’ appears as work at three

108 The notion of articulation work in Gasser (1986) is based on the work of Strauss

(1978).
109 With this we do not want to argue that the ISD is routine work by its very nature.

Usually it is far from it. However, from the perspective of the last four decades, we
can say that one of the strongest trends has been the aim to collect and engineer a set
of conventions, as some kind of the “best practices”, to be disseminated to and
shared in forthcoming ISD efforts. These conventions, in the form of a method, has
been accepted as “norms” according to which the accomplishment of ISD has been
tried to make more structured, efficient and effective.

223

different levels exactly like in the IS. Thus, at the micro-level, IS analysts and IS
designers have daily to consider what is a practical and beneficial way of doing
things. This corresponds to what Ciborra (1999) calls improvisation in which
planned action is overlooked. Second, each phase in an ISD project begins with
planning what tasks, models, and techniques of the selected method will be
applied and in which way. This planning corresponds to the development
action at the mid-level. Finally, before launching an ISD project it is necessary to
select and customize, and if not available, construct prescriptions for the ISD
work. These prescriptions are composed into a method, and this work to
construct a method belongs to method engineering (ME). In some cases,
method engineering is organized as a separate project with defined goals, given
resources and schedule.

Method engineering, in turn, can be considered as the primary action
prescribed by instructions, guidelines, etc. And as above, in parallel to this
“routine work”, special development actions are accomplished to revise,
customize and construct prescriptions for ways of modeling, working,
organizing, etc. in the ME. These development actions appear, also here, at
three levels (i.e. the micro-level, the mid-level, and the macro-level) with the
same kinds of meanings as in the ISD. At the macro-level, the development
action means engineering of an ME method. This work is, to a large extent,
based on conventions and “rules” of IS research, which, when taken broadly, is
considered to be an investigation into the development, operation, use,
evolution and impacts of information systems in organizations and society
(Iivari 1991, 250).

We could still proceed upwards by considering the research work (RW) as
the primary action and distinguishing special actions to revise, customize and
construct prescriptions for the research work. This goes, however, beyond our
scope in this study.

To summarize, by applying the dichotomy of primary action and
development action repeatedly to information processing, we can distinguish
systems at four layers: information system (IS), information system
development (ISD), method engineering (ME) and research work (RW). Next,
we define the concepts of a layer and a system of layers.

A processing layer is composed of those information processing actions,
which share similar goals and the same target of action. A system of layers is a
system that is composed of processing layers, which constitute a hierarchical
structure, in which actions at a higher layer produce informational objects to be
used as prescriptions in the actions at the next lower layer. Prescriptions can be
expressed in various forms: as goals, guidelines, rules, commands, etc. Via the
actions, also the contexts containing those actions can be positioned onto the
processing layers. Positioning the contexts onto the layers is, however, much
more complicated, as we show below.

Information processing actions of different layers engage in several kinds
of interplay with one another. We can distinguish between the following main
types of interplay (Figure 48):

224

 (e) (f)

 (c) (d)

 (a) (b)

FIGURE 48 Interplay between IS actions, ISD actions, ME actions, and RW actions

(a) Development during information processing in an IS
 During daily routines in an IS there appear frequently needs to deviate

from the normal course of action to handle exceptional cases or other
unexpected cases. This results in customization of prescriptions or
negotiation about new ways of working in the areas that are not covered
by the current prescriptions.

(b) ISD by experimentation
 During ISD several kinds of experimentations are done to further the

understanding of what it is all about and to test the functionality and
acceptability of human and technical aspects of the designed system. That
requires that some implementations are done and deployed during the
development work. Implementations can involve only a small part of the
information system (cf. prototypes), or cover major portion of the system
(cf. pilot testing). For example, in the evolutionary approach an initial
version of the system is delivered to intended users and it continues to be
improved until it becomes the final system.

(c) Method adaptation during ISD
 Information system development is most commonly carried out according

to some ISD method. ISD contexts are, however, too unique for any
method to provide a complete match with the needs. That is why, during
the development of an information system some actions of method
adaptation are constantly carried out. Changed practices may become a
part of a renewed method if externalized and made available to other
actors (cf. the evolutionary or incremental ME approach (Tolvanen 1998,
196).

(d) Method engineering by experimentation
 A method is quite an abstract thing. In order to “prove” its applicability

before the delivery, it is necessary to test it with some real cases, or in
some pilot projects. Experience got from the usages can be deployed to
better the method. Compared to the previous case, in which an ISD

RW

ME

ISD

IS

225

method is “evolutionarily” changed in an ISD context, here ME actions
pursue radical changes in ISD.

(e) Method adaptation during method engineering
 Method engineering should also follow some ME method. Because ME

contexts, much more than ISD contexts, are unique, no method can be
employed as such without adaptations. Changed practices may become a
part of a renewed ME method if externalized and made available to other
actors.

(f) Research work by experimentation

 Also during the research work, aiming at engineering an ME method, it is
necessary to test the ME method under construction before its delivery.

In Figure 48 six types of interplay are labeled (from a to f) and depicted as
circles starting from and ending to those layers, which correspond to the major
aims and actions of the concerned efforts. Concluded from the above, we can
say that in working at a certain layer there is always a need of accomplishing
actions at the next lower layer as well as at the next higher layer. Hence,
situations are far from what Orlikowski (1996) calls time-space disjuncture.
Consequently, it is beneficial, and even necessary, to obtain experience from
using the outcomes under construction in circumstances that to a sufficient
degree correspond to real usage situations. Through these experimentations
evidences of the applicability are collected for a basis for further work. On the
other hand, there is always a need to improve ways of working at each layer,
and this is accomplished by carrying out actions of the next higher layer. In
conclusion, actions on a certain layer are contained in up to three kinds of
contexts, and vice versa, contexts at a certain layer can contain three kinds of
actions. Whether a context is regarded as an ISD context, or an ME context, for
instance, depends on its main purpose. For instance, among the six types
defined above there are two ISD contexts (b and c) aiming to develop an IS, and
two ME contexts (d and e) aiming to engineer an ISD method. Figure 49
illustrates how the contexts and the actions at the information processing layers

RW context

ME context

ISD context

IS context

RW actions

ME actions

ISD actions

IS actions

FIGURE 49 Actions and contexts at the processing layers

226

are related. The rectangles and the areas between the lines correspond to the
contexts and the processing layers, respectively.

At the end of this section we characterize the contexts at the four
processing layers from the teleological, functional and structural viewpoints
(Table 17). As the characterizations show, the contexts are quite similar as to
their purposes, functions, and contextual structures. We use this finding as a
justification for treating the contexts as analogous to one another when defining
the concepts and constructs for the corresponding ontologies (see Chapters 8
and 10).

5.3 US and OS at the Processing Layers

We defined the utilizing system (US) to mean a system that exploits
information services, provided by the IS, in decision making or operational
actions. The object system was defined to be part of reality about which the IS,
due to the interests of the US, collects, stores, processes, and disseminates
information to the US. The information can be in the form of descriptions or
prescriptions. Although the definitions are aimed to be suitable as such for the
systems at the bottom layer, they also suit a more general use. That is to say, we
can assume that the ISD layer, instead of the IS layer, is the root layer and
consider it to be a kind of IS context. Or alternatively, the root layer may be
considered to be the ME layer. In this way, we can derive the definitions for the
US and OS at each processing layer, with special features of course. To denote
more clearly the layer from the viewpoint of which the US and the OS are
considered, we use subscripts: e.g. USISD means the utilizing context of the ISD
context. We start with discussing the US and then proceed to consider the OS at
each layer.

At the bottom layer, the US is a business system for which the IS provides
information about the OS. At the ISD layer, the ISD produces prescriptions for
the next lower layer to facilitate the IS to satisfy the needs of the USIS. At the ME
layer, the ME produces prescriptions for the next lower layer to facilitate an ISD
context to efficiently and effectively produce prescriptions for an IS so that it
could satisfy the needs of the USIS. Finally at the RW layer, the RW produces
prescriptions for the next lower layer to facilitate an ME context to efficiently
and effectively produce prescriptions for an ISD. The primary actions at each
layer are guided by needs and constraints determined by the “utilizers”, and
the higher the layer is at which the primary actions are accomplished, the more
layers the needs and constraints of the “utilizers” come from. Likewise, the
higher the layer is, the broader the area is on which the effects of the primary
actions focus. This multi-layer structure of the US’s is illustrated in Figure 50.

227

TA
BL

E
17

C

on
te

xt
s

at
 fo

ur
 p

ro
ce

ss
in

g
la

ye
rs

 c
ha

ra
ct

er
iz

ed
 fr

om
 th

re
e

vi
ew

po
in

ts

 La
ye

rs

Te
le

ol
og

ic
al

Fu

nc
tio

na
l

St
ru

ct
ur

al

R
W

C

on
te

xt
 th

at
 a

im
s,

 th
ro

ug
h

or
ga

ni
za

tio
na

l a
nd

te

ch
ni

ca
l c

ha
ng

es
, a

t i
m

pr
ov

em
en

ts
 in

 a
 M

E,

sa
tis

fy
in

g
th

e
ne

ed
s o

f a
nd

 p
os

si
bi

lit
ie

s
in

 th
e

M
E

an
d

its
 U

S,
 in

 o
rd

er
 to

 fa
ci

lit
at

e
an

d/
or

 im
pr

ov
e

M
E

ac
tio

ns
.

C
on

te
xt

 th
at

 p
ro

du
ce

s,
 th

ro
ug

h
th

e
pr

oc
es

se
s

of
 re

qu
ir

em
en

ts
 e

ng
in

ee
ri

ng
,

an
al

ys
is

, d
es

ig
n,

 im
pl

em
en

ta
tio

n,
 a

nd

ev
al

ua
tio

n,
 a

 n
ew

 o
r r

en
ew

ed
 M

E
m

et
ho

d
(a

nd
 re

la
te

d
C

A
M

E
to

ol
).

C
on

te
xt

 w
he

re
, t

o
sa

tis
fy

 th
e

RW

go
al

s,
 R

W
 a

ct
or

s
ca

rr
y

ou
t R

W

ac
tio

ns
 fo

r R
W

 d
el

iv
er

ab
le

s
by

 m
ea

ns

of
 R

W
 fa

ci
lit

ie
s

in
 a

 c
er

ta
in

 s
pa

tio
-

te
m

po
ra

l s
pa

ce
.

M
E

C
on

te
xt

 th
at

 a
im

s,
 th

ro
ug

h
or

ga
ni

za
tio

na
l a

nd

te
ch

ni
ca

l c
ha

ng
es

, a
t i

m
pr

ov
em

en
ts

 in
 a

n
IS

D
,

sa
tis

fy
in

g
th

e
ne

ed
s o

f a
nd

 p
os

si
bi

lit
ie

s
in

 th
e

IS
D

an

d
its

 U
S,

 in
 o

rd
er

 to
 fa

ci
lit

at
e

an
d

/
or

 im
pr

ov
e

IS
D

 a
ct

io
ns

.

C
on

te
xt

 th
at

 p
ro

du
ce

s,
 th

ro
ug

h
th

e
pr

oc
es

se
s

of
 re

qu
ir

em
en

ts
 e

ng
in

ee
ri

ng
,

an
al

ys
is

, d
es

ig
n,

 im
pl

em
en

ta
tio

n,
 a

nd

ev
al

ua
tio

n,
 a

 n
ew

 o
r r

en
ew

ed
 IS

D

m
et

ho
d

(a
nd

 re
la

te
d

C
A

SE
 to

ol
).

C
on

te
xt

 w
he

re
, t

o
sa

tis
fy

 th
e

M
E

go
al

s,
 M

E
ac

to
rs

 c
ar

ry
 o

ut
 M

E
ac

tio
ns

fo

r M
E

de
liv

er
ab

le
s

by
 m

ea
ns

 o
f M

E
fa

ci
lit

ie
s

in
 a

 c
er

ta
in

 s
pa

tio
-te

m
po

ra
l

sp
ac

e.

IS
D

C

on
te

xt
 th

at
 a

im
s,

 th
ro

ug
h

or
ga

ni
za

tio
na

l a
nd

te

ch
ni

ca
l c

ha
ng

es
, a

t i
m

pr
ov

em
en

ts
 in

 a
n

IS
 th

at

sa
tis

fy
 th

e
ne

ed
s

of
 a

nd
 p

os
si

bi
lit

ie
s

in
 th

e
IS

 a
nd

 it
s

U
S,

 in
 o

rd
er

 to
 fa

ci
lit

y
an

d
/

or
 im

pr
ov

e
IS

 a
ct

io
ns

.

C
on

te
xt

 th
at

 p
ro

du
ce

s,
 th

ro
ug

h
th

e
pr

oc
es

se
s

of
 re

qu
ir

em
en

ts
 e

ng
in

ee
ri

ng
,

an
al

ys
is

, d
es

ig
n,

 im
pl

em
en

ta
tio

n,
 a

nd

ev
al

ua
tio

n,
 a

 n
ew

 o
r r

en
ew

ed
 IS

.

C
on

te
xt

 w
he

re
, t

o
sa

tis
fy

 th
e

IS
D

go

al
s,

 IS
D

 a
ct

or
s

ca
rr

y
ou

t I
SD

ac

tio
ns

 fo
r I

SD
 d

el
iv

er
ab

le
s

by
 m

ea
ns

of

 IS
D

 fa
ci

lit
ie

s
in

 a
 c

er
ta

in
 s

pa
tio

-
te

m
po

ra
l s

pa
ce

.

IS

C
on

te
xt

 th
at

 p
ro

vi
de

s
hi

gh
-q

ua
lit

y
in

fo
rm

at
io

n
th

at

is
 c

or
re

ct
, r

el
ev

an
t,

tim
el

y,
 e

tc
. i

n
or

de
r t

o
sa

tis
fy

th

e
ne

ed
s o

f t
he

 u
se

rs
 a

t a
 v

ar
ie

ty
 o

f o
rg

an
iz

at
io

na
l

le
ve

ls
, a

nd
 th

e
re

qu
ir

em
en

ts
 o

f t
he

 b
us

in
es

s
ac

tio
ns

th

ey
 a

re
 e

ng
ag

ed
 in

.

C
on

te
xt

 th
at

 c
ol

le
ct

s,
 s

to
re

s,
 p

ro
ce

ss
es

,
an

d
di

ss
em

in
at

es
 in

fo
rm

at
io

n
ab

ou
t t

he

st
at

e
of

 a
ffa

ir
s

in
 re

al
ity

.

C
on

te
xt

 th
at

 c
on

si
st

s
of

 a
ct

or
s,

ac

tio
ns

, d
at

a,
 fa

ci
lit

ie
s

(in
cl

. h
ar

dw
ar

e
an

d
so

ftw
ar

e)
, a

nd
 lo

ca
tio

ns
, f

or
m

in
g

a
co

he
si

ve
 s

tr
uc

tu
re

, w
hi

ch
 s

er
ve

s
or

ga
ni

za
tio

na
l p

ur
po

se
s.

228

RW

ME

ISD

USis

IS

USrw

USme

USisd

FIGURE 50 US’s at four processing layers

In Figure 50 we can see that the utilizing system at the ISD layer (USISD) consists
of the IS and the USIS, and the utilizing system at the ME layer (USME) consists
of an ISD, an IS and a USIS. At the highest layer, the utilizing system (USRW)
comprises an ME, an ISD, an IS and its utilizing system (USIS). For all the
processing layers, the generic relationship ‘provides information services to’
holds. There are, however, differences in how direct the affects of exploiting
services are in each case. For instance, an ME method resulted from the RW
context affects indirectly on a USIS through the following “chain”: using an ME
method, better ISD methods can be (hopefully) constructed, and by a better ISD
method information systems can be developed that can support (hopefully)
better the users in the USIS. Due to this multi-layered nature of the US, for an
ME context, for instance, requirements and needs should be collected from the
concerned stakeholders at every layer.

Let us next consider the notion of OS at each layer. We defined the
signifies relationship to stand for the relationship between the informational
objects in the IS and the UoD constructs in the OS (cf. Section 4.4.4). At the IS
layer, the OS is composed of all those things that are seen relevant to be
informed about for the users in the business system (USIS). At the ISD layer,
informational objects signify the existing IS and a new IS, as well as their US’s
and OS’s (i.e. USIS and OSIS). At the ME layer, informational objects signify the
prior ISD contexts and the current ISD, as well as their US’s and OS’s (i.e. USISD
and OSISD). Prior ISD contexts means that those ISD contexts in which the ISD

229

method under consideration in the ME context have been deployed. Finally, at
the RW layer, informational objects are created, processed, and disseminated
which have signifies relationships with UoD constructs of the prior ME contexts
and the current ME, as well as of their US’s and OS’s (i.e. USME and OSME). Prior
ME contexts mean those ME contexts that have contributed to the creation and
engineering of the method under engineering. This complex structure of the
OS’s is illustrated in Figure 51.

provides info
services

RW

ME

ISD

USis

IS

OSrw

OSme

OSisd

OSis

Legend:

signifies

FIGURE 51 OS’s at four processing layers

Due to the multi-layer structure of the OS, there is a large variety of the signifies
relationships between the informational objects and the UoD constructs. At the
bottom layer, the informational objects are concrete signifying e.g. individual
actors, actions, and objects in the IS. At the higher layers, the informational
objects also signify actors, actions, and objects in the IS but with a greater
number of abstract concepts, that is to say, through meta concepts and/or meta
meta concepts. Actually, during an ME effort and all the less during an RW
effort it is not, perhaps, even known in which real ISD contexts the ISD method
under construction will be deployed, not to speak of which instances of the IS
will be developed on the basis of the ISD method. It is not until the ME method
(and the ISD method) is instantiated, when more concrete concepts are parts of
the informational objects.

The settlement in Figure 51 enables us to consider divergent conceptions
of the object system presented in the IS literature. Most commonly the object
system (or the corresponding term) means the OSIS (e.g. Langefors et al. 1975;

230

van Griethuysen 1982; Iivari 1989a; NATURE Team 1996). In some
presentations (e.g. Hirschheim et al. 1995; van Slooten et al. 1993) the object
system is seen from the viewpoint of the ISD, meaning the OSISD. For instance,
Hirschheim et al. (1995) state that the ISD is “a change process taken with
respect to object systems in a set of environments” (ibid p. 15). According to van
Slooten et al. (1993) “the object system, or universe of discourse, is the part of
reality considered as problem area for the development of an information
system” (ibid p. 169).

5.4 Summary

In this chapter we presented the layer ontology that has been specialized from
the concepts and constructs of the context ontology defined in Chapter 4. The
purpose of the layer ontology is to provide concepts and constructs to conceive,
understand, structure, and represent static and dynamic features of information
processing at four layers. The ontology is composed of two parts. The first part
addresses information processing in general. It comprises concepts such as
knowledge, data, information, information processing, information system,
object system, utilizing system, and controlled system. The second part of the
layer ontology provides concepts and constructs to establish a hierarchical
system of processing layers. Four layers, called information system, information
system development, method engineering, and research work, are
distinguished and related. We defined the layers, discussed the contents of and
relationships between the contexts on the layers, and considered how the
notions of utilizing system and object system are understood on each of the
layers.

The layer ontology is an important component in OntoFrame for two
reasons. First, through the ontology, it is possible, for the first time in this study,
to address issues of information processing that is a focal area in our research
domain. Second, the ontology forms the foundation for vertical “structuration”
of things in the UoD, distinguishing between actions (and contexts) in relation
to IS, ISD, ME, and RW. The system of processing layers is one of the key
dimensions in OntoFrame.

6 PERSPECTIVE ONTOLOGY AND IS PERSPECTIVES

Typical for a human being is his/her ability to “extract” just those features from
reality that are most essential to the situation or problem at hand. With this
capability, based on the use of viewpoints, he/she is able to conceive, handle
and manage extremely complex and comprehensive situations. In everyday life
viewpoints are established and applied in an intuitive and ad hoc fashion. In
professional work, like in information system development and method
engineering, there is a need for a more strict approach to establishing and
applying viewpoints.

The purpose of this chapter is to first define the perspective ontology,
which provides concepts and constructs for conceiving, understanding,
structuring and representing things in reality from a set of pre-defined
perspectives. The ontology is particularly aimed for organizational contexts, in
which information processing plays a major role. The perspective ontology has
been derived from the layer ontology and the context ontology (see Figure 52).
The layer ontology provides the essential concepts and constructs for
understanding and structuring information processing, in particular through
the notions of information system, object system and utilizing system. It also
serves as the conceptual foundation for structuring information processing at
four layers (information system, information system development, method
engineering, and research work). The context ontology contains detailed
concepts and constructs of seven contextual domains and inter-domain
relationships.

The second aim of this chapter is to present the IS perspectives. We define
concepts and constructs with which the IS can be conceived from five different
perspectives specialized from the perspective ontology. This part is included in
this chapter for two reasons. First, we do not have a separate chapter for
presenting the IS ontology, of which the IS perspectives constitute the major
part. Second, defining the IS perspectives here gives a concrete example of how
to utilize the perspective ontology by specialization.

232

Core ontology

Level ontologyLayer ontology

Perspective ontology

Context ontology

FIGURE 52 Focus of Chapter 6

The chapter is organized as follows. In Section 6.1 we define the perspective
ontology, which establishes the system of perspectives along particular
dimensions and specifies the contents of five perspectives. The perspectives are:
systelogical, infological, conceptual, datalogical, and physical. In Section 6.2 we
consider how these perspectives can be applied at the four processing layers. In
Section 6.3 we define the IS perspectives, meaning that concepts and constructs
of the IS from five perspectives are provided. We also specify the relationships
between the IS perspectives. In Section 6.4 we present a comparative analysis of
IS perspectives suggested in the IS/ISD literature. For the analysis we have
selected eleven frameworks containing clearly defined perspectives. The
analysis is composed of three parts, covering an overview, conceptual contents,
and detailed concepts of the perspectives. Section 6.5 contains a summary and
discussions.

6.1 Perspective Ontology

In this section we first define the general notions of a perspective and a system
of perspectives. Second, we define five perspectives based on three particular
dimensions.

6.1.1 System of Perspectives

Reality contains a myriad of details so that it goes fully beyond the capacity of
any human being to recognize and conceive them all simultaneously. For this
reason, it is typical for a human being to focus one’s attention upon some
specific things. The focus depends on the adopted point of view. In everyday
life, a point of view can be situational and intuitive, established in an ad hoc

233

fashion. But for recurrent situations it is necessary to have structured and
predefined viewpoints. This holds especially for situations, like ISD and ME,
where abstract thinking is commonplace and which involve a large number of
people in cooperation. To differentiate the intuitive points of view from the
predefined points of view we define the notion of a perspective as follows: a
perspective is a strictly defined point of view110.

Conceiving reality in a systematic way necessitates that there are more
than one perspective available and the relationships between the perspectives
are specified. A system of perspectives means a (static) system, which is composed
of related perspectives. A system of perspective is the focal notion in the
perspective ontology (see Figure 53). The perspective ontology provides concepts
and constructs for conceiving, understanding, structuring and representing
things in information processing contexts through a system of pre-defined
perspectives.

Point of view DimensionPerspective

Framework

1..*

1..*

basedOn

UoD

System of perspectives

1..*

*

1..*

1..*

1..*

1..*

1..*

1 1

1..*

Systelogical PhysicalDatalogicalConceptualInfological

conceivedFrom conceivedFrom

FIGURE 53 Perspective ontology

A system of perspectives is a strictly defined framework (cf. the notion of a
framework in the generic ontology in Section 3.3). The relationships between
the perspectives in the system can be based on one or more dimensions or
criteria. An example of the systems of perspectives, which is based on one
criterion, is levels of abstraction. Based on the systems theory, Mustonen (1978,

110 There are different meanings for perspectives in the literature. Mathiassen (1982), for

instance, defines a perspective to be a conceptual abstraction of a view or specific
phenomena. In Webster (1989) a perspective is defined to be “the faculty of seeing all
the relevant data in a meaningful relationship”, “the state of one’s ideas, the facts
known to one, etc., in having a meaningful interrelationship”, and “ a mental view or
prospect”.

234

53) defines the levels of abstraction, or the levels of stratification, on the basis of
the semantic characteristics of the concept structures and imposes four
characteristics for it: (a) The hierarchical relationship is linear. (b) The levels
describe different predicates of the same system. (c) The relationship between
the levels fulfills the condition: the upper level includes in some sense more
abstract or holistic description of the system than the lower level. (d) The
concept structure includes the definition of the relationships between levels (cf.
Iivari 1989a, 325).

We set up the following goals for a system of perspectives needed in this
work: (a) The perspectives have to support the structured consideration of
multifaceted features of IS, ISD and ME. (b) Each perspective should be defined
in a way that enables decisions on what aspects are relevant from that
perspective and what should be ignored. (c) There should be well-defined
relationships between the perspectives. Having these goals in mind, we can
easily find out that a system of perspective based only on one criterion or one
dimension is not suitable for our purpose. The reason for this is that it is not
possible to find a single theory or principle that would cover all the desired
features and provide the necessary concepts and constructs. For instance,
systems theory or semiotics alone is too limited in its descriptive power.

We define a system of perspectives that is composed of three dimensions.
The dimensions are: (a) decomposition dimension, (b) linguistic – conceptual
dimension, and (c) realization independence – dependence dimension. The
decomposition dimension is based, as suggested by its name, on the
decomposition principle (see Section 3.9.2.3). Applied to the IS, this means that
the IS can be viewed as part of the environment, in particular in relation to the
US, or decomposed into information sub-systems and further into informational
objects, IS actions, etc. This dimension is commonly applied in systems theories
to make an imperceivable system more perceivable (Langefors 1971, 67)111.

The second dimension in the system of perspectives is based on the
semiotics (Peirce 1955). The dimension is ‘dichotomic’, having two ends,
linguistic and conceptual. In the context of information systems this means that
the IS can be viewed as a complicated whole of linguistic expressions and their
transformations, or as conceptual constructs which the expressions signify. The
third dimension is based on the predicate abstraction with the criterion of
realization independence (see Section 3.9.3). It enables the partitioning of the
features of the IS into predefined sets. At one end of this dimension the IS is
viewed as being completely independent from any aspects of realization, while
at the other end of the dimension one particularly concentrates on physical
things in the realization, e.g. on physical actors, detailed procedures, concrete
data files and documents in certain spatiotemporal space.

Figure 54 presents the perspectives in relation to US, IS, and OS, along the
three dimensions. The dimensions are orthogonal to one another. In the

111 An imperceivable system is “a system such that the number of its parts and their

interrelations is so high that all its structure cannot be safely perceived or observed at
one and the same time” (Langefors 1971, 67).

235

following section we define the perspectives and then return to comment on
this figure.

Depomposition

Conceptual

Realization-
dependence

Conceptual

Linguistic

Systelogical

IS
US IS

OS

HIS CIS

HIS CIS

Realization-
independence

Infological

Datalogical

Physical

Composition

FIGURE 54 Dimensions and perspectives

6.1.2 Definitions of the Perspectives

The system of perspectives is composed of five perspectives. These are the
systelogical perspective, the infological perspective, the conceptual perspective,
the datalogical perspective, and the physical perspective. In the following we
define them. Because defining the perspectives without connections to any
target system would yield characterizations that are too generic, we have
formulated the definitions that apply to the IS. The definitions are, however,
also applicable to the other processing layers. We demonstrate that in Section
6.2 in discussing the perspectives of the other processing layers.

According to the systelogical perspective the IS is considered in relation to its
utilizing system (US). The IS has no value or purpose by itself. It becomes
desired and necessary through the support it provides to its utilizing system.
Hence, the IS's organizational, social, economic and informational impacts on
the utilizing system form the essence which the systelogical perspective is
interested in. The generic question to be answered from this perspective is
“Why”. To put it more precisely, applying the systelogical perspective means
considering the following issues:
• Why does the IS exist? For which utilizing system?
• What kind of utilizing system does it have? What are its objectives, actors,

actions, events, rules and objects on a general level?

236

• What information services should the IS provide, for whom and for which
actions in the US?

According to the infological perspective the IS is seen as a functional structure of
information processing actions and informational objects, independent from
any representational and implementational features. The IS is regarded as a
context, in which the given mission is pursued by actions and information flows
between them. The generic question to be answered is “What”. This means in
more detail:
• What information is processed in the IS and why?
• What are the actions and rules of processing?
According to the conceptual perspective the IS is considered through the semantic
contents of information it processes. This means that whereas the infological
perspective is based on linguistic terms, the conceptual perspective concentrates
on the understanding of the meaning of those things in the object system which
linguistic terms signify. The question to be answered is “What does it mean?”
To put it more precisely, the conceptual perspective is interested in the
following issues:
• What is the meaning of the information processed in the IS?
• What does the information signify?
• What kinds of structural and dynamic constraints are valid in the object

system?
From the datalogical perspective the IS is viewed, through representation-specific
concepts, as a context, in which IS actors work with IS facilities to process data.
This implies that the perspective makes a separation between two parts: a
human information system (HIS) and a computerized information system (CIS).
Considerations cover all those contextual non-physical phenomena that are
relevant to executing actions of data processing within and between those parts
(cf. user interface). The datalogical perspective is interested in “How” questions
such as:
• How is information represented in data in the IS?
• How are the rules of information processing derived from US rules and

formulated into concrete work procedures and algorithms?
• How do the IS users and the CIS communicate with each other?
The physical perspective ties the datalogical concepts and constructs to a
particular organizational and technical environment, showing how the IS looks
like and behaves when it is implemented. It answers the following questions:
• Who are those actors carrying out actions of the HIS, how and when they

act, and where are they located?
• Where and how are the data stored?
• How are the facilities used and by whom?
• What hardware and software are used, and how are they related?

After having defined the perspectives we will next discuss the selected terms
and their counterparts in the literature, as well as the relationships between the
perspectives and the dimensions.

237

The term ‘systelogical’ was introduced in Welke (1977), although in a
slightly different meaning, to stand for the perspective of how “the changes to
the existing information system alter/facilitate changes in the affected object
systems (i.e. user-subsystem and data processing system)” (ibid p. 150). The
terms ‘infological’ and ‘datalogical’ were first coined in Sungren (1975) and
Langefors et al. (1975)112 in the same meanings as we use them here. On the
basis of the so-called infological approach by Langefors (1971) the system from
the datalogical perspective should be called a data system. Despite the
importance of making the difference between ‘data’ and ‘information’, we here
follow a more common approach to deploy only one term ‘information
system’113.

We can make the following remarks on the relationships between the
perspectives and the dimensions (see Figure 54). The systelogical perspective
provides the point of departure for considerations about the IS. The main focus
of the perspective is on the US, and the IS is viewed as something which
provides support for its US. Changing the perspective from systelogical to
infological means a shift along the decomposition dimension: the IS seen as a
“black box” is now conceived as a system that is composed of IS purposes, IS
actions and IS objects. Compared to the infological perspective, the datalogical
perspective and the physical perspective mean shifts along two dimensions,
along the decomposition dimension on one hand and along the realization
independence – dependence dimension on the other hand. The IS purposes, the
IS actions, and the IS objects are, in the first stage, decomposed into smaller
“pieces”. In addition, IS actors and IS facilities are, on a general level,
recognized. In the second stage, the process of decomposing continues and
more and more realization-related aspects of the IS and its components are
observed. The three perspectives (i.e. the infological, datalogical, and physical
perspectives) constitute a “hierarchical system of stratified levels” as defined by
Mustonen (1978). The conceptual perspective is based on the use of the
semiotic dimension. While all other perspectives consider linguistic objects, the
conceptual perspective focuses on their conceptual contents. This actually
means that the focus shifts from the IS to its OS.

112 Langefors and Sundgren (1975, 3) mention a synonym for ‘infological’ that is

‘informatological’.
113 In some literature, the use of the terms ‘information system’ and ‘data system’ does

not depend on the perspective. Krogstie (1995, 479), for example, defines an
information system as “a system for the dissemination of data between persons”, and
a data system as “a system to preserve, transform, and transport data”. From this
viewpoint, a data system is seen as a sub-subsystem of an information system.

238

6.2 Perspectives at the Processing Layers

Although the perspectives were defined above, for reasons of concreteness, in
relation to the IS, they are aimed to apply to any processing layer. To show
what the position of the perspective ontology in the overall arrangement of
other ontologies is we present Figure 55. The figure portrays six ontologies
related to one another. The IS ontology, the ISD ontology and the ME ontology
consist of two parts: a domain part and a perspective part. The baseline for
deriving (by specialization) the domain parts is provided by the context
ontology. The perspective ontology serves as the foundation for deriving the
perspective parts (by specialization) on each of the three processing layers,
structured by the layer ontology. It should be noticed that we have not
provided explicit definitions for the IS domains (in the IS ontology), because the
concepts and relationships in the IS domains can be derived, in quite a
straightforward manner, from the corresponding domains of the context
ontology. For instance, an IS actor in the IS ontology is an actor in the context
ontology with some specific features. In contrast, we do specify the IS

Context ontology Perspective ontology

IS ontology ISD ontology ME ontology

Context

Contextual domain Perspective Dimension

S. of perspectives

IS domains IS perspectives ISD domains ISD perspectives ME domains ME perspectives

Layer ontology

Layer

System of layers

FIGURE 55 Perspective ontology in the overall settlement

239

perspectives (see Section 6.3). The perspectives for ISD and ME will be
elaborated in Chapters 8 and 10, respectively.

Next, we give short characterizations of the perspectives on four
processing layers. The RW layer is included in the considerations although we
are not going to define the RW ontology. The RW perspectives are needed in
specifying the methodical skeleton (MEMES) in Chapter 11. To denote which
layers the perspectives concern we use the abbreviations of the names of the
layers as prefix (e.g. the ISD infological perspective). The summary of the
characterizations is presented in Table 18.

From the systelogical perspective the perceived system is considered in
relation to its utilization system. On the ISD layer, this means that the
perspective addresses the support ISD provides to the IS and USIS. Relevant
questions to be answered are, e.g.: what kind of IS is it for which the ISD project
is or was launched, what kind of USIS is it that should be supported with
information services, what kinds of services should the ISD provide to USISD,
and what are the goals and constraints for the approaches and principles of the
ISD context? Implied from the above, we can state that the stakeholders
applying the ISD systelogical perspective are the USIS actors and the IS actors.
Different ISD approaches can be distinguished based on whose role in ISD is
emphasized - the US actors (cf. the client-led approach (Stowell 1991)) or the IS
actors (cf. the participatory approach (Mumford 1981; Mumford 1983)).

The ME systelogical perspective reveals the support ME provides for its
utilizing system (USME) comprising the ISD and the USISD. The perspective
focuses one’s attention to, e.g. what are the ISD contexts for which an ISD
method should be engineered like, what are the IS contexts for which ISD
projects are to be launched like, what are the USIS which the IS’s should support
with services like, what are the “services” the ME should provide for USME, and
what are the goals and constraints for the approaches and principles of the ME
context? Compared to the ISD layer, here the set of real and potential
stakeholders is much larger, including the US actors and the IS actors of several
IS’s, as well as the ISD actors of perhaps several ISD contexts. It depends on a
situation and on how the views of each stakeholder group are taken into
account.

From the RW systelogical perspective one considers the support RW
provides for its utilizing system (USRW) comprising contexts from the ME layer
down to the IS layer. Due to the multi-layer structure of the utilization system
(see Figure 51), the perspective concerns a large number of issues, e.g. what
kinds of ME contexts are there for which an ME method should be engineered,
what kinds of ISD contexts exist for which method engineering should be
accomplished, what kinds of IS’s can be found for which ISD projects are to be
launched, what kinds of USIS are there which the IS’s should support with
services, what kinds of “services” the ME should provide to USME, and what are
the goals and constraints for the approaches and principles of the RW context?
In addition to the actors mentioned above, the RW systelogical perspective
involves ME actors as well. It should, however, be noted that the sayings of the

240

TA
BL

E
18

Pe

rs
pe

ct
iv

es
 a

t f
ou

r p
ro

ce
ss

in
g

la
ye

rs

La

ye
rs

Sy

st
el

og
ic

al

In
fo

lo
gi

ca
l

C
on

ce
pt

ua
l

D
at

al
og

ic
al

Ph

ys
ic

al

R
W

C

on
si

de
rs

 w
ha

t r
eq

ui
re

d
/

m
at

er
ia

liz
ed

 b
en

ef
its

an

d
ou

tp
ut

s t
he

 R
W

pr

ov
id

es
 to

 th
e

U
S R

W
 (i

.e
.

th
e

M
E’

s,
th

e
IS

D
’s

, t
he

IS

’s
 a

nd
 U

S I
S)

.

C
on

si
de

rs

fu
nc

tio
na

l
st

ru
ct

ur
es

 a
nd

in

fo
rm

at
io

na
l

ob
je

ct
s

in
 th

e
RW

.

C
on

si
de

rs
 th

e
se

m
an

tic

co
nt

en
ts

 o
f i

nf
or

m
at

io
na

l
ob

je
ct

s
in

 th
e

RW
, i

n
ot

he
r

w
or

ds
 th

e
O

S R
W

 (i
.e

. t
he

M

E,
 th

e
IS

D
, t

he
 IS

 a
nd

O

S I
S)

.

C
on

si
de

rs
 a

ct
or

s,
 a

ct
io

ns
,

ob
je

ct
s,

 a
nd

 fa
ci

lit
ie

s a
s

w
el

l a
s

th
ei

r i
nt

er
pl

ay
 o

n
a

ge
ne

ra
l l

ev
el

 in
 th

e
RW

.

C
on

si
de

rs
 th

e
RW

 a
s a

ph

ys
ic

al
 a

nd
 te

ch
ni

ca
l

co
ns

tr
uc

t w
ith

in

or
ga

ni
za

tio
na

l a
nd

te

ch
ni

ca
l i

nf
ra

st
ru

ct
ur

e.

M
E

C
on

si
de

rs
 w

ha
t r

eq
ui

re
d

/
m

at
er

ia
liz

ed
 b

en
ef

its

an
d

ou
tp

ut
s t

he
 M

E
pr

ov
id

es
 to

 th
e

U
S M

E (
i.e

.
th

e
IS

D
’s

, t
he

 IS
’s

 a
nd

U

S I
S)

.

C
on

si
de

rs

fu
nc

tio
na

l
st

ru
ct

ur
es

 a
nd

in

fo
rm

at
io

na
l

ob
je

ct
s

in
 th

e
M

E.

C
on

si
de

rs
 th

e
se

m
an

tic

co
nt

en
ts

 o
f i

nf
or

m
at

io
na

l
ob

je
ct

s
in

 th
e

M
E,

 in
 o

th
er

w

or
ds

 th
e

O
S M

E (
i.e

. t
he

IS

D
, t

he
 IS

 a
nd

 O
S I

S)
.

C
on

si
de

rs
 a

ct
or

s,
 a

ct
io

ns
,

ob
je

ct
s,

 a
nd

 fa
ci

lit
ie

s a
s

w
el

l a
s

th
ei

r i
nt

er
pl

ay
 o

n
a

ge
ne

ra
l l

ev
el

 in
 th

e
M

E.

C
on

si
de

rs
 th

e
M

E
as

 a

ph
ys

ic
al

 a
nd

 te
ch

ni
ca

l
co

ns
tr

uc
t w

ith
in

or

ga
ni

za
tio

na
l a

nd

te
ch

ni
ca

l i
nf

ra
st

ru
ct

ur
e.

IS
D

C

on
si

de
rs

 w
ha

t r
eq

ui
re

d
/

m
at

er
ia

liz
ed

 b
en

ef
its

an

d
ou

tp
ut

s t
he

 IS
D

pr

ov
id

es
 to

 th
e

U
S I

SD
 (i

.e
.

th
e

IS
 a

nd
 U

S I
S)

.

C
on

si
de

rs

fu
nc

tio
na

l
st

ru
ct

ur
es

 a
nd

in

fo
rm

at
io

na
l

ob
je

ct
s

in
 th

e
IS

D
.

C
on

si
de

rs
 th

e
se

m
an

tic

co
nt

en
ts

 o
f i

nf
or

m
at

io
na

l
ob

je
ct

s
in

 th
e

IS
D

, i
n

ot
he

r
w

or
ds

 th
e

O
S I

SD
 (i

.e
. t

he
 IS

an

d
O

S I
S)

.

C
on

si
de

rs
 a

ct
or

s,
 a

ct
io

ns
,

ob
je

ct
s,

 a
nd

 fa
ci

lit
ie

s a
s

w
el

l a
s

th
ei

r i
nt

er
pl

ay
 o

n
a

ge
ne

ra
l l

ev
el

 in
 th

e
IS

D
.

C
on

si
de

rs
 th

e
IS

D
 a

s a

ph
ys

ic
al

 a
nd

 te
ch

ni
ca

l
co

ns
tr

uc
t w

ith
in

or

ga
ni

za
tio

na
l a

nd

te
ch

ni
ca

l i
nf

ra
st

ru
ct

ur
e.

IS

C

on
si

de
rs

 w
ha

t r
eq

ui
re

d
/

m
at

er
ia

liz
ed

 b
en

ef
its

an

d
ou

tp
ut

s t
he

 IS

pr
ov

id
es

 to
 th

e
U

S I
S.

C
on

si
de

rs

fu
nc

tio
na

l
st

ru
ct

ur
es

 a
nd

in

fo
rm

at
io

na
l

ob
je

ct
s

in
 th

e
IS

.

C
on

si
de

rs
 th

e
se

m
an

tic

co
nt

en
ts

 o
f i

nf
or

m
at

io
na

l
ob

je
ct

s
in

 th
e

IS
, i

n
ot

he
r

w
or

ds
 th

e
O

S I
S.

C
on

si
de

rs
 a

ct
or

s,
 a

ct
io

ns
,

ob
je

ct
s,

 a
nd

 fa
ci

lit
ie

s a
s

w
el

l a
s

th
ei

r i
nt

er
pl

ay
 o

n
a

ge
ne

ra
l l

ev
el

 in
 th

e
IS

.

C
on

si
de

rs
 th

e
IS

 a
s a

ph

ys
ic

al
 a

nd
 te

ch
ni

ca
l

co
ns

tr
uc

t w
ith

in

or
ga

ni
za

tio
na

l a
nd

te

ch
ni

ca
l i

nf
ra

st
ru

ct
ur

e.

241

USIS actors and the IS actors have a marginal effect on the views and decisions
made from the RW systelogical perspective.

From the infological perspective the perceived system is considered to be
a functional structure of information processing purposes, actions and objects,
independent from any representational and implementation features. Because
only the perceived system (i.e. IS, ISD, ME, or RW) is relevant in considerations,
the interpretation of the perspective is quite straightforward. The following
issues are relevant in our considerations: what information is processed and
why in the ISD context / in the ME context / in the RW context, and what
actions and rules, on a general level, are needed for processing in the perceived
context?

The conceptual perspective considers the perceived system through the
semantic contents of informational objects, meaning that the perspective
addresses the OS of the context at a layer. As shown in the previous section, the
OS is very large and multifaceted at the higher processing layers. In the
following we provide an overview of the OS’s at each layer. A more detailed
picture is built up in Chapter 7, where the model levels are integrated into the
discussion. At the ISD layer the informational objects114 refer to the (possibly)
existing IS, the new IS as well as their USIS and OSIS. At the ME layer, the
informational objects signify, besides those signified at the lower layer, also the
prior ISD contexts and the current or planned ISD context(s). At the RW layer,
the informational objects signify, besides those referred to at the lower layers,
also the prior ME contexts and the current or planned ME context(s). In all
those cases it is considered what the meaning of the information processed is,
what information signifies, and what kinds of structural and dynamic
constraints are valid in the OS.

From the datalogical perspective the perceived system is considered
through representation-specific concepts, involving, besides the purposes, the
actions and the objects, also the IS actors and the IS facilities, on a general level.
Because also here the central focus is on the IS only, applying the perspective at
each layer is straightforward. The following issues are relevant: How
information is represented in data in the ISD context / in the ME context / in
the RW context? What are the rules of information processing derived from the
US rules, and how are they formulated into work procedures and algorithms in
the ISD context / in the ME context / in the RW context? How do the actors and
the computer-aided tools (CASE / CAME / CARW) communicate with each
other in the ISD context / in the ME context / in the RW context?

From the physical perspective the perceived system is tied together with a
concrete organizational and technical context. Examples of the issues covered
by the perspective are: Who are the actors carrying out the actions, how do they
act, and where are they located in the ISD context / in the ME context / in the
RW context? Where and how are the data stored in the ISD context / in the ME

114 Here and also at the higher layers we only consider those informational objects that

result from the execution actions, not from the management actions.

242

context / in the RW context? What hardware and software are used and how
are they related in the ISD context / in the ME context / in the RW context?

6.3 IS perspectives

In this section we define concepts and constructs with which the IS can be
perceived from the IS systelogical, the IS infological, the IS conceptual, the IS
datalogical, and the IS physical perspectives, the emphasis being on first three
perspectives. The IS perspectives are defined in this chapter for two reasons.
First, we have no separate chapter for presenting the IS ontology, in which the
IS perspectives could also be discussed, as it is done for ISD (Chapter 8) and for
ME (Chapter 10). Second, defining the IS perspectives here gives a concrete
example of how to specialize the perspective ontology (see Figure 55).

6.3.1 IS Systelogical Perspective

From the IS systelogical perspective the IS is seen in relation to its utilizing system
(USIS). The utilizing system is a business system, such as a manufacturing
department producing machines ordered by customers, or a library
accumulating and lending copies of publications to registered customers.

There are several approaches to viewing the utilizing system. It can be
seen as an enterprise (e.g. Loucopoulos et al. 1998; Kavakli et al. 1999), a
business process (e.g. Phalp 1998; Melao et al. 2000; Mentzas et al. 2001), or as a
communicating organization (e.g. Dietz 2003). Each approach applies different
concepts and constructs to conceive and structure things in the utilizing system.
Dietz (2003), for instance, states that “an organization consists of people who,
while communicating, enter into and comply with commitments (social
interaction) about the things they bring about in reality” (ibid p. 148). This so-
called PSI approach (Performance in Social Interaction) differs, to a substantial
degree, from another approach, called the IPO (Input-Process-Output)
approach, which is commonly applied in enterprise modeling, business process
modeling and workflow modeling. Besides these approaches, there are different
views specified on more detailed levels. Melao et al. (2000), for instance, identify
four perspectives on business processes: business processes as deterministic
machines, as complex dynamic systems, as interacting feedback loops, and as
social constructs. In addition, there are presentations in which some specific
issues are emphasized. Koubarakis et al. (2002), for instance, present a business
goal oriented framework and Herbst (1995) suggests a business rule oriented
framework. In this work it is not possible to cover all the approaches and views.
Our approach of viewing the utilizing system integrates the IPO approach with
the main concepts of the purpose domain and the actor domain.

Depending on the nature of the IS, we have two somewhat different
viewpoints on the USIS. If the IS is a CIS, the IS is seen as a tool used in the USIS.

243

If the IS contains a HIS as well, the IS is seen as a related context providing
information services to the USIS. In the following we first present a meta model
of the IS systelogical perspective from the tool viewpoint and then from the
service viewpoint. In both cases, we exploit the concepts and constructs defined
in the context ontology (Chapter 4).

Figure 56 presents the meta model of the IS systelogical perspective from
the tool viewpoint. A US organization is an organization (i.e. enterprise, a
department or some other administrative arrangement), which utilizes, or is
going to utilize, an IS. It consists of US organizational units, which in turn are
composed of US positions. A US position is a post of employment occupied by
one or more US human actors. US positions are composed of US roles with
responsibilities and authorities to conduct certain US actions. One of the US
roles is a user. A US action is an action, which strives for one or more utilization
purposes. Some US roles are related to the use of a CIS (cf. users in Section
5.1.3). US actions are governed by US rules. The rules are composed of three or
four parts (cf. ECAA structure): US event, US condition, thenUSAction and
elseUSAction. Conducting US actions may raise new US events that may trigger
other US actions.

US organization

InformationalMaterial

US object

US purpose
US actionUS role

US actor

US human actor US position

US org. unit

US event

US facilityCIS

US resourceUS tool

US condition

US rule

1..*

1..*

1 1..*

1 1..*

*

occupiedBy

1..*

responsibleFor

* *performs

*

1..*strivesFor

1..*
governs

**

*

*

raisedBy

*

1..*
output

1..*

*

input

1..*

*

supports

*

*

uses

1..*

*

1
supervision

User

*

1..*

1..*

FIGURE 56 Meta model of the IS systelogical perspective (the tool viewpoint)

The US purposes mean goals for business processes and/or reasons for setting
up those goals. The US actions use US objects as their inputs and may produce
US objects as their outputs. The US objects can be material (e.g. machines,
components, bridges, china, etc.) or informational (e.g. insurance contract,
payment, reorder, etc.). The US actions are partly performed by US tools (e.g.

244

lathe, circular saw, nailer). Some of the US tools can be computerized
information systems (CIS) supporting US actions. A US actor conducting US
actions with the support of a CIS is called a user. The US actions consume US
resources, like money, energy, goods, manpower, etc.

Figure 57 presents, on a rough level, the meta model of the IS systelogical
perspective from the service viewpoint (cf. Figure 45 in Chapter 5). According
to it the IS provides IS services to be exploited by the USIS. The relationship
between the USIS and the IS can be elaborated in many ways: (a) by
decomposing the IS services into informational objects we can state more clearly
which kinds of services are provided, (b) by recognizing US purposes, US
actions and US actors in the USIS we can state more explicitly, who needs/uses,
in which actions and for what purposes services from the IS, (c) by recognizing
IS purposes, IS actions and IS objects in the IS we can reveal in which way
various parts of IS services are produced in the IS. This process of
decomposition and recognition leads to the arrangements of two interacting
contexts, between which there are a multitude of relationships, not only
between the actions, but also between the purposes, the actors, the objects, the
facilities and the locations. This goes, however, far beyond the scope of the IS
systelogical perspective, which should, by definition, treat the IS as a kind of
“black box” in an organizational context.

US ISIS Service
1..*

1..*exploits 1..*

1..*

provides

FIGURE 57 A rough meta model of the IS systelogical perspective (the service viewpoint)

6.3.2 IS Infological Perspective

In the IS infological perspective the focus is on the IS, which is seen as a functional
structure of information processing and informational objects115. No attention is
paid to how the objects are represented or implemented. This means that the
“black box” conceived from the IS systelogical perspective is “opened” to reveal
the aspects of the IS within three contextual domains: purpose, action, and
object. The concepts in the purpose domain are used to specify why information
is processed. The concepts in the action domain are used to conceive functional
structures needed to produce informational objects. Correspondingly, the
informational objects are decomposed, classified, and structured with the
concepts and relationships in the object domain. The meta model of the IS
infological perspective is presented in Figure 58. Next, we define the concepts
and the relationships in the meta model.

115 There are two main approaches to IS modelling, the structured approach (e.g.

Yourdon 1989) and the object-oriented approach (e.g. Booch et al. 1999). Our
approach mainly follows the structured approach that views information processing
as information flows between the processes.

245

Control str.

IS conditionIS rule

PermanentTransient

IS object

IS purpose

IS action

IS action str.

Decomposition str.

Iteration str.Selection strSequence str

1..* *
strivesFor

*

*

input

* output
IS event

*
governs

*

*

raisedBy

IS reason

IS goal

*

*
dueTo

*

*

supports
0..1

*copyOf

influence
*

*
refinement

0..10..1 *

versionOfpredAbstract

*

*

1..*

*

*

*

FIGURE 58 Meta model of the IS infological perspective

IS purposes mean IS goals for information processing and/or reasons for setting
up those goals. An IS goal is a desired state of affairs in the IS. IS reasons can be
functional or non-functional requirements for information processing, problems
in prevailing information processing, strengths and weaknesses in,
opportunities for and threats against existing or planned information
processing. Between the IS goals there are complex influence relationships and
refinement relationships.

In striving for the IS purposes, the IS actions use informational objects,
called IS objects, as inputs and produce IS objects as outputs. The range of
various types of IS actions is huge. An IS action can mean e.g. collecting,
storing, processing, transmitting, coding, encoding, arranging, locating,
discovering, interpreting, integrating, reviewing, testing, approving, editing,
etc.

From the action structures defined in Section 4.4.3 relevant structures from
the IS infological perspective are the decomposition structure and the control
structure. The decomposition structure splits IS actions into IS functions, IS
activities, IS tasks, and IS operations. Because the terms with which the IS
actions in the decomposition structure are referred to are varying, we do not
include them in the meta model in Figure 58. The control structure allows to
present sequence, selection and iteration relationships between the IS actions.

The IS actions are governed by IS rules. An IS rule is composed of IS
events, IS conditions, thenISActions and elseISActions. The IS rules can be
classified in many ways. First, there are dynamic and static rules. The dynamic
IS rules restrict or guide IS actions and IS events. The static IS rules restrict IS
objects. Examples of the IS rules are: back-ups of the files should be run once a

246

week; a social security number of a person cannot be changed; a salary of an
hourly paid employee is derived by the rule ‘Salary := number of hours x
hourly fee’. The first example is a business rule. The second rule is called an
integrity constraint (Elmasri et al. 2000). The last rule is called a derivation rule
(cf. Iivari 1989a).

An IS object is an informational object in the form that is free from any
representational and implementational aspects. An IS object can be transient or
permanent. A transient IS object lasts only a short time (e.g. a reply to a routine
request). A permanent IS object is valuable enough to “live” longer (e.g.
personnel information, vehicle information).

The IS objects are interrelated in many ways. They are composed of other
IS objects. Producing them is supported by other IS objects (cf. derivation of the
monthly salary from hourly fee and number of hours). An IS object can also be a
version of, a copy of, or an (predicate) abstraction from, another IS object.

6.3.3 IS Conceptual Perspective

The IS conceptual perspective aims to reveal the semantic contents of the IS
objects. This means that of those things in the OSIS that are signified by the IS
objects, the structure and behavior are brought out. The IS conceptual
perspective addresses the so-called deep structure of the IS (Wand et al. 1995b).

The OS is here seen as being composed of related things having states and
affected by state transitions (cf. Section 3.7). The structural view concerns the
states, and the dynamic view addresses the state transitions. In OS modelling
there are several approaches. Some of them are structural, such as the ER
approach (Chen 1976) and ORM approach (Halpin 1988; 2001), some other
cover both views, such as the object-oriented approach (Booch et al. 1999). We
prefer the ER approach to the ORM approach and other attribute-free
approaches, because we consider it important to separate between entities and
attributes. We want also to make a clear distinction between the static features
and the dynamic features of the OS, unlike in the object-oriented approach. The
meta model of the IS conceptual perspective based on the ER approach (the
structural view) and the state machine (the dynamic view) is presented in
Figure 59.

In the core ontology, thing was defined as a generic notion to mean any
phenomenon in reality. Likewise, the notion of a relationship means anything
that relates two or more things together. To emphasise the specificity of the IS
conceptual perspective and the OS, we introduce here another elementary
concept, called entity. An entity means any perceivable thing in the object
system with an independent existence (cf. Elmasri et al. 2000, 45). Only those
things that are relevant and “independent” enough to be signified by the IS
objects are regarded as entities. Examples of entities are John and Mary.

It would be better to introduce, instead of the generic notion of a
relationship included in the core ontology, a separate concept for relating the
entities. However, because in the ER approach (Chen 1976) it is customary to
use the term ‘relationship’ in this meaning, we do not want to make any

247

Entity

OSis transition

OSis event

OSis state

OSis construct

AttributeValue

OSRelationship

OSis behavior

*

*

*

*

1..*

1..*
postState

1..*
preState

*

*
characterizes1..*

*

characterizes

*
causedBy

*
triggers

1..*

2..*

isLinkedBy

* *

1..*

* *

* *

FIGURE 59 Meta model of the IS conceptual perspective

deviation in this case. However, to avoid possible confusions, we use the special
term ‘OS relationship’ to differentiate it from the core notion of a relationship.
Hence, an OS relationship between two or more entities means any relevant
connection, association or like (i.e. a relationship) between the entities. A
marriage between John and Mary is a relationship. All the abstraction
relationships (classification, generalization, composition, grouping) defined in
the abstraction ontology apply, of course, to the entities as well.

An attribute is a relevant predicate used to characterize an entity or an OS
relationship. A particular entity or OS relationship has one or more attribute
values for each of its attributes. For instance, 25 and 26 are ages of John and
Mary, respectively. In some cases, a particular entity or OS relationship may not
have an applicable value for an attribute. In such situations, a special value,
called null, is used.

An OSIS construct means a conceptual construct composed of specific
entities related to one another through OS relationships and characterized by
specific attribute values. An OSIS construct is a UoD construct defined in Section
4.4.4, here conceived from a more specific viewpoint. The notion allows us to
refer to complex structures in the OS with one term. The OSIS constructs are
here considered at the instance level.

An OSIS state means a state of the object system or its parts, composed of
OSIS constructs. An OSIS transition means a transition from one OSIS state, called

248

the pre-state, to another OSIS state, called the post-state. An OSIS transition can
involve entities (e.g. the “birth” of an entity), OS relationships (e.g. the divorce)
and/or attribute values (e.g. the quantity available). The transitions constitute
the potential OSIS behavior (cf. Section 3.8). OSIS transitions can be composed to
establish OSIS transition structures like those defined in the state transition
ontology (Section 3.7). An OSIS event means an event which may trigger an OSIS
transition from the pre-state to the post-state and which may be caused by
another OSIS state transition116.

6.3.4 IS Datalogical Perspective

From the IS datalogical perspective the IS is viewed, through representation-
specific concepts, as a context, in which IS actors work with IS facilities to
process data. Thus, the IS objects, seen as informational objects from the IS
infological perspective, are here considered to be data objects presented in some
non-formal, semi-formal or formal language(s). There are also special IS actions
which transform data objects from one form to another. No reference is made to
data carriers or other physical features of the IS context. The IS datalogical
perspective enables, however, to distinguish between human data processing
and computerized data processing. Due to these two related parts (i.e. HIS and
CIS), there is also a need to consider how the parts communicate and cooperate,
i.e. what is the user interface of a CIS.

The meta model of the IS datalogical perspective is presented in Figure 60.
The concepts and relationships of the HIS have been specialized from the
context ontology (Chapter 4). The CIS is conceptually very large. In this study it
is possible to introduce only a small number of its concepts. For the UI part,
both structural and behavioral aspects on a logical level are covered. Next we
define the concepts and relationships of the IS datalogical perspective, first for
the HIS, then for the UI and finally for the CIS.

A. Human Information System

The human information system (HIS) means a system in which human
beings have the only role in the accomplishment of the IS actions. From the IS
datalogical perspective, the HIS is seen as a context, in which HIS actions
process data objects, governed by HIS rules, to attain HIS purposes. Because the
HIS is a context, all the generic contextual concepts and constructs within the
aforementioned domains defined in Chapter 4 apply to it. For that reason, we
are not going to define all the concepts and relationships here but concentrate
on the most essential ones.

116 Note that some researchers (e.g. Iivari 1989a; Freeman et al. 1994) include also the

notion of an action in the OS. Because we want to make a clear separation between
the OS and the IS, all behavioral aspects of the OS are modeled through state
transitions.

249

HIS rule

HIS action

Dialog

nonDigital

CIS action

UI transition

UI state

UI data UI action comp.UI data comp.

UI component

Window

IS role

CIS rule

Transaction

Algorithm

Data object

Digital

1..*
responsibleFor

*
governs

*

*
input

*

*
output

1..*contains1..*

* **

1
resultsIn

1
precedes

UI event

*
causedBy

*
triggers

1..*

governs

*

governs

1..* 1..*

1..* 1..*

IS action

*

output

*

input

* *

1..*

*

operatesWith

HIS purpose

*

strivesFor

*

*

*

navigation

*

*

1..*

implements

1..*

1..*

1..*

presents

IS position

IS org.unit

IS organization

1..*

*

1..*

*

1..*

1

1

*

supervision

1..*

1..*

**

**

* *

FIGURE 60 Meta model of the IS datalogical perspective

A HIS action is an IS action carried out by a human IS actor. A HIS purpose is an
IS purpose, which concerns the HIS as a whole, or parts thereof. An IS role is a
collection of responsibilities, stipulated in terms of HIS actions. One IS role is a
user of the CIS. An IS position is a post of employment specified in terms of IS
roles. Between two IS positions, a supervisor and a subordinate, there is the
supervision relationship. An IS organization is an organization whose main
responsibility is to develop, manage and/or execute information processing in a
business organization. It is composed of one or more IS organizational units.

The HIS actions are governed by HIS rules with the ECAA structure. The
HIS actions are related to one another with generic action structures (i.e.
decomposition, control structures, and temporal structures), the problem
solving structure, and management-execution structure (see Section 4.4.3).

A data object is an IS object represented in some language. It can be in a
digital or non-digital form. Non-digital data means an IS object that is presented
in a language that can be interpreted by a human being. The HIS actions mainly

250

handle non-digital data. Digital data is in a digital form and can be read by a
computer.

B. User Interface

The support of the CIS to the users appears as services that a user requests and
receives from the system. Receiving services requires communication or
interaction between a user and the system. A user interface (UI) is a part of the
CIS which facilitates the interaction between the users and the CIS. From the IS
datalogical perspective, interaction means “what a user is able to do and what
the system does in response to the user’s stimuli” (cf. the logical level in de
Rosis et al. (1998, 101)). In the following we define the main concepts that are
used in the UI design at the datalogical level.

A dialog means an interaction between a user and the CIS, occurring
through windows. A window117 is a logical whole composed of UI components.
Windows are related with the navigation relationships. A navigation relationship
means a possibility for a user to move control from one window to another
window. A UI component can be a UI data component or a UI action component.
A UI data component is intended to display data to a user or to accept data from
a user (cf. a feedback tool in Jaaksi (1995, 1212). This data is called UI data.
Depending on whether UI data is handled by a CIS or a human being, it is
digital or non-digital data. A UI data component can be a title, a text, a data
field, a table, a picture, a graph, etc. A UI action component is intended to the
manipulation of the window and the control of the dialog (cf. a manipulation
tool in Jaaksi (1995, 1212). It can be a button, a menu, a slider, etc. The UI action
components are used to realize navigation among the windows. An UI action
component is implemented by performing one or more CIS actions governed by
CIS rules. A UI component can contain both UI data components and UI action
components. The HIS operates with UI components through HIS actions.

Interaction between the HIS and the CIS proceeds from one UI state to
another. A UI state is composed of those UI data, UI data components and UI
action components that are present at the certain time. A UI transition from one
UI state to another can be triggered by the HIS (i.e. an HIS action) or by the CIS
(i.e. a CIS action). UI events correspond to all those happenings that can trigger
UI transitions. For example, a UI pre-state can concern a window, which
contains the search condition ‘John Doe’ in a text field and Search, Cancel and
Clear buttons. After the Search button is pressed, the CIS searches for the data
concerning John Doe and displays it in the next window (the post-UI state).

C. Computerized Information System

A computerized information system (CIS) a system in which all data processing is
automated, that is to say, performed by one or more computer systems. Also

117 In a web-based application a web page corresponds to a window.

251

here the IS datalogical perspective reveals only those features that are not
related to the physical technology.

A CIS action means an IS action that is performed in the CIS. A CIS action
records, searches for, orders, merges, updates and/or deletes, i.e., processes
digital data. Some of this data is displayed as UI data through a UI data
component. Logically related CIS actions are assembled to form transactions. A
CIS action and a transaction are governed by CIS rules. Transactions,
represented in a formal language, are called algorithms.

6.3.5 IS Physical Perspective

The IS physical perspective considers the IS with all its physical aspects. It ties the
IS datalogical concepts and constructs to a particular organizational and
technical environment, showing how the IS looks like and behaves when it is
implemented. The IS contains one or three major parts, namely the HIS, and
possibly the CIS and the UI. For all the parts, highly detailed and realization-
dependent view is enabled. It is quite impossible for us here to address all those
details. Instead, we content ourselves with presenting an outline of the IS from
the IS physical perspective. After that we present the meta model of the CIS
(Figure 61) and define the concepts contained in it.

The IS roles are combined to form IS positions with organization-specific
responsibilities and authorities. For each position one or more IS human actors
are assigned. IS positions are structured to establish IS organizational units. The
HIS actions are organized according to the organization-specific management –
execution structures. They are also decomposed into detailed tasks and
operations, governed by specific HIS rules that are realized to suit the
organizational culture and practice. To non-digital data objects (e.g. reports,
forms and tables) suitable data carriers are attached and layouts fixed.
Resources are assigned to IS organizational units and allocated into parts
thereof.

The UI is composed of physical windows built up from physical UI
components; e.g. a command button, a radio button, a spin button, a check box,
a list box, a drop-down list box, a pop-up menu, and a tool bar. UI components
as well as transactions are realized through software components programmed
in one or more programming languages. For software a proper architecture is
specified and implemented. Digital data is structured and stored in data
storages. For data communication through data messages, communication lines
between nodes with compatible interfaces are established. Finally, all the
human actors, data and facilities are situated into specific locations.

The skeleton of the implemented CIS is composed of a hardware (HW)
architecture and a software (SW) architecture. A hardware architecture consists of
interoperable hardware. Hardware means physical equipment used in data
processing (e.g. workstations, servers printers, mass data storages) (cf. IEEE
1990). A software architecture is composed of compatible software (e.g. operating
systems, database management systems, application software). There are

252

Data storage

Layer

SW component

Application SW

SW architectureCommunication line

Data message

Data field

Record

Data baseData file

Protocol

Node

HW architecturePhysicalLocation

1..*

1..*

1..*

1..*

1..*
transmittedThrough

1..*

1..*

connects 1..*

1

1..*

1

1..*

1

situated

1..*

*

allocated

1..*
1

1..*

1..*

allocated

1..*
applies

Processor

Memory device

1..*

1..*

11

CIS

1..*

1..*

1..*

1..*

1..*

1..*

1..*

FIGURE 61 Meta model of the IS physical perspective covering a part of the CIS

several SW architecture types and styles (Buschmann et al. 1996, Bass et al. 1998)
that can be applied. On the basis of a layered architecture, an application software
is composed of SW components that are layered according to some basic
architecture model. Layers are related to one another with the black box strategy
or the while box strategy. In the former case, a component on a higher layer
only knows the interface of the called component on the next lower layer. In the
latter case, the component on a higher layer also sees the inner structure of the
called component. A SW component means an executable unit of code that
provides a physical black-box encapsulation of related services. Its services can
only be accessed through a consistent, published interface (Allen et al. 1998, 4).
Examples of SW components (of a database system) are stored procedures,
functions, data base triggers, UI components, etc

Hardware is organized into nodes according to the selected HW
architecture. A node is composed of e.g. memory devices, processors, printers
and displays. A software component is allocated into one or more nodes. Each
node is situated in some physical location. Communication from one node to
another takes place through data messages sent along communication lines.
During the communication, encoding and decoding of messages is performed
based on specified protocols. A protocol means a set of conventions or rules that
govern the interactions of processes or software components through
communication lines in a CIS or between CIS’s (e.g. TCP/IP, HTTP) (cf. IEEE
1990).

253

A data storage stands for all kinds of structured digital data (e.g. data file
and database). A database is structured according to some database model (e.g. a
hierarchical model, a relational model, an object-relational model, an object
model, a document model, XML-native model). Data files are decomposed into
records and further data fields. A data storage is allocated into some memory
device(s).

6.3.6 Relationships between the IS Perspectives

In the previous sections we defined the contextual concepts and relationships
within each IS perspective. Here, our purpose is to relate the IS perspectives,
first on a general level and then in more detail, through the contextual domains
involved by the IS perspectives.

The perspectives have been established along three dimensions. Based on
the dimensions and the related discussions in Section 6.1, we can sketch the
relationships between the IS perspectives on a general level as shown in Figure
62118. The common denominator between the IS systelogical perspective and
the IS infological perspective is the IS: moving from the former perspective to
the latter means that the IS, first seen as a black box, is opened in order to
expose IS purposes, IS actions, IS objects and relationships between them. In
this process, the principles of decomposition and specialization (by
contextualization) are mainly applied. Boxes inside the IS systelogical, IS
infological, IS datalogical and IS physical perspectives stand for informational
objects which signify conceptual constructs in the object system.

The IS infological, IS datalogical and IS physical perspectives are parts of a
hierarchical system of perspectives within which the relationships are based on
the same criterion of realization independence. Applying the criterion of
realization independence means carrying out the process of predicate
abstraction (cf. Section 3.9.3). And vice versa, moving downwards in the
hierarchy, conceptions about the IS first become representation-specific (cf. the
IS datalogical perspective) and then implementation-specific (cf. the IS physical
perspective). In parallel to realizing, concretizing by decomposition and
specialization is applied. In the last “stage” also instantiation is carried out.

Each of the aforementioned IS perspectives recognizes informational
objects. In the IS systelogical perspective they are called (informational) US
objects. According to the IS infological perspective, the information system
contains IS objects. Based on the IS datalogical perspective they are digital or
non-digital data objects. Data files, data records and data fields represent the
conceptions of IS objects from the IS physical perspective. In all those cases,
there are signifies relationships between informational objects and things
conceived as OSIS construct from the IS conceptual perspective. Through these
relationships it is possible to make sense of the semantic meanings of the
informational objects.

118 Note that because Figure 62 does not present a meta model we use arrows to show,

in a more illustrative way, the directions of the relationships.

254

IS systelogical
perspective

IS

IS infological
perspective

IS datalogical
perspective

IS physical
perspective

IS conceptual
perspective

signifies

signifies

abstractedFrom

decomposedFrom/
specializedFrom/
instantiatedFrom

decomposedFrom/
specializedFrom

decomposedFrom/
specializedFrom

realizedFrom

realizedFrom

abstractedFrom

abstractedFrom

abstractedFrom

signifies

signifies

FIGURE 62 A general view of the relationships between the IS perspectives

Still one type of a generic relationship can be found between IS perspectives. If
the OS overlaps with the US or the IS, there is abstractedFrom relationships
between the OSIS and the USIS, on one hand, and between the OSIS and the ISIS,
on the other hand. By this abstraction, most of the contextual aspects of the USIS
/ ISIS are ignored in order to establish OSIS constructs composed of entities, OS
relationships and attribute values. Let us consider two examples of the
abstractedFrom relationship between the OSIS and the USIS. If considered
relevant, US actors, US objects, US facilities and/or US locations can be
conceived as entities that are related via OS relationships corresponding to the
relationships in the USIS (viz. responsibleFor, occupiedBy, supports, performs
etc.). In the same way, OS transitions can be abstracted from the US actions. For
example, hiring and firing an employee affect on the OS state of a particular
employee.

Next, we consider the relationships between the IS perspectives more
closely through the contextual domains involved with the IS perspectives. An
elaborated view embracing the concerned contextual domains is presented in
Figure 63. Applying the IS systelogical perspective (the tool view) all the
contextual domains of the US context are recognized. The IS infological

255

Purpose Actor Action Object Facility Location Time

IS systelogical

Purpose Action Object

IS infological

Purpose Actor Action Object Facility Time

IS datalogical

Purpose Actor Action Object Facility Location Time

IS physical

Structural Dynamic

IS conceptual

realizedFrom/
instantiatedFrom

realizedFrom

abstractedFrom

abstractedFrom

signifies

derivedFrom

abtstractedFrom

signifies

signifies

signifies

realizedFrom

realizedFrom

derivedFrom

derivedFromdecomposedFrom

derivedFrom

realizedFrom/
instantiatedFrom

realizedFrom/
instantiatedFrom

realizedFrom/
instantiatedFrom

realizedFrom/
instantiatedFrom

realizedFrom/
instantiatedFrom

US

FIGURE 63 A detailed view of the relationships between the IS perspectives

perspective involves only the purpose, action and object domains of the IS
context. The IS conceptual perspective is on the most general level. It does not
divide the aspects of the OSIS into contextual domains at all. Instead, it
considers the OSIS constructs as states (i.e. structural features) and transitions
between the states (i.e. dynamic features). Compared to the IS infological
perspective, the IS datalogical perspective brings forward two new contextual
domains, the actor domain and the facility domain. Both of them are considered
on a general level. The most detailed view of the IS in all the contextual
domains is naturally got when looked at from the IS physical perspective.

In Figure 63 the relationships between the IS perspectives are depicted
with arrows (a) between the domains, (b) between a domain and a perspective,
and (c) between the perspectives. In the first case, the relationships are defined
on the basis of individual domains. In the second case, a thing in some domain
is argued to have a relationship with a system, either the USIS or the IS, seen as
a whole from a certain perspective. The arrows between the systems indicate a
more general connection between the concerned perspectives. To avoid

256

excessive complexity in the figure, some of the decomposition and
specialization relationships are omitted in Figure 63. Next, we make some
remarks on the relationships.

To start with, the concepts and the relationships within the domains of the
IS infological perspectives are derived from the ones within the corresponding
domains of the IS systelogical perspectives. A particularly important role in this
derivation is played by the informational US objects used in decision making or
operational actions in the US, because the US objects are exactly what the IS
should provide as information services. Following the infological approach
(Langefors et al. 1975; Lundeberg 1982) the informational US objects are
regarded as final outcomes of the IS from which IS actions and their inputs are
derived in a step-by-step manner. Contextual information for this derivation is
obtained from the knowledge about those US actions which utilize the US
objects and on the purposes for which the US objects are used. In parallel to the
derivation, IS purposes, IS actions and IS objects are decomposed into more
elementary parts. In this process, also more elementary concepts in the
hierarchical structures in the domains (cf. goal/means hierarchy, action
decomposition structures, object decomposition structure) are applied.
Furthermore, the business rules stated within the USIS can be applied to specify
IS rules. More grounds for the considerations from the IS infological
perspectives can be got from the aspects (e.g. requirements) related to the CIS as
a US tool. It should also be noticed that implications of the IS systelogical
perspective to the IS infological perspective also appear at a more general level.
The whole purpose of the IS is affected by the purpose of the USIS. For instance,
if the goal of an enterprise is to deliver the goods within two days to customers
living not further off than 100 miles, it implies that the IS should support nearly
on-line responses to the issued orders.

Second, the informational objects in the IS systelogical, IS infological,
datalogical and IS physical perspectives give a scope and basis for viewing the
OSIS from the IS conceptual perspective. If the OSIS overlaps with the USIS
and/or the IS, the overviews from the related perspectives can help unveil
static and dynamic features of the corresponding parts of the OSIS. Thus, the
relationship between the IS conceptual perspective and the other IS
perspectives is twofold: (a) informational objects signify OSIS constructs, and (b)
the IS conceptual perspective abstracts from the relevant parts of the USIS
and/or the IS.

Third, because the IS infological, IS datalogical and IS physical
perspectives are parts of the hierarchical system of perspectives based on the
realization-dependence criterion, for each domain type more concrete concepts
and relationships are deployed at lower levels of predicate abstraction.
Consequently, data objects are derived from information objects, IS actions are
divided into HIS actions and CIS actions, and temporal specifications of the IS
datalogical perspective are realized into more concrete specifications of the IS
physical perspective. Derivation is, of course, a very complicated process,
which follows strategies, approaches, principles, and techniques selected in an

257

ISD endeavor. As an example of these normative guidelines, we refer to Bailey
(1989, 189), who distinguishes between five strategies of allocation of IS actions
into an HIS or a CIS (Kueng et al. 1996, 104-105):
• Comparison allocation. Each IS action is analyzed and then compared with

established human and machine performance criteria.
• Leftover allocation. As many IS actions as possible are allocated to a

machine and the activities left over are done by humans.
• Economic strategy. The decision, man versus machine, is based completely

on financial assessment.
• Humanized task approach. The main goal of this strategy is to design

meaningful human jobs / roles (cf. socio-technical approach in Mumford
et al. (1979) and Mumford (1981)).

• Flexible allocation. Humans allocate activities in the HIS or in the CIS based
on their values, needs, and interests.

Proceeding into lower levels of predicate abstraction also brings forward new
domains. In the IS datalogical perspective some of the IS actions sketched in the
IS infological perspective are elaborated and combined to establish IS roles, IS
positions and IS organizational units in the actor domain. For the HIS the CIS is
seen as a tool, which belongs to the facility domain. In the IS physical
perspective, the concepts of the location domain are used to situate all the
structural things of the IS in their proper locations.

Progress from the IS infological perspective through the IS datalogical
perspective to the IS physical perspective is not just the application of the
principle of realization. The view of the USIS, formed by the IS systelogical
perspective, has a significant effect on design decisions on all the levels of
predicate abstraction. For example, decisions on the division of IS actions into
HIS actions and CIS actions, on assembling HIS actions into IS roles and IS
positions, and on forming HIS action structures, on a detailed level, are based
on contextual knowledge about the US. The effect of the IS systelogical
perspective becomes particularly important when moving to the IS physical
perspective, which ties the IS designs to concrete organizational and
technological settings.

6.4 Comparative Analysis of IS Perspectives

The IS/ISD literature provides a large variety of IS architectures (e.g. Zachman
1987; Sowa et al. 1992), IS frameworks (e.g. Olive 1983; Olle et al. 1988a; Iivari
1989a; van Swede et al. 1993), reference models (e.g. ISO 1996) and IS meta
models (e.g. Freeman et al. 1994) that contain, in one form or another, views,
perspectives and viewpoints to structure descriptions of the IS. Starting from
the early days, the ANSI/SPARC Study Group (ANSI/X3 SPARC 1975), for
instance, introduced the so-called ANSI/SPARC architecture for data bases,

258

composed of three schemas: an internal schema describing the physical storage
structure of the data base, a conceptual schema presenting the structure of the
whole database at a conceptual level, and an external schema describing a part
of the database that a particular user group is interested in. Langefors and
Sundgren (1975) distinguished between the infological viewpoint and the
datalogical viewpoint. Kerola and Järvinen (1975) specified the so-called PSC
model which is based on three main points of view: the pragmatic point of
view, the semantic point of view, and the constructive point of view. Welke
(1977) distinguished between the systelogical perspective, the infological
perspective, and the datalogical perspective. Iivari (1978) and Mustonen (1978)
elaborated the points of view in the PSC model further and defined the
pragmatic (P), input output (I/O), constructive (C), and operation (O)
viewpoints, which Iivari (1983) later combined into the so-called PIOCO model.
Gane et al. (1979) recognized the physical view, representing the current work
practice, and the logical view, representing technology-independent solutions.
Since those days, a substantial number of presentations have been published in
which the usefulness of perspectives has frequently been emphasized.

The purpose of this section is to make a short review and a comparative
analysis of the IS perspectives defined in frameworks, reference models,
architectures and the like in the IS/ISD literature. For simplicity we call those
presentations that specify perspectives, one way or another, the frameworks.
First, we specify the criteria for the selection of frameworks. Second, we set up
the objectives for our analysis. Third, we describe and analyze the IS
perspectives included in the frameworks from multiple viewpoints.

Overviews of the most prominent frameworks have already been given in
Chapter 1. For the analysis, we select those frameworks (a) which have been
developed for a comprehensive analysis and/or comparison of the concepts in
the fields of IS and/or ISD and (b) in which systems of perspectives have been
clearly specified. Some of the frameworks are detailed providing also concepts
within the perspectives, while the others only generally characterize the
conceptual domains addressed by the perspectives. The criteria set up above
are fulfilled in eleven frameworks. These are: Welke (1977), Olive (1983), Essink
(1986, 1988), Olle et al. (1988a), Iivari (1989a), Sol (1992), Sowa et al. (1992), van
Swede et al. (1993), Freeman et al. (1994), Avison et al. (1996)119 and ISO (1996).

Many of the frameworks presented in the literature were left out. We
ignored, for instance, frameworks, which are predecessors of some frameworks
already included in the analysis (e.g. Kerola et al. 1982), or alternatively, which
are significantly based on some framework included in the analysis (e.g. Punter
et al. (1996) is based on Essink (1986, 1988), and Evernden (1996) is based on
Sowa et al. (1992)). Some of the frameworks are too technical (e.g. ANSI/X3

119 Multiview by Avison et al. (1996) is actually a methodology, but because it does not

aim to provide a particular way of working neither a single set of techniques but
rather a contingency framework according to which the selections and
customizations of techniques are to be carried out for a project (cf. Watson et al. 1995;
Vidgen 2002), we regard it here as a framework.

259

SPARC 1975; Booch et al. 1999, 31) or domain-specific (e.g. Frank’s framework
(Frank 2002) is based on enterprise modeling and Tardieu’s framework (1992) is
aimed at process modeling) to be included in the analysis.

Our aim is to make (a) an overview of the perspectives in the frameworks
and of the dimension(s) with the criteria used to establish them, (b) a rough
comparative analysis of the conceptual contents of the perspectives, and (c) a
more detailed analysis of the concepts within the perspectives. For the third
part of the analysis we select only the most detailed frameworks. The first two
parts address the systems of perspectives generally (cf. the perspective ontology
in Section 6.1). In the third part we want to find out how the IS perspectives
defined in Section 6.3 compare to the perspectives in the frameworks in the
literature. This part of the analysis has importance also more generally, because
we did not make any comparative analysis for the context ontology. Hence, this
analysis also reveals how our context ontology, from which the IS perspectives
have been derived, compete with the frameworks in the literature.

6.4.1 Overview of the Perspectives

In Table 19 we present an overview of the perspectives of the selected
frameworks. The overview covers the dimension(s), the criteria by which the
perspectives have been derived and are interrelated, and the perspectives. In
the following we comment on the table with some remarks. The frameworks
will be outlined and their perspectives will be defined in the next part of the
analysis. Here, our discussion is based on the information in the table only.

The dimensions, along which the perspectives in the frameworks have
been established, are called “levels of abstraction” (Olive 1983; Essink 1988;
Iivari 1989a; Freeman et al. 1994), “design levels” (Sowa et al. 1992), “aspects”
(Olle et al. 1988a)," views" (Avison et al. 1996), "viewpoints" (ISO 1996), or "sub-
problems" (Sol 1992). van Swede et al. (1993) and Welke (1977) call them
”perspectives”, as we do.

The frameworks use different criteria to distinguish between and relating
the perspectives. Sowa et al. (1992) and van Swede et al. (1993) have based their
design levels / perspectives on views of stakeholders. With an analogy to the
construction of a building, Sowa et al. (1992) recognize five stakeholders. van
Swede et al. (1993) have reduced the number of stakeholders to three: those
concerned with the way the system supports the business, those concerned with
the use of the system, and those concerned with design matters irrelevant to
users. The view of the first role is further divided into two abstraction levels.
As a refinement of the well-known dichotomy of logical IS model and internal
IS specification, Essink (1986, 1988) has devised his levels of abstraction by
“grouping the design decisions according to their functional cohesion” (Essink
1986, 57).

Iivari (1989a, 327) has derived his levels of abstraction from abstractions
of the host organization, universe of discourse, and technology. The host
system constitutes the organisational context of the IS. The UoD gives the
propositional/ conceptual meaning of information in the infological model. The

260

TABLE 19 Overview of the frameworks and their perspectives

Framework Dimension(s) Criteria Perspectives
Welke (1977) Perspectives Changes in IS and/or its user-

subsystem should be
addressed from several
perspectives (ibid p. 150)

Systelogical
 perspective
Infological perspective
Datalogical perspective

Olive (1983) Levels of
abstraction

“The model at the highest
level is the most general and
those at the lower level are
more detailed” (ibid p. 63)

External level
Conceptual level
Logical level
Architectural level
Physical level

Essink (1986,
1988)

Levels of
abstraction

“..are classes of problems that
are relevant from a specific
view on IS’s” (Essink 1988,
356)”

Object system model
Conceptual IS model
Data system model
Implementation model

Olle et al.
(1988a)

Aspects Not clearly specified Business analysis stage
System design stage
Construction design
 stage

Iivari (1989a Levels of
abstraction

Derived from abstractions of
the host system, the UoD and
technology

Organizational level
Conceptual/infological
 level
Datalogical/technical
 level

Avison et al.
(1996)

Views “..necessary to form a system
which is complete in both
technical and human terms”

Human-activity view
Information view
Socio-technical view
Human-computer
 interface view
Technical view

Sol (1992)

Sub-problems Not clearly specified Systelogical problems
Infological problems
Datalogical problems
Technological
 problems

Sowa et al.
(1992)

Design levels Levels correspond to views of
specific stakeholders

Scope
Enterprise or business
 model
System model
Technology model
Components

van Swede et
al. (1993)

Perspectives Perspectives correspond to
views of specific groups of
people

Business perspective
Information
 perspective
Functionality
 perspective
Implementation
 perspective

 (continues)

261

TABLE 19 (continues)

Framework Dimension(s) Criteria Perspectives
Freeman et al.
(1994)

Levels of abstraction “..loosely corresponds
to the phases of
software development”
(ibid 287)

World level
Conceptual level
Design level
Implementation level

ISO (1996) Viewpoints

“..to focus on particular
concerns within a
system” (ibid 3.2.7)

Enterprise viewpoint
Information viewpoint
Computational
 viewpoint
Engineering viewpoint
Technology viewpoint

abstract technology describes the allocation of the functional components of the
datalogical model to the abstract technical resources. Welke (1977) has based his
perspectives on consequences that changes to the existing IS result in the object
system, the use of information, and the data processing sequences. Avison et al.
(1996) argue that their five views are needed to answer the vital questions of
users. The corresponding stages move from general to specific, from conceptual
to hard facts, and from issues to tasks. Freeman et al. (1994) compare their levels
of abstraction with the phases of software development. Sol (1992) has made his
division on the basis of the kinds of problems that must be solved during ISD.

Some frameworks give no explanation for the perspectives, nor apply any
explicit criteria. Olive (1983), for example, says that the analysis of ISD methods
has resulted in five levels of abstraction. The model at the highest level is the
most general and those at the lower level are more detailed (ibid p. 63). ISO
(1996) has aimed at “covering all the domains of architectural design” and
derived the viewpoints “from current distributed processing development”.

6.4.2 Detailed Analysis of the Perspectives

In this section we describe and analyse the perspectives of the frameworks in
more detail. Our aim is to compare the conceptual contents of the perspectives
in the frameworks. For this purpose, we use our system of perspectives as the
basis for the analysis. In Table 20 “strong” correspondences between our
perspectives and those in the other frameworks are marked with 'X' and
“weak” correspondences are indicated by 'x'.

Welke (1977) states that changes in the IS and/or its user-subsystem (i.e.
the US in our terminology) should be addressed from the following
perspectives: (a) systelogical perspective (How will changes to the existing IS
alter / facilitate changes in the affected object system?), (b) infological
perspective (How will changes to the existing IS alter/facilitate changes in the
use of information by individuals?), (c) datalogical perspective (How will
changes to the IS alter/facilitate changes in the data processing sequences

262

TABLE 20 Comparative analysis of the perspectives

Frameworks Syste-
logical

Info-
logical

Concept-
ual

Data-
logical

Physi-
cal

Welke (1977)
- Systelogical perspective
- Infological perspective
- Datalogical perspective

 X

 x
 X

 x

 x
 X

 x
 x

Olive (1983)
- External level
- Conceptual level
- Logical level
- Architectural level
- Physical level

 X

 x

 X

 X

 X

 X

Essink (1986, 1988)
- Object system modelling
- Conceptual information system
 modelling
- Data system modelling
- Implementation modelling

 x

 X

 X

 x
 X

 X

Olle et al. (1988a)
- Business analysis stage
- System design stage
- Construction design stage

 X

 X

 X

 X

Iivari (1989a)
- Organizational level
- Conceptual/infological level
- Datalogical/technical level

 X

 X

 X

 x
 X

 X

Avison et al. (1996)
-Human-activity view
-Information view
-Socio-technical view
-Human-computer interface view
-Technical view

 X

 X

 X

 X
 X

 X
 X
 X

Sol (1992)
- Systelogical problems
- Infological problems
- Datalogical problems
- Technological problems

 X

 X

 x

 X

 X

Sowa et al. (1992)
- Scope level
- Enterprise model level
- System model level
- Technology model level
- Components level

 X
 x

 X

 x
 x

 X

 X
 X

van Swede et al. (1993)
- Business perspective
- Information perspective
- Functionality perspective
- Implementation perspective

 X
 X

 x
 x

 x
 X

 X

 (continues)

263

TABLE 20 (continues)

Frameworks Syste-
logical

Info-
logical

Concept-
ual

Data-
logical

Physi-
cal

Freeman et al. (1994)
- World level
- Conceptual level
- Design level
- Implementation level

 X

 X

 X

 X

 X

ISO (1996)
- Enterprise viewpoint
- Information viewpoint
- Computational viewpoint
- Engineering viewpoint
- Technology viewpoint

 X

 X

 X

 X

 X
 X
 X

associated?). The perspectives are not clearly defined. As far as we interpret
them right, they differ considerably from our perspectives120. The systelogical
perspective in Welke (1977) addresses much larger part of reality than in our
case (cf. ‘object system’ in Welke (1977) means “a view of something (real or
abstract)” (ibid p. 149). The infological perspective in Welke (1977) covers also
“personalization of the new solutions to the individual (e.g. type of channel,
method of interaction, display more and format)” (ibid p. 156), that is to say,
representational and individual-specific aspects, which are included in the IS
datalogical and IS physical perspectives in our system of perspectives. The
datalogical perspective in Welke (1977) corresponds to our IS datalogical and IS
physical perspectives, though physical aspects are only vaguely visible in the
definition of the physical perspective in Welke (1977). The conceptual issues are
not explicitly discussed in the perspectives of Welke (1977).

Olive (1983) suggests a framework for the analysis of ISD methods, which
is based on five levels of abstraction. The levels are: (a) external level (What
information should the IS provide to the object system and what are the
functions and input/output flows between them?), (b) conceptual level (What
are the states of the object system, i.e. what to record into the data base?), (c)
logical level (What are the operational requirements of the IS?), (d) architectural
level (What is the overall architecture of the IS?), (e) physical level (What is the
physical structure of the data base and the detailed structure of each process?).
The external level covers the IS systelogical perspective and, to some extent,
considers issues of the IS infological perspective. The conceptual level
corresponds to our IS conceptual perspective. The logical level, architectural
level and physical level correspond to our three “lower” perspectives,
respectively.

120 Welke (1977, 162) mentions that the terms ‘infological’ and ‘datalogical’ have been

borrowed from Langefors et al. (1975). He argues that their meanings are only
slightly different from those of Langefors et al. (1975). On the bases of the definitions,
we would like to disagree with him.

264

Essink (1986, 1988) presents the MADIS (A Modelling Approach for
Designing Information Systems) framework, which is based on levels of
abstraction and a set of aspects. The characterizations of the framework differ,
to some extent, depending on a reference, so what follows is our synthesis of
the presentations in Essink (1986) and Essink (1988). The framework consists of
five levels of abstraction: (a) object system modeling (the IS is seen from the
point of view of the organization, which is called the object system, but also “it
answers the questions with regard to what phenomena in the real world
information is needed”, Essink 1986, 58), (b) conceptual information system
modeling (the IS is seen as a set of functional components with which the
information requirements should be fulfilled), (c) data system modeling (the IS
is considered as a data processing system), (d) implementation modeling (the IS
is viewed as a concrete system). Essink, who does not see any difference
between the USIS and the OSIS, uses the conceptual IS modelling level to mean
the IS infological perspective, including in it also aspects of user interface and
user groups. Object system modelling stands for some aspects within the IS
systelogical perspective and the IS conceptual perspective. The data system
modelling level and the implementation modelling level are counterparts of our
IS datalogical perspective and IS physical perspective, respectively.

Olle et al. (1988a) present a comprehensive framework for understanding
information systems planning, business analysis and design121. The framework
classifies design products and steps of the design process. It does not suggest
any explicit levels of abstraction. However, it provides meta models on three
levels corresponding to the stages in an IS life cycle: IS planning, business
analysis and IS design. For each stage, data oriented, process oriented and
behavior oriented perspectives are applied. Here, we examine how the two
lower stages as well as construction design correspond to our perspectives. IS
planning is omitted because it precedes the launching of an ISD project.
Business analysis means the study of the existing state of affairs in a given
business with the concepts such as organizational units, business activities,
business events, flows of information / material set, and semantics of the
information sets. System design means preparing a prescriptive statement
about an IS. This includes e.g. tasks carrying out business activities triggered by
menu selections and performed according to algorithms, constructs of the
relational model, and reports and screen forms used as an interface.
Construction design associates the designs with hardware and software
environment. The business analysis stage corresponds to our IS systelogical and
IS conceptual perspectives. The system design stage and the construction
design stage stand for the IS datalogical perspective and the IS physical
perspective, respectively. Interesting in the framework of Olle et al. (1988a) is
that it addresses the infological aspects of the IS with only a few concepts
(information/material set, flow) and also these concepts are used to exhibit

121 Construction design is also mentioned but not elaborated in the same way as the

other parts of the framework.

265

what material/information are used in business activities, not in information
processing.

Iivari (1989a) presents a conceptual framework for a “systematic
recognition, comparison and synthesis of different perspectives on the concept
of an information system”. The framework is based on the following levels of
abstractions: (a) organizational level defines the organisational role and context
of the IS. It contains two parts: the designed organisational context and the
application concept. (b) conceptual/infological level defines the
“implementation independent” specifications of the IS. It embraces three parts:
the universe of discourse (“part of reality of which the IS is concerned”), IS
specifications, and user interface. (c) datalogical/technical level defines
technical implementation for the IS. The organizational level is clearly the
counterpart of our IS systelogical perspective. The conceptual / infological level
corresponds to the IS conceptual and IS infological pespectives, except that
Iivari (1989a) addresses issues of user interface on this level. To our view,
considering user interface requires some decisions on allocations of IS actions
into either a HIS part or a CIS part. These decisions should not be done until the
IS datalogical perspective is applied. It should, however, be noted that for Iivari
(1989a) the IS is the CIS (see Table 16). The datalogical /technical level
corresponds to our IS datalogical perspective and IS physical perspective, but
only for the CIS.

In their Multiview approach Avison et al. (1996) distinguish between five
views on the IS. The views are: (a) human activity view (How is the IS
supposed to further the aims of the organization using it?), (b) information view
(What information processing function is the system to perform?), (c) socio-
technical view (How can the IS be fitted into the working lives of people in the
organization using it?), (d) human-computer interface (How can the individuals
concerned best relate to the computer in terms of operating it and using the
output from it?), and (e) technical view (What is the technical specification of
the system that will come close enough to meeting the identified
requirements?). The human activity view corresponds to the IS systelogical
perspective. The information view addresses issues relevant to the IS infological
and IS conceptual perspectives. The socio-technical view and the human-
computer interface view focus on human roles, positions, actions and
interaction with the CIS, meaning that they extend the IS datalogical and IS
physical perspectives.

Sol (1992) considers the ISD from the viewpoint of problem solving. He
distinguishes between four sub-problems related to way of thinking: (a)
systelogical problems that are concerned with the modeling of an object system
from an organizational approach, (b) infological problems that are concerned
with the data structures and processing required to produce the data, (c)
datalogical problems that concern the way and the form in which the data
processing system is realized, and (d) technological problems that concern the
technical resources used. The categorization of Sol (1992) comes closest to our
system of perspectives. However, Sol sees no difference between the IS

266

conceptual perspective and the IS infological perspective. Second, he considers
datalogical and technological problems in relation to the CIS only.

Sowa et al. (1992) refine the information systems architecture, originally
proposed by Zachman (1987), into the ISA framework with six columns and
five rows. The rows correspond to views of different stakeholders (i.e. planner,
owner, designer, builder, and subcontrantor). With an analogy to the
construction of a building, Sowa et al. (1992) distinguish the following design
levels: (a) scope (executives' view of the IS), (b) enterprise or business model
(i.e. the IS from an operational view, as it would appear to the people who work
with it in daily business routines), (c) system model (i.e. implementation-
independent view of the IS that reveals data elements and functions that
represent business entities and processes), (d) technology model (i.e. the view of
a builder which shows how to implement the IS in some programming
language or the like), and (e) components (i.e. detailed specifications of the IS
for the programmer who codes individual modules). In the ISA framework, for
each cell a set of concepts and relationships are also provided. Based on the
characterizations of the levels and the concepts attached to them we can make
the following observations. On the level of scope, aspects of the IS are
considered from the IS systelogical perspective. The enterprise model level
addresses aspects from the IS systelogical and IS conceptual perspectives. On
the system model level the IS is viewed from the IS infological and IS
conceptual perspectives. The two lowest levels correspond to the IS physical
perspective.

van Swede et al. (1993, 535) present a framework for contingent
information systems modelling. The framework consists of four perspectives
and nine aspects. The perspectives correspond roughly to views of specific
interest groups. The perspectives are: (a) business perspective (How is the
business done?), (b) information perspective (What information supply is
necessary to support the business?), (c) functionality perspective (What is the
external behavior of the IS?), (d) implementation perspective (What is the
internal functioning of the IS?). In the framework of van Swede et al. (1993) the
organizational issues are especially emphasized. The business perspective and a
major part of the functional perspective address issues that belong to the scope
of our IS systelogical perspective. The functionality perspective covers issues of
our IS infological and IS datalogical perspectives. Actually, van Swede et al.
(1993) include also some implementational aspects (cf. “If users decide that
implementation must be on a specific type of computer, such will be part of the
functionality specified” (ibid p. 539)). The framework does not provide any
perspective for conceptual aspects. The implementation perspective stands for
our IS datalogical and IS physical perspectives.

Freeman et al. (1994) present a meta-model, called the Global System
Model, of information systems to support reverse engineering. It is based on
four levels of abstraction: (a) world level (represents a real-world view of the IS
and functional areas of an organization), (b) conceptual level (represents an
implementation-independent, abstract view of the IS), (c) design level

267

(represents a functional decomposition of the computer-based information
system, including user interface aspects), (d) implementation level (represents a
physical view of the implemented software system). The world level with the
concepts, such as user goal, resource, activity and agent, correspond to the IS
systelogical perspective. The conceptual level addresses issues of the IS
infological perspective (cf. process and data structure) and the IS conceptual
perspective (entity, relationship, attribute). The design and implementation
levels stand for the IS datalogical and IS physical perspectives, covering the CIS
and user interface.

A joint standardization effort of the ISO and ITU-T (International
Telecommunication Union) has resulted in the Reference Model for Object
Distributed Processing (RM-ODB) (ISO 1996) that comprises a framework for
specifying architectures for distribution, interoperability and portability of
applications based on the object-oriented technology. The reference model
divides the application specification into five parts, corresponding to five
different, but related and consistent viewpoints. The viewpoints are: (a)
enterprise (e.g. business, roles and policies), (b) information (What does the
system deal with?), (c) computational (What does the system do?), (d)
engineering (How is the system distributed?), and (e) technology (How is the
system implemented?). In the reference model, the technical aspects of the CIS
are emphasised. The enterprise viewpoint is focused on the issues relevant in
the IS systelogical perspective. The information viewpoint contains elements of
the IS infological and IS conceptual perspectives. The three lower viewpoints
consider computational objects, sequences of their distributed interaction and
the choice of technology to implement that interaction. Their counterpart in our
system of perspectives is primarily the IS physical perspective.

We can draw the following conclusions from the above analysis. The
frameworks provide 3 – 5 levels, views, viewpoints, sub-problems, or
perspectives for the categorization of the aspects of the IS. For simplicity, we
call them the levels in the following. In the frameworks the upper levels are
more US-related and the lower levels are more technology related. The levels
between the extreme ends are defined using expressions with “independence”
from something (e.g. from “the object system” in Olive (1983), and from the
technology in Iivari (1989a)). There are some differences in the emphases and
focuses of the frameworks. In the frameworks of Welke (1977), van Swede et al.
(1993) and Olle et al. (1988a) the emphasis is clearly on the upper levels. They
use fine-grained levels for perceiving business issues and only one or no level to
address technological issues. The levels are supposed to be mainly applied in
the top-down order, although no explicit statements are given for that, except in
van Swede et al. (1993)122. IS requirements are commonly (e.g. Iivari 1989a;
Essink 1986; Essink 1988; Olive 1983) included in the topmost level, except in
van Swede et al. (1993) which provides a specific perspective, called Information

122 Welke (1977, 150) considers the top-down “approach” to be a natural ordering but

does not exclude any other order, provided that all the perspectives are applied.

268

perspective, for that purpose. Olle et al. (1988a) provides hardly any concepts
for describing infological aspects of the IS.

Conceptual issues are included in the topmost levels (as in Essink 1988,
and partly in Olle et al. 1988a) or as is the case more commonly, in the next
lower level. The framework of Olive (1983) is the only one, which provides a
special level for perceiving the conceptual aspects of the IS. van Swede et al.
(1993) seems not to consider IS conceptual issues at all. Iivari (1989a), Avison et
al. (1996), Freeman et al. (1994), Sowa et al. (1992) and Olle et al. (1988a) pay
special attention to user interface. Essink (1988) mentions it only incidentally,
and the frameworks of Welke (1977) and Sol (1992) are too general to recognize
it.

The frameworks, which contain a small number of levels, such as Iivari
(1989a), combine different aspects into single levels, with the result that the
criteria for the levels are not clear-cut. In some frameworks, the linguistic –
conceptual dimension is not fully recognized. In van Swede et al. (1993) it is
totally ignored. There are also differences in the numbers of perspectives
covering the realization dependence - independence dimension.

In our view, it is important to have separate perspectives for each set of
different aspects of the information system. Therefore, the IS systelogical
perspective is needed to consider the IS in relation to the US. The IS conceptual
perspective is necessary to address the conceptual contents of the IS objects.
Unlike Avison et al. (1996), Sowa et al. (1992), Sol (1992), Freeman et al. (1994)
and ISO (1996), we see it vital to clearly differentiate between the infological
perspective that represents the “linguistic world”, and the IS conceptual
perspective which stands for the “conceptual world”. On the realization-
independence dimension, at least three related perspectives can be clearly
distinguished. The first one (infological) is independent from representational
and realization-dependent aspects. The second one (datalogical) is independent
from realization-dependent aspects. The third one (physical) recognizes all the
concrete issues related to a specific realization. This last perspective, namely the
IS physical perspective, can be further divided, if necessary, into more specific
perspectives (cf. the OSI reference model by ISO (1984) and the RM-ODP
framework (ISO 1996)). That we have not thought necessary in this work.

6.4.3 In-Depth Analysis of the Concepts in the Perspectives

In this section we examine how the frameworks define and present the concepts
and their relationships contained by the perspectives. First, we divide the
selected frameworks into three classes:
• Class 1. Frameworks that provide comprehensive sets of defined concepts

and relationships, organized into levels and represented in meta models.
• Class 2. Frameworks that provide large sets of concepts and possibly

relationships that are defined, or at least characterized, and organized into
levels.

269

• Class 3. Frameworks that provide the definitions of the levels but for the
levels they provide only some concepts, possibly with no definitions.

From the eleven analyzed frameworks, four belong to the first class (Iivari
1989a; Olle et al. 1988a; Sowa et al. 1992; Freeman et al. 1994). Iivari (1989a) and
Olle et al. (1988a) provide the most comprehensive sets of concepts and
relationships, organized according to the levels / the stages and represented in
meta models. The concepts are clearly defined, and in Olle et al. (1988a) they are
also illustrated by examples. Two other frameworks in this class, Sowa et al.
(1992) and Freeman et al. (1994), also present meta models of the concepts and
relationships within and between the levels but the sets of the concepts are not
as large and the definitions of the concepts not as clear and explicit as in the
other frameworks in this class.

 The frameworks of Essink (1986, 1988), van Swede et al. (1993) and ISO
(1996) belong to the second class. Essink (1986, 1988) provides a large set of
concepts but in a rather unstructured manner. Only essential concepts are
defined. No explicit treatment of relationships and no meta model are
provided. The set of the concepts in van Swede et al. (1993) is somewhat
smaller, but as to the other aspects the framework is comparable to Essink
(1986, 1988). ISO (1996) gives strict definitions for most of its concepts but
makes only a superficial examination of the relationships.

Three of the analyzed frameworks, namely Welke (1977), Olive (1983) and
Sol (1992), belong to the third class, meaning that they provide the definitions of
the perspectives but do not do more than mention some of the essential
concepts. We have also included Avison et al. (1996) in this third class, because
though the number of the concepts is large they are not treated as a framework
that would make them comparable to the others.

To get a yet more detailed view on the frameworks, we make an in-depth
analysis of the four frameworks included in the Class 1. In Table 21 the concepts
of the frameworks are presented for comparison both with one another and
with our concepts. The concepts are classified into five categories according to
our perspectives. The numbers 1-4 attached to the concepts in the four

Legend in Table 21.

Olle et al. (1988a): Iivari (1989a):
1. Business analysis stage 1. Organizational level
2. System design stage 2. Infological / conceptual level
 3. Datalogical / technical level

Sowa et al. (1992): Freeman et al. (1994):
1. Business model 1. World level
2. Information systems model 2. Conceptual level
3. Technology model 3. Design level
4. Implementation level

270

TA
BL

E
21

C

om
pa

ra
tiv

e
cl

as
si

fic
at

io
n

of
 th

e
co

nc
ep

ts
 o

f t
he

 fr
am

ew
or

ks
 a

cc
or

di
ng

 to
 th

e
pe

rs
pe

ct
iv

es

 IS
 P

er
sp

ec
tiv

e
O

nt
oF

ra
m

e
O

lle
 e

t a
l.

(1
98

8a
)

Ii
va

ri
 (1

98
9a

)
So

w
a

et
 a

l.
(1

99
2)

Fr

ee
m

an
 e

t a
l.

19
94

)
IS

 S
ys

te
lo

gi
ca

l
U

S
pu

rp
os

e
U

S
en

vi
ro

nm
en

t
U

S
or

ga
ni

za
tio

n
U

S
or

g.
 u

ni
t

U
S

po
si

tio
n

U
S

hu
m

an
 a

ct
or

U

S
ro

le

U
se

r
U

S
ac

tio
n

U
S

ru
le

U

S
ob

je
ct

U

S
to

ol

U
S

re
so

ur
ce

In
fo

rm
at

io
n/

m
at

er
ia

l s
et

 (1
)

O
rg

. u
ni

t (
1)

Bu

si
ne

ss
 a

ct
iv

ity
 (1

)
A

ct
iv

ity
 p

re
co

nd
iti

on

(1
)

Fl
ow

 (1
)

Fl
ow

 p
re

co
nd

iti
on

 (1
)

Bu
si

ne
ss

 e
ve

nt
 (1

)
Bu

si
ne

ss
 e

ve
nt

co
nd

iti
on

 (1
)

O
rg

. a
ct

or
 (1

)
O

rg
. p

os
iti

on
 (1

)
U

se
r (

1)

C
re

at
or

/r
ec

ip
ie

nt
 (1

)
O

rg
. c

ha
nn

el
 (1

)
O

rg
. f

un
ct

io
n

(1
)

St
at

e/
st

or
es

 (1
)

M
at

er
ia

l/
in

fo
rm

at
io

n
(1

)
W

or
k

pr
oc

ed
ur

e
(1

)
In

st
ru

m
en

t (
1)

IS

 s
er

vi
ce

 (1
)

Ev
en

t (
1)

Si

tu
at

io
n

(1
)

Tr
ig

. c
on

di
tio

n
(1

)
O

rg
. a

ct
 (1

)
IS

 u
se

 a
ct

 (1
)

Bu
si

ne
ss

 fu
nc

tio
n

(1
)

Bu
si

ne
ss

 p
ro

ce
ss

 (1
)

Bu
si

ne
ss

 e
ve

nt
 (1

)
Bu

si
ne

ss
 p

la
n

(1
)

Bu
si

ne
ss

 o
bj

ec
tiv

e
(1

)
Bu

si
ne

ss
 re

so
ur

ce
 (1

)
Bu

si
ne

ss
 p

ro
du

ct
/s

er
vi

ce
 (1

)
Bu

si
ne

ss
 p

ol
ic

y
(1

)
Bu

si
ne

ss
 ru

le
 (1

)
Bu

si
ne

ss
 w

or
k

un
it

(1
)

Jo
b

po
si

tio
n

(1
)

Bu
si

ne
ss

 lo
ca

tio
n

(1
)

Bu
si

ne
ss

 c
ha

nn
el

 (1
)

Bu
si

ne
ss

 e
xc

ha
ng

e
(1

)
O

rg
. u

ni
t (

1)

G
oa

l (
1)

U

se
r g

oa
l (

1)

O
rg

. u
ni

t (
1)

A

ct
iv

ity
 (1

)
Re

so
ur

ce
 (1

)
A

ge
nt

 (1
)

Ex
te

rn
al

 in
st

itu
te

 (1
)

Ex
te

rn
al

 e
ve

nt
 (1

)

IS
 In

fo
lo

gi
ca

l
IS

 p
ur

po
se

IS

 a
ct

io
n

IS
 ru

le

IS
 e

ve
nt

IS

 c
on

di
tio

n
IS

 o
bj

ec
t

In
fo

rm
at

io
n

ba
se

 (2
)

In
fo

rm
at

io
n

ty
pe

 (2
)

IS
 fu

nc
tio

n
(2

)
In

pu
t i

nf
. t

yp
e

(2
)

O
ut

pu
t i

nf
. t

yp
e

(2
)

St
at

e
in

f.
ty

pe
 (2

)
D

er
iv

at
io

n
ru

le
 (2

)
IS

 p
ro

ce
ss

 (2
)

St
at

e
(2

)
St

at
e

tr
an

si
tio

n
(2

)
Ev

en
t (

2)

Sy
st

em
 p

ro
ce

ss
 (2

)
Sy

st
em

 o
bj

ec
tiv

e
(2

)
Sy

st
em

 p
la

n
(2

)
Sy

st
em

 e
ve

nt
 (2

)
In

fo
rm

at
io

n
re

q.
 (2

)
U

se
r v

ie
w

 (2
)

A
ct

io
n

(2
)

D
at

a
st

ru
ct

ur
e

(2
)

Pr
oc

es
s

(2
)

In
te

rn
al

 e
ve

nt
 (2

)

(c

on
tin

ue
s)

271

TA
BL

E
21

 (
co

nt
in

ue
s)

Pe

rs
pe

ct
iv

e
O

nt
oF

ra
m

e
O

lle
 e

t a
l.

(1
98

8a
)

Ii
va

ri
 (1

98
9a

)
So

w
a

et
 a

l.
(1

99
2)

Fr

ee
m

an
 e

t a
l.

(1
99

4)

IS

C
on

ce
pt

ua
l

O
S I

S c
on

st
ru

ct

En
tit

y
O

S I
S R

el
at

io
ns

hi
p

En
tit

y
ro

le

A
ttr

ib
ut

e
va

lu
e

O
S I

S s
ta

te

O
S I

S t
ra

ns
iti

on

O
S I

S e
ve

nt

O
S I

S b
eh

av
io

r

En
tit

y
ty

pe
 (1

)
Re

la
tio

ns
hi

p
ty

pe
 (1

)
A

ttr
ib

ut
e

(1
)

A
ttr

ib
ut

e
gr

ou
p

(1
)

V
al

ue
 c

on
st

ra
in

t
 t

yp
e

(1
)

En
tit

y
ty

pe
 (2

)
Ev

en
t t

yp
e

(2
)

Ti
m

e
in

te
rv

al
 ty

pe
 (2

)
A

ss
oc

ia
tio

n
ty

pe
 (2

)
A

ttr
ib

ut
e

(2
)

C
on

si
st

en
ce

 ru
le

 (2
)

A
ct

io
n/

op
er

at
io

n
ty

pe
 (2

)
Ev

en
t (

2)

St
at

e
(2

)
Tr

ig
. c

on
di

tio
n

(2
)

A
ct

io
n/

op
er

at
io

n
(2

)

Bu
si

ne
ss

 s
ub

je
ct

 a
re

a
(1

)
Bu

si
ne

ss
 fa

ct
 (1

)
Bu

si
ne

ss
 e

nt
ity

 (1
)

Bu
si

ne
ss

 re
la

tio
ns

hi
p

(1
)

Bu
si

ne
ss

 p
ro

pe
rt

y
(1

)
Bu

si
ne

ss
 id

en
tif

ie
r (

1)

D
at

a
en

tit
y,

 D
at

a
en

tit
y

re
l.

(2
)

D
at

a
at

tr
ib

ut
e,

 D
at

a
do

m
ai

n
(2

)
D

at
a

id
en

tif
ie

r (
2)

D

at
a

su
bj

ec
t a

re
a

(2
)

O
bj

ec
t r

ul
e

(2
)

In
te

gr
ity

 c
on

st
ra

in
t (

2)

En
tit

y
(2

)
Re

la
tio

ns
hi

p
(2

)
A

ttr
ib

ut
e

(2
)

St
at

e
(2

)

IS

D
at

al
og

ic
al

H

IS
 p

ur
po

se

H
IS

 a
ct

io
n

H
IS

 ru
le

IS

 ro
le

D

at
a

ob
je

ct

D
ia

lo
g

W
in

do
w

U

I c
om

po
ne

nt

U
I s

ta
te

U

I t
ra

ns
iti

on

U
I e

ve
nt

C

IS
 a

ct
io

n
C

IS
 ru

le

A
lg

or
ith

m

Tr
an

sa
ct

io
n

Ta
bl

e
(2

)
C

ol
um

n
(2

)
Ro

w
 (2

)
C

on
st

ra
in

t (
2)

Ex

te
rn

al
 fo

rm
 (2

)
D

is
pl

ay
 o

pt
io

n
(2

)
D

at
a

ty
pe

 (2
)

Ta
sk

 (2
)

A
cc

es
s

co
nt

ro
l (

2)

M
en

u
(2

)
M

en
u

hi
er

ar
ch

y
(2

)
A

lg
or

ith
m

 (2
)

Sy
st

em
 e

ve
nt

 (2
)

C
on

di
tio

n
(2

)

In
te

rf
ac

e
ob

je
ct

ty

pe
(2

)
Re

pr
es

en
ta

tio
n

(2
)

In
te

rf
ac

e
op

er
at

io
n

ty
pe

 (2
)

In
te

rf
ac

e
ac

t (
2)

A

bs
tr

ac
t m

ac
hi

ne
 (3

)
A

bs
tr

ac
t d

at
a

co
m

-
 m

un
ic

at
io

n
lin

k
(3

)
In

pu
t d

at
a

ty
pe

 (3
)

O
ut

pu
t d

at
a

ty
pe

 (3
)

A
lg

or
ith

m
 (3

)
D

er
iv

at
io

n
ru

le
 (3

)
Ev

en
t (

3)

C
on

tr
ol

 s
ta

te
 (3

)
C

on
tr

ol
 ru

le
 (3

)
D

at
a

pr
oc

es
s (

3)

C
on

tr
ol

 s
ta

te
 tr

an
si

tio
n

(3
)

W
or

k
gr

ou
p

(2
)

U
se

r r
ol

e
(2

)
Sy

st
em

 in
te

ra
ct

io
n

(2
)

Pr
oc

es
si

ng
 s

ite
 (2

)
C

om
m

un
ic

at
io

n
lin

k
(2

)
H

um
an

 in
te

rf
ac

e
ar

ch
ite

ct
ur

e
(2

)
Sy

st
em

 p
ro

ce
ss

 (2
)

Sy
st

em
 p

la
n

(2
)

Sy
st

em
 e

ve
nt

 (2
)

In
fo

rm
at

io
n

re
q.

 (2
)

U
se

r v
ie

w
 (2

)

Fu
nc

tio
n

(3
)

D
ia

lo
g

st
ru

ct
ur

e

 f
un

ct
io

n
(3

)
D

ia
lo

gu
e

fu
nc

tio
n

(3
)

O
bj

ec
t (

3)

U
se

r i
nt

er
fa

ce

ob

je
ct

 (3
)

U
se

r (
3)

(c

on
tin

ue
s)

272

TA
BL

E
21

 (
co

nt
in

ue
s)

 Pe

rs
pe

ct
iv

e
O

nt
oF

ra
m

e
O

lle
 e

t a
l.

(1
98

8a
)

Ii
va

ri
 e

t a
l.

(1
98

9a
)

So
w

a
et

 a
l.

(1
99

2)

Fr
ee

m
an

 e
t a

l.
(1

99
4)

IS
 P

hy
si

ca
l

D
at

a
st

or
ag

e
D

at
a

fil
e

D
at

a
ba

se

D
at

a
m

es
sa

ge

N
od

e
M

em
or

y
de

vi
ce

Pr

oc
es

so
r

H
W

 a
rc

hi
te

ct
ur

e
A

pp
lic

at
io

n
SW

SW

 c
om

po
ne

nt

SW
 a

rc
hi

te
ct

ur
e

D
at

ab
as

e
/

fil
e

(3
)

So
ftw

ar
e

/
pr

og
ra

m

 c
om

po
ne

nt
 (3

)

D
at

ab
as

e/
fil

e
(3

)
D

at
a

re
co

rd
 (3

)
D

at
a

el
em

en
t (

3)

K
ey

 (3
)

Re
co

rd
 re

la
tio

n
(3

)
Ph

ys
ic

al
 d

om
ai

n
(3

)
Sy

st
em

 ru
le

 (3
)

Tr
an

sa
ct

io
n

 (3
)

C
on

st
ra

in
t m

ec
ha

ni
sm

 (3
)

St
or

ed
 p

ro
ce

du
re

 (3
)

D
ia

lo
g/

ba
tc

h
jo

b
(3

)
A

pp
lic

at
io

n
sy

st
em

 (
3)

Se

rv
ic

e
pl

an
 (3

)
Se

rv
ic

e
ob

je
ct

iv
e

(3
)

Sy
st

em
 p

ro
du

ct
 (3

)
D

ev
ic

e
fo

rm
at

 (3
)

Sy
st

em
 u

se
r (

3)

U
se

r i
nt

er
fa

ce
 (3

)
U

se
r p

ro
fil

e
(3

)
Sy

st
em

 re
so

ur
ce

 (3
)

C
om

m
un

ic
at

io
n

lin
e

(3
)

Se
cu

ri
ty

 a
rc

hi
te

ct
ur

e
(3

)
C

om
po

ne
nt

 a
rc

hi
te

ct
ur

e
(3

)
In

te
rr

up
tio

n
(3

)
Ti

m
in

g
de

fin
iti

on
 (3

)

M
od

ul
e

(4
)

D
at

a
(4

)

273

frameworks indicate the stages (Olle et al. 1988a) or the levels (Iivari 1989a;
Sowa et al. 1992; Freeman et al. 1994) to which the concepts belong in the
original frameworks (see the legend below). In the following, we first make
some general remarks on the criteria used and decisions made in selecting and
classifying the concepts. After that we bring out our findings and conclusions
from this in-depth analysis.

We have selected all those concepts in the frameworks which are essential,
are treated as “entities with independence”, and are metamodeled in the
frameworks. This implies that we have ignored concepts that appear only in the
texts or are relationships in the meta models. The reason for this policy is our
aim to keep the lists of concepts short enough to enable their comparison in a
reasonable space. From the framework of Olle et al. (1988a) we have included
the concepts of only two stages (business analysis, systems design), because the
concepts of the construction design stage are not metamodeled. In the
framework of Sowa et al. (1992) the detailed meta model covers only three
columns and three rows (levels), originally introduced in the information
system architecture by Zachman (1987). Although we could have tried to divide
the concepts of three original rows into five levels of the extended framework
(Sowa et al. 1992), we decided, in order to avoid difficulties and risks in
subjective interpretations, to use the concepts of the three rows of the original
framework, extending the structure with some concepts suggested informally
by Sowa et al. (1992) for the three new columns (Motivation, People and Time).
From our perspective ontology, we have only included concepts of the CIS in
the IS physical perspective, to follow the view adopted also in the other
frameworks. We want, however, remind that the IS physical perspective
equally covers the concrete concepts of the HIS.

Olle et al. (1988a) and Iivari (1989a) divide the concepts on each stage /
level into three categories: in Olle et al. (1988a) according to data, process and
behavior perspectives, and in Iivari (1989a) according to structure, function and
behavior abstractions. In Sowa et al. (1992) the concepts are categorized into six
context-based aspects. These kinds of sub-categorizations can be expected to
have positive impact on their coverage in terms of contextual domains, as
compared to the framework of Freeman et al. (1994), which does not contain any
categorization. In contrast to the others, Iivari (1989a) also provides specific
instance-level concepts (e.g. Org. act, Action/Operation, IS process), in addition
to the type level concepts, within the behavior abstraction. We have included
these concepts in the table, although they are not comparable to the others.

After the general remarks on the frameworks we present findings and
conclusions from the analysis (in the order of the IS perspectives). The scope of
the IS systelogical perspective is addressed in various degrees in the
frameworks. In Olle et al. (1988a) only three contextual US domains are
addressed, namely the US actor, US action and US object domains. The
framework clearly applies the information/material flow approach to modeling
functional features of the utilizing system. Iivari’s (1989a) framework contains
the concepts of the US actor, US action, US object, and US facility domains. US

274

objects are considered on a general level and from the IS point of view (cf. IS
services). In addition to those presented in the table, Iivari (1989a) defines the
notions of organizational channel, situation and input/output flow. Sowa et al.
(1992) provide the largest set of concepts from the IS systelogical perspective,
covering all the US domains (the time domain is implicitly covered). In the
framework the US objects are addressed in two ways, first through the notions
of business resource and business product/service, and second through the
linguistic and conceptual notions (e.g. business fact, business subject area,
business entity). The latter notions belong to the IS conceptual perspective.
Freeman et al. (1994) suggest a framework which contains only eight concepts
but cover four US domains. The notion of resource is not defined, actually not
even mentioned in the text although included in the meta model, but
concluding from its relationships with other concepts in the Global System
Model the notion corresponds to US objects and US resources in our
terminology. The framework also introduces the notion of external institute that
has no counterpart in OntoFrame. The US tool-specific concepts are not
included in any framework, except in Iivari (1989a) and in OntoFrame.

The IS infological perspective is not covered at all in Olle et al. (1988a)123.
Iivari (1989a) applies the information flow approach to exhibit the functional
nature of the IS and the state-transition approach to describe the IS behavior. In
addition he introduces the instance-level notion of IS process, but no concepts
for the IS purpose domain. Sowa et al. (1992) provides notions for the IS
purpose domain (system plan, system objective, information requirement), the
IS action domain (system process) and the IS object domain (user view). The
framework of Freeman et al. (1994) contains only four notions addressing the IS
action domain and the IS object domain.

For the IS conceptual perspective, all four frameworks in the literature
provide the structural notions of entity (type), relationship (type) and
attribute/property. In Sowa et al. (1992), these concepts are defined and applied
at two levels: at the general level (business model) the framework operates with
business entities, relationships and properties, and at a more detailed level
(information system model) with the notions of e.g. data entity, data entity
relationship and data attribute. Dynamic features of the object system are only
addressed in Iivari (1989a), Sowa et al. (1992) and OntoFrame. It should be
noted that in OntoFrame the concepts are at the instance level whereas in the
other frameworks they are at the type level.

For the IS datalogical perspective, Iivari (1989a) provides the most
comprehensive set of concepts. Due to the fact that the IS is seen as a CIS in the
framework, the concepts are technology oriented. Human part is assumed to be
included in the host system (cf. the IS systelogical perspective). Also in Olle et
al. (1988a) the HIS is not addressed. Sowa et al. (1992) do not distinguish

123 In Olle et al. (1988a) the only concepts referring to infological aspects of the IS are

Information/Material set and Flow, but they are used to exhibit what
information/material the business processes use, not to describe what information
the IS processes.

275

between the IS infological and IS datalogical aspects of the IS. Therefore we
here include the concepts contained by the IS infological perspective as well as
the concepts related to the network and agent aspects (as they are known in the
information system architecture). Freeman et al. (1994) present only some
concepts that belong to the IS datalogical perspective, and none of them refer to
the CIS. All the frameworks provide concepts related to the user interface.

The concepts of the IS physical perspective are totally missing in the
framework of Olle et al. (1988a), resulting from the fact that the construction
design is not included in this analysis. Iivari (1989a) and Freeman et al. (1994)
provide only two specific concepts for this perspective. The technology model
in Sowa et al. (1992) contains a large set of concepts related to most of the
contextual domains within the IS physical perspective.

To summarize, Olle et al. (1988a) provide the least concepts, and the
concepts from the IS infological and IS physical perspective are totally missing
from this framework. Freeman et al. (1994) define a slightly greater number of
concepts, covering several IS perspectives and IS domains. In the framework of
Iivari (1989a) all other IS perspectives, except the IS physical perspective, are
well addressed. Sowa et al. (1992) provide most concepts, covering all the IS
perspectives and most of the IS domains.

How does OntoFrame compete with the others in the light of the
comparative analysis? Due to its dimensional structure, OntoFrame applies, for
each IS perspective, the predefined contextual domains, thus guaranteeing that
the largest possible coverage of relevant issues is reached and the perspective-
specific structures of the concepts can be easily interrelated. This becomes
evident when comparing the nature and number of concepts within each
perspective in Table 21. The clearly defined perspectives serve as a definitional
skeleton allowing to decide on which IS perspective each concept belongs to.
With the uniform contextual structure underlying the concepts it is possible to
relate the concepts of different IS perspectives to one another in a consistent
way. This helps moving from one IS perspective to another during the ISD. We
have derived the conceptual contents of the IS perspectives from the contextual
domains of the context ontology. To avoid the unnecessary redundancy with
Chapter 4, we have included in the IS perspectives only the most essential
concepts. From the five perspectives we have here concentrated on the IS
systelogical perspective, the IS infological perspective and the IS conceptual
perspective. For the other IS perspectives we have mainly provided only some
examples of the essential concepts. Despite these limitations our IS perspectives
were found to reflect more contextual features of the IS than most of the
analyzed frameworks.

276

6.5 Summary and Discussions

In this chapter we first defined the perspective ontology. It is a domain-specific
ontology, which provides concepts and constructs for conceiving,
understanding, structuring and representing things in information processing
contexts from pre-defined perspectives. According to the ontology, perspectives
constitute a system with strictly defined relationships along one or more
dimensions. Our ontology comprises five specific perspectives (i.e. the
systelogical perspective, the infological perspective, the conceptual perspective,
the datalogical perspective, and the physical perspective) that are established
along three orthogonal dimensions (i.e. the decomposition dimension, the
semiotic dimension, and the realization independence-dependence dimension).
The systelogical perspective views the IS in relation to its utilizing system.
Applying the infological perspective the IS is seen as a functional structure of
information processing actions and informational objects. The conceptual
perspective reveals the semantic contents of the IS objects. The datalogical and
physical perspectives provides concepts and constructs for viewing
representation-specific and implementation-specific features of the IS,
respectively.

Second, we specialized the perspective ontology onto four processing
layers and characterized the corresponding contexts on each layer from all five
perspectives. In addition, we elaborated the characterizations of the IS
perspectives by defining a large set of IS concepts from each of the perspectives.
The same will be done for the ISD perspectives and the ME perspectives in
Chapters 8 and 10, respectively. While the IS domains, i.e. the first part of the IS
ontology, are assumed to be implicitly derived from the contextual domains (cf.
Chapter 4), the IS perspectives defined here constitute the second part of the IS
ontology.

Third, we conducted a comparative analysis of IS perspectives suggested
in the IS/ISD literature. For the analysis we selected eleven frameworks
containing clearly defined perspectives. The analysis was carried out in three
parts. In the first part we made an overview of the frameworks, their
perspectives and criteria used in establishing perspectives. The overview
showed that the sets of perspectives are quite divergent and the criteria, if
explicated at all, are more or less ambiguous. In the second part we compared
the sets of perspectives in eleven frameworks with one another and with the
perspectives in our ontology. In conclusion, we stated that there are several
differences in the emphases and focuses of the frameworks. The frameworks of
Welke (1977), van Swede et al. (1993) and Olle et al. (1988a), for instance, clearly
emphasize the “upper” perspectives. They use fine-grained perspectives for
conceiving business issues and only one or no perspective to address
technological issues. The perspectives are commonly supposed to be mainly
applied in the “top-down” order. IS requirements are mostly (e.g. Iivari 1989a;
Essink 1986; Essink 1988; Olive 1983) included in the topmost perspective. Olle

277

et al. (1988a) provide hardly any concepts for describing infological aspects of
the IS. Conceptual issues are either included in the topmost perspective (as in
Essink 1988), in the next lower perspective (as in Avison et al. (1990) and
Freeman et al. (1994)), or ignored (as in van Swede et al. (1993)). The numbers of
perspectives vary between 3 and 5. Those suggesting three perspectives (e.g.
Iivari 1989a) combine different aspects of the IS into single perspectives,
resulting in that dimensions and criteria are not clear-cut anymore.

For the third part of the analysis we selected those comprehensive
frameworks in which the concepts are explicitly defined and modeled in meta
models. The frameworks are: Iivari (1989a), Olle et al. (1988a), Sowa et al. (1992)
and Freeman et al. (1994). The aim of this in-depth analysis was to investigate
what contextual concepts each of the perspectives of the frameworks contains.
We used the IS perspectives and the contextual domains of OntoFrame as the
baseline for the analysis. The analysis clarified and detailed the views obtained
from the other parts of the analysis.

In this work we have pursued an ontology, which is general enough to
cover the most common principles to establish and apply viewpoints for
conceiving information processing contexts on four processing layers. To
demonstrate its applicability in viewing the IS, we specified the IS perspectives
that comprise dozens of IS concepts and IS constructs. The number and scope of
the concepts of the perspectives are much larger than in any framework
analyzed, especially when taking into account that besides those presented in
the meta models in this chapter a lot more concepts can be easily derived from
the context ontology. More important than the number of the concepts is the
degree to which our ontology is able to reflect contextual features of the IS. In
this respect, the context ontology was found more coverable than the other
frameworks. We have put an emphasis on the IS systelogical, IS ontological and
IS conceptual perspectives. More work is needed to specify additional concepts
for the other IS perspectives. Likewise, the relationships between the IS
perspectives could be specified on a more detailed level with an intensive use of
the intra-domain and inter-domain relationships defined in Chapter 4.

The perspective ontology is useful in many respects. Besides being
specialized at the IS layer in this chapter, it can be specialized at the ISD layers
and at ME layers, as we will show in Chapters 8 and 10. The resulting ISD
perspectives will be used to categorize and relate the aspects of ISD to better
manage the complexity related to ISD. The ISD perspectives also provide the
conceptual basis for specifying the contents and structure of an ISD method. At
the ME layer, the specialized perspectives organize an ME effort into an array of
logically related stages, thus enabling the planning and execution of a process
of method engineering in a well-structured manner.

7 MODEL LEVEL ONTOLOGY

In any context encompassing complex problem solving, a human being tends to
activate and incorporate epistemological and analytical constructs that can help
him/her conceive, analyze, design and implement a solution to the problem at
hand. If one expects the same kind of context to appear repeatedly, a conceptual
machinery is set up to refine and integrate those concepts and constructs that
are experienced helpful in those contexts. These machineries are models.

The purpose of this chapter is to define the model level ontology that is
the fourth one among the contextual ontologies. The model level ontology
provides concepts and constructs for conceiving, understanding, structuring,
and presenting things in reality in terms of models within a system of model
levels. The concepts and constructs have been derived from the context
ontology, the layer ontology and the perspective ontology (see Figure 64). The
model level ontology is an essential ingredient of OntoFrame, which is aimed to
support the analysis, design and implementation of the ISD methods.

Core ontology

Model level ontologyLayer ontology

Perspective ontology

Context ontology

FIGURE 64 Focus of Chapter 7

279

The chapter is structured into four sections. First, we define the notions of
model and modeling, and present the main classifications of models. Second,
we extend our consideration to concern models at different levels. We also
derive classifications of models and meta models based on the contextual
domains and the perspectives. Third, we present a comparative analysis of
conceptions about systems of levels suggested in the ISD literature. Fourth, we
examine how the contextual ontologies are related to one another. We can do
this here because all the contextual ontologies have now been specified. The
chapter ends up with a summary and discussions.

7.1 Model and Modeling

Models serve as means to gain knowledge about relevant things. This is what
researchers, not only in the ISD field but also in nearly every branch of science,
agree on. Instead, conceptions about the nature, basis and form of a model
greatly diverge from one another. In this section, we first give some examples of
conceptions presented in the literature to bring out features that are seen
important in the notion of a model. Second, we present our definitions of basic
concepts related to a model and modeling. Third, we elaborate more specialized
concepts based on the ontologies defined in the previous chapters.

7.1.1 Basic Concepts

The notion of a model applies to many kinds of phenomena, e.g. things, styles
or even persons (cf. Webster 1989). A model can be a small copy of a ship or a
building, or it can be a preliminary representation of something, serving as the
plan from which the final object is to be constructed. It can be a piece of
sculpture in wax from which a finished work in bronze is to be made. Further, it
can be a style or design of a particular product (cf. a car model), or a person
who poses for an artist or who is employed to display clothes by wearing them.
Finally, it can be a generalized, hypothetical description used to analyze or to
explain something. The terms like 'example', 'pattern', 'architype' and 'standard'
are often used as synonyms for a model in a common language.

When considering various definitions given for a model in the literature,
we can recognize three issues on the basis of which their meaning can be
analyzed and compared. The first issue concerns the purpose of a model.
Minsky (1965) observes that a model is a thing, which can answer certain
questions about some other thing for a certain questioner. In the Frisco Report
(Falkenberg et al. 1998, 55) a model is defined as “a purposely abstracted, clear,
precise and unambiguous conception”. According to Rosemann et al. (2002, 78)
a model is …”created for the purpose(s) of a subject”. The second issue
concerns the relationship between a model and modeled phenomena. For
instance, van Gigch (1991, 91) argues that a model “stands at one level of
abstraction higher than the systems from which the properties and attributes

280

are obtained”. According to Wijers (1991, 6), a model “is a simplified, stylised
representation of a system, abstracting the essence of the system’s problem
studied”. Yourdon (1989), Avison et al. (1990, 452) and Firesmith et al. (1999, 31)
also refer to abstraction in stating that a model is used to ‘highlight’ or
emphasize certain critical features of a system, while simultaneously de-
emphasizing other aspects of the system. The third issue concerns the nature of
a model. Some researchers regard a model as a conceptual thing. Jayaratna
(1994, 242), for instance, concludes that a model “is a complete and coherent set
of concepts, which can underpin our understanding and actions”. Some others
argue that a model is a linguistic thing. Krogstie (1995, 476), for instance,
defines a model to mean “an abstraction externalized in a language”. Rosemann
et al. (2002) define a model to be ”a representation of a relevant part of the real
world”.

The issues discussed above reflect three viewpoints to the notion of a
model. The viewpoints are teleological, semantic and semiotic. We argue that a
definition of a model should always highlight aspects from these three
viewpoints. What we do next is present a general definition for the notion and
then specify it further from the viewpoints. Generally speaking, a model is a
thing that is used to help or to enable the understanding, communication,
analysis, design, and/or implementation of some other thing to which the
model refers. To specify it further, we first say that a model is always produced
for some specific purpose (Teleological viewpoint). Its value comes about from
the benefits it brings to its users. It may help the users better understand reality,
design options for changes, foresee consequences of changes, reason on
information and knowledge carried by the model, etc. (cf. Kangassalo 2002, VI).
Second, a model can be seen as a perception and an abstraction of certain things
in reality (Semantic viewpoint). Perception and abstraction are enacted and
guided by the intended purposes and the applied point of view (cf. the UoD in
Section 3.8). Third, a model can appear in one of three forms, namely as a
conceptual construct, as a linguistic expression, or as a physical construct
(Semiotic viewpoint).

Implied from the semiotic viewpoint, we distinguish between a concept
model, a model denotation and a physical model124 (see Figure 65). A concept
model is composed of concepts and conceptual constructs referring to certain
things in reality. To enable the communication about a concept model, it has to
be represented in some language. A precise and unambiguous representation of
a concept model in some language is called a model denotation (cf. Falkenberg et
al. 1998, 55). A physical model consists of physical parts, which, as an organized
whole, resemble some other thing(s) (e.g. small copies of airplanes or ships).
The physical models are also called the empirical models or the analog models.
To differentiate the physical models from the others, we call the other models
the linguistic models. In this study we consider only the linguistic models.

124 This arrangement is revised from the taxonomy originally suggested by Bertels et al.

(1969) and Dietz (1987).

281

When it is not necessary to make the distinction between a concept model and a
model denotation, we use the generic term ‘model’.

Concept model

Model denotation Physical model/
thing

transforming

conceptualizingrepresenting

constructingtranslating

implementing

FIGURE 65 Main types of models and modeling actions

Figure 65 also presents the main actions of producing models of three kinds (cf.
Dietz 1987; Brinkkemper 1990). The physical models are constructed from the
physical things by moulding, building or engineering. The concept models can
be produced in two ways: (a) by perceiving and conceptualizing the relevant
features of the physical thing(s), or (b) by transforming from some other concept
model(s). The model denotations are produced (a) by representing concept
model(s) by signs of some language, or (b) by translating them from some other
model denotation. A model denotation can be implemented as a physical model.
An example of the implementation of a model is a CASE tool. The whole
process of yielding an externalized model denotation for a certain purpose is
called modeling.

7.1.2 Classifications of Models

The models are classified in numerous ways in the literature. Shubik (1979), for
instance, distinguishes between verbal, analytic or mathematical, iconic,
pictorial or schematic, and simulation models. Gigch (1991, 125) divides the
models into explanatory, hypothetical, experimental, predictive, innovative,
and epistemological models. Our intention is to produce much more
comprehensive and structured classifications. We distinguish between three
contexts that are related to a model. The contexts are: (a) the modeling context,
(b) the modeled context, and (c) the model utilizing context125. For instance, a
model of an electric system for a building (the modeled context) is designed by
an engineering company (the modeling context) to support the construction

125 This division into three kinds of contexts corresponds to the categorization into the

epistemological, ontological, and social context questions related to the paradigmatic
assumptions of data modeling in Hirschheim et al. (1995, 156-157).

282

work of the electric system (the model utilizing context). In the above case, the
contexts are mainly separate. In information system development (the modeling
context), a model is built about an information system (the modeled context)
with the aim to guide information processing in the information system (the
model utilizing system). In this case, the contexts are more coupled with one
another. In the following we consider the contexts one by one in order to
recognize and define more refined concepts related to a model (see Figure 66).

Modeling context
Model utilizing context

 Modeled context

FormalSemi-formalInformal

Objective modelInter-subjective modelSubjective model

Model

Structural model

Dynamic model

Instance model

Type model

Meta model

Meta meta model

Prescriptive model

Descriptive model

Technique

Description technique Processing technique

FIGURE 66 Classifications of the models within three contexts

The modeling context means a context the purpose of which is to produce a
model for a model utilizing context. We already recognized three types of
models and six types of processes of modeling. On the basis of the language
used to represent a model, we categorize the models into informal models,
semi-formal models, and formal models (cf. the categorization of the languages
in Section 3.6). Informal models, also known as free models (Wijers 1991, 15), are
restricted in their structure only by the modeler’s imagination. Typical
examples are verbal and pictorial models (e.g. rich pictures in Checkland 1981).
Informal models are less accurate but more flexible and subtle than the other
models. Semi-formal models, like diagrams, tables, matrices and structured texts,

283

are constrained by the syntax of the language(s). Formal models are represented
in a formal language, such as a programming language, or by logical and
mathematical constructs with rigorously defined syntax and semantics.
Independently of the level of formality, the models can be classified by their
presentation style into graphical, matrix, textual, tabular, or form based models.
The more formal the models are, the larger the portion is for which the
computerized tools can serve as support in manipulation and reasoning from
them.

On the basis of actors involved in modeling, we can distinguish between
subjective models, inter-subjective models, and objective models. As a single
actor conceives reality in an individual manner, it is natural that the outcome of
modeling process reflects the modeler’s subjective conception about the subject
matter. Depending on an abstraction level and a language used in modeling,
subjective models about the same things in reality can substantially diverge from
one another. Modeling through sharing the conceptions within a community
and negotiating on them yields an inter-subjective model. In some very rare
situations, we can consider a model to be objective in the sense that there is no
room for differing interpretations (e.g. a formal model of the Euclidean space).

The modeled context is a context which a model is about. The models can be
categorized here according to which kinds of concepts they are composed of.
First, the models are categorized into structural models and dynamic models.
Structural models are composed of concepts that refer to static phenomena in the
modeled context. The structure may concern information (e.g. ER model (Chen
1976)), a social organization (e.g. organisational chart (Ouchi 1981)), software
system (e.g. application architecture (Booch et al. 1999)), hardware, or any other
part of the organizational infrastructure. Dynamic models are composed of
concepts that refer to the behavior in, or the evolution of, the modeled context
(e.g. DFD model (Yourdon et al. 1979); action diagram (Jackson 1983); activity
diagram (Booch et al. 1999)). The concepts widely used in the dynamic models
are activity, process, event, trigger, and state transition (cf. Sol et al. 1992).

Second, we can apply abstraction by classification to divide the models
into instance models and type models126. An instance model is a model, which is
mainly composed of concepts that are instances of the concepts of the other
model, the type model. For example, an ER model contains concepts like Entity
type, Relationship type and Attribute. The corresponding instance concepts,
included in an instance model (called an ER schema), may be Person, Marriage,
and Age. There are also models that consist of concepts that are types of the
concepts in a type model. We will consider them in Section 7.2.

Modeling is guided by the knowledge on the intended utilization of the
resulting model. Thus, the model utilization context is of vital importance to
modeling. Modeling may aim, for instance, to help us understand complex
phenomena in reality, to design changes in reality, to foresee consequences of
those changes, etc. Modeling may also aim, through mathematical, statistical,

126 The Frisco Report (Falkenberg et al. 1998, 57) uses the terms ‘extensional’ and

‘intensional’ models, correspondingly.

284

axiomatical, etc. machineries used in the models, to facilitate translatability,
interpretability, verifiability, optimizability, traceability, etc. of the models.

Based on the primary purpose of the utilization, models can be divided
into descriptive models and prescriptive models (cf. McChesney 1995; Pohl
1996; Ramesh et al. 2001; Rossi et al. 2003)127. Descriptive models, like traceability
models, are used to portray or predict the relevant features of the modeled
context to support the analysis of the existing reality or the design of the future
reality. Prescriptive models are conceived to be sets of normative statements,
which specify what is permitted, forbidden or obliged in certain situations. The
prescriptive models can comprise plans, rules and/or commands (cf. Section
4.6.4). There is an important ontological difference between the descriptive
models and the prescriptive models. The descriptive model should match, at a
given level of abstraction, the modeled context. If it fails to do so, the model is
false. In contrast, if the matching between the prescriptive model and the
modeled context fails, corrective actions are required to get the modeled context
to fit the prescriptive model. The descriptive models can be further divided into
explanatory, hypothetical, experimental, predictive, innovative, or
epistemological model in the dimension of knowledge inquiry and acquisition
(Gigch 1991, 125).

A prescriptive model aimed to guide the behavior in the modeled context
is called a technique. It is a precise programme of action leading to a desired
result (cf. Checkland 1981). There are two kinds of techniques: description
techniques and processing techniques. A description technique is a technique to
create a model and represent it as a model denotation (e.g. diagramming
technique (Martin et al. 1985)). A processing technique is a technique to create,
transform, translate, analyze, validate and/or verify one or more models.
Examples of processing techniques are the normalization technique (Codd 1972)
and the affinity analysis technique (Martin 1982). A technique may be
composed of procedures and guidelines. A procedure is an explicitly specified
manner of proceeding in an action or process (cf. Webster 1989). A guideline is
any advice or guide to reach a goal (cf. Webster 1989). There are many
categorizations for guidelines: e.g. minor guidelines, template guidelines, and
style guidelines (Anda et al. 2001).

Let us illustrate the difference between the descriptive model and the
technique with the ER model (Chen 1976). The model is composed of concepts
and constructs for abstracting and structuring the modeled context. It does not
provide the modeling context with instructions concerning actions, actors, or
facilities of modeling. There are special conceptual modeling (CM) techniques
(like the one in Benyon 1990) that prescribe how to apply the ER model to
produce an ER schema. The concepts in the ER model refer to the modeled
context, whereas a CM technique comprises concepts and rules that refer to the
modeling context.

127 Lonchamp (1993) distinguishes still another type of models, the proscriptive models

(descriptions), which state what is not allowed.

285

Information system development needs several models and techniques. To
facilitate their integrated use, they are composed to form a whole called a
method. A method also is a model, prescriptive on one part and descriptive on
the other part. Guided by a method, ISD proceeds, step-by-step, in sketching,
specifying, elaborating, transforming, validating and verifying IS models on
several levels of abstraction. It ends up with the implementation of those
organisational and technical changes that have been described by the models
and seen beneficial. In Chapter 9 we elaborate further the notion of a method
from what has been said above.

To summarize, the notion of a model is always associated with three
contexts, the modeling context, the modeled context and the model utilizing
context. This basic division becomes visible in the definitions and classifications
of the models. This same division is also vital to the quality criteria defined for
the models (cf. Krogstie 1995). In the next section we will discuss models that
are composed of meta concepts, meta meta concepts, etc. All that has been said
about the models in this section holds for those models as well.

7.2 Levels

In Section 3.4 we defined the semiotic ontology distinguishing between three
kinds of things: concepts, signs and referents. In Section 3.5 (the
intension/extension ontology) the notions of an instance concept and a type
concept were defined. Grounding on these ontologies we will here first define
the notions of a meta concept and a meta level and from them derive the
notions of a meta model and a model level ontology. At the end of this section,
we will also present classifications for the meta models based on the
classifications of models, contextual domains and perspectives.

Let us first consider the arrangement of three levels in Figure 67. On the
lowest level, known as the instance level, the sign ’John’ signifies the concept
John, which in turn refers to the referent ”John”. John is assumed to be a
concrete instance concept. On the next level, called the type level, the sign
‘Person’ signifies the concept Person that refers to all the possible persons
(“Persons”). Person is a concrete type concept. Its extension contains the
referred persons. There is the instanceOf relationship between the concepts
John and Person.

Now suppose that in another context Person is considered an instance
concept for some type concept, e.g. for Entity type. In this case we can
distinguish the third level, on which the sign ‘Entity type’ (or the rectangular in
a graphic notation) signifies Entity type that refers to the referent things, called
Entities. Person is an instance of Entity type, which is called a meta concept for

286

Entity type

'Entity type' Ø

Person

'Person' "Persons"

"John"'John'

John

refersTo

instanceOf

signifies

signifies

signifies

refersTo

refersTo

instanceOf

Conceptual
extension

Extension

Extension
has

has

has

equals

memberOf

memberOf

equals

Meta level

Type level

 Instance level

FIGURE 67 Concept levels

John. To put it more precisely, a meta128 concept is a concept an instance of
which is a type concept for some other instance concepts. The meta concept tells
something about the concepts (Bergheim et al. 1989, 272). Correspondingly, the
level of meta concepts is called the meta level.

Let us have a closer look at the relationships between the concepts at the
type level and the concepts at the meta level. According to its intensional
definition, Entity type defines “a set of entities that have the common
attributes” (Elmasri et al. 2000, 49). Entity means a thing in reality, having an
independent existence. Person is a proper instance of Entity type. Other
possible instances of Entity type are Copy, Book, Loan, Reservation etc. Let us
look at the concept of extension at each of the levels. At the lowest level, the
extension of John is ”John”. At the type level, the extension of Person is a set of
all possible persons, including “John”. Entity type is an abstract concept with
no concrete referents. Therefore at the meta level there is no (real) extension.
However, we can say that Entity type has the conceptual extension (see the
definition of the conceptual extension in Section 3.5) that means all those type
concepts that apply to the intensional definition of the meta concept Entity

128 Meta is a Greek prefix meaning ’after’, ‘along with’, ‘beyond’, ‘behind’ (Webster,

1989).

287

type129. Implied from the above, we can state that there is the memberOf
relationship between Person and the conceptual extension of Entity type. This
view brings out the manifestation of the vertical shift of the semiotic framework
(see the horizontal shift in Section 3.4), meaning that a thing that is seen as a
concept in one context can be seen as a referent in another context (cf. Sowa
2000, 194).

In Figure 67 the three concept levels are distinguished. A concept level is
composed of concepts between which there are no instanceOf relationships. In
fact, there may be still more levels. Above the meta level, there can be the meta
meta level, above which there may be the meta meta meta level, and so on. At
the lowest level, called the root level, the concepts are usually concrete and
individual. At the type level, the concepts are generic, often concrete. At the
meta level and at the levels higher than that, the concepts are always abstract
with no real extension. Concept levels constitute a hierarchy, which we call a
system of concept levels.

In the previous section, we defined an instance model and a type model.
Now we can define a meta model. A meta model is a model that is composed of
meta concepts. A meta model is always an intensional model (Falkenberg et al.
1998, 58). Like the concepts, also the models with the instanceOf relationships
between one another constitute a hierarchy of levels, which we call a system of
model levels. A model level is composed of models that comprise concepts on the
same concept level. We distinguish between the following model levels: the
instance level, the type level, the meta level, and the meta meta level. Besides
the instanceOf relationships, the levels are also related in another way: a model
on a higher level describes / prescribes models on the next lower level.

Now we are in the position to define the notion of a model level ontology.
The model level ontology provides concepts and constructs for conceiving,
understanding, structuring, and presenting things in models within a system of
model levels. Figure 68 presents the main part of the model level ontology. The
ontology also contains those specialized concepts that are included in the
classifications in Figure 65 and Figure 66.

To have a more concrete conception about the model levels, let us consider
the following example. At the root level, there is a database that is an
extensional model of the relevant features of the object system. At the next
level, the type model level, there is an ER schema, which describes / prescribes
the allowed structure and contents of the data base. The concepts in the data
base are instances of the type concepts in an ER schema. At the highest level,
the meta model level, there is the ER model, which in turn describes /
prescribes the allowed structures and contents of the ER schemas.

129 The term ’conceptual extension’ in exactly this meaning is used in the IS/ISD

literature. Hautamäki (1986, 37) defines the notion to be ”the set of concepts to which
a given concept is a characteristic. Bergheim et al. (1989) come close to our concept
with their definition: If ”X” is an expression whose intension is a meta-concept, then
the concept is a member of the extension of ”X” (ibid p. 293).

288

S. of model levels

Model level

Meta level

Type level

Concept model

Meta meta levelModel

Instance level

Model denotation

1..* 1..*

1
belongsTo

1

1..*

representedAs Language
1..*

representedIn

1..*

1..*

FIGURE 68 Main part of the model level ontology

The selection of the root level determines what the model levels contain. Instead
of the data base, we could regard an ER schema to be at the root level. In that
case, the meta model would be a model which describes/prescribes the
concepts and constructs of the ER model. In the previously considered system
of model levels, this model would be called a meta meta model.

In the literature there are three different approaches to define a system of
meta levels: (a) the model-based approach, (b) the language-based approach,
and (c) the technique-based or the method-based approach. In the model-based
approach the levels in the system are derived from the instanceOf relationships
between the concepts within the models at two adjacent levels in the hierarchy.
This kind of approach is applied by e.g. Bergheim et al. (1989, 272), Jarke (1992),
and OMG (2002). Also we have applied the model-based approach as seen
above. In the language-based approach the system of meta levels is established for
the languages such that a language used to present another language is called a
meta language. A meta language, in turn, is represented in a meta meta
language, and so on. The meta level hierarchy continues upward until, at some
level, a self-descriptive language is used, i.e. a language is reached that is
sufficiently expressive to be used to formulate its own rules (Falkenberg et al.
1998, 58). The third approach to define the meta levels is called the technique-
based approach or the method-based approach. The domain in the approach is
ISD work or part of it (e.g. IS modeling like in Wijers (1991) and use of a
technique in Brinkkemper (1990)). Brinkkemper (1990, 29), for instance, defines
a meta model to be a model of a modeling technique. The purpose of this
approach is commonly to produce a structural framework for an information
base of method knowledge (e.g. Harmsen 1997) or project knowledge (e.g.
ConceptBase in Jarke (1992)).

289

Next, we show how the views of the model-based approach and the
language-based approach are related to one another. The key issue in relating
the views is the fact that each language used for representing a model has a
conceptual foundation consisting of a set of basic concepts and a set of rules, in
other words, an abstract syntax (see Section 3.6). This conceptual foundation
may also be viewed as a model, called a meta model (Falkenberg et al. 1998, 58).
To illustrate this we present the levels of models and the levels of languages in
the same figure (see Figure 69)130.

L 0 IS process IS data

ISD process IS model
denotationIS model

Meta model Language Language denotation

Abstract syntax Concrete syntax Semantics

instanceOf

instanceOf

Meta meta model Meta language Meta language denotation

Abstract syntax Concrete syntax Semantics

Meta model denotation

representedAsrepresentedAs

representedIn

representedAs

Meta meta model denotation

instanceOf

representedIn

representedAsrepresentedAs

descr / prescr

descr / prescr

descr / prescr
representedIn

 L1

L2

L3

equals

equals

FIGURE 69 Levels of models and languages

Figure 69 contains four levels. Two lowest levels correspond to IS data (L0) and
ISD data (L1). ISD data means here IS models and IS model denotations. The
next higher level (L2) contains meta models describing / prescribing the IS

130 To keep the figure simple enough, the multiplicities are not included in it.

290

models (e.g. an ER schema) produced by ISD, and languages used to represent
the IS models as the IS model denotations. The highest level (L3) comprises
meta meta models describing / prescribing the meta models, as well as meta
languages used to represent the meta models and the languages, both at the
next lower level. The figure shows how the hierarchy of model levels is
anchored onto the IS data and established via IS models, meta models, and
meta meta models. It also shows how the hierarchy of language levels
comprises languages and meta languages. The connection between these
hierarchies is formed by the fact that a meta model is an abstract syntax of the
language (Oei 1995, 113) used to represent a model as the model denotation.
The elements in both of the hierarchies are conceptual, and become visible only
through their denotations. A meta language denotation is expressed by using
the language itself. In the hierarchy of model levels the concepts at the lower
levels are instances of the concepts at the next higher levels. On the other hand,
we can say that the models at the higher levels describe / prescribe models at
the next lower levels. In our study we mainly consider the meta levels from the
conceptual viewpoint, meaning that for us the models, the meta models, and
the meta meta models are more important than the languages and the meta
languages.

 As a meta model is a model, most of the characteristics and classifications
presented for the models in Section 6.1 apply to the meta models, too. Due to
the fact that a meta model is an intensional model, there are, however, some
exceptions to this strict “inheritance of the predicates”. In the following, we
consider the meta models with the predicates of the models.

A meta model is a thing that is used to help or enable the understanding,
communication, analysis, design and / or implementation of models. A meta
model is an abstract model in the sense that that it is composed of abstract
concepts. An action by which a meta model is produced is called metamodeling.
It takes place on one level of abstraction (by classification) higher than
modeling. It comprises several sub-actions: (a) abstracting from existing
models, (b) transforming from other meta models, (c) translating from other
meta model denotations, (d) revising an existing meta model, and (e)
integrating two or more other meta models or parts thereof. Sub-actions of
metamodeling will be considered in more detail in Section 10.3.3. A meta model
is a formal or semi-formal model reflecting objective (cf. the objective model) or
inter-subjective (cf. the inter-subjective model) views. It is also worth of
noticing, that a meta model is always needed when interpreting, analyzing,
designing, or implementing corresponding (type) models.

The meta models are structural models. Depending on the nature of
corresponding (type) models, the meta models can be classified in various
ways. Applying the contextual domains and the perspectives, we classify the
meta models into two sets of categories, that are the contextual (meta) models
and the perspective meta models (see Figure 70). One of the contextual meta
models is a meta purpose model, which is composed of concepts and
relationships defined within the purpose domain (see Section 4.4.1). An

291

example of the perspective meta models is an infological meta model, which
consists of concepts and relationships defined within the IS infological
perspective (see Section 6.3.2).

Meta actor model

Meta purpose model

Meta model

Meta action model

Meta deliverable model

Meta faciity model

Meta location model

Meta time model

Systelogical meta model

Infological meta model

Conceptual meta model

Datalogical meta model

Physical meta model

 Model

 Time model

Location model

 Facility model

 Purpose model

 Actor model

 Action model

 Deliverable model

 Systelogical model

 Infological model

 Conceptual model

 Datalogical model

 Physical model

instanceOf

instanceOf

ID model

 IP modelIP meta model

Meta ID modelinstanceOf

Data model Meta data model

instanceOf

instanceOf

instanceOf

instanceOf

instanceOf

instanceOf

instanceOfinstanceOf

instanceOf

instanceOf

instanceOf

instanceOf

instanceOf

FIGURE 70 Categorizations of models and meta models based on the contextual domains

and the perspectives (IP = inter-perspective, ID = inter-domain)

As said in Section 6.1, informational objects in the contexts can be conceived as
linguistic objects or through their conceptual contents (see also Section 4.4.4). To
bring out the view applied in modeling, we distinguish between deliverable
models and data models. A deliverable model describes / prescribes the structure
and presentation of informational objects (e.g. a relational scheme with data
types). A data model describes/ prescribes the conceptual contents of
informational objects (e.g. an ER schema). Correspondingly, we have a meta
deliverable model (e.g. the relational model, Codd 1970, 1979) and a meta data
model (e.g. the ER model, Chen 1976).

Second, besides the “pure” models and meta models, which are
exclusively based on the concepts of one perspective or one domain, there are
also inter-domain (ID) and inter-perspective (IP) models and meta models.
Examples of the inter-domain meta models are a meta activity model (e.g.

292

Brinkkemper 1990) and a meta process model (or a process metamodel in
Henderson-Sellers (1999) and Firesmith et al. (1999)), which are composed of
concepts and relationships, not only within the IS action domain but also within
the IS object domain and the IS time domain.

7.3 Comparative Analysis of Systems of Levels

In this section we shortly describe, analyse and compare presentations given in
the ISD literature for systems of levels. The systems of levels concern either the
concepts or the models. The results of the comparative analysis are summarized
into Table 22. In the table for each presentation, the object system (OS) at the
root level as well as the names of levels are brought forward.

We have selected twelve well-known presentations for the analysis. Some
of them consider the information system (Bergheim et al. 1989; Brinkkemper
1990; Falkenberg et al. 1998) or CIS data (ISO 1990; OMG 2002) to be the object
system. Some others anchor their system of levels on ISD work (Heym et al.
1992a; Jarke 1992; Saeki et al. 1993; Harmsen 1997; ter Hofstede et al. 1997), or on
part of it (IS modeling (Wijers 1991)). In the latter ones, the aim is to specify and
structure ISD method knowledge into a method base. Gigch (1991) advocates a
different approach applying a general view of problem solving in the IS, ISD or
any other human action. Next, we first describe the system of levels in each of
the presentations and consider which of the approaches (i.e. the model-based,
language-based, technique-based or method-based approach) defined in
Section 7.2 is applied in them.

Bergheim et al. (1989) present a taxonomy of concepts of the science of
information systems to distinguish between four meta-levels: ω-level, α-level,
β-level, and γ –level. The lowest level, the operational level, concerns the
changes of states in the application. The next meta-level, also known as the
application level, contains descriptions about a specific application (e.g. a data
flow diagram or a Pascal program). The β-level is about how to make instances
at the α-level (e.g. a DFD model or the language Pascal itself). The highest level
is about how to make instances at the β-level, that is, about the ways to make
different formalisms. For each level, a universe, constructs, a theory, an
interpretation, valuations, a model, a description, and a method are considered.
The discussion in Bergheim et al. (1989) about the levels is comprehensive, and
considering when it was published, it was in advance of one's time. It is a pure
representative of the model-based approach to establishing the system of the
levels.

ISO (1990) launched the Information Resource Dictionary Standard
(IRDS), which is composed of four levels: application data, IRD level, IRD
Definition level, and IRD Definition Schema level. The first level includes data
and program execution. The next level stands for a data base schema and

293

TA
BL

E
22

C

om
pa

ra
tiv

e
an

al
ys

is
 o

f t
he

 s
ys

te
m

s
of

 le
ve

ls
 in

 th
e

IS
D

 li
te

ra
tu

re

 R
ef

er
en

ce

O
S

Le
ve

l 0

Le
ve

l 1

Le
ve

l 2

Le
ve

l 3

Be
rg

he
im

 et
 a

l.
(1

98
9)

IS

ω

-le
ve

l
α-

le
ve

l
β-

le
ve

l
γ–

le
ve

l

IS
O

 (1
99

0)

C
IS

 d
at

a
A

pp
lic

at
io

n
da

ta

IR
D

 le
ve

l
IR

D
 D

ef
in

iti
on

 le
ve

l
IR

D
 D

ef
in

iti
on

Sc

he
m

a
le

ve
l

Br
in

kk
em

pe
r

(1
99

0)

IS

Sy
st

em
 to

 b
e

m
od

el
ed

M
od

el
in

g
te

ch
ni

qu
e

M
et

a-
m

od
el

in
g

te
ch

ni
qu

e
G

ig
ch

 (1
99

1)

Pr
ob

le
m

so

lv
in

g
Im

pl
em

en
ta

tio
n

le
ve

l
M

od
el

in
g

le
ve

l
M

et
a

le
ve

l

W
ije

rs
 (1

99
1)

IS
 m

od
el

in
g

A
pp

lic
at

io
n

le
ve

l
M

et
a

le
ve

l
Th

eo
ry

 le
ve

l

H
ey

m
 et

 a
l.

(1
99

2a
)

IS
D

Pr

oj
ec

t l
ev

el

M
et

ho
d

le
ve

l
M

et
ho

do
lo

gy
 le

ve
l

Ja
rk

e
(1

99
2)

IS

D

In
st

an
ce

 le
ve

l

C
la

ss
 le

ve
l

M
et

ac
la

ss
 le

ve
l

Sa
ek

i e
t a

l.
(1

99
3)

IS
D

In

st
an

ce
 le

ve
l

O

bj
ec

t l
ev

el

M
et

al
ev

el

H
ar

m
se

n
(1

99
7)

IS

D

IS
 e

ng
in

ee
ri

ng
 le

ve
l

IS
 e

ng
in

ee
ri

ng
 m

et
ho

d
le

ve
l

M
et

ho
d

en
gi

ne
er

in
g

le
ve

l

te
r H

of
st

ed
e

et

al
. (

19
97

)
IS

D

O
pe

ra
tio

na
l l

ev
el

A

pp
lic

at
io

n
le

ve
l

M
et

ho
d

le
ve

l

Fa
lk

en
be

rg
 et

 a
l.

(1
99

8)

IS

-
M

et
a-

le
ve

l 0

M
et

a-
le

ve
l 1

M

et
a-

le
ve

l 2

O
M

G
 (2

00
2)

C
IS

 d
at

a
M

0:
 D

at
a

M
1:

 M
od

el

M
2:

 U
M

L
m

et
am

od
el

M

3:
 M

O
F

294

application programs. The IRD Definition level specifies the models and
languages by which schemata and programs are described. The IRD Definition
Schema level specifies a meta meta model, according to which things at the ISD
Definition level are associated and described. The IRDS is an outcome of the
model-based approach, although a language as a means of description is
recognized. Brinkkemper (1990, 28) distinguishes between three levels: system
to be modeled, modeling technique, and meta-modeling technique. In the
hierarchy of levels, “the system of concepts of a modeling technique is
considered as a concrete system on an abstraction level higher than the
application of modeling in the development of an IS” (ibid p. 28). The approach
is clearly technique-based. Brinkkemper (1990, 28) provides a figure describing
the relationships between the aforementioned concepts and between the
notions of modeling notation and meta-modeling notation. The figure is
obscure for several reasons: e.g. relationships denoted with unnamed arrows
are ambiguous, and actions and outcomes are missing.

 Gigch (1991, 17) differentiates knowledge needed to solve a problem into
three levels of inquiry. The level of implementation or intervention contains e.g.
citizens, clients and practitioners participating in activities involving real world
problems. At the modeling level understanding and solving problems requires
formulation of models. At the meta level or metamodeling level, people are
involved in the design of the methods and approaches to be used at the other
levels of inquiry. A meta model is considered a model of the modeling process
(ibid p. 255-256). Although the approach in Gigch (1991) is mainly model-based,
its scope also comprises modeling processes.

Wijers (1991, 31) divides the knowledge needed in modeling into three
levels: application level, meta level, and theory level. At the application level
actual ISD processes and products (ISD models) are dealt with. Modeling
knowledge concerning the ways of working and of modeling, as well as
acquisition of modeling knowledge are included at the meta level. The theory
level is concerned with a theory applicable at the meta level. A meta-model is
defined to encompass a concept structure (for a way of modeling) and a task
structure (for a way of working) as well as constructs interrelating those two. A
meta-language is a language used at the meta level (ibid p. 426). Wijers (1991)
clearly apply the model-based approach but the scope also contains the process
of modeling, which should not be situated at the same meta levels as models.
Wijers also considers the integration of the process-oriented and product-
oriented views.

Heym et al. (1992a) suggest a methodology reference model that is based
on three levels of abstraction in which each level applies the notation or
specification model from the next higher level. This means that an object type
on the higher level is instantiated on the next lower level. The levels are:
methodology level, method level and project level. The methodology level
describes a methodology reference model, which contains all object types as
well as their relationships necessary to describe information systems
development methods, e.g. activities, phases, deliverables, or actors. The

295

method level specifies an ISD method by a number of description objects of
object types defined at the higher level. The project level describes a particular
project to which a certain method is applied, by creating instances of special
method description objects from the method level. The scope in Heym et al.
(1992a) is very broad, covering the whole ISD knowledge. The levels of
abstraction are not pure model levels, because at the method level, for instance,
part of knowledge concerns ISD process and therefore it is not at the meta level.

Jarke (1992, 57) uses Telos’ metaclass hierarchy (Mylopoulos et al. 1990) in
ConceptBase (DAIDA’s metadata management and reasoning system) to
document data of projects at three levels: instance level, class level, and
metaclass level. The instance level consists of concrete development projects
within the environment. The metaclass level describes the development
environment at hand. The class level defines the basic structure for
development processes. The metaclass hierarchy applies the model-based
approach. The object system in the hierarchy is an ISD project, not an IS.

Saeki et al. (1993, 150) defines a meta model as a data model or scheme for
representing design methods, expressing a concept structure common to
various methods. To specify the structural relationships among a meta model,
formal representations of design methods (called object models), and actual
specification processes, Saeki et al. (1993, 151) distinguish between three levels:
instance level, object level and meta level. The instance level corresponds to
actual products and design activities. The object level stands for the formal
representations of a design method. The meta level contains a model for the
representations at one level lower as well as the relationships between the
representations of design methods. The considerations of the hierarchy of
levels remain on a general level. Nevertheless, in our opinion, the meta levels
contain knowledge of processes that are located at the wrong level. Saeki et al.
(1993) clearly apply the method-based approach.

Harmsen (1997) considers the allocation of methodological knowledge
onto three levels: method engineering level (ME), IS engineering methods level
(ISEM), and IS engineering level. The ME level describes classes of ISEM
concepts, that is to say, concepts of any ISD method. The IS engineering
methods level describes instances of concepts at the method engineering level.
The IS engineering level addresses the actual models, reports, steps, tools etc.
used in a ISD project. There are the type/instance relationships between the
levels. Meta-modeling is located at the ISEM level, and meta-meta models at the
method engineering level. Harmsen (1997) also applies the method-based
approach, and, as is typical for the adherents of this approach, he leaves the
specification of the hierarchy on too general a level.

ter Hofstede et al. (1997, 404) distinguish between three levels of
abstraction at which method knowledge can be viewed. The levels are: method
level, application level, and operational level. The method level is concerned
with knowledge which enables to control the ways how information modeling
process may be performed and to define which products may result from those
processes. The application level is concerned with information which results

296

from projects for specific organizations and applications. It is an instantiation of
the method level. The operational level is an instantiation of the application
level and as such it consists of concrete entities, relationships, process traces,
etc. Most of what is said about the systems of levels by Saeki et al. (1993) and
Harmsen (1997) also applies here. The method-based approach of ter Hofstede
et al. (1997) is applied with too general a view of e.g. the elements at and the
relationships between the levels.

In the Frisco Report (Falkenberg et al. 1998, 57-58) three meta-levels are
distinguished: meta-level 0, meta-level 1, and meta-level 2. At each meta-level, a
model and a model denotation are specified. The models are: a base model
(meta-level 0), a language (meta-level 1) used to represent the base model, and a
meta-language (meta-level 2) used to represent the language. A base model
may be a particular model consisting of states and transitions. The
corresponding base model denotation is a graphical representation of this
model (i.e. a state-transition diagram). The language in this case is like the one
in Booch et al. (1999). The meta-language can be the MOF (OMG 2002). The
representing relationships establish the relations between the meta-levels.
Frisco applies a mixed approach considering both the relationships between the
languages and the relationships between the models, although the latter
relationships become only implicitly specified.

OMG (2002, Kleppe et al. (2003, 85-87); Frankel (2003, 105-107)) uses a four-
layered architecture for its standards. In the OMG terminology these layers are
known as M0, M1, M2, and M3. At the M0 layer there is the running system in
which the actual instances exist. The M1 layer contains models of a CIS (e.g. a
UML class diagram of a software system). The M2 layer contains meta models
(e.g. the UML meta model and the CWM (Common Warehouse Meta model)).
At the highest layer, called M3, there are meta meta models (e.g. MOF (Meta
Object Factory)) that are used to define meta models. Every meta model is an
instance of some meta meta model, and every model must be an instance of
some meta model. The object system of the four-layered architecture of OMG is
a CIS and especially its data. The architecture has been fully built according to
the model-based approach.

As the descriptions above concretely show, there are large varieties in
terms and meanings with which models and languages at different levels are
specified. The presentations consider the systems of levels from different
viewpoints: e.g. from the viewpoint of the science of information systems
(Bergheim et al. 1989), of metamodeling (Brinkkemper 1990; Wijers 1991;
Falkenberg et al. 1998), of method engineering (Heym et al. 1992a; Saeki et al.
1993; Harmsen 1997; ter Hofstede et al. 1997), of problem solving modeling
(Gigch 1991), of metadata management system (Jarke 1992), and of
standardization of development environments (ISO 1990; OMG 2002). This
partly explains the varieties perceived in terms and meanings. But there still
remain many particularities that should require an in-dept analysis to be
revealed, explained and compared. Unfortunately, such an analysis goes
beyond this study. As a general finding we can, however, say that presentations

297

that apply the model-based approach seem to be more precise in defining the
levels and the relationships between them. In contrast, in those presentations
applying the technique-based or method-based approach the levels are defined
more generally and the processing layers and the model levels are commonly
confused. In the next chapter, we show in a concrete fashion how models at the
same model level can situate at different processing layers and a processing
layer can contain models from different model levels.

7.4 Models at the Processing Layers

Up till now we have considered the contextual ontologies one by one without
paying too much attention to the relationships between them. Because the
model level ontology is the last contextual ontology in the order we have
introduced them in this study, it is time to examine in more detail how these
ontologies are related to one another. The examination will be carried out in
two parts. In the first part we use the arrangement, presented at the beginning
of each concerned chapter to show its focus (see Figures 44, 52, and 64), to
depict the key concepts of the ontologies. In the second part we present a still
more detailed view of the ontologies and relationships between them with the
figure, which exhibits models about different contextual domains, at different
layers, and at different levels.

Figure 71 presents the context ontology, the layer ontology, the
perspective ontology and the model level ontology in terms of their key
concepts and constructs. The figure also reveals how the ontologies are related
to one another. We can distinguish between the following relationships: (a) a
model describes / prescribes a context, (b) a model is produced at a processing
layer, (c) a model views from a perspective, (d) a context is located on a
processing layer, (e) a context is perceived from a perspective, and (f) a
perspective is applied at a processing layer. Some of the relationships can be
inferred from the others, e.g. if a context is perceived from a certain perspective,
then a model of the context is made from that perspective. In addition to those
mentioned, there are other relationships that can also be inferred from others.
For instance, if a context is perceived from a certain perspective and is located
at a certain processing layer, then the processing layer is also perceived from
that perspective.

Although the view presented in Figure 71 is quite complicated, it is still on
a general level. In Figure 72 we portray all the models, which are distinguished
at the processing layers, describing/prescribing any of the domains, and being
at any of the model levels. Due to the scarcity of space, the names of the models
are written without the term ‘models’. In the figure we can see four processing
layers (IS, ISD, ME and RW). At each layer there are eight “boxes” standing for
the domains (purpose, actor, action, object, facility, location, time, ID = inter-
domain) of a context. The models are objects or deliverables resulting from

298

Context

Domain

Model

Model level

System of
model
levels

Instance

Type

Meta

Meta meta

Layer

System of
layers

IS

ISD

ME

RW

Actor Action Object FacilityPurpose Location

Perspective System of
perspectives

ConceptualInfologicalSystelogical Datalogical Physical

Time

Perspective
ontology

Layer
ontology

Model level
ontology

Context
ontology

FIGURE 71 Essence of and relationships between the contextual ontologies

actions in the contexts at each processing layer. The arrows denote the
instanceOf relationships between the models and the corresponding instance-
level phenomena. To illustrate concretely arrays of models, the “boxes”
corresponding to the object domains are extended at the ISD, ME and RW
layers. Let us next consider the models in more detail.

At the ISD layer, the ISD deliverables comprise nine kinds of models,
namely the IS purpose models, the IS actor models, the IS action models, the IS
deliverable models, the IS data models, the IS facility models, the IS location
models, the IS time models, and the IS ID models. At the ME layer, the ME
deliverables also comprise nine kinds of models, in this case the ISD models.
The ISD data models mean the IS meta models, which describe / prescribe the
set of possible IS models of the concerned types. The IS meta purpose model,
for instance, may be the goal graph model (Loucopoulos et al. 1998), which is to
be used during ISD work to represent IS goals / means hierarchies. An example

299

IS

Purpose Actor FacilityAction Object Location Time Inter-
domain

IS purpose

ISD deliverables

IS actor

IS action

IS deliverable

IS ID

IS time

IS location

IS data

IS facility

ISD purpose

ISD models

ISD actor

ISD action

ISD deliverable

ISD ID

ISD time

ISD location

ISD facility

IS meta purpose

ISD data models = IS meta
models

IS meta actor

IS meta action

IS meta deliverable

IS meta ID

IS meta time

IS meta
location

IS meta data

IS meta facility

ME deliverables

ME purpose

ME models

ME actor

ME action

ME deliverable

ME ID

ME time

ME location

ME facility

ISD meta
purpose

ME data models = ISD meta
models

ISD meta
actor

ISD meta
action

ISD meta
deliverable

ISD meta ID

ISD meta
time

ISD meta
location

ISD meta
facility

RW deliverables

IS meta
meta

models

ISD

ME

RW

FIGURE 72 An integrated view of the contextual models at three processing layers and

on three model levels

of the IS meta data model is the ER model (Chen 1976), which is used to present
an ER schema.

The RW deliverables at the RW layer comprise, besides models and meta
models, also meta meta models. The models, called the ME models, describe /
prescribe the structure and behavior of the current ME context or the desired

300

ME context, covering all its contextual domains. The meta models, also known
as the ISD meta models, specify the concepts and constructs of the ISD models
at the lower model level. The meta meta models are the IS meta meta models, of
which the IS meta models are instances. An IS meta meta model contains the
abstract syntax of those meta languages that are used to represent the IS meta
models (cf. Section 7.2). In this study we use a sub-set of UML as the meta meta
model.

Three remarks should still be made on the figure. Working at some
processing layer always involves models at three model levels, namely the
resulting model, the concerned meta model and its meta model. For instance, in
designing an object database, a class diagram is produced according to the
object class model. To fully understand and deploy the concepts and notation of
the object class model, it is necessary to know the semi-formal language in
which it is presented, in other words the meta meta model. In addition, it is
necessary to some extent to understand phenomena at the next lower level to be
able to present abstractions of them in the form of a class diagram.

Second, Figure 72 concretely manifests how analogous the processing
layers in terms of models and meta models really are. The same kinds of models
can be recognized at the ISD, ME and RW layers, and also the meta models at
the ME and RW layers can be quite equal. Of course there are some differences
in details and emphasis of certain contextual phenomena at the layers, but there
is no need, in principle, to construct and deploy a large variety of meta models
and meta meta models for the layers.

Third, we have not included the “perspective dimension” in the figure.
Having done this would have made the figure perhaps too complicated. At
each processing layer, it would have been possible to show that there are six
kinds of models, meta models and meta meta models, depending on the
applied perspective.

The integrated view of the models, processing layers and model levels in
Figure 72 serves as a useful foundation to position and relate the issues that will
be discussed in the next chapters. In Chapter 8 we aim to define the ISD
ontology, which addresses the contextual domains and the perspectives at the
ISD layer. The purpose of Chapter 9 is to define the ISD method ontology. We
have already generally defined a method to be a model that describes /
prescribes an ISD context. Now we can see that it decomposes to several
contextual ISD models, including the IS meta models. In that chapter we will
elaborate this view to specify the contents and structure of an ISD method. In
Chapter 10 we will define the ME ontology and the ME method ontology that
are positioned at the ME layer and the RW layer, respectively. In both of the
chapters the approaches, views, models, concepts and constructs will be further
refined from what we have presented here.

301

7.5 Summary and Discussions

In this chapter we defined the model level ontology. The ontology provides
concepts and constructs to conceive, understand, structure and present
phenomena in reality in terms of models within a system of model levels.
Generally, a model is a thing that is used to help or enable the understanding,
communication, analysis, design, and/or implementation of some other thing
to which the model refers. The notion of a model can be specialized according
to the aspects of the modeling context, the modeled context, and the model
utilizing context. To facilitate communication about a model, it is presented in
some language. A language is composed of a concrete syntax, an abstract
syntax, and semantics. Essential to the model level ontology is the recognition
of hierarchical meta levels of concepts and models. A meta model is a type
model, which describes / prescribes another type model that is at the next
lower model level. In the hierarchical system of model levels, there are
instanceOf relationships between the models at one level and the models at the
next lower level.

Second, we described and compared systems of levels presented in the
ISD literature. Concluding from the analysis we can say that there exist large
varieties in terms and meanings with which the levels are called and specified.
The presentations have been established for several purposes, e.g. for specifying
the conceptual contents of the science of information systems, meta modeling,
method engineering, metadata management systems, and standardization of
development environments. The root level in these presentations varies from
the IS layer to ISD layers (CIS data, IS modeling, ISD). There are also different
approaches to defining the systems of levels. In particular in the method-based
approaches and the technique-based approaches there are confusions in
distinguishing the model levels and the processing layers. This confusion can be
avoided with the use of a unified conceptual foundation, such as OntoFrame.

Third, we provided an integrated view of four contextual ontologies,
including the context ontology, the layer ontology, the perspective ontology, the
model level ontology. The ontologies were integrated via the focal concepts of
context, layer, perspective and model. We also exhibited and related a large
variety of models, which concern four processing layers, seven contextual
domains and three model levels.

8 ISD ONTOLOGY

Information system development (ISD) means the accomplishment of
organizational and technical changes in an IS context. It aims at improving an
IS, that is to say, to make it more effective, efficient, reliable, easy-to-work, user-
friendly, etc. Small-scale changes and improvements in an IS are carried out
with daily work. But accumulation of problems, becoming conscious of new
technological potentials, or decisions on new business strategies and policies
may trigger a special effort to design and implement more profound changes in
an IS. This is a kind of ISD we consider it here.

The purpose of this chapter is to present the ISD ontology that provides
fundamental concepts and constructs for conceiving, understanding,
structuring, and representing essential phenomena in ISD. The ontology is
specialized from the underlying ontologies, in particular from the context
ontology and the perspective ontology (see Figure 73). The context ontology
provides a basis for a theory-based classification of the concepts of ISD into
seven contextual domains. With the perspective ontology it is possible to
manage the complexity of the target system by viewing its phenomena from
well-defined perspectives. Applying the perspectives to ISD helps us
understand how conceptions about the ISD can develop step by step in method
engineering. Resulting from the underlying ontologies the ISD ontology has
been constructed from two main parts: ISD domains and ISD perspectives.

The chapter is organized as follows. First, we discuss and classify ISD
paradigms and ISD approaches that affect views of and conceptions about what
ISD really is. Second, we give a comprehensive definition for the notion of ISD.
Third, we present the first main part of the ISD ontology. It is composed of meta
models and concept definitions within four ISD domains. The domains
considered are: the ISD purpose domain, the ISD actor domain, the ISD action
domain, and the ISD object domain. Also an overview of the inter-domain
relationships is given. Fourth, we present the second main part of the ISD
ontology, which is composed of four ISD perspectives. The perspectives are: the
ISD systelogical perspective, the ISD infological perspective, the ISD conceptual
perspective, and the ISD datalogical perspective. Also inter-perspective

303

Core ontology

Model level ontology

Processing layer ontology

Perspective ontology

Context ontology

ISD domains ISD perspectives

ISD ontology

FIGURE 73 Basis and structure of the ISD ontology

relationships are discussed. Sixth, we make a comparative analysis of artifacts
(i.e. frameworks, meta models and the like) presented in the literature. The
purpose of the analysis is to obtain an overview of the artifacts, to find out how
they differ from one another, and compare them with the ISD ontology in terms
of comprehensiveness and focus. The chapter ends with a summary and
conclusions.

8.1 ISD Paradigms and ISD Approaches

In the ISD literature, there are highly divergent conceptions about the nature,
purpose, structure, and behavior of ISD. Conceptions can be, on a general level,
categorized, analyzed and compared through ISD paradigms and ISD
approaches underlying them. Basic assumptions, views and principles of ISD
paradigms and ISD approaches formulate our views of information systems
development and thus affect through which concepts and constructs we
conceive, understand, structure and represent phenomena in ISD. To get a firm
foothold for defining the notion of ISD and later for establishing the ISD
ontology, we briefly discuss and classify the ISD paradigms and the ISD
approaches in the following sub-sections.

304

8.1.1 ISD Paradigms

The notion of paradigm has been a controversial concept ever since Kuhn (1970)
introduced it (Iivari et al. 1998a). Kuhn defined a paradigm to mean
“universally recognized scientific achievements that for a time provide model
problems and solutions to a community of practitioners”. Burrell and Morgan
(1979) state that paradigms are “meta-theoretical assumptions about the nature
of the subject of study”. In the ISD field, a paradigm is defined as e.g. "a specific
way of thinking about problems, encompassing a set of achievements that are
acknowledged as the foundations of further practice” (Avison et al. 1995a, 447).
We share the conception presented by Hirschheim et al. (1992b)131 according to
which a paradigm means “the most fundamental set of assumptions adopted by
a professional community which allow it to share similar perceptions and
engage in commonly shared practices” (ibid p. 305).

Burrell and Morgan (1979) distinguish between four types of assumptions:
ontological assumptions (assumptions about the world), epistemological
assumptions (i.e. assumptions about the knowledge), methodological
assumptions (i.e. assumptions about the appropriate mechanisms for acquiring
knowledge), and human nature issues. On the bases of the types of
assumptions, Burrell and Morgan (1979) establish two dimensions: the order-
conflict dimension and the subjectivist-objectivist dimension. They also identify
four paradigms of sociology and organizational research: functionalism,
interpretivism, radical structuralism, and radical humanism. Hirschheim et al.
(1989) extend the notion of paradigm further and show that the four paradigms
of organizational research also exist in the literature of ISD. They refer to the
paradigms with the following terms: functionalism, social relativism
(interpretivism), radical structuralism, and neohumanism (radical humanism).

Iivari (1991, 255) refines the paradigmatic framework and introduces
ethics of research as the fourth constituent of the framework. Ethics concerns
the responsibility of a scientist for the consequences of his research and its
results. Iivari (1991) and later Iivari et al. (1998a) applied the framework to
analyze the schools of IS development. Hirschheim et al. (1992a) and
Hirschheim et al. (1995) used the framework to make a paradigmatic analysis of
ISD approaches.

Besides those mentioned above, there are also other authors who have
contributed to the discussion about the paradigmatic categories in the IS/ISD
fields (e.g. Floyd 1987; Nurminen 1988; Orlikowski et al. 1991; Dahlbom et al.
1993; Stamper 1992b; Jayaratna 1994). It goes beyond our aims to consider them
here more closely. We merely state that we apply the paradigmatic framework
of Hirschheim et al. (1989) and Hirschheim et al. (1992a), because it is firmly
established on the philosophical traditions and widely applied in the ISD
literature. In the following we present short characterizations of the four
paradigms with words of Hirschheim et al. (1989, 1203-1210) and Hirschheim et

131 This definition is also adopted in Hirschheim et al. (1989, 1201), Hirschheim et al.

(1992a, 305) and Iivari et al. (2001).

305

al. (1992a, 308-309). For each paradigm the nature of the IS and the roles of, and
relationships between, various stakeholders of the IS are outlined.

The functionalist paradigm is concerned with providing explanations of the
status quo, social order, social integration, consensus, need satisfaction and
rational choice. ISD goals are dictated by a “technological imperative”. ISD
work proceeds by applying formal concepts through planned intervention with
rationalistic tools and methods. Managers are responsible for providing the
systems goals. The system developer is the expert who takes the goals and turns
them into a constructed product. Users operate or interact with a system to
achieve organizational goals.

The social relativist paradigm seeks explanation within the realm of
individual consciousness and subjectivity. Any goals or values that are
consistent with social acceptance are legitimate. ISD work proceeds by
improving subjective understanding and cultural sensitivity through adapting
to internal forces of evolutionary social change. Users are the organizational
agents who interpret and make sense of their surroundings. The systems
developer is the change agent who helps users make sense of the new system
and its environment.

The radical structuralist paradigm has a view of society and organizations
that emphasizes the need to overthrow or transcend the limitations placed on
existing social and organizational arrangements. All goals other than those that
further the class interests of the workers are considered illegitimate and
reactionary. ISD work proceeds by raising ideological conscience and
consciousness through organized political action and adaptation of tools and
methods to different class interests. The two antagonistic classes, the owners of
the productive resources and labor, are engaged in a classic struggle. The
owners become the beneficiaries of IS’s while labor becomes the victim of
system rationalization. The management acts as the agent of the owners. The
systems developer chooses between being an agent for the management or
member of the labor force.

The neohumanism paradigm seeks radical change, emancipation and
potentiality and stresses the role that different social and organizational forces
play in understanding change. Only goals that survive from maximal criticism
and thus are shown to serve generalizeable human interests are legitimate. ISD
work proceeds by improving human understanding and the rationality of
human action through emancipation of suppressed interests and liberation
from unwarranted natural and social constraints. The stakeholders, comprising
customers, management, labor and owners of the productive resources, exist
within an intertwined set of social relationships and interactions. They take part
in communicative action. The systems developer acts as a social therapist in an
attempt to draw together the various stakeholders.

8.1.2 ISD Approaches

In the ISD literature hundreds of ISD approaches have been suggested with
varying contents and motives. One reason for the flavor of the term ‘approach’

306

is its vagueness: it can be used to mean almost anything, at any level of detail.
For instance, at the initial stage of a research effort when no concrete method,
model or technique can yet be presented, ideas can be packaged and
“marketed” with a named approach. Sometimes, an approach is not even
defined, but used as a kind of label attached to obscure ideas.

Another reason for the favor of the term is that it can be used to emphasize
and highlight specific features (e.g. goal and scenario based approach (Liu et al.
2002), context-based approach (Kashyap et al. 1996), process-oriented approach
(Mylopoulos et al. 1992)), or certain underlying theory or discipline (e.g. speech-
act-based approach (Auramäki et al. 1988), contingency approach (e.g. Zhu
2002), activity theory approach (e.g. Boer et al. 2002), semiotic approach (e.g.
Calway 1995), genre-based approach (e.g. Päivärinta 2002)). Further, with the
use of approach one can inform that one’s suggestion is related to a certain
model (e.g. UML-based approach (Briand et al. 2002), ER-approach (Batini et al.
1992), conceptual graph approach (Moulin et al. 1992)) or a certain technique
(e.g. conceptual modeling approach (Motik et al. 2002), meta-modeling
approach (Chiu et al. 1999), meta model transformation approach (Oei 1995)).
Finally, there are approaches that reflect specific ways of carrying out some
actions (e.g. top-down approach (Peristeras et al. 2000), unified approach (Potter
et al. 1988), and formal approach (Hong et al. 1993)).

To manage fuzziness that troubles the understanding and use of the
notion of ISD approach, we first present a general definition of an ISD approach
and then subdivide the ISD approaches into three categories. An ISD approach is
defined to mean a generic way of conceiving certain aspects of ISD, or a generic
way of working in ISD. The first category in our classification is composed of
those ISD approaches that are some kinds of “schools of thought”. The second
category comprises approaches that take a specific view on ISD. The third
category is composed of ISD approaches that are suggested to emphasize
certain features related to specific ISD domains. In the following we first discuss
the ISD approaches as the categories A, B and C. After that we briefly consider
relationships between the approaches of these categories.

ISD Approaches in Category A

The category A contains ISD approaches that are kinds of ”schools of thought”.
Iivari (1991) states that schools of thought have identifiable founders and
scientific community to enable their institutionalization. Accordingly, an ISD
approach here means “a set of goals, guiding principles, fundamental concepts,
and principles for the ISD process that drive interpretations and actions in the
ISD” (Iivari et al. 1998a, 166). The goal specifies “the general purpose of the
approach”. Guiding principles form “the common ‘philosophy’ of the
approach”. The fundamental concepts define “the nature of an IS and the focus
and unit of analysis and design in ISD”. The principles of the ISD process
express essential aspects of the ISD process in the approach (Iivari et al. 1998a,
166).

307

According to Iivari et al. (2001) the group A comprises the following
approaches (a reference to a representative of each approach is given in
parenthesis): structured approach (e.g. Yourdon 1989), information modeling
approach (e.g. Martin 1989), decision support systems approach (e.g. Keen et al.
1978), socio-technical approach (e.g. Mumford 1983), object-oriented approach
(e.g. Henderson-Sellers et al. 1995), infological approach (e.g. Lundeberg et al.
1981), interactionist approach (e.g. Kling 1987), speech act –based approach (e.g.
Auramäki et al. 1988), Soft-Systems Methodology approach (e.g. Checkland
1981), trade unionist approach (e.g. Bjerknes et al. 1987), and professional work
practice approach (e.g. Andersen et al. 1990).

 There are also other classifications of ISD approaches that can be seen, at
least partly, to belong to this category, though they are not referred to as
schools of thought by the authors. Wood-Harper and Fitzgerald (1982)
distinguish between the general systems theory, the human activity, the
systems approach, the participative approach, the traditional approach, the data
analysis approach, and the structured approach. Benyon and Skidmore (1987)
recognize the software systems approach, the structured systems analysis and
design, the traditional approach, the data-centered approach, and the
participative approach. Also some of the approaches recognized in the
taxonomies of Lyytinen (1986) and Hirschheim et al. (1995) belong to this
category.

ISD Approaches in Category B

The category B contains ISD approaches that adopt a specific view of ISD as a
context. An adopted view determines concepts and constructs through which
ISD is perceived and structured. We distinguish between six approaches: the
transformation approach, the decision making approach, the problem solving
approach, the learning approach, the political approach, and the knowledge
work approach. Next, we characterize and give examples of these view-based
approaches.

According to the transformation approach, ISD is seen as sequential steps of
transforming ISD deliverables on one level of abstraction into ISD deliverables
on the next lower level of abstraction (e.g. Lundeberg et al. 1981; Lehman 1984;
Fickas 1985; Turski et al. 1987; Wand 1988a; Moynihan 1993; Tracz et al. 1993;
Jacobson et al. 1999, 24). Abstraction is commonly performed according to the
principles of predicate abstraction based on the realization criterion (cf. Section
3.8.3). This means that during the ISD process requirements specifications are
transformed through analysis and design deliverables into implementational
deliverables.

According to the decision making approach, ISD is seen as a decision making
process in which knowledge is acquired, options are specified, and the “best”
options are selected (e.g. Iivari 1983; Iivari et al. 1987; Jarke et al. 1990; Wild et al.
1991; Jarke et al. 1992; Grosz et al. 1997). An example of realization of the
decision making approach is suggested in the NATURE approach to
requirements engineering (Jarke et al. 1993; NATURE Team 1996), according to

308

which a requirements engineer is in a situation that he/she considers with some
specific intention. His/her decision depends on the context he/she is placed in.
The NATURE approach, slightly evolved, has been later applied in e.g. Rolland
et al. (1996), Pohl et al. (1997), Pohl et al. (1999) and Rolland et al. (2000). The ISD
process involves also claims on and arguments for decisions (Conklin et al. 1988;
Ramesh et al. 1994).

According to the problem solving approach, ISD is seen as a problem solving
process in which problems at several levels of details are identified and solved
(Bodart et al. 1983; Dasgupta 1989; Sol 1992; Blum 1994; Jayaratna 1994).
Problem solving can be viewed as utilizing available means to reach desired
ends while satisfying “laws” existing in the environment (Hevner et al. 2004).
Bodart et al. (1983), for instance, suggest an analysis framework of the ISD
process, which is based on distinguishing between three classes of problems:
abstraction problems, decision problems, and control problems. Sol (1992)
suggests that ISD problems can be approached through viewing them from a
certain point of view. Based on the views he subdivides the problems into
systelogical, infological, datalogical, and technological problems.

According to the learning approach, ISD is seen as a learning process by
which knowledge on application domain, technology and ISD work is acquired,
elaborated and disseminated (e.g. Iivari 1982; Ramesh et al. 1994, 296). ISD is
enabling and is enabled by personal and organizational learning. Systems
development aims at achieving growing cognitive and interpersonal skills
coupled with better self-awareness among all the participants. Organizations
can view themselves as learning organizations, able to learn from their
experience and to effect changes in their own actions (Lyytinen et al. 1999).
Some approaches, such as prototyping (Floyd 1984; Bai 1998), facilitate learning
better than others.

According to the political approach, ISD is seen as a cooperative process
composed of negotiations, bargaining, power and social interactions (Newman
et al. 1990). Interactions are based on political machinations and result in
manifestations of power (Avison 1996). Markus (1983) considers the
implementation of IS and its impact on power shift in the organization in the
light of the political variant of the interaction theory. Keen (1981) analyzes the
political games in ISD. Chang et al. (2002) identify 41 kinds of political games in
the analyzed ISD projects based on thematic interviews. They also discuss the
relationships between political games and stages of ISD as well as
organizational factors affecting political games.

According to the last approach in this category, ISD is viewed as knowledge
work (Iivari et al. 2001, 205). For knowledge work there are certain
characteristics (Iivari et al. 1999): (a) there must be a clearly identified body of
knowledge, (b) work must be concerned with creating or manipulating
representations rather than the physical objects of work, (c) it must require a
deep understanding of the objects of work, and (d) it must result in products
that entail knowledge as their essential ingredient. Iivari et al. (2001, 206)
distinguish between three components that make up the body of knowledge for

309

ISD: knowledge of information technology, application domain knowledge, and
system development (process) knowledge.

ISD Approaches in Category C

The category C contains ISD approaches that have particular views of some
specific contextual domain(s) of ISD. They are more skeletal than the ones in the
other categories. A variety of the ISD approaches in this category is so large that
we only give some examples of the approaches. References primarily point to
pioneers in establishing and applying the approaches.

First, there are ISD approaches that differ from one another on how they
perceive and emphasize the features of the IS to be developed. We can
recognize four specific approaches (cf. Bracchi et al. 1984; Barbic et al. 1985, 150;
Vessey et al. 1994): the IS data-oriented approach, the IS process-oriented
approach, the IS user-oriented approach, and the object-oriented approach. The
IS data-oriented approach regards data as the fundamental part of the IS. It is
claimed that identifying and classifying the conceptual entities in the OSIS, or
the set of data elements in the IS, one can establish the core nature of the IS. It is
assumed that the fundamental structure of data remains, to a high degree, the
same although the IS may face many kinds of changes in the environment, or at
least it will change much less likely than the actions applied to it (cf. Wood-
Harper et al. 1982, 13). All other constituents of the IS are subordinated to the
data. For example, actions are seen as a series of operations on data (Bracchi et
al. 1984, 163).

The IS process-oriented approach considers information processing actions or
processes to be the most essential parts of the IS. Processes are viewed as
concrete and easy to understand. IS analysis and design are carried out in a top-
down, structured, and modular manner. The other parts of the IS are perceived
through their relationships with actions. The IS actions are modeled with data
flow diagrams, action decomposition models, Petri nets, etc. (cf. Gane et al.
1979; Yourdon 1989; Zisman 1977). The IS user-oriented approach, or the use-
centered approach, puts the major emphasis on human beings, their needs,
views and interactions in the IS and in the US. This is seen as a prerequisite for
the proper recognition and establishment of the structure, behavior and
evolution of the IS. A conception about the ‘objective’ data, shared and agreed
by the stakeholders (i.e. consensus or standard data), collapses. The meaning of
data is firmly attached into a subject, and the existence and justification of
different views are acknowledged. Roles and positions are built up from the
premises of meaningful jobs, which provide more challenges and less routine,
potential to self-control, and a sense of personal achievements (e.g. Mumford
1981, 1983).

The object-oriented approach, with roots in SIMULA (Dahl et al. 1968;
Nygaard et al. 1978) and in abstract data types (Parnas 1972; Morris 1973; Liskov
et al. 1974; Guttag 1977), also belongs to this category of ISD approaches.
Instead of focusing on phenomena in one contextual domain, the object-oriented
approach considers data and processes as encapsulated compositions, known as

310

objects. In ISD data and processes are designed and elaborated in parallel
(Booch 1991; Henderson-Sellers 1992; Jacobson et al. 1992). In its latest variant,
called the agent-oriented approach, objects are seen as agents with autonomy,
social ability, reactivity, and pro-activeness (Wooldridge et al. 1995).

Second, there are ISD approaches that differ from one another in how they
structure the ISD process. We can distinguish between the life cycle approach,
the prototyping approach, the incremental approach and the evolutionary
approach. The approaches differ from each other in three essential aspects (cf.
Vlasblom et al. 1995, 598): (1) whether ISD actions are carried out iteratively or
in linear fashion, (2) whether the delivery is monolithic or incremental, and (3)
the degree to which the systems functionality is defined beforehand. In the life
cycle approach, the ISD work is decomposed into discrete phases to be
accomplished in an order that is comparable to sequential waterfalls. Each
phase should be satisfactorily completed before the next one begins (Royce
1970). This implies, for instance, that user requirements must be frozen in the
early phase. In the prototyping approach requirements are engineered in parallel
with their implementation (Gomaa et al. 1981). The purpose is to increase,
through prototypes, the understanding of those issues on which there exists
some uncertainty, and thus to decrease risks related to the ISD process or its
outcome (Floyd 1984). The target of prototyping can be information
requirements, user-interface, technical architecture, or the like (Bai 1998). There
are several variants of the prototyping approach (Iivari 1982; Budde et al. 1984;
Boehm 1988; Iivari 1990b).

The incremental approach means the process of constructing a partial
implementation of the total system and slowly adding increased functionality
or performance (Graham 1989; Vonk 1990). The approach reduces the costs
incurred before an initial capability is achieved. Also of the incremental
approach there are several variants (Iivari 1982; Graham 1989). The evolutionary
approach means that the information system is an incremental outgrowth of
evolution and learning and it continues to evolve over time owing to new
learning experiences (Lucas 1978; Lyytinen 1986). It is assumed that
requirements will constantly change and, therefore, the iterative process never
ends. The initial version of the system as a prototype is delivered to the
intended users and it continues to be improved until it becomes the system.

Synthesis

The ISD approaches are often defined in an insufficient manner in the literature,
which makes it difficult to fully understand them and to construct a clear-cut
categorization for them. Our sub-division of the ISD approaches into three
categories is an attempt to bring some structure among the approaches. There
are many kinds of relationships between the approaches in the same category
and in the different categories. Contrary to Benyon et al. (1987) who use the
‘map’ metaphore (cf. national maps vs. major routes vs. street plans) in sub-
dividing the ISD approaches into hierarchical categories, we do not claim that
the approaches within the three categories constitute a strictly hierarchical

311

structure. However, for most of the approaches it holds that an approach in the
“upper” category is realized by applying views and principles of some
approach(es) in the “lower” category (cf. Iivari et al. 2001). In the following we
give some examples of this kind of relationship.

First, the information modeling approach (e.g. Martin 1989) and the
structured approach (e.g. Yourdon 1989) belonging to the category A, clearly
apply views and principles of the data-oriented approach and the process-
oriented approach, respectively. To the interactionist approach (e.g. Kling 1987)
and the trade-unionist approach (e.g. Bjerknes et al. 1987), in turn, the principles
and ways of working contained in the political approach are particularly
important.

Second, the transformational approach in the category B mainly applies
views of the data-oriented approach and / or the process-oriented approach. In
the former case, information requirements are first transformed into a
conceptual schema, then changed into a relational schema and further
implemented into physical files. In the latter case, based on information
requirements a context diagram is produced, from which data flow diagrams
are derived and further decomposed into more detailed process descriptions.
The prototyping approach and the evolutionary approach, in turn, are the most
essential means of implementing the learning approach to ISD.

8.2 Definition of ISD and ISD ontology

It is surprising how seldom the notion of information system development is
defined in the ISD literature. Either it is just “taken as granted” or only
characterized with general outlines. Where definitions are provided,
conceptions about the nature, structure and behavior of ISD vary, partly due to
commitments to different paradigmatic assumptions or ISD approaches. Quite
naturally, whether seeing ISD, for example, as a transformation process, as a
decision making process, or as a learning process becomes more or less visible
in a way specific concepts and views are adopted, emphasized and organized in
the definitions. The purpose of this section is first to briefly review definitions
presented in the literature for ISD and to bring out our definition for the notion.
Second, we define the ISD ontology and describe its overall structure.

ISD is regarded as a “systematic” (Baskerville 1996, 9), ”collective”
(Korpela et al. 2000, 198), “consistent and effective” (Harmsen 1997, 314) action.
It is seen as a change process (Welke 1982; Lyytinen 1986; Mathiassen 1998;
Tolvanen 1998) that is composed of actions, such as ”identifying, analyzing,
designing and implementing” (Jayaratna 1994, 214), or ”analysis, design,
technical implementation, organizational implementation and [..] evolution”
(Iivari 1991, 250). Heym et al. (1992a) recognize, not only the main ISD stages,
but also supportive actions in their definition: “….covers all aspects such as
systems specification, project management, quality assurance or risk

312

management from strategic planning, analysis, design, construction, and
installation to maintenance of an information system” (ibid p. 215).

One of the most comprehensive definitions is presented in Welke (1981).
The definition has been further elaborated e.g. in Lyytinen (1986), Mathiassen
(1998) and Tolvanen (1998). In its most commonly used form, the definition
resembles that of Lyytinen (1986): ISD “is a change process taken with respect
to object systems (target) in a set of environments by a development group to
achieve and/or maintain some objectives” (ibid p. 74). Although this definition
addresses many important aspects of ISD, it is still limited.

In this work we pursue a definition that is comprehensive and neutral.
Comprehensiveness means that the definition should address all the contextual
aspects of ISD. Neutrality means that the definition should not exclude the use
of any paradigm or ISD approach. This is an important property because the
definition should serve as a foundation for engineering the ISD ontology that
can be used equally, regardless of the selected ISD paradigm or ISD approach.
That does not, however, mean that the definition must address views of all the
paradigms and approaches. The definition goes as follows:

Information system development is a context in which ISD actors carry out ISD
actions, ranging from requirements engineering to implementation and
evaluation of an IS, to produce ISD deliverables that contribute to a renewed or a
new IS, by means of ISD facilities in a certain organizational and spatio-temporal
context, in order to satisfy ISD goals set by ISD stakeholders.

The definition above provides a versatile view on the contextual aspects of a
situation in which an information system is developed. Consequently, ISD is
much more than a composition of ISD actions132. ISD work is guided by ISD
requirements and goals that, through elicitations and negotiations, become
more and more complete, shared and formal (Pohl 1993, 279). ISD work is
carried out by ISD actors with different motives, skills and expertise, acting in
different roles in situationally established organizational units. ISD work is
composed of various ISD actions, structured in concordance with the selected
ISD approaches and ISD method, and following conventions of the
organization. The views and principles of the ISD approach are realized with
different structures of ISD actions. The application of the transformational
approach, for instance, results in sequential IS modeling actions. The use of the
decision making approach or the problem solving approach becomes visible in
recursive structures of ISD actions that correspond to intelligence, design, and
choice (Simon 1960). The learning approach causes frequent iterations of ISD
actions. The political approach manifests itself through ISD actions that
highlight stages of collaboration and negotiation concerning IS requirements
and design options.

132 We use the term ‘ISD context’ when we want to emphasize the contextual nature of

information system development. Otherwise, we refer to it with ‘ISD’.

313

The final outcome of ISD is a new or improved information system,
composed of interacting social and technical components (cf. Chapter 5). In
addition, ISD yields a wide range of plans, memos, decisions, diagrams, testing
reports, etc. as intermediate and supportive material. ISD work consumes
resources (money and time) and is supported by computer-aided tools (e.g.
CASE tools). ISD actors, ISD deliverables and ISD facilities are situated in
certain locations (e.g. in work sites, rooms, buildings or geographical sites), and
are present in certain times.

Based on the definition of ISD above as well as on the underlying
ontologies presented in the preceding chapters, we can now define the ISD
ontology as follows: the ISD ontology provides concepts and constructs for
conceiving, understanding, structuring and representing contextual phenomena
in ISD.

To give an overview of the basis and structure of the ISD ontology, we
present the meta model of the ISD ontology in Figure 74. In the figure we can
see that the most focal concept of the ISD ontology is an ISD context. It is a
specialization of the generic notion of a context (cf. Chapter 4). An ISD context
is a highly complicated conceptual construct, which is composed of concepts of
seven contextual ISD domains. Conceptions about an ISD context are influenced
by paradigmatic assumptions adopted, as well as by ISD approaches applied.
ISD paradigms and ISD approaches, in turn, are specializations of the generic
notion of a point of view (cf. Chapter 3). Conceptions are also affected by ISD
perspectives based on some system of perspectives (cf. Chapter 6). The
paradigmatic framework and the system of ISD perspectives are kinds of rigid
frameworks.

In the following sections we elaborate the view of the ISD ontology given
above. First, we will define the concepts and constructs within four ISD
domains and the most essential inter-domain relationships (Section 8.3).
Second, we will specify ISD perspectives and main inter-perspective
relationships (Section 8.4).

8.3 ISD Domains

The purpose of this section is to present the ISD ontology through the meta
models of the ISD domains and define the concepts and constructs included in
the meta models. Due to the scarcity of space, we focus here only on four ISD
domains: the ISD purpose domain, the ISD actor domain, the ISD action
domain, and the ISD object domain. In addition, we present an overview of ISD
intra-domain relationships. The meta models and the definitions have been
derived from those presented in the context ontology in Chapter 4. Concepts
that are adapted as such from the underlying ontologies, will not be explicitly
repeated here.

314

ISD approach

ISD purpose

Social relativist

Functionalist

ISD domain

ISD infologicalISD location

ISD context

Of Category B

ISD datalogical

ISD facility

Radical structuralist

Neohumanism

Of Category C

Point of view

ISD object

ISD conceptual

ISD actor

ISD action

Of Category A

ISD time ISD physical

ISD perspective

ISD systelogical

System of ISD pers.

ISD paradigm

UoD

conceivedFrom

conceivedFrom

conceivedFrom

conceivedFrom

Framework

Paradigmatic framework

Context

FIGURE 74 Overview of the structure of the ISD ontology

8.3.1 ISD Purpose Domain

The ISD purpose domain embraces all those concepts and constructs that refer to
goals, motives, or intentions of someone or something in the ISD context. The
concepts may show a direction toward which to proceed, a state to be attained
or avoided, and reasons for them. Reasons can be expressed in terms of
requirements, problems, etc. The ISD purpose domain is highly important
because only through its concepts it is possible to demonstrate “Why” an ISD
effort is necessary to be accomplished. Correspondingly, reasons can be used to
express why certain goals have been set up (from the historical point of view).
In the following, we define the main concepts of the ISD purpose domain
presented in the meta model (Figure 75).

315

ISD purpose

ISD requirement

IS criterion

SoftHard

ISD reasonISD goal

Functional

ISD problem

Strength/Weakness

Opportunity/Threat

Non-functional

*

*

dueTo

influence

refinement

*
*

*

*

*

*influence

*
*

refinement

*

*

causalTo

IS purpose

PhysicalDatalogicalConceptualInfologicalSystelogical

*

*

evaluatedBy

FIGURE 75 Meta model of the ISD purpose domain

An ISD goal expresses a desired state or event with qualities and quantities,
related to an ISD context as a whole, or to some parts thereof. Hard ISD goals
have pre-specified criteria for the assessment of the fulfillment of ISD goals,
while soft ISD goals have not (Mylopoulos et al. 2001; Lin et al. 1999). An ISD
requirement is some quality or performance demanded in and for an ISD
context. It is a statement about the future (NATURE Team 1996). According to
Pohl (1993), ISD requirements can be classified along three orthogonal
dimensions: specification, representation, and agreement. In the specification
dimension the requirements range from opaque to complete. The representation
dimension categorizes requirements into informal, semi-formal and formal
requirements. The agreement dimension reflects the fact that ISD requirements
initially are personal views, which are negotiated and agreed on to achieve a
common view. ISD requirements become goals in an ISD context after having
been agreed on. All the requirements cannot be accepted to be goals, since their
fulfillment may, for instance, go beyond the resources available. An ISD problem
is the distance or mismatch between the prevailing ISD state and the state
reflected by the ISD goals. ISD problems can be structured, semi-structured or
non-structured.

Some of the ISD purposes concern an IS. They are called the IS purposes
(cf. Section 6.3.2) and are further sub-divided into IS goals and IS reasons, and
furthermore into IS requirements, IS opportunities/threats, and IS strengths/IS
weaknesses. IS goals are defined to guide the ISD actors in selecting and

316

implementing IS requirements. For the evaluation and comparison of IS
designs, implementation and use, a large variety of IS criteria can be used. An
IS criterion is a standard of judgment presented as an established rule or
principle for evaluating some feature(s) of an IS in terms of IS purposes.

Next, we consider the IS requirements more closely. An IS requirement
means a condition or capability of the IS needed by an IS client or an IS worker
to solve a problem or achieve a goal (cf. IEEE 1990, 62). IS requirements are
divided into functional requirements and non-functional requirements.
Functional IS requirements specify what the IS should do and for whom (cf. Pohl
1993, 280). An example of a functional requirement is: “A user must be able to
check his account balance with the help of the CIS”. A non-functional IS
requirement constraints or sets some quality attributes upon the services or
functions offered by the IS (Pohl 1994, 247, Cysneiros et al. 2001, 97). A non-
functional requirement specifies how the IS should function. It can be expressed
in terms of performance, safety, quality, maintainability, portability, usability,
reliability, confidentiality, security, accuracy, etc. (see Chung et al. (2000) and
Cysneiros et al. (2001, 100) for more comprehensive lists of non-functional
requirements).

There are also other classifications for IS requirements. Sage and Palmer
(1990) distinguish between technical requirements and managerial
requirements (i.e. costs, time constraints as well as quality factors). IEEE (1990)
recognizes functional requirements, performance requirements, interface
requirements, design requirements, implementation requirements, and physical
requirements. The NATURE Team (1996, 516-517) divides the IS requirements
into two subtypes: user-defined and domain-imposed requirements. User-
defined requirements arise from clients’ requests, whereas domain-imposed
requirements are facts of nature and form the connection between the real
world and the system to be built. These requirements include e.g. social,
organisational and technical contexts. The IS requirements can also be classified
on the basis of the rationale, i.e. reasons for which they are presented and
considered important. These reasons associate the ISD context with other
contexts. Sutcliffe (1996) distinguishes between policy-driven requirements,
problem-initiated requirements, requirements by example, and the
requirements imposed by the external environment.

In this work we apply the IS perspectives to categorize the IS purposes
into IS systelogical, IS infological, IS conceptual, IS datalogical, and IS physical
purposes. Next, we present the perspective-based definitions for the IS
requirements. The IS systelogical requirements concern (e.g. the benefits and costs
of) information services the IS should provide to its utilizing system133. These
requirements are specified by senior management (e.g. financial constraints in

133 ISD is here seen a context which primarily aims to acquire or improve an information

system. Often in parallel to ISD there is an effort going on, which pursues to change
the utilization system (cf. business process re-engineering). The IS systelogical
requirements may reflect needs for improvements in an existing IS as well as in the
utilization system.

317

terms of budget) and IS clients (e.g. required functionalities). The IS infological
requirements express demands on the type and quality of information needed as
well as actions with which the information is to be processed. The IS conceptual
requirements pertain to the contents of information to be processed in the IS. The
IS infological and IS conceptual requirements are specified by IS clients. The IS
datalogical requirements concern e.g. how to present information, how to divide
information processing between persons and computers, and how to organize
responsibilities for information processing into IS roles and IS positions. These
requirements are affected by the IS workers’ views. The IS physical requirements
are detailed demands on physical structures and behavior of the HIS and the
CIS. These are derived and further refined from non-functional requirements
expressed in terms of job satisfaction, response time, memory use, security
level, etc.

The ISD goals, as well as the ISD requirements, are related to one another
through refinement relationships and influence relationships. A refinement
relationship means that an ISD goal can be reached when certain ISD goals, also
known as satisfying or argumentation goals (Cysneiros et al. 2001, 102), below it
in the ISD goal hierarchy are fulfilled (Rolland et al. 1998, 1056). An influence
relationship means that an ISD goal has impacts on the achievement of another
ISD goal (Loucopoulos et al. 1998, Kavakli et al. 1999, 192). The influence can be
positive or negative. The ISD goals with negative interrelationships are referred
to as conflicting requirements (Chung et al. 2000, Lee et al. 2001). A causalTo
relationship between two ISD problems means that the appearance of one ISD
problem (e.g. lack of human resources) is at least a partial reason for the
occurrence of another ISD problem (e.g. delays in ISD deliveries).

The ISD requirements and the ISD goals exist with different status (cf. the
agreement dimension in Pohl (1993)). ‘Proposed’ means that an ISD
requirement or an ISD goal is brought out by an individual or a group. ‘Signed
off’ means that an ISD requirement, or an ISD goal, is agreed on. ‘Frozen’ means
that no changes are accepted in an ISD requirement or an ISD goal without new
negotiations and agreements.

 In the ISD / SE literature, a large variety of requirements for requirements
specifications are presented. Sommerville (1998), for instance, states that the
requirements should fulfill the requirements of validity, consistency,
completeness, realism, verifiability, comprehensibility, traceability, and
adaptability. According to Lang et al. (2001, 162), the requirements should be
concise, design-independent, feasible, precise, complete, consistent, and
verifiable. IEEE (1991) states that requirements specifications should be
unambiguous, complete, verifiable, consistent, modifiable, traceable and usable
during operations and maintenance (see also Krogstie (2002), Firesmith (2003a),
and Firesmith (2003b)).

8.3.2 ISD Actor Domain

The ISD actor domain consists of all those concepts and constructs that refer to
human and active part of an ISD context. Actors own, communicate, transform,

318

design, interpret, code, etc. objects in an ISD context. They are responsible for or
responsive to trigger and cause changes in the states of objects. They are also
aware of their intentions and capable, at least to some degree, of reacting to
fulfill their goals. Next, we define the most essential concepts and relationships
in the ISD actor domain presented in the meta model in Figure 76.

ISD actor

ISD roleGroupPerson

ISD project org.

ISD org. unitISD positionISD human actor

1..*
1..*

1..*

1

1..*

1

*

memberOf

* subordinate

1

supervisor

supervision
1..*

1

occupiedBy

Work expertIT expert

Business expert

IS developer

Vendor/consultant

IS worker

IS client

IS owner

Project team

Steering committee

1

1..*

controls

1..* *
plays

ISD project manager

1..*

FIGURE 76 Meta model of the ISD actor domain

An ISD actor is an ISD human actor or an administrative actor that is, one way
or another, involved in an ISD context. An ISD human actor means an individual
person or a group of persons contributing to ISD work. An ISD administrative
actor is an ISD position or a composition of ISD positions. The ISD position is a
post of employment occupied by a human ISD actor in an ISD context. It is
identified with a title, composed of the defined ISD roles, and equipped with a
set of skill or capability characterizations (i.e. expertise profile).

A capability means a skill or attribute of the personal behavior, according
to which action-oriented behavior can be logically classified (Acuna et al. 2004,
678). An ISD role is a collection of ISD responsibilities and authorities, stipulated
in terms of ISD actions. An ISD position can be hold by several persons. There
may exist ISD roles that are not included in any ISD position but are anyhow
played by one or more persons. A person may play in several ISD roles.

In the ISD literature, the ISD roles are categorized in various ways. The
suggested categorizations can be divided into two groups depending on
whether they are based on so-called social roles or technical roles (Constantine
1991). In the following, we first give some examples about the categorizations in
the literature and then define the set of ISD roles used in this work.

319

Divisions into the social ISD roles result from ways of viewing ISD as a
problem solving process, a change process, a political process, or a learning
process. If ISD is seen as a problem solving process, the major ISD roles are a
problem owner and a problem solver (e.g. Vessey et al. 1994). If ISD is regarded
as a change process, it involves a change facilitator (or a change agent or a
shepherd) and a change implementator (Welke et al. 1982; Rettig et al. 1993, 49).
According to the political models, ISD involves self-interest agents employed to
perform some services on behalf of the principals (Robey 1984; Markus et al.
1987). If ISD is seen as a learning process, it involves a mentor and a student or
an apprentice. Further, applying organizational metaphors on ISD (Kendall et
al. 1993), we can distinguish between the following social roles (the
corresponding metaphor is mentioned in parentheses): a player (game), a part
or an interchangeable cog (machine), a captain and his crew (journey), a head
and members (family), a leader with his troops and an enemy (war).

Hirschheim et al. (1989, 1203-) distinguish between four roles of an IS
analyst based on paradigmatic assumptions. The IS analyst can be seen as a
systems expert, a facilitator, a labor partisan, or an emancipator. An expert
takes the objectives and turns them into a system. A facilitator helps users to
make sense of the new system and its environment. For a labor partisan there
are two antagonistic classes, the owners of the productive resources and labor,
and he/she has to choose between being an agent for the former or the latter.
An emancipator acts as a social therapist in attempting to draw together the
various stakeholders in the ISD.

The divisions into the technical ISD roles result from applying the
stakeholder view, the software business view, or the organizational view. In the
first case (e.g. Macauley 1993), the roles are based on the division of
stakeholders into (1) those with financial interest in, and responsibility for, the
systems sale or purchase, (2) those who have an interest in the use of the
system, and (3) those who are responsible for the development, introduction,
and maintenance of the system. From the viewpoint of the software business,
we can distinguish between two partner roles: a customer and a supplier
(Franckson 1994). The organization-based ISD roles derive from which system
they are representatives of: (1) representatives of the business system, (2)
representatives of the information system, or (3) representatives of the object
system. The latter role stands for those about whom information is stored and
processed in the information system.

In this work, we base our categorization of ISD roles on the works of
Checkland (1988), Baskerville (1989, 246), Sabherwal et al. (1995, 312) and
Mathiassen (1998, 82). We distinguish between five major ISD roles that unify
social and technical natures in ISD work. The roles are: an IS owner, an IS client,
an IS worker, an IS developer, an ISD project manager, and a
vendor/consultant.

An IS owner in his/her role has a financial interest in the IS and, thereby,
the responsibility for, and the authority of, making decisions on the IS as
though it were his/her property. In some cases, e.g., in small software houses,
he/she may be the real owner. More commonly, an IS owner might in many

320

cases behave as if he/she possessed the IS, e.g. while, at a general level, were
just making the final decisions on goal settings for, and acceptance on, the
deliverables. In these cases, he/she acts like a commissioning agent
(Brinkkemper 1990, 15). This implies that he/she also has a major power to
decide when the current IS should be abandoned and replaced by a new one
(Graham et al. 1997, 85). An IS owner does not directly intervene in ISD project
work, unless the project is so large and important that it has a major impact on
the organization.

An IS client is the ISD role player for whom the IS is to be developed.
He/she is a beneficiary or a ‘victim’ of the IS (Graham et al. 1997, 85). Therefore,
he/she is expected to be active in specifying information requirements for the
IS in terms of contents, form, time, and media. An IS client also acts as an
informant for inquires on business processes, and as an acceptor of the designs
of ISD deliverables (cf. the so-called client tests) and plans of re-engineering
business processes and work contents (Brinkkemper 1990, 15-16). IS clients
usually come from inside the organisation for which the ISD project has been
launched. Sometimes, they are stakeholders from the environment, e.g.
representatives of the bank needing the salary data in an electronic form.

An IS worker works with the current IS and/or is going to work with the
new IS. He/she collects, records, stores, transmits, and processes data with or
without the help of the computerized information system, in order to produce
information needed by IS clients. During an ISD effort, IS workers are expected
to express their experience from and requirements for the functionalities, user
interface, and information contents of the CIS, as well as to give their opinions
about re-arrangements among IS roles and positions designed for a new human
information system (HIS). They also actively participate in user tests.

An IS developer attempts to meet the needs and requirements put forward
by ISD actors in the other roles. For that purpose, he/she analyses IS
requirements and IS goals expressed and refines them into more realization-
dependent specifications, searches for social and technical solutions and
implements those selected. He/she also strives for ensuring that the
specifications, designs and implementations are technically acceptable (cf.
developer's tests)134.

An ISD project manager makes plans on how to organize an ISD effort. This
includes making plans on ISD phases, schedules, milestones, base lines,
resource allocations, etc. He/She also participates in making decisions on the
execution of the plans. Moreover, he/she is responsible for motivating and
inspiring IS workers and IS developers, resolving disagreements, developing
standards of performance and methods for the assessments, and establishing
reporting and monitoring systems.

A vendor / consultant role is played by a person from outside the
organization. With the role more expertise on some specific organizational or
technical issues are imported to an ISD project. Expertise may be related to

134 IS developers are referred to as workers and actors in the frameworks of Jacobson et

al. (1999) and Graham et al. (1997, 85), respectively.

321

technologies (e.g. J2EE platforms, web services), methods (e.g. agile methods),
techniques (e.g. TQM) or the like, that is something new to the organization.

The IS clients and the IS workers are users of the IS. Each role can be
further specialized. For instance, an IS developer can be specialized e.g. into a
business analyst, an IS analyst, an IS designer, and an IS constructor (cf. Olle et
al. 1988a)135. We call the ISD actors who are potentially affected by the IS or ISD
and therefore are invited to act in some of the aforementioned ISD roles the ISD
stakeholders.

The ISD work is mostly organized in the form of a project. An ISD project
is a temporary effort with the well-defined objectives and constraints, the
established organization, the budget and the schedule, launched for the
accomplishment of ISD. An ISD project organization is a composition of ISD
positions, ISD roles and ISD teams wherein the responsibility, authority and
communication relationships are defined (cf. Fife 1987).

A large project organization is composed of several organisational units.
An ISD organizational unit is a composition of ISD positions with a coherent set
of organizational goals, authorities and responsibilities. The most common
units in ISD are a steering committee, also known as a guidance team (Rettig et
al. 1993, 46), and a project team. A steering committee carries the responsibility
for the overall management of the ISD project. The day-to-day management is
delegated to the project manager, who directs and controls the actions of
specialists in various disciplines. A project team is collected for the execution of
an ISD effort. If a project is large, there may be a need for several teams
acknowledging their share in the common responsibility for developing the IS.
The division into teams may follow the sub-systems structure, the phase
structure and/or expertise collections (e.g. the technical team, the quality
assurance team, etc.). Managerial accountability and responsibilities inside and
between the teams may vary depending on the organizational pattern selected.
Within each team, the position of a leader is devoted to the management of the
team and to ensure proper communication between the members, as well as
between the team and the other teams. Another essential position in a team is
that of a secretary.

Some of the positions and roles in an ISD project are full-time vacancies
due to the amount of responsibilities and time they require. This is commonly
the case for the ISD project manager in a large project. Some other positions and
roles do not require full-time commitment. For instance, IT experts can
participate in more than one ISD project, and IS clients can participate in
projects while they carry out, at least partly, their daily work included in their
positions in the business system, in the information system, or in another
organization.

For each ISD position the most suitable person is sought. For being
suitable the person's skill and experience profile has to match with the expertise
profile stated for the ISD position (cf. Acuna et al. 2004). Sometimes, no person
with the required qualifications can be found from inside the organization, and

135 See Kruchten (2000, 263) for 28 different sub-roles of an IS developer.

322

thus an expert (e.g. a consultant) from another organisation is hired. According
to their expertise, the persons involved in ISD can be categorized into IT
experts, business experts and work experts. IT experts are persons whose
education, skills, experience, as well as their former positions, are related to
information technology and/or ISD methods. Business experts are
knowledgeable in business strategies, policies, markets, competition, trends,
legislation, etc., in other words, in matters relating to how to make business, in
general or in the organization. Work experts master daily routines, e.g. in making
orders, invoicing, production planning, inventory control, goods deliveries, etc.
The work experts can be further categorized according to whether their
expertise concerns the USIS, IS, or OSIS.

Participation of IS clients and IS workers in an ISD context can take a
number of various forms. Traditionally three main forms are distinguished:
consultative, representative and consensus (Mumford 1981). With the
consultative development, a project team consults with IS clients and IS
workers, particularly about their information requirements and job satisfaction
needs. The primary actions of analysis, design and implementation are,
however, carried out by IT experts. With the representative development, a
project team is formed of representatives of the IS clients and the IS workers.
The aim of these representatives is to actively participate in the development of
a new system. The consensus development attempts to involve, not only the
representatives, but all the IS clients and IS workers into the active ISD work.
More refined types of participation are presented by Cotterman et al. (1989)
based a cube with three dimensions (operation, development, control) and
Heller (1991) based on different ways of sharing power and influence (see also
Krogstie et al. 1996, 286). More recently, Markus and Mao (2004) propose
theoretical foundations to recognize different roles in which IS clients and IS
workers may participate in ISD.

8.3.3 ISD Action Domain

The ISD action domain comprises all those concepts and constructs that refer to
deeds or events in an ISD context. ISD actions, also known as ISD functions, ISD
activities, ISD tasks, and ISD operations, are carried out to manage and execute
a part of an ISD effort. They customize, incorporate, and implement given
procedures, rules and policies to produce desirable ISD deliverables. The ISD
actions may involve e.g. knowledge acquisition on problems encountered in the
existing IS, generation of design options and selections among them, creation
and representation of IS models at various levels of abstraction, verification and
validation of their consistency, implementation of models into concrete
software and hardware architectures, etc. To manage this extensive variety of
ISD actions, we apply a set of views to establish a fundamental categorization of
ISD action structures. Each view guides one to conceive the ISD action domain
from a particular perspective. In the following, we make a short review of the
categorizations presented in the ISD literature. Then we introduce our

323

categorization and define the concepts and constructs for each ISD action
structure based on this categorization.

Several categorizations of ISD actions and ISD processes have been
presented in the literature. One of the most well-known is the perspective-based
categorization of software process models by Curtis et al. (1992, 77). The
perspectives are: functional, behavioral, organizational, and informational. The
functional perspective represents what process elements are being performed,
and what flows of informational entities (e.g. data, artifacts, products) are
relevant to these processes. The behavioral perspective reveals when process
elements are performed (e.g. sequencing), as well as aspects of how they are
performed through feed-back loops and iterations. The organizational
perspective represents where and by whom (agents) in the organization process
elements are performed, physical communication mechanisms used for transfer
of entities, and the physical media and locations used for storing entities. The
informational perspective represents the informational entities produced or
manipulated by a process, their structure and the relationships among them. As
we can see, the categorization of Curtis et al. (1992) involves, not only the ISD
actions, but also various phenomena (e.g. ISD actors, ISD deliverables, ISD
locations etc.) related to the ISD actions. This way of categorization is
unsuitable for our purposes here.

Dowson (1987) presents a categorisation of process models that is more
focused on the ISD action domain. He distinguishes between three kinds of
process models: the activity-oriented models, the product-oriented models, and
the decision-oriented models. The activity-oriented models derive from an
analogy with problem-solving-in-large in which finding and executing a plan of
actions leads to the solution (cf. Schmitt 1993, 233). The most common
approach in the activity-oriented models is the transformation approach
according to which ISD is seen as a sequence of transformation steps from an
initial representation of the required real world, through a sequence of
intermediate representations, culminating in the delivered system (cf.
Moynihan 1993; Tracz et al. 1993). Transformation can also be interpreted from
the viewpoint of feedback control systems (Weide et al. 1993). Examples of this
kinds of models are the waterfall model (Royce 1970), the spiral model (Boehm
1988), the hierarchical spiral model (Iivari 1990b) and the fountain model
(Henderson-Sellers et al. 1993). In the product-oriented models, outcomes of
ISD are used to define an IS as being in a particular state of evolution (Glasson
1989; Tomiyama et al. 1989). According to the decision-oriented models, ISD is
seen as a complicated design decision composed of many smaller ones.
Execution of these small sub-decisions creates dependencies among them
corresponding to input and output components (cf. White 1982; Iivari et al.
1987; Potts 1989; Wild et al. 1991; Jarke et al. 1990).

More specific categorizations of actions are specified on the bases of group
behavior (Hutching et al. 1993), dialog (Finkelstein et al. 1988), and cooperation
(Jarke et al. 1993). Building on group behavior Hutching et al. (1993) distinguish
between five phases of group development: forming, storming, norming,
performing, and adjourning. Finkelstein et al. (1988) propose a formal

324

framework for understanding program development as cooperative work. The
framework is based on a dialogue paradigm with three essential constructs:
acts, events, and commitments. Acts are used to reflect assertions, denials,
questions, withdrawals, challenges, and resolution demands occurring in the
conversations. Jarke and Pohl (1993) see ISD as cooperation between agents.
Their model organizes this cooperation to conversation structures, leading to
decisions that define and select actions.136

All these views help decomposing the ISD work into action structures but
in quite different ways. It is difficult or even impossible to integrate them into a
unified view on the ISD action domain. We recognize five fundamental ISD
action structures that together are comprehensive enough to cover all the
essential aspects of the ISD action domain, and deploy them as orthogonal to
one another. The ISD action structures are: the ISD management – execution
structure, the ISD workflow structure, the ISD phase structure, the ISD problem
solving structure, and the IS modelling structure. In addition to these, the
generic action structures (i.e. the decomposition structure, the control structure,
and the temporal structure) defined in Section 4.4.3 are “inherited” by the ISD
action domain. The aforementioned ISD action structures give a natural basis
for specializing and decomposing ISD work into more specific ISD actions. Each
ISD action is governed by one or more ISD rules with the ECAA structure
composed of ISD events, ISD conditions and ISD actions (cf. Section 4.4.3). An
instance of an ISD action is called an ISD process.

Next, we will define the ISD action structures and the concepts contained
in them. After that we form an integrative view by considering how the ISD
action structures are intertwined with one another. In each part we refer to the
literature to show how the ISD structures are recognized, named and
decomposed there. An overall view of the ISD action structures and concepts is
presented in Figure 77 in the form of the meta model of the ISD action domain.

A. ISD Management–Execution Structure

From the viewpoint of the ISD management–execution structure ISD is seen as a
functional and behavioral unity, composed of two kinds of actions, ISD
management actions and ISD execution actions. ISD management actions aim to
organize, staff, direct, implement and control ISD work. These actions comprise,
for instance, making a project plan (i.e. a work breakdown, a schedule, resource
allocation, etc.), determining its adequacy, consistency and feasibility,
establishing a quality control mechanism, and re-organizing the plan in cases in
which it does not match the reality. ISD management actions also involve
planning, acquiring and allocating the resources for an ISD project.

ISD execution actions aim to produce the required ISD deliverables under
the guidance and control of ISD management. These actions include, for
instance, knowledge acquisition about the existing IS and problems

136 See more categorizations in e.g. Barros (1991, 539) and Rubenstein-Montano et al.

(2001).

325

ISD action

IS implementation

IS design

IS analysis

IS req's engineering

ISD workflow

ISD workflow str.

ISD exec actionISD mgmt action

ISD mgmt-exec str.

ISD action str.

ISD controlling

ISD directing

ISD staffing

ISD planning

ISD organizing

IS evaluation

ISD phase str.

ISD prob.solv.str.

IS modelling str.

ISD rule

ISD process

Generic action str.

Conceptualizing Representing

Translating

Testing

ISD phase

IS inception

IS elaboration

IS transition

IS construction

Elementary

Intelligence

Design

Choice

1instanceOf

* 1..*governs 1..*

1..*

11 1..*

1..*

ISD sub-phase

ISD step

1..*

1..*

Single-model

Multi-model

Transforming

Relating

Integrating

Refining

Creating

ISD task

1..*

1..*

FIGURE 77 Meta model of the ISD action domain

encountered there, requirements specification for a new IS, and design and
implementation of specifications into a working system. Besides the actions
directly contributing to the deliverables, ISD execution actions comprise
supporting actions, for instance training and guidance of users, installation of
computer-aided development environments, etc.

The ISD management actions and the ISD execution actions constitute a
highly complicated structure in which they appear recursively within one
another on multiple levels. These management or control levels are identified
with different names. Essink (1988, 361), for instance, distinguishes between
two control levels, which he calls the process of IS planning and managerial
control, and the process of approach selection. The former corresponds to daily

326

activities of project management, and the latter to the decision making on
approaches to project management, modelling, and validation. The SYDPIM
model (System DYnamics Project-management Integrated Model) Rodrigues et
al. (1997, 56) distinguishes two levels of management processes that are the
operational level and the strategic level. At the operational level ISD work
processes are monitored and new or revised plans with estimations and risk
analysis are produced for engineering processes. At the strategic level strategic
decisions and risk analysis are made.

The ISD management actions can be further specialized into ISD planning,
ISD organizing, ISD staffing, ISD directing, and ISD controlling (see Section
4.4.3). ISD planning refers to all those ISD management actions that specify the
goals of an ISD project and the strategies, policies, programs and procedures for
achieving them (cf. Thayer 1987, 21). These involve partitioning managerial and
technical requirements into measurable actions and tasks, determining
milestones, priorities and schedules, estimating necessary resources and
figuring them as a budget.

ISD organizing refers to all those ISD management actions that are needed
to design a formal structure of ISD execution actions and authority
relationships between them. These comprise aggregating actions into ISD roles
and ISD positions, establishing an organisational structure, and specifying
titles, scope, duties, qualifications and relationships of ISD positions.

ISD staffing refers to all those ISD management actions that are needed to
fill the ISD positions of the ISD project organization and to keep them filled.
These comprise recruiting qualified people, orientating them into technical and
social environment, educating them in required methods, skills and equipment,
evaluating personnel, determining salary scale, promotion policy etc.

ISD directing refers to all those ISD management actions that are needed
for clarifying the assignments of ISD personnel, assigning actions to
organisational units, teams and individuals, motivating and inspiring
personnel, resolving disagreements between personnel and between the ISD
project and outer stakeholders.

ISD controlling refers to all those ISD management actions that are needed
for ensuring that actual actions are executed according to the plans. These
develop standards of performance and methods for the assessments, establish
reporting and monitoring systems, measure and audit progress and status of a
project as well as quality and quantity of deliverables, and initiate corrective
actions.

In the literature, the ISD management–execution structure is commonly
recognized but with different views and concepts. Van Slooten and
Brinkkemper (1993, 179) divide the ISD processes into three categories: primary
processes that transform inputs to output, regulative processes, like policy
making, planning and control, and maintenance processes that obtain and
maintain the means of the organizations. For structuring the system
development, Wijers (1991, 14) presents a framework for categorizing the types
of activities for the solutions of ISD problems. In the framework he
distinguishes between ‘way of working’ and ‘way of controlling’. The former

327

deals with the identification of the relevant tasks in the development process
and determining their feasible order. The latter includes planning for the ISD
project and plan evaluation. Rodrigues et al. (1997, 56) distinguish between the
engineering process and the management process. Mathiassen et al. (1988, 9)
and Mathiassen (1998), in the basic activity model of software development,
divide the systems development into two categories of activities: performance
and management. The performance activities are oriented towards software
products and services, whereas the management activities are oriented towards
the process of producing them. Cronholm et al. (1999, 222) distinguish between
the target domain and the project domain. The former corresponds to the
execution part of ISD, and the latter stands for project management.

B. ISD Workflow Structure

According to the ISD workflow structure ISD is composed of various ISD
workflows. An ISD workflow is a coherent composition of ISD actions, which are
organised to accomplish some ISD process, which share the same target of
action, and which produce valuable results for stakeholders137. A part of an ISD
workflow is called an ISD task. ISD workflows can be identified among the ISD
management actions as well as among the ISD execution actions. In the
following, we will consider them in the context of the ISD execution actions. We
distinguish between five core ISD workflows: IS requirements engineering, IS
analysis, IS design, IS implementation, and IS evaluation138.

IS requirements engineering means an ISD workflow, which aims at the
identification and elicitation of IS clients’ and IS workers’ requirements on the
IS, as well as establishing and maintaining, at least to some extent, agreement
on what the information system should do and why. This necessitates that the
ISD actors have general understanding of the problem area and the scope of the
IS (cf. Kruchten 2000, 155). The IS requirements engineering is commonly
decomposed into feasibility study, requirements analysis, requirements
definition, and requirements specification (Sommerville 1998, 67).

IS analysis means an ISD workflow, which models the problem domain.
The focus of this workflow is to represent the business system in a manner that
is natural and concise enough, and to achieve an overall description of the
information system that is easy to maintain. The IS analysis aims to ensure that
the information system’s functional requirements are covered. In this sense,
analysis starts with looking at the system from outside (Mathiassen et al. 2000,
13).

137 Note that the term ‘workflow’ is here used in a different meaning from the one used

in the UML process model (Jacobson et al. 1999) or in the workflow management
literature (cf. Workflow Management Coalition 1999; Mentzas et al. 2001).

138 In some frameworks (e.g. Iivari 1991, 250) there are also workflows for maintenance
or evolution of an IS. We regard them as being composed of ISD actions of the core
ISD workflows and ignore them here

328

IS design means an ISD workflow, which models the solution domain. It
involves elicitation, innovation and evaluation of design options in the form of
IS models on various levels of abstraction. Thus, the IS design looks at the
system from inside. A decision is made on which part of the system will be
automated (cf. CIS) and which part is to be implemented as a manual system
(cf. HIS). The workflow aims to acquire an in-depth understanding of issues
regarding non-functional requirements and constraints related to components
reuse, software architectures, hardware platforms, user-interface technologies,
etc. Good designs are not deduced, they are invented. Thus, a creative and
intellectual element is most essential for design (Fairley 1985; Lanzara 1983).

IS implementation means an ISD workflow, which fleshes out the
architecture and the system as a whole, by carrying IS design models into effect.
There are two kinds of implementation actions. Technical implementation,
known as construction in Iivari (1991, 250), involves all those actions that are
necessary to construct/acquire and carry into effect technical components of the
CIS. These generate and code software procedures, acquire and assemble
hardware components into computer and communication systems, specify and
load files and databases, etc. Organizational implementation, referred to as
institutionalisation in Iivari (1991, 250), means all those actions that are
necessary to create and change social norms, conventions, procedures and
structures to be embedded in the HIS.

IS evaluation means an ISD workflow, which aims at the assessment of an
existing system, as well as of all the specifications, designs and implementations
made for the future system. Evaluation is based on quality criteria derived from
the functional and non-functional requirements. Evaluation comprises
verification and validation. Verification is a process of determining whether or
not the ISD deliverables, produced by ISD work, fulfill the established
requirements. Validation is a process of evaluating the IS at the end of the ISD
work to ensure compliance with the requirements (cf. Boehm 1984).

Besides the core workflows defined above, there are supporting
workflows, like configuration and change management (cf. Kruchten 2000).
These are not discussed here.

As can be seen from the definitions above, there are no clear-cut
borderlines between the workflows. In the ISD literature, analysis and design
are the most commonly referred parts of the ISD work. To illustrate differences
in their meanings and deviations in the conceptions about how they are related,
we present a short review of the literature. We can distinguish between five
views on which the dichotomy of analysis and design is defined in the
literature. According to the first view, analysis continues until a decision can be
made on whether design is necessary or profitable. This means that analysis
also yields at least informal requirements for the IS (e.g. Brodie et al. 1982) or
even narratives of required functions and building blocks of the system (e.g.
Maddison et al. 1984; Colter 1984). According to the second view, analysis
means finding out "Why" and "What" the system is supposed to do, and design
means "How" this should be happened (Alabiso 1988; Wand 1988a, 203;
Zultner 1993; Vidgen 2002, 249). The third view makes a difference between

329

analysis and design on the basis of the object system of the actions: analysis
involves an existing system, and design focuses on a new system (cf. Olle et al.
1988a; Mathiassen et al. 1988, 7; Jayaratna 1994, 244). The fourth view considers
analysis to be something which takes apart and describes things, whereas
synthesis is a constructive action by which the known parts are put together in
a new way (cf. Mathiassen et al. 2000, 14; Harmsen 1997, 138). The fifth view
emphasizes the seamlessness of analysis and design, meaning that analyzing a
problem leads automatically to thoughts of a like solution (cf. Graham et al.
1997, 41-42).

The first view is based on the phase-oriented perspective, whereas in the
third view a distinction is made based on the target of the action (an existing
system vs. a new system). These kinds of conceptions are common in
conjunction with the waterfall model (Royce 1970). In recent years, the concepts
of workflow and phase have been clearly separated (cf. Jacobson et al. 1999).
This is best enabled by the second view. According to this view, the analysis
workflow as well as the design workflow contains analytical and synthetic
actions, yet from different perspectives. This is the view we advocate here.

C. ISD Phase Structure

According to the ISD phase structure, the ISD is seen as being composed of
sequential phases. An ISD phase means an ISD action, executed between two
milestones, by which a well-defined set of goals is met, ISD deliverables are
completed, and decisions are made on to move or not to move into the next
phase (cf. Kruchten 2000, 276). Milestones are synchronization points where ISD
management makes important business decisions and ISD deliverables have to
be at a certain level of completion (Heym et al. 1992a, 230). Major milestones
are used to establish baselines (see Section 8.3.4 for the definition of a baseline).

 In ISD methods, a large variety of phases with different names are
presented. Without wanting to commit to any of them, we have selected the set
of phases, suggested by Jacobson et al. (1999) and Kruchten (2000), as an
example of the ISD phase structure139. It comprises four phases: IS inception, IS
elaboration, IS construction, and IS transition.

In the IS inception phase the focus is on understanding the overall
requirements and determining the scope of the development endeavor. The
scope is needed to understand what the architecture has to cover, what the
critical risks are, and to provide the boundaries for costs and schedule, as well
as the return-on-investment estimates. All in all, the IS inception phase
determines the feasibility of the proposed system development.

139 We are fully aware of a large variety of process models (e.g. life cycle model, spiral

model, fountain model) and approaches (e.g. prototyping approach, evolutionary
approach, incremental approach, agile approach), as well as of the fact that in each of
them different phase structures are applied. Although the phase structure of
Kruchten (2000) is not conceptually the best, we are here satisfied with that.

330

In the IS elaboration phase the focus is on detailed requirements
engineering, but some systems design and implementation actions aimed at
prototyping can also be done. Prototyping is deployed to better understand IS
requirements, to test the established architecture, thus mitigating certain
technical risks, and/or to learn how to use certain tools and techniques. The
phase ends with the baseline for the next phase.

The IS construction phase focuses on design and implementation of the
system. During this phase a software product is produced, which is ready for
the initial operational release that fulfills the given requirements. Also plans for
organizational changes are “operationalized” for realization.

The IS transition phase is entered when at least some part of an ISD baseline
is mature enough to be deployed. The phase comprises beta testing, fixing bugs,
adjusting features, parallel operations with the legacy system, conversion of
operational databases, training of users and maintainers, etc. At the end of the
phase the final product (CIS) has been delivered and the new organizational
arrangements (HIS) are fully in operation.

The ISD phases comprise, besides ISD actions described above, also some
method engineering actions. Especially in the first phase but also at the
beginning of the other phases it is common to customize the selected method to
make it better fit the ISD context at hand (Nuseibeh et al. 1996; Mathiassen 1998;
Tolvanen 1998). These ME actions are discussed in Chapter 10. In some ISD
approaches an ISD phase structure is established to include some IS actions as
well. In the prototyping approach (Budde et al. 1984) and especially in the
evolutionary approach (Iivari 1982; Falkenberg et al. 1992a) ISD actions and IS
actions are highly intertwined. We do not discuss this issue any further here.

D. ISD Problem Solving Structure

The ISD problem solving structure is the result of seeing the ISD as a series of
interrelated decisions, which involve the identification and articulation of
problems, alternative solutions, decisions and justifications (cf. Wild et al. 1991,
18). There are approaches which lay more emphasis on problems (e.g. Bodart et
al. 1983; Sol 1992; Blum 1994; Jayaratna 1994), and approaches for which the
decision is the focal element (e.g. Jarke et al. 1990; Wild et al. 1991; the NATURE
Team 1996). With the ISD problem solving structure we aim to cover both of
these approaches140.

According to Simon (1960), problem solving is composed of three kinds of
stages: intelligence, design, and choice. Intelligence means actions that search the
environment for conditions calling for a decision. In the ISD context, this means
the recognition of problems and the acquisition and analysis of knowledge
relevant to resolution of the problems. Design consists of the actions of
inventing, shaping and specifying alternatives for possible courses of action in

140 Considering each choice in the problem solving structure to be a decision establishes

a structure of decisions, which are associated with one another with relationships
that are derived from the corresponding relationships of the problems.

331

ISD work. If the available information is found to be insufficient, the problem
solver (e.g. an IS analyst) may choose to go back to the intelligence stage before
making any further move. Choice means the evaluation and comparison of each
alternative design option and the selection among them. If needed, more
information is collected, more options are specified and/or specifications are
further refined or revised. Hence, the stages constitute an iterative rather than
sequential process.

Simon's framework can be recursively applied within each of the three
stages (cf. Cooper et al. 1979). This enables us to distinguish between the first-
order problems and the second-order problems (cf. Eloranta 1974). To solve the
original problem, known as the first-order problem, it is first necessary to find
an answer to how to solve it. Intelligence within intelligence, for instance,
means the collection of information about possible approaches, objectives and
procedures to collect and analyse the information. Correspondingly, design and
choice within intelligence means the generation and assessment of alternative
means to collect and analyse the information, and the selection of the best one
to be applied. In the ISD work, both the IS problems (i.e. the first-order
problems) and the ISD problems (i.e. the second-order problems) have to be
tackled.

The ISD problem solving structure is seen as being embedded in the ISD at
several levels of detail in the literature. Jayaratna (1994, 37), for instance,
considers an ISD method as a problem-solving mechanism that shows how to
perform problem solving in ISD through three phases: a problem formulation
phase, a solution design phase, and a design implementation phase. Wild et al.
(1991) consider software development as a series of interrelated decisions which
involve the identification and articulation of problems, alternatives, solutions
and justifications. The design process is characterized by a search by decision
dependency directed backtracking. In the NATURE approach (NATURE Team
1996) the requirement engineering process is structured as contexts in which
requirement engineers with certain intentions have several options to select
from when making decisions on actions.

E. IS Modeling Structures

Modeling has incontrovertibly a focal role in the whole range of the ISD actions.
It is a necessary and frequently used means equally in the ISD management
actions (cf. organization charts, time tables, etc.) and in the ISD execution work.
Here, we focus on modeling in the latter case, and refer to it as IS modeling. The
target of IS modeling can be an existing IS or a new IS, seen from different IS
perspectives. The significance of modeling to ISD appears the most evident in
those ISD approaches that regard ISD work as a transformation process by
which IS models are transformed into more realization-dependent models (e.g.
Wand 1988a; Tracz et al. 1993; Moynihan 1993; Jacobson et al. 1999). Although
modeling does not exert influence on the macro structures of the ISD actions, it
is intrinsically present at all lower levels of ISD work. We refer to the structures
of actions targeted at the IS models as the IS modeling structures.

332

There are three kinds of IS modeling structures: the elementary modeling
structure, the single-model action structure, and the multi-model action
structure. The elementary modeling structure comprises IS modeling actions that
are always present in IS modeling. These actions are conceptualizing and
representing (cf. Chapter 7). By conceptualizing, relevant perceptions of the
existing reality and conceptions of the imagined reality are interpreted,
abstracted and structured according to some conceptual model (cf. Falkenberg
et al. 1988, 47). Representing is an ISD action by which conceptions are made
"visible" and proper to communicate about them. Representing yields a model
denotation from a concept model.

The single-model action structure comprises IS modeling actions that involve
a single model at a time. These actions are creating, refining and testing.
Creating is an ISD action by which an IS model is conceptualized and
represented for some specific use. It is an initializing action which starts
without any previous version of the model. After making the first version of the
model, some corrections, modifications and enlargements are often required.
Also, actions of abstraction and concretization may be needed. These IS
modeling actions are called the model refining. Testing is an ISD action by which
a concept model or a model denotation is checked against the given quality
criteria (cf. Krogstie 1995). Testing comprises validation and verification.
Validation means checking that the proper fit between the model and the
existing or imagined (conceptions of) reality exists. Verification means checking
whether there are any inconsistencies within the model (or among the models).

The multi-model action structure comprises IS modeling actions that
involve, some way or another, two or more IS models at the same time. These
actions are transforming, translating, relating, and integrating. Transforming is
an ISD action by which conceptions structured according to one IS model are
transformed into conceptions structured according to another IS model. For
instance, conceptions about data flows structured by the concepts of the DFD
model (e.g. Gane et al. 1979) can be transformed to conceptions structured by
the concepts of the ISAC activity model (Lundeberg 1982). Transforming can
also be done through derivation, by strict rules or some heuristics, from one or
more IS models to another IS model. For instance, an ER schema is transformed
into a relational schema by following a set of simple transformation rules (cf.
Elmasri et al. 2000). Translating is an ISD action by which conceptions
represented in some language are translated into another language. For
instance, a description of the goal /means relationships can be translated from a
graph form to a matrix form. In translating, the semantic contents of the IS
model (i.e. the concept model) are supposed to remain the same, while only the
presentation (i.e. the model denotation) is changed. This of course is not, strictly
speaking, true.

Two or more IS models are related, or mapped, to one another by finding
common concepts within the models or defining some “bridging” relationships
between the concepts of the models. Relating can be total or partial. It does not
create any new model. Integrating means an ISD action by which a new model is

333

made by assembling together concepts and constructs of two or more other IS
models. Integration requires that conflicts in naming (e.g. synonyms,
homonyms) and structures are resolved.

Each of the IS modeling actions defined above can be further decomposed
and/or specialized. For instance, creating is composed of the following steps:
delimitation, identification, defining, characterization, relating, decomposition,
specialization, etc. (Goldkuhl et al. 1993).

In Figure 78 ISD actions of the IS modeling action structure are illustrated in the
setting of two dimensions (cf. Goldkuhl et al. 1993, 8). The vertical dimension
stands for the perspectives, and the horizontal dimension is established along
the IS domains. Transforming concerns two IS models which represent the
same or different perspectives. For instance, the transformation of a relational
schema from an ER schema means a shift of the view from the IS conceptual
perspective to the IS datalogical perspective. Relating and integrating IS
models yields a more comprehensive view on the IS context. They can involve
models from the same or different contextual domains (e.g. integration of a
goal/activity model (Kueng et al. 1996) and a data flow model (Yourdon 1989)).
In some cases the IS model to be related and integrated can be made from
different IS perspectives as well. The other IS modeling actions concern the
models of the same IS perspective and the same IS domain.

 translating transforming integrating

 creating
 relating
 transforming
 refining

FIGURE 78 IS modeling actions in the vertical (perspective) and horizontal (contextual

domain) dimensions

F. Synthesis

The ISD action structures are highly inter-twined with one another. In an ISD
project, ISD work may be structured, for instance, into five ISD phases each of
which is decomposed into several sub-phases and numerous steps. These
phases contain ISD actions from several ISD workflows. Each workflow in turn

Modelk

Modelm

Modeli

Modeln

Modelj

334

comprises different IS modeling actions. Because in ISD it is basically a question
about decision making, in all ISD phases, ISD workflows, and IS modeling
actions we can recognize parts of solving primary and secondary IS/ ISD
problems. Also, among ISD actions there appear a multitude of branches and
iterations. Besides being succeeded by one another, ISD actions can overlap or
be executed in parallel. Keeping this in mind, we can imagine the difficulties
encountered in modeling and managing this complexity in ISD, as well as in
ISD methods.

In the ISD literature, only one or two of the ISD action structures defined
above are usually identified. There are, however, some exceptions. Next, we
review two of them. Iivari (1990b) distinguishes between three main categories
of IS/SW design structures in the hierarchical spiral model for information
system and software development. The categories are: decision making
dynamics concerning IS/SW products, learning dynamics, and IS/SW design
acts. The first structures are further divided into evolution dynamics and main
phase dynamics. Evolution dynamics consists of successive life cycles of the
operational IS/SW product at the levels of modeling (i.e. perspectives in our
terminology). Main phase dynamics corresponds to our ISD phase structure.
Learning dynamics takes into account the fact that the IS/SW design process
normally involves continuous learning that presumes making iterations
explicit. The category of IS/SW design acts corresponds to lower-level acts,
which are completely or partially ordered in time.

Mathiassen et al. (1988) present a basic model of software development in
terms of seven intrinsic relations: management and performance, reflection and
action, analysis and design, knowledge and practice, quality and resource,
formal and natural, and actors and bystanders. Four of these are related to the
ISD actions. The division into management and performance is based on the
process-oriented and product-oriented views on software engineering,
respectively. The dichotomy of reflection and action highlights the necessity of
effective learning in the cycle of design and realization. Distinguishing analysis
and design means that the actions directed at the present reality are separated
from those concerning the future possibilities. Knowledge and practice
correspond to technical rationality and reflection-in-action (Schön 1983).

8.3.4 ISD Object Domain

The ISD object domain comprises all those concepts and constructs that refer to
something to which ISD actions are directed. In ISD frameworks these are
commonly called deliverables (Glasson 1989; Heym et al. 1992a; Cimitile et al.
1994), artifacts (Song 1997; Hruby 2000b, 23; Jacobson et al. 1999, 21), decisions
(Rose et al. 1990; Wild et al. 1991), products (Aoyama 1993; Saeki et al. 1993;
Hazeyama et al. 1993), work products (Hidding 1997, 105; Firesmith et al. 1999;
Henderson-Sellers et al. 1999c 40), design products (Olle et al. 1988a, 2), and
increments (Graham 1989). To emphasise the linguistic nature of the ISD
objects and our orientation to ISD objects in the execution part of the ISD, we
use the generic term ISD deliverable.

335

An ISD deliverable inherits all the predicates of an informational object
specified in Section 4.4.4. This means, for instance, that an ISD deliverable can
be, on the elementary level, an assertion, a prediction, a plan, a rule, or a
command, concerning the ISD itself, the existing information system, the new
information system, the OSIS or the USIS (cf. Chapter 5). We use the term ‘OSISD
construct’ to denote all these parts in the object systems of ISD. The signifies
relationship expresses a relationship between an ISD deliverable and an OSISD
construct.

In the following, we first define the essential classifications of the ISD
deliverables and then specify the most substantial relationships between the
ISD deliverables. Figure 79 gives an overview of the concepts and relationships
within the ISD object domain in the form of the meta model.

The ISD management actions aim to plan, organize, staff, direct, and
control ISD work. They produce plans for, decisions on, directives for, and
assessments of goals, positions, actions, deliverables, locations, etc. in an ISD
context. We refer to these objects as the ISD management deliverables. Examples
of the ISD management deliverables in the form of documents are: Definition
study action plan and schedule, Statement of work for detailed system design,
Conversion and installation plan, and Subsystem detailed design report. The
ISD management deliverables are intended for the ISD actors, who are in
charge of carrying out the corresponding ISD execution actions. Some of the
deliverables (e.g. budgets and assessment reports) are for persons on the
strategic or tactical level in the US organization. Besides the deliverables
disseminated by formal documents, persons in charge of the ISD management
guide, motivate, inspire and support their subordinates and colleagues
informally through discussions, advice and messages.

The ISD execution actions aim to implement plans and prescriptions got
from the ISD management. These actions result in a large variety of descriptions
and prescriptions about why, what, and how information processing is carried
out or is to be carried out in the current IS context or in a new IS context,
respectively. We call these ISD deliverables the ISD execution deliverables. The
ISD execution deliverables comprise informal drafts and scenarios, as well as
more formal presentations. The former include instructions and guidelines,
produced for IS actors in the form of training materials, handbooks, and
manuals. The latter are presented in IS models (e.g. ER schemes, DFD’s, program
structure charts) or they are IS implementations of those models (e.g. software
modules, prototypes, files, data bases).

Some of the ISD execution deliverables are specified to be parts of the ISD
baselines with milestones in a project plan. An ISD baseline is a set of reviewed
and approved ISD deliverables that (1) represents an agreed basis for further
evolution and development, and (2) can be changed only through a formal
procedure such as configuration and change management (Jacobson et al. 1999,
443). Because a variety of ISD deliverables is too large to be dealt with here, we
will concentrate on the IS models.

336

ISD deliverable

IS physical m.

IS datalogical m.

IS conceptual m.

IS infological m.

IS data m.

IS facility m.

IS action m.

IS purpose m.

IS deliverable m.

IS actor m.

ISD exec deliver.ISD mgmt deliver.

IS time m.

IS location m.

IS ID m.

IS systelogical m.

OSisd construct

1..*

1..*

signifies

*

supports

*

*
* 0..1

*

versionOf

0..1
*

copyOf

ISD baseline

1..*

0..*
Informal

Semi-formal

IS model

*

IS implementation

*

IS IP m.

Formal

* 0..1
predAbstract

FIGURE 79 Meta model of the ISD object domain

On the basis of the perspective ontology (see Chapters 6 and 7), we distinguish
between systelogical, infological, conceptual, datalogical, physical, and inter-
perspective (IP) IS models. Furthermore, in accordance with the context
ontology (cf. Chapters 4 and 7), we classify the IS models into IS purpose
models, IS actor models, IS action models, IS deliverable models, IS data
models, IS facility models, IS location models, IS time models, and IS inter-
domain (ID) models.

As the ISD deliverables are informational objects, they can be perceived
from different semiotic viewpoints. An ISD deliverable can be a conceptual,
linguistic, or physical object. Above, we have considered the ISD deliverables
mainly to be conceptual with the aim of revealing their conceptual contents.

337

The ISD deliverables are presented in some language(s). Presentations may be
informal, semi-formal, or formal, including texts, lists, matrices, program codes,
diagrams, charts, maps, pictures, voices, videos, etc.

Implied from the meta model of the object domain (Section 4.4.4), the ISD
deliverables are related to one another with five kinds of relationships. First, an
ISD deliverable can be composed of other ISD deliverables. Second, an ISD
deliverable can be used as an input to, or as a prescription for, another ISD
deliverable (i.e. the supports relationship). For instance, an ER schema is a
major input to a relational schema. Third, an ISD deliverable can be the next
version of another ISD deliverable (i.e. the versionOf relationship). Fourth, an
ISD deliverable may be a copy of another ISD deliverable. Fifth, an ISD
deliverable can be more abstract than another ISD deliverable in terms of
predicate abstraction (i.e. the predAbstract relationship).

In the literature, there are only few presentations in which the ISD
deliverables are addressed in a comprehensive manner. Most commonly the
ISD deliverables are classified according to ISD actions, or alternatively in a
more or less non-systematic way. Examples of the latter case are classifications
in Harmsen (1997, 141) (i.e. requirements statements, specifications, operational
items, plans, reports) and in Heym et al. (1992a, 227) (system specifications,
planning documents, reports or documentation, and decisions). From the
relationships between the ISD deliverables the partOf relationship (e.g.
‘contains’ in Glasson (1989) and Song (1997), ‘is_part_of’ in Song et al. (1992),
‘has’ in Prakash (1997, 1999), ‘composed of’ in Schmitt (1993)) and the supports
relationship (e.g. ‘depends_on’ in Glasson (1989), ‘output usage’ / ‘input usage’
in Heym et al. (1992a)) are most commonly distinguished.

8.3.5 ISD Inter-Domain Relationships

In the sections above the ISD concepts and constructs have been discussed from
the viewpoint of one ISD domain at a time. The ISD domains are, however,
inter-related in many ways. Figure 80 presents the general-level meta model,
which illustrates the most essential inter-domain relationships. In the meta
model one or few essential concepts from each of the ISD domains are depicted
and related to concepts of the other domains. We omit the cardinality
constraints associated to the relationships in the figure to keep it simple. The
meta model has been derived from the one in Figure 43 in Section 4.5. It is
neither possible here to discuss all the inter-domain relationships in Figure 80,
nor to give explicit definitions for them. Instead, we refer to the definitions
given in Section 4.5. There are, however, two ISD inter-domain relationships,
which we consider here in more detail. These are the viewedBy relationship
and the strivesFor relationship. With these relationships we can highlight ISD
as an organizational context in which ISD stakeholders have different views
and opinions and ISD actions are guided by certain design rationale.

338

ISD action

ISD Time

ISD
actor

ISD role

ISD
deliverable

ISD tool

ISD
location

ISD human
actor

ISD
facility

ISD-
purpose

ISD position

ISD
resource

strivesFor
motivatedBy

carriedOut

occursAt

input

existsAt

intededFor

performs

uses

situatedIn

situatedIn

usedToMake

existsAt

situatedIn

ownedBy viewedBy

useAbility

intendedFor

existsAt

intendedFor

existsAt

output

responsibleFor

expressedBy

OSisd
construct

signifies

involvedBy

FIGURE 80 Meta model of ISD inter-domain relationships

The viewedBy relationship between an ISD deliverable and an ISD actor means
that an ISD deliverable represents views, insights, opinions, etc. of a specific
ISD actor. If associated with a person or a group of persons, an ISD deliverable
represents subjective or inter-subjective views, whereas if it is associated with
an ISD position, an ISD deliverable reflects an organizational view or a so-called
‘official’ view. According to Stamper (1992b) there is no knowledge without an
agent. With this relationship an ISD deliverable can be tied to the person or
organization concerned. Through this relationship it is also possible to present
differences between, and conflicts among, the views141. The significance of this
relationship is acknowledged especially in the requirements engineering
literature. Lang et al. (2001, 166) identify the ’proposes’ relationship between
’Stakeholder’ and ’User requirement’ in the meta model for RM-tool
(Requirements Management Tool). Lee et al. (2001) argue that the requirements
should be incorporated to the stakeholders who have presented those
requirements. This is important because of traceability, conflict resolving,
prioritisation, etc. Nuseibeh et al. (1996) outline the ViewPoints framework,
which acknowledges the existence of ISD actors “who hold multiple views on a
system and its domain” (ibid p. 267). The multiple views can be specified and
managed by the use of the ViewPoint pattern (Finkelstein et al. 1992), which is

141 See more in Baldwin (1993) and Motschnig-Pitrik (1999).

339

related to the ViewPoint owner. The owner acts as the domain knowledge
provider.

The strivesFor relationship between an ISD action and an ISD purpose
means that an ISD action is to be conducted, is conducted, or was conducted for
satisfying a certain goal. A goal may be inferred from encountered problems,
specified requirements, observed opportunities, or perceived threats. From the
historical viewpoint, the strivesFor relationship, together with the input and
output relationships between the ISD actions and the ISD deliverables, can be
used to express design rationale (Goldkuhl 1991; Ramesh et al. 2001). Design
rationale means a “record of reasons behind the decision taken, thus providing
a kind of design/project memory and a common medium of communication
among different people” (Louridas et al. 1996, 1). Design rationale “furnishes a
way of capitalizing on past experience and thereby aiding design decisions”
(ibid p. 1). There are several design rationale methods (e.g. IBIS (Conklin et al.
1988), REMAP (Ramesh et al. 1992), QOC (MacLean et al. 1991), PDR (Carroll et
al. 1991), which enable the modeling of and reasoning from the knowledge on
produced ISD deliverables, conducted ISD actions, stated ISD goals, and
reasons for them (i.e. arguments and justifications). With this knowledge it is
possible to trace reasons for the made decisions and actions, which is especially
beneficial in requirements engineering (e.g. Pohl et al. 1997; Nguyen et al. 2003).

8.3.6 Summary

In this section we established the first part of the ISD ontology. We defined the
essential concepts and relationships with which the structural, functional and
behavioral aspects of the ISD contexts can be conceived, understood, structured
and presented. In building the ontology we have derived its concepts and
constructs from the underlying ontologies, especially from the context ontology.
Moreover, we have searched for, selected, customized and integrated concepts
and constructs from the ISD literature in those cases where they fitted our
views and approaches. For each ISD domain, plenty of references and
comparisons to the literature were given.

Due to the large extent of the domain area, we were forced to make some
limitations in our considerations. From the seven ISD contextual domains, we
focused only on the most essential ones that are the ISD purpose domain, the
ISD actor domain, the ISD action domain, and the ISD object domain. For the
other ISD domains, the concepts and constructs can be more or less directly
derived from the corresponding contextual domains (Chapter 4). We only
provided an overview of the ISD intra-domain relationships. For each intra-
domain relationship it is easy to formulate a definition on the bases of those
given in Section 4.5. Regardless of the aforementioned limitations, this part of
the ISD ontology is quite comprehensive comprising dozens of ISD concepts
and constructs. To assess the ISD ontology, we will compare it with some
frameworks, meta models and the like presented in the ISD literature in Section
8.5.

340

8.4 ISD Perspectives

Having defined the concepts and constructs within and between the ISD
domains in Section 8.3, it is now possible to introduce the second main part of
the ISD ontology, namely the ISD perspectives. The ISD perspectives are
important to managing the complexity of ISD and, for instance, understanding
how conceptions about the ISD context gradually develop when engineering an
ISD method. We focus here on four ISD perspectives: the ISD systelogical
perspective, the ISD infological perspective, the ISD conceptual perspective,
and the ISD datalogical perspective. After defining them we consider the ISD
inter-perspective relationships.

8.4.1 ISD Systelogical Perspective

Based on the definitions in Chapter 6 we state that the ISD systelogical perspective
reveals the support that ISD provides to its utilizing system (USISD). The
utilization system is composed of the IS and the USIS. Implied from the
definition we can say that the following questions are relevant from the ISD
systelogical perspective:
• What kind of IS is it for which the ISD project is launched?
• What kind of USIS is it that the IS should support with information

services?
• What kinds of services should the ISD provide to the USIS?
• Derived from the answers to the above questions, what are the goals at

and constraints for, approaches, organizations, actions, deliverables, etc. of
the ISD context?

From the characterizations of the ISD perspective given above we can now
derive the meta model of the ISD systelogical perspective in Figure 81. The ISD
systelogical perspective concerns three contexts: the ISD context, the IS context
and the USIS context. The ISD context provides ISD services to the IS context,
which in turn provides IS services to the USIS context. An ISD service means all
those material or immaterial ISD deliverables that are produced in the ISD
context and delivered to be exploited in the intended IS context. From the
systelogical perspective the ISD context is seen as a black box, meaning that
only the ISD purpose domain, in addition to the aforementioned ISD services, is
recognized in the perspective. The IS context, in turn, is considered through the
concepts and constructs of the IS purpose domain, the IS action domain, and the
IS object domain. The IS purpose domain is needed to reveal goals and reasons
for which information processing is carried out. The other IS domains help
characterize the kind of the IS and the circumstances for which the ISD context
should provide IS services. Note that through the concepts of the IS purpose
also other IS domains, yet on a more general level, are under the consideration.

341

ISD purpose

US action

IS purpose

US purpose

US contextIS serviceIS context

ISD service

ISD context

US object US facility

IS action

IS object

1
provides

1..*

1..*

exploits

1..*

1

provides 1

1..*

exploits

1..*

FIGURE 81 Meta model of the ISD systelogical perspective

It is the USIS context, which ultimately benefits from that information
processing that is hopefully improved by better ISD services provided by the
ISD context. Therefore it is necessary to include the essential features of the USIS
context in the ISD systelogical perspective. The features relevant to the
perspective are related to the USIS purpose domain, the USIS action domain, the
USIS object domain, and the USIS facility domain. The last one is included to
uncover a position which the new IS is to have in the USIS context, that is to say,
which USIS actions are mainly to benefit from a new IS, or a new tool, in the
USIS context.

There are some implicit relationships between the domains of the three
contexts that should be taken into account e.g. when engineering an ISD
method. For instance, approaches and main principles selected for the ISD
should suit the goals of and ways of working in those IS which are intended to
exploit the ISD services. For instance, developing an information system for IS
clients, who need and use expertise and knowledge of some specific area,
makes it necessary to apply ISD approaches that give adequate emphasis on
human beings, their needs and views (i.e. the user oriented approach), on one
hand, and strongly involve IS clients into the ISD work (i.e. the participative
approach, Mumford 1981), on the other hand.

8.4.2 ISD Infological Perspective

From the ISD infological perspective the ISD context is seen as a functional
structure of information processing actions and informational objects. In this
perspective, no attention is given to the features related to how the information
objects are presented, neither to how they are implemented. Within this ISD
perspective, the following questions are answered:
• What information is processed in the ISD context and why?
• What are the ISD actions, ISD rules, and input and output deliverables in

the ISD context?

342

The relevant ISD domains from the ISD infological perspective are: the ISD
purpose domain, the ISD action domain, and the ISD object domain. The
concepts of the ISD purpose domain are used to specify conceptions about why
ISD is needed, and what the goals of the ISD are. The concepts of the ISD action
domain are used to express what is done in the ISD context, and the concepts of
the ISD object domain pertain to ISD deliverables of the ISD context. In the
following we consider more closely the concepts and constructs within the ISD
infological perspective. The meta model of the perspective is presented in
Figure 82. Note that all relevant sub-concepts and relationships are not depicted
in the figure in order to save the space.

ISD goal

Decomposition str.

ISD workflow str.

Generic action str.

ISD exec deliver.

ISD workflow

ISD action str. ISD action

ISD purpose

Control str.

ISD prob.solv.str.IS modeling str.

0..*

1..*

strivesFor

*

*

dueTo

1..*

ISD reason

0..*

output

0..*

input

ISD deliverable

ISD rule
*

*

governs

*versionOf

*
copyOf

*
*

supports

*
predAbstract *

0..1

0..1

0..1

1..*1..*

FIGURE 82 Meta model of the ISD infological perspective

The ISD reasons and the ISD goals (e.g. in problem matrices and goal/means
graphs) provide answers to questions like: What are the problems, strengths,
weaknesses, threats, and opportunities in the current IS and its environment?
What are the requirements for a new IS, and which of the requirements are
agreed on being goals for the ISD effort? The influence, refinement, dueTo, and
causalTo relationships are specified to show how the ISD goals, the ISD
requirements, and the ISD problems are related to one another.

Also the ISD actions are, on a general level, identified and organized
according to the generic action structures (i.e. the decomposition and control
structures), the ISD problem solving structure, the IS modeling structure, and
the IS workflow structure. The rest of the ISD action structures (i.e. the ISD
management–execution structure and the ISD phase structure) are applied later.
ISD rules for ISD actions are specified on a general level.

343

The ISD deliverables from the ISD infological perspective only cover the
ISD execution deliverables. They are further divided into categories according
to the IS perspectives, resulting in specifications of ISD deliverables such as
Requirements Specification (IS systelogical perspective), Function Specification
in data flow diagrams (IS infological perspective), Database Schema in ER
diagrams (IS conceptual perspective), Relational Schema (IS datalogical
perspective), and Hardware Architecture (IS physical perspective). The partOf,
versionOf, copyOf, supports and predAbstract relationships are recognized
among the ISD deliverables.

8.4.3 ISD Conceptual Perspective

Applying the conceptual perspective generally means that the conceptual
contents of the informational objects processed in a context are revealed. In the
case of ISD context, the ISD conceptual perspective designates the things the ISD
deliverables signify. Here we consider the ISD conceptual perspective only in
relation to the ISD execution deliverables. As implied from Section 5.3, the
object system of the ISD covers the IS, the OSIS and the USIS. Hence, the
following questions are relevant:
• What are the meanings of the ISD deliverables?
• What do the ISD deliverables signify?
• What kinds of static and dynamic constraints are valid in the OSISD?

For the considerations from the conceptual perspective we have used the data
model in this work. The IS data model (e.g. an ER schema) uncovers the
conceptual contents of the information processed in the IS context and specifies
the allowed conceptual structures. At the next higher layer, the ISD data model
(e.g. the ER model) uncovers the conceptual contents of the information (i.e. ISD
deliverables) processed in the ISD context. Because this information is already
at the type level, the corresponding ISD data model contains meta models that
are called the IS meta models. The meta models are always structural models
(cf. Chapter 7). Because it is not possible here to describe all the meta models,
we contend ourselves to illustrate the ISD conceptual perspective with the IS
meta data model, which specifies the concepts and allowed conceptual
constructs in the IS data models. Assuming that the IS data model is based on
the ER model (Chen 1976) extended with concepts related to state transitions
and constraints, the meta model resembles the one in Figure 83.

An entity type is a generic concept corresponding to the intensional
specification of all those features that are shared by the entities that are
regarded as instances of the entity type (Elmasri et al. 2000). An example of the
entity type is Person. An OS relationship between two or more entities means
any relevant connection, association or like between the entities. An OS relation-
ship type is a generic concept corresponding to the intensional specification of all
those features that are shared by the OS relationships that are conceived as
instances of the OS relationship type. Each entity type that is connected by an

344

OSis eventType

OSis transitionType

OSis constructType

OSis stateType

EntityRole

EntityType

OSRelationshipType

Attribute

1
isRelatedTo

1..*
characterizes

1..*

1..*

characterizes

1..*

plays

1..*

OSis constraint

1..*

postState

*

1..*
preState

*

causedBy

*

triggers

Static OSis constraint

Dynamic OSis constraint

*

concerns

*

concerns

*

*

concerns

**

*

1..*

1..*

1..*

1..*

*

FIGURE 83 Meta model of the IS data model from the ISD conceptual perspective

OS relationship type plays a particular role in that relationship. We call this role
the entity role to differentiate it from a role in the generic ontology (Chapter 3)
and from an organizational role defined in the context ontology (Chapter 4). For
example, Person may be in the entity role of Husband or Wife in the Marriage
relationship type.

An attribute is a relevant predicate used to characterize an entity (e.g. Age)
or an OS relationship (e.g. WeddingDay). A particular entity or OS relationship
has one or more values for each of its attributes. A single-valued attribute has a
single value for a particular entity or OS relationship, whereas multi-valued
attributes may have many values. A composite attribute can be divided into
smaller parts that still have independent meanings (e.g. Address is composed
of StreetAddress, City, State, and Zip). An atomic attribute is not divisible. A
value of a derived attribute can be calculated from the values of other attributes
(e.g. Age from CurrentDate and BirthDate) or derived in some other way from
the existing entities and/or OS relationships (e.g. NumberOfEmloyees).

An OSIS construct type in OSIS means here a conceptual construct
composed of specific entity types related to one another through OS
relationship types and characterized by attributes. For instance, Marriage
[Husband: Person; Wife: Person] (WeddingDay: Value) is an example of an OSIS
construct type. OSIS constructs defined in Section 6.3.3 are instances of OSIS
construct types. An OSIS state type means a state type of the object system or its
part, composed of OSIS construct types. An OSIS transition type is a generic

345

concept corresponding to the specification of all those features that are shared
by OSIS transitions. An OSIS state type may involve entity types, OS relationship
types and/or attributes. An example of an OSIS transition type is Divorce, which
causes the change of the Marital status of Persons in the Marriage. The OSIS
transition types can be composed to establish OSIS transition structures like
those defined in the state transition ontology. An OSIS event type means a
generic concept corresponding to the specification of all those features that are
shared by OSIS events, which may trigger an OSIS transition and which may be
caused by another OSIS transition.

To get a richer picture of the OSISD, it is necessary to know the rules
governing the state types and the transition types in the OSIS. Those rules are
called the OSIS constraints. An OSIS constraint is static or dynamic. A static OSIS
constraint means a specification of allowed state or states. Static constraints may
be population constraints, uniqueness constraints, referential constraints,
cardinality constraints, attribute constraints, etc. A dynamic OSIS constraint
means a specification of allowed OSIS transition(s) and/or allowed OSIS events.
A complex OSIS constraint may comprise constraints of both of the types.

8.4.4 ISD Datalogical Perspective

From the ISD datalogical perspective the ISD context is considered through
representation-specific concepts, involving, besides ISD purposes, ISD actions
and ISD deliverables, on a general level ISD actors and ISD facilities as well.
That means that ISD is seen as a context in which for some purposes data
objects represented in some language are processed by actions of ISD actors
with the support of some computer-aided tools. No reference is made to data
carriers or other physical things of the ISD context. Since the number of the
concepts needed to describe all the datalogical features of ISD is huge, we
consider in the following only some of these essential concepts and constructs.
In Section 6.3.4 we defined the IS datalogical perspective in terms of concepts
and constructs concerning three parts of the IS: HIS, UI and CIS (cf. Figure 60).
In the ISD context human information processing is in a much more dominating
role, compared to the IS context, although ISD work is supported by
computerized ISD tools. Therefore, we are here more interested in ISD as a
context in which CASE environments, debuggers, and other technical things are
only in a position of supporting tools. The meta model of the ISD datalogical
perspective is presented from this viewpoint in Figure 84. All the details are not
included in the meta model.

The ISD datalogical perspective elaborates conceptions about the ISD
domains, resulted from applying the ISD infological perspective. Thus,
conceptions of ISD problems, ISD requirements and ISD goals are now made
more detailed and concrete. In the ISD action domain, the generic action
structures, the ISD workflow structure, the ISD problem solving structure, and
the IS modeling structures are refined from those considered within the ISD
infological perspective. In addition, the ISD management–execution structure

346

ISD reason

ISD phase str.

ISD workflow str.

Generic action str.

ISD deliverable

ISD base line

ISD action str. ISD action

ISD purpose

ISD org.unit

ISD position

ISD prob.solv.str.

IS modeling str.

0..*

1..*

strivesFor

*

*

dueTo

1..*

1..*

ISD goal

0..*

1..*
output

0..*

1..*
input

ISD mgmt-exec str.

ISD role

1..*

1

1..*

1

output

ISD project org.

ISD procedure

ISD rule

1..*
1

1..*

1

1..*

1

* influence

*

refinement
*

1..*

*

1..*

governs

ISD tool

1..*

performs

*

supervision

*

ISD phase

1..*

1

ISD exec deliv.ISD mgmt deliv.

ISD sub-phase

ISD step

1..*
1

1..*
1..*

*

responsibleFor

ISD mgmt action ISD exec action

11

1..*

1

*

FIGURE 84 Meta model of the ISD datalogical perspective

and the ISD phase structure are taken into use. These structures are used to
specify principles and ways of control and coordination of an ISD project. The
ISD phase structure is composed of ISD phases, ISD sub-phases and ISD steps.
The relationships between the phases and the sub-phases are grounded on the
control structures, not on the temporal structures of ISD actions. For some ISD
actions, general-level ISD rules are specified and aggregated to form ISD
procedures.

Within the ISD object domain more refined decompositions and
specializations of ISD deliverables are made. Also intra-domain relationships
are detailed and refined. As a consequence of establishing the ISD
management–execution structure and the ISD phase structure, the ISD
management deliverables are distinguished and some of the ISD execution
deliverables are collected to form baselines for ISD phases.

347

The ISD datalogical perspective also addresses the ISD actor domain and
the ISD facility domain, yet on a general level. The ISD actions are composed
through the responsibleFor relationships to constitute ISD roles. The ISD roles
are further aggregated to form ISD positions, such as an IS analyzer, a database
designer, and a programmer. The ISD roles with skill requirements may be
parts of several ISD positions. The ISD positions are preliminarily related to one
another through the supervision relationships. The ISD project organization
with main organizational units is roughly established.

The basic concepts and constructs of the ISD facility domain are
considered within the ISD datalogical perspective, though all physical aspects
are still ignored. In Figure 84 the ISD facility domain is abstracted into the
notion of an ISD tool, indicating that some of routine ISD actions can be
allocated to be performed by a computerized information system (CIS). It might
be possible to take a more tool-centered view exhibiting main logical
components of the CIS and interaction with human information processing
(HIS) through dialogs (see Section 6.3.4). We are forced to ignore this view here.

8.4.5 ISD Inter-Perspective Relationships

In this section we discuss how five ISD perspectives are related to one another.
The discussion is based on the definitions given in Section 6.3.6.

Figure 85 illustrates the contents of, and the relationships between, the ISD
perspectives in terms of concerned contexts and domains142. To distinguish
between the contexts concerned, we depict them with bold line rectangles in the
case there are more than one context involved by an ISD perspective. As stated
above, the ISD systelogical perspective involves three kinds of contexts: the ISD
context, the IS contexts, and the USIS contexts. The corresponding ISD domains
are shown in the figure. The ISD infological perspective concerns the ISD
context only. The concepts and constructs of the ISD infological perspective are
derived from the concepts and constructs established in the ISD purpose
domain through the ISD systelogical perspective. The view got from the ISD
infological perspective is further realized, first with the ISD datalogical
perspective and then with the ISD physical perspective. The ISD physical
perspective also instantiates concepts and constructs.

The ISD conceptual perspective designates, on a general level, things that
ISD deliverables signify. ISD deliverables can signify things in the ISD context
(e.g. time schedule for an ISD project)143, in the IS context (e.g. a sequence
diagram of invoicing), in the USIS context (e.g. a business process diagram) and
in the OSIS context (e.g. an ER schema). About the things both structural
features (i.e. states) and dynamic features (i.e. state transitions) are identified,
except about the OSIS about which meta-level information is only processed

142 To simplify the figure we do not present the abstractedFrom relationships between

the informational objects and the ISD conceptual perspective (cf. Figure 63).
143 Note that here we consider also the OSIS constructs that are signified by ISD

management deliverables.

348

Facility

Purpose Action Object

ISD
Systelogical

Purpose Action Object

ISD
Infological

Purpose Actor Action Object Facility

ISD
Datalogical

Purpose Actor Action Object Facility Location Time

ISD
Physical

ISD
Conceptual

realizedFrom/
instantiatedFrom

realizedFrom

IS

ISD

US

Purpose

Purpose

IS

ISD

US

Structural Dynamic

Structural Dynamic

derivedFrom

Action Object

OS Structural

Structural Dynamic

signifies

signifies

signifies

signifies

realizedFrom

realizedFrom/
instantiatedFrom

Time

signifies

realizedFrom

realizedFrom/
instantiatedFrom

realizedFrom/
instantiatedFrom

realizedFrom/
instantiatedFrom

realizedFrom/
instantiatedFrom

FIGURE 85 ISD inter-perspective relationships

and, as we know, meta information is always structural. ISD deliverables are
recognized and conceptually elaborated within three perspectives. In each of
these cases, the contents of the deliverables can be specified and analyzed
through the conceptual foundation provided by the ISD conceptual perspective.

8.5 Comparative Analysis

In this section we present a comparative analysis of artifacts (i.e. frameworks,
meta models or the like) that can be used as a means of understanding,
structuring and presenting phenomena in information systems development.
The analysis has been made for two reasons. First, we want to investigate what

349

kinds of artifacts there are in the literature and how they compare with our ISD
ontology. Second, we want to test how well the ISD ontology serves as an
analytical framework. We will present the analysis in two parts. The first part
(Section 8.5.2) aims to give an overview of the artifacts and their general
properties. In the second part we make a deeper analysis of the concepts and
constructs provided in the artifacts. This analysis reveals, among others, how
comprehensive the artifacts are and what issues and domains they cover and
emphasize. The analysis will be carried out for four ISD domains separately
(Sections 8.5.3-8.5.6). The ISD domains are: ISD purpose domain, ISD actor
domain, ISD action domain, and ISD object domain. The analysis ends with
conclusions (Section 8.5.7). But before we report on the results of the analysis,
we will make a short review of relevant works and select some of them for the
analysis.

8.5.1 Relevant Work

In the ISD literature there is a plethora of frameworks, meta models, reference
models, and ontologies that concern information system development. Here we
refer to them with the common term ‘artifact’. The artifacts can be categorized
into two main groups: those which describe and structure ISD, and those which
have been developed to describe, analyze, compare and/or engineer ISD
methods. In the following we make a short review of artifacts in both of the
groups and consider their relevancy to our comparative analysis.

Artifacts in the first group apply in most cases a rather general view of
ISD; either they characterize ISD in terms of ISD paradigms (e.g. Hirschheim et
al. 1989; Iivari et al. 1998a), of ISD approaches (e.g. Wood-Harper et al. 1982;
Hirschheim et al. 1995; Iivari et al. 2001), or of processes (e.g. Boehm 1988; Iivari
1990a; Iivari 1990b; Sabherwal et al. 1995). Most artifacts in this group have too
narrow a scope of and/or too general a view of ISD to be interesting for us.
There are, however, same exceptions. Iivari (1990a, 1990b), for instance,
presents the hierarchical spiral model, which provides an abstract explanatory
model for IS/SW design process. The model contains strictly defined concepts
and constructs in a large variety.

Another set of artifacts, included in the first group, consists of meta
models or ontologies that have been mainly built for structuring specific
phenomena of ISD. This set is very small. Ontologies such as the Frisco
framework (Falkenberg et al. 1998) and the Bunge-Wand-Weber model (e.g.
Wand 1988a; Wand et al. 1989; Wand et al. 1990a; Wand et al. 1990b) cover quite
well the elementary phenomena in the UoD, as shown in Section 3.10, and
provide some concepts for the IS layer as well. But they do not extend to the
ISD layer. There are some ontologies that concern specific parts of software
engineering (Kitchenham et al. 1999; Ruiz et al. 2004; Kishore et al. 2004).
Kitchenham et al. (1999), for instance, suggest an ontology of software
maintenance. The ontology covers maintenance activities, maintenance
procedure, maintenance organization procedure, and so-called peopleware.
Ruiz et al. (2004) build upon the work of Kitchenham et al. (1999) and suggest an

350

ontology for the management of software projects. The ontology is composed of
three main parts: maintenance ontology (products sub-ontology, process sub-
ontology, activities sub-ontology, and agents sub-ontology), workflow
ontology, and measurement ontology. These kinds of presentations are,
however, too domain-specific to serve as a generic and comprehensive basis for
the understanding of ISD.

Artifacts in the second group have been constructed for the analysis,
comparison, and engineering of ISD methods. This group can be sub-divided in
many ways. First, there is a very large array of literature providing artifacts for
evaluation and comparison of methods. Artifacts are (a) idealized methods
through which methods are to be assessed, (b) feature lists, (c) meta models, or
(d) contingency frameworks (cf. Sol 1983, 4). In the early 1980’s and ever since
then, dozens of feature lists have been suggested for analysis and comparison of
methods, or parts thereof (e.g. Rzevski 1983; Brodie 1983; Falkenberg et al. 1983;
Bodart et al. 1983; Maddison et al. 1984; Ang 1993; Karam et al. 1993; Flynn et al.
1993; Kelly et al. 1992). More structured forms of artifacts are taxonomies of (e.g.
Brandt 1983; Blum 1994), hierarchies of (e.g. Law 1988) and frameworks of (e.g.
Iivari et al. 1983; Essink 1986; Iivari 1994; Jayaratna 1994) features. Although
these artifacts are rooted upon with concepts referring to specific aspects of ISD,
the concepts are not explicitly defined, nor are they properly structured (except
Iivari (1994) that is based on Iivari (1989a, 1990a, 1990b). The same holds for
contingency frameworks (e.g. Davis 1982; van Swede et al. 1993; van Slooten et
al. 1993; Punter et al. 1996; Kettinger et al. 1997; Roberts et al. 1998; Lin et al.
1999). The use of meta models has brought necessary aid to the specification of
ISD methods in a more precise and condensed fashion. ISD methods are
specified in terms of notation and media, on one hand, and of conceptual
contents, on the other hand. Here we are interested in the latter kinds of
specifications because the conceptual contents of the ISD methods are defined
with fundamental concepts of ISD contexts.

In conclusion, from a very large set of artifacts suggested for the
description, analysis, comparison and engineering of the ISD methods in the
ISD literature, we are here particularly interested in those which specify the
conceptual contents of the ISD methods through (graphical) meta models.
Applying these criteria, we select the following artifacts for the analysis: the
framework and the reference model of Heym et al. (1992a), the process meta-
model of the NATURE Approach (NATURE Team 1996; Grosz et al. 1997), the
meta model of Saeki et al. (1993) and Saeki (1998), and the framework of Song et
al. (1992) and Song (1997). In addition, we accept two more artifacts although
they are not presented in a graphical form. These are the ontology of Harmsen
(1997) and the hierarchical spiral model of Iivari (1990a, 1990b). Both of these
artifacts are presented with preciseness that corresponds to the graphical form.

There are many other presentations (e.g. Olle et al. 1988a; Mi et al. 1996;
Nuseibeh et al. 1996; Gupta et al. 2001) that are excluded from this analysis, due
to their limited scope.

351

8.5.2 Overall Analysis

The purpose of this sub-section is to present an overall picture of the six
artifacts selected. For each artifact we give a short description. In addition, we
expose the purposes, theoretical bases, ISD approaches applied, representation
forms, and acts of validation of the artifacts. ISD approaches are expressed in
terms of ISD approaches defined in Section 8.1. Acts of validation mean efforts
that have been made to show the applicability of the artifact. The results of the
analysis are summarized in alphabetical order in Table 23. To ease the
comparison of the artifacts to our framework, the ISD ontology of OntoFrame is
presented on the first row in the table.

Harmsen (1997) proposes a framework, a language and a procedure to
assemble a situational method from building blocks called method fragments.
Method fragments are sub-divided into product fragments and process
fragments. A product fragment describes a product of the IS engineering
process. A process fragment describes the activities of that process. For defining
the method fragments, an ontology, called the Methodology Data Model
(MDM), and a process classification system are proposed. The ontology consists
of basic concepts of ISD products. The process classification system consists of
definitions of basic steps, product types and state types. To characterize the
method fragments, a large set of property types, including e.g. fragment aspects
and scenario aspects, are defined. In this section we mainly consider the
concepts and constructs contained in the ontology. They are defined in English
and, to a large extent, also with the first order predicate calculus.

The work of Harmsen (1997) has been built on an extensive analysis of
existing ISD literature (ibid p. 16-17) and on the systems theoretical view of an
information system. No specific ISD approach can be recognized. Some
experience from the applicability of the artifact has been gained from the
implementation of a prototype of the Method Base System and from its use in
some empirical studies (van Slooten 1995; van Slooten et al. 1996). Heuristics for
the selection of method fragments has been applied in the Situational Project
Definition project (Klooster 1996).

Heym et al. (1992a) present a framework and a reference model for
describing, understanding, and comparing ISD methods. The framework
categorizes the aspects of ISD methods into three perspectives: application type,
life cycle, and model focus. In the reference model, the methodology knowledge
is decomposed and structured with five meta models. In each meta model the
essential concepts and relationships of ISD and ISD methods are depicted in a
graphical notation. In addition, the concepts are defined in English. No
theoretical basis is mentioned. The reference model is based on “experience
from description and comparison of different software engineering methods”
(ibid p. 234). The reference model forms the data model of the MERET tool,
which has been used in several organizations to describe, understand and
compare ISD methods.

352

TA
BL

E
23

O

ve
rv

ie
w

 o
f t

he
 a

rt
ifa

ct
s

 R
ef

er
en

ce

A
rt

if
ac

t
Pu

rp
os

e
Th

eo
re

tic
al

 b
as

is
IS

D
 a

pp
ro

ac
h

R
ep

re
se

nt
at

io
n

V
al

id
at

io
n

Th
is

 w
or

k
IS

D

on
to

lo
gy

Fo

r u
nd

er
st

an
di

ng
 th

e
IS

D
 d

om
ai

n,
 a

nd
 fo

r
an

al
yz

in
g

an
d

co
ns

tr
uc

tin
g

ot
he

r
ar

tif
ac

ts
 fo

r t
he

 IS
D

do

m
ai

n

Th
eo

ri
es

un

de
rl

yi
ng

 th
e

co
nt

ex
tu

al

ap
pr

oa
ch

,
IS

D
 th

eo
ri

es
,

IS
D

 m
et

ho
ds

C
on

te
xt

ua
l a

pp
ro

ac
h

D
ef

in
iti

on
s

in
 E

ng
lis

h,

m
et

a
m

od
el

s
in

 a

gr
ap

hi
ca

l n
ot

at
io

n

U
se

d
as

 a
 b

as
is

 in
 a

n
co

m
pa

ra
tiv

e
an

al
ys

is

an
d

in
 th

e
co

ns
tr

uc
tio

n
of

 th
e

m
et

ho
di

ca
l

sk
el

et
on

 o
f M

E

H
ar

m
se

n
(1

99
7)

O

nt
ol

og
y

(M
D

M
) a

nd

a
pr

oc
es

s
cl

as
si

fic
at

io
n

sy
st

em

Fo
r a

ss
em

bl
in

g
a

si
tu

at
io

na
l m

et
ho

d
fr

om
 b

ui
ld

in
g

bl
oc

ks

ca
lle

d
m

et
ho

d
fr

ag
m

en
ts

Li
te

ra
tu

re
 o

n
ex

is
tin

g
IS

D

m
et

ho
ds

N
ot

 re
co

gn
iz

ab
le

D

ef
in

iti
on

s
in

 E
ng

lis
h,

su

pp
or

te
d

w
ith

 th
e

us
e

of
 fi

rs
t o

rd
er

 p
re

di
ca

te

ca
lc

ul
us

Im
pl

em
en

te
d

as
 a

pr

ot
ot

yp
e

of
 th

e
M

et
ho

d
Ba

se
 S

ys
te

m

th
at

 h
as

 b
ee

n
us

ed
 in

so

m
e

em
pi

ri
ca

l s
tu

di
es

H

ey
m

 et

al
. (

19
92

a)

Fr
am

ew
or

k,

re
fe

re
nc

e
m

od
el

Fo
r d

es
cr

ib
in

g,

un
de

rs
ta

nd
in

g,
 a

nd

co
m

pa
ri

ng
 IS

D

m
et

ho
ds

N
ot

 m
en

tio
ne

d
N

ot
 re

co
gn

iz
ab

le

D
ef

in
iti

on
s

in
 E

ng
lis

h,

th
e

re
fe

re
nc

e
m

od
el

 in

a
gr

ap
hi

ca
l n

ot
at

io
n

U
se

d
as

 th
e

da
ta

 m
od

el

of
 th

e
M

ER
ET

 to
ol

w

hi
ch

 h
as

 b
ee

n
de

pl
oy

ed
 i

n
se

ve
ra

l
or

ga
ni

za
tio

ns

Iiv
ar

i
(1

99
0a

,
19

90
b)

H
ie

ra
rc

hi
ca

l
sp

ir
al

 m
od

el

Fo
r p

ro
vi

di
ng

 a
n

ab
st

ra
ct

 e
xp

la
na

to
ry

m

od
el

 fo
r t

he
 IS

/S
W

de

si
gn

 p
ro

ce
ss

So
ci

o-
cy

be
rn

et
ic

s,
In

fo
rm

at
io

n
ec

on
om

ic
s

Tr
an

sf
or

m
at

io
n,

le

ar
ni

ng
 p

ro
ce

ss
,

an
d

de
ci

si
on

-
or

ie
nt

ed
 a

pp
ro

ac
he

s

D
ef

in
iti

on
s

in
 E

ng
lis

h
N

ot
 m

en
tio

ne
d

(c

on
tin

ue
s)

353

TA
BL

E
23

 (
co

nt
in

ue
s)

 R

ef
er

en
ce

A

rt
if

ac
t

Pu
rp

os
e

Th
eo

re
tic

al
 b

as
is

IS
D

 a
pp

ro
ac

h
R

ep
re

se
nt

at
io

n
V

al
id

at
io

n
N

A
TU

RE

Te
am

(1

99
6)

,
G

ro
sz

 et

al
. (

19
97

)

Pr
oc

es
s

m
et

a-
m

od
el

Fo

r d
ef

in
in

g
w

ay
-o

f-
w

or
ki

ng
 in

re

qu
ir

em
en

ts

en
gi

ne
er

in
g

Th
eo

ry
 o

f p
la

ns

D
ec

is
io

n-
or

ie
nt

ed

ap
pr

oa
ch

D
ef

in
iti

on
s

in
 E

ng
lis

h,

pa
rt

ly
 in

 a
 g

ra
ph

ic
al

no

ta
tio

n

W
id

el
y

us
ed

 in

su
cc

ee
di

ng
 p

ro
je

ct
s;

Pr

ot
ot

yp
e

Sa
ek

i e
t a

l.
(1

99
3)

,
Sa

ek
i

(1
99

8)

M
et

a
m

od
el

Fo

r r
ep

re
se

nt
in

g
so

ftw
ar

e
sp

ec
ifi

ca
tio

n
an

d
de

si
gn

 m
et

ho
ds

N
ot

 m
en

tio
ne

d
Tr

an
sf

or
m

at
io

n

ap
pr

oa
ch

D

ef
in

iti
on

s
in

 E
ng

lis
h,

pa

rt
ly

 in
 a

 g
ra

ph
ic

al

no
ta

tio
n

U
se

d
to

 d
ev

el
op

re

pr
es

en
ta

tio
ns

 o
f I

SD

m
et

ho
ds

;
Pr

ot
ot

yp
e

So
ng

 et
 a

l.
(1

99
2)

,
So

ng

(1
99

7)

Fr
am

ew
or

k
Fo

r i
de

nt
ify

in
g

m
et

ho
d

co
m

po
ne

nt
s

(S
on

g
et

 a
l.

(1
99

2)
;

Fo
r i

nt
eg

ra
tin

g
so

ftw
ar

e
m

et
ho

ds

(S
on

g
19

97
)

A
bs

tr
ac

te
d

fr
om

ex

is
tin

g
m

et
ho

ds

Tr
an

sf
or

m
at

io
n

ap
pr

oa
ch

D

ef
in

iti
on

s
in

 E
ng

lis
h,

pa

rt
ly

 in
 a

 g
ra

ph
ic

al

no
ta

tio
n

(S
on

g
19

97
)

N
ot

 m
en

tio
ne

d

354

Iivari (1990a, 1990b) presents the hierarchical spiral model for information
system and software development, based on the sociocybernetic metamodel
and information economics (Iivari 1983). The socio-cybernetic metamodel is an
abstract explanatory model for the IS/SW design process. It emphasizes the
design process as an iterative inquiry process that supports decisions about the
IS/SW product and the IS/SW design process. Moreover, it supports the
transformation view on the design process. The hierarchical spiral model has
been built upon the conceptual framework for IS/SW product (Iivari et al. 1987;
Iivari 1989a). Due to the large scope of the model, many concepts are not
explicitly defined. Nothing is mentioned about the use of the model in practice,
neither about its validation.

The NATURE project (NATURE Team 1996; Grosz et al. 1997) developed
the process meta-model based on the NATURE (Novel Approaches to Theories
Underlying Requirements Engineering) approach. The purpose of the approach
is to address the problem of providing guidance and system support in poorly
understood, largely human-driven creative processes. It applies the decision-
oriented approach to requirements engineering. Also the notion of a context is
essential to the approach. A context is “a meaningful association of a situation
and an intention with guidance advice” (NATURE Team 1996, 527).
Requirements engineering is modeled as a set of related contexts in which a
decision is made on how to process product parts and in which order. The
approach is partly based on the theory of plans (Wilesky 1983). The approach
has been widely used in research projects. Also a prototype to support the use
of the process meta-model has been implemented.

Saeki et al. (1993) present a meta model for representing software
specification and design methods. The purpose of the meta model is to cover
so-called atomic concepts that are common to all the methods. To model a
particular method, this core part is to be enhanced by introducing new concepts
in a method-specific part. The meta model is presented in two parts: the
product part and the procedural part. The product part applies a conceptual
view on the software design products. In the procedural part the software
design process is seen as transformations by procedures that are connected to
one another by the input/output relationships. The meta model has been used
to develop formal presentations of several ISD methods. Also a prototype of the
method base system has been implemented. Later, Saeki (1998) uses the meta
model to demonstrate method integration.

Song et al. (1992) present the so-called base framework for the
identification of method components that are comparable in different methods.
The framework has been developed through an iterative process of abstracting
from existing methods and applying the framework to model methods. It is
composed of two parts: the type framework and the function framework. The
type framework aggregates the components’ internal characteristics. The
function framework aggregates the design issues that components address. The
model of design life-cycle clearly indicates the application of the transformation
view. Partly based on the framework in Song et al. (1992), Song (1997) presents a

355

framework for the integration of software methods. The framework contains a
method composition model that distinguishes between the high-level
components and the low-level components. The composition model is based on
the analysis of eight structured methods and object-oriented methods. Both of
these frameworks (Song et al. 1992; Song 1997) contain parts that are related to
method components. We ignore those aspects here and return to consider them
in Section 9.7.6.

We can draw the following conclusions from the above overall analysis.
First, from the six artifacts only two have been built on explicated theoretical
bases. The hierarchical spiral model (Iivari 1990b) has been rooted on socio-
cybernetics, and the process meta-model by NATURE Team (1996) has been
partly based on the theory of plans. Other artifacts have been derived mainly
analyzing the existing literature of ISD methods. For some artifacts no grounds
are mentioned. We have built our ISD ontology by following the contextual
approach, which has been established on several underlying theories, including
semiotics, pragmatics, theories of human and social action, and systems theory
(cf. Chapter 4). In addition, we have reviewed a large collection of ISD literature
on ISD theories and ISD methods, which has influenced our ISD ontology.

Second, from the ISD approaches defined in Section 8.1.2 the
transformation approach is most commonly applied. It is intrinsic to the meta
model of Saeki et al. (1993) and Saeki (1998) as well as to the framework of Song
et al. (1992) and Song (1997). In addition, it is included in the hierarchical spiral
model of Iivari (1990b), which also reflects the view of the learning process
approach. The NATURE approach has been, in an interesting fashion, built
upon the decision-oriented approach applying the notion of a context. The
conception of a context is, however, very limited, as compared to the
corresponding notion in OntoFrame. The contextual approach in our study is
aimed to enable conceiving, structuring and representing phenomena of ISD
from multiple viewpoints. This aim has been realized by including in the ISD
ontology concepts and constructs that are applicable as such, or they can be
specialized, if necessary, to meet views of more special approaches.

Most of the artifacts have been “validated” by using them in the intended
purposes (e.g. for describing and/or integrating methods) and/or as a basis for
prototypes of computer-aided method engineering systems (CAMES). The ISD
ontology has been validated by using it as a basis of comparative analyses and
in the construction of the methodical skeleton for method engineering.

Next, we analyze the artifacts in more detail in order to find out what
concepts and relationships they provide for the four ISD domains, i.e., the ISD
purpose domain, the ISD actor domain, the ISD action domain, and the ISD
object domain.

8.5.3 ISD Purpose Domain

The ISD purpose domain means all those concepts and constructs through
which we can conceive, understand, structure and represent problems,
requirements, goals, etc. of ISD, or parts thereof. From the six analyzed artifacts

356

only two provide concepts and relationships that belong to the ISD purpose
domain. The artifacts are the ontology of Harmsen (1997) and the meta process
model of the NATURE approach (NATURE Team 1996; Grosz et al. 1997). The
concepts and relationships of these two artifacts and of our ISD ontology are
presented in Table 24. From the relationships we have included in Table 24 the
intra-domain relationships and those inter-domain relationships that relate
some concept of the ISD purpose domain and concepts of some of the three ISD
domains.

As seen in Table 24, Harmsen (1997) defines a large set of concepts for the
ISD purpose domain. A goal stands for the purpose towards which a system is
directed (i.e. IS goal). Also the other concepts are associated to an IS. Besides
those included in our ontology, the ontology provides the notions of a benefit
and a critical success factor. It specifies explicit relationships between most of
the sub-concepts, while in our ISD ontology the relationships between a goal
and other concepts are organized through the concept of a reason. It is
noteworthy that Harmsen (1997) defines differently the relationship between a
goal and a requirement; i.e. a goal imposes a requirement.

Harmsen (1997) associates the concepts of the ISD purpose domain to
concepts of other domains with several relationships. ‘Solution’ means a final
outcome of the ISD (i.e. an information system). With the base relationship he
connects ‘solution’ to ‘strength’ and to ‘weakness’. He also uses the term
‘system’, and relates it to ‘problem’ with the choice relationship. To reveal an
informant, the MDM defines the expression relationship between ‘group’ and
‘problem’, and between ‘group’ and ‘goal’. ‘Effect’ is an influence of one
concept instance upon another.

In the process meta-model of the NATURE Approach (NATURE Team
1996; Grosz et al. 1997) the notion of an intention is a part of a decision made in
the requirements engineering process. An intention expresses what a
requirements engineer wants to achieve144. It is thus a kind of goal. An intention
can be global or local. This is all that is included in the meta model from the
ISD purpose domain.

Our ISD ontology provides one generic concept, namely ISD purpose, that
is specialized in several ways: into goals of two kinds (hard and soft), into
reasons of six kinds (requirements, problems, opportunities, threats, strengths
and weaknesses), as well as into IS purposes. The IS purpose can be of any of
the aforementioned kinds. Furthermore, the IS purposes are classified according
to five IS perspectives. We argue that with our ISD ontology the issues of ISD
contexts related to purposes, goals, objectives, intentions, desires, problems, etc.

144 In contrast to how the notion of an intention is defined in the approach, an intention

is not associated to a requirements engineer in the graphical representation of the
process meta-model.

357

TA
BL

E
24

Su

m
m

ar
y

of
 th

e
co

nc
ep

ts
 a

nd
 re

la
tio

ns
hi

ps
 o

f t
he

 IS
D

 p
ur

po
se

 d
om

ai
n

 R
ef

er
en

ce
/

C
on

ce
pt

s
IS

D
 o

nt
ol

og
y

H
ar

m
se

n
(1

99
7)

N

A
TU

R
E

Te
am

 (1
99

6)

G
en

er
ic

co

nc
ep

t
IS

D
 p

ur
po

se

In

te
nt

io
n

Su
b-

co
nc

ep
ts

IS
D

 g
oa

l
IS

D
 re

as
on

IS

D
 re

qu
ir

em
en

t
IS

D
 p

ro
bl

em

O
pp

or
tu

ni
ty

Th

re
at

St

re
ng

th

W
ea

kn
es

s

G
oa

l
Re

qu
ir

em
en

t
Pr

ob
le

m

Be
ne

fit

O
pp

or
tu

ni
ty

Th

re
at

W

ea
kn

es
s

St
re

ng
th

C

ri
tic

al
 s

uc
ce

ss
 fa

ct
or

G
lo

ba
l i

nt
en

tio
n

Lo
ca

l i
nt

en
tio

n

In
tr

a-
do

m
ai

n
re

la
tio

ns
hi

ps

pa
rt

O
f (

IS
D

 p
ur

po
se

, I
SD

 p
ur

po
se

)
du

eT
o

(IS
D

 g
oa

l,
IS

D
 re

as
on

)
in

flu
en

ce
 (I

SD
 g

oa
l,

IS
D

 g
oa

l)
re

fin
em

en
t(I

SD
 g

oa
ls

, I
SD

 g
oa

l)
in

flu
en

ce
 (I

SD
 re

qu
ir

em
en

t,
IS

D
 re

qu
ir

em
en

t)
re

fin
em

en
t (

IS
D

 re
qu

ir
em

en
t,

IS
D

re
qu

ir
em

en
t)

ca
us

al
To

 (I
SD

 p
ro

bl
em

, I
SD

 p
ro

bl
em

)

im
po

si
tio

n
(G

oa
l,

Re
qu

ir
em

en
t)

de
pe

nd
en

ce
 (G

oa
l,

C
ri

tic
al

 s
uc

ce
ss

 fa
ct

or
)

ba
se

 (G
oa

l,
O

pp
or

tu
ni

ty
)

ba
se

(G
oa

l,
Th

re
at

)

In
te

r-
do

m
ai

n

re
la

tio
ns

hi
ps

m

ot
iv

at
ed

By
 (I

SD
 h

um
an

 a
ct

or
, I

SD
 p

ur
po

se
)

ex
pr

es
se

dB
y

(IS
D

 a
ct

or
, I

SD
 p

ur
po

se
)

st
ri

ve
sF

or
 (I

SD
 a

ct
io

n,
 IS

D
 p

ur
po

se
)

in
te

nd
ed

Fo
r (

IS
D

 d
el

iv
er

ab
le

, I
SD

 p
ur

po
se

)

ba
se

 (S
ol

ut
io

n,
 S

tr
en

gt
h)

ba

se
 (S

ol
ut

io
n,

 W
ea

kn
es

s)

ex
pr

es
si

on
 (G

ro
up

, P
ro

bl
em

)
ex

pr
es

si
on

 (G
ro

up
, G

oa
l)

al
te

rn
at

iv
e

(S
ol

ut
io

n,
 P

ro
bl

em
)

ch
oi

ce
 (S

ys
te

m
, P

ro
bl

em
)

ef
fe

ct
 (S

ys
te

m
, B

en
ef

it)

358

can be addressed in a much more comprehensive and detailed fashion than in
the other artifacts. In addition, the conceptual structure in the ISD ontology has
been built to be inherently flexible to ease adaptations in the ontology. The ISD
ontology also provides a large collection of relationships with which the
concepts are related to the other concepts in the ISD purpose domain (i.e. intra-
domain relationships) as well as to the concepts in three other ISD domains.

8.5.4 ISD Actor Domain

The ISD actor domain means all those concepts and constructs that are used to
conceive, understand, structure and present human or social phenomena in the
ISD context. Those phenomena involve persons and groups, or administrative
units. From the analyzed artifacts only two provide concepts and constructs
that belong to this ISD domain. They are the ontology of Harmsen (1997) and
the reference model of Heym et al. (1992a). In addition, Iivari (1990a, 1990b)
mentions users of the information produced by an IS/SW act as the usage
characteristics of the IS/SW act but he does not discuss them further. The
concepts and relationships of the two artifacts and of the ISD ontology are
presented in Table 25.

Harmsen (1997) uses the term ‘actor’ in two contexts, in relation to an
information system and to IS engineering. In the latter context an actor is
defined to be “a function involved in an IS engineering project” (ibid p. 57).
This means that the notion is much more “action-specific” than our notion, thus
corresponding somewhat to our notion of an ISD role. An actor role is defined
to be “the type of function an actor has with respect to manipulating and
receiving product fragment instances” (ibid p. 57). Possible roles are reviewing,
creating, and analyzing. The supervision relationship reflects the functional
hierarchy of actors. The responsibility relationship indicates which actor is
responsible for which method fragment. The execution relationship is used to
specify which actor is executing which process, in which role. Correspondingly,
the skill relationship reflects the capability of an actor to execute a process
fragment in a certain role. The destination relationship indicates to which actor
and in which role a product fragment is addressed.

Heym et al. (1992a) define an actor to be “any person, group of persons, or
organizational unit which is involved in an activity or is responsible for a
process or a milestone” (ibid p. 230). An actor may consist of other actors (e.g.
an organizational unit consists of persons). An actor is related to an activity
with the ‘is involved in’ relationship, and to a process and a milestone with the
‘is responsible for’ relationships.

Comparing to our ISD ontology, we can clearly see that the ontology of
Harmsen (1997) only superficially addresses the ISD actor domain. Heym et al.
(1992a) provide one generic concept and three sub-concepts. Our ontology
contains nine sub-concepts, embracing human beings in different constellations,
as well as in administrative units. In our view, these both sides are important to
understanding ISD as a social and organizational endeavor. In addition, we
specialize the persons according to the kind of their expertness and ISD roles

359

TABLE 25 Summary of the concepts and relationships of the ISD actor domain

Reference/
Concepts

ISD ontology Harmsen (1997) Heym et al.
(1992a)

Generic
concept

ISD actor Actor Actor

Sub-concepts

ISD human actor
ISD position
ISD role
ISD organizational unit
ISD project organization
Project team
Steering committee
Person
Group

Actor role Person
Group
Organizational
 unit

Intra-domain
relationships

occupiedBy(ISD human
 actor, ISD position)
memberOf (Person,
 Group)
plays (Person, ISD role)
supervision(ISD position,
 ISD position)
controls(Steering
 committee, Project team)

supervision(Actor,
 Actor)

consists_of

Inter-domain
relationships

carriedOut(ISD action,
 ISD actor)
responsibleFor(ISD role,
 ISD action)
ownedBy(ISD deliverable,
 ISD actor)
viewedBy(ISD
 deliverable, ISD actor)

responsibility(Actor,
 Method fragment)
execution(Actor,
 Actor role, Process
 fragment)
skill(Actor, Actor role,
 Process fragment)
destination(Actor,
 Actor role, Product
 fragment)

is involved in
 (Person,
 Activity)
is responsible
 for (Actor,
 Process)
is responsible
 for (Actor,
 Milestone)

into six ISD specific roles. Resulting from the large number of concepts, the ISD
ontology also provides a variety of inter-domain and intra-domain
relationships that is much larger than in the other two artifacts.

8.5.5 ISD Action Domain

The ISD action domain contains all those concepts and constructs that are used
to conceive, understand, structure and present how ISD functions. Due to its
centrality to the ISD context, it is natural that all the analyzed artifacts provide
large sets of concepts and relationships for it. To ease the analysis and
comparison, we categorize the action-related concepts in the artifacts according
to the ISD action structures (i.e. the ISD management-execution structure, the
ISD workflow structure, the ISD phase structure, the ISD problem solving
structure, the IS modeling structure, the control structure, and the abstraction

360

structure) of our ISD ontology. The summary of the analysis and comparison of
eight artifacts, including our ISD ontology, is presented in Table 26.

Harmsen (1997) uses the notion of a process fragment to mean any activity
to be carried out within a method. A process role represents the respect in
which a process fragment manipulates a product fragment. Examples of roles
are ‘production’, ‘update’ and ‘usage’. There are three intra-domain
relationships in the ISD domain. A contents relationship means that a process
fragment consists of another process fragment. A precedence relationship
reflects the fact that a process fragment precedes another process fragment. A
choice relationship between the process fragments means that one process
fragment conditionally precedes the other process fragment. Hence, the two last
relationships establish control structures between the ISD actions. In addition,
there are two inter-domain relationships. A prerequisite relationship expresses
the fact that a process fragment instance requires a product fragment instance
for its execution. A manipulation relationship indicates that a process fragment
manipulates a product fragment in a certain role (e.g. updates). Harmsen (1997)
has also constructed a process classification system. The system is based on the
notion of a basic action meaning “a class of actions in IS engineering in which
each action have the same effect” (ibid p. 137). According to the classification
system, actions are sub-divided into six types: planning, analysis, synthesis,
evaluation, implementing, and evolution. These types belong to our ISD
workflow structure. For each type of actions he also provides a set of sub-
actions. These types of actions are not, however, integrated into the ontology.

Heym et al. (1992a) define a process to “be either a phase or an activity”
(ibid p. 228). A phase consists of phases, or of activities. An activity is an
elementary process that cannot be divided into sub-activities. Activities are
classified into six types: decision, planning and control, abstraction, checking,
review activities, and form conversion. As seen from the above list, the
classification is quite heterogeneous: decision, planning and control belong to
the ISD management–execution structure, while abstraction, checking, review
and form conversion are parts of the IS modeling structure. A process can be an
iteration process or a non-iteration process. An iteration activity or phase is
executed more than once in a sequence. In the framework of Heym et al. (1992a)
the life cycle is divided into seven stages (Olle et al. 1988a): information system
planning, analysis, design, construction design, construction, test and
installation, and maintenance. It should, however, be noticed that this
classification is not included in the reference model presented in meta models.

Some relationships between the processes are described with the notion of
a dependency. A process dependency can hold between activities or phases. A
dependency can exist also between a milestone and a phase, and between a
milestone and an activity. A dependency has one of four different semantics:
sequence, refinement jump, branching path, and unifying path. Hence, it is a
conceptual mechanism for establishing control structures between the ISD
actions (in our terminology). A process is related to deliverables through input

361

 TA
BL

E
26

Su

m
m

ar
y

of
 th

e
co

nc
ep

ts
 a

nd
 re

la
tio

ns
hi

ps
 o

f t
he

 IS
D

 a
ct

io
n

do
m

ai
n

 R
ef

er
en

ce
s/

C

on
ce

pt
s

IS
D

O

nt
ol

og
y

H
ar

m
se

n
(1

99
7)

H

ey
m

 e
t a

l.
(1

99
2a

)
Ii

va
ri

(1

99
0b

)
N

A
TU

R
E

Te
am

 (1
99

6)

Sa
ek

i e
t a

l.
(1

99
3)

So

ng
 e

t a
l.

(1
99

2)

So
ng

 (1
99

7)

G
en

er
ic

co

nc
ep

t

IS
D

 a
ct

io
n

Pr
oc

es
s

fr
ag

m
en

t
Pr

oc
es

s
D

es
ig

n
ac

t
A

ct
io

n
Pr

oc
ed

ur
e

A
ct

io
n

D
es

ig
n

 a
ct

iv
ity

Su
b-

co
nc

ep
ts

IS

D
 w

or
kf

lo
w

IS

D
 p

ha
se

IS

D
 p

ro
ce

ss

Pr
oc

es
s

ro
le

Ba

si
c

ac
tio

n
Ph

as
e

A
ct

iv
ity

M

ai
n

ph
as

e
Su

bp
ha

se

D
es

ig
n

ac
t

St
ep

A

ct
io

n
Pr

oc
es

s
St

ep

IS
D

 m
an

ag
e-

m
en

t -
ex

ec
ut

-
io

n
st

ru
ct

ur
e

M
gm

t a
ct

io
n:

- I

SD
 p

la
nn

in
g

- I
SD

 o
rg

an
iz

-
 i

ng

- I
SD

 s
ta

ffi
ng

- I

SD
 d

ir
ec

tin
g

- I
SD

 c
on

tr
ol

-

lin
g

Ex
ec

ut
io

n
 a

ct
io

n

 D

ec
is

io
n

Pl
an

ni
ng

C

on
tr

ol

 Pl

an

Ex
ec

ut
io

n

IS
D

w

or
kf

lo
w

st

ru
ct

ur
e

IS
D

 w
or

flo
w

:
- I

S
re

q’
s

 e
ng

in
ee

ri
ng

- I

S
an

al
ys

is

- I
S

de
si

gn

- I
S

im
pl

em
en

t-
 a

tio
n

- I
S

ev
al

ua
tio

n

A
ct

io
n

ty
pe

:
- P

la
nn

in
g

- A
na

ly
si

s
- S

yn
th

es
is

- E

va
lu

at
io

n
- I

m
pl

em
en

ta
tio

n
- E

vo
lu

tio
n

IS
D

 s
ta

ge
:

- A
na

ly
si

s
- D

es
ig

n
- C

on
st

ru
ct

io
n

 d
es

ig
n

- C
on

st
ru

ct
io

n
- T

es
t a

nd

in

st
al

la
tio

n
- M

ai
nt

en
an

ce

(c

on
tin

ue
s)

362

TA
BL

E
26

 (
co

nt
in

ue
s)

 R

ef
er

en
ce

s
/C

on
ce

pt
s

IS
D

 O
nt

ol
og

y
H

ar
m

se
n

(1
99

7)

H
ey

m
 e

t a
l.

(1
99

2a
)

Ii
va

ri
 (1

99
0b

)
N

A
TU

R
E

Te
am

 (1
99

6)

Sa
ek

i e
t a

l.
(1

99
3)

So

ng
 e

t a
l.

(1
99

2)

So
ng

 (1
99

7)

IS
D

 p
ha

se

st
ru

ct
ur

e
IS

D
 p

ha
se

:
- I

nc
ep

tio
n

- E
la

bo
ra

tio
n

- C
on

st
ru

ct
io

n
- T

ra
ns

iti
on

Ph

as
e

Ph

as
e

st
ru

ct
ur

e:

- O
rg

.
de

si
gn

- C

on
ce

pt
ua

l /

in

fo
lo

gi
ca

l
 d

es
ig

n
- D

at
al

og
ic

al
/

 t

ec
hn

ic
al

 d

es
ig

n
- I

m
pl

em
en

t-
 a

tio
n

IS
D

pr

ob
le

m

so
lv

in
g

st
ru

ct
ur

e

In
te

lli
ge

nc
e

D
es

ig
n

C

ho
ic

e

D

ec
is

io
n

C
ho

ic
e

IS

m
od

el
in

g
st

ru
ct

ur
e

C
on

ce
pt

ua
l-

 i
zi

ng

Re
pr

es
en

tin
g

C
re

at
in

g
Re

fin
in

g

Te
st

in
g

Tr
an

sf
or

m
in

g
Tr

an
sl

at
in

g
In

te
gr

at
in

g
Re

la
tin

g

A

bs
tr

ac
tio

n
C

he
ck

in
g

Re
vi

ew

Fo
rm

 c

on
ve

rs
io

n

D
ia

gn
os

is
/

D
es

ig
n

V
er

ifi
ca

tio
n

/
V

al
id

at
io

n,

O
bs

er
va

tio
n

/
A

na
ly

si
s,

M

an
ip

ul
at

io
n

/
Re

fin
em

en
t

Tr
an

sf
or

m
at

io
n

C

re
at

e

M
od

ify

C
re

at
e

M

od
ify

U

se

Ev
al

ua
te

(c

on
tin

ue
s)

363

 TA
BL

E
26

 (
co

nt
in

ue
s)

 R

ef
er

en
ce

s
/ C

on
ce

pt
s

IS
D

O

nt
ol

og
y

H
ar

m
se

n
(1

99
7)

H

ey
m

 e
t a

l.
(1

99
2a

)
Ii

va
ri

(1

99
0b

)
N

A
TU

R
E

Te
am

 (1
99

6)

Sa
ek

i e
t a

l.
(1

99
3)

So

ng
 e

t a
l.

(1
99

2)

So
ng

(1

99
7)

C

on
tr

ol

st
ru

ct
ur

es

se
qu

en
ce

se

le
ct

io
n

ite

ra
tio

n

pr
ec

ed
en

ce

 (
Pr

oc
es

s
fr

ag
m

en
t,

 P
ro

ce
ss

 fr
ag

m
en

t)
ch

oi
ce

(P
ro

ce
ss

 f

ra
gm

en
t,

Pr
oc

es
s

 f

ra
gm

en
t)

se
qu

en
ce

re

fin
em

en
t j

um
p

br
an

ch
in

g
pa

th

un
ify

in
g

pa
th

ite

ra
tio

n

ite
ra

tio
n

pr
ec

ed
en

ce

al
te

rn
at

iv
e

pr
ec

ed
e

A
bs

tr
ac

tio
n

st
ru

ct
ur

es

pa
rt

O
f

is
A

m

em
be

rO
f

in
st

an
ce

O
f

co
nt

en
ts

ag

gr
eg

at
io

n
co

m
po

ne
nt

of

ha
s

pa
rt

 o
f

is
 a

in

st
an

ce
 o

f
co

nt
ai

ns

In
te

r-
do

m
ai

n
re

la
tio

n-
sh

ip
s

in
pu

t (
IS

D

 d
el

iv
er

ab
le

,
 I

SD
 a

ct
io

n)

ou
tp

ut
 (I

SD

 a
ct

io
n,

 IS
D

 d

el
iv

er
ab

le
)

in
vo

lv
es

(IS
D

 a

ct
io

n,
 O

S I
SD

 c
on

st
ru

ct
)

pr
er

eq
ui

si
te

 (P

ro
ce

ss
 fr

ag
m

en
t,

 P
ro

du
ct

 fr
ag

m
en

t)
m

an
ip

ul
at

io
n

 (
Pr

oc
es

s
fr

ag
m

en
t,

 P
ro

du
ct

 fr
ag

m
en

t,
 P

ro
ce

ss
 ro

le
)

in
pu

t u
sa

ge

 (
D

el
iv

er
ab

le
,

 P
ro

ce
ss

)
ou

tp
ut

 u
sa

ge

 (
Pr

oc
es

s,

 D
el

iv
er

ab
le

)

ch

an
ge

 (

A
ct

io
n,

 P

ro
du

ct
)

in
pu

t
(P

ro
du

ct

 p
ar

t,

 P
ro

ce
du

re
)

ou
tp

ut

 (
Pr

oc
es

s,

 P
ro

du
ct

 p

ar
t)

in
pu

t (
A

rt
ifa

ct
,

 A
ct

io
n)

ou

tp
ut

 (A
ct

io
n,

 A

rt
ifa

ct
)

af
fe

ct
(A

rt
ifa

ct
,

 A
ct

io
n)

in

flu
en

ce
(

 R
ep

re
se

nt
-

 a
tio

n,
 A

ct
io

n)

364

and output usage relationships. A type of the usage can be essential or
referential. For instance, an essential input usage is an input deliverable whose
contents are primarily used or converted into an output deliverable.

The hierarchical spiral model of Iivari (1990b) expresses dynamics of a
design process in three forms: evolution dynamics, main-phase dynamics, and
learning dynamics. The first one concerns the relationships between the design
products (cf. increments, versions, and releases). That is not considered here.
The main-phase dynamics is established on the basis of the levels of modeling
for an IS/SW product. Iivari (1990b) distinguishes between three main phases:
the organizational design phase, the conceptual /infological design phase, and
the datalogical/technical design phase. These main phases stand for our ISD
phases. The learning dynamics imply that each main phase consists of
successive subphases after which the IS/SW design process is replanned. The
IS/SW design process is conceptualized in terms of IS/SW acts. The acts are
categorized in two ways: (a) diagnosis/design and verification/validation, and
(b) observation/analysis and manipulation/ refinement. These categories are
considered in the ISD ontology to be parts of the IS modeling structures.
Although Iivari (1990b) does not propose any ISD workflow structure in the
sense of the one in the ISD ontology, he presents a categorization of diagnosis,
design, and verification and validation activities on three modeling levels (ibid
p. 455)

In the meta process model of the NATURE Approach (NATURE Team
1996; Grosz et al. 1997), an action means something which is performed to
change a product of the process. A decision is a choice between sub-contexts
during the requirements engineering. A decision is composed of an intention
and an approach145. Based on the kind of actions performed in a context, the
contexts are classified into executable contexts, choice contexts, and plan
contexts. An executable context leads directly to the execution of an action. At
the most detailed level, the execution can be seen as a set of transformations
performed on the product. A choice context is used when there is more than
one alternative to select as regards the direction to proceed. A plan context is a
mechanism by which a context viewed as a complex issue can be decomposed
into a number of sub-issues. This stands for a planning action in our
terminology. The meta process model provides several relationships, which we
here consider intra-domain relationships of the ISD action domain. The
precedence link holds between contexts, thus concerning actions as well.
Alternative contexts imply that there are alternative ways of working, selected
by choice criteria. There is also one inter-domain relationship: an action
‘changes’ a product.

In the meta model of Saeki et al. (1993) the procedural part consists of an
procedure concept (not defined in the article) and four relationships. The has
relationship indicates “what sub-procedures belong to a procedure and also
represents their hierarchy” (ibid p. 153). The precede relationship shows the

145 The composition of an intention and an approach is modeled as an “objectified

relationship”.

365

execution order of the procedures. The input and output relationships indicate
which constituents in the product part are inputs to and outputs from the
procedure, respectively.

In the type framework by Song et al. (1992) an action means one or more
physical and/or mental processing steps used in design. An action may create
or modify a design artifact. An action can be a part of another action, and a
specialization of another action. Some artifacts are inputs to actions and outputs
from actions. There are also the relationships called ‘affect’ and ‘influence’
between the artifacts and the actions, and between the representations and the
actions, respectively, but they are not defined.

Song (1997) distinguishes between two domain areas: software design and
design method. The former stands for design practice, while the latter means
the components in a design method. Software design is presented with two
concepts, a design activity and an artifact, meaning that a design activity makes,
uses, or evaluates artifacts. Actions and artifact models as the components in a
design method are regarded as classes of activities and artifacts, respectively.
Components are sub-divided into high-level components and low-level
components. On the high level, processes are “sets of steps in which designers
use particular artifact models in developing software” (ibid p. 109). On the low-
level, processes are decomposed into actions, either physical (such as typing) or
mental (such as decision making). An action may create, modify, use or
evaluate model components.

To summarize from the analysis above, Heym et al. (1992a) and Iivari
(1990b) define most concepts for the ISD action domain among the analyzed
artifacts. Heym et al. (1992a) provide concepts for the IS modeling structure,
through the reference model, and for the ISD workflow structure through the
framework. Iivari (1990b) defines concepts for the ISD phase structure and the
IS modeling structure. Harmsen’s (1997) process classification system contains
concepts belonging to the ISD workflow structure but they are not integrated
with the MDM ontology. The other artifacts provide only few single concepts,
mostly for the IS modeling structure. From the intra-domain relationships the
artifacts cover best, yet not completely, the control structures and the
abstraction structures. From the inter-domain relationships the most commonly
specified ones are the input and output relationships.

In our ISD ontology, the ISD action domain is seen as a complex construct
of various ISD action structures. The action structures are categorized into three
levels: the generic action structures, the contextual action structures, and the
ISD-specific action structures. The first category contains the action
decomposition structure, the control structures and the temporal structures.
The second category comprises the ISD management-execution structure and
the ISD problem solving structure. These action structures have been defined in
the context ontology (Chapter 4), and they are just specialized for the ISD
context. The third category is composed of those ISD action structures that have
been defined particularly for the ISD contexts. These are the ISD phase
structure, the ISD workflow structure and the IS modeling structure. We argue

366

that this array of ISD action structures is comprehensive enough to address the
most common action structures faced with in practical ISD and ISD methods.
Further, we claim that the array of the ISD action structures at three levels is
flexible enough to enable the definition of more specific structures if needed by
some particular ISD approach or view.

8.5.6 ISD Object Domain

The ISD object domain contains all those concepts and constructs that refer to
things to which the ISD actions are targeted. From the analyzed artifacts, only
four consider the ISD object domain properly. They are: Harmsen (1997), Heym
et al. (1992a), Iivari (1990a, 1990b), and Song et al. (1992). In contrast, the meta
model of Saeki et al. (1993) and Saeki (1998) considers the ISD deliverables from
the conceptual perspectives only. Song (1997) focuses on method components
and the only notion in the ISD object domain he recognizes is an artifact. In the
meta process model of the NATURE Approach (NATURE Team 1996; Grosz et
al. 1997) outcomes of actions are called product parts, but they are not
specialized into sub-concepts, neither associated with one another. The
summary of the analysis of the four artifacts, together with the ISD ontology, is
presented in Table 27.

Harmsen (1997) defines a product fragment to mean “a specification of a
product delivered and/or required within a method” (ibid p. 52). He uses the
result type classification based on Euromethod’s Deliverable Model (Franckson
1994) to classify the result types into project domain deliverables, target domain
deliverables, and delivery plans. Project domain deliverables are partitioned
into plans and reports. Target domain deliverables are sub-divided into
requirements statements, specifications, and operational items. The division
corresponds, to some degree, to our IS perspectives. The conceptual contents,
representation and abstraction levels (logical, technical) of the product fragment
are not contained in the ontology, but expressed as product property types of
method fragments (i.e. root, representation, and abstraction level). That is why
they are not included in the table. The contents relationship between the
product fragments means that one product fragment consists of another
product fragment. The precedence relationship expresses ordering with respect
to different product versions.

Heym et al. (1992a) define a deliverable to be any result from a process or
an activity (e.g. document, CASE tool graphic, program code). The deliverables
are classified into four disjoint types: planning deliverables, decisions, system
specifications, and reports or documentation. The first two can be regarded as
ISD management deliverables in our ontology, while the others are ISD
execution deliverables. A deliverable may consist of other deliverables. A
deliverable as a representational object is related to a conceptual construct via
the covers relationship. Between the deliverables there are deliverable flows,
meaning that some deliverables are used inputs to another deliverables
(corresponding to our supports relationship).

367

 TA
BL

E
27

Su

m
m

ar
y

of
 th

e
co

nc
ep

ts
 a

nd
 re

la
tio

ns
hi

ps
 o

f t
he

 IS
D

 o
bj

ec
t d

om
ai

n
 R

ef
er

en
ce

s/

C
on

ce
pt

s
IS

D
 o

nt
ol

og
y

H
ar

m
se

n
(1

99
7)

H

ey
m

 e
t a

l.
(1

99
2a

)
Ii

va
ri

 (1
99

0a
, 1

99
0b

)
So

ng
 e

t a
l.

(1
99

2)

G
en

er
ic

co

ns
tr

uc
t

IS
D

 d
el

iv
er

ab
le

Pr

od
uc

t f
ra

gm
en

t
D

el
iv

er
ab

le

IS
/S

W
 p

ro
du

ct

A
rt

ifa
ct

Su
b-

co
nc

ep
ts

Fo

rm
al

Se

m
i-f

or
m

al

In
fo

rm
al

Ba

se
lin

e
IS

 m
od

el

IS
 im

pl
em

en
ta

tio
n

Re
su

lt
ty

pe

M
an

ag
em

en
t

- e
xe

cu
tio

n

di
ch

ot
om

y

IS
D

 m
gm

t d
el

iv
er

ab
le

IS

D
 e

xe
c

de
liv

er
ab

le

Pr
oj

ec
t d

om
ai

n
 d

el
iv

er
ab

le

Ta
rg

et
 d

om
ai

n

 d
el

iv
er

ab
le

D

el
iv

er
y

pl
an

Pl
an

ni
ng

D

ec
is

io
n

Sy
st

em
 S

pe
ci

fic
at

io
n

Re
po

rt
 o

r

 d
oc

um
en

ta
tio

n

IS

pe
rs

pe
ct

iv
es

IS
 s

ys
te

lo
gi

ca
l m

od
el

IS

 in
fo

lo
gi

ca
l m

od
el

IS

 c
on

ce
pt

ua
l m

od
el

IS

 d
at

al
og

ic
al

 m
od

el

IS
 p

hy
si

ca
l m

od
el

IS

 in
te

r-
pe

rs
pe

ct
iv

e
m

od
el

Re
qu

ir
em

en
ts

 s

ta
te

m
en

ts

Sp
ec

ifi
ca

tio
ns

O

pe
ra

tio
na

l i
te

m
s

O

rg
an

iz
at

io
na

l
C

on
ce

pt
ua

l/

 i
nf

ol
og

ic
al

D

at
al

og
ic

al
/

te

ch
ni

ca
l

Pr
ob

le
m

 d
om

ai
n

Pr
ob

le
m

-m
od

el
 d

om
ai

n
So

lu
tio

n-
m

od
el

 d
om

ai
n

D
es

ig
n-

do
cu

m
en

t

do
m

ai
n

(c
on

tin
ue

s)

368

TA
BL

E
27

 (
co

nt
in

ue
s)

 R

ef
er

en
ce

s/

C
on

ce
pt

s
IS

D
 o

nt
ol

og
y

H
ar

m
se

n
(1

99
7)

H

ey
m

 e
t a

l.
(1

99
2a

)
Ii

va
ri

 (1
99

0a
, 1

99
0b

)
So

ng
 e

t a
l.

(1
99

2)

IS
 d

om
ai

ns

IS
 p

ur
po

se
 m

od
el

IS

 a
ct

or
 m

od
el

IS

 a
ct

io
n

m
od

el

IS
 d

el
iv

er
ab

le
 m

od
el

IS

 d
at

a
m

od
el

IS

 fa
ci

lit
y

m
od

el

IS
 lo

ca
tio

n
m

od
el

IS

 ti
m

e
m

od
el

IS

 in
te

r-
do

m
ai

n
m

od
el

A
bs

tr
ac

tio
n

re
la

tio
ns

hi
ps

pa

rt
O

f
is

A

in
st

an
ce

O
f

co
nt

en
ts

co

ns
is

ts
 o

f
ge

ne
ra

liz
at

io
n

is

-p
ar

t_
of

is

_a

In
tr

a-
do

m
ai

n
re

la
tio

ns
hi

ps

su
pp

or
ts

ve

rs
io

nO
f

co
py

O
f

pr
ed

A
bs

tr
ac

t
si

gn
ifi

es
 (I

SD
 d

el
iv

er
ab

le
,

 O
S I

SD
 c

on
st

ru
ct

)

pr
ec

ed
en

ce

de
liv

er
ab

le
 fl

ow

co
ve

rs
 (D

el
iv

er
ab

le
,

 C
on

ce
pt

ua
l m

od
el

 o

bj
ec

t)

369

In his hierarchical spiral model Iivari (1990b) refers to the ISD deliverables as
the IS/SW products. The products are categorized according to the levels of
modeling into products of the organizational level, the conceptual/infological
level, and the datalogical/technical level. The levels correspond to our IS
perspectives.

Song et al. (1992) define an artifact to mean “a description of some sort of
entity involved in a design process” (ibid p. 46). An artifact can be a part of
another artifact. The artifacts can be specialized, for instance, according to the
domains, which are: problem domain, problem-model domain, solution-model
domain, and design-document domain.

Interestingly, in only four artifacts among those selected for the analysis,
the ISD object domain is addressed at least in a reasonable fashion. This is a
surprise because the ISD deliverables are undoubtedly important to making
sense of what the ISD produces in each of its parts and phases. Also in those
four there are deficiencies. The ontology of Harmsen (1997) is most extensive
addressing the ISD management deliverables and the execution deliverables, as
well as giving a simple categorization of deliverables that is loosely based on
the IS perspectives. The reference model of Heym et al. (1992a) and the
hierarchical spiral model of Iivari (1990a, 1990b) provide specializations of ISD
deliverables in a way which corresponds to our IS perspectives. The four
artifacts provide most of the abstraction relationships between the ISD
deliverables but only a few intra-domain relationships.

Our ISD ontology applies three major criteria in the specialization of ISD
deliverables: the dichotomy of management – execution, the IS perspectives,
and the ISD domains. This has yielded a comprehensive set of concepts and
constructs for the ISD object domain. We have not wanted to introduce any
specific deliverable concepts, such as Analysis report or Systems specification,
in order to keep the ISD ontology general enough. More specific concepts can
be easily specialized from those defined in the ontology. We have, however,
seen it important to define intra-domain relationships, such as supports,
versionOf, copyOf, and signifies, which inherently reflect ISD practice, and
which therefore should be included in every ISD artifact.

8.5.7 Conclusions from the Analysis

The comparative analysis of the existing ISD artifacts was done for two reasons,
first to investigate what kinds of artifacts there exist in the literature and how
they compare with our ISD ontology, and second, to test how well the ISD
ontology serves as an analytical framework. Conclusions in this section aim to
answer to both of these questions.

We selected six artifacts (i.e. models, frameworks, and meta models) for
the analysis with the purposes of (a) producing an overview of them and (b)
finding out how comprehensive they are and how they are focused in terms of
ISD domains. The ISD domains serve as a suitable basis for the analysis because
they have been derived from the contextual approach. Most of the artifacts have
been developed for the description, analysis, comparison and/or engineering of

370

ISD/SW methods. Hence, it was reasonable to expect that they would also
reflect the essential aspects of ISD contexts. The analysis was made in two parts.

In the overall analysis we found that only two of the artifacts (i.e. Iivari
1990b; NATURE Team 1996) are established on some theoretical grounds. Most
of the artifacts have been abstracted from existing ISD methods. This situation
is unsatisfactory for two reasons. First, only with a sound theoretical
background we can be sure that phenomena of ISD become properly conceived,
understood and structured. Second, abstracting from existing methods in a way
replicates properties of the methods and does not help recognize phenomena of
ISD not addressed by the methods. Our ISD ontology is based on the contextual
approach built on several underlying theories. Those theories help guarantee
that the view applied in building the ISD ontology is broad and multifaceted
enough.

Concluding from the in-depth analysis based on the four ISD domains, we
can make several statements. First, all of the analyzed artifacts put an emphasis
on the ISD action domain. Second, most of the artifacts address, at least to some
degree, the ISD object domain. In contrast, there are just few artifacts that
provide concepts and constructs for the ISD purpose domain (i.e. Harmsen
1997; NATURE Team 1996) or the ISD actor domain (i.e. Harmsen 1997; Heym
et al. 1992a). This is surprising when taking into account that the selected
artifacts have been constructed for describing, analyzing, and comparing the
ISD methods in particular. How to analyze methods if some of the essential
features are not addressed in an artifact? Our ISD ontology has been
established on seven ISD domains enabling the perception of ISD as a context
with a large set of contextual features. We have also built our ISD ontology to
be structured and flexible, meaning that its adaptation and specialization are
easy to accomplish.

From the six artifacts, the ontology of Harmsen (1997) appeared to be the
most comprehensive. It has, however, some shortcomings in its coverage of the
ISD actor domain (e.g. lack of ISD role, ISD position, ISD organizational unit)
and the ISD action domain (e.g. lack of the management–execution structure,
the ISD phase structure, and the IS modeling structure). The artifact can also be
criticized for its incoherence and unstructuredness. The MDM ontology
contains concepts and constructs that correspond to our IS ontology and partly
to the ISD ontology, making no separation between these parts. Harmsen (1997)
presents - as separate from the MDM ontology - the process classification
system, which comprises concepts that clearly belong to the ISD ontology (cf.
contents, representation and abstraction level of the product fragments).
Although our ISD ontology is larger than the ontology of Harmsen (1997), it is
more clearly structured, first according to the processing layers, second
according to the contextual domains, and third, within each domain, according
to the strictly defined generic structures. That makes it easier to understand and
use.

Next in terms of comprehensiveness comes the reference model of Heym
et al. (1992a). It lacks the concepts of the ISD purpose domain but provides a

371

basic set of concepts and relationships in all three other ISD domains. The
variety of concepts and relationships supported by it is particularly large in the
ISD action domain. The meta models of Saeki et al. (1993) and Saeki (1998) and
the frameworks of Song et al. (1992) and Song (1997) were found to be
insufficient in all the ISD domains although they are aimed to provide a
comprehensive basis for the description, analysis and comparison of ISD
methods. They do not address the ISD purpose domain, nor the ISD actor
domain. Also the other ISD domains are inadequately covered.

The artifacts of Iivari (1990a, 1990b) and the NATURE Team (1996) cannot
be evaluated with the same measures and scales as the others, because they are
different by their nature. The hierarchical spiral model of Iivari (1990b) is
actually a process model, although addressing processes-in-broad. The process
meta-model of the NATURE Team (1996), although presented in the form of a
meta model of an ISD method, also addresses ISD process. Both of these
artifacts provide a large variety of concepts and relationships for the ISD action
domain, as expected. The hierarchical spiral model of Iivari (1990a, 1990b)
applies diversified structures (cf. the transformation approach, learning process
approach, and decision-oriented approach) to view ISD as being composed of
intertwined ISD actions and ISD deliverables. In contrast, the process meta-
model of the NATURE approach (NATURE Team 1996; Grosz et al. 1997)
applies the decision-oriented approach according to which ISD actions are
strongly related to the ISD purposes (cf. intentions).

To summarize the experience got from the use of the ISD ontology as an
analytical framework in the comparative analysis, we can state the following.
First, the ISD ontology clearly provided a comprehensive basis for
understanding, structuring and comparing the existing artifacts. Theories
underlying it increase our confidence that most of the essential aspects of the
ISD context are included in the ISD ontology. This justifies its use as a
“yardstick” in the analysis. Second, the ISD ontology appeared to be easy to
apply, mostly due to its naturalness and structured form. For instance, the
artifacts propose miscellaneous sets of concepts and constructs for the ISD
actions domain. The seven ISD action structures at three levels defined in the
ISD ontology considerably helped us in interpreting, classifying, and
comparing the artifacts at the level of concepts. Although these conceptions are,
to some degree, subjective we believe that we have managed to demonstrate
and justify the applicability of the ISD ontology with the analysis above.

8.6 Summary and Discussions

The goal of this chapter was to present the ISD ontology. We approached this
goal first considering the ISD paradigms and the ISD approaches. We applied
the classification of Hirschheim et al. (1989) and Hirschheim et al. (1992a) to
characterize four basic ISD paradigms. Next, we sub-divided the ISD

372

approaches into three categories, defined the most essential ISD approaches in
each category and discussed relationships between the ISD approaches. The
discussion of the ISD paradigms and ISD approaches concretely showed how
wide a variety among the conceptions about ISD really is. With the aim to
encompass basic views of the ISD paradigms and ISD approaches, we
formulated a generic but comprehensive definition of ISD, according to which
ISD is seen as a context with aspects from seven contextual domains.

Rooted on the definition of ISD we engineered the ISD ontology. The ISD
ontology is composed of two main parts: the ISD domains and the ISD
perspectives. For the first main part, we defined the concepts and relationships
in four ISD domains and supported the presentations with meta models. In
addition, we brought out plenty of references to the literature where similar or
differing conceptions are suggested about the discussed issues. For the second
main part we defined four ISD perspectives (systelogical, infological,
conceptual, and datalogical). The inter-perspective relationships were also
specified. The ISD perspectives are important to managing the conceptual
complexity of ISD and to understanding how conceptions about the ISD context
develop stepwise when engineering an ISD method.

Finally, we made a comparative analysis of six artifacts (i.e. models, meta
models, frameworks) selected from the literature for two reasons. First, we
wanted to investigate which kinds of artifacts there exist in the literature and
how they compare with our ISD ontology in terms of comprehensiveness and
coverage. Second, our intention was to test how well the ISD ontology suited as
an analytical framework. The analysis was made in two parts. In conclusion,
most of the artifacts turned out to be totally lacking of theoretical basis and to
be insufficient in coverage of essential aspects of ISD. The ISD ontology
appeared to be the only artifact built firmly on sound theoretical bases. Only
some of the artifacts provide any concepts for the ISD purpose domain and the
ISD actor domain. While the ISD action domain is, at lest to some degree,
addressed in the artifacts, there are large gaps in the coverage of the ISD object
domain. The ISD ontology was shown to be the most comprehensive, covering
four ISD domains with a large number of concepts and relationships, organized
into flexible and easy-to-adapt structures.

9 ISD METHOD ONTOLOGY

The ISD method is a highly complex and multi-faceted notion of which there
are multiple views and conceptions in the literature. It is regarded as a
discipline, an approach, a body of skill, a procedure, a way of accomplishing
something, etc. The ISD method is also said to be a collection or system of
various ingredients, such as concepts, models, techniques, rules, procedures,
tools, beliefs, and values. The purpose of this chapter is to clarify and elaborate
conceptions of the ISD method. This will be done specifying the ISD method
ontology. The ISD method ontology aims to provide concepts and constructs for
conceiving, understanding, structuring and representing contextual aspects of
ISD methods. The ontology is composed of several parts. One of those parts is
the conceptual content of the ISD method, which provides the “glasses”
through which we can conceive phenomena in ISD. That part, known as the ISD
ontology, was presented in Chapter 8. The other parts view the ISD method as
a representational and physical thing, consisting of different components and
having certain basic assumptions, intentions and historical backgrounds. The
method ontology has been derived from the underlying contextual ontologies
(see Figure 86).

This chapter is organized as follows. We start with considering why the
ISD methods are actually needed and used in practice, by reviewing empirical
studies that report on benefits from the use of the ISD methods. Second, we
discuss the difference between the terms ‘methodology’ and ‘method’. Third,
we delineate the concept of an ISD method as a ‘carrier’ of ISD knowledge and
specify basic classifications of the ISD methods. Fourth, we define seven
fundamental views through which the ISD method can be perceived, and
present an integrative definition of the ISD method that highlights the essential
features of the method from all these viewpoints. Fifth, we establish the ISD
ontology composed of parts corresponding to the seven views. Sixth, we apply
the ISD method ontology to consider, from a broader perspective, a range of
methodical artifacts. We also discuss criteria for acknowledging a methodical
artifact to be an ISD method. Seventh, we make a comparative analysis of

374

Core ontology

Model level ontology

Perspective ontology

Layer ontology

Context ontology

ISD method ontology

ISD ontology

FIGURE 86 Basis and structure of the ISD method ontology

frameworks and categorizations of ISD methods proposed in the literature.
Eighth, we consider the notion of a method component in more detail. We
define the notion, present a classification scheme and specify a contextual
interface of a method component. We also discuss the integration of method
components, illustrate the discussion with examples, and make a comparative
analysis of conceptions of a method component in the literature. The chapter
ends with a summary.

9.1 Why to Use an ISD Method?

The first software systems were scientific applications in which algorithms and
technical problems were the most critical issues. Later “administrative”
information systems, more oriented towards basic operational functions of
organizations, were built. At that time the only conceivable design task was
programming and specifying computer room operations (Somogyi et al. 1987).
To accomplish these tasks systems developers often followed a variety of
systematic practices. New practices were invented as needed, and those, which
seemed to work in previous projects, were subsequently mobilized again. They
formed the developer’s ‘rules-of-thumb’ and, in a sense, his/her ‘method’
(Episkopou 1987). They were passed on to other developers, often by word of
mouth. These practices were typically not codified and sometimes not even
written down (Hirschheim et al. 1995).

375

This pre-method area ended roughly in the mid-1960s (Hirschheim et al.
1995), when a need for more comprehensive and concise work instructions
became urgent. This was boosted by several trends: information systems
became more complicated, a number and variety of ISD endeavors increased,
and requirements on the productivity of projects and the quality of outcomes
became more demanding (Fitzgerald 1997). This led first to the emergence of
life-cycle methods and structured approaches with process-based description
models, procedural techniques and strict phase structures. Later, new
approaches and methods were developed to address more comprehensively the
whole ISD life cycle, to cover a larger variety of application areas, to
acknowledge the importance of human and social aspects to ISD, and to cope
with more advanced technologies (Hirschheim et al. 1995; Avison et al. 1995a;
Truex et al. 2000; Avison et al. 2003).

As a result from the proliferation of different applications and expansion
of ICT technology into novel areas, thousands, or even tens of thousands of ISD
methods have been developed during the last four decades. But are they really
needed? Why to use these ISD methods anyway? What are the real benefits
from using them in practical ISD? To these questions we try to shed some light
by making a short review of empirical research on experience of method use in
practice. In this section we focus only on the reported benefits. We are fully
aware that there are also a lot of evidence about negative impacts of the method
use in ISD work, either due to defects in the ISD methods or from reasons that
are more related to human and organizational issues. We return to reported
problems in and negative impacts of the ISD methods in Chapter 10.

Based on the review of empirical studies on the use of ISD methods, we
sub-divide reported benefits into five groups. Group (a) facilitates the
acquisition, accumulation, use and dissemination of ISD knowledge, group (b)
helps the management of ISD projects, group (c) reduces the need of money,
labour and time in the ISD process, group (d) improves the quality of ISD
deliverables, and group (e) provides a political support to ISD. Next, we discuss
the benefits in this order.

Schönström et al. (2003) conclude from two case studies that ISD methods
play an important role as knowledge enabler in large software projects. These
methods stimulate individual knowledge development and facilitate the
sharing of individual knowledge and its transformation to organizational
knowledge. The methods create a common platform for communication and
understanding by defining a communicative framework consisting of a
common terminology, workflows and best practices. Also Rahim et al. (1998),
Middleton (1999) and Hardy et al. (1995) noticed better communication and
increased user involvement in the ISD as a consequence of the method use. The
developers benefit from the methods in different ways. Fitzgerald (1996a)
concludes that the relationship between the developer experience and the
method use resembles a U-shaped curve, which shows that the more necessary
and explicit support the method provides for novices, and the more
experienced the developers become, the more ‘invisible’ their method use turns

376

out to be. Hidding (1997) call this the process of ‘internalization’ through which
the method use becomes subconscious. The ISD knowledge becomes re-
considered when a new method is implemented in an organization. According
to Backlund et al. (2003) the public knowledge contained in a commercial
method, such as RUP (Rational Unified Process (Kruchten 2000)), is made
organization-specific through the customization process. By this process the
generic knowledge, conveyed by the method, is assimilated with the existing
organizational knowledge.

The use of ISD methods has been noticed to help the planning and control
of ISD projects. Fitzgerald (1998a), for instance, found in his field study that
methods facilitate project control and increase visibility into the development
process. Chatzoglou (1997) reports that the method use resulted in fewer
iterations in requirements capture and analysis. The study of Hidding (1997)
indicated that the methods were promoted by management in order to attain
more sophisticated or better project control. And the larger the projects, the
more important it becomes to control them.

The method use has also been found to reduce the need for money, labor
and time in the ISD process. Concluding from a case study, Jones et al. (1988)
report on significant reduction in estimated project budgets, below-budget
project completions, and significant productivity improvements in
maintenance. Chatzoglou (1997) reports that on an average not using an ISD
method results in the involvement of more people, a need for more time and
effort and higher costs compared to when a method is used. The survey (Rahim
et al. 1998) conducted within Bruneian organizations indicates improved
productivity resulting from the method use. Also Hardy et al. (1995) found that
in some cases methods improved productivity and enabled better timescale
estimates.

The method use may also improve the quality of ISD deliverables.
Chatzoglou (1997) found out that managers were more confident about the
quality of requirements gathered when a method was used. Also Rahim et al.
(1998) report on better fulfillment of user requirements. In addition they found
that the adoption of a method produced quality documents. The survey of
Hardy et al. (1995) indicates that the method use means fewer errors in design,
specifications match the requirements and the system matches the specification.
There are also some studies on formal methods indicating positive effects on
deliverables. According to Pfleeger et al. (1997) formal methods, combined with
other techniques, yielded highly reliable code. Snook et al. (2001) report on a
higher level of reliability, reduction in post-delivery failures, higher efficiency
of the product code, and benefits in aiding traceability between the specification
and the code.

While the aforementioned findings are related to so-called rational roles
behind the use of methods, there is also a set of political roles that ISD methods
can play in ISD (Keen 1981; Newman et al. 1990; Chang et al. 2002; Fitzgerald et
al. 2002). Chang et al. (2002) sorted out 192 examples of political games from 56
cases and categorized them into 41 kinds of games. Middleton (1999) concludes

377

that the developers generally found a method a source of political protection
should things go wrong. Using a method they could show that they had tried to
adhere to the approved procedures for ISD (cf. ‘social defence’ (Wastell 1996)).
The developers also felt it increased their professionalism (cf. Fitzgerald et al.
2002). According to Nandhakumar et al. (1999) methods can be valuable in ISD
projects as a necessary fiction to present an image of control or to provide a
symbolic status.

In addition to the findings in the empirical studies reviewed above, there
are a lot of issues in which the method use is believed to contribute to the ISD
contexts. The methods are said, for instance, to allow skill specialization and
division of labor (Fitzgerald 1998a), to further the standardization of the
development process (Avison et al. 1995a; Pijl et al. 1997; Roberts et al. 1998), and
to help in the selection of more suitable techniques (Fitzgerald 1998a).

In conclusion, numerous methods have been developed for ISD during the
past few decades. Despite various problems in methods and their usage, ISD
methods have appeared to be beneficial in many ways. They are considered to
be artifacts that convey the best practices on ISD for helping achieve better
outcomes through a more efficient, effective, and manageable ISD process. But
what is, actually, this artifact? What kind of knowledge does the ISD method
help us accumulate, convey and share? What types of methods are there? What
kinds of parts is the ISD method composed of? What is it that is required from
these component parts to make them suitable for integration into a proper
method. These questions will be addressed in the next sections where we will
define the concepts and constructs of the ISD ontology.

9.2 Methodology vs. Method

In the ISD literature the terms ‘methodology’ and ‘method’ are used in various
meanings. Sometimes they are seen to be separate, sometimes they are used
interchangeably.

Originally, ‘methodology’ is a Greek term meaning the study of methods.
Webster´s Dictionary (Webster 1989) defines the concept as “the study of the
principles underlying the organization of the various sciences and the conduct
of scientific inquiry”. In accordance with this, Oliga (1988) defines a
methodology “as a method of methods that examines systematically and
logically the aptness of all research tools, varying from basic assumptions to
special research techniques” (ibid p. 90). Stamper (1988) also reserves the term
‘methodology’ for a comparative and critical study of methods in general.
Checkland (1981) states that “a methodology will lack the precision of a
technique but will be a firmer guide to action than a philosophy”. Heym et al.
(1992a, 215) use the term ‘methodology’ to refer to a class of methods, e.g. the
description or representation of different methods. Brinkkemper (1996) argues

378

that “a methodology is the systematic description, explanation and evaluation
of all aspects of methodical information systems development” (ibid p. 276).

On the other hand, ‘methodology’ is used to refer to a more concrete
prescription, implying that the term is regarded as a synonym for ‘method’ (e.g.
Oliga 1988; Jayaratna 1994; Avison et al. 1995a; Hirschheim et al. 1995; Russo et
al. 1996; Hidding 1997; Iivari et al. 1998a). For instance, Hidding (1997) states
that a methodology “represents a body of skills and knowledge that becomes an
organization’s standards, based on a common language among practitioners”
(ibid p. 105). Iivari et al. (1998a) define the methodology as “an organized
collection of concepts, methods, beliefs, values and normative principles
supported by material resources” (ibid p. 165). There are also those who
propose that ‘method’ is more comprehensive, and includes ‘methodology’
(Davis 1982; Hackathorn et al. 1988).

Some differences in the literature can be explained by different naming
conventions in Europe and North America. In Europe ‘method’ is preferred to
prescribe a more systematic way of conducting ISD, and ‘methodology’ is
reserved for the use with the original meaning. In North America,
‘methodology’ is commonly used as Europeans use the term ‘method’ (cf. Iivari
et al. 2001, 207).

In this study, we prefer the European naming convention. Thus, ‘method’
means a prescription for some specific actions in ISD, and ‘methodology’ is
reserved for a comparative and critical study of methods in general.

9.3 ISD Method as a ‘Carrier of ISD Knowledge’

The ISD method is commonly considered to contain collective knowledge and
experience that are made ‘visible’ to enable their exploitation and advancement
in succeeding ISD projects (Tolvanen 1998; Fitzgerald et al. 2002; Schönström et
al. 2003; Backlund et al. 2003). We also start our work of specifying the notion of
the ISD method by considering it as a ‘carrier of ISD knowledge’.

To enable the understanding of, and the comparison between, various
conceptions of the ISD method and to make our view clear, we construct a
general framework that helps us highlight the essential aspects of the method.
The framework is presented in the form of a cube that depicts the body of ISD
knowledge needed in a particular ISD context (Figure 87). The framework is
composed of three dimensions: the contents of ISD knowledge, the
representation of ISD knowledge, and the type of the ISD method. Next, we
discuss these dimensions in more detail.

The contents of ISD knowledge can be subdivided in many ways.
Extending the categorizations by Freeman (1987) and Iivari et al. (2001, 206) we
state that the body of ISD knowledge is composed of four components:
knowledge of ISD process, knowledge of application domain, knowledge of IC

379

FIGURE 87 Framework for classifying ISD methods

technology, and knowledge of human and social issues146. The knowledge
of ISD process means all the knowledge that concerns how to accomplish an ISD
work. Examples of the questions it aims to answer are: What are the approaches
and main principles to be applied in the ISD context? What are the ISD actions
to be carried out and by whom? What are the deliverables that the ISD actions
should produce? How ISD actions should be decomposed, related and
managed? This body of knowledge also contains information about how to
improve the ISD process. The knowledge of application domain means all the
knowledge that concerns the information system to be designed, its utilization
system and its object system. Each application domain has specificities of its
own that are necessary to know for accomplishing the ISD. The knowledge of IC
technology means all the knowledge that concerns the search, acquirement,
installation, and deployment of hardware and software for the IS, as well as for
the ISD. The knowledge of human and social issues, also known as ‘humanware’
and ‘orgware’, means all the knowledge that concerns human characteristics
and behavior as well as social and organizational aspects that should be taken

146 Iivari et al. (2004, 319) propose five knowledge areas in the information systems body

of knowledge: technical knowledge, application domain knowledge, organizational
knowledge, IS application knowledge, and ISD process knowledge. These are
included in our components of ISD knowledge.

380

into account in building the IS and in organizing the ISD work. This body of
knowledge is a counterbalance to the knowledge of IC technology. On a general
level, this means the knowledge related to humans and organizations in
general, and on an instance level, it is related to particular persons, teams and
organizations.

The second dimension of our framework is the representation of the ISD
knowledge. Next, we first discuss, based on the works of Schön (1983), Nonaka
et al. (1995), Mathiassen et al. (1988), and Mathiassen (1998), to what extent it is
possible at all to present the ISD knowledge. After that we distinguish between
three different presentation forms of the ISD knowledge.

Schön (1983) differentiates between two perspectives of looking at
professional practice: technical rationality and reflection-in-action. From the
technical rationality viewpoint, professional practice is seen as instrumental
problem solving. In this view, situations can be scientifically categorized, and
professional practice applies scientifically–based theories and techniques. In
contrast, from the perspective of reflection-in-action, situations of professional
practice are unique, complex, uncertain and even conflicting. Nonaka et al.
(1995) recognize two types of knowledge: explicit knowledge and tacit
knowledge. Explicit knowledge can be articulated in a natural or formal
language, which enables the transfer of the knowledge through documents.
Tacit knowledge has to do with personal knowledge that is embedded in
personal experience. It is not easy to explicate, not to speak of formalizing.

Based on the categorizations of Schön (1983) and Nonaka et al. (1995) we
state that the ISD knowledge can take different forms. Part of it remains local,
individual, and even tacit. Other parts of the ISD knowledge can be explicated
and made publicly available. The ISD method is a means to capture and convey
that knowledge. The ISD method provides explicit knowledge from technical
rationality viewpoint in the form of principles, procedures, guidelines, etc. But
because knowledge and action are intrinsically related (Mathiassen et al. 1988),
the method should not restrict intuitive and ad hoc -like actions necessary in the
ISD practice but rather encourage the use of tacit knowledge and creative
thinking. Ciborra (1999) calls this intuitive part of ISD “work improvisation”.

There are varying conceptions on a degree to which the ISD method as a
“knowledge base” can convey and provide knowledge to ISD developers
(Wastell 1996; Wordsworth 1999; Truex et al. 2000). Most optimistic think that
all the ISD knowledge can be thought to reside outside the ISD practice – in
books and in learned institutions. This view follows the scientific reductionism
that is, to some degree, the underlying paradigm behind many ISD methods
(Baskerville et al. 1992). The belief to the pervasiveness of the method is
sometimes so firm that it is believed it is mainly the method that does the work
(Wastell 1996). This, of course, is not the case.

But what is the relation between the knowledge, conveyed by the ISD
method, and the knowledge used and accumulated in a particular ISD context?
Fitzgerald et al. (2002, 13) calls the ISD practice using a method the method-in-
action. Derived from the distinction made by Argyris et al. (1974) between an

381

‘espoused theory’ and a ‘theory-in-use’, we can say that knowledge within the
method is never used exactly as originally intended. Different developers do
not interpret and apply the same method in the same way. And the same
developer applies the same method in different ways in different ISD contexts
(Fitzgerald et al. 2002). This deviation of method-in-action from the method is
made visible in two ways in Figure 87. That part of the ISD knowledge within
the method that is totally ignored in a particular ISD context is represented with
the white area in the upper part of the figure. The part of the ISD knowledge
within the method that is customized for a particular ISD context and during it
is represented with the grey area in the figure. Both of these areas are always
present in an actual ISD context. Their sizes just vary. If these areas become
very large, it is a reason to question whether the method is applied at all in the
context. The other two areas in Figure 87 are: the ISD knowledge conveyed by
the ISD method and used more or less as such in a particular ISD context
(presented with the black area), and the ISD knowledge totally residing outside
the ISD method (presented with the lowest area). The latter stands for all that
ISD knowledge that is accumulated and applied in an ISD effort in an intuitive
and improvising fashion (cf. Orlikowski 1996; Ciborra 1999).

The ISD knowledge can be presented in several forms in the method. We
distinguish between three forms: non-structured, structured and formal. A non-
structured form means that views, conceptions, principles, guidelines, rules, etc.
are expressed in a natural language. A structured presentation of ISD
knowledge contains also diagrammatic descriptions of ISD deliverables, ISD
processes, and organizations. Part of these descriptions can be given in the form
of meta models.

The notion of a formal presentation, or a formal method, is a more tricky
one. According to the Oxford Advanced Learner’s Dictionary of Current
English, the term ‘formal’ means “in accordance with rules, customs, and
conventions”. Fitzgerald et al. (2002) use the term ‘formalized methods’ to mean
“formally documented in-house and commercially available methods (e.g.
SSADM, SSM)” (ibid p. 13). Wordsworth (1999) defines a formal method as “a
process for developing software that exploits the power of mathematical
notation and mathematical proofs” (ibid p. 1027). Pfleeger et al. (1997) state that
a “formal technique involves the use of mathematically precise specification
and design notations, and is based on refinement and proof of correctness at
each stage in the life cycle” (ibid p. 34). Finally, Mathiassen et al. (1986, 146)
recognize formality in the methods in two forms: formal models and formalized
behavior. In the former case, the method provides description tools and related
techniques that presume the use of formal expressions. For example, the B
method (Wordsworth 1996) uses the Z notation. In the latter case, at least part
of a way of working is also formalized (e.g. the Vienna Development Method
(VDM) (Jones 1986)). We share the view of Mathiassen et al. (1986).

In our view, all three forms are needed to present the ISD knowledge in
the methods. To give an overview of ISD, a non-structured form is the most
suitable. To provide more exact knowledge on e.g. concepts and notations,

382

structured forms including meta models, can be used. Formalization can also
be of practical value (Pfleeger et al. 1997; Wordsworth 1999; Snook et al. 2001). It
helps avoid ambiguity and perform inferences and verifications. A formalized
presentation is also a prerequisite for embedding ISD knowledge into a
computer-aided tool (i.e. CASE tool), which can support not only making
models but also enacting ISD processes (Rolland et al. 1999; Koskinen 2000).

Next, we move to discuss the third dimension of our framework, which
concerns generality vs. specificity of the ISD knowledge (see Figure 87). We
distinguish between four types of ISD methods depending on how generic or
specific ISD knowledge they convey. The method types are: generic ISD
methods, domain-specific ISD methods, organization-specific ISD methods, and
project-specific ISD methods. Generic ISD methods provide general support, such
as general approaches, principles, models and guidelines, to conduct an ISD
effort in a wide range of ISD contexts. These kinds of methods are called ”off-
the-shelf” methods (e.g. SSADM, IE, and RUP), which must always be
configured (Karlsson et al. 2001). Domain-specific ISD methods provide more
domain-specific support to conduct an ISD effort in a specific application
domain. The application domain may concern a geographic information
system, a web information system, a mobile information systems or the like.
Organization-specific ISD methods provide customized support to conduct an ISD
effort in a specific organization. The properties of the organization-specific ISD
method have to match the culture, conventions and infrastructure of the
organization. Project-specific ISD methods provide configured and instantiated
support to conduct an ISD effort in a specific project in an instantiated fashion.
The properties of the project-specific ISD method have to match the needs and
profile of the specific project. The division of the methods into different types is
denoted with vertical lines in Figure 87. To have a more compact drawing we
have grouped the ISD methods into three groups: generic methods & domain-
specific ISD methods, organization-specific ISD methods, and project-specific
ISD methods. As seen in the figure, proportions of different kinds of ISD
knowledge vary depending on the type of the ISD method.

 Let us consider in more detail how the method types differ from one
another, based on Figure 88. The arrows in the figure denote the direction of
configuration, customization, and instantiation of one method to another. In
moving from the generic ISD methods, through the domain-specific and
organization-specific ISD methods, to the project specific ISD methods the ISD
knowledge, conveyed by the methods, becomes more complete, detailed and
concrete. The generic ISD method provides ‘universal’ prescriptions/
descriptions of an ISD process, as well as of the environment in which an ISD
process should be accomplished. It also outlines ISD roles and ISD positions in
terms of responsibilities, authorities and skill requirements. Some general
classifications of and suggestions for IC technology may also be incorporated to
the later stages of an ISD process. In the domain-specific method the application
domain, especially the part concerning an IS, is described in much more detail.
As a consequence, also the knowledge of an ISD process related to the specific

383

features of the application domain is elaborated respectively. This means that
the ISD conceptual perspective (cf. Section 8.4.3) is more explicitly defined, as
compared to the generic ISD methods. To customize the generic ISD method
into an organization-specific ISD method, descriptions of organizational
structures and ways of working, “inherent” to the particular organization, are
included in the method. Also the ISD knowledge of IC technology is
customized to match the technical infrastructure existing in the organization.
Policies and principles concerning e.g. user participation and approval
procedures are taken into account in the method. This all means that the ISD
datalogical perspective is applied in the organization-specific ISD method (cf.
Section 8.4.4). Finally, the project-specific ISD method prescribes/describes, in
the most detailed form, contextual structures and behavior of the project, which
is to accomplish a particular ISD effort.

Generic ISD method

Organization-specific
ISD method

Domain-specific ISD
method

Project-specific ISD
method

FIGURE 88 Relationships between the types of the ISD methods

Next, we compare our categorization of the ISD methods with those few
categorizations suggested in the ISD literature. Vlasblom et al. (1995, 600)
introduce the terms ‘open’ and ‘closed’ methods, but with only generic
characterizations. The open methods provide more freedom on the general
level, whereas the closed methods completely restrain choices. Between the two
extremes, Vlasblom et al. (1995) identify ‘half-closed’ methods, in which a
number of choices have already been made. This situation resembles the one
that is recognized in problem-solving field, where a difference is made between
weak methods and strong methods (Howard et al. 1999, 178). The weak
methods are general. They can accommodate a large variety of problems, but
give no assurance that the solution thus derived will be ‘optimal’. The strong
methods are only useful for certain specialized problems, but the solutions are
more likely to near ‘optimum’. Baskerville (1996) suggests the use of the term
‘contingency methods’ to mean the organization-specific ISD methods, as they
are situation specific for certain types of bounded organizational settings.
Harmsen (1997) uses the term ‘situational method’ to mean a method tailored
and tuned to a particular situation. A situation means “the combination of
circumstances at a given moment, possibly in a given organization” (ibid p. 25),
embracing an organization, a project, and an application domain.

384

Though not associating to the notion of a method, Backlund et al. (2003)
identify three levels of ISD knowledge: industry level (public knowledge),
organizational level, and project level. The topmost level corresponds, to give
an example, to a commercial method like RUP (Rational Unified Method
(Kruchten 2000)). Also Fitzgerald et al. (2003) identify the industry level, the
organizational level, and the project level in discussing components (e.g.
standards, prescriptions, conventions, etc.) affecting the software development
process.

We argue that it is highly important to differentiate between various types
of ISD methods. The type of the method affects, for instance, the process and
technology of engineering the method, the way of presenting and manifesting
the method, and the view of how to best use the method. We have above first
categorized the ISD methods according to the knowledge they convey. Another
categorization has been made on the basis of the form used to represent the ISD
knowledge in the method. Our second argument in this section is that though
the ISD method may contain massive amount of ISD knowledge, it can,
however, cover only a small portion of that knowledge that is accumulated and
used in an actual ISD context.

9.4 Definition of the ISD Method

In the ISD literature, the notion of a method has been given quite different
meanings147. To illustrate the variety of meanings we have collected exemplars
of the definitions into two tables. Table 28 contains parts of the definitions
characterizing the nature of the ISD method. The ISD method is seen as an
approach (e.g. Brinkkemper 1996; Truex et al. 2000; Russo et al. 1996), a body of
skills and knowledge (Hidding 1997), a way of accomplishing something
(Kruchten 2000), a description of a technique (Hirschheim et al. 1995), a
procedure (Kitchenham et al. 1999), and a system (Jones et al. 1988). Table 29
comprises parts of the definitions, which describe the ISD method from the
structural viewpoint. The ISD method is seen as a collection (e.g. Nuseibeh et al.
1996; Tolvanen 1998; Avison et al. 1995a), a mixed bag (Rumbaugh 1995), and a
system (Veryard 1987; Krogstie 1995) of various ingredients.

Method is an essential subject in the ISD research in general, and the most
important concept in our study. Therefore, we take seriously the need of
defining the notion as thoroughly as possible. We proceed as follows. We first
define seven main views from which the method must be considered. Based on
these views, we construct a general-level definition of the method. Taking the
views and the definition as a departure point, we then establish the detailed ISD
method ontology in the next section.

147 The term ‘method’ originates from a Greek term ‘méthodos’, meaning a systematic

course. In Webster’s Encyclopedic Unabridged Dictionary (1989) the method is
defined as “a way of doing something, especially in accordance with a definite plan”.

385

TABLE 28 Nature of the ISD method as seen in the ISD literature

Reference The method is…
Benjamin et al. (1994) ”...a discipline or practice for accomplishing some set of

tasks” (ibid p. 169).
Brinkkemper (1996) “an approach to perform a system development project”

(ibid. p. 275).
“the systematic description, explanation and evaluation of
all aspects of methodical ISD” (ibid p. 276).

Green et al. (2000) ”an approach to system planning, analysis, design, and
construction” (ibid. p. 73).

Heym et al. (1992a) ”..an approach to information systems development” (ibid p.
215).

Hidding (1997) “a body of skills and knowledge” (ibid p. 105).
Hirschheim et al. (1995) ”...a description of a technique” (ibid p. 11).
Jayaratna (1994) “… an explicit way of structuring one’s thinking and

actions” (ibid p. 242).
Jones et al. (1988) ”a system which provides the information required to build

information systems” (ibid p. 264).
Kitchenham et al. (1999) ”...a procedure defining steps and heuristics to permit the

accomplishment of one or more activities” (ibid p. 376).
Kruchten (2000) “way of accomplishing something” (ibid p. 276).
Russo et al. (1996) ”... an approach to conducting at least one complete phase

[…] of computer information system development” (ibid p.
387).

Truex et al. (2000) “… an approach to information systems development “ (ibid
p. 54).

Method is a very multifaceted concept. As concluded in Section 9.3, it is a kind
of knowledge base or an organizational memory that is accumulated and
shared across organizational boundaries and time dimension (Schönström et al.
2003; Backlund et al. 2003). It should also carry justifications for its creation and
modifications (Kaipala 1997; Rossi et al. 2004). It is a linguistic artifact written,
edited, read and interpreted by ISD actors in different ISD roles, in different
contexts (Jayaratna 1994; Hidding 1997). In addition, it can be considered an
aggregate of various constituents which may have different appearances.

To cope with the most essential facets, we define and apply seven views of
the notion of an ISD method. To distinguish these views from the other views
defined in this work, we call them the methodical views. The methodical views
are (Figure 89): (a) The historical view: What kind of historical background does
the method have? (b) The application view: Where and how is the method to be
applied? (c) The contents view: To what kinds of phenomena do the knowledge
within the method refer? (d) The presentation view: In what ways is the
knowledge within the method presented? (e) The physical view: How is the ISD
method materialized? (f) The structural view: What is the structure of the
method?

The methodical views roughly correspond to the layers of the semantic
ladder (Stamper 1973; Stamper 1996). The historical view and the application

386

TABLE 29 Notion of the ISD method seen from the structural viewpoint in the ISD
literature

Reference The method ..
Avison et al.
(1995a)

“is a collection of procedures, techniques, tools, and
documentation aids which will help the systems developers in
their efforts to implement a new information system” (ibid p. 10).

Iivari et al. (1998a) is “an organized collection of concepts, methods, beliefs, values
and normative principles supported by material resources” (ibid
p. 165).

Karlsson et al.
(2001)

“consists of three interrelated parts: a process, some sort of
notation and a set of concepts used to describe the problem
domain and the method itself.” (ibid p. 2).

Krogstie (1995) “is a system of rules, techniques, and tools to aid development
and/or maintenance of application systems.” (ibid p. 13).

Nuseibeh et al.
(1996)

“is a collection of procedures and heuristics for…” (ibid p. 269).

Rumbaugh (1995) “is a mixed bag of guidelines and rules, including the following
components: a set of fundamental modeling concepts, a set of
views and notations for presenting the underlying modeling
information, a step-by-step process for constructing models and
implementations of them, a collection of hints and rules of thumb
for performing development.” (ibid p. 10).

Tolvanen (1998) “is a collection of techniques and a set of rules which state by
whom, in what order, and in what way the techniques are used,
to achieve or maintain some objectives.” (ibid p. 33).

Veryard (1987) “is a system of tasks and techniques, supported by automated
tools and/or directed experience, for carrying out some or all of
the following IS activities…” (ibid p. 469).

Context of the ISD method

Historical view Application view

ISD method

Generic view

Contents view Presentation view

Structural view Physical view

FIGURE 89 Methodical views

387

view “contextualize” the method into the past contexts in which the method has
been engineered and applied, as well as into the future contexts, in which the
method is to be engineered and applied. By these views only, the real nature
and meaning of the method can be understood. These views reflect aspects of
social world and pragmatics (cf. Section 4.3). The generic view provides an
overview and general understanding of the method. The contents view reveals
the object system (OSISD), that is to say, the semantics of the method (cf. the
layer of semantics). This view was applied in Chapter 8 to establish the ISD
ontology. The presentation view, corresponding to the syntactic layer, is used to
consider the method as a set of expressions presented in some language. The
physical view considers the method as a materialized thing. Finally, from the
structural view the method is seen as a modular structure composed of various
descriptive and prescriptive parts.

Based on the methodical views we can now present an integrated
definition of the ISD method for the use of this work:

The ISD method is an artifact anchored on certain historical, intentional and
functional backgrounds and aimed to be applied and deployed as a prescription
in the intended kinds of ISD contexts, in order to make organizational and
technical changes in IS’s possible or more productive. The ISD method, presented
and materialized in certain forms, contains four kinds of knowledge148 bringing
out how ISD actors carry out ISD actions to produce ISD deliverables, by means
of ISD facilities, in an organizational and spatiotemporal context, in order to
satisfy ISD goals set by ISD stakeholders. The ISD method is composed of
descriptive and prescriptive parts with a large variety.

In the next section we apply these methodical views, except the contents view,
to establish the ISD method ontology. As said above, the contents view was
already applied in Chapter 8 in engineering the ISD ontology.

9.5 Definition of the ISD Method Ontology

Generally speaking, an ontology is “consensual knowledge represented in a
generic and formal way to be used and shared across applications...” (Corcho et
al. 2003, 44). An ontology is also seen as an artifact engineered with the purpose
of expressing the intended meaning of a shared vocabulary (cf. Uschold et al.
1996). Recalling that there is a wide variety of conceptions about the ISD
method in the literature, we need a systematic and detailed way to define the
nature, contents and structure of the notion. We do this through the ISD
method ontology.

148 Recall the division of ISD knowledge into four components: knowledge of ISD

process, knowledge of application domain, knowledge of IC technology, and
knowledge of human and social issues (see Section 9.3).

388

The ISD method ontology is composed of concepts and constructs, with
which contextual aspects of the ISD methods can be conceived, understood,
structured, and represented. Due to the complexity of the ISD method ontology,
we decompose it into seven parts based on the seven methodical views defined
in Section 9.4. An overall picture of the ISD method ontology is presented in
Figure 90. Next, we define the views and the concepts comprised by the views.

ISD method component

Expression

Vocabulary

Concrete syntax

ISD model

Conc. construct Concept

Main ISD principle

Label

ISD contextual model

ISD technique

ISD approach

ISD method

Prior ME context

Abstract syntax

ISD paradigm

Structural view

Target ISD context

Target ME context

Prior ISD context
1..*

underlies

1..*

1..*

1..*

1..*

*

*

Appearance

Paper form

Language
1..*

1..*

1..*

signifies

1..*

1

1

1..* 1..*appliesTo

Electronic form

CD-rom CASE toolISD perspective model

1..*

1..*

1..*

1..*
precedes

1

1

*

1..*

1..*

1..*
precedes

Semantics

1..*

1..*

appliesTo

1..*

1..*

1..*

1..*

1..*

1..*

1

Application view

Historical view Generic view Presentation view

Physical view

Contents view = ISD ontology

1..*
1..*

memberOf 1

1..*

1..*

1..*

1..*

1..*

FIGURE 90 An overall picture of the ISD method ontology

A. Historical View

The historical view enlightens the backgrounds of and experience from the
engineering and use of the ISD method. It involves both prior ME contexts and
prior ISD contexts. Prior ME contexts mean those contexts that have contributed
to the creation and engineering of the ISD method. Prior ISD contexts mean
those contexts in which the ISD method has been deployed. Resulting from the
former, the ISD method has to include knowledge of the intentions, approaches
and principles by which the ISD method has been engineered, of ME actors
who have been responsible for the engineering, and of ME actions by which the

389

ISD method has been engineered, etc. This knowledge is known as the method
engineering rationale. It establishes a systematic and organized trace of method
evolution (cf. method construction rationale in Rossi et al. 2004). Resulting from
the latter, the method has to include knowledge about e.g. applications
developed, ISD actors involved, and successes/failures encountered in prior
ISD contexts in which some version of the ISD method has been deployed. This
knowledge is known as method use rationale (Rossi et al. 2004) or “specification
development status history and rationale” (Nuseibeh et al. 1996). It is a kind of
“experience base” which can be used to help making and justifying the
decisions on whether to use and how to use the ISD method. Both of these
bodies of knowledge from history are important to considering the relevance
and applicability of the method to the ISD context at hand. A detailed
description of an ME context can be established with concepts and constructs
given in the ME ontology in Chapter 10. The corresponding concepts and
constructs for the description of an ISD context are contained in the ISD
ontology in Chapter 8.

B. Application View

The application view outlines where and how the ISD method can be applied.
Consequently, the ISD method contains descriptions of those ISD contexts,
called target ISD contexts, for which the ISD method is intended, as well as
descriptions of those ME contexts, called target ME contexts, in which the ISD
method is to be customized and instantiated for the use of a particular
organization or project. A target ISD context means an application area, that is
to say, some part of the real world that is seen to be problematic and worthy of
investigation (Checkland 1981). In the ISD method the arguments for the
applicability to certain kinds of ISD contexts should be justified with
appropriate evidence. Evidence can be based on logical argumentation derived
from the perceived match between the ISD method and the suggested
application areas, or on empirical experience got from the prior usages (cf.
method rationale in Rossi et al. 2004). For the target ME contexts, it is necessary
to include in the method outlines of factors to be considered and guidelines to
be followed in the customization.

C. Generic View

The generic view provides the general understanding of the nature of the ISD
method. It highlights: (a) the philosophic assumptions and values, on which the
ISD method has been built (cf. ISD paradigms), (b) the ISD approaches to be
applied in the target ISD contexts, and (c) the main ISD principles to be
followed in the target ISD contexts.

The ISD paradigm means here a set of fundamental paradigmatic and
philosophical assumptions underlying the ISD method. The paradigmatic
assumptions are divided into four categories (see Section 8.1.1): (1) assumptions
about the nature of the IS and the ISD (ontology), (2) assumptions about what

390

human knowledge is and how it can be acquired in the IS and the ISD
(epistemology), (3) research methodology, and (4) ethics (Iivari 1991; Iivari et al.
1998a).

The ISD approach means a generic way of conceiving certain aspects of ISD
and/or a generic way of working in ISD (cf. Section 8.1.2). Among a large
variety of ISD approaches we distinguish between the approaches that are
based on (a) different schools of thought, (b) different views of ISD, and (c)
different focuses on the contextual ISD domains. The ISD approaches are highly
interrelated.

The main ISD principle expresses essential aspects of a way in which the
ISD context is to be structured, accomplished, and/or managed. Examples of
the main ISD principles are: iterative design, end-user participation, problem-
orientation, and contingency-based application of the ISD method. Hidding
(1997, 107) call this “the first principle” and defines it as a “way of thinking”
that is embedded in a particular method.

The ISD paradigms, the ISD approaches and the main ISD principles are
inter-related to one another. The relationships include the “inheritance”
relationship (cf. Iivari et al. 2001, 188). Several ISD approaches may be needed to
confirm a particular paradigmatic assumption. An ISD approach in turn can be
based on one or more paradigms. An ISD approach can lead to the application
of one or more main ISD principles, and a particular principle may be followed
to implement one or more ISD approaches.

D. Contents View

The contents view reveals the conceptual contents of the ISD method. According
to this view, the ISD method is composed of concepts and conceptual constructs
referring to the ISD context, as well as to some parts of the ME context(s). The
former correspond to the prior and target ISD contexts. The conceptual contents
of the ISD context have been established in the form of the ISD ontology in
Chapter 8. The latter mean the prior and target ME contexts. The conceptual
contents of the ME context will be presented in the form of the ME ontology in
Chapter 10.

E. Presentation View

From the presentation view the ISD method is seen as a set of expressions
presented in some language(s). Expressions signify conceptual constructs
constituting the contents of the ISD method. A language is defined by an
abstract syntax, a concrete syntax (or notation) and semantics. An abstract
syntax states the allowed conceptual constructs composed of concepts (ter
Hofstede et al. 1998). A concrete syntax gives the notational elements, including
labels, of a language and rules for connecting them with one another and with
the concepts. Semantics specifies the meaning of notational elements.

391

F. Physical View

The physical view reveals the appearance(s) of the ISD method, that is to say, the
media on which the ISD method is made visible or “functioning”. The ISD
method may appear in a paper form (e.g. text books, manuals, pro forma
documents), or in an electronic form (e.g. CD-rom, Word Wide Web). It can be
in a form of a lecture with e.g. Power Point slices and implemented with CASE
tools. CASE tools support the creation and editing of IS models and their
implementation (e.g. Rational Rose, ParadigmPlus, Objecteering), ISD process
management (e.g. Ernst & Young’s Navigator), James Martin & Co.’s
Architecture and SHL/Transform), and ISD process enactment (Koskinen 2000).

G. Structural View

From the structural view the ISD method is seen as a modular structure of
various parts. This structure embraces e.g. paradigmatic assumptions, ISD
approaches, ISD principles, background and application knowledge, concepts,
notations, ISD models, ISD techniques, ISD rules, and ISD guidelines (see
Figure 90). Some of these parts are considered method components. An ISD
method component is a well-defined part of the ISD method that can be integrated
to other ISD components to form a coherent and consistent ISD method. In
Figure 90 we recognize two kinds of ISD method components, ISD models and
ISD techniques. In Section 9.7 we discuss more about the notion of a method
component and identify several kinds of method components.

An ISD model is a model that describes/prescribes structural and/or
behavioral features of the ISD context(s). An ISD technique is a technique, which
guides the accomplishment of specific actions in the ISD context(s). The
technique can be presented as a set of precisely described procedures that help
the achievement of certain outcomes if executed correctly (cf. Kettinger et al.
1997, 58; Iivari et al. 2001, 186). ISD techniques may also be presented in
heuristics, in guidelines or as rules of thumb. An ISD technique can involve one
or more ISD models, and an ISD model can be involved by one or more
techniques.

ISD models are further specialized into ISD contextual models and ISD
perspective models (cf. Section 7.2). ISD contextual models refer to ISD models
that are classified into eight categories according to the contextual domains they
address. The categories are (cf. Figure 72 in Section 7.4): ISD purpose models,
ISD actor models, ISD action models, ISD deliverable models, ISD data models,
ISD facility models, ISD location models, ISD time models and ISD inter-
domain models (ISD ID models). The models have the following functions (see
Figure 91):
• The ISD purpose model prescribes/describes problems in, requirements for,

and/or goals of, the intended149 ISD context, or some part(s) thereof.

149 The intended ISD context refers to a prior ISD context or a target ISD context.

392

IS contextual meta model IS perspective meta model

ISD contextual model

ISD purpose model

ISD actor model

ISD location model

ISD deliverable model

ISD action model

ISD facility model

ISD data model ISD ID model

ISD time model

FIGURE 91 ISD contextual models

• The ISD actor model prescribes/describes ISD roles, ISD positions, ISD

organization units, persons and/or groups participating one way or
another in the intended ISD context.

• The ISD action model prescribes/describes ISD actions and their
relationships in the intended ISD context. Each action model brings out
various ISD action structures (e.g. generic action structures, IS modeling
structures, ISD phase structures, ISD management–execution structures,
and ISD workflow structures) as detailed in Section 8.3.3.

• The ISD deliverable model prescribes/describes the structure and
presentation of ISD deliverables and how they are related in the intended
ISD context.

• The ISD data model prescribes/describes the conceptual contents of the ISD
deliverables in the intended ISD context.

• The ISD facility model prescribes/describes resources and tools available
and used in the intended ISD context. The resources include e.g.
manpower and money, and the tools cover manual, computer-aided and
automated tools.

• The ISD location model prescribes/describes the nature, structure and
features of locations, whether physical or logical, involved in the intended
ISD context.

• The ISD time model prescribes/describes the time system used in the
intended ISD context.

• The ISD ID model prescribes/describes inter-domain features of the
intended ISD context. Questions relating to the inter-domain features
include: Who is responsible for certain ISD actions? What are the inputs to
and outputs from certain ISD actions? What tools are to be used in
producing certain ISD deliverables?

393

The ISD perspective models refer to ISD models that can be classified into six
categories according to which ISD perspective they address. The categories are
(Figure 92): ISD systelogical models, ISD infological models, ISD conceptual
models, ISD datalogical models, ISD physical models, and ISD inter-perspective
(shortly ISD IP) models. These ISD perspective models have the following
functions:
• The ISD systelogical model describes/prescribes the support the intended

ISD should provide for its utilizing system (USISD), as well as the
assumptions on the target IS’s and their USIS.

• The ISD infological model describes/prescribes the purposes, actions and
deliverables of the intended ISD context.

• The ISD conceptual model describes/prescribes the conceptual contents of
the deliverables of the intended ISD context.

• The ISD datalogical model describes/prescribes the purposes, actions,
deliverables, actors, and tools of the intended ISD context, last two on a
general level.

• The ISD physical model describes/prescribes, besides the features
mentioned above, yet on a more concrete level, also spatial and temporal
features of the intended ISD context, instantiated into a particular ISD
context.

• The ISD IP model describes/prescribes features of the intended ISD context
from more than one ISD perspective.

ISD perspective model

ISD systelogical model ISD infological model ISD physical model

ISD conceptual model

ISD IP model

ISD datalogical model

FIGURE 92 ISD perspective models

Some of the ISD data models concern the contents of the IS data. These models
are called the IS meta data models150. The ISD data models can be specialized
into the IS contextual meta models and the IS perspective meta models (Figure

150 Kumar et al. (1992, 264) calls this part of the method “the representation frame” in

contrast to “the process frame” which concerns e.g. the definition of and sequence of
development workflows, actions, and tasks and the definition of ISD actors and their
roles in the ISD process.

394

91). The IS contextual meta models, in turn, can be classified into eight meta
models according to the IS contextual domains. The categories are (Figure 93):
IS meta purpose models, IS meta actor models, IS meta action models, IS meta
deliverable models, IS meta data models, IS meta facility models, IS meta
location models, and IS meta time models. Further, we can recognize IS meta
inter-domain (ID) models. The IS meta models provide concepts (i.e. the
abstract syntax) and/or notations (i.e. the concrete syntax) of the language(s) in
which the corresponding IS models are, or are to be, expressed151.

IS contextual meta model

IS meta ID model

IS meta deliv. m.

IS meta location m.

IS meta facility m.

IS meta data m.

IS meta actor m.

IS meta action m.IS meta purpose m.

IS meta time m.

FIGURE 93 IS contextual meta models

The ISD method ontology presented above has been derived from, and
structured according to, the underlying ontologies. This becomes obvious in
looking at the overall picture of the ontology (Figure 90). The division into the
presentation view, the contents view, and the physical view is a specialization
of the semiotic ontology. The internal structure of the presentation view results
from the language ontology. The historical view and the application view,
defined in terms of the prior and target ISD and ME contexts, is an application
of the context ontology. The conceptions of ISD contexts and ME contexts can
be further elaborated by the concepts and constructs provided in the ISD
ontology and the ME ontology. The structural view decomposes the ISD
method into parts, which are recognized in the model level ontology.

151 Sections 4.4.-4.6 and Section 6.3 provide concepts and constructs for the IS models in

the form of meta models.

395

9.6 Methodical Support

Up till now we have considered methodical support from the viewpoint of ISD
methods only. Actually, ISD can be methodically supported with many kinds of
descriptions/ prescriptions on various levels of detail and concreteness. In this
section we will first present a range of artifacts that methodically support ISD,
compare them with one another, and consider one artifact type, an ISD
methodical skeleton in particular. Second, we will discuss whether there are
explicit criteria for deciding if an artifact can be regarded as an ISD method or
not. The considerations and discussions in this section are based on the ISD
method ontology.

9.6.1 Range of Artifacts

Knowledge about ISD process, application domain, IC technology, and human,
social and organizational issues are accumulated, presented and shared in
various forms and details. One of the most low-level and fuzziest fashion to
present and share guide-lines for ISD is to serve them with a set of tips or hints.
These “best practices” are commonly written by consultants in commercial
magazines (Makmuri 1998). Alternatively, ISD knowledge can be packaged into
the form of ISD approaches and generic principles (see Bracchi et al. 1984;
Vessey et al. 1994; Iivari et al. 2001). We have sub-divided ISD approaches into
three categories (i.e. Categories A, B and C) in Section 8.1.2, based on the scale
of their scopes. Common to all of them is that the support that they provide
remains on a very general level in order to satisfy practical needs of ISD
contexts. The ISD literature also proposes a large array of ISD techniques (e.g.
normalization technique (Codd 1972), transformation technique (Batini et al.
1992), and conceptual modeling technique (Gemino et al. 2002)) and IS models
(e.g. ER model (Chen 1976), role activity model (Kueng et al. 1996), data class /
process matrix (IBM 1984) and responsibility matrix (van Slooten et al. 1993)) to
guide the accomplishment of certain ISD actions and to present their outcomes.
ISD techniques are described in terms of generic principles, such as in Codd
(1972), or with detailed steps, such as in Batini et al. (1992).

The aforementioned artifacts provide ISD knowledge that is either too
vague (e.g. hints and tips), on too a general level (e.g. ISD approaches and
generic principles), or too narrow-scoped (e.g. single IS models and ISD
techniques) to satisfy needs for the guidance in ISD contexts. In the following
we extend the range of artifacts to embrace those that have a more
comprehensive scope. They are: an ISD methodical framework and an ISD
methodical skeleton.

An ISD methodical framework consists of meta models. In a simple form, an
ISD methodical framework is composed of IS meta models that are used to
semi-formally specify IS models. The IS meta models provide the concepts and
constructs used in an ISD effort but only in those parts which concern

396

phenomena in the IS domains. In a more comprehensive form, an ISD
methodical framework also includes ISD meta models describing generally ISD
processes.

An ISD methodical framework is descriptive and contains no normative
ingredients. An ISD methodical skeleton provides all that is contained in an ISD
methodical framework and in addition prescriptive constructs for a skeleton-
like structure of the ISD context. This structure integrates and gives normative
meanings for the IS meta models, as well as instantiates and specializes the ISD
meta models. To put it more precisely, an ISD methodical skeleton is a normative
prescription for the ISD context, structuring and guiding the ISD process on a
general level. An ISD methodical skeleton is not a complete ISD method. In
contrast, an ISD method can be engineered elaborating and refining an ISD
methodical skeleton.

The notion of a methodical skeleton is important in our work, because we
aim to develop a methodical skeleton for ME (see Chapter 11). Therefore, we
elaborate the nature and contents of this artifact, in relation to ISD in this
section, with the ISD method ontology. Figure 94 presents an ISD methodical
skeleton and its intended use in ISD, as well as the overall structure of the ISD
method ontology. Included in the ISD method ontology there are the
methodical views, the ISD ontology, and the IS ontology. The ISD ontology and
the IS ontology are composed of the domains and the perspectives. The arrows
denote how the ontologies are deployed to engineer an ISD methodical
skeleton. We can see that the structure of an ISD methodical skeleton is
adapted, in quite a straightforward way, from the ISD method ontology. The
main parts of an ISD methodical skeleton are methodical views, ISD models,
ISD meta models, and IS meta models. The ISD models are specialized and
instantiated from the corresponding ISD meta models. The ISD models, the ISD
meta models and the IS meta models in the skeleton address only some of the
ISD domains and the IS domains, on a general level, and from the limited
viewpoints.

In Section 9.3 we distinguished between four types of ISD methods: a
generic ISD method, a domain-specific ISD method, an organization-specific
ISD method, and a project-specific ISD method. To compare an ISD methodical
framework and an ISD methodical skeleton with one another and with the
types of ISD methods, we next position them in the space established by the
model levels and the ISD perspectives (see Figure 95). We use ellipses to depict
the scopes covered by the artifacts. An ISD methodical framework provides
meta models, mostly for the ISD systelogical perspective, the ISD infological
perspective, and/or the ISD conceptual perspective (cf. the IS meta models). An
ISD methodical skeleton covers the same ISD perspectives as above but extends
in part to the type model level as well. A generic ISD method embraces all what
has been said above and extends more clearly to concepts, models, and
guidelines for the ISD datalogical perspective. A domain-specific ISD method
differentiates from a generic ISD method only in the level of specialization into
which concepts in IS meta models are extended. Therefore, we do not present

397

Generic view

Presentation view Physical view

IS domains IS perspectives

IS ontology

Application view

ISD domains

adaptatedFrom

input/output

instanceOf

ISD ontology

IS models

ISD method ontology

ISD meta models

ISD perspectives

Methodical skeleton

ISD context

ISD models

IS meta models

IS

Historical view

Methodical views

FIGURE 94 Basis and contents of an ISD methodical skeleton

separately the scope of this type of ISD method in Figure 95. An organization-
specific ISD method provides general issues also from the ISD physical
perspective and, in some cases, present ISD knowledge also on the instance
model level. A project-specific ISD method provides ISD knowledge with the
most extensive scope, covering all five ISD perspectives and all three model
levels.

There is still one type of artifact that can be used to support ISD. We call it
a methodical tool kit (cf. Benyon et al. 1987). A methodical tool kit, or a method
base, is a collection of more or less unrelated methodical parts, which do not, as
such, constitute any coherent and concrete method. In contrast, the idea is to
select suitable parts from a methodical tool kit and integrate (or assembly) them
to engineer an ISD method (e.g. Kronlöf 1993; Song 1997; Harmsen 1997; Saeki
1998; Wieringa et al. 1998). These parts may be on various levels of specificity
and detail. Most commonly they are IS meta models and generic ISD models.
Due to the variety of these parts, a methodical tool kit is not included in the
comparison in Figure 95.

398

Meta
model level

Type
model level

Instance
model level

ISD
systelogical
perspective

ISD
infological
perspective

ISD
conceptual
perspective

ISD
datalogical
perspective

ISD
physical

perspective

ISD methodical framework

ISD methodical skeleton

Generic ISD method

Organization-specific ISD
method

Project-specific ISD method

FIGURE 95 Scopes of the artifacts supporting ISD

Next, we compare our range of methodical artifacts to ISD artifacts presented in
the ISD literature. In the ISD field the two best known generic methodical
artifacts are the Unified Process (Jacobson et al. 1999) and the OPEN framework
(Graham et al. 1997). In the Unified Process (Jacobson et al. 1999) the notion of a
process refers “to a concept that works as a template that can be reused by
creating instances of it” (ibid p. 24). It is compared to a class form, which can
be used to create instances. Hence, the Unified Process is to be instantiated
to make a project-specific process, called a process instance or a project. The key
concepts in the Unified Process are an artifact, a model, a worker, and a
workflow. OPEN is “a framework for third-generation OO software
development methods” (Graham et al. 1997, 4). A software engineering process
(SEP) is “a time-sequenced set of activities and provides a tested and well-
defined approach to the development of OO software systems” (ibid p. 6).
According to Henderson-Sellers and Mellor (1999c 40) OPEN is a
“methodological framework” or a “process metamodel” which can be
instantiated to have specific methodological processes, such as SOMA (Graham
1995) and RUP (Kruchten 2000). A process has three dimensions: methodology,
people and organizational influences, and technology. Generalizing the SEP’s,
the underlying architecture, known as the software engineering process
architecture (SEPA), may be distinguished. SEPA constitutes the core of the
OPEN framework. The key concepts in the OPEN framework are an activity, a
task, a technique, and a deliverable.

In the Unified Process (Jacobson et al. 1999) and the OPEN framework
(Graham et al. 1997) ISD actions and ISD deliverables are specified on a rather
detailed level. The Unified Process introduces the ISD workflow structure and
the ISD phase structure. The OPEN framework defines activities and for each
activity a set of ISD tasks. In both of the artifacts ISD deliverables are specified
and illustrated with examples. ISD actions and ISD deliverables are associated
to the corresponding IS meta models (i.e. UML in Jacobson et al. (1999) and

399

OML in Graham et al. (1997)). In the Unified Process ISD, roles, known as
workers, are introduced and associated to ISD actions. In the OPEN framework
a large set of ISD techniques is given.

Based on what has been said above, we can state that both the United
Process (Jacobson et al. 1999) and the OPEN framework (Graham et al. 1997) are
methodical skeletons, as understood in our work. They don’t aim to provide an
ISD method, but something more “abstract” from which an ISD method can be
instantiated. Instantiation in these cases embraces more than the application of
the instantiation principle (cf. Section 3.9.2.1). For some aspects of ISD contexts,
the artifacts specify quite detailed and concrete prescriptions, e.g. steps for the
accomplishment of tasks. The Unified Process also recognizes a large set of ISD
roles, meaning that it partly applies the ISD datalogical perspective.

In addition to the Unified Process and the OPEN framework, there are
other presentations that are comparable to the artifacts in our range. Hruby
(2000b) presents a ‘methodological framework’, which regards the ‘software
development artifacts’ as the most essential constructs. The artifacts are viewed
as conceptual, not as representational entities (ibid p. 23). In engineering an ISD
method, artifacts are first selected. Artifacts (artifact types) have two kinds of
“methods”152 that guide how to create, interrelate and check the artifacts
(instances). For instance, the “methods” specify preconditions requiring that
certain artifact (instance) must exist before another artifact (instance) can be
created. Thus, preconditions indirectly impact on an order in which the ISD
actions creating the artifacts should be performed. For instance, to create a class
life cycle, the artifact ‘class’ must be first created (ibid p. 29). When selecting
and including artifact (types) to the body of an ISD method, the “methods”
attached to the artifacts also indicate which kinds of ISD actions there should be
in an ISD method. Hruby (2000b) calls his framework a “product-focused”
framework, compared to the OPEN framework (Graham et al. 1997), which he
calls the “process-focused” framework. Concluded from the above, the
methodological framework of Hruby (2000b) is not an ISD method, not even an
ISD methodical skeleton. It corresponds to our notion of a methodical
framework, containing, as suggested by Hruby (2000b), ISD meta deliverable
models from which basic ISD action structures (i.e. ISD models) can be derived
when instantiating the framework for a particular ISD effort.

Vlasblom et al. (1995, 601) propose a three-level description of an ISD
method. The levels are: the generic level, the model level, and the specific level.
The generic level is composed of building blocks for various elements of an ISD
method (i.e. products, activities, development strategies, techniques, tools etc).
The model level contains development models for specific application domains.
The lowest level corresponds to project-specific development methods, called
project scenarios. The generic level corresponds to our notion of a methodical
tool kit. Vlasblom et al. (1995) present a seven-point protocol for establishing a
development method by selecting specific building blocks.

152 A method here corresponds to the notion of a method in the object-oriented

paradigm. To separate it from our term, we present it here in quotation marks.

400

9.6.2 Requirements for an ISD Method

As illustrated in Section 9.4, the ISD literature reflects quite divergent
conceptions about the contents and structure of an ISD method. But what
should be required from an artifact in order to acknowledge it as an ISD
method? Is a set of IS meta models, for instance, enough, or should an ISD
method also offer procedures, rules and guidelines? What about the necessity of
support for project management? Is a set of separate techniques enough for an
ISD method, or should there be a kind of frame to integrate them into a whole?
How mandatory part in an ISD method is a computer-aided tool supporting the
method use? To these questions we find only a few answers in the literature.
One of the most challenging lists of requirements is given by Graham et al.
(1997) who state that an ISD method should provide “at least a full life cycle
process, a comprehensive set of concepts and models, a full set of techniques, a
fully delineated set of deliverables, a modeling language, a set of metrics,
quality assurance, standards, reuse advice, and guidelines for project
management” (ibid p. 2). One may ask whether there is any ISD artifact that
fulfills these requirements. In our view, although no clear-cut limits can be
specified, there are, however, some requirements that an ISD method should
fulfill. In the following, we bring out our conception based on the ISD method
ontology.

In Figure 90 we presented the overall structure of the ISD method
ontology reflecting seven methodical views. Following this structure we bring
out the following requirements for an ISD method. First, any artifact to be
acknowledged as an ISD method should contain the part that provides
knowledge of how it has been engineered and with what experience it has been
used earlier (cf. the historical view). Without this knowledge, there is a risk that
unwritten intentions, approaches and principles considered important in the
engineering of the artifact appear to be unsuitable to the situation at hand.
Another risk is that problems and failures experienced in prior efforts will
reoccur if they are not learned. Hence, it is required that every ISD method
must contain method engineering rationale and method use rationale (cf. Rossi
et al. 2004). Second, it is necessary that an ISD method provides a description of
where and how it can be applied (cf. the application view). This implies that the
target ISD contexts as well as the target ME contexts should be outlined. Only in
this way it is possible to figure out whether an artifact is initially even intended
for the situation at hand. Third, every artifact to be regarded as an ISD method
must provide at least two kinds of languages for the presentation of ISD
deliverables (cf. the presentation view). One of these languages is a natural
language that helps ISD stakeholders communicate with one another through
ISD deliverables. Other language(s) should be semi-formal (e.g. a graphical
language), or formal, to enable IS developers present and reason from complex
structures and behavior of an IS in a concise and strict fashion. Fourth, an
artifact should carry some information about its underlying paradigmatic
assumptions (cf. the generic view), in order to avoid problems in customizing

401

and/or configuring it into a situation, which is based on different values and
beliefs.

Also the scope an artifact covers has an influence upon our conception
about whether an artifact is an ISD method or not. In what follows, we consider
the coverage of an artifact in terms of (a) ISD domains, (b) ISD perspectives, (c)
model levels, and (d) ISD management vs. ISD execution.

ISD methods differ from one another in the emphasis they put on ISD
deliverables, on one hand, and ISD actions, on the other hand (Wijers 1991;
Vlasblom et al. 1995, 597). We argue that to be acknowledged as an ISD
method, an artifact must address both ISD deliverables and ISD actions. For
instance, UML in Booch et al. (1999) is not an ISD method but a language
providing the syntax and part of the semantics to present the ISD deliverables.
Likewise, an artifact only providing procedures and rules for ISD actions and
no language(s) to present results with it not an ISD method. ISD purposes,
either related to ISD actions and ISD deliverables or characterizing an ISD
context as a whole, should also be addressed in an ISD method. In contrast, it is
not necessitated that an artifact should describe/prescribe how to compose ISD
actions into ISD roles and ISD positions.

Russo et al. (1996, 387) define an ISD method to be “a systematic approach
conducting at least one complete phase” of the ISD. In our view, the support to
only one phase or workflow is not enough to regard an artifact as an ISD
method. An artifact may be an analysis method or a design method, but not an
ISD method. We require that an artifact covers an essential portion of ISD
workflows or ISD phases to be seen as an ISD method. That portion is
definitely more than one phase or one workflow. To put this more generally, we
state that an ISD method must provide support for ISD within three ISD
perspectives: the ISD systelogical perspective, the ISD infological perspective
and the ISD conceptual perspective.

An artifact merely consisting of work instructions and examples of
descriptions about outcomes is lacking essential components, namely the
coherent and consistent concepts with which an ISD context as well as an IS
context can be conceived, understood, structured and presented. Hence, it is not
enough that an ISD method provides descriptions / prescriptions on the type
model level, and possibly at the instance model level. It is necessary that an ISD
method also provide descriptions on the meta model level, and preferably on
the meta meta model level.

Project management is mentioned in only few definitions of the ISD
method (e.g. Avison et al. (1995a, 418); Graham et al. (1997, 2)). One reason for
this is that many ISD methods avoid presenting rules and guidelines for
management of an ISD effort, and instead rely on the support of some existing
generic methodological framework of project management. In our view, this is
quite possible. However, exploiting two different methodical sources, perhaps
established with divergent assumptions and concepts, may result in problems
in the integration of execution actions and management actions.

402

In conclusion, we argue that to be regarded as an ISD method, an artifact
has to provide knowledge about its history, domains and ways of applying it,
as well as about fundamental assumptions underlying it. It must offer informal
and semi-formal languages for communication, presentation and reasoning. Its
conceptual foundation should cover at least three ISD domains (i.e. the ISD
purpose domain, the ISD actor domain, and the ISD actions domain), three ISD
perspectives (i.e. the ISD systelogical perspective, the ISD infological
perspective, and the ISD conceptual perspective) and two model levels (i.e. the
meta model level and the type model level).

9.7 Comparative Analysis of ISD Artifacts

In this section we present a comparative analysis of those ISD artifacts in the
literature that are comparable with our ISD method ontology in terms of aims
and comprehensiveness. Our purpose here is to discover what kinds of
principles the artifacts use to structure the ISD methods, what main parts the
ISD methods are seen to contain, and what kinds of atomic elements the ISD
methods are seen to be composed of.

There is a huge amount of literature on ISD methods. Surprisingly, there
are only a few presentations that are named as method ontologies or
methodology ontologies (e.g. Chandrasekaran et al. 1998; Lin et al. 1999; Fensel
et al. 2003). These appear, however, to be very far, in terms of aims and
domains, from what we are interested in here. Therefore we have excluded
them from this analysis. We recognized two groups of artifacts to be relevant
for our analysis. The first group comprises frameworks for comparing and
evaluating ISD methods. We are interested in these frameworks because it is
reasonable to expect that the frameworks established for the comparison of the
ISD methods are comprehensive. To this first group we have selected the socio-
cybernetic framework for “the feature analysis of the ISD methods” by Iivari et
al. (1983), the framework “for comparing methods” by Avison et al. (1995a) and
the “cataloguing” framework for software development methods by Karam et
al. (1993). All these frameworks are quite comprehensive. The second group is
composed of frameworks which aim at categorizing method knowledge. To this
group we have selected the “anatomy” of the method by Lyytinen (1986), the
reference model for information systems development by Heym et al. (1992a),
the “architecture” of the method by Vlasblom et al. (1995), and the shell model
of method knowledge by Tolvanen (1998).

There are, of course, many other artifacts (e.g. Wijers 1991; Saeki et al. 1993;
Vasconcelos et al. 1998; Gupta et al. 2001; Tun et al. 2003) that provide structural
descriptions of methods. They are not, however, comprehensive, and so we
have to ignore them here. Next, we will give short descriptions of the selected
artifacts and then compare them with our ISD method ontology. The summary
of the results from our analysis is presented in Table 30.

403

TA
BL

E
30

Su

m
m

ar
y

of
 th

e
co

m
pa

ra
tiv

e
re

vi
ew

 o
f t

he
 li

te
ra

tu
re

 o
n

th
e

IS
D

 m
et

ho
ds

 R

ef
er

en
ce

M

ai
n

st
ru

ct
ur

in
g

pr
in

ci
pl

es

M
ai

n
pa

rt
s

El
em

en
ts

 /
fe

at
ur

es

Iiv
ar

i e
t a

l.

(1
98

3)

Ba
se

d
on

 a

so
ci

oc
yb

er
ne

tic

in
te

rp
re

ta
tio

n
of

 IS
D

- I
nf

or
m

at
io

n
sy

st
em

- I

SD
 d

ec
is

io
n

m
ak

in
g

an
d

le
ar

ni
ng

 d
yn

am
ic

s
- I

SD
 a

ct
io

ns

C
on

ce
pt

 s
tr

uc
tu

re
s,

 la
ng

ua
ge

s,
 s

ub
st

an
tiv

e
as

su
m

pt
io

ns
.

Li
fe

 c
yc

le
 d

yn
am

ic
s,

 m
ai

n-
ph

as
e

dy
na

m
ic

s
(p

ha
se

 s
tr

uc
tu

re
),

le
ar

ni
ng

dy

na
m

ic
s.

D

ec
om

po
si

tio
n

an
d

co
nt

ro
l s

tr
uc

tu
re

s o
f I

SD
 a

ct
io

ns
, a

 li
st

 o
f s

pe
ci

fic
 IS

D

ac
tiv

iti
es

, f
ea

tu
re

s
of

 IS
D

 a
ct

io
ns

 c
at

eg
or

iz
ed

 b
y

th
re

e
“p

er
sp

ec
tiv

es
”

(P
, I

/O
, C

/O
).

A
vi

so
n

et

al
. (

19
95

a)

N
o

sp
ec

ifi
c

pr
in

ci
pl

e
is

m

en
tio

ne
d

Ph

ilo
so

ph
y

(p
ar

ad
ig

m
, o

bj
ec

tiv
es

, d
om

ai
n,

 ta
rg

et
),

m
od

el
s,

 te
ch

ni
qu

es

an
d

to
ol

s,
 s

co
pe

, o
ut

pu
ts

, p
ra

ct
ic

e
(e

.g
. b

ac
kg

ro
un

d,
 u

se
r b

as
e,

pa

rt
ic

ip
an

ts
),

pr
od

uc
t.

K
ar

am
 et

 a
l.

(1
99

3)

N
o

sp
ec

ifi
c

pr
in

ci
pl

e
is

m

en
tio

ne
d

- T
ec

hn
ic

al
 p

ro
pe

rt
ie

s
 - M

an
ag

er
ia

l p
ro

pe
rt

ie
s

- U
sa

ge
 p

ro
pe

rt
ie

s

Li
fe

 c
yc

le
 m

od
el

, p
hi

lo
so

ph
y,

 w
or

k
pr

od
uc

ts
, n

ot
at

io
ns

, p
ro

ce
du

re
s,

gu

id
el

in
es

, c
ri

te
ri

a
an

d
m

ea
su

re
s,

 v
er

ifi
ca

tio
n,

 m
et

ho
d

sp
ec

ia
liz

at
io

n.

So
ftw

ar
e

de
ve

lo
pm

en
t o

rg
an

iz
at

io
n,

 e
as

e
of

 in
te

gr
at

io
n.

A

pp
lic

at
io

n
ar

ea
, i

nf
or

m
at

io
n

sy
st

em
, s

of
tw

ar
e

to
ol

s,
 in

st
ru

ct
io

ns
, u

se
r

ba
se

.
Ly

yt
in

en

(1
98

6)

N
o

sp
ec

ifi
c

pr
in

ci
pl

e
is

 m
en

tio
ne

d
- P

ar
ad

ig
m

 c
om

po
ne

nt

- N
or

m
at

iv
e

 c
om

po
ne

nt

 - R
es

ou
rc

e
co

m
po

ne
nt

O
nt

ol
og

y,
 e

pi
st

em
ol

og
y,

 ra
tio

na
lit

y,
 m

et
ar

ul
es

, t
he

or
ie

s,
 a

nd
 e

xe
m

pl
ar

s;

O
rg

an
iz

in
g

pr
es

cr
ip

tio
ns

 (c
ho

ic
e

di
re

ct
iv

es
, s

eq
ue

nc
in

g
di

re
ct

iv
es

, c
ha

ng
e

no
rm

s,
 p

er
fo

rm
an

ce
 p

re
sc

ri
pt

io
ns

),
an

d
w

or
ki

ng
 n

or
m

s.

Pe
op

le
, m

on
ey

, t
oo

ls
, c

om
pu

te
r s

ys
te

m
s,

 p
hy

si
ca

l l
oc

at
io

ns
, e

tc
.

H
ey

m
 et

 a
l.

(1
99

2a
)

D
is

tin
gu

is
he

s
be

tw
ee

n
ho

w
 to

 a
cc

om
pl

is
h

IS
D

w

or
k

an
d

ho
w

 to
 a

pp
ly

th

e
m

et
ho

d

- M
et

ho
do

lo
gy

 o
bj

ec
t

 - G
ui

de
lin

e
ob

je
ct

M
et

ho
d,

 te
ch

ni
qu

e,
 d

el
iv

er
ab

le
 m

od
el

 o
bj

ec
ts

, r
ep

re
se

nt
at

io
n

co
m

po
ne

nt
s,

pe
rs

pe
ct

iv
es

/v
ie

w
s,

 d
ep

en
de

nc
ie

s,
de

liv
er

ab
le

 fl
ow

s,

de
liv

er
ab

le
 u

sa
ge

s,
 p

ro
ce

ss
 m

od
el

s
ob

je
ct

s.

Ex
pe

ri
en

ce
 o

bj
ec

ts
, i

nt
eg

ri
ty

 o
bj

ec
ts

.
V

la
sb

lo
m

 et

al
. (

19
95

)
’A

rc
hi

te
ct

ur
e

pa
ra

di
gm

’

D
ev

el
op

m
en

t s
tr

at
eg

y,
 p

ro
du

ct
s,

 a
ct

iv
iti

es
, d

is
ci

pl
in

es
, t

ec
hn

iq
ue

s
(in

cl
.

re
pr

es
en

ta
tio

n
pr

ac
tic

es
 a

nd
 w

or
ki

ng
 p

ra
ct

ic
es

),
to

ol
s.

To

lv
an

en

(1
99

8)

Th
e

sh
el

l m
od

el
 in

 w
hi

ch

ea
ch

 le
ve

l c
om

pl
em

en
ts

th

e
ne

xt
 lo

w
er

 le
ve

l

C

on
ce

pt
ua

l s
tr

uc
tu

re
, n

ot
at

io
n,

 p
ro

ce
ss

, p
ar

tic
ip

at
io

n
an

d
ro

le
s,

de
ve

lo
pm

en
t o

bj
ec

tiv
es

 a
nd

 d
ec

is
io

ns
, v

al
ue

s
an

d
as

su
m

pt
io

ns
.

404

Iivari et al. (1983) divide the features of ISD methods into three parts: those
concerning the information system153, those related to ISD dynamics, and those
related to ISD actions. The first category contains semantic and syntactic
features (i.e. conceptual structures of IS models and notations used to present
the models), as well as implicit and explicit substantive assumptions
andrecommendations concerning the application area of the method. The
second category comprises features related to decision-making (i.e. life-cycles
and main phases) and learning dynamics of ISD assumed by the method. The
third category features ISD actions from the viewpoints of decomposition and
control structures and addresses some specific ISD actions (e.g. group analysis,
goal analysis, situation analysis) and ISD perspectives. Iivari et al. (1983)
distinguish between three ISD perspectives, namely P (pragmatics), I/O
(input/output) and C/O (construction/operation) perspectives.

Avison et al. (1995a) propose a framework for comparing ISD methods,
based on the earlier works of Wood-Harper et al. (1982) and Fitzgerald et al.
(1985). The framework contains seven basic elements: philosophy, models,
techniques and tools, scope, outputs, practice, and product. The philosophy
element contains a paradigm, objectives, a domain and a target (applicability).
The domain means situations that the method addresses. The target is seen as
the applicability of the method to e.g. particular types of problems,
environments, or organizations. The scope means the stages the method covers,
and the outputs stand for the deliverables from those stages. The practice
element is composed of the method background, the prior and existing users of
the method, the participant roles in the method and the skill levels required for
them, the experiences from the method use, and the degrees to which the
method has been customized in prior projects. The last element of the
framework, referred to as the product, means the forms in which the method
appears and, if commercial, what purchasers actually get for their money.

Karam et al. (1993) present a cataloguing framework for software
development methods. The framework lists 21 properties grouped into three
categories: the technical properties, the managerial properties, and the usage
properties. The technical properties concern e.g. a life cycle model (e.g. ISD
approach, phase structure), the governing philosophy (e.g. structural), work
products and notations, procedures, guidelines, criteria and measures,
verification, degree of formality, and method specialization. The managerial
properties are related to the software development organization, and ease of
integration. The usage properties address the type of the application area, the
size of the information system, the availability of software tools, the ease of
instructions, as well as the extent and variety of the method’s user base.

Lyytinen (1986) presents an “anatomy” of the method that is composed of
three main components: the paradigm component, the normative component,
and the resource component. The paradigm component suggests something
about the purpose, environments and contents of change and the basic ways of
carrying out the change. It contains six sub-components: ontology,

153 Iivari et al. (1983) use the term ‘data system’.

405

epistemology, rationality, metarules, theories, and exemplars. The normative
component comprises organizing prescriptions and working norms. The
working norms can be choice directives, sequencing directives, change norms
consisting of grammar of a developer’s language and procedural directives, and
performance prescriptions. The resource component helps identify resources
(people, money, tools, computer systems, physical locations, physical
communication media etc.) and keep track of their consumption.

Heym et al. (1992a) present a methodology154 reference model for
information systems development as some kind of semantic data model.
According to this model, the methodology (knowledge) is composed of two
kinds of objects: methodology objects and guideline objects. The methodology
objects are methods and techniques (as the components of the methodologies),
deliverable model objects, representation components, perspectives/views,
dependencies, deliverable flows, deliverable usages, and process model objects.
Because the method cannot be taken off the shelf and used as such in a project,
it is necessary to preserve the development knowledge of organizations as
guidelines. The guideline objects are either experience objects or integrity
objects. Through the guidelines that can be connected to any methodology
objects, the systems developer can store or search for experiences about certain
activities or deliverables, collected in other projects and by other people. The
guideline objects are presented in rules, notices, conditions, and/or conclusions.

Vlasblom et al. (1995) propose a three-level description of a method. The
highest level, the generic level, is composed of building blocks for the various
elements of the method. The building blocks form a kind of architecture of the
method. The building blocks are ISD activities, ISD products, a development
strategy (i.e. philosophy relating to the manner in which the activities and the
products are arranged in time), techniques (representation and working
practices), tools, and disciplines (particular areas of expertise). The disciplines
mean those who play a role in the ISD activities and those who will use the
products of the ISD.

Tolvanen (1998, 35-37) presents a categorization of the types of method
knowledge in the form of a shell model in which each type of knowledge
complements the others and all are required to yield a “complete” method. The
core of the shell stands for the concepts and constructs used in modeling
techniques. The next level contains the notations that are used to present
models. Processes on the next upper level are based on the concepts and they
prescribe how models are created and manipulated. Three outer levels stand for
participation and roles, development objectives and decisions, and values and
assumptions, respectively.

Next, we compare the artifacts to one another and to our ISD method
ontology, first on a general level and then individually for each methodical
view (see Table 30). Principles used to structure the parts of the method vary
greatly. Iivari et al. (1983) make the main division between features of the IS and

154 Note that a methodology here means the description or representation of different

methods (Heym et al. 1992a, 215).

406

the ISD, and Karam et al. (1993) distinguish between the ISD execution, the ISD
management, and the usage. Heym et al. (1992a) categorize the knowledge
objects into two parts depending on whether the knowledge is related to the
methodology or its use (cf. experience objects). Tolvanen (1998) divides the
method knowledge on the basis of how close to the “core knowledge” of ISD
they are. In our ISD method ontology, the main structure is based on the
methodical views that guide to recognize generic features, history, application,
conceptual contents, languages, physical appearance and main components of
the method. We argue that this way of categorization results in more sound,
orthogonal and distinguishable structures of parts than in the reviewed
artifacts. This argument is supported by the fact that the methodical views,
underlying the ISD method ontology, are largely based on the theoretical
framework of the semantic ladder (Stamper 1973; Stamper 1996).

The historical view brings out features of and experience from the prior
ME contexts and the prior ISD contexts. No analyzed artifact addresses the
prior ME contexts. The prior ISD contexts are considered in Iivari et al. (1983)
(‘empirical support to e.g. languages’), Avison et al. (1995a) (‘practice’), Karam
et al. (1993) (‘user base’), and Heym et al. (1992a) (‘experience objects’). The
application view concerns the target ISD contexts and the target ME contexts.
The target ISD context, in the sense of application area, is considered in Avison
et al. (1995a) (‘domain’), Karam et al. (1993) (’application area’), and Heym et al.
(1992a) (‘application type perspective’). But nothing is said about the target ME
contexts in any artifact.

The generic view addresses the paradigms, ISD approaches, and main ISD
principles underlying the method. Paradigms are recognized in Avison et al.
(1995a), Lyytinen (1986) and Tolvanen (1998). ISD approaches are included in
the frameworks by Iivari et al. (1983), Karam et al. (1993) and Vlasblom et al.
(1995). The representation view is addressed in Iivari et al. (1983) and Vlasblom
et al. (1995) on a general level, and in Karam et al. (1993), Lyytinen (1986), Heym
et al. (1992a) and Tolvanen (1998) on a more detailed level. The method as a
physical entity is recognized in Avison et al. (1995a) (cf. ’product’) and partly in
Karam et al. (1993) (cf. ‘software tools, instructions’) and Vlasblom et al. (1995)
(cf. ‘tools’).

The ISD models and ISD techniques are included in all the analyzed
artifacts, except in Lyytinen (1986) and Tolvanen (1998). The ISD perspectives
are only addressed in Iivari et al. (1983), but on a very general level only.The
partition into the ISD contextual models is most clearly visible in the shell
model of Tolvanen (1998) (cf. levels of process, participation and roles, and
objectives). In the other artifacts, only the ISD deliverables (products) and the
ISD processes are typically distinguished. Some of the artifacts (Iivari et al. 1983;
Vlasblom et al. 1995; Lyytinen 1986) consider relationships between the ISD
actions. There are also some artifacts that recognize, although in a not-so-
explicit way, issues in the ISD purpose domain (Avison et al. 1995a; Iivari et al.
1983) and in the ISD actor domain (Iivari et al. 1983; Avison et al. 1995a;

407

Lyytinen 1986). The framework of Iivari et al. (1983) addresses the IS meta
models indirectly through the consideration of concepts and languages.

In conclusion, an ISD method ontology has to be comprehensive and well-
structured to suit the evaluation, comparison, and engineering of ISD methods.
We have strived for a reasonable level of comprehensiveness by applying the
well-grounded and well-defined methodical views. The comparative analysis of
the existing artifacts shows that our ontology is more comprehensive than any
of them. Comprehensiveness in this case does not mean the number of the
concepts but the degree to which the artifact covers the features that are
significant to distinguishing the meanings of things in the ISD and the ISD
method. Our way of structuring the parts and features of the ISD method also
makes the ISD method ontology more explicit and easier to apply.

9.8 ISD Method Component

In this section we continue the discussion about the method components. The
ISD models and the ISD techniques are method components, as we found in
Section 9.5, but actually there are many parts in the ISD method that can be
considered to be method components. Here, we first define the notion of an ISD
method component and present some classifications. Second, we define the
granularity levels of the components, and consider the interface of the method
component. Third, we give examples of the method components and discuss
their integration on a general level. Fourth, we make a comparative analysis of
conceptions of the method components presented in the literature. The section
ends with a summary.

9.8.1 Definition of the ISD Method Component

Reuse is an essential objective towards which software engineering has strived
for several decades. The most effective means to achieve this objective has been
considered to be the construction of compatible components or modules that
are general enough for reuse. Originally, these compatible components were
code components. This reuse view is best reflected by the definition by
Kruchten (2000): “A component is a nontrivial, nearly independent, and
replaceable part of a system that fulfils a clear function in the context of a well-
defined architecture. A component conforms to and provides the physical
realization of a set of interfaces” (ibid p. 274)

In recent years the component-based paradigm has been extended to
cover the construction and reuse of design components as well. Examples of the
design components are domain models (e.g. Arango et al. 1991; Arango 1994),
design patterns (Gamma et al. 1995) and application frameworks (Fayad et al.
1997; Carey et al. 2002). In the domain models the ontological descriptions
specific to certain domains, such as insurance, transportation, banking etc., can

408

be used as the fundamentals on which the applications can be designed and
implemented. The design patterns provide structured descriptions of proved
solutions to commonly appearing problems. The application frameworks
provide platforms for integrating reusable components. The framework itself is
a large component that can be extended and configured, resulting in a
functioning application in a given problem domain.

The component-based paradigm has also been proposed as a means of
constructing ISD methods. A reusable part of the method is called a method
component (e.g. Kumar et al. 1992155; Song et al. 1992; Gupta et al. 2001; Zhang et
al. 2001), a method fragment (e.g. Harmsen 1997; Nuseibeh et al. 1996)), a
building block (Vlasblom et al. 1995), and a task package (Hidding et al. 1993).
To be faithful, also literarily, to the component-based paradigm, we prefer the
term ‘ISD method component’ and define it as follows. An ISD method
component means a well-defined part of the ISD method that can be integrated
to other ISD method components to form a meaningful, coherent and consistent
ISD method. The ISD method component is reusable if it is specifically
developed for reuse (cf. Zhang et al. 2001, 117).

9.8.2 Classifications of Method Components

Based on four contextual ontologies (i.e. the context ontology, the layer
ontology, the model level ontology, and the perspective ontology) and the
principle of decomposition we establish a five-dimensional scheme by which
the method components can be classified (see Figure 96). We argue that a
component can be placed in any position along these five (nearly orthogonal)
dimensions. Next, we define the dimensions and illustrate the use of them with
examples.

 Processing layer

 Perspective Contextual domain

 Decomposition Model level

FIGURE 96 Classification scheme for the components

Contextual domains
The classification is here based on those contextual concepts that the component
contains. We distinguish between purpose components, actor components,

155 Strictly speaking Kumar et al. (1992, 262) use the term ‘methodology component’.

409

action components, and so on. For instance, a certain kind of organizational
structure (e.g. matrix-like structure), a step-by-step procedure for a specific ISD
action (e.g. normalization procedure), and a genre-based classification of ISD
deliverables are method components belonging to the ISD actor domain, the
ISD action domain, and the ISD object domain, respectively.

Processing layer
The classification of method components is here based on the processing layer,
on which the component is to be reused. Components fabricated and reused in
software engineering (e.g. code components, domain models, and application
frameworks) reside at the ISD layer. They are referred to as IS components.
Method components (e.g. data flow diagram, normalization technique) are
engineered and reused at the ME layer. Further, at the RW (research work)
layer components are reused to engineer methods for method engineering.
Some of the components are general-purpose in a sense that they can be reused
at several processing layers. For instance, a component specifying the goal /
means structure can be reused as the basis of the IS goal meta model, the ISD
goal meta model, and the ME goal meta model. Typical examples of general-
purpose components are abstraction structures defined in Section 3.9.

Model level
The components are here considered models that are classified according to
which model level they belong to. A code component, for instance, is on the
type model level, and so is the normalization technique as well. The ER model
specifying the allowed concepts and constructs for ER schemas is on the meta
level. Some components may contain parts on more than one level. A data flow
diagramming technique, for instance, is a component that comprises a part that
prescribes ISD actions and ISD deliverables (i.e. the type model level), and
another part that specifies the concepts and constructs allowed in the data flow
diagram (i.e. the meta model level).

Perspective
The classification is here based on the perspective, through which method
components view the context(s) concerned. Consequently, we can have
systelogical, infological, conceptual, datalogical and physical components. The
meaning and contents of the component depend on what layer the component
is situated. At the ISD layer, for instance, a technique of conceptual modeling
presented in a data flow diagram is an IS infological component, because it is
described through concepts of ISD actions and ISD deliverables. Conceptual
components, like the domain models (Arango et al. 1991; Arango 1994), provide
ontological constructs for structuring the contents of the ISD deliverables. A
method integration technique presented in a data flow diagram, in turn, is an
example of the infological component at the ME layer.

410

Decomposition
Components can be situated on various granularity levels. At one extreme of
this dimension is a method as a whole. At the opposite extreme we could see an
individual concept. A detailed discussion about the proper granularity levels of
method components at the ISD layer is given in the next section.

9.8.3 Granularity Levels of Method Components

Any part of the method at any level of detail could be, in principle, considered a
method component. In practice, however, this is not the case. According to the
definition of the method component given above, it is required that it should be
integratable to another method component. In addition, it is required that a
totality constructed by integration constitutes something consistent, coherent,
and meaningful to ISD contexts. To further the fulfillment of these
requirements, we define three granularity levels for the method components.
The levels are: the level of contextual ISD components, the level of domain-
based ISD components, and the level of construct components. In what follows,
we define these with examples.

A contextual ISD method component is a method component that contains
descriptions/prescriptions of features of the ISD within several contextual
domains. An example of a contextual ISD method component is the use case
technique (Jacobson et al. 1999) that is aimed at guiding IS developers, in a step-
by-step manner, in their specifying services the IS clients expect from the IS.
The specification of the component requires the use of concepts of at least four
ISD domains, i.e. the purpose domain, the actor domain, the action domain, and
the object domain. At the extreme case, a contextual method component is an
ISD method itself.

A domain-based ISD method component is a method component that contains
descriptions/prescriptions of features of the ISD within one or at most two
contextual domains. We can distinguish between several domain-based ISD
method components. Ontological components are method components which
provide concepts and constructs for conceptual modeling. Meta models (e.g. the
meta data model of the ER model (Chen 1976)) are typical examples of this kind
of components. Notational components are method components which provide
sets of symbols (without any predefined semantics). For instance, the graphical
notation of the ER model is a notational component.

While ontological components and notational components merely concern
the conceptual contents and representation of ISD deliverables, respectively,
action-based components mainly concern ISD actions. These are also known as
process fragments (Harmsen 1997). An example of an action-based component
is that part of the ER technique (Batini et al. 1992), which provides stepwise
instructions for e.g. identifying entity types, relationship types, and attributes.
The ER technique prescribes the predefined order (not necessarily a temporal
order) for actions and input/output relationships between ISD actions and ISD
deliverables. Another example of an action-based component is a
transformation technique by which an ER schema can be transformed into a

411

relational schema. This is called a ‘transformational method’ in the terminology
of Prakash (1997, 1999).

Furthermore, we can distinguish between actor-based components and
tool-based components. Actor-based components are method components which
contain concepts and constructs to specify, for instance, an organisational
structure. Tool-based components are method components which offer concepts
and constructs to describe elements and architecture of a computerized
information system. These components correspond to technical fragments in
Harmsen (1997).

The third granularity level is the level of construct components. A
construct component is a method component which cannot be decomposed into
smaller parts without loosing some of its meaningfulness and integratability. In
many studies (e.g. Harmsen 1997) individual concepts are regarded as atomic
parts. In our opinion, individual concepts cannot be real method components
for the same reason as no individual row of code can be regarded as a
component.

The integratability of method components depends on the kinds of
interfaces the components have. In the next section we discuss the notion of an
interface in general and define the notion of a contextual interface.

9.8.4 Interface of the Method Component

In software engineering a reusable component must have a well-defined
interface156. An interface shows the services the component provides for the
other components and the services it demands from the other components. In
the object-oriented paradigm the services are specified through operation
signatures with parameters. Converting this directly into the contextual
viewpoint would mean that an interface is specified by concepts of the action
domain (cf. operation call) and the object domain (cf. parameters). When the
component-based paradigm has been applied at the ME layer, this kind of
conception has survived (cf. Ralyte et al. 2003). Consequently, it is common to
think that two method components can be integrated if one component receives
a specific piece of data from the other component and conducts the next action
for the data in the pre-defined order (cf. Kinnunen et al. 1996). This view is
illustrated in Figure 97 below. The method components A and B can be
integrated, if the outgoing interface of the component A and the incoming
interface of the component B match. The interfaces in this case consist of two
parts: action part (unbroken line) and object part (dotted line). Although this
kind of conception is adequate at the ISD layer and for technical artifacts, in

156 D’Souza and Wills (1999), for instance, state that a code component is “ a coherent

package of software implementation that (a) can be independently developed and
delivered, (b) has explicit and well-defined interfaces for the services it provides, (c)
has explicit and well-specified interfaces for services it expects from others, and (d)
can be composed with other components, perhaps customizing some of their
properties, without modifying the component themselves” (ibid p. 387).

412

FIGURE 97 Simple interfaces of two method components

method engineering the method components are much more multifaceted
requiring a more elaborated notion of an interface.

According to the contextual approach there are seven domains. We argue
that each of them may be of importance to revealing the real nature and
meaning of the interface of the method component. Therefore, we define: a
contextual interface of a method component is a white-box like description of
those contextual relationships through which a method component can be
integrated into other method components. The contextual relationships are
inter-domain relationships and/or intra-domain relationships (see Chapters 4
and 8). Figure 98 below illustrates the contextual interface of a method
component. The component C has an interface that is composed of seven
’threads’. Each of them specifies an important contextual relationship by which
concepts of the component should be connected to concepts of another method
component.

 Ar An

 P O

 F L T

FIGURE 98 Contextual interface of the method component (P = purpose, Ar = Actor, An

= Action, O = Object, F = Facility, L = Location, T = Time)

To aid the comparison of method components and the identification of the most
suitable component for the integration at hand, it is possible to define attributes
for components. There are two approaches for this. In the first approach
(Castano et al. 1993; Ralyte et al. 2001) measures are defined to enable the
measurement of the similarity or closeness of the concepts and constructs in the
method components. For example, Ralyte et al. (2001) define semantic and
structural measures for elements of the product models (i.e. IS meta models),
and semantic affinity of intentions for the process models (i.e. ISD action
models). We argue that similar measures can be defined for all the contextual
parts of the interface of the method components.

Another approach is to define contingency factors or properties for
method components (van Slooten et al. 1993; Vlasblom et al. 1995; Harmsen
1997). Harmsen (1997), for instance, defines a large set of property types of

Component A Component B

 Component C

413

method fragments. Property types are categorized into fragment aspects and
scenario aspects. Fragment aspects are partitioned into several groups: e.g.
general properties (e.g. granularity level, goal, focus, maturity level), property
types of process fragments (process type, capability maturity level), and
property types of product fragments (e.g. level of detail, temporal state,
abstraction level, representation). Scenario aspects are subdivided into general
IS modeling aspects, aspects related to the user of the IS, aspects related to
engineering strategies, and aspects related to IS engineering management.
Examples of the scenario aspects are modeling aspect, modeling scope, project
goal, approach orientation, validation type, degree of participation, degree of
user responsibility, and iteration type.

The contextual view on the interface can help the specification and use of
properties of method components in many ways. As seen from the short
abstract of Harmsen (1997), a set of relevant properties of a method component
can be very large. Some of the properties concern the ISD context as a whole
(e.g. project goal, approach orientation) while others address characteristics of
specifics in one or two contextual domains (e.g. process type, goal, level of
detail, representation). Structuring the contingencies and properties of method
components according to the contextual view of the interface helps in their
definition and use in method integration. We will illustrate this with examples
in the next section.

9.8.5 Examples of ISD Method Components

In this section we present examples of ISD method components. Our aim is to
illustrate the notions of method component and component interface and to
show the importance of the contextual approach to the integration of method
components. We consider three examples, two of which are modeling
techniques and one that is a description model. The modelling techniques are
the use case technique and the sequence diagramming technique (Jacobson et al.
1999). The description model is the goal model (cf. Lee et al. 2001)157. These ISD
method components are selected because they are commonly known and
suitable to integration. Next, we first model the ISD method components and
define their concepts. After that, we discuss the nature and properties of the ISD
method components according to our classifications. Finally, we consider the
issues to be faced when trying to integrate the ISD method components.

The use case technique is “a systematic and intuitive way to capture the
functional requirements with particular focus on the value added to each
individual user or to each external system” (Jacobson et al. 1999, 131). Because
the technique contains the specification of the description model and
prescriptions for how to make an instance of the model, the model of the
technique consists of ISD models at two levels (see Figure 99). The upper ISD
model prescribes the context in which the IS model is to be produced. It is

157 We apply the most basic concepts of the model by Lee et al. (2001) and call them the

goal model.

414

presented in a data flow diagram extended with ISD actors. The other ISD
models, called the IS meta data models, describe the concepts and constructs
with which the use case model is created and presented in UML. In Figure 99
the IS meta data model on the left side specifies the conceptual contents of a use
case diagram. The IS meta data model on the right side specifies the conceptual
contents of structured descriptions of use cases.

System

Actor

use case

1
interact * Include

*

*
*extend

CIS action

IS action IS object

System Actor

HIS action

1..*

1..*

carryOut
1..*

performs

1..*

input

Temporary Permanent

1..*

output

IS purpose

1..*

1..*

strivesFor

IS action structure

Control structure Decomposition structure

1..*
1..*

Use case model

Find actors and
use cases

Prioritize
use cases

Detail a use
case

Structure the use
case model

Prototype user
interface

Glossary

Systems
analyst Architect Use-case

specifier
User-interface

designer

1..*

1

1..*

1..*

1..*

1

FIGURE 99 ISD models of the use case technique

Requirements capture with the use case technique produces two kinds of ISD
deliverables: the glossary and the use case model. A glossary defines common

415

terms used to describe a system. A use-case model is a “model of a system
containing actors and use cases and their relationships”(Jacobson et al. 1999,
133). The model is composed of two parts: a use case diagram and use case
descriptions. Next, we define the concepts and constructs used in the use case
diagram.

An actor is “a type of user (of the system) or an external system, device etc.
associated to the system. Actors represent parties outside the system that
collaborate with the system” (Jacobson et al. 1999, 134). An actor plays one role
for each use case with which it collaborates. Actors may have generalization
relationships with one another indicating that a child actor can play the same
role(s) as the parent actor. A use case specifies a sequence of actions (i.e. IS
actions), including alternatives to the sequence that the system can perform
when interacting with actors of the system. The system may include one or more
use cases. A use case may be related to other use cases by generalization,
include and extend relationships. The generalization relationship between two use
cases means that the child use case inherits the behavior and features of the
parent use case and may add new features. The include relationship signifies that
the base use case contains the behavior of the addition use case. The extend
relationship implies that the extension use case extends the behavior described in
the base use case under certain conditions.

For each use case depicted in the use case diagram, a description in
structured English is given. This description reveals, in more detail, goals (i.e. IS
purpose) for which the system functions, as well as information services (i.e. IS
objects) the system processes and provides for actors. Some of the IS objects
may be temporary while the others are permanent. The description may also
distinguish between the actions that are performed by the system (i.e. the CIS
actions) and the actions that are carried out by human actors (i.e. the HIS
actions).

The use case modeling is decomposed into five activities (Jacobson et al.
1999): find actors and use cases, prioritize use cases, detail a use case, structure
the use case model, and prototype user-interface. Activities and deliverables as
well as control and information flows between them are illustrated in the upper
part of Figure 99. In the figure the ISD actors (workers in Jacobson et al. (1999))
responsible for the activities are also presented.

A sequence diagram describes interaction between the system and its actors,
as well as interaction between the parts of the system. An (human) actor
interacts with the system by manipulating and/or reading interface objects.
Interaction between the parts of the system occurs through sending and
receiving messages. A sequence diagram emphasizes logical or temporal
ordering of messages (Booch et al. 1999). Graphically, a sequence diagram is like
a table: it shows objects arranged along the X axis and messages, ordered in
increasing time, along the Y axis. Next, we define the most essential concepts of
the sequence diagram (Figure 100).

416

Object

Operation

Focus of controlMessage

ActorLink*

0..1 begin

0..1

*

end

*

0..1begin

*

0..1end

0..1

1..*

*

0..1out

1..*

0..1in

Life line

1..1 1..1

1

1..*

Identify objects
and actors

Sequence
diagram

Check coverage
and consistency

Identify focusses
of control

Decide on
messages

Attribute: value

**

0..1
requests

0..1

0..1

creates

0..1

FIGURE 100 ISD models of the sequence diagramming technique

The parts of the system are called objects. An object158 is “an entity with a well-
defined boundary and identity that encapsulates state and behavior” (Booch et
al. 1999, 464). A state is a composition of values of the attributes of the object.
An attribute is “a named property [..] that describes a range of values that
instances of the property may hold” (Booch et al. 1999, 458). Behavior results
from the execution of operations of the object. An operation is “the
implementation of a service that can be requested from an object of the class in
order to affect behavior” (Booch et al. 1999, 464). Compared to our terminology,
an object is a manifestation of both IS object(s) (cf. attribute) and IS action(s) (cf.
operation). A message is “a specification of an interaction between objects that

158 Note that ‘object’ in the object-oriented paradigm is totally different from ‘object’ in

our terminology.

417

conveys information with the expectation that activity will ensue” (Booch et al.
1999, 463). A message carries information in the form of action(s) requested and
data transmitted from the sender to the receiver. If the message is stereotyped
as ‘create’, the receiving object is created. That means the beginning of the life
line of the object. The life line ends with the object receiving the message
stereotyped as ‘destroy’. The focus of control shows the period of time in the life
line during which the object is performing the action. The focus of control
begins when the object receives the message and ends when it sends the return
message. There can be several focuses of control within the life line of the object.

The sequence diagramming proceeds, on a general level, with the
following steps (see the upper part in Figure 100). First, identify and present the
most essential objects and actors. Then, consider what kinds of interaction there
exist between the actors and the objects, as well as between the objects.
Recognize messages and their sending orders. The names of the messages
reveal actions (signatures of operations) and parameters. For each object,
identify focuses of control within the life line. Check the coverage and
consistency of the diagram.

The goal model is a description model for conceiving, structuring,
classifying and representing goals and relationships between them (cf. Lee et al.
2001) (Figure 101). A goal is a required or desired state of affairs (Koubarakis et
al. 2000, 144)159. The goals are classified into rigid goals and soft goals, as well as
into functional goals and non-functional goals (Lee et al. 2001, 124-125). A rigid
goal expresses “a minimum requirement for a target system, which is required
to be satisfied utterly”. A soft goal describes “a desirable property for a target
system, and can be satisfied to a degree”. A functional goal “can be achieved by
performing a sequence of operations”. A non-functional goal “is defined as
constraints to qualify its related functional goal”. The goals are interrelated
through the refinement relationships. Refinement relationship establish a goal
hierarchy, meaning that a goal can be achieved when the goals below it in the
hierarchy are reached.

Goal

Non-functional

Functional

Soft

Rigid
* *
refinement

FIGURE 101 Meta model of the goal model

Of the three ISD method components described above, the first two are ISD
techniques and the last one is a construct-based component. The ISD techniques

159 A goal is defined as in Koubarakis et al. (2000), because Lee et al. (2001) do not

provide any definition for this generic notion.

418

are multi-level components because they contain concepts for prescribing ISD
actions and ISD deliverables (i.e. the type model level), as well as specify the
concepts and constructs (cf. the IS meta data model) allowed in the use case
model and in the sequence diagram, respectively. The goal model is a general-
purpose construct that can be associated to the method body at any layer. It is
also a purpose-based component. The use case technique, as described above, is
an ISD datalogical component, because it recognizes, although only at a general
level, actors responsible for ISD actions. The sequence diagramming technique
is described as an ISD infological component. The goal model can be applied
with any ISD perspective.

Now let us assume that there is a need to integrate the three ISD method
components in the following way: (a) sequence diagrams are used to define
more precisely use cases, and (b) goal models are used to present, more
explicitly, goals toward which each use case in the use case diagram aims. How
would the process of integration proceed and how do the interfaces of the
components affect the integration considerations? To answer the questions we
first discuss the integration of two ISD techniques and then consider the
integration of the goal model into this method body.

To integrate the ISD method components one should first examine how
the purposes of the ISD deliverables involved in the ISD method components
match. The use case technique aims to produce general descriptions of actions
that the system performs when interacting with actors. The sequence diagrams,
in turn, can be used to make detailed descriptions of the internal behavior of the
system. Hence, at least from the viewpoint of purposes the integration is
reasonable and justified. Second, it is important to consider how the
deliverables of the ISD method components match in terms of their
presentations. The use cases are presented in easy-to-read diagrams supported
by descriptions in structured English. These presentation forms enable the
understanding of the deliverables also for the non-IT-experts. The sequence
diagrams are presented in a semi-formal form. They are constructed and used
by IS analysts and IS designers. The variety of presentation forms used in the
ISD method components and their match with the skills and profiles of
intended ISD actors strengthen the view that the components are suitable for
integration.

Third, it should be investigated how the contents of the deliverables can
be related. This investigation is conducted by considering the corresponding IS
meta data models. In Figures 99 and 100 we can find counterparts in several IS
domains: (a) an actor in the use case model corresponds to an actor in the
sequence diagram; (b) a system in the use case technique is decomposed into
objects in the sequence diagram; (c) an IS action, or more specifically a CIS
action, in the use case technique is realized by actions requested by messages in
the sequence diagrams; (d) a CIS action is composed of operations of one or
more object; (e) an HIS action in the use case technique can be seen as a pro-
action or reaction of an (human) actor in the sequence diagram; (f) an IS object
in the use case technique is embedded into attributes of objects (cf. permanent

419

IS objects) or transmitted by messages (cf. temporary IS objects). Thus, we can
conclude that the two ISD method components are highly related to one
another also through concepts of several IS contextual domains.

Fourth, it is important to consider how the ISD actions can be integrated.
There are many ways to structure and associate the actions of constructing use
case models and sequence diagrams. Most commonly the processes are
performed partly in parallel. For each use case it is considered whether it is
useful to make one or more sequence diagrams. Especially in situations where
textual descriptions are written about complex use cases, it is beneficial to
sketch in parallel sequence diagrams to find out an order in which events and
actions occur in the use case. The identification of objects and actors for
sequence diagrams is based on the use case descriptions (see Figure 100).
Checking the coverage and consistency of sequence diagrams is carried out by
comparing them to the corresponding use case description(s). Working with the
sequence diagrams increases the understanding of the textual descriptions of
the use cases and may, in turn, cause changes in them.

Fifth, one should consider how ISD actors, with their responsibilities, in
the method components should be related. The ISD actors are clearly defined in
the use case technique (see Figure 99). In contrast, the sequence diagramming
technique does not provide exact specifications of ISD actors. We can, however,
assume that those ISD actors are IS analysts and IS designers. Integration of the
techniques for the part of ISD actors can now be done, either (a) by including
the responsibility of making sequence diagrams in the role of the use-case
specifier, or (b) maintaining the roles of IS analyst and IS designer and
including the responsibilities of the use case specifier into the role of IS analyst.

The goal model can be easily integrated into the use case technique by
enhancing the meta model of the use case diagram (see Figure 99) with the
concepts and constructs in the meta model of the goal model (see Figure 101).
With relating the concept of a goal, and its sub-concepts and relationship, to the
concepts of a use case, the purposes of the use cases are made more explicit. It is
possible to further refine the use case diagram by defining one more
specialization of the goals, yielding actor-specific goals and system-specific
goals. Actor-specific goals are objectives of an actor, and system-specific goals
are requirements on services that the system provides. Relating the actor-
specific goals to the actors enables to explicitly specify the goals of the actors of
the system.

The result of the integration of the three ISD method components is
presented in Figure 102. The original boundaries of the meta data models are
presented with bold lines. Integration has been done via shared concepts (i.e. an
actor) or by defining contextual relationships between the concepts of two meta
models. The bold lines represent the interfaces of the method components. The
more relationships cross the boundary, the more complicated the way is in
which the interface is utilized in the integration. The use case technique and the
sequence diagramming technique are integrated through four relationships:
partOf (Object , System), partOf (CIS action , Operation), isA (Message ,

420

Message

IS object

TemporaryPermanent

IS action

HIS action

CIS action

Attribute: valueOperation

ActorLinkObject

Non-functional

Functional

System IS purposeUse case

System-specific

Soft

Goal

Rigid

Actor-specific

1..*

0..1
0..1create

0..1

*

begin

0..1 end

*

0..1begin

*

0..1end

1..*

1 1..*
strivesFor

1

strivesFor

1..*

1..*

1..*

input

1..*

1..*

output

0..1

0..1
requests

1..*

*

1..*

strivesFor

1

1..*strivesFor

refinement

Life line

Focus of control

*

0..1

out 1..*

0..1

in

1..* 1

1

1

1..*

0..*

include

extend

carriesOut

1..*

*

*

* *

*

*

1..* 1..*

*

**

FIGURE 102 Meta data model of the integrated method components

Temporary), and isA (Attribute:value, Permanent). The goal model and the use
case technique are integrated through four relationships: strivesFor (System,
System-specific), strivesFor (Use case,Goal), strivesFor (Actor, Actor-specific),
and partOf (IS purpose, Goal). Hence, the inter-related concepts represent five
different contextual domains.

In conclusion of the above consideration of ISD method components and
integration we can state the following: The ISD method components can appear
in various types, sizes and forms. Small components, like the goal model, can be
specified through a simple interface. But the integration of larger ISD method
components must be based on the explicit specification and consideration of
contextual interfaces. For instance, the ISD techniques considered above extend
to two model levels (i.e. type model level and meta model level) and to eight
contextual domains (i.e. ISD actor domain, ISD action domain, ISD object

421

domain, IS purpose domain, IS action domain, IS actor domain, IS object
domain, and IS facility domain). The common approach in the ISD/ME
literature (e.g. Vlasblom et al. 1995; Harmsen 1997) to attaching attributes as
some kinds of “contextual properties” to the method components does not
provide specifications that would be detailed and structured enough to be
matched with one another in the integration process. Our way of specifying
contextual interfaces provides a natural and well-defined means to structure
and realize those “attributes” and thus furthers the right interpretation of the
nature, contents and use of the method components.

9.8.6 Comparative Analysis of Conceptions of ISD Method Component

A view of the method as an assembly of components is not a new one. More
than ten years ago Kumar and Welke (1992) presented an idea of “combining
and structuring selected methodology components (i.e. representation frames
and process frames) into an integrated or ‘seamless’ methodology” (ibid p. 264).
Since then the so-called integration approach to method engineering has gained
a large popularity in the ME literature (e.g. Kronlöf 1993; van Slooten et al. 1993;
Vlasblom et al. 1995; Ramackers 1994; Ryan et al. 1996; Kinnunen et al. 1996;
Nuseibeh et al. 1996; Song 1997; Harmsen 1997; Saeki 1998; Wieringa et al. 1998;
Paige 1999; van Hillegersberg et al. 1999; Leppänen 2000; Zhang et al. 2001;
Karlsson et al. 2001). The purpose of this section is to shortly describe and
compare conceptions of an ISD method component presented in the ME
literature. We do this in two parts. First, we analyze presentations using our
classification scheme with five dimensions. The purpose of this part is to find
out what kinds of ISD method components have been recognized. For this
analysis we have selected presentations which apply multiple views on the
method component. The presentations are: Harmsen (1997), Zhang et al. (2001),
Song et al. (1992), Gupta et al. (2001) and Song (1997). The results from this part
are presented in Table 31. Second, we briefly discuss presentations that, though
not contributing to the variety of ISD method components, suggest interesting
ideas that complete the picture of ISD method components and their
integration. This discussion concerns the works of Hidding et al. (1993),
Nuseibeh et al. (1996), and Vlasblom et al. (1995).

Harmsen (1997) defines a method fragment to be “a description of an IS
engineering method, or any coherent part thereof” (ibid p. 26). A method
fragment is coherent if and only if it can be represented by a connected sub-
graph of products or processes. He distinguishes between conceptual fragments
and technical fragments. A conceptual fragment is “a non-executable fragment,
which is described as complete as possible, without taking into account the
actor or actor type that will possibly use it” (ibid p. 51). A technical fragment is
“a fragment implemented as an IS engineering tool or part thereof“(ibid p. 51).
Compared to our scheme, the technical fragments are built on the specifications
of the physical view, while the conceptual fragments follow the IS infological, IS
conceptual or IS datalogical perspective. Furthermore, Harmsen (1997)
distinguishes between process fragments and product fragments. A process

422

TA
BL

E
31

Su

m
m

ar
y

of
 th

e
co

m
pa

ra
tiv

e
an

al
ys

is
 o

f t
he

 n
ot

io
ns

 o
f m

et
ho

d
co

m
po

ne
nt

 C

la
ss

ifi
ca

tio
n

sc
he

m
e

H
ar

m
se

n
(1

99
7)

Zh

an
g

et
 a

l.
(2

00
1)

So

ng
 et

 a
l.

(1
99

2)

G
up

ta
 et

 a
l.

(2
00

1)

So
ng

 (1
99

7)

M
et

ho
d

co
m

po
ne

nt

M
et

ho
d

fr
ag

m
en

t
M

et
ho

d
co

m
po

ne
nt

M

et
ho

d
co

m
po

ne
nt

M

et
ho

d
co

m
po

ne
nt

M

et
ho

d
co

m
po

ne
nt

D

om
ai

ns
:

- p
ur

po
se

, a
ct

or
,

 a
ct

io
n,

 o
bj

ec
t,

 f
ac

ili
ty

, l
oc

at
io

n,

 t
im

e,
 in

te
r-

do
m

ai
n

Pe
rs

pe
ct

iv
e:

 -
pr

od
uc

t f
ra

gm
en

t
 -

pr
oc

es
s

fr
ag

m
en

t

 - d
at

a

 - a
ct

io
n

- a
rt

ifa
ct

- c

on
ce

pt

- r
ep

re
se

nt
at

io
n

 - o
bj

ec
tiv

e
(p

ro
du

ct

ty

pe
, p

ro
ce

ss
 ty

pe
)

- a
pp

ro
ac

h
- w

or
k

pr
oc

ed
ur

e

 - a
rt

ifa
ct

 m
od

el

- p
ro

ce
ss

Pe
rs

pe
ct

iv
es

:
- s

ys
te

lo
gi

ca
l

- i
nf

ol
og

ic
al

- c

on
ce

pt
ua

l
- d

at
al

og
ic

al

- p
hy

si
ca

l
- i

nt
er

-p
er

sp
ec

tiv
e

A
bs

tr
ac

tio
n:

 -

co
nc

ep
tu

al

 fr

ag
m

en
t

 -
te

ch
ni

ca
l f

ra
gm

en
t

Le
ve

ls
of

 a
bs

tr
ac

tio
n:

 -

an
al

ys
is

 -

de
si

gn

 -
im

pl
em

en
ta

tio
n

 - p
ro

bl
em

-d
om

ai
n,

- p

ro
bl

em
-m

od
el

do
m

ai
n,

- s

ol
ut

io
n-

m
od

el

do

m
ai

n,

- d
es

ig
n-

do
cu

m
en

t

do
m

ai
n

V
iew

s o
f m

et
ho

d
ar

ch
ite

ct
ur

e:
- g

en
er

ic
 v

ie
w

- m

et
ho

d
vi

ew

- c
on

st
ru

ct
io

n
vi

ew

Pr
oc

es
sin

g
la

ye
rs

:
- I

SD

- M
E

- R
W

 - M
E

la
ye

r

 - M

E
la

ye
r

 - R
W

 la
ye

r

 - M
E

la
ye

r

D
ec

om
po

sit
io

n:

- c
on

te
xt

ua
l

- d
om

ai
n-

ba
se

d
- c

on
st

ru
ct

-b
as

ed

G
ra

nu
la

rit
y

la
ye

r:
 -

m
et

ho
d

 -
st

ag
e

 -
m

od
el

 -

di
ag

ra
m

 -

co
nc

ep
t

G
ra

nu
la

rit
y

lev
els

:
 -

pr
oj

ec
t/

m
et

ho
d

 -
gr

ap
h/

m
et

ho
d/

 te
ch

ni
qu

e
 -

co
m

po
ne

nt
 u

ni
t

 - c

om
pl

ex
 c

om
po

ne
nt

- s

im
pl

e
co

m
po

ne
nt

Le
ve

l:
- h

ig
h-

le
ve

l
 c

om
po

ne
nt

- l

ow
-le

ve
l

 c
om

po
ne

nt

 M
od

el
lev

el:

- t
yp

e
m

od
el

- m

et
a

m
od

el

- m
et

a
m

et
a

m
od

el

In
fo

rm
at

io
n

ty
pe

 le
ve

ls:

 -
IR

D
 le

ve
l

 -
IR

D
 d

ef
in

iti
on

 le
ve

l
 -

IR
D

 s
ch

em
a

le
ve

l

423

fragment is “a description of an activity to be carried out within a method” (ibid
p. 52). A product fragment is “a specification of a product delivered and/or
required within a method” (ibid p. 52). This division is based on the dimension
of contextual domains in our classification scheme. Harmsen (1997) defines five
granularity layers160: (a) method, (b) stage, (c) model, (d) diagram, and (e)
concept. The first layer corresponds to the whole method. A stage “addresses
an abstraction level”, which stands for an ISD workflow in our ontology.
Harmsen (1997) applies the set of stages defined in Olle et al. (1988a) (e.g.
information systems planning, business analysis, system design, construction
design). A model corresponds to a perspective in Olle et al. (1988a) (i.e. data
oriented, process oriented, behavior oriented), which is loosely comparable to
the IS domains in our terminology. A diagram (e.g. class diagram) corresponds
to the representation of an aspect of the abstraction level. A concept addresses a
concept or an association of the method fragment on the diagram layer, or
manipulation defined on it.

Zhang et al. (2001) define a design component to mean “any reusable
design artifact” (ibid p. 117), and present a classification framework with three
dimensions: levels of abstraction, information type levels, and granularity
levels. The levels of abstraction correspond to stages in the development
process, i.e. analysis, design and implementation. The information type levels
are derived from the data levels of the Information Resource Dictionary System
(IRDS) framework (ISO 1990). This dimension corresponds to the model levels
in our scheme. The granularity levels contain a component unit, a graph, and a
project. A component unit is composed of the non-property primary data types
of GOPRR (Kelly et al. 1996). A graph is a collection of objects, relationships,
roles and properties, commonly specifying a technique. A project forms a
complete design product, or a plan to produce it. On the model level this means
a system development project. On the meta model level, a project establishes a
method. Due to its focus on the data at each information type level, the
framework of Zhang et al. (2001) addresses only the structural features of the
method, not the whole method.

Song et al. (1992) present the so-called base framework for the
identification of method components that are comparable in different methods.
The framework is composed of the type framework and the function
framework. None of the frameworks is based on explicitly defined dimensions.
The type framework presents the method-component type hierarchy, which
comprises four top-level types: concept, artifact, representation, and action. A
concept corresponds to our generic view on the ISD method. It is “an idea that
influences the design of a method” (ibid p. 46) (e.g. problems of software design
and application, principles for coping with these problems, guidelines
(principles) for designing software and coping with these problems). An artifact
means a description of some sort of entity involved in a design process (i.e.
programs, diagrams, etc.). A representation stands for a means for describing or
specifying design artifacts. An action refers to one or more physical and/or

160 This categorization is also used in Brinkkemper et al. (1999) and Karlsson et al. (2001).

424

mental processing steps used in design. Artifacts and actions correspond to ISD
deliverables and ISD actions, respectively. Concepts and representations can be
interpreted as applying the systelogical and datalogical perspectives,
respectively. The function framework contains all those design issues that
components address. The framework is based on a life-cycle model, which
describes the transformation from the problem-domain to the problem-model
domain, and further to the solution-model domain and the design-document
domain. These domains correspond to the perspectives in our scheme.

Gupta et al. (2001) propose a representation system for a method
requirements specification (MRS) as an analogy to a software requirements
specification at the ISD layer. A MRS describes what a method meeting the MRS
has to offer. It is implementation-independent and based on an abstract meta
model. The approach applied uses the three-view architecture of methods (see
Prakash 1997; Prakash 1999). The views are: the generic view of a method, the
method view, and the “construction view”161. These views loosely correspond
to our perspectives, but it should be noted that they are applied at the RW
(research work) layer!

The generic view is used to produce MRS’s. It is divided into two parts,
the static part and the dynamic part. According to the static view a method is
composed of method blocks. A method block is a pair formed of objective and
approach. An objective tells what the block tries to achieve. An approach
describes the technique that can be used to achieve the objective. An objective is
presented with a pair formed of product type and process type. The dynamic
part of the method is composed of generic work procedures containing work
elements. Each work element is an objectified relationship between possibility
and selection. Possibility identifies the set of procedure elements that can be
performed in the work procedure. Selection is a particular choice of the
procedure element selected in the work procedure. The method view is
presented by the so-called decisional metamodel that is an instantiation of the
static part of the generic view. This implies that decision is an instance of
method block, purpose is an instance of objective, and p-approach is an instance
of approach. The method is seen as a pair formed of purpose and p-approach.

During the method assembly, method components, defined in terms of
things, is_composed_of and is_mapped_to relationships, are integrated.
Method components are considered as constructs composed of things. There are
simple and complex components. Simple components are atomic, whereas
complex components can be broken up.

Song (1997) presents a framework for the integration of software
engineering methods. The framework contains a method composition model
that distinguishes between high-level components and low-level components.
High-level components are: artifact models, properties (i.e. desired
characteristics of the design artifacts), principles, representations, and processes
(i.e. sets of steps used in developing software). Low-level components are:
model components (i.e. components of the artifact model), criteria (i.e. rules),

161 This view is not explicitly named in the architecture of Gupta et al. (2001).

425

guidelines (i.e. concrete statements, heuristics, or techniques advocated),
measures, notations, and actions (i.e. processing steps). Compared to our
scheme, the artifact model and the processes/actions correspond to two
contextual domains, the ISD object domain and the ISD action domain. Other
components concern non-contextual features. The framework defines structural
relationships between the components.

To summarize, all five presentations regard the method as being
composed of method components (called the method fragments in Harmsen
1997). The most comprehensive categorizations of the method components are
suggested in Harmsen (1997) (with the dimensions of perspective, abstraction,
and granularity level) and Zhang et al. (2001) (with the dimensions of level of
abstraction, granularity level, and information type level). Gupta et al. (2001)
recognize three views of method architecture, while Song et al. (1992) and Song
(1997) consider partly only two of our dimensions.

From the processing layers, Harmsen (1997), Song et al. (1992) and Song
(1997) recognize method components on the ME layer. The framework of
Zhang et al. (2001) enables the consideration of components at three information
type level. Gupta et al. (2001) is the only one to discuss the method components
at the RW layer.

The domain-based classification is most closely followed in Harmsen
(1997), which subdivides method fragments into product fragments and process
fragments. Zhang et al. (2001) focus on data aspects only. Song et al. (1992),
Song (1997) and Gupta et al. (2001) recognize some domain-specific components
but also components which are independent from the contextual domains.

Harmsen (1997) distinguishes between conceptual and technical
abstractions, of which the latter corresponds to our physical perspective. Zhang
et al. (2001) use three levels of abstraction based on the ISD/ME stages. Song et
al. (1992) deploy the classification of problem/solution domains, and Gupta et
al. (2001) apply the view-based division of perspectives. Harmsen (1997)
recognizes five granularity levels, Zhang et al. (2001) suggest three levels, and
Song (1997) and Gupta et al. (2001) two levels. Song (1997) presents no criteria
for the sub-division into levels.

In conclusion, the comparative analysis of the five presentations of
method components showed that our classification scheme is the most
comprehensive, distinguishing five different dimensions. The scheme with the
well-defined structure also appeared to be profitable in the analysis and
comparison of other presentations. We consider it important that the method
components can be specified and deployed in a uniform and consistent fashion.
This necessitates that the contextual domains, the perspectives, the processing
layers, the model levels, and the granularity levels are uniformly defined and
utilized.

At the end of this section, we want to complete the picture of how an ISD
method component is seen in the ME literature by discussing the presentations
of Hidding et al. (1993), Nuseibeh et al. (1996) and Vlasblom et al. (1995). We are
particularly interested in how they see the nature and structure of an ISD

426

method component. These presentations were not included in the above
analysis because they don’t contribute to the variety of method components.

Hidding et al. (1993) define ‘task package’ to mean a building block to be
used for configuring large method processes. A task package is a set of activities
that generate one or more deliverables that are of value to a client. A task
package is characterized by sixteen key attributes. The attributes include e.g.
(a) schematic, which reveals sub-processes of the task package; (b) inputs,
which lists the prerequisite products for the task package; (c) deliverables,
which specify the output products; (d) techniques, which describe generic
approaches that can be or must be used; (e) business needs, which consider the
major business requirements addressed; (f) competence and experience, which
summarize skills and type of knowledge of the people who will execute the
process; (g) objectives; and (h) tools. From the above we can conclude that a
task package is actually a highly ‘contextual’ concept. Its core is composed of
ISD actions and ISD deliverables. Its interface is determined by input and
output deliverables, objectives, human aspects, and tools. We argue that the
attributes specified for the task package are important but more clarity and
coherence could be attained by explicitly applying the contextual approach in
the organization of these attributes.

Nuseibeh et al. (1996) examine the engineering of a method from method
fragments in the context of multi-perspective software engineering. They define
the concept of ViewPoint to mean “loosely coupled, locally managed,
distributable objects that encapsulate representation knowledge, development
process knowledge and specification knowledge about a system and its
domain” (ibid p. 268). Strictly speaking, a ViewPoint is divided into five ‘slots’:
(a) style that contains a definition of the representation scheme deployed by the
ViewPoint, (b) work plan that contains a description or model of the
development process, (c) specification that contains a partial specification
described in the notation defined in the style slot, and developed by following
the process described in the work plan slot, (d) domain that identifies the area
of concern of the ViewPoint, and (e) work record that contains the specification
development status, history and rationale. Each method fragment describes
how to develop a single ViewPoint. Because several ViewPoints may deploy the
same notation and development process, Nuseibeh et al. (1996) define a
ViewPoint template that is composed of the first two slots (i.e. style and work
plan). A ViewPoint template is considered to be a single technique, and a
method is regarded as a configuration or structured collection of ViewPoint
templates. To conclude from the approach of Nuseibeh et al. (1996), we can say
that also here the concept of a method component (cf. ViewPoint template) is
established on fundamental constructs which clearly have the “contextual
background”. They involve primarily ISD deliverables (concepts and notation)
and ISD actions.

Vlasblom et al. (1995) propose the three-level description of a method. The
highest level, called the generic level, is composed of building blocks of a
method. The building blocks are the ISD activities, the ISD products, the

427

development strategy, the techniques, the tools, and the disciplines (i.e.
particular areas of expertise). For establishing a development method that is
optimally tailored to a particular project, a proper set of building blocks are
selected and, if necessary, customized and then integrated. The subdivision into
the building blocks follows, to some degree, the boundaries between contextual
domains (i.e. the ISD activities and the ISD products). The techniques
encompass representation and working practices. The selection of a
development strategy puts a time-sequence to the activities. Disciplines concern
ISD actors whose expertise is needed in techniques. Thus, also here several
contextual domains are involved through the notion of a building block, but in
a way that makes the setting rather messy and difficult to manage in enhancing
and integrating methods.

9.8.7 Summary of Method Components

Parts of existing methods can be and should be reused as ISD method
components. But not any part of the methods suits a reusable component. In
this section, we defined the notion of an ISD method component with the aim of
ensuring that the integration of ISD method components produces coherent and
consistent ISD methods. An essential means for fulfilling this goal is the use of
contextual interfaces of method components. We also defined multi-
dimensional classification scheme for recognizing and relating method
components on five dimensions. ISD method components and their integration
through contextual interfaces were illustrated with examples. Finally, we made
the comparative analysis of method components, which indicated that our view
of a method component is much more comprehensive and better structured
than those suggested in the ME literature.

9.9 Summary and Discussions

In this chapter our main purpose was to present the ISD method ontology. We
started with a short review of the empirical research into the method use in
order to answer the question ‘Why’ the method is needed altogether. The
review indicated that in spite of severe problems with ISD methods and method
use, organizations have clearly benefited from using ISD methods. They are
considered artifacts, which convey the “best” practices on ISD and help achieve
better outcomes through more efficient, effective and manageable ISD
processes.

Second, we discussed the method as a ‘carrier’ of ISD knowledge and
derived two classifications of ISD methods. The first classification is based on
the kind of knowledge the methods convey, and includes generic ISD methods,
domain-specific ISD methods, organization-specific ISD methods, and project-
specific ISD methods. The other classification is based on the form in which the

428

methods are presented. With these classifications we can better recognize and
understand a large variety of ISD methods. They also help us figure out how to
structure and support the engineering of methods of different types.

Third, we recognized seven basic views on the ISD method, called the
methodical views. These views, anchored on the semantic ladder (Stamper
1973, Stamper 1996), are the historical view, the application view, the generic
view, the contents view, the presentation view, the physical view, and the
structural view. Building on these views we gave an integrative definition of
the ISD method that comprehensively reflects multiple aspects of the method.

Fourth, we established, grounding on the defined views, the ISD method
ontology in seven parts. One of the parts, related to the conceptual contents of
the ISD method, has already been established as the ISD ontology in Chapter 8.
For the rest of the parts, the concepts and constructs were defined and
presented in meta models.

Fifth, we applied the ISD method ontology to consider, from a broader
perspective, a range of methodical support and recognized three types of
artifacts that are not acknowledged to be methods although they provide some
methodical support. These artifacts are the ISD methodical framework, the ISD
methodical skeleton, and the ISD methodical tool kit. We defined the notions
and compared them to one another, to four types of ISD methods, and to
artifacts presented in the literature. The methodical skeleton is important to this
work, because MEMES (Method Engineering MEthodical Skeleton) presented
in Chapter 11 is a specialization of it. Finally, we discussed the criteria for
acknowledging an artifact as the ISD method. Although it is not possible to set
the definite criteria, we brought out a set of requirements, structured according
to the ISD method ontology. We stated, for instance, that an artifact has to
provide knowledge about its history, domains and ways of applying it, as well
as fundamental assumptions underlying it. Its conceptual foundation should
cover at least three ISD domains (i.e. ISD purpose domain, ISD actor domain,
and ISD actions domain), three ISD perspectives (i.e. ISD systelogical
perspective, ISD infological perspective, and ISD conceptual perspective) and
two model levels (i.e. meta model level and type model level).

Sixth, we made a comparative analysis of seven well-known frameworks
and models that are aimed at either the comparison and evaluation of the ISD
methods, or categorizing method knowledge. The analysis showed that the ISD
method ontology, better than the others, covers the contextual features of the
ISD and the ISD method. In addition, our way of structuring the parts and
features of the method makes the ontology more explicit and easier to apply.

Seventh, we defined the notion of an ISD method component with the
contextual interface. We also presented a multi-dimensional classification of
method components based on the contextual ontologies. We illustrated the
notions with examples of ISD method components and method integration.
Finally, we made a comparative analysis of the conceptions of method
components in the literature. The analysis showed that our view of a method
component is more comprehensive and multifaceted, and it enables better than

429

the others to deal with the semantic and pragmatic nature of method
components.

The ISD method ontology has been derived from, and structured
according to, the underlying ontologies. This becomes quite obvious in looking
at the overall picture of the ontology (Figure 90). The division into the
presentation view, the contents view, and the physical view is a specialization
of the semiotic ontology. The internal structure of the presentation view results
from the language ontology. The historical view and the application view,
defined in terms of prior and target ISD contexts and ME contexts, is an
application of the context ontology. The conceptions of ISD contexts and ME
contexts can be further elaborated by the concepts and constructs provided in
the ISD ontology and the ME ontology. The structural view decomposes the
method into parts, which are recognized in the model level ontology. This
alignment of the ISD method ontology with the underlying ontologies is a clear
indication of the coherence of OntoFrame.

The ISD ontology is a vital component of OntoFrame as it defines the
nature, contents, structure and use of an artifact, which is the focal target of
method engineering. The theory-based and well-structured ISD method
ontology furthers our work of defining concepts and constructs to conceive,
understand, structure and present the essential aspects of the ME context. This
is what we will do in the next chapter.

10 ME ONTOLOGY AND ME METHOD ONTOLOGY

Hitherto we have constructed a multi-layered structure of ontologies for
conceiving, understanding, structuring and presenting contextual features of
information processing in information systems and information systems
development. We have also defined concepts and constructs with which an ISD
method can be conceived from several viewpoints and structured in a
comprehensive manner. In this section we continue the construction of
OntoFrame by building the remaining two of its components, the ME ontology
and the ME method ontology. The ME ontology provides concepts and
constructs to conceive, understand, structure, and represent contextual features
of method engineering. It comprises two parts: ME domains and ME
perspectives. The ME method ontology is composed of concepts and constructs,
with which various aspects of the ME method can be conceived, understood,
structured, and represented. Its structure is based on the seven methodical
views defined in Section 9.5. The contents view of the ME method corresponds
to the ME ontology. Both of the ontologies have been derived specializing from
the underlying ontologies, in particular from the ISD method ontology (see
Figure 103).

The chapter proceeds as follows. First, we describe needs for method
engineering and reasons behind them. Second, based on a short literature
survey we present basic classifications of ME strategies and ME processes, and
derive a fundamental categorization of ME contexts. Here we also provide the
definition of the ME context that integrates contextual aspects of method
engineering. Third, we present the first main part of the ME ontology
addressing four ME domains. For each ME domain, the concepts and constructs
are defined and described in ME meta models. Fourth, we provide the second
main part of the ME ontology including four ME perspectives. Fifth, we define
the notion of an ME method and derive the ME method ontology from the ISD
method ontology established in Chapter 9. The chapter ends with a summary.

431

Core ontology

Model level ontology

Perspective ontology

Layer ontology

Context ontology

ISD method ontology

ME method ontology
ME ontology

ME domains ME perspectives

FIGURE 103 Bases and structures of the ME ontology and the ME method ontology

10.1 Motivations for Method Engineering

The purpose of this section is to bring out reasons and motives for why method
engineering is needed. We start with making a survey of the ISD literature to
find out how ISD methods and method use are seen in practice. In Section 8.1
we already described benefits reported in practice. Here, we are interested in
problems perceived in methods and method use. One of our claims is that
problems resulting from deficiencies in the methods should be tried to
overcome by investments to method engineering. Second, we consider those
needs for method engineering which emerge from continuous changes and
evolution in business, application areas, and approaches and technologies of
development environments.

10.1.1 Problems in Methods and Method Use

ISD methods are believed to further ISD work in many ways. It is believed that
methods facilitate the acquisition, accumulation, use and dissemination of ISD
knowledge (e.g. Hardy et al. 1995; Hidding 1997; Rahim et al. 1998; Middleton
1999; Schönström et al. 2003), help the management of ISD projects (e.g.
Chatzoglou 1997; Fitzgerald 1998a), reduce needs for money, labor and time in

432

the ISD process (e.g. Jones et al. 1988; Hardy et al. 1995; Chatzoglou 1997), and
improve the quality of ISD deliverables (e.g. Hardy et al. 1995; Chatzoglou 1997;
Rahim et al. 1998) (see more Section 9.1). In some situations these beliefs have
turned out to be justified. But there are numerous situations in which the use of
methods has been experienced to be problematic. Here, we first make a
literature survey to find out how common method use is in practice. Second, we
describe, in a structured way, problems in ISD methods and method use, as
reported in empirical studies.

There are plenty of studies reporting that method use is not so frequent as
believed. This was the case in the 80’s (e.g. Jenkins et al. 1984; Sumner et al. 1986;
Necco et al. 1987; Chikovsky 1988; Carey et al. 1988; Danzinger et al. 1989;
Smolander et al. 1990) and this seems to be the case in the recent years as well.
For instance, Hardy et al. (1995) found that only 44 % of respondent
organizations reported using a recognized structured method or using formal
specifications. 18 % of the cases used no method at all. In the study of over 100
organizations by Russo et al. (1996), only 49 % reported that a method was used
consistently although 84 % of the organizations reported having a method.
According to the study of Chatzoglou (1997), nearly half of 72 projects in UK
used no method. Fitzgerald (1998a) concludes that only 40 % of 162
organizations used some formalized method, of which 14 % used a commercial
method and the rest (28%) some in-house method. In the study of Rahim et al.
(1998) one third of 36 organizations in Brunei and in the study of Iivari and
Maansaari (1998) 23 % of the organizations did not use any method. Holt (1997)
reports that nearly one-third of UK organizations did not embrace any
structured methods.

To interpret the numbers right it is important to notice that method use is
an ambiguous notion in many ways. First, as Hidding (1997) points out, even if
practitioners tell researchers not having used a method, they produce
deliverables demonstrating they do indeed use it. Practitioners have
internalized the method through training and repeated on-the-job use. They no
longer “interpret” the method, as they have “compiled” it (Hidding 1997, 105).
Second, the purpose and form of usage depends on the role a person plays in
ISD. Hidding (1997) distinguishes between sellers, planners, doers, and
managers. Sellers market projects. A planner in his/her role is responsible for
project planning and control. A doer is responsible of executing actions.
Depending on the role in and objectives of utilizing the method, practitioners
have different needs for the method. Third, the significance of the method
varies with knowledge a practitioner has about the method. Novices follow
strictly the method as such, while practitioners with several years experience
take freedom to deviate from instructions of the method when reasonable.
Hence, when asking whether the method is used or not, it is necessary to make
at least the following questions: Who is using the method? What is the part of it
used? For what purposes is it used?

A large variety of explanations are given for problems in method use in
the literature. We start describing them by considering issues related to the

433

implementation of the method into the organization. Veryard (1987, 470) lists
three possible failure scenarios. First, the method may have been poorly chosen
for the organization. Second, the method may be appropriate for the
organization but insufficient start-up resources have been allocated to it. Third,
the implementation may be badly managed, that is to say, there are failures in
planning and/or controlling. Roberts et al. (2001, 635) suggest that one possible
answer to failures at implementing and adopting the ISD method is the lack of
in-house expertise and difficulties in transferring technical ‘know-how’ that
allows one to use the method efficiently and effectively.

Next, we consider problems and explanations that are more related to
characteristics of ISD methods. Systems development is not actually an orderly
rational process, even though most ISD methods treat it as such (Wastell et al.
1993). Curtis et al. (1988) found that ISD methods influence the mental model
that ISD actors have about how ISD should occur, and they were frustrated that
conditions surrounding their project prohibited them from following this
model. This was also noticed in Nandhakumar et al. (1999). The method can be
applied in a ritualistic way, which inhibits creative thinking (Stolterman 1992;
Kautz et al. 1994; Wastell 1996). ISD actors often proceed in slavish and blind
adherence to methods and lose sight of the fact that development of an actual
system is the real objective (Fitzgerald 1994, 371-380; Wastell 1996;
Nandhakumar et al. 1999). Complex, highly detailed and norm-based
descriptions of development routines do not fit the needs of ISD actors, nor
support their work (Fitzgerald 1996a; Russo et al. 1996; Middleton 1999).

Methods are often perceived as prescriptive, burdensome and difficult to
apply (Thomson 1990; Middleton 1994). Rahim et al. (1998, 957) found out that
the difficulty in learning the method was the most pressing problem. Hidding
(1997) reports that methods are often too massive and complex to be easily
adopted and adapted to a specific situation. This is also the conclusion in
Fitzgerald (1996a) and Kautz et al. (1994). Many studies also report on the
inability of methods to cover the whole life cycle of software projects
(Fitzgerald 1996a; Russo et al. 1996; Rahim et al. 1998).

Instead of helping to reduce project completion time, some projects built
with a recognized method actually increased scheduled project time (Rahim et
al. 1998). A study of Saarinen (1990) concludes that success of projects was not
affected by the use of any method. The same kinds of results have been
reported by Orr (1993) and Masters et al. (1992). Avison et al. (2003) noticed
disappointments in productivity. There can be several reasons for this; e.g.
learning may require extra time (Rahim et al. 1998), method use may induce
unnecessary documentation (Kautz et al. 1994; Wastell 1996), or too much
attention is given to notations (Wastell 1996).

Sometimes the methods are seen to be too detailed to efficiently support
the planning of a project (Hidding 1997). Many methods are documented only
on paper, making their use awkward and their customization difficult. Tools
advocated by method proponents can be costly and they may require highly
technical skills.

434

Methods are often regarded as monolithic (Hidding 1997) or one-
dimensional (Avison et al. 2003, 81), advocating a single path or approach,
which is often perceived as one-size-fit-all. They are not contingent on the type
or size of a project, nor upon the technology environment and organizational
context (Avison et al. 2003). Adaptation of a rigid method to project-specific
circumstances is difficult (Middleton 1999; Henderson-Sellers 2003).

Part of the problems in method use can be traced back to human,
organizational or technical settings. For example, without proper training the
method can be totally ignored or only partly utilized. Incompatibility of a
method approach with the culture and traditions of an organization may also
cause unsolvable problems. Nevertheless, there are many problems that result
from the nature, contents and structure of methods. To improve this, method
engineering is needed.

10.1.2 Other Factors Propelling Method Engineering

Besides for improving existing methods, method engineering is needed for
many other reasons. Here, we consider these in terms of changes and evolution
in (a) business and its environment, (b) application areas, and (c) approaches
and technologies of development environments.

Business processes are changing on various dimensions (e.g. flexibility,
interconnectivity, coordination style, autonomy) due to market conditions,
organizational models, and usage scenarios of information systems. They are
required to act more effectively in shorter time-frames (Fitzgerald et al. 2002). At
the same time, business processes are getting more complex and difficult to
manage. Businesses are increasingly moving to extensive automation of their
private and public processes. Increasing domestic and global competition and
changing economics are creating pressures to deliver information systems
“yesterday” to exploit business opportunities (Wynekoop et al. 1997).

Resulting from evolution in business and its environment as well as from
advancements in IT, novel application areas have emerged and are emerging.
Examples of the new areas are: e-commerce, m-commerce, web-information
systems, multimedia information systems, trustworthy systems, and ubiquitous
systems with time-aware, location-aware, device-aware and personalized
services. Typical for new areas is that they amalgamate organizational,
conceptual and technical issues from several research fields. For these areas
new approaches and concepts are needed.

Rapid progress of technology has resulted in new architectural
frameworks and platforms for information systems, e.g. J2EE, Visual Studio
.NET, XML-based technology, service-oriented architectures, peer-to-peer
technology (P2P), model-driven architecture (MDA), and grid computing
technology. This has led to the birth and diffusion of new computing and
development approaches and paradigms, e.g. agent-based approach, fuzzy
approach, anywhere/any time/any means paradigm, generative programming
approach, aspect-oriented approach, ontology & service oriented (OSO)
programming approach, soft computing approach, peer-to-peer computing

435

paradigm, etc. Especially, the component-based approach with reusable
components has established a firm foothold in ISD. Companies rely far less on
in-house development of systems, but are pursuing to buy software packages,
or outsourcing ISD. This might be referred to as the industrialization of ISD.

Some of the systems are less likely to require large-scale, long-term
development projects, and more likely to be smaller, short term, incremental
projects (Baskerville et al. 1992; Fitzgerald et al. 2002). With the emergence of
light web-based applications, new birth of ”quick and dirty” approaches,
currently called agile approaches or short cycle time systems development, are
getting popular (Agile Alliance 2002; Cockburn 2001; Astels et al. 2002;
Baskerville et al. 2004). They emphasize e.g. individuals and interactions over
processes and tools, working software over comprehensive documentation, and
customer collaboration over contract negotiation. Also emergent organizations
require new practices for ISD, like continuous analysis of IS applications,
dynamic requirements negotiations, and continuous redevelopment (Truex et
al. 1999).

10.1.3 Summary

Although the ISD methods have mostly appeared to be useful both to the ISD
process and its outcomes, severe problems have been perceived in the
implementation and deployment of the methods. Some of the problems clearly
result from drawbacks and deficiencies in existing methods. For this reason
there is a need for ME efforts to overcome these problems. ISD is in constant
change and present trends suggest that this dynamic nature of practice will
persist. Regardless of thousands of methods already engineered and deployed
in organizations, still more methods with novel features and functionalities are
desired. Engineering of new methods is propelled by everlasting changes in
organisational and technological environments of ISD. Demands and
expectations on both the process and the outcome of ISD have become harder
and harder (Roberts et al. 2001). Phenomena, such as Software Process
Improvement or the Capability Maturity Model (CMM) (Paulk et al. 1993) and
ISO 9000-3 set of quality standards (ISO 1991), require disciplined use of
systematic practices. The rise of such phenomena stimulates the use of methods
much more than before. Finally, a conception about “one method suiting any
situation” has been buried a long time ago. To have a method applicable to a
particular organization or project requires special ME actions for customizing
and configuring existing methods.

10.2 ME Context

Method engineering (ME) and ME context are ambiguous and multifaceted
notions about which there are quite different conceptions in the ME literature.

436

The purpose of this section is first to make a short review of the conceptions
and terminologies. Second, we define main ME strategies and ME processes,
and present a fundamental categorization of ME contexts. Third, we give a
generic definition of the ME context and discuss how the ME context is
functionally and temporally linked to other contexts.

10.2.1 About the Notion of Method Engineering

Kumar and Welke (1992) are regarded as “godfathers” of method engineering.
They used the term ‘methodology engineering’ to mean "a meta-methodology
for designing and implementing information systems development
methodologies” (ibid p. 257). Since then ME has been referred to with different
meanings. On one hand, method engineering is regarded as a discipline to
“build project-specific methods” (Brinkkemper et al. 1999, 209) or to “design,
construct and adapt methods...” (ter Hofstede et al. 1997, 401). On the other
hand, method engineering is seen as “an approach to configure project specific
methods for the development of information systems” (van Slooten et al. 1993,
167) or as “the systematic analysis, comparison, and construction of information
systems engineering methods” (Harmsen 1997, 25). Tolvanen (1998) defines ME
to mean “a change process taken with respect of an ISD object system in a set of
ISD environments by a method engineering group using a meta method and
supporting tools to achieve or maintain methods for ISD” (ibid p. 66). ME is
defined to address only the methods (Brinkkemper et al. 1999, Harmsen 1997) or
also techniques and tools (ter Hofstede et al. 1997; Tolvanen et al. 1996; Tolvanen
1998; Brinkkemper 1996).

In many studies ME is seen to be analogous to ISD (Olle et al. 1983; Kumar
et al. 1992, 262; Tolvanen et al. 1996; Tolvanen 1998). As early as in 1983 it was
stated:

“Designing of methodologies and of application systems are very comparable
exercises in human endeavour. In both cases one has to decide what data is
needed and what processes are to be supported. This recursivity (if that is the
right word) means that one should be able to specify a design methodology in
itself – an assertion that was made in earlier days about programming
languages” (Olle et al. 1983, vii).

According to this view, ISD yields an IS model and its implementation, whereas
ME yields an ISD method and its implementation. On a general level, we can
agree on this. But there are several intrinsic differences between ISD and ME.
First, the targets of actions are somewhat different. An IS model and its
implementation are commonly more concrete and better defined than an ISD
method. Second, resulting from the above fact, the process with which the
outcomes are produced in ISD is more perceivable and structured than in ME.
Third, a variety of contexts, functionally, organizationally and temporally, is
much larger in ME than in ISD.

Besides ‘method engineering’ several other terms are used in the ME
literature. Some of these terms used are customization (e.g. Cronholm et al.

437

1994; Hardy et al. 1995; Hruby 2000b), tailoring (e.g. Basili et al. 1987; Mayer et
al. 1995; Henderson-Sellers et al. 1999c; Kruchten 2000; Demirors et al. 2000;
Fitzgerald et al. 2003), configuration (e.g. Brinkkemper et al. 1995; Kruchten
2000; Karlsson et al. 2001; Karlsson 2002), adaptation (e.g. Tolvanen et al. 1993;
Russo et al. 1995; ter Hofstede et al. 1997; Backlund et al. 2003; Carroll 2003),
modification (e.g. Kruchten 2000), implementation (e.g. Veryard 1987; Roberts et
al. 1998; Roberts et al. 2001; Yadav et al. 2001; Backlund et al. 2003), and
integration (e.g. Short 1991; Nuseibeh et al. 1992; van Slooten et al. 1993; Kronlöf
1993; Ryan et al. 1996; Song 1997; Goldkuhl et al. 1998; Saeki 1998; Wieringa et al.
1998).

Various prefixes are used to highlight specific aspects of method
engineering: e.g. situation specific methodology construction (Kumar et al.
1992), situational method engineering (e.g. Harmsen et al. 1994; van Slooten
1995; Harmsen 1997; ter Hofstede et al. 1997; Brinkkemper et al. 1999; Ralyte
2002), incremental method engineering (Kelly et al. 1994, Tolvanen 1998),
context-specific method engineering (Rolland et al. 1996), simulation-based
method engineering (Peters et al. 1996), ontology-based method engineering
(Rosemann et al. 2002), and assembly-based method engineering (Ralyte et al.
2003).

Depending on, or regardless of, the used terms, quite different things are
designated with those terms. The method under construction may be quite
general (e.g. Unified Process (Jacobson et al. 1999)), at one extreme, or highly
specific, intended to the use of a particular project, at the other extreme. Actions
in ME may be scheduled for execution primarily before the starting of an ISD
effort, or it is emphasized that ME is an organic part of an ISD project and thus
it should be timed in parallel to the ISD actions (cf. blueprint ME vs.
evolutionary ME in Rossi et al. 2004). There are also different approaches to
organizing an ME effort and to deploying computer-aided tools in ME
(Tolvanen et al. 1996))

To summarize, there is a large variety of terms and conceptions with
which diversified features of method engineering are conceived, understood,
structured and presented in the ME literature. There is clearly a need to define a
unified vocabulary with which the vague domain of ME can be perceived in a
more consistent and structured manner. For this reason, we next define
categorizations of ME strategies and ME processes and derive a fundamental
categorization of ME contexts from them. After that we are ready to give our
integrating definition for the ME context.

10.2.2 Categorization of ME Contexts

ME contexts can be categorized according to ME strategies, ME approaches, ME
actors, ME actions, ME deliverables, etc. Here, we use ME deliverables, ME
strategies and ME processes to derive a fundamental categorization of ME
contexts.

In Section 9.3 we classified the ISD methods into generic methods,
domain-specific methods, organization-specific methods, and project-specific

438

methods. Because the generic ISD methods and the domain-specific ISD
method mostly differ from one another only in the specificity of concepts and
constructs with which they refer to special features of application domains, we
treat them here together under the name ‘generic methods’.

We define a generic way of accomplishing an ME effort to mean an ME
strategy. We distinguish between three ME strategies. They are creation,
integration, and adaptation. Creation means the “greenfield” or “from scratch”
strategy of engineering the ISD method in a situation where no ISD existing
method is available to be used as a basis for ME. Although this strategy is never
literally applied as an overall strategy in practice, it is important recognize it for
the cases where some part of the method has to be engineered without the
support of existing methods. Integration means an ME strategy according to
which the ISD method is engineered by assembling components of existing
methods. The more reusable components the ISD methods are composed of, the
easier the process of integration is. Adaptation means an ME strategy according
to which the ISD method is engineered by dropping off or modifying some
part(s) of an existing ISD method, or extending an existing ISD method with
some new part(s).

The three ME strategies correspond to three ISD strategies distinguished
in the ISD literature. The creation strategy means a traditional way of building
an IS from “hand-designed” and “hand-coded” parts in ISD (Yourdon 1989).
The integration strategy in ME corresponds to the COTS (components-of-the-
shelf) strategy (Bertolazzi et al. 2001; Morisio et al. 2002; Dogru 2003; Olarnsakul
et al. 2003) in ISD. Finally, the adaptation strategy can be seen as a counterpart
of “software package” strategy (Kirchmer 1999), according to which a software
package is acquired and implemented by tailoring it. Tailoring involves the
selection of optional modules, the specification of parameters, and the like (cf.
ERP packages) (Parr et al. 2000).

Based on the classifications of the method types and the ME strategies we
can construct an overall framework, which brings out and relates different
kinds of ME processes (Figure 104). In the framework the ISD methods under
engineering are presented in the central “column”. There are three kinds of
methods under engineering (i.e. generic method, organization-specific method,
and project-specific method) and the method in use. The last one stands for
actual performance in ISD, also known as an action world (Jayaratna 1994, 228-
229), project performance (Harmsen 1997, 39), method-in-action (Fitzgerald et
al. 2002) and ‘doing and practice’ (Vidgen 2002, 259). Because method_in_use
does not appear in the representational form like the others, it is depicted in the
dotted line in the figure. The two other “columns” represent existing methods
to be either integrated or adapted. Next, we define the ME processes.

Because the classification of ISD methods follows the principles of
predicate abstraction based on the criterion of realization independence (cf.
Section 3.9.3), we regard the methods as belonging to four abstraction levels.
Between the levels we can identify three kinds of ME processes, which derive
an ISD method from another ISD method on the next higher level, and three

439

Generic

Org. specific

Proj. specific

Creation

Creation

Method_in_use

Ad'hocracy

Generic

Org.specific

Proj.specific

Generic

Generic

Generic

Generic

Org.specific

Proj.specific

Creation

Integration Adaptation

Customization

Congifuration

Decustomization

Deconfiguration

Creation

Realization
Abstraction

FIGURE 104 Framework of the ME strategies and ME processes

kinds of ME processes, which derive an ISD method from another ISD method
on the next lower level. We refer to these processes with the common term
‘adjusting’. First, we consider the ME processes by which an ISD method is
adjusted from the next higher level.

Customization means an ME process by which an organization-specific ISD
method is derived from some generic method (or domain-specific method) by
adjusting it with organizational features that fit the traditions, culture,
infrastructure, management policies, etc. of the target organization. In the
customization, constructs within the ISD actor domain and the ISD facility
domain are particularly specified and specialized. Configuration162 means an
ME process by which a project-specific ISD method is derived from an
organization-specific ISD method. In this work, concrete concepts and
constructs are used to prescribe e.g. who should do what, where and when. A
project-specific ISD method in the most concrete form becomes very close to
what we usually call a project plan. Realization means an ME process by which
a project-specific ISD method is put into action. Method-in-use means concrete

162 The term ’configuration’ is preferred here because in the ISD field the same term is

used to mean the adjustment of a software package into a particular circumstance
(e.g. Kirschmer 1999; Bertolazzi et al. 2001).

440

work that is done in ISD. As we know, ISD work in practice frequently deviates
from the corresponding project-specific method. Recognizing this is important
especially to empirical research of the method use.

Respectively, we can distinguish between three ME processes, by which a
method is adjusted from another method on the next lower level. These
processes are decustomization, deconfiguration, and abstraction.
Decustomization is an ME process by which a generic ISD method is engineered
by clearing an organization-specific ISD method from the knowledge specific to
the certain organization. Deconfiguration means an ME process by which an
organization-specific ISD method is engineered by abstracting project-specific
knowledge from an existing method. For example, in order to harmonize ways
of working inside a large organization, project-specific ISD methods followed in
accomplished projects are deconfigured to achieve a common organization-
specific ISD method. That method will act as a shared knowledge base on how
an ISD should be, on a general level, performed in the organization. Finally, by
observing, participating in, and interviewing about, ISD work in practice, one
can extract “best practices” and abstract them into a project-specific ISD method
to be adapted and utilized in forthcoming projects.

The ME strategies can be applied in quite a similar way regardless of a
level on which the target method is. However, the lower the level is, the greater
the number of specific concepts and constructs are and the more concrete the
issues in the considerations are. On the lowest level the creation of a method
without any underlying method corresponds to a situation which was typical in
the so-called pre-methodological era (Hirschheim et al. 1995) where for each ISD
action working procedures were “designed” in an ad hoc manner.

Besides engineering a method through either “vertical” processes or
“horizontal” processes, there are situations in which the both kinds of processes
are needed. We can recognize, for instance, the following three cases. In the first
case, a new generic method is engineered integrating and adapting suitable
components of existing methods, as well as decustomizing features of a certain
organization-specific method. In the second case, an organization-specific
method is engineered via three processes: (a) adapting an existing organization-
specific method, (b) re-customizing parts of the generic method that has served
as the basis for the current organization-specific method, and (c) deconfiguring
some parts of project-specific methods applied in the organization. In the third
case, a project-specific method is engineered through configuring the
organization-specific method and adapting some parts of existing project-
specific methods. The latter process transmits the experience from the finished
or on-going projects into the use of the current project.

Depending on what the target of ME is, we can now distinguish between
three main types of ME contexts: method development, method customization,
and method configuration. Method development context aims to engineer a
generic ISD method, or a domain-specific ISD method. Many EU projects (e.g.
OSSAD (Conrath et al. 1989), Euromethod (Franckson 1994), EKD (Loucopoulos
et al. 1998)) and work done for the UML (e.g. Booch et al. 1999, Jacobson et al.

441

1999; Kruchten 2000) are examples of method development. Also method
engineering done in universities and research laboratories often belongs to this
type of ME contexts (cf. Mathiassen et al. 1996; Mathiassen et al. 2000). Method
customization context aims to attain an organization-specific ISD method. A
typical example of this type is a case where a software house is “modernizing”
its current method by customizing one or more novel generic methods. The
generic ISD method is typically a commercial one (e.g. Rational Unified Process,
Kruchten 2000). Customization is accomplished as an ME work, internally to
the organization and possibly supported by consultants. This work is also
known as organization-based ME (Tolvanen 1998, 21). Fitzgerald et al. (2003)
describe one customization context which aimed to customize a software
development process at Motorola. Method configuration context aims to engineer
a project-specific ISD method. At the best case the basis for engineering is
obtained from the organization-specific ISD method, but it is quite common
that the ISD method for the project has to be engineered from some generic ISD
method.

Next, we compare conceptions presented in the ME literature to our
framework, first regarding ME strategies and then ME processes. Ralyte (2002,
129) identifies between four main ME strategies. The first strategy is ‘From
scratch’ with the self-evident meaning. The second strategy, called
‘completeness driven assembly’, means enhancing the process part in the
existing method by one or more new ways of working. The ‘extension driven
assembly’ strategy is for situations where the project at hand implies adding a
new functionality to the existing method, which is relevant in its other aspects.
The fourth strategy, called ‘restriction driven strategy’, is used to select the
functionalities that are significant in the project and to eliminate the others.
Ralyte’s (2002) first strategy corresponds to the creation strategy in our
framework. The other strategies contain parts of our adaptation and integration
strategies. Ralyte (2002) defines many other strategies (e.g. verification strategy,
aggregation discover strategy, and state-based modeling strategy), but they are
on too a detailed level to be discussed here. Ralyte et al. (2003) suggest a slightly
different set of ME strategies categorized for setting ME goals (i.e. the ‘from
scratch’ strategy, the ‘method-based’ strategy) and for constructing a method
(i.e. the ‘assembly-based’ strategy, the ‘extension-based’ strategy, the
‘paradigm-based’ strategy). The ‘assembly-based’ strategy corresponds to our
integration strategy, the ‘extension-based’ strategy is a part of our adaptation
strategy, and the ‘paradigm’-based’ strategy is, to a degree, a counterpart of our
creation strategy.

Kruchten (2000, 258) uses the term ‘configuration’ on two levels. In
organization-wide configuration the method is modified, improved or tailored
in a way which takes into consideration issues such as the domain of the
application, reuse practices, and core technologies mastered by the company.
Project-specific configuration, in turn, refines the method for a given project,
taking into consideration the size of the project, the reuse of company assets,
and the applied ISD approach. The outcome of this process is called

442

development case (ibid p. 259). Firesmith (2002, 95) employs the term
‘endeavor-specific’ to characterize the development process for a project, a
program of related projects, or an entire enterprise. He does not see any
difference between an organization-specific method and a project-specific
method. Tolvanen (1998, 21) distinguishes between the ‘organization-based’
method engineering and the ‘project-based’ method engineering.

Veryard (1987) uses the term ‘method implementation’ to refer to the
process of taking a method into use in an organization. Karlsson et al. (2001,
XIV-1) define method configuration to mean the adaptation of the particular
method to various situated factors. Backlund et al. (2003) specify, on the basis of
Nonaka et al. (1995), a generic process to adapt and implement the method into
organizations and illustrate the use of the process with two case studies. Hruby
(2000b, 22) describes the process of customization with which a certain subset
of the best practices is identified and adopted within the organization.
Vlasblom et al. (1995, 602-603) present a procedure for the construction of a
development model (i.e. a kind of domain-specific method) through
investigating completed projects and formalizing experiences into a structure
form. This process corresponds to abstraction, deconfiguration and
decustomization in our framework. Henderson-Sellers and Mellor (1999c)
discuss the tailorability of methods created through differing ways of
instantiating the OPEN framework (Graham et al. 1997).

From these examples taken from the ME literature we can clearly see that
the ME field is very far from having a unified and shared terminology. There
are discrepancies between conceptions about ME strategies, ME processes and
ME contexts. We proposed the framework, which in a simple and unambiguous
way distinguishes between three ME strategies, six ME processes and three ME
contexts. We believe that our categorizations will substantially clarify the
meanings of the concepts and differences between the conceptions presented in
the literature. Based on these categorizations, we will next define the notion of
the ME context.

10.2.3 Definitions of ME and ME Context

It is challenging to try to construct a single definition for a notion like ME,
which has so many facets and aspects as demonstrated above. Here, we first
give a general definition of ME and then elaborate a more detailed definition of
an ME context. Method engineering means all those actions by which an ISD
method is developed, and later possibly customized and configured to fit the
needs of an organization and/or an ISD project. By applying the contextual
approach, deriving from the ISD ontology, and rooting on the categorizations
above we have elaborated the following integrating definition of an ME context:

A method engineering context is a context in which ME actors carry out ME actions
of (de)customization, (de)configuration, realization, and/or abstraction to
produce a new or improved ISD method, with ME facilities, in a certain

443

organizational and spatiotemporal context, in order to satisfy ME goals set by ME
stakeholders.

The definition above addresses all seven contextual domains. First, ME means
intentional work guided by goals of ME stakeholders, partly predefined but
mostly negotiated and agreed upon along the ME work. The ME stakeholders
mean all thosee persons who have some interest in the ME process and/or
deliverables, e.g. method experts, work experts, business experts, IT experts,
etc. The ME work is carried out by ME actors with various expertise and
backgrounds, in different ME roles, and in different organizational units.
Expertise may concern research methodologies, ISD process, tools, application
domains, human, social and organizational issues, etc.

Depending on the ME strategy applied (i.e. creation, integration,
adaptation) and the nature of the ME context, ME actions are composed of
different ME tasks and ME steps, and constitute various ME action structures.
Common to all the ME approaches is the fact that the ME work starts with some
requirements engineering and goal setting. After that come analysis and design
of an ISD method, succeeded perhaps by implementation. During all the
aforementioned ME workflows ME deliverables are evaluated with criteria
derived from the ME goals. Depending on the nature of the ME context, the ISD
method under engineering is either a generic method, a domain-specific
method, an organization-specific method, or a project-specific method.

ME work may be supported by ME tools, comprising MetaCase tools and
CAME tools. With MetaCase tools it is possible to customize CASE
environments to support new ISD methods. CAME tools at best guide the
process of ME and support, with basic access operations and mechanisms, its
accomplishment through integrated method base and procedures for automatic
derivation and verification. Examples of MetaCase tools are RAMATIC
(Bergsten et al. 1989), Maestro II (Merbeth 1991), ConceptBase (Jarke 1992), and
MetaEdit+ (Kelly et al. 1996). Examples of CAME’s are MERET (Heym et al.
1992a), Decamerone (Harmsen 1997) and MERU (Gupta et al. 2001).

The ME context is bound to certain place and time. It is also
organizationally, functionally and temporally linked to several other contexts.
These links are illustrated in Figure 105. The ME context at hand is in the
middle of the figure. It is connected to the prior contexts, on one hand, and to
the so-called target contexts, on the other hand. The connections can be direct or
indirect. The connected contexts comprise ME contexts and ISD contexts.
Depending on the nature of the ME context at hand, the connected ME contexts
mean development, customization and/or configuration.

Prior ME contexts mean contexts, which have contributed to the ISD
method that is under consideration/engineering in the ME context at hand. The
method can be a generic ISD method, a domain-specific ISD method, an
organization-specific ISD method, or a project-specific ISD method. The prior
ME context have created the ISD method, or adjusted it. Knowledge about the
prior ME context(s) is important to understanding the ‘hidden’ assumptions of

444

ME context

Target ME ctx

Target ME ctx

Target ME ctx

Prior ME ctx

Prior ME ctx

Prior ME ctx

ME

Target ISD ctxPrior ISD ctx

ISD ISD

Customization

Development Development

ConfigurationConfiguration

Customization

ME

FIGURE 105 Relationships between the ME context and other contexts

the ISD method (cf. the context of creation, Jayaratna 1994) and making
decisions on its suitability to the ME effort.

Target ME contexts mean contexts in which the ISD method under
engineering is later to be customized, configured and/or realized into the use of
certain ISD contexts. Especially, if the ISD method is a generic method, it is
important to take into consideration how future customization and
configuration contexts are provided with the sufficient knowledge of the
original intentions of, the ME actors involved in, and the ME approaches
applied in the ME context at hand.

The ME context is also related to ISD contexts. Prior ISD contexts mean
contexts in which the ISD method(s) interested by the ME context have been
applied. Experience from the applications is valuable to decisions about which
ISD methods would serve as a suitable basis for the ME work and about with
which improvements they would serve as such. Target ISD contexts mean
contexts for which the ME effort at hand has been launched. Depending on the
type of the ME context, the target ISD contexts are known or not. The target ISD
context is exactly known if the purpose of the ME context is to engineer a
project-specific ISD method. In this case, the ME context at hand and the target
ISD context are scheduled at least partly in parallel to one another (Hruby

445

2000b). If the ME context is a customization context, target ISD contexts are
seen as a family of ISD projects that share common features of the cultural,
organizational and technical environment. For an ME context engineering a
generic ISD method, the picture of the target ISD contexts is much more
abstract.

Actually the ME context at hand has indirect connections to prior and
target contexts on the IS layer as well. Prior IS contexts mean those IS contexts
which have been developed in prior ISD contexts. Target IS contexts mean those
application areas for which target ISD projects applying the engineered method
are to be launched. Target IS contexts can be viewed from various perspectives.
The IS systelogical perspective, for instance, reveals the types of business
systems and intended support by IS’s. Connections between the ME context
and the contexts at the IS layer are, however, so thin that we do not take them
into account in Figure 105.

10.2.4 Summary

Method engineering is, partly due to the short life time of the discipline, an
ambiguous and obscure notion. In this section we have presented basic
categorizations for ME strategies, ME processes and ME contexts. We have also
proposed a framework which integrates all these categorizations and enables us
to specify and analyze a large variety of ME contexts. We have applied the
contextual approach to construct an integrating definition for the ME context.
According to it, ME is viewed as a context, which possesses features of seven
contextual domains, and is connected to contexts of different types, on different
layers. We argue that this view provides a solid basis for engineering the ME
ontology presented in the next sections.

10.3 ME Domains

The ME ontology provides concepts and constructs to conceive, understand,
structure, and represent contextual features of method engineering. It is
composed of two main parts, the ME domains and the ME perspectives. The
purpose of this section is to present the first part. Here we focus on the ME
purpose domain, the ME actor domain, the ME action domain and the ME
object domain. The other three domains contain concepts that are related to the
ME datalogical perspective and the ME physical perspective, which we are not
interested in at the ME layer. In addition, we present an overview of ME inter-
domain relationships.

For ME there are no unified presentations in the literature that would
provide comprehensive frameworks, frames of references or the like, as is the
case for ISD. In contrast, there are only a large variety of specific ME artifacts,
including IS meta data models (e.g. ER (Chen 1976), NIAM (Nijssen et al. 1989),

446

ASDM (Heym et al. 1992a), GOPRR (Kelly et al. 1996)), ISD meta process models
(e.g. Bandinelli et al. 1993; Deiters et al. 1994, Kaiser et al. 1993), ME strategies
(e.g. Kumar et al. 1992, Ralyte 2002; Ralyte et al. 2003), ME approaches (e.g.
Harmsen 1997; Tolvanen 1998), ME techniques (e.g. Kinnunen et al. 1996; van
Slooten et al. 1993; Grundy et al. 1996; Saeki 1998; Leppänen 2000), and ME
procedures (e.g. Vlasblom et al. 1995; Harmsen 1997; Tolvanen 1998). The
conceptual basis they provide are, however, quite thin and scattered. For this
reason we have not been able to apply the integration strategy in engineering
the body of the ME ontology. Instead, we have established the ME ontology
mostly by deriving from the context ontology and the ISD ontology. Into that
body we have then merged individual concepts and constructs found in the ME
literature.

10.3.1 ME Purpose Domain

The ME purpose domain embraces all those concepts and constructs that refer to
goals, motives, or intentions of someone or something in the ME context. The
concepts may show a direction toward which it is due to proceed in the ME, a
state to be attained or avoided, or reasons for them. Reasons can be expressed
as requirements, problems, etc. The ME purpose domain is highly important
because only through its concepts it is possible to express “Why” it is necessary
to engineer an ISD method. In the following we define the main concepts of the
ME purpose domain and present them in the meta model in Figure 106.

An ME goal expresses a desired state or event with qualities and quantities
related to an ME context as a whole, or to some part of it. If related to the whole
ME context, an ME goal may be expressed in terms of duration (ME process),
money (ME resources), cooperativeness (i.e. ME organization), acceptability (i.e.
ME deliverables), etc. Hard ME goals have pre-specified criteria for the
assessment of the fulfillment of the ME goals, while soft ME goals have not. An
example of the hard ME goals is “the ME effort should not exceed the stated
budget”. An ME requirement is some quality or performance demanded from an
ME context or some part of it. An ME problem is a perceived deviation from a
desired state or way of doing, which may lead to specifying one or more ME
requirements and set up one or more ME goals.

ME goals, as well as ME requirements, are related to one another through
the refinement and influence relationships. The causalTo relationship between
two ME problems means that the appearance of one ME problem is at least a
partial reason for the occurrence of another ME problem.

Some of the ME purposes are directly related to the ISD method (ISDM)
under engineering. We use the term ‘ISDM purpose’ to refer to the ME goals and
the ME reasons pertaining the ISD method. For the evaluation and comparison
of ISD methods a large variety of criteria are presented in the literature163. In the

163 Criteria can be connected to any ME purpose. Here we are in particular interested in

the criteria used to evaluate ISD methods. Therefore a criterion is related to an ISDM
purpose.

447

ME goal

Strength/Weakness

Opportunity/Threat

ME requirement ME problem

ME purpose

ME reason
*

*

dueTo

*
*influence

*
refinement

*

**
refinement

*

*
causalTo

ISD datalogicalISD systelogical ISD infological ISD conceptual

ISDM purpose

ISD physical

Hard Soft

*

*
influence

Criterion
*

*

evaluatedBy

FIGURE 106 Meta model of the ME purpose domain

simplest form, criteria are given as a feature list (e.g. Rzevski 1983; Brodie 1983;
Ang 1993; Karam et al. 1993) or as a taxonomy (e.g. Brandt 1983; Blum 1994). In
a more advanced form, criteria are organized to constitute a framework (e.g.
Iivari et al. 1983; Floyd 1986; Wand et al. 1989; Jayaratna 1994; Louridas et al.
1996; Weber et al. 1996; Opdahl et al. 2002).

Some sets of criteria are aimed at addressing the ISD method as a whole
(e.g. Brandt 1983; Henderson-Sellers et al. 2001; Jayaratna 1994; Kabeli et al.
2002) while some sets of criteria only concern certain parts or features of ISD
methods. The latter criteria may address paradigms or ISD approaches (e.g.
Iivari et al. 1998a; Iivari 1991; Fitzgerald et al. 1998), ISD phases or ISD
workflows (e.g. Castano et al. 1994; Bielkowicz et al. 2001; Bielkowics et al. 2002),
or description models (e.g. Krogstie 1995; Krogstie et al. 1995; Chaves et al. 1996;
Godwin et al. 1989a; Godwin et al. 1989b; Hommes et al. 2000; Moody 2003b;
Shoval 1996; Weber et al. 1996; Kaasboll et al. 1996). Some sets of criteria are
suggested for the evaluation of specific ISD methods; e.g. office analysis
methods (e.g. Ang 1993; Auramäki et al. 1992b), object-oriented methods (e.g.
Arnold et al. 1991; Hong et al. 1993; Iivari 1994; Liang 2000), component-based
development methods (e.g. Forsell et al. 2000; Boertien et al. 2001) and agent-
oriented methods (Shehory et al. 2001; Dam et al. 2004; Sturm et al. 2004).

Here, it is not possible to go into details of ISDM goals/requirements, nor
to the related criteria. Instead, we apply the perspectives defined in Chapter 5

448

and in Chapter 8 to derive the classification of ISDM purposes into ISD
systelogical, ISD infological, ISD conceptual, ISD datalogical, and ISD physical
purposes. In the following we define them in relation to the ISDM
requirements164. ISDM requirements from the ISD systelogical perspective concern
information services, which ISD should provide, through the ISD method, to its
utilizing system (USISD). Examples of issues addressed by the ISD systelogical
perspective are: types of applications and ISD processes supported by the ISD
method, ease of learning and use of the ISD method, and effectiveness of the
ISD method. The ISDM requirements from the ISD infological perspective concern
the support the ISD method provides for ISD actions and ISD deliverables. The
support is expressed in terms of ISD workflows, ISD process models, and
description models. The ISD conceptual perspective guides the focusing on ISDM
requirements that concern the conceptual contents of the ISD deliverables. The
requirements pertain, among others, semantic richness and complexity of the IS
meta data models and abstraction structures supported by the ISD method. The
ISD datalogical perspective addresses the support of the ISD method to establish
ISD roles, ISD positions, ISD organization units, and ISD phase structure, as
well as to consider in which situations CASE tools are used in ISD work.
Finally, ISDM requirements from the ISD physical perspective involve the
support the ISD method provides in detailed and concrete terms of ISD actors,
ISD actions, ISD deliverables, ISD facilities, and ISD locations.

In the ME literature, there are only a few presentations which address the
ME purposes in an explicit way. Rolland et al. (1999), Ralyte (2002) and Ralyte et
al. (2003, 95) suggest an interesting way to describe intentions in method
engineering. They introduce the ME process model, called MEMP, which is
based on ”the strategic process meta-model”, known as the map (Rolland et al.
1999). The map contains two fundamental concepts: intention and strategy. An
intention is “a goal that can be achieved by the performance of the process”
(Ralyte 2002, 130). It refers to a task (activity) that is a part of the process and is
expressed on the intentional level. A strategy represents the manner in which
the intention can be achieved. The model is presented in a graph showing
desired states (intentions) and possible transitions (strategies). Compared to our
contextual approach, in the MEMP ME goals are expressed indirectly in terms
of ME actions that actually refer to ME deliverables resulting from the ME
actions. For example, ‘Construct structural view’ is an intention with which it is
expressed that the ISD method should support the named ISD activity. In our
view, it is much more natural and easier to explicitly express ME purposes
(problems, goals, requirements) in separate terms, although related to other
parts of the ME context.

In addition there are some suggestions for approaches to derive
requirements for ISD methods. Tolvanen (1998) distinguishes between the
problem-driven approach, the contingency-based approach, and the stake-
holder value-based approach. Ralyte (2002, 131) define two requirements

164 The ISD perspectives could be, correspondingly, defined in relation to ISDM goals,

ISDM problems, etc.

449

eliciting strategies in their method engineering process model. The intention
driven strategy is based on the analysis of the existing method and the detection
of those development actions which must be included into the method or
eliminated from it. The process driven strategy is based on the identification of
those ISD actions which must be supported by the new method. The
aforementioned presentations are, however, quite general. In conclusion, we
can say that the ME purpose domain is in most of the presentations totally
ignored, and also in those addressing the domain it is only generally
considered.

10.3.2 ME Actor Domain

The ME actor domain consists of all those concepts and constructs that refer to
human and active parts of the ME context. An ME actor is a human thing or an
administrative thing that is, one way or another, involved in the ME context. A
human ME actor means an individual person or a group of persons contributing
to the ME work. An ME administrative actor is an ME position, or a
composition of ME positions. An ME position is a post of employment occupied
by a human actor in the ME context. It is identified with a title, composed of the
defined ME roles, and equipped with a set of skill or capability
characterizations. An ME role is a collection of ME responsibilities and ME
authorities (see Figure 107).

In the ME literature several terms are used to denote ME roles and ME
positions. Kumar and Welke (1992, 266) were the first to recognize the need for
a specific organizational position for method resource management and
engineering. They coined the term “methodology engineer/administrator”.
According to Kumar et al. (1992) a methodology engineer is a highly trained
analyst who has a high-level view of systems development and systems
development methodologies. He/She is responsible for the administration of a
method base, which is called a component base. That means e.g. establishing
equivalence mappings among the components and classifying the newly
acquired components so that they can be indexed for retrieval. In addition, a
methodology engineer monitors and evaluates the use of method components
and stores reports of successful or unsuccessful experiences in the component
base for future use (Kumar et al. 1992, 266).

Since Kumar et al. (1992), several suggestions for the role of method
engineer have been presented (Harmsen et al. 1994, 175; Nuseibeh et al. 1996,
267; Odell 1996, 4; Tolvanen 1998, 67; Gupta et al. 2001, 156). Some of them
distinguish between ‘method administrator’ and ‘method engineer’ to emphasis
the significance of a method base (e.g. Odell 1996, 4; Harmsen et al. 1994, 175;
Harmsen 1997, 115). In addition to the terms mentioned above, ‘method
architecture’ (Iivari et al. 2001), ‘process engineer’ (Kruchten 2000, 259;
Firesmith 2002, 95) and ‘methodologist’ (Falkenberg et al. 1998, 1; Firesmith
2002, 95) have been deployed.

450

ME actor

ME roleGroupPerson

Method expert

ME organizationME positionME hum an actor

1..*

1..*

*

*
memberOf

* subordinate

1

supervisor

supervision
1..*

1
occupiedBy

Work expertTheory expert

Business expert

IS developer

Vendor/Consultant

IS w orker

IS client

IS ow ner

IT expert

Tool expert

1..* *
plays

ME project m anager

ISD project m anager

Method engineer

1..*

1..*

FIGURE 107 Meta model of the ME actor domain

In this study we distinguish between eight ME roles (see Figure 107). Six of
them have already been defined in the ISD ontology in Chapter 8, namely the IS
owner, the IS client, the IS worker, the IS developer, the ISD project manager,
and the vendor/consultant. If the ME concerns method customization for an
organization or method configuration for a specific ISD project, IS owners, IS
clients, IS workers, IS developers and ISD project managers can provide
experience about prior ISD projects and opinions about the quality of the IS’s
designed and implemented in those projects. They can also bring out
requirements on a way of modeling of, a way of working in, and a way of
organizing, the target ISD projects. Vendors and consultants may be needed if
the organization has not enough expertise in the concerned method or in the
ME process (Roberts et al. 2001, 635). These “mediating institutions” can be
external consulting firms or universities. The seventh ME role is a method
engineer, a change agent (Mathiassen 1998, 82) who has the main responsibility
for ME actions in the ME effort. IS developers and ISD project managers, and to
some extent IS owners, IS clients and IS workers, can be regarded as method

451

engineers’ customers (cf. Nuseibeh et al. 1996, 270)165. The eighth ME role is that
of an ME project manager who makes plans of and decisions on how to organize
the ME effort. This includes making decisions on ME phases, schedules,
milestones, baselines, resource allocation, etc. We call the ME actors who play
in any of the aforementioned ME roles the ME stakeholders.

An ME effort involves various persons with different backgrounds and
expertise. According to their expertise, the persons can be categorized into IT
experts, business experts, work experts, method experts, tool experts, and
theory experts. The three of these have already been introduced in Section 8.3.
A method expert is a person who has deep understanding of methods generally,
and of some specific method(s) in particular. A tool expert is a person, who has
familiarized oneself with tools used in method engineering (i.e. CAME tools
and/or MetaCase tools) and in ISD (i.e. CASE tools). A theory expert is a person,
who has special knowledge on theoretical and methodological issues of method
engineering. Depending on the needs of expertise in the ME context and the
availability of skilled persons, a person may act in one or more ME roles.

Method engineering can be a part time or full time activity for a person. In
a large software company, for example, it is common that one or more ME
positions with full time responsibilities are established for ME. There may even
be a special group or unit for method engineering. Persons in such positions
participate in the development of the organization-specific method, in its
configuration for projects as well as in method training and consultancy. Also
in multi-national projects, which aim to develop a new method (cf. the OSSAD
method (Conrath et al. 1989), Euromethod (Franckson 1994; Euromethod
1996166), the ELEKTRA approach (ELEKTRA 1998)), full-time ME positions are
established. In small companies responsibilities of method engineering are
included in ISD positions. In this way, the expertise on daily IS development
can be utilized in the customization and configuration of the ISD method.

An ME organization is a composition of ME positions with a coherent set of
organizational goals, authorities and responsibilities. A way in which an ME
effort is organized depends on the type of the ME context. In a method
development context, an ME organization is composed of persons with the
profound understanding of existing methods (method experts), CAME/CASE
tools (tool experts), and theoretical and methodological issues of method
engineering (theory experts). A customization context needs a method expert
with in-depth knowledge about some generic method(s) and principles of
customization. This person can come from the host organization or he/she can
be a representative of a consultancy firm. In the situations like this,
representatives of IS developers are also needed to bring forward knowledge of

165 Mathiassen et al. (1996) consider that the primary customers of method engineering

are those studying methods to learn new ISD practices. Those who actually work
with the methods (i.e. IS developers) are thought of in a secondary role. We disagree
on this.

166 Euromethod is now marketed under the name ISPL (Information Services
Procurement Library) (http://projekte.fast.de/Euromethod/)

452

the current culture, principles and ways of working in the ISD organization. In
a configuration context an ME organization can comprise a method expert, an
ME project manager, ISD project managers, IS developers and representatives
of stakeholders with work and business expertise.

10.3.3 ME Action Domain

The ME action domain comprises all those concepts and constructs that refer to
deeds or events in the ME context. ME actions are carried out to manage and
execute an ME effort. They are performed to construct, integrate, customize,
configure, and/or implement principles, models, techniques, guidelines, etc. of
the ISD method. ME actions involve, for instance, the knowledge acquisition on
problems encountered in prior ISD efforts, the specification of requirements for,
designing improvements to, and making evaluations of the ISD method.

ME is commonly considered to be analogous to an ISD effort (Olle et al.
1983; Kumar et al. 1992; Tolvanen 1998). On this basis we argue that all the
action structures defined in the ISD ontology (Section 8.3) hold, on a general
level, also for the ME ontology. This means that the generic action structures
(i.e. the decomposition structure, the control structures, and the temporal
structures) are intrinsic to the ME actions as well. Likewise, the management-
execution structure and the problem solving structure are typical to the ME
actions. Because these action structures have already been defined in Section
4.4.3 and Section 8.3, they are not considered here. In the ISD ontology, the ISD
phase structure is specialized, based on the Unified Process Model (Jacobson et
al. 1999), into four phases: IS inception, IS elaboration, IS construction, and IS
transition. This structure would also be applicable to the ME context following
the creation strategy. But to enable the phase structure to apply to other kinds
of ME contexts as well, we refrain from suggesting any specialized ME phase
structure. Instead, we define the generic ME phase structure being composed of
two or more unspecified ME phases. Phases may include several ME sub-
phases, which in turn are composed of ME steps.

In this section we consider two ME action structures in more detail. They
are the ISDM modeling structure and the ME workflow structure (see Figure
108). We discuss also how the ME action structures are intertwined. But before
doing this, we make a short survey of the ME literature to find out which kinds
of concepts and structures of the ME action domain are deployed.

In the literature ME actions are structured through steps (e.g. Vlasblom et
al. 1995; Nuseibeh et al. 1996; Harmsen 1997; Song 1997; Tolvanen 1998), phases
(e.g. Gupta et al. 2001), activities (e.g. Mi et al. 1996), or strategies (Ralyte et al.
2003). Vlasblom et al. (1995) present steps for the construction of a development
model based on the existing approaches / projects, and steps for deploying
development models in specific situations. Nuseibeh et al. (1996) decompose the
ME process of method design and construction into six steps. Harmsen (1997)
suggests steps to characterize the ME situation, to select method fragments and
to integrate them into the ISD method. Song (1997) outline steps for function-
driven and quality-driven method integration.

453

ME action

ISDM implementationISDM designISDM analysisISDM req's engineering

ME workflow

ME workflow str.

ME exec actionME mgmt action

ME mgmt-exec str.

ME action str.

ISDM evaluation

ME phase str.

ME prob.solv.str.

ISD modelling str.

ME rule

ME process

Generic action str.

Conceptualizing

Transforming

Representing

Translating

Testing

ME phase

Relating

Integrating

Multi-model a. str.

Elementary a. str.

Refining

Creating

Single-model a. str.

1instanceOf

* 1..*governs 1..*

1..*

1..*1 1..*

1..*

ME sub-phase

ME step

1..*

1..*

Modeling

Metamodeling

ME task
1..*

1..*

FIGURE 108 Meta model of the ME action domain

Tolvanen (1998) sub-divides the process of incremental method engineering
into two kinds of steps: a priori steps and a posteriori steps. The former steps
are executed before the use of a method, while the latter steps are carried out
during or after the method use. In Gupta et al. (2001) method engineering is
decomposed into three main phases: method requirements engineering, method
design, and method construction and implementation. Mi et al. (1996) list a

454

heterogeneous set of activities of construction and manipulation process of
software development models. The list contains activities such as meta-
modeling, model definition, analysis, prototyping, administration, integration,
and evolution. Ralyte et al. (2003) describe the ME process in terms of intentions
and strategies. Intentions are goals that can be achieved by the performance of
the processes. Strategies represent manners in which the intentions can be
achieved. In addition, Ralyte et al. (2003) suggest a classification of operators,
such as unification, transformation, abstraction/instantiation, specialization/
generalization, aggregation/decomposition, addition, and cancellation.

To summarize, we can state that propositions for the functional division of
ME efforts are quite heterogeneous in the ME literature. We cannot avoid
concluding that actions structures, both conceptually and terminologically, lack
careful considerations and specifications. What we aim to do next, is to define
the ISD modeling structure and the ME workflow structure, anchored on the
underlying ontologies, and inter-relate them with more elementary ME action
structures.

A. ISD Modeling Structure

Modeling plays a focal role also in ME. The main outcome of ME is the ISD
method, which typically consists of various models (cf. Section 9.5). ISD models
describe/prescribe ISD goals (ISD purpose models), ISD actors (ISD actor
models), ISD actions (ISD action models), ISD deliverables (ISD deliverable
models and ISD data models) and the like. IS meta models, in turn, provide the
concepts and constructs from which IS models are instantiated during ISD
efforts. Thus, ME involves modeling on two levels, on the type model level and
on the meta model level. We call the structures that are composed of ME actions
modeling ISD on these two levels the ISD modeling structures.

Modeling the structure and behavior of ISD does not essentially deviate
from modeling the structure and behavior of the IS considered in Section 8.3.3.
That implies that all the modeling actions and structures defined for IS
modeling are relevant to ISD modeling too. These action structures comprise
the elementary modeling structure (conceptualizing, representing), the single
model action structure (creating, refining, and testing), and the multi-model
action structures (transforming, translating, relating, and integrating). These are
taken as granted here.

The process by which a meta model is produced is called metamodeling.
Metamodeling is a modeling process, which takes place on one level of
abstraction and logic higher than the standard modelling process (Tolvanen et
al. 1996). Since the meta models also are models, they “inherit” the generic
properties of the models, including the structures of modeling actions that
involve the models. Thus, a meta model can be transformed or translated from
another meta model, and two meta models can be related to one another and
integrated to make a new meta model. There are, however, some modeling
actions that are specific to metamodeling. These actions are targeted to models
at two model levels. These actions are classification and instantiation (cf.

455

Section 3.9.2.1). Because these actions are so elementary to metamodeling, we
include them in the actions of conceptualizing (cf. elementary action structure).
This is justifiable because the process of classifying instance concepts and
constructs of IS models into meta concepts and meta constructs actually means
conceptualizing. The same is true when instantiating the meta concepts and
constructs of the IS meta model.

B. ME Workflow Structure

According to the ME workflow structure, ME is composed of various ME
workflows. An ME workflow is a coherent composition of ME actions, (a) which
are organized to accomplish some ME process, (b) which share the same target
of action, and (c) which produce results valuable for ME stakeholders. A part of
an ISD workflow is called an ME task. We distinguish between five ME
workflows: ISD method requirements engineering, ISD method analysis, ISD
method design, ISD method implementation, and ISD method evaluation. In
the following we use the abbreviation ‘ISDM’ to stand for ‘ISD method’ in the
names of the ME workflows.

The ISDM requirements engineering means an ME workflow, which aims to
identify and elicit ME stakeholders’ requirements concerning the nature,
contents and structure of the ISD method. It also seeks to establish and
maintain, at least to some extent, an agreement on the essential aspects of the
ISD method, and to express them as part of the ME goals. The ISDM
requirements can be brought out in nearly every phase of the ME effort.

The ISDM analysis denotes an ME workflow, which aims to produce high-
level descriptions of the ISD method, meaning that the ISD method is
considered from the ISD infological perspective and the ISD conceptual
perspective. Consequently, in this ME workflow concepts and constructs of the
ISD purpose domain, the ISD action domain and the ISD object domain are
used to make descriptions and prescriptions of what is to be done, for which,
and why in the target ISD context.

The ISDM design refers to an ME workflow, which aims to produce more
elaborated descriptions of the ISD method. Here, the ISD method is considered
from the ISD datalogical perspective, uncovering “How” an ISD effort is to be
accomplished. This means that the following kinds of questions are answered:
What kinds of ISD roles and ISD positions are established? How the ISD actions
are decomposed at a detailed level? Which part of the ISD work is to be
supported by computer-based tools?

The ISDM implementation means an ME workflow, which aims to produce
concrete descriptions/prescriptions of the ISD context from the ISD physical
perspective. That means that the descriptions/prescriptions made earlier are
realized and instantiated into an ISD project plan that dictates who does what,
why, how, for what, when and where.

The ISDM evaluation means an ME workflow, which aims to produce
assessments of one or more ISD methods according to the defined criteria. An
ISD method can be evaluated at any point of its life cycle. It can be just a

456

roughly outlined artifact, like that resulting from the ISDM analysis workflow,
or it can be a complete ISD method already used in an ISD project. The criteria
used vary from logical to technical and from general to detailed, depending on
the nature of the ISD method and the ISD perspective applied.

In the ME literature, it is very uncommon to recognize ME action
structures that correspond to our ME workflow structure. In their conceptual
framework for evolving software processes, Conradi et al. (1993) distinguish
between software production processes and software meta-processes. The
former carry out software production activities, and the latter improve and
evolve the whole software process. The software meta-processes are in charge
of e.g. process requirements analysis, process design, and process assessment.
Gupta et al. (2001) distinguish between three “ME phases”: method
requirements engineering, method design, and method construction and
implementation.

C. Synthesis

The ME action structures are highly intertwined with one another. A manner in
which ME actions appear and are interrelated to one another depends on the
type of the ME context (cf. development, customization, configuration) and the
ME strategy applied (cf. creation, integration, adaptation). To illustrate
interrelations of ME action structures, we consider one example of the ME
context. The ME context is a development context, which aims to engineer a
domain-specific method, mainly with the integration strategy. The ME work
covers the ISDM requirements engineering workflow, the ISDM analysis
workflow, the ISDM evaluation workflow, and perhaps part of the ISDM
design workflow. The ME work may start with the goal to have a proper
method for a novel field, such as agent-oriented information systems or
ubiquitous information systems. In the first phase, conceptions of the novel
domain are concretized by IS modeling from the IS conceptual perspective.
Derived from those, requirements for IS meta models, concerning special
concepts and constructs, are specified. Further, requirements are expressed for
such ISD approaches, ISD principles and ISD processes that support the
production of ISD deliverables, based on those IS meta models. Taking these
requirements as a point of departure, existing ISD methods are analyzed to find
out parts that could be accepted and integrated into the body of a new method.
The last step in this first ME phase is to set up goals and refine a time schedule
with milestones and baselines for the ME context.

The ME work continues with refining requirements, modeling an ISD
context from the ISD infological perspective, and modeling the contents of ISD
deliverables from the ISD conceptual perspective. ISD modeling can be first
targeted on the most essential part of the ISD process (e.g. IS analysis workflow)
or on some major ISD deliverables (e.g. extended class diagram). The ISD
models produced so far are tested with some case material and further refined
based on the experience from testing.

457

In the next ME phases, the ISD context is considered from the ISD
datalogical perspective in order to compose ISD actions into ISD roles and ISD
positions. Also some suggestions are given for a generic ISD phase structure.
Quality of the engineered ISD method, or parts thereof, can be evaluated
conceptually and/or through pilot testing.

The ME context described above with a scenario comprises several ME
phases, ME workflows, ME problem solving actions, and ISD modeling actions,
as well as many kinds of generic action structures. ME actions in the ME action
structures are highly inter-related to one another. With the well-defined action
structures in the ME ontology it is possible to focus on one or two structures at
a time, and thus decrease the complexity related to the ME context.

10.3.4 ME Object Domain

The ME object domain comprises all those concepts and constructs that refer to
something to which ME actions are targeted. We call them ME deliverables.
Based on the ME management-execution action structure we can distinguish
between ME management deliverables and ME execution deliverables. Here, we
confine ourselves to consider only the latter. In the following we shortly call
them the ME deliverables, when there is no risk of misunderstanding, and
define the concepts and relationships related to them (Figure 109).

ME deliverable

ME exec deliver.ME mgmt deliver.

OSme construct

1..*

1..*

signifies

*

supports

*

*
* 0..1

*

versionOf

*
0..1

copyOf

ME baseline
1..*

0..*

Informal

Formal

ISD method

Generic Domain-specific Org.-specific Proj.-specific

Method component
1..*

1..*

0..1 *

Semi-formal

predAbstract

FIGURE 109 Meta model of the ME object domain

458

ME deliverables inherit all the features and relationships of the generic notion
of an informational object specified in Section 4.4.4. This means, for instance,
that an ME deliverable can be an assertion, a prediction, a plan, a rule, or a
command. An ME deliverable signifies certain phenomena in OSME. The OSME is
very large and heterogeneous, comprising prior ME contexts, prior ISD
contexts, the ME context at hand, target ME contexts, target ISD contexts,
existing ISD methods, the ISD method under construction, etc. We use the term
‘OSME construct’ to denote any part of the object system of ME. The signifies
relationship expresses the relationship between an ME deliverable and an OSME
construct.

ME deliverables can be informal (e.g. the ISD systelogical requirements of
the ISD method), semiformal or formal (e.g. the IS meta data model). Some of
the ME deliverables are specified as parts of ME baselines. An ME baseline is a
set of reviewed and approved ME deliverables. The main deliverable of ME is
the ISD method, which can be a generic method, a domain-specific method, an
organization-specific method, or a project-specific method. We have presented
a comprehensive decomposition of the ISD method based on seven methodical
views in Section 9.5. Accordingly, the ISD method, realizing a set of ISD
paradigms, ISD approaches and ISD principles (the generic view), can be seen
as descriptions/prescriptions, presented in one or more languages (the
presentation view) and materialized in some physical form(s) (the physical
view), refer to the prior contexts (the historical view) and the target contexts
(the application view) with the concepts and constructs (the contents view) that
constitute the conceptual foundation of the method and its components (the
structural view). Because we do not want to repeat considerations already
presented in Section 9.5, the only concepts we have included in the meta model
in Figure 109 from the ISD method ontology (Section 9.5) are an ISD method
and a method component. A method component means a well-defined part of
the ISD method that can be integrated to other method components to form a
coherent and consistent method.

ME deliverables are related to one another with five kinds of relationships.
An ME deliverable can be composed of other ME deliverables. An ME
deliverable can be used as an input to, or as a prescription for, another ME
deliverable (i.e. the supports relationship). For example, the selected
contingency framework can provide a structure for the characterization of the
target ISD context. An ME deliverable can be a version of another ME
deliverable (i.e. the versionOf relationship). An ME deliverable can be a copy of
another ME deliverable (i.e. the copyOf relationship). Finally, an ME
deliverable can be more abstract than another ME deliverable in terms of
predicate abstraction (i.e. the predAbstract relationship). This kind of
relationship exists, for instance, between an infological description of and a
datalogical description of the ISD method.

In the ME literature there are no generic concept corresponding the notion
of an ME deliverable. Instead, the notions of a method and a method
component (or some of their counterparts, see Section 9.8) are used to refer to

459

the target of ME efforts. The comparative analyses made in Section 8.5.4 (the
ISD ontology), in Section 9.7 (the general structure of the ISD method) and in
Section 9.8.6 (the component structure of the ISD method) showed that
frameworks, meta-models and the like presented in the ME literature adopt
rather limited views of the contents and structure of the ISD method. Without
repeating here the details reported from the analyses, we state that the ME
object domain in our ME ontology is much more comprehensive and better
structured than in any other ME artifacts in the literature.

10.3.5 ME Inter-Domain Relationships

In the sections above the ME concepts and the ME constructs have been defined
separately for each of the four ME domains. The ME domains are, however,
inter-related in many ways. Figure 110 presents the general-level meta model,
which illustrates the most essential ME inter-domain relationships. It has been
derived from the meta models presented in Section 4.5 and Section 8.3.5. We
assume that the meanings of the relationships are self-evident on the basis of
the definitions given in the aforementioned sections. Here we only consider one
relationship in more detail. That is the strivesFor relationship.

ME action

ME Time

ME
actor

ME role

ME
deliverable

ME tool

ME
location

ME human
actor

ME facility

ME
purpose

ME
position

ME
resource

strivesFor
motivatedBy

carriedOut

occursAt

input

existsAt

intededFor

performs

uses

situatedIn

situatedIn

usedToMake

existsAt

situatedIn

ownedBy viewedBy

useAbility

intendedFor

existsAt

intendedFor

existsAt

output

responsibleFor

expressedBy

OSme
construct

signifies
involvedBy

FIGURE 110 Meta model of ME inter-domain relationships

460

The strivesFor relationship between an ME action and an ME purpose means
that an ME action is to be conducted, is conducted, or was conducted for
satisfying certain goal(s). The goal(s) may be inferred from encountered ME
problems, specified ME requirements, observed opportunities, or perceived
threats. From the historical viewpoint, the strivesFor relationship, together with
the input and output relationships between the ME actions and the ME
deliverables, can be used to express method engineering rationale (cf. method
construction rationale in Rossi et al. 2004). Method engineering rationale
“garners a history of method knowledge evolution as part of the method
engineering process”, which develops, customizes and configures the method
(cf. Rossi et al. 2004). With particular methods (e.g. IBIS (Conklin et al. 1988),
REMAP (Ramesh et al. 1992), QOC (MacLean et al. 1991), PDR (Carroll et al.
1991) it is possible to model and reason from the knowledge on produced ME
deliverables, conducted ME actions, stated ME goals, and reasons for them (i.e.
arguments and justifications). This knowledge enables to trace reasons for the
made decisions and actions, which is especially important in ISDM
requirements engineering.

10.3.6 Summary

In this section we have defined the first main part of the ME ontology. This part
is composed of concepts and relationships within and between four ME
domains: the ME purpose domain, the ME actor domain, the ME action
domain, and the ME object domain. For each domain, a meta model and
definitions of concepts and constructs have been provided. Despite a large
array of ME literature, there appeared to be no generic representation that
would have helped us apply the integration strategy in ontology engineering.
In contrast, engineering the ME domain part of the ME ontology had to be
founded on the context ontology and the ISD ontology. Into that body we have
then merged individual concepts and constructs found in the ME literature.
Due to the lack of coherent representations in the literature, we were not able to
make a comparative analysis.

10.4 ME Perspectives

In this section we define the second main part of the ME ontology that concerns
the ME perspectives. These perspectives are important to managing the
complexity related to the structure, function and behavior of the ME context.
They also help us structure the process of engineering the ME method. The ME
perspectives are derived from those defined on the ISD layer (see Section 8.4).
Here we consider only the ME systelogical, ME infological, ME conceptual and
ME datalogical perspectives. After discussing the perspectives, we describe the
ME inter-perspective relationships.

461

10.4.1 ME Systelogical Perspective

The ME systelogical perspective reveals the support that method engineering
provides to its utilizing system (USME). The utilizing system includes the target
ISD contexts and the USISD. The definition implies that the following questions
are relevant from the ME systelogical perspective:
• What kind is/are the target ISD context(s) for which the ME is to produce

the ISD method?
• What kinds are the IS’s for which the aforementioned ISD projects are to

be launched?
• What kinds are the USIS contexts which the IS’s should provide with

information services?
• What kinds are the services the ME should provide to the USME?
• Derived from the answers to the above questions, what are the goals and

constraints for ME approaches, ME organizations, ME actions, ME
deliverables, etc. in the ME context?

From the characterizations above we can infer the meta model of the ME
systelogical perspective and present it in Figure 111. We see that the ME
systelogical perspective concerns, one way or another, four kinds of contexts:
the ME context, ISD contexts, IS contexts and USIS contexts. The last three
contexts are included in the USME (see Section 5.3). The ME context provides
ME services to the ISD contexts, called the target ISD contexts. ME services
means all those material and immaterial ME deliverables that are produced in
the ME context and delivered to be utilized in the target ISD contexts. The main
part of the ME services is, of course, the ISD method. From the ME systelogical
perspective the ME context is seen as a black box, meaning that only the ME
purpose domain, in addition to the aforementioned ME services, is addressed in
the perspective. ME purposes are related to desired ME approaches, ME
principles, ME actors, ME actions and ME deliverables, but they are expressed
in a way that does not detail the concepts of the other ME domains.

ISD purpose

US action IS purposeUS purpose

US context IS service IS context

ISD serviceISD context

US object US facility IS action IS object

1

provides

1

1..*

exploits

1..*

1

provides1

1..*

exploits

ME serviceME context
1

provides

1..*

exploits

ME purpose ISD action ISD object

1..* 1..* 1..*

FIGURE 111 Meta model of the ME systelogical perspective

462

Resulting from the ME systelogical perspective, the target ISD contexts, in turn,
are perceived from the ISD systelogical perspective. Depending somewhat on
the kind of the ME context, features related to ISD purposes, ISD actions, and
ISD deliverables of the target ISD contexts are concerned.

A variety of ISD methods under engineering is quite large. At one extreme
end there are ISD methods, which focus, in particular, on the alignment of the
IS with the business system. At the other extreme end, there are ISD methods,
which provide special support, for instance, for technical improvements in the
CIS. An example of this kind of ISD method is an architecture design method.
Instead of establishing an extensive classification of ISD methods, we content
ourselves with categorizing ISD methods according to those IS perspectives
which are seen important in the concerned ISD methods. Thus, we have
systelogical methods, infological methods, conceptual methods, datalogical
methods, and physical methods. Next we characterize these methods as regards
their IS perspectives. Systelogical methods provide IS meta models to analyze
and design the support the IS should provide to its utilizing system. Infological
methods address especially the functional structure of information processing
and informational objects in the IS. Conceptual methods support ISD work with
specific means to conceptualize the contents of informational objects of the IS.
Datalogical and physical methods help the analysis and design of
organizational structures of the HIS and/or technical structures of the CIS.
Depending on the kind of the ISD method, there are differences in which IS
domains are considered from the ME systelogical perspective in the ME.
Assuming that the ISD method under engineering addresses especially the IS
systelogical and IS infological aspects of the IS, the target IS contexts are
perceived through concepts of the IS purpose domain, the IS actions domain,
and the IS object domain (see Figure 111).

The ultimate goal of the ME is to benefit USIS contexts with improved
information and information processing through better information systems
that, in turn, result from improvements in the ISD’s deploying the improved
ISD method. Therefore, it is necessary to include also the essential features of
the USIS contexts in the systelogical perspective of the ME context.

The ME systelogical perspective is not specified, not even deployed, in its
entirety in any ME artifact in the literature. There are, however, artifacts that, to
some extent, address some aspects related to this perspective. van Slooten et al.
(1996), for instance, define a number of contingency factors to be used in
characterizing ISD projects to help in the selection of ISD methods. The
contingency factors are related to the USIS context (e.g. impact = to which extent
the information system will change business operations after implementation),
the IS context (e.g. complexity = to what extent the functional components of
the information system are complex), and the ISD context (e.g. management
commitment, time pressure, knowledge and experience). Harmsen (1997, 215-
221) presents a procedure for method fragments selection and assembly. The
first two steps in the procedure, namely determination of the project goal and

463

determination of the preliminary scenario, address aspects that clearly belong
to the scope of the ME systelogical perspective.

10.4.2 ME Infological Perspective

From the ME infological perspective the ME context is seen as a functional
structure of information processing and informational objects. The perspective
ignores the features related to how the informational objects are presented and
implemented. The relevant ME domains are: the ME purpose domain, the ME
action domain, and the ME object domain. The concepts of the ME purpose
domain are used to elaborate the conceptions, already drafted with the ME
systelogical perspective, about why method engineering is carried out or is to
be carried out. The concepts of the ME action domain are used to establish
decomposition hierarchies of ME actions and to define control structures
among the ME actions. The concepts within the ME object domain are used to
express what kinds of ME deliverables are produced in the ME context. In the
following, we consider more closely the ME infological perspective on the basis
of the meta model presented in Figure 112.

ME goal

Decomposition str.

ME workflow str.

Generic action str.

ME deliverable

ME workflow

ME action str. ME action

ME purpose

ME rule

Control str.

ME prob.solv.str.ISD modeling str.

0..*

1..*

strivesFor

*

*

dueTo

1..*

ME reason

0..*

1..*
output

0..*

1..*
input

*

governs

*

ME exec deliver.

*0..1

*

0..1

*
*

supports

*0..1
*

predAbstract copyOf

versionOf

FIGURE 112 Meta model of the ME infological perspective

The ME reasons and the ME goals are used to express problems in the prior and
current ISD projects, requirements for the new ISD method, and goals for the
ME effort at hand. The influence, refinement, and causalTo relationships show
how the concepts of the ME purpose domain are related to one another.

The ME actions are organized according to the generic action structures
(i.e. the decomposition structure, the control strucutres), the ME problem

464

solving structure, the ISD modeling structure, and the ME workflow structure.
The ME management–execution structure as well as the ME management
deliverables are not considered here. ME rules for ME actions are specified on a
general level. The ISD method and method components on various granularity
levels are, of course, the most essential ME execution deliverables. The partOf,
versionOf, copyOf, supports and predAbstract relationships are recognized
among the ME deliverables.

The ME infological perspective is most commonly applied in describing
ME processes in the literature. Harmsen (1997), for instance, describes the
process of situational method engineering composed of five steps. ME actions
of, and ME deliverables resulting from, the steps are outlined. Harmsen (1997)
also specifies the MEL language (Harmsen 1997), which provides constructs to
administrate, query and manipulate method fragments. Tolvanen (1998)
decomposes the process of incremental method engineering into six steps,
which are described on a general level. Gupta et al. (2001) decompose ME into
three phases and for each of the phases tasks and outcomes are outlined.

10.4.3 ME Conceptual Perspective

The ME conceptual perspective addresses the conceptual contents of the ME
deliverables. Here, we consider the perspective only in relation to the ME
execution deliverables. The conceptual contents of the ME deliverables contain
constructs on multiple processing layers and on multiple model levels. To
clarify this we first consider the perspective with Figure 113.

In Figure 113 the columns and the rows stand for the model levels and the
processing layers, respectively. On each layer, the ‘producer’ context and the
‘target’ context are mentioned. For instance, on the ME layer, the producer (of
deliverables) is the ME context and the target (to which the ME deliverables
refer) is the ISD context. In the cells, examples of conceptual models are
presented in a graphical form. Let us first consider examples at the type model
level. The ISD data model (the second row and the leftmost column) is an ME
deliverable expressing the conceptual contents of ISD deliverables, showing in
this case that “a Conceptual schema is owned by a Database designer”. The IS
data model on the third row is a part of the conceptual schema of the IS
database, expressing that “a Customer issues an Invoice”. At the meta model
level (the column in the middle) there are meta data models specifying concepts
and constructs that are allowed in data models at the type model level. For
instance, on the second row the IS meta data model contains the concepts
EntityType and RelationshipType, of which Customer and Invoice on the third
row are instances.

The topmost row corresponds to the conceptual contents of the
deliverables that the RW context produces. One of the RW deliverables is the IS
meta meta data model specifying the concepts and constructs allowable on the
next lower level. The IS meta meta data model contains the concepts Class,

465

Type model
level

ME engineer

OS relationshipType

EntityTypeDatabase designer

Conceptual schema

Customer

Invoice

EntityType

Method component OS relationshipType

Class

Association

responsibleFor

ownedBy

Issues

Producer: RW
Target: ME

Producer: ME
Target: ISD

Producer: ISD
Target: IS

Meta model
level

Meta meta
model level

ME
data

model

ISD
data

model

IS
data

model

ISD
meta data

model

IS
meta data

model

IS meta
meta data

model

EntityRole ClassRole

EntityRole

instanceOf

Legend:

FIGURE 113 Processing layers and meta levels with some examples

ClassRole167 and Association, according to the MOF model (OMG 2002). To help
us distinguish between the (type) models, the meta models, and the meta meta
models we have applied different graphical notations. The data models on the
type level are presented in the ER notation (Chen 1976). The concepts and
constructs of the ER model and the IS data meta meta model are denoted by the
UML notation (Booch et al. 1999).

Based on the perspective ontology (Chapter 6), we can say that the ME
conceptual perspective concerns the second row in the setting above. The
perspective recognizes the concepts and constructs to be used at the type model
level, as well as at the meta model level. At the type model level, there are a
large number of ISD models. In Figure 113 we have used the ISD data model as
an example of these models. Other possible ISD models are a data flow diagram

167 We use the term ‘ClassRole’ to differentiate it from ‘Role’ in the generic ontology

(Section 3.3) and ‘EntityRole’ in the ISD ontology (Section 8.4.3).

466

(Yourdon 1989) expressing ISD workflows and ISD deliverables, an
organization chart showing the organizational structure of an ISD project, a
deployment diagram (Booch et al. 1999) describing software and hardware
architecture, etc. At the meta model level, there is the IS meta data model in
Figure 113. Correspondingly, there could be several other IS meta models, such
as the IS meta action model, the IS meta actor model, and the IS meta
architecture model. It is impossible for us here to describe the ME conceptual
perspective in a way that would cover all the ISD models and IS meta models.
Therefore, we have selected only those models presented in Figure 113. To give
a more detailed picture of the ME conceptual perspective, we present the meta
models of the ISD data model and of the IS meta data model in Figure 114 (cf.
the topmost row in Figure 113).

Figure 114 (a) presents some of those concepts and constructs with which
the conceptual contents of the ISD deliverables (OSISD) can be specified (cf. the
ISD data model). Because we apply the same meta data model as at the next
lower level (see Section 8.4.3), the basic concepts (i.e. Entity type, Entity role, OS
relationship type, Attribute) are applicable also here. We do not consider them
any more here. An OSISD construct type in OSISD means a conceptual construct
composed of specific entity types related to one another with OS relationship
types and characterized by attributes. An example of the OSISD construct type is
“a Conceptual schema is owned by a Database designer”. An OSISD state type
means a state type of the object system or its parts, composed of OSISD construct
types. An OSISD transition type is a generic concept corresponding to the
specification of all those features that are shared by OSISD transitions. An OSISD
state type may involve entity types, OS relationship types and/or attributes.
The OSISD transition types can be composed to establish OSISD transition
structures like those defined in the state transition ontology. An OSISD event type
means a generic concept corresponding to the specification of all those features
that are shared by OSISD events, which may trigger an OSISD transition and
which may be caused by another OSISD transition. An OSISD constraint specifies
allowed OSISD states (static OSISD constraint) and/or allowed OSISD transitions
(dynamic OSISD constraint) between the OSISD states.

Figure 114 (b) presents some of those concepts and constructs with which
the conceptual contents of the IS meta data model can be specified. Because we
apply the MOF model (OMG 2002) as the meta meta model in this work, the
figure contains concepts such as Class, Class role, Association, and Attribute.
We do not consider them here in more detail (see Appendix 2). We have also
included one more concept in the IS meta meta model. That is an OSis construct
meta type. An OSis construct meta type in OSME is composed of classes related
through associations and class roles to one another. It is a type specification of
those construct types defined in the meta model of the IS data model from the
conceptual perspective in Figure 83.

From various portions of the ME conceptual perspective the IS meta meta
models are most commonly considered in the ME literature. Several candidates
for the IS meta meta models have been suggested (e.g. ER model (Chen

467

OSis constructMetaType

ClassRole

Class

Association

Attribute

1
isRelatedTo

1..*
characterizes

1..*

1..*

characterizes

1..*

plays

OSisd eventType

OSisd transitionType

OSisd constructType

OSisd stateType

EntityRole

EntityType

OS relationshipType

Attribute

1
isRelatedTo

1..*
characterizes

1..*

1..*

characterizes

1..*

plays

1..*

(a)

1..*

postState

*

preState

*

causedBy

*

triggers

Static OSisd constraint

Dynamic OSisd constraint

1..*
concerns

*

concerns

*

*

concerns

OSisd constraint

(b)

* *

* 1..*

1..*

1..*

1..*

*

*

1..*

1..*

1..*

FIGURE 114 Meta models of the ME conceptual perspective concerning (a) the ISD data

model and (b) the IS meta data model

1976, NIAM (Nijssen et al. 1989), ASDM (Heym et al. 1992a), GOPRR (Kelly et
al.1996) and MEL/MDM (Harmsen 1997). There are also some presentations
that specify ISD meta models, in particular those that provide concepts and
constructs of the ISD action domain and the ISD deliverable domains (e.g.

468

Bandinelli et al. 1993; Deiters et al. 1994; Christie 1993; Shepard et al. 1992;
Dutton 1993; Kaiser et al. 1993).

10.4.4 ME Datalogical Perspective

From the ME datalogical perspective ME is seen as the context in which ME
deliverables, represented in some language, are processed for certain purposes
by ME actors with some computer-aided ME tools. The ME datalogical
perspective makes no reference to data carriers, nor to other physical things in
the ME context. The perspective elaborates conceptions about the ME domains
already recognized from the ME infological perspective. In addition, it
addresses two other ME domains, namely, the ME actor domain and the ME
facility domain. Since the number of the concepts needed to describe all the
datalogical features of the ME context is huge, we discuss in the following only
the most essential concepts and constructs, and from them only those which
have not been addressed in the preceding sub-sections. The meta model of the
ME datalogical perspective is presented in Figure 115.

ME actions are aggregated to constitute ME roles, which are further
composed to form ME positions. An ME role equipped with skill requirements
can be a part of several ME positions. An ME organization consists of ME
positions that are related to one another through the supervision relationships.

In the ME action domain, the generic action structures, the ME workflow
structure, the ME problem solving structure, and the ISD modeling structure
are refined from those considered within the ME infological perspective. In
addition, the ME management–execution structure as well as the ME phase
structure are established to enable the understanding, structuring and
representing of the management and coordination of the ME project. The ME
phase structure is decomposed into ME sub-phases and ME steps. The
relationships between phases and between sub-phases are based on the control
structures, yet not on the temporal structures.

In the ME object domain, still more refined decompositions and
specializations of ME deliverables, including the ME management deliverables,
are recognized. Some ME execution deliverables are specified to be parts of the
baselines of the phases.

In Figure 115 the concepts and constructs of the ME facility domain are
abstracted into the notion of an ME tool (cf. CAME tools). It would be possible
to present a more tool-centered view showing essential components of the tools,
as well as the interaction, through dialogs, between the human actors and the
tools (see Section 6.3.5). We have to exclude this view from our consideration
here.

10.4.5 Inter-Perspective Relationships

The ME perspectives are inter-related to one another. Figure 116 illustrates
the contents of the ME perspectives in terms of contexts and domains
concerned, as well as the relationships between the ME perspectives. To

469

ME reason

ME phase str.

ME workflow str.

Generic action str.

ME deliverable

ME baseline

ME action str. ME action

ME purpose

ME position

ME prob.solv.str.

ISD modeling str.

0..*

1..*

strivesFor

*

*

dueTo

1..*

1..*

ME goal

0..*

1..*
output

0..*

1..*
input

ME mgmt-exec str.

ME role

1..*

1

1..*

1

output

ME organization

ME procedure

ME rule

1..*
1

1..*

1

* influence

*

*
*

1..*

*

governs

ME tool

1..*

performs

*

1supervision

*

ME phase

1..*

1

ME exec deliv.ME mgmt deliv.

ME sub-phase

ME step

1..*
1

1..*
1..*

*

responsibleFor

ME mgmt action ME exec action

1 1

1..*

1..*

refinement

FIGURE 115 Meta model of the ME datalogical perspective

distinguish between the concerned contexts, we depict them with rectangles in
bold whenever there are more than one context involved by the ME
perspective. As said above, the ME systelogical perspective involves four kinds
of contexts, the ME context, the ISD contexts, the IS contexts, and the USIS
contexts. The corresponding domains are shown in the figure. The ME
infological perspective, the ME datalogical perspective, and the ME physical
perspective concern the ME context only. The ME conceptual perspective
designates, on a general level, things to which the ME deliverables, including
the ME management deliverables, refer. For each relevant thing both the
structural and dynamic features are identified. The ME deliverables are
recognized and conceptually elaborated within four perspectives. In each of
them, the contents of the deliverables can be specified and analyzed through
the conceptual foundation provided by the ME conceptual perspective.

470

Facility

Purpose Action Object

ME
systelogical

Purpose Action Object

ME
infological

Purpose Actor Action Object Facility

ME
datalogical

Purpose Actor Action Object Facility Location Time

ME
physical

ME
conceptual

realizedFrom/
instantiatedFrom

realizedFrom

IS

ISD

US

Purpose

Purpose

IS

ISD

US

Structural

Structural

signifies

derivedFrom

Action Object

OS Structural

Structural Dynamic

Action Object

PurposeME

ME Structural Dynamic

signifies

signifies
Time

signifiessignifiessignifies

realizedFrom

realizedFrom/
instantiatedFrom

realizedFrom/
instantiatedFrom

realizedFrom/
instantiatedFrom

realizedFrom/
instantiatedFrom

realizedFrom/
instantiatedFrom

realizedFrom

FIGURE 116 ME inter-perspective relationships

10.4.6 Summary

In this section we defined four ME perspectives (i.e. the ME systelogical
perspective, the ME infological perspective, the ME conceptual perspective, and
the ME data perspective) to help us cope with the complexity related to the
structure, function and behavior of the ME context. For each perspective we
provided the concepts and constructs and described them in meta models. In
addition, we referred to the ME literature to show how issues pertaining to the
ME perspectives are addressed. At the end of the section, we outlined the ME
inter-perspective relationships.

471

10.5 ME Method Ontology

The purpose of this section is to characterize and define the notion of an ME
method as well as to present the ME method ontology. We had a
comprehensive discussion about the notion of an ISD method in Chapter 10.
Because the ME method inherits the generic features from the ISD method, we
consider these issues here only shortly.

10.5.1 Definition of the ME Method

The method contains collective knowledge and experience that are made
‘visible’ to enable their exploitation and advancement (Tolvanen 1998;
Fitzgerald et al. 2002; Schönström et al. 2003; Backlund et al. 2003). In the context
of ME this knowledge concerns ME process, application domain, IC technology,
and human and social issues (cf. Freeman 1987; Iivari et al. 2001). The
knowledge of ME process means all that information that pertain to how to
accomplish ME work. The knowledge of application domain means all the
information that concerns ISD efforts to be accomplished according to the ME
method (i.e. the target ISD contexts), as well as information systems and
contexts for which the IS’s are to be developed. The knowledge of IC
technology means all that information that concerns the search, acquirement,
installation, and deployment of hardware and software for IS’s, ISD’s and ME.
Finally, the knowledge of human and social issues concerns human
characteristics and behavior as well as social and organizational aspects that
should be taken into account in prescribing the ME.

Following the categorization of the ISD methods defined in Section 9.3, we
distinguish between generic ME methods, domain-specific ME methods,
organization-specific ME methods, and project-specific ME methods. A generic
ME method provides general approaches, principles, models and guidelines to
conduct ME efforts in a wide range of ME contexts. A domain-specific ME method
provides more domain-specific support to conduct ME efforts in a specific
application domain. An organization-specific ME method provides customized
support to conduct ME efforts in a specific organization. A project-specific ME
method provides configured and instantiated support to accomplish a particular
ME effort.

In Section 9.4 we defined seven methodical views from which the notion
of an ISD method can be conceived and understood. The views are the
historical view, the application view, the generic view, the contents view, the
representation view, the physical view, and the structural view. Each view
sheds light on different aspects of the method. Here we apply the views to
clarify the notion of the ME method in two ways. First, we present a holistic
definition of the ME method, and then we define the ME method ontology.

As far as we know, no definition of the ME method is provided in the ME
literature. That is quite surprising given that ME has been seen important for

472

years. Actually, although a large collection of various ME strategies, ME
approaches, ME principles and ME procedures have been suggested, there
exists no complete ME method either, as we will conclude in the comparative
analysis in Chapter 12. We define the notion of the ME method, based on the
methodical views and the definition of the ISD method (see Section 9.4), as
follows:

An ME method is an artifact anchored on historical, intentional and functional
backgrounds and aimed to be applied and deployed as a prescription in the
intended kinds of ME contexts, in order to make organizational and technical
changes in ISD contexts possible or more productive. The ME method, presented
and materialized in several forms, contains knowledge bringing out how ME
actors carry out ME actions to produce ME deliverables, by means of ME
facilities, in an organizational and spatiotemporal context, in order to satisfy ME
goals set by ME stakeholders. The ME method is composed of descriptive and
prescriptive parts in a large variety.

In the next section we elaborate this definition by showing which concepts and
constructs are embodied by each of the methodical views in the context of ME.

10.5.2 ME Method Ontology

The ME method ontology provides concepts and constructs for conceiving,
understanding, structuring and representing contextual aspects of the ME
methods. It is decomposed into seven parts based on the seven methodical
views. The overall structure of the ME method ontology is presented in Figure
117. Next, we describe the views and define concepts involved by them.
The historical view considers the backgrounds of and experience from the
engineering and use of the ME method. It involves prior RW contexts, prior ME
contexts and prior ISD contexts. Prior RW contexts168 mean those contexts that
have contributed to the creation and engineering of the ME method. Prior ME
contexts mean contexts in which the ME method has been deployed. Implied
from the former, the ME method has to include knowledge of the intentions,
approaches and principles by which the ME method has been constructed, of
the RW actors who have been responsible for the construction, and of the RW
actions by which the ME method has been constructed, etc. This knowledge is
called method engineering rationale (Rossi et al. 2004). The descriptions of the
prior ME contexts constitute an “experience base” which helps make and justify
decisions on whether to use the ME method and how. This knowledge is
known as method use rationale (Rossi et al. 2004). Included in the background is
also knowledge about ISD contexts, called prior ISD contexts, where ISD
methods engineered with the ME method have been applied. This knowledge is

168 We call these contexts the RW (Research Work) contexts to distinguish them from

those contexts where the ME methods are deployed. Another way to differentiate the
two notions would be to use the terms ME2 context and ME1 context,
correspondingly.

473

ME method component

Expression

Vocabulary

Concrete syntax

ME model

Conc. construct Concept

Main ME principle

Label

ME contextual model

ME technique

ME approach

ME method

Prior RW context

Abstract syntax

ME strategy

Prior ISD context

Structural view

Target ME context

Target RW context

Prior ME context

1..*
*

1..*

1..*

Appearance

Paper form

Language1..*

1..*

1..*

signifies

1..*

1 1

1

1

1..* 1..*appliesTo

Electronic form

CD-rom CAME toolME perspective model

1..*

1..*

1..*precedes

1

1

*

1..*

1..*

precedes

Semantics

1..*

1..*

appliesTo

1..*

1..*

1..*

1..*

1..*

1..*

1

Application view

Historical view Generic view Presentation view

Physical view

Contents view = ME ontology

1..*

* 1..*

1..*

1..*

precedes

*

Target ISD context

precedes

1..*

memberOf

*

*

1..*

1..*

1..*

1..*

1..*

1..*
1..*

1..*
1..*

1..*

FIGURE 117 An overall structure of the ME method ontology

important because the quality of the ME method is an aggregation of the
qualities of ME processes and ME deliverables (i.e. ISD methods), and the
quality of ISD methods, in turn, can be empirically assessed only by analyzing
experience obtained from their deployment in some ISD effort(s).

The application view outlines where and how the ME method can be or is
to be applied. The target contexts can be recognized on three layers in the ME
method ontology. Target RW contexts mean those contexts in which the ME
method is to be elaborated, customized, configured and/or instantiated for the
use of a particular organization or project. Target ME contexts mean those
contexts for the use of which the ME method is originally intended. Target ISD
contexts mean those contexts which are to deploy the ISD method that will be
engineered in the target ME context. The arguments for the applicability to
certain kinds of RW contexts, ME contexts and ISD contexts should be justified
with appropriate evidence. Evidence can be based on logical arguments derived
from the perceived match between the ME method and the suggested
application areas, or on empirical experience got from the prior usages.

474

The generic view provides the general understanding of the nature of the
method. In this case it reflects ME strategies, ME approaches, and main ME
principles to be followed in the target ME contexts. An ME strategy means a
generic way of accomplishing an ME effort or a part thereof. Examples of ME
strategies are creation (i.e. “from scratch”), integration, and adaptation (cf.
Section 10.2). An ME approach means a generic way of perceiving certain aspects
of ME and/or a way of working in ME. Examples of the ME approaches are:
problem-driven approach, functional approach, and conceptual approach (see
Chapter 11). A main ME principle expresses essential aspects of a specific way to
structure, accomplish and/or manage the ME process. Examples of the main
ME principles are iterative engineering and contingency-based engineering. The
ME strategies, ME approaches and main ME principles are inter-related to one
another.

The contents view reveals the conceptual contents of the ME method.
According to the view, the ME method is composed of concepts and conceptual
constructs referring to the ME contexts, as well as to parts of the RW context(s).
The former contexts correspond to the prior and target ME contexts. The
conceptual contents of the ME context have already been established in the
form of the ME ontology in the preceding sections. The latter contexts mean the
prior and target RW contexts. The conceptual contents of the RW context is, to a
large extent, similar to that defined in the ME ontology, in particular for the
part we are here interested in. That is why we do not provide any separate
ontology for the RW context.

From the presentation view the ME method is seen as a set of expressions
presented in some language(s). Expressions signify conceptual constructs
constituting the contents of the ME method. Each language is defined by the
abstract syntax, concrete syntax (or notation) and semantics. Abstract syntax
states allowed conceptual constructs composed of concepts (ter Hofstede et al.
1998). Concrete syntax gives notational elements, including labels, of the
language and rules for connecting them with one another and with the
concepts. Semantics specifies meaning of notational elements.

The physical view reveals the appearance of the ME method, that is to say,
the media on which the ME method is made visible or “functioning”. The ME
method can appear in a paper form (e.g. text books, manuals, pro forma
documents), or in an electronic form (e.g. CD-rom, Word-Wide Web). It can be
presented with e.g. Power Point slices and implemented in CAME tools. The
CAME tools may support the creation and editing of ME models, their
implementation, ME process management, and ME process enactment.

From the structural view the ME method is seen as a modular structure of
parts with a large variety. Some of the parts are considered ME method
components. An ME method component is a well-defined part of the ME method
that can be integrated to other ME method components to form a coherent and
consistent ME method. In Figure 117 we recognize two kinds of ME method
components: ME models and ME techniques. Because the discussion about the

475

notions of method component and interface in Section 9.8 also applies to the
ME method, we do not consider them any further here.

An ME model is a model that describes/prescribes structural, functional
and/or behavioral features of the ME context. An ME technique is a technique,
which guides the accomplishment of specific actions in the ME context. The
technique can be presented as a set of precisely described procedures that help
the achievement of certain outcomes if executed correctly (cf. Kettinger et al.
1997, 58; Iivari et al. 2001, 186). ME techniques may also be presented in
heuristics, guidelines or rules of thumb. An ME technique may involve one or
more ME models (e.g. a technique to integrate ISD models, e.g. O/A matrix
technique in Kinnunen et al. (1996)), and an ME model can be involved by one
or more ME techniques.

ME models are further specialized into ME contextual models and ME
perspective models. ME contextual models mean ME models that can be
classified into eight categories according to which ME domain(s) they address.
The categories are: ME purpose models, ME actor models, ME action models,
ME deliverable models, ME data models, ME facility models, ME location
models, ME time models, and ME inter-domain (ID) models. The nature and
contents of the ME contextual models can be, in a straightforward manner,
derived from those presented for the ISD contextual models (see Section 9.5).

ME perspective models mean ME models that can be classified into five
categories according to the ME perspective(s) they address. The categories are:
ME systelogical models, ME infological models, ME conceptual models, ME
datalogical models, ME physical models, and ME inter-perspective (IP) models.
The nature and contents of the ME perspective models can be derived from
those presented for the ISD perspective models (see Section 9.5).

10.6 Summary

The purpose of this chapter was to establish the conceptual foundation of the
method engineering and the ME method. This foundation is vital to the analysis
of ME efforts in practice, to the analysis and comparisons of empirical and
conceptual studies on ME, as well as to the construction of methodical support
to ME.

In the chapter we first brought out the reasons and motives for why
method engineering is needed. We made a survey of the ISD literature
reporting on problems in ISD methods and method use and discussed how the
evolution and changes in business, application areas, and approaches and
technologies of ISD environments influence ISD. We concluded that severe
problems have been perceived in the implementation and deployment of the
ISD methods, and some of those problems result from drawbacks and
deficiencies in existing methods. Resulted from changes in business processes,

476

application areas and technology, needs for new kinds of methods have also
emerged. These together set high demands on method engineering.

Second, we demonstrated, through a short survey of the ME literature,
that there is a large variety of conceptions about ME, and quite different terms
are used in the community. The need to clarify the conceptual bases and
terminology of ME became clear. To satisfy this need we defined fundamental
classifications of ME strategies, ME processes and ME contexts. We also
presented a framework which integrates these classifications and enables the
specification and analysis of a large array of ME contexts. In addition, we
applied the contextual approach to construct the holistic definition of the ME
context. According to it, ME is seen as a context which possesses features of
seven contextual domains, and is connected to different types of contexts on
several layers.

Third, we defined the first part of the ME ontology that is composed of
four ME domains (i.e. the ME purpose domain, the ME actor domain, the ME
action domain, and the ME object domain). For each domain the meta model
and definitions of concepts and constructs were presented. In addition, the ME
literature was frequently referred to and compared to our concepts and
constructs.

Fourth, we provided the second part of the ME ontology comprising four
ME perspectives (i.e. the ME systelogical perspective, the ME infological
perspective, the ME conceptual perspective, and the ME datalogical
perspective). The ME perspectives help us cope with the complexity related to
the structure, function and behavior of the ME context. For each perspective the
concepts and constructs were defined. In addition, references to the ME
literature were made to show how issues pertaining to the ME perspectives are
addressed there. At the end of the section, the ME inter-perspective
relationships were outlined.

Fifth, we characterized and defined the notion of an ME method and
presented the ME method ontology. Both the definition and the ontology were
derived applying seven methodical views established in Section 9.4. The use of
the views ensures that no important aspects of the ME context and of the ME
method are excluded from the considerations.

The ME ontology and the ME method ontology are the lowest-level
components in OntoFrame. Discussions and definitions given in this chapter
completed the construction of the multidimensional framework that is aimed as
a conceptual foundation for the analysis, comparison, and engineering of ISD
methods. We did not make any unified comparative analysis of the ME
literature in this chapter, because there is no comparable presentation available
for these ontologies. Instead, we provided a number of references to the ME
literature on individual issues and compared conceptions and terminology with
ours. To have a more comprehensive picture about existing normative ME
artifacts, we will analyze and compare them with MEMES in Section 12.4.

OntoFrame has been built in a layer-by-layer fashion, anchoring each
ontology firmly on underlying ontologies and applying comprehensively

477

fundamental approaches, particularly the contextual approach. In this way we
have wanted to assure the coherence, consistence and modularity of the
framework. OntoFrame has been constructed by concepts and constructs that
reflect common conceptions shared by various communities. This enables its
use for divergent purposes. To demonstrate the applicability of OntoFrame in
the construction of artifacts, we will deploy it in the engineering of a methodical
skeleton for ME (MEMES) in the next chapter. In this work we will extensively
utilize the concepts and constructs defined in the ME ontology and the ME
method ontology.

11 MEMES - METHODICAL SKELETON FOR ME

In the previous chapters we have built, piece-by-piece, OntoFrame to cover
contextual features of reality from multiple perspectives, on multiple layers and
on multiple model levels. The lowest parts in this ontology framework are the
ISD ontology, the ISD method ontology, the ME ontology, and the ME method
ontology. The purpose of these parts is to offer concepts and constructs for the
analysis and construction of artifacts on the ISD and ME layers. In this chapter
we will use these parts to construct a methodical skeleton to support the
accomplishment of the process of ME. The methodical skeleton, called MEMES,
is firmly grounded on the ontological framework. This becomes evident in the
suggested approaches, principles, concepts and constructs.

The chapter is organized into ten sections. First, we justify the need for
methodical support for ME. Second, we define MEMES in terms of its intention,
basis and contents. Also relations between MEMES and OntoFrame are, in a
concrete fashion, demonstrated. Third, we highlight the background of MEMES
describing those contexts on the ME and ISD layers which have affected the
construction of MEMES. Fourth, we specify the application area for MEMES.
Fifth, we state the goals of MEMES. Sixth, we present the overall structure of
MEMES in terms of ME workflows. In the next three sections we describe three
of those ME workflows (i.e. the ISD method requirements engineering, the ISD
method analysis, and the ISD method evaluation). Descriptions of the first two
workflows are more detailed including approaches and steps of engineering an
ISD method. The chapter ends with a summary.

11.1 Need for Methodical Support to ME

Method engineering has become more and more vital in practice, as concluded
in Chapter 10. At the same time, most of the ME efforts in practice are
accomplished in an ad-hoc manner. So, we have not progressed very far from
the stage that is known as the pre-methodological era in the ISD field (cf.

479

Hirschheim et al. 1995). The ME literature does provide a large variety of
artifacts for ME. There are, for instance, numerous meta models and
metamodeling languages that can be used to model methods, or parts thereof.
Meta data models (e.g. ER (Chen 1976), NIAM (Nijssen et al. 1989), OPRR
(Smolander 1991), ASDM (Heym et al. 1992a, Heym et al. 1992b), CoCoA
(Venable 1993), GOPRR (Kelly et al. 1996), Telos (Jarke et al. 1995) and
MEL/MDM (Harmsen 1997)) are suggested to model the conceptual contents
and notations of data models, and meta process models (e.g. Bandinelli et al.
1993; Deiters et al. 1994; Christie 1993; Shepard et al. 1992; Dutton 1993; Kaiser et
al. 1993) are provided to model process models. There are also proposals for ME
strategies (e.g. Ralyte 2002; Ralyte et al. 2003), ME approaches (e.g. Kumar et al.
1992; Oei 1995; Harmsen 1997), and ME techniques (e.g. van Slooten et al. 1993;
Kinnunen et al. 1996; Leppänen 2000; Saeki 2003). Further, the ME literature
contains ME artifacts that provide an overall structure of ME processes, or
alternatively simplified procedures for the accomplishment of some parts of ME
work (e.g. Vlasblom et al. 1995; Nuseibeh et al. 1996; Song 1997; Harmsen 1997;
Tolvanen 1998; Gupta et al. 2001; Ralyte et al. 2003). Finally, there are
presentations that describe actual processes of engineering a method (e.g. Song
et al. 1992; Mayer et al. 1995; Vidgen 2002; Polo et al. 2002; Fitzgerald et al. 2003;
Serour et al. 2002; Backlund et al. 2003, Bajec et al. 2004).

Regardless of the large variety of the ME artifacts proposed, there is no
single artifact that could be seen to come even close to an ME method as the
notion is generally understood, and as it has been defined in this work. Either
the artifacts are on too a general level, or they cover only a small part of the ME
life cycle. To justify this claim, a comprehensive literature analysis was carried
out (see Section 12.4). Due to the significance of ME to ISD practice and the
scarcity of methodical support to it, our aim is to provide a methodical support
that is more comprehensive and conceptually more uniform than any other
artifact in the ME literature. This support has been “packaged” and served in
the form of a methodical skeleton.

11.2 Definition of the ME Methodical Skeleton

In this section we define the notion of the ME methodical skeleton and describe
its intention, basis and contents.

The method engineering methodical skeleton, called MEMES, is a normative
prescription of the ME context that structures and guidelines the
accomplishment of ME work. According to Webster’s Dictionary, a skeleton is
something that “is reduced to the essential parts”. The purpose of the ME
methodical skeleton is to provide the essential parts of prescribing the ME
context. MEMES is an abbreviation from the phrase ‘Method Engineering

480

MEthodical Skeleton’. Interestingly, in Memetics memes169 mean the basic
building blocks of our minds and culture, in the same way, as the genes are the
basic building blocks of biological life. Memes are ideas, habits, skills, stories or
any kind of behavior or information that is copied from person to person by
imitation (Blackmore 2000). A well-known behavioral meme is, for instance,
“how to make a fire”. Once the meme was out there, it spread like wildfire.
Individual slogans, catch-phrases, melodies, icons, inventions, and fashions are
typical memes (Dawkins 1976). An idea is not a meme until it causes someone
to replicate it, to repeat it to someone else. This is what we hope our MEMES
will do: to bring out memes of method engineering that can be adopted and
effectively deployed in practical ME work.

MEMES is firmly grounded on the ontological framework defined in
Chapters 3 - 10. Its intention, basis and contents can be illustrated in relation to
this framework. In Figure 118 the left side describes MEMES in its intentional
and functional environment (cf. Figure 94). Research work, here referred to as
the RW context, has produced MEMES, which is to be applied in an ME context
for the engineering of an ISD method. The ISD method, in turn, is to be applied
in an ISD context to develop an IS. The right side in the figure describes the
structure of OntoFrame from the viewpoint of the ME method ontology.
Included in the ME method ontology there are the methodical views (i.e. the
historical view, the application view, the generic view, the presentation view,
and the physical view) of the ME method, the ME ontology, the ISD method
ontology, the ISD ontology, and the IS ontology. The ME ontology, the ISD
ontology and the IS ontology are composed of seven contextual domains and
five perspectives.

The arrows denote how OntoFrame has been deployed in the engineering
of the components of MEMES, ISD methods, and IS models. The structure of
MEMES has been adapted from the ME method ontology. The main
components of MEMES are the methodical views, ME models, ISD meta
models, and IS meta models. The historical view, the application view and the
generic view have been given specific contents. The ME models have been
specialized and instantiated from the ME meta models corresponding to the ME
domains and the ME perspectives. The ME models describe / prescribe what is
done, for which and why in the ME context. The concepts and constructs of the
ISD meta models have been selected and adapted from those belonging to the
ISD ontology. Likewise, the concepts and constructs of the IS meta models have
been chosen and adapted from those belonging to the IS ontology. This process
of instantiation, specialization, and adaptation can be accomplished in any

169 Oxford zoologist Richard Dawkins is credited with the first publication of the

concept of a meme in his 1976 book The Selfish Gene (Dawkins 1976). Currently the
research field concerning memes is called Memetics. There are a large variety of
definitions of Memetics (cf. Brodie 1996). Generally speaking, Memetics is the science
that studies the replication, spread and evolution of memes (http://pespmc1.
vub.ac.be/MEMES.html).

481

Generic view

RW context

Presentation view Physical view

ME domains ME perspectives

IS domains IS perspectives

MEMES

IS ontology

Application view

ISD domains

adaptatedFrom

input/output

instanceOf

ISD ontology

IS models

ME method ontology
ME models

ISD meta models

IS meta models

ME context

ISD perspectives

ISD method

ISD context

ISD models

IS meta models

IS

ISD method ontology

Historical view

ME ontology

FIGURE 118 Intention, basis and contents of MEMES

situation which aims to engineer ME methods, or a part thereof, with the help
of OntoFrame.

Figure 118 also shows, on a general level, how to engineer the ISD method
in the ME context. The structure of the ISD method is adapted from the ISD
method ontology in the following fashion. The ISD models are specialized and
instantiated from the ISD meta models concerning the ISD domains and the ISD
perspectives. The concepts and constructs of the IS meta models are selected
and adapted from those belonging to the IS ontology. Finally, IS models are
specialized and instantiated from the IS meta models.

482

Consequently, MEMES provides descriptions / prescriptions covering the
methodical views, a set of ME models in the form of prescriptions, and a
collection of ISD meta models and IS meta models, all in a well-structured and
integrated body. MEMES integrates and gives normative meanings for the ISD
meta models as well as instantiates and specializes the ME meta models.
MEMES is not, however, an ME method. To elaborate the scope and contents of
MEMES we apply the perspective ontology on two processing layers. Table 32
presents three ME perspectives (rows) and three ISD perspectives (columns).
The cells in the table express questions reflecting the issues which are addressed
in the ME context. Next, we consider those issues in the order of ME
perspectives.

TABLE 32 Issues addressed in the ME context, structured through ME perspectives and

ISD perspectives (Syst = systelogical, Info = infological, Conc = conceptual)

ISD perspectives/
ME perspectives

Systelogical
Why is ISD
accomplished
and for whom?

Infological
What are the ISD
actions undertaken,
and what ISD
deliverables are
produced?

Conceptual
What is it that the
ISD information
refers to?

S
y
s
t

Why is ME
accomplished and
for whom?

What are the ISD
purposes that
ME is
accomplished for
and why?

What are the ISD
actions and the ISD
deliverables that ME
is accomplished for
and why

What are the IS
domains that ME is
accomplished for
and why?

I
n
f
o

What ME actions
are done and what
ME deliverables
are produced?

What is done in
ME to specify
ISD purposes?

What is done in ME
to specify ISD
actions and ISD
deliverables?

What is done in ME
to specify IS
domains (i.e. IS
ontology)

C
o
n
c

What is it that the
ME information
refers to?

What are the
concepts that are
used to refer to
ISD purposes?

What are the
concepts that are
used to refer to ISD
actions and ISD
deliverables?

What are the
concepts that are
used to refer to
phenomena in the
ISD contexts?

In applying the ME systelogical perspective one tries to find out the kinds of
ISD contexts that MEMES is targeted to. The ISD contexts can be characterized
in terms of ISD purposes (ISD systelogical perspective), ISD actions and ISD
deliverables (ISD infological perspective), and conceptual contents of the ISD
deliverables (ISD conceptual perspective). The ME infological perspective
pertains to the ME actions and the ME deliverables needed to yield and present
descriptions / prescriptions from the ISD systelogical, ISD infological, and ISD
conceptual perspectives (cf. Section 8.4). For example, to yield descriptions from
the ISD infological perspective it is necessary to elaborate ISD purposes and to
specify main ISD actions and ISD deliverables. The ME conceptual perspective
is related to the ontologies needed to perceive the ISD context from each of the
five ISD perspectives. For example, it is decided what concepts and constructs

483

are needed for understanding, structuring and presenting of ISD actions and
ISD deliverables.

On the basis of Table 32 we can now specify the scope of MEMES and the
level of detail in which we describe MEMES. First, MEMES is mainly described
from the ME systelogical, ME infological and ME conceptual perspectives. The
ME systelogical perspective covers the historical view, the application view,
and the generic view. In addition, it addresses, on a general level, the
presentation view and the physical view. The ME infological perspective covers
those ME models that describe/prescribe ME purposes, ME actions and ME
deliverables, as well as inter-domain relationships between them. The ME
conceptual perspective exposes the ME ontology, the ISD ontology, and the IS
ontology. Second, MEMES adresses only those parts of the ISD ontology that
are related to the ISD systelogical, ISD infological and ISD conceptual
perspectives. Together these two statements imply that we describe in which
ME situations, under which kinds of requirements and goals, certain kinds of
ME actions are carried out to yield ME deliverables that refer to ISD purposes,
ISD actions and ISD deliverables. We do not discuss who should do what in
ME, in which temporal order and where. Neither we take into account what
tools and resources are needed in ME work. The IS meta models are not
explicitly presented in this chapter, because they are assumed to be available in
the underlying ontological framework (OntoFrame). In practice, there is a large
variety of ME contexts. MEMES has not been customized to fit any particular
type of ME context. The concepts and constructs are organized in a way that
enables us to make easy adaptations into MEMES in order to get it follow any of
the main ME strategies (i.e. creation, integration, adaptation).

The description of MEMES is structured into sections according to the
three ME perspectives in the following way. First, we will describe the
background of MEMES (cf. the historical view, Section 11.3). Second we will
introduce the application area as well as the basic assumptions and approaches
(cf. the application view and the generic view, Section 11.4). Third, we will
formulate more precisely the goals of MEMES (Section 11.5). Fourth, we will
present the overall structure of the ME workflows in MEMES (Section 11.6).
Fifth, we will describe the ME actions and ME deliverables in the first, second
and third ME workflow. These workflows are called, respectively, the ISDM
requirement engineering (Section 11.7), the ISDM analysis (Section 11.8), and
the ISDM evaluation (Section 11.9). The chapter ends with a summary.

11.3 Background of MEMES

According to the method ontology each method has to contain knowledge of
the background of, and the experience from, the engineering, as well as on the
use of that method (cf. the historical view in Section 9.5). Although MEMES is

484

not a complete ME method, we describe the intentions of, work for, and
evolution of MEMES in this section.

A short description of the cyclic process to engineer MEMES was already
given in Section 1.4. The process was characterized as highly iterative crossing
four subfields: ME practice, evaluation, ME method engineering, and ontology
engineering. ME practice stands for all those efforts in which the researcher has
been involved to engineer an ISD method. Evaluation comprises two kinds of
RW actions: (1) reflecting and analyzing experience from ME practice, and (2)
making comparative analyses of definitions, classifications, models,
frameworks, and methods presented in the literature. ME method engineering
and ontology engineering here mean theoretical work aimed to construct
conceptual artifacts, either descriptive (cf. ontologies) or prescriptive (cf. models
and techniques), that suit as parts for MEMES. The process reflects a learning
cycle (Checkland 1981, 254), in which each RW deliverable (i.e. an ontology, a
ME technique, and a methodical skeleton) is created, applied, learned from and
further refined.

The historical view of MEMES involves prior contexts at three processing
layers, namely prior RW contexts, prior ME contexts, and prior ISD contexts (cf.
Section 9.5). Prior RW contexts mean contexts that have contributed to the
creation and engineering of MEMES. Prior ME contexts mean contexts in which
MEMES or its parts, in some of its versions, have been deployed or from which
experience have been used in the RW context. Prior ISD contexts mean contexts
in which an ISD method, engineered in some of the prior ME contexts, have
been used to develop an IS. In the following we shortly describe the prior
contexts of MEMES (Figure 119).

The first modest effort in method engineering was carried out in 1980-1984
to develop a language and a “design model” for conceptual schema design,
called CSDM (Conceptual Schema Design Model), based on a linguistic
approach (Leppänen 1984a). The design model was composed of generic
constructs including the workflow structure, the system decomposition
structure, abstraction structures, and the problem solving structure. The model
was built on two layers: the “frame layer” consisting of generic concepts and
constructs, and the “core layer” standing for instantiated concepts and
constructs. The idea was that at the beginning of a design effort the core layer is
empty, and in engineering a method for conceptual schema design, the generic
concepts and constructs at the frame layer are instantiated based on the
knowledge of the project at hand. The main emphasis in this work was,
however, on the development of the language, not a method, and therefore this
context is only of minor importance as a prior ME context.

The second ME effort aimed to engineer a method170 for office support
systems analysis and design (Conrath et al. 1989). This effort was accomplished
in the large Esprit project, called the OSSAD project, into which a research
group (Vesa Savolainen, Mauri Leppänen) from the University of Jyväskylä was

170 Actually the artifact was called a methodology in the OSSAD project (Conrath et al.

1989).

485

RW

ME

ISD

 Field tests in four countries CASE: City of Jyväskylä Student projects

FIGURE 119 Prior contexts related to MEMES

accepted in 1986. Other partners came from France (D. Conrath CETME Aix-en-
Provence, P. Dumas CETMA Toulon, G. Charbonnel CETMA Toulon), Italy (V.
de Antonellis University of Milan, C. Simone University of Milan, G. de Petra
IPACRI Rome, C. de Santis IPACRI, Rome), and Germany (S. Sorg IOT
Munchen, E. Beslmuller IOT, Munchen). This author’s role in the project was to
comment on, ideate, and contribute to the conceptual foundation of the method,
to make constructions for some specific parts of the method, as well as to field
test the method in a Finnish case organization (Leppänen et al. 1989a, Leppänen
et al. 1989b). The OSSAD method was also field tested in France, German and
Italy (Baron et al. 1989). Highlights and lessons from the field tests were
analyzed and documented (Baron et al. 1989). The project engineered the
comprehensive method that was published in the manual (Conrath et al. 1989),
and in numerous articles (e.g. Conrath et al. 1988; Charbonnel et al. 1991;
Conrath et al. 1992; Vincent et al. 1992; Conrath et al. 1999; Savolainen 1999).

The third attempt dates back to 1988/1989 when this author participated
in the large consultancy project, which planned the information technology and
service strategy for the City of Jyväskylä. For the project, the method called
SPITS (Strategic Planning of Information Technology and Services) (Leppänen
et al. 1991) was engineered. In the method the process of strategic planning is
decomposed into three parts: analyzing the service strategy, planning the IS
strategy, and planning the implementation of the IS strategy. For each part
several design techniques were selected from the existing methods and
customized to fit the needs of the project. Researchers acted as teachers and
mentors and partly also as planners in the project. Experiences from the project
were collected via interviews, although they were not reported in public.

Research effort

OSSAD
1985-1989

SPITS
1990-1992

DBAD
1991-2003

CSDM
1980-1984

MEMES
2001-2004

486

The fourth attempt in ME practice concerned engineering a method for the
database application design, here referred to as DBAD, for the purposes of
teaching. The first version of the method was constructed during 1985-1993
(Leppänen 1993). This method was based on a view of the centralized data base
architecture in the environment of the Ingres database management system.
The second version was engineered for web-based database application design
with Oracle 8i (Leppänen 2001). Both methods were constructed through
selecting and customizing models and techniques from existing data base
design methods. The methods were deployed by students in their designing
and implementing small-scale database applications in the projects of 2 – 4
members. The course has been lectured seven times so far, and about 100
student projects have been accomplished following the method.

Summing up experiences from the prior ME contexts we can say that in
too many cases method engineering was started with obscure ideas of a new or
improved method and accomplished in a way that is best described by the
phrase ‘engineering-by-trials’. This does not mean that ME efforts would have
failed. What it does mean is that the methods were not exactly what was
pursued and, in particular, the processes by which they were engineered were
neither efficient nor effective. The more people an ME effort involves, the more
structured and pre-planned the process should be. A way of working in
engineering and a form of presenting outcomes vary depending on numerous
situational factors related to e.g. the application domain, availability of existing
methods, resources (time, personnel, tools) of engineering work, and skills of
method users (cf. developers, consultants, end users, students).

Regardless of differences between the prior ME contexts, we had a strong
feeling that there are clearly approaches, principles, and ways of working that
are common to all kinds of ME efforts. With those common “ingredients” it
should be possible to recognize fundamentals of ME contexts, as well as to
organize and to accomplish ME work in a “rational” and efficient manner.
Some of these ME “ingredients” were already recognized and outlined during
the ME efforts but it was not until in 2001 when the systematic work to engineer
MEMES was actually started. In this work we utilized the conceptual
foundation, which we had earlier constructed (cf. ontology engineering).

Based on a comprehensive analysis of ME literature (see Chapter 12) we
found that there is no complete method for ME, only some ME strategies, ME
approaches, meta models, ME procedures, and ME techniques. Consequently,
we set up the objective to engineer more comprehensive methodical support for
ME. We named it the methodical skeleton to acknowledge that the artifact is not
aimed to be a complete ME method.

Engineering the methodical skeleton for ME is actually an instance of ME
effort as well. This engineering process should thus apply the same
fundamental structural and dynamic “ingredients” as those in the
aforementioned prior ME contexts and those that are to be included in the
skeleton itself. This observation made us to decide to systematically apply

487

MEMES during the incremental and cyclic process. Instant feedbacks
substantially contributed to the theoretical part of method engineering.

It is not possible here to extensively discuss the experiences, ideas, and
contributions related to all the prior ME contexts. What we will do in Chapter
12 is to give some examples of considerations in and outcomes from two ME
efforts, the OSSAD project and the MEMES effort, to illustrate the deployment
of MEMES. We will also present reflections, in the sense of retrospective
analysis, on those prior ME contexts to learn from these experiences.

11.4 Application Area

In this section we describe the intended application area of MEMES deploying
the application view defined in Sections 9.5 and 10.5. The application view
addresses where and how the method can be applied. The view is expressed in
terms of target contexts on two layers. In this case the target contexts are on the
ME layer and the RW layer. Target ME contexts mean contexts in which
MEMES is to be deployed. Target RW contexts mean contexts in which MEMES
is to be elaborated, customized and/or configured, in order to make it suitable
for the use in the target ME context(s). According to the ME method ontology,
the ME method should also provide backing arguments for the applicability of
the method in the contexts and justify them with appropriate evidence. MEMES
is a method skeleton and it does not include descriptions/ prescriptions to
identify the target RW contexts, nor to carry out actions there. Neither does
MEMES provide any empirical evidence on the applicability in ME contexts.
Instead, we justify its applicability by using it with analytical and constructive
intentions. Next, we describe the application area of MEMES in terms of target
ME contexts.

The ME contexts are much more varied than the ISD contexts. Therefore, it
is not possible – or not even reasonable – to specify the application area for an
ME method with such a specificity as for an ISD method. We specify the
application area of MEMES in terms of ME context types and ME strategies
distinguished in Section 10.2.

There are three main ME context types: method development, method
customization, and method configuration. Method development aims to
engineer a generic method or a domain-specific method. Method customization
and method configuration strive for engineering an organization-specific
method and a project-specific method, respectively. MEMES supports
engineering of ISD methods, viewing the ME from the ME systelogical, ME
infological and ME conceptual perspectives. This means that MEMES mainly
provides methodical support to method development. We have, however,
engineered the ME ontology that also includes the ME datalogical perspective.
With the concepts and constructs of the ME ontology and the overall structure

488

of MEMES, it is rather easy to elaborate MEMES toward an artifact that
supports method customization and method configuration as well.

We have distinguished between three ME strategies: creation, integration,
and adaptation (see Section 10.2). Creation means the “greenfield” or “from
scratch” strategy to engineer an ISD method in the situation where no current
ISD method exists to be used as the basis for ME. Integration means an ME
strategy according to which an ISD method is engineered by assembling parts
of current methods. Adaptation means an ME strategy according to which an
ISD method is engineered by changing, one way or another, the current ISD
method. As mentioned in Section 10.2, none of the aforementioned ME
strategies is applied as such in practice. In contrast, strategies appear to be
mixed. Figure 120 gives examples of mixed ME strategies. In the first case (1), it
is seen necessary to make adaptations into the method components before
integrating them into the body of a new ISD method. In the second case (2), a
new ISD method is primarily constructed as a “green field” product, yet
utilizing some existing components. In the third case (3), an ME effort starts as
an adaptation process but due to the lack of some functionalities in the current
methods, the ISD method is enhanced with the creation strategy. In the fourth
case (4), an ISD method is engineered applying all three strategies.

 (1)
 Integration Adaptation

 (4)

 (2) (3)

 Creation

FIGURE 120 Mixed ME strategies

MEMES has not been engineered to support any specific ME strategy. As a
method skeleton it aims to provide generic support for all the ME strategies. To
offer the support as structured and utilizable as possible, MEMES has been built
up deploying the most fundamental structures of contextual ME domains. With
these structures it is easy to elaborate MEMES to suit more specifically some
particular strategy needed in the certain ME project.

To summarize, we specify the application area of MEMES as follows:
MEMES is aimed to offer methodical support for ME contexts, the purpose of which is
to engineer a generic ISD method or a domain-specific ISD method with any ME
strategy. MEMES has to be elaborated, customized and configured to make it fit the
needs of a particular ME organization or project. This process is not supported by
MEMES.

Concluding from the prior ME contexts involved by this research work we
can make the following reflections. The OSSAD project clearly aimed at the

489

development of a domain-specific method with special features of office
support systems. It followed the ME strategy close to the type (2), as its purpose
was to create something specific for office support systems, yet utilizing
components of current methods for those parts of the method which could be
found from the existing methods. Some adaptations of those parts were
naturally needed during the ME process. The SPITS project actually aimed to
engineer ´the project-specific method, but because there was neither the
appropriate organization-specific method, nor a generic method, the project
applied a mixed strategy of the type (1) in order to first develop a generic
method, mainly by integration, and then to configure it into a project-specific
method. Some adaptations had to be made to get the pieces fit together. The
DBAD method was engineered for teaching purposes. The purpose was to
provide students with a coherent set of DB design techniques for the whole
range of design life cycle, from requirements engineering to implementation.
The main body of the engineered method was generic, but it was instantiated to
be applied, in a straightforward way, by groups of students in the course
context. Hence, the final outcome can be regarded as a “project-specific”
method. The main body of the method was engineered by integrating
components from the existing methods with minor adaptations (cf. the type (1)).

We were not able to find any existing ME method that could be accepted
as the basis for engineering MEMES. Instead, we found a large number of ME
strategies, ME approaches, ME techniques, and ME procedures which could be
utilized as components of MEMES, either as such or somewhat adapted. In
many cases we had also to develop new constructs. For instance, the overall
structure of MEMES was established without any support from existing
artifacts. Consequently, this RW effort followed the mixed strategy of type (4).

11.5 Goals of MEMES

In this section we define the goals of MEMES, structured according to the ME
method ontology (see Section 10.5). Hence, we define the goals from the
contents view, the structural view, and the application view. In addition, we
shortly characterize MEMES from the presentation view and the physical view.

The goals of MEMES are:
1. MEMES should be based on a solid and sound view of the relevant sub-domains.

MEMES should be built upon a conceptual foundation composed of
information processing contexts on four layers and on three model levels.
To satisfy this goal we anchor MEMES on OntoFrame.

2. MEMES should be modular and flexible.
MEMES should be composed of structural and functional components that
facilitate the elaboration, customization and configuration of the skeleton

490

toward a specific ME method. Despite the modular structure, MEMES
should still maintain its uniformity, consistence and coherence.

3. MEMES should be applicable.
MEMES should be applicable for framing, constructive and analytical
intentions. The framing intension means that MEMES should provide
concepts and constructs to help make sense of and structure phenomena
in the actual ME. The constructive intention means that MEMES should
support the engineering of an ISD method, or parts thereof. The analytical
intention means that MEMES should provide main concepts and
constructs for the analysis and comparison of existing ME artifacts. ME
artifacts here mean ME strategies, ME approaches, ISD meta models, ME
techniques, and ME procedures.

MEMES is presented in natural language, supported with diagrams illustrating
structural and functional features of the skeleton (cf. the presentation view). It
appears in paper form (cf. the physical view). If elaborated and formalized,
MEMES can be embedded in a CAME environment.

11.6 ME Workflows

The purpose of this section is to present the overall structure of ME work in
terms of ME workflows. The ME workflows are described from the ME
infological perspective, meaning that ME purposes, ME actions and ME
deliverables are recognized. At the end we show which of the ME workflows
are included in MEMES.

We distinguish between five ME workflows (cf. Section 10.3.3): ISD
method (ISDM) requirements engineering, ISDM analysis, ISDM design, ISDM
implementation, and ISDM evaluation (Figure 121). They can be classified into
two categories. The first category comprises the ME workflows that contribute
directly to the construction of a new method or an improved method. These
workflows are ISDM analysis, ISDM design and ISDM implementation. These
differ from one another in their independence of realization issues (cf. Section
6.1). The second category comprises the ME workflows that specify
requirements and goals for the ISD method or alternatively evaluate whether
the ISD method satisfies the specified requirements and goals. These workflows
are ISDM requirements engineering and ISDM evaluation. They cover the
whole range of aspects, extending from realization independent to realization
dependent ones. In the following, we first give short characterizations of the
ME workflows and then consider how they manifest themselves in different
kinds of ME contexts.

491

ISDM analysis

ISDM design

ISDM implementation

ISDM req's
engineering

ISD
evaluation

FIGURE 121 ME workflows

ISDM requirements engineering (ISDM RE) means an ME workflow which
aims to identify and elicit ME stakeholders’ requirements concerning the
nature, contents and structure of the ISD method. Requirements can be
classified according to the ISD perspectives into ISD systelogical requirements,
ISD infological requirements, ISD conceptual requirements, ISD datalogical
requirements, and ISD physical requirements. ISDM RE workflow extends from
the very beginning to the last steps of the ME effort. In this study we consider
only the first tasks of this ME workflow in more detail.

ISDM analysis denotes an ME workflow which aims to produce high-level
descriptions of the ISD method. Descriptions are produced from the ISD
infological perspective and the ISD conceptual perspective, revealing what ISD
actions are performed, for what purposes, and what ISD deliverables are
produced. In addition, intra-domain and inter-domain relationships in and
between the three ISD domains are, on a general level, specified.

ISDM design refers to an ME workflow which aims to produce more
elaborated descriptions of the ISD method. Here the method is considered from
the ISD datalogical perspective, uncovering “How” the ISD is to be
accomplished. This means that the following kinds of questions are answered:
What kinds of ISD roles and ISD positions are established? How ISD actions are
decomposed at a detailed level? Which part of ISD work is to be supported by
computer-aided tools?

ISDM implementation means an ME workflow which aims to produce
concrete descriptions/prescriptions of the ISD method from the ISD physical
perspective. That means that the descriptions/prescriptions made earlier are
realized and instantiated into a project plan that dictates who does what, why,
how, for what, when and where.

ISDM evaluation denotes an ME workflow which aims to produce
assessments of one or more ISD methods according to the defined criteria. The
criteria are derived from the ISDM requirements specified in the ISDM RE
workflow. The ISD method to be evaluated can be at any point of its life cycle. It
can be just a roughly outlined artifact, like the one resulting from the ISDM
analysis workflow, or it can be a complete ISD method already used in the ISD.
The applied criteria may vary from logical to technical and from general to
detailed, depending on the applied perspective(s) and the nature of the method.
Evaluation is tightly associated to the other ME workflows. For instance, the
evaluation of existing methods is done before deciding on ME goals in the
ISDM RE workflow.

492

Figure 122 illustrates the ME workflows (rectangles) and their main
deliverables (ellipsis) on a general level. Arrows between the ME workflows
stand for the sequence relationships. The ME process is highly iterative in the
sense of re-doing, refinement and repeating (cf. Section 4.4.3). Re-doing means
that with improved knowledge some tentative aspects of the ISD method are
later changed. Refinement means that generic aspects of the ISD method are
elaborated from those sketched during the preceding iteration cycle. Repeating
implies that ME actions are accomplished iteratively, each time for different ME
deliverables, for instance, due to a lack of ME resources. In the figure the area
embraced with the bold line shows the scope of MEMES. Thus, the ISDM
design and ISDM implementation workflows are excluded from MEMES.

ISDM
requirements
engineering

ISDM analysis

ISDM design

ISDM
implementation

Descriptions of
ME, ISD and IS

contexts
ME goals

ISDM
requirements

Infological
description of

ISDM

Conceptual
description of

ISDM

Datalogical
description of

ISDM

Physical
description of

ISDM

ISDM
evaluation

Assessments of
ISDM

Contingency
framework

MEMES

FIGURE 122 ME workflows and their main deliverables

The ways in which the ME workflows are executed differ from one another
depending on the ME contexts. Figure 123 describes the scopes and emphases
of three ME workflows in three types of ME contexts. The development of a
generic ISD method or a domain-specific ISD method mainly includes actions of
ISDM analysis workflow, which consider the ISD method from the ISD
systelogical perspective, the ISD infological perspective and the ISD conceptual
perspective. The development context may also contain some ISDM design
actions if the method is to support, for instance, the establishment of ISD roles
and ISD positions. In the customization context the actions of the ISDM design
workflow dominate. In addition, some actions of the ISD analysis workflow
may be carried out. For instance, to decide on dropping some ISD actions from
a generic ISD method under customization, it may be necessary first to check,

493

ISDM analysis ISD design ISDM implementation

Development

Customization

Configuration

FIGURE 123 ME workflows in the development, customization and configuration contexts

what consequences this deletion may have to the other ISD actions and to carry
out necessary re-customization actions of the ISDM design workflow. Likewise,
in engineering an organization-specific method the need may arise to describe
an organizational structure including individual units and persons in charge of
specific ISD actions. Consequently, the customization context also includes
some actions of the ISDM implementation workflow. The configuration context
primarily contains actions of the ISDM implementation workflow through
which an ISD project organization with specific responsibilities and authorities
is established, the schedule with baselines is decided, and the like. In this
context some needs may also emerge to reconsider ISD datalogical aspects of
the organization-specific method.

As shown in Figure 122, MEMES contains three ME workflows. In the next
sections we will describe them in more detail, including the underlying
approaches and steps.

11.7 ISDM Requirements Engineering

ISDM requirements engineering (ISDM RE) means an ME workflow which aims
to identify and elicit ME stakeholders’ requirements on the nature, contents and
structure of the ISD method. ISDM requirements can be brought out nearly at
any stage of an ME effort. In the first stages ISDM requirements concern
features related to the use and contents of the ISD method, later ISDM
requirements pertain to e.g. the presentation and technical support of the ISD
method. Because MEMES does not cover the whole range of actions of the

494

workflow, we concentrate on describing ME actions at the first stages of the
ISDM requirements engineering.

Figure 124 describes the ME tasks of the ISDM RE workflow concerned
here. The arrows between the ME tasks present the sequence relationships. The
ME tasks are: (a) decide on the feasibility of a contingency framework, (b)
analyze the ME context at hand, (c) characterize the target contexts, (d) analyze
prior contexts, (e) specify ISDM requirements, and (f) determine ME goals. The
purpose of the first task is to consider whether it is possible and feasible to use
some contingency framework to elicit and structure descriptions of ISD
methods and concerned contexts. The second task aims to find out what kind of
context the ME context at hand is. In the third task the target ISD contexts and
the target IS contexts are characterized171. In the fourth task the prior contexts at
the ME layer, the ISD layer and the IS layer are analyzed to learn from the
gained experience. The purpose of the fifth task is to derive requirements for a
new ISD method, or for an improved ISD method. The last task in the ISDM RE
workflow is to determine goals for the ME context at hand. The seventh task in
Figure 124 is called ‘Analyze the current method(s)’. This task is actually a part
of the ISDM evaluation workflow but it is included in the figure to show how it
relates to the ISDM requirements engineering. It is presented by dotted line in
Figure 124.

Analyze prior
contexts

Specify ISDM
requirements

Analyze existing
ISD method(s)

Determine
ME goals

Analyze the ME
context at hand

Decide on the
feasibility of a

contextual
framework

Characterize the
target contexts

Contingency
framework

FIGURE 124 Tasks of the ISDM RE workflow

The tasks of the ISDM RE workflow are connected to one another by the
sequence relationships in the figure. It should, however, be noted that the tasks
are highly iterative and also the order in which tasks are carried out can vary a

171 Note that we ignore the characterization of the target ME contexts.

495

lot depending on the ME context. In the following we describe each task in
more detail.

11.7.1 Decide on the Feasibility of a Contingency Framework

The purpose of this ME task is to consider whether it is possible and feasible to
use some contingency framework to elicit and structure descriptions of ISD
methods and the concerned contexts. The concerned contexts mean here the ME
context at hand, the prior contexts and the target contexts. If the answer is ‘yes’,
a contingency framework is selected from those available and adapted, if
necessary.

A contingency framework can help to focus on and elicit those features
that are the most essential to the concerned things. Contingency frameworks are
commonly applied in the selection and construction of methods, techniques,
models or tools for the needs of particular ISD contexts. For instance, in
selecting the ISD method it is examined how well characterizations of the ISD
method and of the target ISD context, structured according to a contingency
framework, match with one another. There are a large number of studies on
contingency approaches (e.g. Naumann et al. 1980; Davis 1982; Burns et al. 1985;
Iivari 1989b; Saarinen 1990; Louadi et al. 1991; Cockburn 2000; Iivari et al. 2001;
Kettinger et al. 1997; Roberts et al. 1998; van Swede et al. 1993; Odell 1996; van
Slooten et al. 1994; van Slooten et al. 1996; Lin et al. 1999; Zhu 2002). Based on
the relevant literature, we propose the meta model of a contingency framework
in Figure 125 and define the concepts in the framework.

Characterization

Context

Method component

Method

Framework

Metaframework

Factor

Variable

Value

ISD contextME context IS context

*

*

concerns

*

*

concerns

1..*

1..*

1..* *

1..*

has

1..*
1..*

1..*

1..*

1..*

1..*covers

Criterion

1..*

1..*

*

*

concerns

1

*

basedOn

Prior context Current context Target context

1..*

FIGURE 125 Meta model of a contingency framework

496

A contingency framework is composed of one or more contingency factors. A
contingency factor stands for a certain type of feature in the concerned thing that
is considered essential. An example of the contingency framework is the two-
dimensional framework by Louadi et al. (1991) for the selection of a method for
an ISD project. This contingency framework is composed of two factors:
uncertainty and complexity. Each contingency factor can be concretized by one
or more criteria. For example, complexity of the ISD context can be considered
in terms of project size, number of users, volume of new information, and
complexity of new information production (cf. Davis 1982; Davis et al. 1985).
Each criterion can be measured through one or more variables, whether single-
valued or multi-valued. Project size, for instance, can be measured in terms of
man-hours, money, months etc.

A contingency framework can be used in making characterizations of ME
contexts, ISD contexts, or IS contexts. Characterizations of a (information
processing) context, whether past, existing or designed, may also concern its
object system (OS) and utilization system (US). A contingency framework can
also be applied to characterize methods, or a part thereof, expressing whether a
method or its component is feasible or not feasible in certain kinds of contexts.
Characterizations are built up from values of variables.

In the ISD field many kinds of contingency frameworks and approaches
have been suggested. These contingency frameworks are based on a large
variety of categorizations of contingency factors (e.g. Davis 1982; van Swede et
al. 1993; van Slooten et al. 1993; van Slooten et al. 1996; Harmsen 1997; Punter et
al. 1996; Kettinger et al. 1997; Roberts et al. 1998; Lin et al. 1999; Kraiem et al.
2000). Zhu (2002) distinguishes between three contingency approaches for the
method selection: contingency at the outset, contingency with a fixed pattern,
and contingency along development dynamics. The first approach aims to
select a single method or a fixed combination of methods for the whole lifecycle
of an ISD project. According to the second approach, suitable parts of the
method should be selected at each individual stage of a project. The third
contingency approach states that various issues that shape ISD should be
appreciated and tackled at each unique development moment. This
corresponds to We are not able here to consider the contingency approaches,
nor the contingency frameworks, in more detail. Instead, we bring out a need
for a meta-contingency framework, which helps us select a contingency framework
that is the most suitable to the situation at hand. One of the variables of such a
meta contingency framework is rigor (cf. Zhu 2002, 353).

In the literature there are also techniques for the use of contingency
frameworks in method engineering. Punter et al. (1996) present a multi-
dimensional model, called the spider’s web portfolio, to organize basic
modeling strategies according to the contingency factors based on the notions of
complexity and uncertainty. They also propose a process of determining an
appropriate modeling strategy using the spider’s web portfolio. Harmsen et al.
(1995) and Harmsen (1997) suggest the so-called 3 S’s model (success, situation,
and scenario) and steps to use the model in the selection of method fragments

497

for a certain situation. For a situation a large set of situation factors are defined
with associations to performance indicators. For example, low “management
commitment” contributes negatively to performance indicators such as
“organizational management” and “system acceptance” (Harmsen 1997, 204).
For each method fragment, a large set of scenario aspects is made available to
characterize method fragments. To each scenario aspect a set of performance
indicators is associated. Hence, having knowledge of situational factors of a
given project it is, at least in principle, possible to select a method fragment that
compensates the expected negative effects of the situational factors with
positive effects of the scenario aspects of the selected method fragments.

Many kinds of critics against the contingency approach have been brought
out (e.g. Kumar et al. 1992; Avison 1996; Tolvanen 1998; Zhu 2002). For instance,
the use of the contingency approach may be costly, and its effective use may
appear to be difficult. Nevertheless, we suggest that in the ME context it is
reasonable to consider the feasibility of a contingency framework. This can be
carried out with the following steps:
• Consider on which level of detail it is necessary to characterize the ME context at

hand.
• Consider on which level of detail it is necessary to characterize prior ME, ISD and

IS contexts.
• Consider on which level of detail it is possible to characterize target ME, ISD and

IS contexts.
• Consider on which level of detail it is necessary to characterize ISD methods, or

parts thereof.
• Consider by which features it is feasible to express characterizations of each of the

aforementioned things.
• Consider whether there are contingency frameworks that are suitable to the needs

above. If not, make the necessary modifications and enhancements in the
framework that comes closest.

• Make a detailed description of the contingency framework selected/produced.

There are three remarks worth making. First, the steps above have been
organized with the principle according to which some conceptions about the
relevant ME / ISD contexts are first obtained and after that the search for a
suitable contingency framework begins. It depends on the situation at hand
how detailed information about the contexts is gathered in this “pre-phase”.
Second, it goes beyond our scope to give guidelines of how to engineer a
contextual framework that suit the situation at hand. Third, after having
engineered the framework it can be applied in MEMES according to any of
three approaches distinguished by Zhu (2002). In this process some of the
techniques suggested in the ME literature (e.g. Harmsen et al. 1995; Punter et al.
1996; Harmsen 1997) can also be deployed.

498

11.7.2 Analyze the ME Context at hand

The purpose of this ME task is to analyze the ME context at hand in order to
decide which of the following ME tasks should be accomplished, in which way
and in which order. The ME context can be characterized in many ways. On a
general level, the ME context can be merely classified to be a development
context, a customization context, or a configuration context. Also ME strategies
can be used to generally describe the nature of the ME context. On a more
detailed level one pays attention, for instance, to the following issues: What is
the level of knowledge of, experience from, and skills in method engineering in
the organization? Is there any support available for ME in the environment?
What kinds of technology are available for the ME effort? How clear and
steady are the conceptions about what it is really that is wanted from the ME
context? How is the ME context connected to other efforts? Is there any
customary way of working in these kinds of situations in the organization?
What is the level of management commitment to the ME effort?

The ME context can be described with numerous aspects based, for
instance, on seven contextual domains. Let the following be a simple example
of considerations needed when more multifaceted factors are used in ME. Here
we use one factor that is especially significant to the way in which ME work is
carried out in the ISDM RE workflow. This factor is the initiating condition, the
main reason for why the ME effort is initially launched. We distinguish
between two types of reasons, problem-driven and policy-driven, and specify
two ISDM RE approaches based on them. In the specification of the approaches
we utilize the work by Sutcliffe (1996) who proposes four tentative models of
the IS requirements engineering process for possible pathways. The models are
called policy-driven requirements, problem-initiated requirements,
requirements by example, and requirements imposed by the external
environment. Our ISDM RE approaches correspond to the first two in the above
list. Next, we define the approaches and clarify how the ME process proceeds in
each of the cases.

The problem-driven approach is applied when problems in prior ISD
contexts are experienced to be severe, thus calling for changes in the current
ISD method. Problems manifest themselves as inefficiency in ISD processes,
difficulties in project planning and control (e.g. uncontrolled process iteration),
problems in cooperation and communication (cf. Tollow 1996), or inflexibility in
the customization of the ISD method. Problems may also come out as errors in
designs and implementations, difficulties in the maintenance of IS’s, and the
dissatisfaction in, or even the resistance to, the use of the method. In all these
cases it is necessary to first collect and carefully analyze experience from the
prior ISD contexts, and then decide how to proceed.

The analysis may lead to the conclusion that the main reasons for the
problems are not deficiencies in the method, but shortages, for instance, in
technical skills of designers, in cooperation between the ISD stakeholders, or in
incompetence in the use of software tools. In these cases, ME would not bring
any solution. In contrast, if problems are traced to deficiencies in the ISD

499

method, the decision should be made on whether the problems are so severe
and the desire to solve them so unanimous that the ME work should continue.
The decision is also needed on whether the existing method, in spite of its
deficiencies, can serve as a basis for engineering an improved method. If the
answers are yes, the scope of engineering requirements on the ISD method is
determined and the ME process goes on.

The use of the problem-driven approach to ME is widely applied in
practice (e.g. Jaaksi 1997; Tollow 1996). It is more focused and concrete than the
other ME approaches. On the other hand, starting from the problems may limit
the considerations too much to contemporary issues and ignore potentials of
larger improvements (Tolvanen 1998).

The policy-driven approach means an effort that is triggered by the need to
deploy a novel technology, to build for a new application area, and/or to apply
a new approach to ISD. For instance, to develop a ubiquitous information
system based on the microchip technology may require such a novel approach
that it is seen reasonable to develop a new method, or at least a set of new
techniques. Examples of other new approaches are client-led approach, agent-
based approach, agile approach, generative programming approach, aspect-
oriented approach, and soft computing approach. In this kind of situation, first
steps in the ISDM RE workflow are, instead of considering problems in the
prior ISD contexts, to collect and analyze the expectations of stakeholders and
to derive requirements from them. Also new technological and organizational
solutions should be considered. High-level statements are decomposed and
refined to obtain more concrete visions of the ISD and requirements for the ISD
method. In this work, contingency frameworks (e.g. van Slooten et al. 1996;
Harmsen et al. 1994; Punter et al. 1996) may be found feasible.

The categorization of ME approaches into the problem-driven approach
and the policy driven approach is not complete. There are many other reasons,
although not so common, for initiating an ME effort. One of these reasons is the
need to make the ISD process more disciplined. The motivation for this may be
a desire to acquire the ISO certification for the organization (van der Pijl 1997).
That requires not only documenting the followed conventions in a rigorous
manner, but also careful reconsiderations of routines.

Contextual features of the ME have substantial influence upon which
tasks, and in which order, are carried out in the ISDM RE workflow. Therefore,
in each ME effort it is important to analyze which kind the ME context at hand
is and to plan the next courses of action accordingly. Below we present steps
with which the analysis of the ME context can be done:
• Collect the data already available about the ME context at hand.

The purpose is to find out, among else, who suggested the initiation of the
ME effort and what reasons were used to justify it. In addition, memos of
negotiations and even e-mails concerning the ME effort can be valuable to
make the picture of the situation more clear.

500

• Characterize and analyze the ME context to find out the essentials of the context.
Make a structured description of the ME context at hand which highlights
the most essential features of the context. Some contingency framework
can be utilized to elicit, structure and inter-relate the features.

• Decide on the next actions.
Based on the above analysis, decide which ME tasks, with which emphasis
and in which order should be carried out in the following.

11.7.3 Characterize the Target Contexts

The purpose of this ME task is to characterize contexts where the concerned
method is to be engineered and deployed. These contexts comprise target ME
contexts, target ISD contexts and target IS contexts. The target ME contexts
should be characterized because it is necessary to know the degree to which it
should be possible or desirable to make refinements, customizations, and/or
configurations in the ISD method before and/or during the method
deployment. This is affected by the kind of the ISD method under engineering
(cf. generic, domain-specific, organization-specific vs. project-specific method).
The target ISD context means a context for which the method is to be
engineered. The more specific the context is, the more detailed its
characterization should be. Closely related to the target ISD context is the
application and the IS contexts in which the application is to be run. IS contexts
can be viewed from various perspectives. The IS systelogical perspective
recognizes the business system as a utilization system. For instance, the ISD
method could be intended for the use in ISD contexts which develop
transaction processing systems, office information systems or inter-
organizational systems.

The level of detail applied in the characterizations of the target contexts
depends on the type of the ME context. In the method development one is
interested in ISD approaches, application areas, ISD process models, IS
architectures, etc. In the ME context aiming to engineer an organization-specific
method, characterizations refer to the organizational culture, politics and
conventions, as well as to preferred ISD approaches and principles expressed in
more detail. In the ME context aiming to engineer a project-specific method the
target ISD context and the target IS contexts are characterized on the most
detailed level. If the method is not intended to be applied as such, it should be
mentioned in which kinds of situations the method is assumed to be elaborated,
customized and/or configured.

Inputs to the task are more or less vague conceptions of the ISD method
and of the target contexts drafted in the preceding task. The purpose here is to
elaborate these conceptions. Contingency frameworks can play a vital role in
the task. In Table 33 we present examples of contingency factors related to the
IS context and the application, on one hand, and to the ISD context, on the other
hand (van Slooten et al. (1996, 32-33); Harmsen (1997, 206-208); Kruchten (2000,
50-51); Firesmith 2004).

501

TABLE 33 Examples of contingency factors

IS context & Application ISD context
Business criticality
Organizational impact
Formality of information and
 business processes
Size and complexity
Stability of information and
 business processes
User knowledge and experience

Management commitment
Stakeholder involvement
Size of the project
Knowledge, experience and skills
Corporate culture
Degree of resistance and conflict potential
Time pressure
Availability of human resources
Availability of facilities
Process breadth
Clarity and stability of requirements and
 goals
Novelty of technology and methods
 (e.g. tool compatibility)
Contractual issues (e.g. subcontracting)
Legal and regulatory issues
 (e.g. standards and certificates)
Degree of geographical distribution of the
 project
Dependency of other projects

Characterizing the target contexts can be seldom carried out in a
straightforward manner. Below we present a preliminary set of steps to
structure the process:
• Characterize the most essential features of the target ISD context and the IS

contexts.
Figure out what is the most essential to the method under construction:
e.g. What workflows should it cover? What are the most typical features
of applications and target IS contexts? Are there any preferences or
requirements for specific ISD paradigms, ISD approaches, and ISD
principles?

• Characterize the target ME context.
Draft circumstances in which it should be possible or necessary to
elaborate, customize and/or configure the method to make it suitable for
the needs of the target ISD contexts.

• Complete characterizations of the target ISD contexts and the target IS contexts.
Elaborate the characterizations of the ISD target contexts and the IS
contexts in more detail, possibly with contingency frameworks, in order to
cover all important aspects of the situations in which the method is to be
deployed.

502

11.7.4 Analyze Prior Contexts

The purpose of this ME task is to describe and analyze the contexts in which the
concerned ISD method(s) have been engineered and/or used, in order to learn
from experience. The concerned method means the method that is considered
suitable to provide a basis for integration and/or adaptation in the ME context
at hand. The analysis involves contexts on the ME layer, ISD layer, and IS layer.
Knowledge about contexts on the ME layer is relevant to forming a solid view
of the background and nature of the method (cf. the context of creation in
Jayaratna 1994, 228). The ISD method represents organizational knowledge
about ISD, externalized as an artifact. To ensure that the ISD method represents
the “best” practices in the ISD, it is necessary to assess how the ISD efforts
accomplished with the support of the method have succeeded. This necessitates
the analysis of the prior ISD contexts. Because success or failure ultimately
comes to light in IS practice, the IS contexts concerned should also be involved
in the analysis. It should, however, be noticed that it is not always possible to
show cause – effect relationships between IS problems and courses of action in
ISD work.

A need for, and a possibility to, the analysis of the prior contexts depends
on the type of the ME context at hand. If the ME context aims to develop a
generic method primarily “from scratch”, there are usually no prior contexts to
be analyzed. If a generic method is to be engineered by adaptation or
integration from the existing methods, prior ME contexts exist. Also if a generic
method is to be engineered by decustomization and/or deconfiguration, there
may be prior ISD contexts that should be analyzed. The prior IS contexts are
left unconsidered in all the aforementioned cases.

The more concrete the ISD method to be engineered is, the more necessary
it is to consider the prior contexts. Customizing an organization-specific
method is grounded on the needs and features of the specific organization. In
this case, the contexts relevant to the analysis embrace ME contexts in the near
past, as well as related ISD efforts. Also those IS’s that are “run” according to
the prescriptions and with the support of software developed in the concerned
ISD contexts can be included in the analysis. The analysis is especially
important if the problem-driven ME approach is applied.

Instantiating a project-specific method is highly dependent on the features
of that particular project. For this reason, the emphasis in the analysis moves
from the ME contexts to contexts on the lower layers. If the instantiation is
based on a generic method, the analysis resembles that which is applied in the
customization. Although ME is mainly focused on the needs of a particular
project, it is reasonable also to take into account previous conventions and
future visions of the organization. If the instantiation is based on an
organization-specific method, the purpose of the analysis is to find out what
kinds of project-specific methods have been used in the organization, and with
which kinds of steps and results. It is also necessary to consider how successful
the developed IS’s have been and why.

503

The analysis of the prior contexts proceeds with the following steps:
• Consider needs to analyze prior contexts.
• Identify prior ME contexts, prior ISD contexts and prior IS contexts to be

analyzed.
• Define the level of detail for the analysis of each context.
• Collect the data that has already been produced about the prior contexts.

The organization may have a policy to document problems encountered
and innovations made in the ISD projects. Also some IS’s have computer-
based systems (e.g. Help Desk systems) that record and disseminate
information about problems encountered in IS practice, as well as about
change requests. This data is collected for further consideration. If no data
is available or if it is inadequate, more data is acquired by studying
documentation about ISD and ME efforts, interviewing stakeholders
involved in the contexts, etc.

• Make a general description of each relevant prior context.
Descriptions should be presented as scenarios (Harmsen 1997, 202,
Vlasblom et al. 1995, 602) that characterize the contexts in a concise and
condensed manner. One way of structuring the descriptions is to apply
contingency frameworks.

• Carry out the analysis.
The aim of the analysis is to find out failures and successes, as well as
reasons behind them in the prior contexts.

11.7.5 Specify ISDM Requirements

The purpose of this ME task is to derive requirements for a new ISD method, or
an improved ISD method, from the characterizations of the target contexts and
from the analysis of the prior contexts. If the ME context follows the problem-
driven approach, the problems collected and analyzed from the prior contexts
provide a baseline for requirements specification. If the ME context applies the
policy-driven approach, the focus is on deriving requirements from the
characterizations of the target contexts.

Deriving requirements is not an easy task for many reasons. First, as
mentioned above, problems encountered in prior ISD contexts may not be due
to deficiencies in the applied method but result from some human,
organizational or technological reasons. Second, although the problems would
be consequences of the method use, it is difficult to conclude how differently
one should have behaved to be more successful, and how this behavior should
be expressed in the method. Third, it is important to figure out how
requirements should be expressed so that it is possible, based on them, to start
engineering a new, or improved method. Also when following the policy-
driven approach it is difficult to name features that are essential to the target
context.

Regardless of how ISDM requirements are derived they have to be
associated to those stakeholder(s) who have presented and/or agreed on the

504

requirements (cf. the expressedBy relationship in the ME ontology, Section
10.3.5). Requirements should also be classified according to how necessary they
are deemed (e.g. obligatory, favourable, optional). In this task the use of a
proper contingency framework may help.

In conclusion, the steps to specify requirements for an ISD method are:
• Decide on what issues are taken into account in specifying requirements for the ISD

method (cf. problem-driven approach vs. policy-driven approach).
• Specify requirements for the ISD method and present them in a structured form.
• Identify stakeholders and attach the requirements to them with priorities.

11.7.6 Analyze Existing Method(s)

The purpose of this ME task is to find out whether there already exists one or
more ISD methods that satisfy, at least to some extent, the specified
requirements. This task actually belongs to the ISDM evaluation workflow, but
we discuss it here to provide a proper context for the understanding of its
intention and content when used in this stage. We have applied the generic
principles and steps, presented for the task in Section 11.9, to tailor the
description of the task below.

A way of carrying out this task depends on the type of the method the ME
context is aiming at. In engineering a generic method, or a domain-specific
method, the analysis is mainly targeted at those generic/domain-specific
methods that seem to contain desirable features. In some cases, it may also be
worth of looking for organization-specific methods that could be suitable for
decustomization. In the customization context the analysis is targeted at the
current method of the organization, and if not available or if the method is too
far from the specified requirements, it is focused on more promising
generic/domain-specific methods. Also successfully deployed project-specific
methods in the organization could be considered. In the configuration context
other project-specific methods as well as the organization-specific method(s), if
available, are analyzed. Sometimes the analysis is extended, also in this case, to
address generic methods in order to obtain fresh ideas of ways of modeling,
working and controlling in the ISD.

The task of analyzing ISD methods proceeds with the following steps:
• Specify the criteria for the analysis.
 Specification of the criteria is based on the ISDM requirements specified in

the preceding task. It can also utilize evaluation criteria presented in the
ISD literature (e.g. Olle et al. 1983; Olle et al. 1986; Law et al. 1984; Law
1988; Karam et al. 1993; Flynn et al. 1993; Jayaratna 1994; Iivari 1994;
Kitchenham 1996a; Tran et al. 2003; Dam et al. 2004).

• Select ISD methods for the analysis.
 Selection is based on the availability of methods, preconceptions about

their match with the requirements, and resources available for the
analysis.

505

• For each selected method, carry out an analysis according to the specified criteria.
 If the set of the methods is large, the analysis is divided into two parts. In

the first part an investigation is conducted according to the most
important features in order to decrease the number of the analyzed
methods. In the second part an in-depth analysis is carried out only for the
most potential methods.

• Make a summary of, and conclusions from, the analysis.
 The purpose of this step is to find out what method(s) or method

component(s), if any, can serve as a basis for the next tasks. One possible
conclusion from the analysis could be that there already exists a method
that satisfies, to a reasonable extent, the specified ISDM requirements and
therefore no need for further ME tasks prevails.

11.7.7 Determine ME Goals

The purpose of this task is to decide on goals for the ME context at hand. ME
goals concern the ME context as a whole, as well as each of its constituents. ME
goals concerning ME deliverables are primarily related to the goals of the ISD
method. ME goals are determined on the basis of the specified ISDM
requirements and knowledge obtained from the analysis of existing ISD
methods. Also resources available for the ME context are taken into account in
determining ME goals. The last issue is highly important in practice. As Jaaksi
(1997) points out, ME efforts frequently take place under financial pressure, and
in exchange of the resources used in ME, significantly better solutions from ISD
are expected. The goal can never be to find the best method, but a satisfactory
method instead.

Determining goals is a value-based function: what the ME stakeholders
consider ”better” or ”desirable”, and how much they want to invest on
achieving that “better” (Kumar 1984, Kumar et al. 1992, 264). For eliciting
stakeholder value profiles, a survey instrument called ISD-PVQ (information
Systems Development – Personal Value Questionnaire) (Kumar 1984) can be
used.

To structure the ME goals, a proper contingency framework can be used.
Here, we apply the contextual framework to show how ME goals can be
structured according to the target contexts with seven contextual domains and
on two layers. First, we can distinguish the goals that concern the target ME
context as a whole or some of its contextual parts, e.g. an ME organization, ME
actions, ME deliverables, ME resources, ME tools, etc. The main ME deliverable
is the ISD method that is seen at the ME layer as a representational and physical
artifact. Second, through the contents of the ISD method the ME goals involve
the target ISD contexts. Actually it would also be possible, through the contents
of ISD deliverables (i.e. IS models), to state goals that are related to the target IS
context (e.g. a goal to engineer an ISD method for geographic information
systems). We do not go into such detail here. In the following we give examples
of pertinent issues for which the ME goals can be stated, on two layers.

506

Examples of issues in the ME context for which the ME goals can be stated
are:
• Purpose. What are the general objectives of the ME (e.g. high quality,

minimizing resources)? What are the ME strategies and the ME
approaches to be applied?

• Actor. Who should take part in the ME and in which role?
• Action & Time. What workflows should the ME cover and in which phase

structure? What are the time limits/schedule for the ME?
• Object. In which form and physical appearance should the method be

presented (e.g. in a manual, in the web, in a CAME tool)?
• Facility. What are the resources available for the ME and which ME tools

are to be used?
• Location. Where should the ME be accomplished?

The ME goals concerning the contents of the ISD method can be categorized
according to the ISD perspectives. ISD systelogical goals concern ISD
application areas, ISD paradigms, ISD approaches, and ISD principles (cf. the
application view and the generic view in the ISD method ontology) (cf. route
maps in van Slooten et al. (1996)). An example of the ISD systelogical goal is: “to
engineer a method for developing data-intensive web-based applications with
the object-oriented approach and active customer involvement”. Applying the
ISD infological, ISD data logical and ISD physical perspectives means that ME
goals are expressed in more detail, commonly structured according to the ISD
contextual domains. Examples of issues pertaining to the domains of the ISD
context for which the ME goals can be stated are:
• Purpose. What are the most important issues the ISD method should

support in the ISD effort (e.g. high quality of user requirements, easy
maintenance of the system, minimum costs of development)?

• Actor. Who should participate in the ISD and in which role (e.g. the client-
led approach)?

• Action. What workflows should the ISD cover and with which phase
structure (e.g. analysis and design)?

• Object. What are the most typical aspects of the IS’s to be developed with
the support of the ISD method (e.g. data-intensive, web-based)?

• Facility. What kinds of tools are supposed to be used in the ISD (e.g. CASE
tools)?

• Location. Where is the ISD to be accomplished (e.g. in a software house, in
an industrial organization)?

The ME goals should be attached to ME stakeholders who have expressed/
agreed on them (cf. Nuseibeh et al. 1996, 171), as well as to reasons due to which
the goals are seen to be important. As specified in the ME ontology (see Section
10.3.1), reasons can be brought out in terms of requirements, problems,
opportunities/threats, and strengths/weaknesses. The ME goals are inter-
related with one another in many ways. Before making final decisions on ME

507

goals one should make a goal analysis rooted on the established goal
hierarchies (cf. the refinement relationship) and consider the costs of and
benefits from various alternatives. Decisions on ME goals are made, not only at
the beginning of the ME, but across all the ME phases. Goals, stated first on a
general level, are later refined and made more concrete to cover specific issues.

To summarize the discussion above and to structure a way of working in
this task, we present a set of steps for determining ME goals:
• Select issues on which it is necessary to make goal statements.
• Collect requirements specified for the ISD method.
• Collect constraints concerning the ME.
• Formulate alternative ME goals based on the requirements and constraints.
• Evaluate alternatives based on the predefined set of criteria (incl. costs and

benefits).
• Make decisions on alternative ME goals.

11.8 ISDM Analysis

ISDM analysis workflow comprises ME actions, which aim to produce high-level
descriptions of the ISD method. The ISD method is considered from the ISD
infological perspective and the ISD conceptual perspective. Consequently, in
this ME workflow the concepts and constructs of the ISD purpose domain, the
ISD action domain, and the ISD object domain are used to produce
prescriptions of what is to be done, for which, and why in the target ISD
context. Also the conceptual contents of the ISD deliverables are specified in
this workflow.

The main inputs to the ISDM analysis are: (a) overall descriptions of the
ME context and the target contexts, (b) a list of requirements for the ISD
method, (c) a summary of the analyses of the current ISD method(s), and (d) a
structured and preferably prioritized list of ME goals.

The ISDM analysis is composed of three main tasks: (a) infological ISD
modeling, (b) conceptual ISD modeling, and (c) inter-perspective ISD modeling.
With the infological ISD modeling, a description of the ISD method is produced
to reveal ISD purposes, ISD actions and ISD deliverables. In the conceptual ISD
modeling an IS ontology is engineered to be used in describing the conceptual
contents of the ISD deliverables. The inter-perspective ISD modeling is needed
to integrate and verify the two perspectives of the ISD context.

Before describing the tasks of this ME workflow in more detail, we first
define two ME approaches, which affect the order in which the tasks of the
ISDM analysis workflow are accomplished.

508

11.8.1 Approaches

We distinguish between two ME approaches, the functional approach and the
conceptual approach, which differ from one another with regard to the order in
which ISD perspectives are applied (Figure 126). According to the functional
approach the ISDM analysis starts with describing the functional structure of the
target ISD context, meaning that ISD purposes, possibly drafted in the previous
ME workflow, are elaborated and ISD actions and ISD deliverables are sketched
out. Within each of the aforementioned ISD domains, decomposition and
specialization are applied to establish goal hierarchies, action hierarchies and
deliverable hierarchies. The ISD actions and the ISD deliverables are related to
one another through the intra-domain and inter-domain relationships. After
constituting some view of the functional features of the ISD context,
understanding of the contents of the ISD deliverables is captured and deepened
through conceptual ISD modeling.

ISD systelogical
perspective

ISD infological
perspective

ISD datalogical
perspective

ISD conceptual
perspective

Conceptual approachFunctional approach

FIGURE 126 Two approaches to the ISDM analysis

The purpose of the conceptual approach is to first establish an overall view of the
object system (OSISD) which the ISD execution deliverables signify. This means
engineering an IS ontology. An IS ontology is composed of concepts and
constructs defining the IS from five IS perspectives (see Section 8.4). There are
several sub-approaches, which affect the order in which these IS perspectives
are applied. They will be discussed in Section 11.9.3. After having defined the
essential part of the IS ontology, ME moves to consider ISD deliverables that
operate with the concepts of the defined IS ontology, and ISD actions which
produce those ISD deliverables. The ISD actions and the ISD deliverables are
then further elaborated.

509

In practice, these two approaches are rarely applied in a pure format.
Instead, some kinds of mixed approaches are favored. There are, however,
some circumstances, in which an approach closer to the conceptual one suits
better than the functional approach, and vice versa. The more novel the
application domain is for which the ISD method is to be engineered, the more
important the role of the conceptual ISD modeling has in the ME context. This is
so because without knowing, at least to some extent, the structure and behavior
of an artifact, it is very difficult to specify how to design it. Examples of these
kinds of novel application domains are e.g. architecture design, web-application
design, geographical information system design, and ubiquitous system design.
In contrast, if the ME context aims to engineer the ISD method mainly by
adapting the existing method and for a well-known application domain, it is
more beneficial to apply an approach that is close to the functional approach,
because based on the ISD workflows distinguished in infological modeling it is
easier to recognize those parts of the method that should be adapted.
Moreover, after re-engineering ISD deliverables it is simpler to make changes in
the concerned parts of the IS ontology.

In the ME literature there are only a few considerations of the
corresponding approaches. Ralyte et al. (2003, 105) suggest the ME strategy
according to which “a product model” is constructed before engineering “a
process model”. This strategy roughly corresponds to our conceptual approach.
The process model ”can take multiple forms: an informal guideline, a set of
ordered actions, a set of process patterns, multi-process guidelines” (ibid p.
105). These are deliverables of the infological ISD modeling.

Another example of applying the conceptual approach to the ISDM
analysis is given in Hruby (2000b). Hruby presents a methodological
framework, which regards the “software development artifacts” as the most
essential constructs. These artifacts are viewed as conceptual, not
representational (ibid p. 23). In engineering a method, artifacts are first selected.
Artifacts (artifact types) have two kinds of “methods”172 that rule how to create,
interrelate and check the artifacts (instances). For instance, the “methods”
specify preconditions that require that certain artifact (instance) must exist
before some other artifact (instance) can be created. Thus, preconditions
indirectly impact on the order in which the ISD actions creating the artifacts
should be performed (e.g. to create a class life cycle, the artifact ‘class’ must be
first created (Hruby 2000b, 29)). When selecting and including artifact (types)
to the body of the method, the “methods” attached to the artifacts also indicate
the kinds of ISD actions there should be in the ISD method. Hruby (2000b) calls
his framework a “product-focused” framework, as compared to the OPEN
framework (Graham et al. 1997), which he calls the “process-focused”
framework.

172 Method here corresponds to the notion of a method in the object-oriented paradigm.

To differentiate it from our term, we present it in quotation marks.

510

11.8.2 Infological ISD Modeling

The purpose of infological ISD modelling is to describe and gradually elaborate
specifications of ISD purposes, ISD actions and ISD deliverables to include
them in the body of the ISD method. The modeling actions deploy concepts and
constructs defined in the ISD ontology (see Section 8.4.2). From the ISD action
structures, the generic ISD action structures (i.e. the decomposition structure
and the control structures), the IS modeling structure, the ISD problem solving
structure and the ISD workflow structure are applied. The ISD management -
execution structure and the ISD phase structure are excluded in this task. Also
the ISD management deliverables are ignored.

The results from the infological IS modeling are commonly presented in
ISD action models, ISD deliverable models, and/or some hybrid models. If the
ISD purposes have an essential role in the ME effort, they are brought out in
some ISD goal models (i.e. in goal/means graphs, Loucopoulos et al. 1998;
Katzenstein et al. 2000; Castro et al. 2001). It is, however, more common to
describe ISD goals as being associated with ISD actions and/or ISD
deliverables. To give concrete examples of ISD models suitable for presenting
the results from ISD infological modeling, we give a categorization of ISD
models with references to the literature173:
• Action control model (ACM) describes ISD actions and their control

structures (i.e. sequence, selection, iteration); e.g. action diagrams (Martin
et al. 1985).

• Action decomposition model (ADM) describes hierarchical decomposition
structures of ISD actions; e.g. structure charts (Yourdon 1989).

• Information flow model (IFM) describes ISD actions and information flows
(i.e. ISD deliverables) between them; e.g. data flow diagrams (Gane et al.
1979).

• Deliverable decomposition model (DDM) describes hierarchical
decomposition structures of ISD deliverables; e.g. data structure diagrams
(Jackson 1983).

• Deliverable supply model (DSM) describes ISD deliverables and supply
relationships between them; e.g. I-graphs (Lundeberg 1982).

The conceptual contents of, and the relationships between, the ISD models
mentioned above are illustrated in Figure 127. In the following we use the
setting in the figure to illustrate the approaches and steps of infological ISD
modeling.

The basis for infological ISD modeling is obtained from the goal
statements made in the ISDM RE workflow. For proceeding, there are three
alternative approaches. The approaches differ from one another in regards to
which ISD domains the modeling process starts with. The approaches are: (a)

173 Note that the models mentioned in the parentheses have originally been developed

for the IS. Here they are applied to model the ISD.

511

Action decomposiiton str Control structure

DDM

IFM

ISD deliverable

ISD action

supports

outputinput

ADM ACM

DSM

FIGURE 127 Models applicable to the infological ISD modeling

the ISD action-driven approach, (b) the ISD deliverable-driven approach, and
(c) the mixed approach. Figure 128 describes the steps of infological ISD
modeling and their order in the first two approaches. The steps are called by the
names of the artifacts that are the targets of the steps (e.g. ‘ISD actions’ means
infological ISD modeling for specifying ISD actions). The arrows between the
steps denote sequence relationships.

ISD purposes

ISD actions

Action
decompositions

Other action
structures

ISD deliverables

Deliverable
decompositions

Checking

Support
relationships

ISD purposes

ISD deliverables

Deliverable
decompositions

Support
relationships

ISD actions

Action
decompositions

Checking

Other action
structures

Input/output
relationships

Input/output
relationships

(a) (b)

FIGURE 128 Processes (a) in the ISD action-driven approach and (b) in the ISD
deliverable-driven approach

According to the ISD action-driven approach, infological ISD modeling starts with
elaborating ISD purposes and proceeds to identify and specify ISD actions and

512

their decomposition and control structures. After that ISD deliverables are
distinguished, structured and specified. In contrast, in the ISD deliverable-
approach the identification and specification of ISD actions comes after modeling
ISD deliverables and their inter-relationships. In the mixed approach modeling is
carried out more or less in parallel with ISD actions and ISD deliverables. A
good example of applying the mixed approach is the ME effort to “build a
software maintenance methodology” (Polo et al. 2002) which proceeded from
first identifying tasks and then to specifying “input and output products”, and
techniques. After pilot testing, divergent paths for corrective, perfective,
preventive and adaptive maintenance types were established. Each path was
composed of specialized tasks and products.

A choice between the three approaches depends, to some degree, on the
approach applied in the ISDM analysis workflow. If the functional approach
has been applied, the mixed approach to the infological ISD modeling is more
suitable. If the conceptual approach has been applied, it is more natural here to
start the process of infological ISD modeling with considering what are the ISD
deliverables signifying those OSISD constructs that have been identified in
conceptual ISD modeling. This means that the ISD deliverable-driven approach
is more appropriate. Because it is not possible here to describe for all three
approaches, how infological ISD modeling proceeds, we describe the steps in
the order they appear in the ISD action-driven approach.

As mentioned in Section 11.2, MEMES has been firmly built upon
OntoFrame. This means that ISD modelling, here done from the infological
perspective, is guided to utilize the ISD meta models included in the ISD
ontology. There are two basic approaches to the utilization of the ISD ontology:
the bottom-up approach and the top-down approach. According to the bottom-
up approach, ISD modeling starts with specifying instance-level and specialized
concepts and constructs and proceeds to abstract generic concepts (e.g.
workflow, activity, task, operation) generalized from them. In the top-down
approach, generic concepts and constructs are first specified and later made
more concrete by instantiation and specialization. We favor the top-down
approach, because this way it is easier to ensure that the concepts and
constructs constitute a unified and coherent whole. Our ISD ontology offers a
basis for adaptations when specifying an ISD context-specific ontology.
Actually, also the bottom-up approach can benefit from our ISD ontology as it
provides concepts and constructs toward which the process of classification and
specialization orientates when searching for a coherent set of generic concepts.
It is not possible for us to show how the utilization of the ISD ontology takes
place in all the cases. Instead, we give some examples of the utilization when
following the ISD action-driven approach to the infological ISD modeling with
the following steps:
• Elaborate and categorize ISD goals.
 Based on the ME goals stated in the ISDM RE workflow, reconsider,

elaborate and categorize those goals that pertain to the target ISD context.
Consider which concepts and constructs, defined in the ISD purpose

513

domain in the ISD ontology, as such or adapted, apply to this case. In
order to help infological ISD modeling in the following steps, categorizing
the goals according to the contextual domains is recommended.

• Identify and specify ISD actions.
 Deriving from the ISD goals stated above identify and specify ISD actions

that are needed to satisfy the goals.
• Decompose ISD actions.
 To manage the complexity related to the ISD actions and to get a more

detailed view of them, decompose the ISD actions into more elementary
parts (e.g. ISD tasks and ISD steps).

• Establish other ISD action structures.
 There are several other action structures in the ISD ontology by which ISD

actions can be organized, e.g. the ISD workflow structure, the ISD problem
solving structure, the IS modeling structure, and the control structures. A
decision on which of these is used as the primary ISD action structure
depends on the ISD approach(es) (of the category B, see Section 8.1.2)
selected in the ISDM RE workflow. In the transformation approach, for
instance, the IS modeling structure may be favored, while in the problem
solving approach the ISD actions are structured according to the process
by which ISD problems are solved and decision are made. To have an
overall structure for the whole ISD effort, ISD workflows are usually
used174. The control structures (i.e. sequence, selection and iteration) are
specified to express monotonic, alternative, and cyclic processes.

• Identify and specify ISD deliverables.
 Deriving from the ISD goals and the ISD actions identified above, decide

what ISD deliverables are needed. At the beginning conceptions about the
ISD deliverables are quite general. The generic notions of ISD deliverables
in the ISD ontology can be used to specialize ISD deliverables into more
concrete concepts. One way of recognizing ISD deliverables is to consider,
for each identified ISD action, what are the outputs from, and what are the
inputs to it.

• Decompose ISD deliverables.
 To get a more detailed view of the ISD deliverables, decompose them into

smaller informational objects. Decomposition should be in compliance
with the structures of the corresponding ISD actions.

• Specify support relationships.
 To show what ISD deliverables are needed to produce other ISD

deliverables, associate ISD deliverables to one another with the support
relationships (e.g. I-graphs in Lundeberg (1982)).

• Specify input / output relationships.
Associate the ISD actions and the ISD deliverables to one another with the
input and output relationships.

174 In the early days it was common to first establish a phase structure.

514

• Check the specifications of ISD actions and ISD deliverables.
 Reconsider the specifications of the ISD actions and the ISD deliverables in

order to check their compliance with the stated ISD goals,
comprehensiveness, and internal and external consistency. Rename
concepts and reorganize structures and relationships, if necessary.

The steps above are presented in the order in which they are commonly
executed when applying the ISD action-driven approach to infological ISD
modeling. An actual ME process may, naturally, deviate to a large degree from
this order and several steps are carried out concurrently. Also moving up and
down in the hierarchies of ISD actions and ISD deliverables is common.

11.8.3 Conceptual ISD Modeling

The purpose of conceptual ISD modeling is to specify the conceptual contents of
ISD deliverables. ISD deliverables are informational objects referring to the IS
contexts, as well as to the ISD context. The latter objects primarily correspond to
ISD management deliverables. Because we do not address the management part
of the ISD context in this stage, we concentrate on ISD execution deliverables.
The object system of the ISD context, OSISD, embraces three parts, the IS, the
OSIS and the USIS. These together constitute an IS ontology. Consequently,
conceptual ISD modeling means IS ontology engineering.

We have defined the IS ontology to be composed of the concepts and
constructs in seven IS domains, from five IS perspectives. The IS systelogical
perspective concerns the business system (USIS) and the support the IS provides
for it. The IS infological, IS datalogical and IS physical perspectives uncover
various aspects of the IS. From the IS conceptual perspective the concepts and
constructs of the object system (OSIS) are recognized.

IS ontology engineering is neither an easy nor straightforward task for
several reasons. First, a way of engineering an IS ontology depends on whether
the ISD addresses the CIS, the HIS, or both of them. In the former case, the IS
ontology is technology-oriented, whereas in the latter cases the IS ontology also
contains social and organizational concepts. Second, IS ontology engineering
differs in the extent to which the ISD method is to support also re-engineering
of business processes. For instance, if the IS is considered just a ‘tool’ to be taken
into use without too much interest in consequences to organizational or
functional issues of the business system, the role of systelogical IS ontology
engineering remains insignificant. Third, selecting and defining the concepts
and constructs of the IS are affected by how the IS is actually seen. As
mentioned in Section 8.1, there are different view-based ISD approaches. For
example, the IS can be seen as a context for data processing, enabling the
collection, recording, processing, and dissemination of information to the end-
users. Alternatively, the IS can be considered as a context of cooperation,
collective decision making, and knowledge sharing. It is clear that these views
lead to the selection and definition of different concepts and constructs.

515

IS ontology engineering involves the IS domains on different stages.
Normally, engineering starts with defining concepts in the so-called core
domains: in the IS purpose domain, the IS action domain, and the IS object
domain (cf. Section 4.3). After that, engineering proceeds to the consideration of
the related IS domains. Expressed in terms of IS perspectives we can say that it
is more common to start with the IS systelogical perspective and proceed
through the IS infological and IS conceptual perspectives to the IS datalogical
and IS physical perspectives. To have an overall view of different approaches to
IS ontology engineering we categorize ME actions according to the IS
perspectives (see Figure 129). We distinguish between four approaches to the IS
ontology engineering depending on where the process starts from. The
approaches are: the US-driven approach, the IS-driven approach, the OS-driven
approach, and the CIS-driven approach. In the following we shortly
characterize these approaches.

IS systelogical perspective

IS infological perspective

IS conceptual perspective

IS datalogical perspective

IS physical perspective

US-driven approach

IS-driven approach

OS-driven approach

CIS-driven approach

FIGURE 129 IS ontology engineering approaches and IS perspectives

In the US-driven approach the alignment of the IS to the business system utilizing
the services of the IS is seen vital in IS ontology engineering. Therefore, the
process starts with applying the IS systelogical perspective. This is the case, for
instance, in developing methods for strategic information systems and decision
support systems. According to the IS-driven approach, IS ontology engineering
starts with identifying the main concepts of IS actions and IS objects, as well as
with defining input and output relationships between them. This approach can
be applied in engineering methods for information systems, which contain
complex and abnormal information processing or information structures. In the
OS-driven approach IS ontology engineering starts with defining the concepts
that are used to model the conceptual contents of the informational objects of
the IS (cf. the IS conceptual perspective). Later, it proceeds with defining
informational objects representing the conceptual constructs and IS actions
processing them. This approach is applicable in situations where informational

516

objects in the IS refer to unusual conceptual constructs. We can assume that in
engineering methods for GIS development, it is beneficial first to carry out OS
metamodeling to specify complex conceptual constructs underlying spatial
data. The CIS-driven approach is focused on architectural and technical features
of the computerized information system. This approach is common in
engineering the ISD method for technical system design (e.g. for architecture
design).

Due to the plurality of approaches, each with different orientation and
emphasis on the IS perspectives, we describe the tasks of conceptual ISD
modeling in four parts. In the first part, instructions are given for the selection
of approach(es) and making decisions on the order in which steps in the other
parts are executed. The next five parts provide steps for IS ontology
engineering. The parts are: systelogical IS ontology engineering (or business
system metamodeling), infological IS ontology engineering, conceptual IS
ontology engineering (or object system metamodeling), datalogical IS ontology
engineering, and physical IS ontology engineering.

I. Generic decisions:
• Select a view through which the IS is primarily considered (e.g. transformation

view, problem solving view, decision making view (see Section 8.1)).
• Deriving from the view selected, decide on the IS perspectives to be applied in IS

ontology engineering.
• Define the aim and scope of the IS perspectives.
• Decide in which order the perspectives are to be applied in the IS ontology

engineering (cf. US-driven, IS-driven, OS-driven, and CIS-driven approaches).

II. Systelogical IS ontology engineering (cf. Section 6.3.1):
• Define the most essential concepts by which the utilizing system of the IS can be

modeled.
 The concepts and constructs to understand and represent the structural,

functional and behavioral features of the utilizing system are defined.
They refer to e.g. US goals and US requirements, US roles, US positions
and organizational units, US actions and US objects. Also intra-domain
and inter-domain relationships are defined.

• Define the essential US rules.
 US rules are defined and structured in the ECAA (Event, Condition,

thenAction, elseAction) form, or in some variant of that form.
• Define US concepts that elaborate the view of the US as a physical, locational and

temporal context.
 Elaboration is done with the concepts of the US facility domain, the US

location domain and the US time domain. Through the concepts of the US
facility domain, for instance, it is possible to define the functional role in
which the IS is deployed in the US.

• Complete the definitions of the intra-domain and inter-domain relationships
between the US concepts.

517

III. Infological IS ontology engineering (cf. Section 6.3.2):
• Define the essential concepts which are used to refer to IS actions (e.g. function,

activity, task, step, operation).
• Define the essential concepts which are used to refer to IS objects (e.g. outcome,

deliverable, information set, message, decision).
• Define the essential concepts which are used to refer to IS purposes (e.g.

problem, goal, intention, motive).
• Define the main IS action structures.

There is a large set of IS action structures available (see Section 4.4.3): e.g.
the generic structures (the decomposition structure, the control structures,
and the temporal structures), the IS problem solving structure, and the IS
management – execution structure. Select the appropriate structures and
elaborate them to be included in the method.

• Define the main structures of information processing rules.
• Define the main specializations and structures of the IS objects.

In congruence with the defined IS actions structures, decide on which sub-
concepts of the IS objects and relationships between them (e.g. partOf,
supports, copyOf, versionOf) are needed. Define the concepts and the
relationships.

IV. Conceptual IS ontology engineering (cf. Section 6.3.3):
• Find out whether there exists a suitable IS meta data model.
 In the literature there is a large set of meta data models (e.g. ER model

(Chen 1976), EER (Elmasri et al. 2000), NIAM (Nijssen et al. 1989), OPRR
(Welke 1988, Smolander 1991), GOPRR (Kelly et al. 1996), UML class
diagram (Booch et al. 1999)), which provide either a ready solution to the
needs of the method, or a basis for adaptations. If no such meta model is
found, the following steps should be accomplished:

 (a) Define the concept(s) with which independent and distinguishable
things in reality are modeled (e.g. entity (type), concept (type), thing
(type), phenomenon (type)).

 (b) Define the concepts with which relationships between the things are
modeled (e.g. relationship (type), connection (type), association (type),
role).

 (c) Define the concepts with which abstraction structures are modeled (i.e.
classification, generalization, composition, and grouping).

 (d) Define the concepts with which characteristics of the things and
relationships are modeled (e.g. attribute, property, feature).

 (e) Define the main structures with which static OSIS constraints can be
modeled (e.g. cardinality constraint, role constraint, attribute constraint).

• Find out whether there exists a suitable dynamic OS model.
 If the ISD method should also comprise concepts for modeling the

dynamic features of the OSIS, a variety of dynamic OS models (e.g. UML
state diagram, Booch et al. 1999) are evaluated. If no suitable model is
found, the following steps are carried out:

518

 (a) Define the main concepts with which the states of things are modeled.
 (b) Define the main concepts with which the shifts between the states are

modeled.
 (c) Define the main concepts with which triggering the shifts between the

states is modeled.

V. Datalogical IS ontology engineering (cf. Section 6.3.4):
• Define the main concepts, with which humans acting in the IS contexts can be

modeled (e.g. agent, actor, stakeholder, user, end-user, role).
• Define the main constructs with which organizational structures can be modeled

(e.g. organization, unit, team, group).
• Define the main structures with which IS actions can be decomposed into more

elementary things (e.g. position, task, operation, step, work procedure,
process, event).

• Define the main concepts with which interaction between the human beings and
the CIS can be modeled (e.g. dialog, window, UI component, UI data, UI
action, UI state, UI transition).

• Define the main concepts with which the structure and behavior of the CIS can be
modeled on a general level (e.g. CIS action, CIS rule, transaction, algorithm).

• Specify the languages (incl. notations) in which IS models can be presented.

VI. Physical IS ontology engineering (cf. Section 6.3.5):
• Define the concepts with which processes enacted by persons in a certain spatio-

temporal space are modeled.
• Define the concepts with which persons, groups and their relationships are

modeled.
• Define the concepts with which data and data structures in different forms and on

different granularity levels are modeled (e.g. data file, data base, record, data
field, data message etc.).

• Define the concepts with which the physical structure and behavior of the CIS is
modeled (e.g. node, processor, memory device, SW component, HW
component, protocol).

The lists of the steps of the IS ontology engineering given above are not to be
exhaustive, but rather to provide a concrete view of the wide range of issues
that might be considered in the accomplishment of this task. On the other hand,
it is not the purpose that in every ME context all the steps should be carried out.
In contrast, whenever a part of the IS ontology is found in the literature that
suits the needs of the ISD method, one should be encouraged to fully utilize it.

11.8.4 Inter-Perspective ISD Modeling

The ME tasks described above are related to specific ISD perspectives. To have
an integrated view of the ISD context, it is necessary to ensure that the

519

perspective-based ISD models are inter-related in a consistent manner. That is
the aim of inter-perspective ISD modeling.

The ISDM analysis workflow comprises ME tasks of infological ISD
modeling and conceptual ISD modeling. The ISD domains primarily concerned
are the ISD action domain and the ISD object domain. Things in the ISD object
domain are seen as linguistic artifacts and conceptual constructs. To ensure the
consistency between the perspective-based ISD models, it is necessary to check
that the defined concepts and constructs of those ISD domains are
appropriately inter-related.

In Section 11.8.1 we distinguished between the two main approaches to
the ISDM analysis, the functional approach and the conceptual approach. Here
we show how, with these approaches, it is possible to carry out inter-
perspective ISD modeling. In Figure 130 the ME processes following the
approaches are illustrated with two settings composed of eight squares (cf.
Leppänen 2000). A square stands for a specific sub-area of the ISD context. With
the symbols in the squares we express the concepts and constructs in these sub-
areas. The meanings of the symbols are175:
• A x AA. ISD actions and their abstraction relationships (i.e. decomposition,

and specialization)
• A x AR. ISD actions and their relationships based on the control structures,

the ISD problem solving structure, the ISD workflow structure, and the IS
modeling structure.

• A x D. ISD actions, ISD deliverables and their inter-relationships.
• D x DA. ISD deliverables and their abstraction relationships (i.e.

decomposition and specialization)
• D x DS. ISD deliverables and their supports relationships.
• D x C. ISD deliverables, OSISD constructs and the signifies relationships

between them
• A x C. ISD actions, OSISD constructs and the involvedBy relationships

between them.

The setting on the left side (Figure 130a) illustrates the process of the ISDM
analysis carried out according to the functional approach. The first tasks
produce descriptions / prescriptions about ISD actions (A) and ISD deliverables
(D). At this stage abstraction by decomposition and specialization can be
applied to the ISD actions (A x AA) and the ISD deliverables (D x DA). In
addition, a variety of action structures can be defined among the ISD actions (A
x AR), and supports relationships are defined between the ISD deliverables (D
x DS). After having defined the main concepts and relationships within the ISD

175 We have used Cartesian product in the symbols to highlight that the symbols stand

for conceptual constructs within and between the concerned domains. We interpret
Cartesian product freely so that it covers the n-ary relationships (n ≥ 2) between the
contextual concepts. The abbreviations used in the subscripts are: A = Abstraction
(relationship), S = Supports (relationship), R = Rest (of the intra-domain
relationships).

520

A x A r A x A a A x D D x D a D x D s

A x C D x C

C x C 3

21

A x A r A x A a A x D D x D a D x D s

A x C D x C

C x C
3

2

1

(a) (b)
FIGURE 130 (a) The functional approach and (b) the conceptual approach

action domain and the ISD object domain, the ISD analysis proceeds to increase
the understanding of the meaning of the ISD deliverables through conceptual IS
ontology engineering. The results from the task comprise OSISD constructs (C x
C).

The setting on the right side (Figure 130b) illustrates a process of the ISDM
analysis carried out according to the conceptual approach. The process starts
with recognizing phenomena (C x C) in which we are interested during the ISD
effort. With this better understanding of the structure and behavior of the IS it is
easier to decide which ISD deliverables should be established to signify those
phenomena (D x C). Having established the ISD deliverables with relationships
to the object system of the ISD, it is then possible to define the supports
relationships (D x DS) and the abstraction relationships (D x DA) between the
ISD deliverables. To complete the picture, ISD actions are defined based on
what their inputs and outputs (A x D) are. To verify the total view from the ISD
infological and ISD conceptual perspectives, the involvedBy relationships
between the ISD actions and the OSISD constructs (A x C) are defined.

ME tasks along the path of applying one or the other of the
aforementioned ME approaches are accomplished with the steps of the
infological ISD modeling and the conceptual ISD modeling, respectively. In
addition, it is necessary to verify the consistency between the ISD infological
and ISD conceptual views. This is carried out with the following steps:
• Ensure that for each ISD deliverable there is a non-empty set of OSISD constructs

which the ISD deliverable signifies.
• Ensure that for each OSISD construct there is a non-empty set of ISD deliverables

that signify it.
• Ensure that each OSISD construct is involved by at least one ISD action.
• Ensure that each ISD action involves at least one of the OSISD constructs.

There are several models that can support carrying out the aforementioned
verification. The data class/business entity matrix (IBM 1984), for instance, can
be used to model and analyze the signifies relationships between the ISD
deliverables and the OSISD constructs. Likewise, the process/data class matrix
(IBM 1984) can be used to describe the involvedBy relationships between the
ISD actions and the OSISD constructs. In the latter matrix, special markings (R, C,

521

U, D) can be used to denote whether a certain ISD action requests, creates,
changes or deletes information about a certain OSISD construct.

11.9 ISDM Evaluation

ISDM evaluation means ME actions, which aim to assess one or more ISD
methods, or parts thereof, according to the defined criteria. ISD methods can be
evaluated in various contexts for different purposes. Evaluation can be
conducted, for instance, on the bases of drafts made from the method being
engineered. Evaluation plays an important role also in the selection of the
method for the use of the specific ISD project. Furthermore, it is common,
during the method use, to make assessments of it for future acts of
improvements. There is a large variety of ways and techniques that can be
applied in the evaluation (Sol 1983; NCC 1987; Law 1988; Avison et al. 1995a;
Kitchenham 1996a; Kitchenham 1996b; Kitchenham 1996c). To clarify a variety
of contexts and targets of the evaluation, we present a meta model in Figure
131. In what follows we define the concepts in the meta model, refer to the
relevant literature and present a set of generic steps to be applied in ISDM
evaluation.

An evaluation context is a situation, the purpose of which is to assess
and/or compare one or more ISD methods, or parts thereof. There are two main
reasons for evaluation: academic reasons and practical reasons (Avison et al.
1995a, 434). In the former case, the purpose of evaluation is to obtain a better
understanding of the nature of the ISD method(s) in order to improve future
methods. In the latter case, evaluation aims to choose a method and/or to
provide the basis for making decisions on necessary improvements in the
evaluated method. Whereas the categorization above is based on the different
aspects in the ISD purpose domain, differences between the evaluation contexts
can be based on the other contextual domains as well. For instance, evaluation
can be performed in an academic organization, a method vendor organization,
a software house, or a client organization (cf. Kitchenham 1996b). Evaluators in
the context can be academic people, method developers, IS developers, and/or
IS users.

The main target of evaluation is a method or a method component. Let us
call them methodical things. There is a myriad of literature on evaluation of
methods in general (e.g. Olle et al. 1983; Olle et al. 1986; Jayaratna 1994; Blum
1994; Hughes et al. 1996; Bielkowics 2002; Moody 2003a), or methods of certain
types (e.g. object-oriented methods (Arnold et al. 1991; de Champeaux et al.
1992; Hong et al. 1993; Iivari 1994; Liang 2000; Henderson-Sellers et al. 2001),
component-based methods (Forsell et al. 2000; Boertien et al. 2001), agent-based
methods (Tran et al. 2003; Dam et al. 2004; Sturm et al. 2004). The most common
method components in evaluations are models (e.g. conceptual models (see

522

Method

Internal

Method component

Construct Model Technique

External

Step

ConceptualEmpirical

Evaluation techn.

Feature

CriterionVariable

Metric

Evaluation context

1..*

1..*

1..*

concerns

1

doneAccordingTo

1..*

1..*

1

1..*
has

AcademicPractical

Artifact

1..*

1..*

List

Framework

Assessment

1..*
basedOn

1

1..*

producedIn

*

1..*

contains

Methodical thing
1..*

1..*

of

Taxonomy

*

1..*

FIGURE 131 Meta model of issues related to the evaluation of an ISD method

references in Gemino et al. 2002; Moody 2003b; Moody 2000c), process models
(e.g. Green et al. 2000), enterprise / business models (e.g. Hommes et al. 1999;
Hommes et al. 2000; Arnesen et al. 2002), and techniques (data requirements
specification techniques (e.g. Bielkowicz et al. 2001), user interface analysis
techniques (e.g. Jefferies et al. 1991). A methodical thing can exist at different
points in its life cycle and appear in different forms. It may be a draft on paper
or a heavily used method, perhaps embedded in a CASE tool. Evaluation can
be made on the basis of primary descriptions (i.e. manual), trials of a CASE tool
implementing the methodical thing, method specifications recorded in a CAME
tool (Harmsen 1997; van Slooten et al. 1993), or based on some secondary
sources, e.g. characterizations presented in articles and books.

Of a methodical thing one or more features can be selected for evaluation.
A feature means any property of a method, or of a method component, that is
considered relevant in the evaluation context. Features can be categorized along
several dimensions, partly depending on the kind of methodical thing:
structural, functional vs. behavioral features; systelogical, infological,
conceptual, datalogical vs. physical features; internal vs. external features; etc.
Internal features mean properties that can be evaluated without associating the

523

methodical thing with any other thing or empirics (e.g. consistency and
coherence of a conceptual model). External features mean properties that can be
evaluated only by comparing them with others or deploying them (e.g.
applicability and understandability).

Evaluation of features should be based on well-defined evaluation criteria.
A criterion means an explicitly specified standard of evaluation (cf. Webster
1989). One or more criteria can be used to evaluate a certain feature, and one or
more features can be evaluated with the same criterion. Examples of criteria are
readability (Bajaj 2002), expressiveness (Chaves et al. 1996), effectiveness
(Gemino et al. 2002), efficiency (Moody 2003a) and correctness (Moody 2003b).
For each criterion there are one or more variables with which “measurement” is
to be performed (e.g. for measuring correctness of a data model there are
variables, such as a number of violations to data modeling standards, a number
of instances of entity redundancy, and a number of instances of relationship
redundancy (Moody 2003b)). For each variable there is a metric, which specifies
the data type, range, etc. of the variable. Variables can be qualitative or
quantitative.

Individual criteria are commonly structured into the form of an evaluation
artifact. In the simplest form an artifact is a list of criteria (e.g. Rzevski 1983; Ang
1993; Brodie 1983; Karam et al. 1993; Flynn et al. 1993). More structured forms of
the artifacts are a taxonomy (e.g. Brandt 1983; Blum 1994), a hierarchy (e.g. Law
1988) and a framework (e.g. Iivari et al. 1983; Lindland et al. 1994; Jayaratna
1994; Krogstie 1995; Krogstie et al. 2000; Wieringa 1999; Bielkowicz 2002). A
structure and contents of criteria are sometimes grounded on some theory (e.g.
sociocybernetics in Iivari et al. (1983), semiotic ladder in Krogstie (1995)).

In an evaluation context one or more evaluation techniques can be
deployed. An evaluation technique provides criteria, principles, guidelines and
steps to carry out an evaluation. Examples of evaluation techniques are SDSS
(Law et al. 1984), STARTS (NCC 1987) and DESMET (Kitchenham 1996a). The
use of an evaluation technique can be undertaken as an empirical or conceptual
study. Examples of empirical studies are formal experiments, case studies, action
research, and surveys. In a formal experiment participants are asked to perform
a task or a set of tasks using the methodical thing under investigation. In a case
research and in an action research (e.g. Grant et al. 2003; Tolvanen 1995) the
method under evaluation is used and assessed in a real project where the
method developer participates. In a survey ISD stakeholders having experience
in specific methodical thing(s) are asked to provide information about it.
Empirical studies aim to uncover method appropriateness (i.e. the fit with the
needs and culture of the organization) and measurable effects of using a
methodical thing. In a conceptual study an evaluator focuses on those features
(i.e. internal features) in a methodical thing that do not necessitate empirical
evidence for assessments.

A variety of evaluation contexts is so huge that it is quite impossible here
to provide detailed guidelines for the accomplishment of the ISDM evaluation
workflow in all kinds of contexts. Instead, we present a set of steps for ISDM

524

evaluation on a general level with the purpose that the steps can be, in a case-
by-case manner, instantiated to suit a particular evaluation context. The steps
are:
• Analyze the evaluation context at hand.
 Due to a large variety of evaluation contexts it is necessary to find out

what kind of context is currently being dealt with. For this purpose, goals,
target and constraints of evaluation are specified. These issues have a
great impact on what actions are necessary to carry out in the following.

• Decide what features in general are important to the evaluation.
 Having specified the target of the evaluation one decides what features of

the methodical thing(s) are to be evaluated. These features can be specified
and structured according to the ISD method ontology (Section 9.5).

• Select an evaluation technique.
 Based on the goals, target, and constraints of evaluation, as well as on the

specified features of the methodical thing(s), it is decided which kind of
evaluation technique is needed. First, a decision is made between the
empirical techniques and the conceptual techniques. Second, search for the
literature is carried out to find an appropriate evaluation technique. If not
found, the one(s) that come(s) closest can perhaps be adapted.

• Specify evaluation criteria.
A search is conducted to find an appropriate evaluation artifact (e.g. a list,
a taxonomy, a framework, etc), which provides suitable evaluation
criteria. This artifact is perhaps contained by the evaluation technique
selected, or found from the literature. If not found, necessary adaptations
are applied to some other artifact(s). For each criterion, the variables,
metrics and usage guidelines are specified.

• Fix the methodical thing(s) for the evaluation.
 The methodical thing can be a method, or some part of it. Depending on

the nature of the evaluation context and the goals of the evaluation, there
may be one or more methodical things that should be evaluated. If several
methodical things are to be evaluated, the selection of them is based on the
availability, preconception of their match with the needs, and resources
available for the evaluation.

• Carry out the evaluation.
 For each selected methodical thing the evaluation is made according to the

defined criteria. If the set of the things is large, the evaluation is
decomposed into two parts. In the first part an investigation is conducted
on the basis of the most important features in order to decrease the
number of the methodical things. In the second part an in-depth
evaluation is carried out only for the most potential things.

• Make a summary of, and conclusions from, the evaluation.
 To help the utilization of results from the evaluation the assessments

should be documented in a structured form. Documentation should also
contain arguments by which the selections and assessments have been
made (cf. method engineering rationale, Rossi et al. 2004).

525

11.10 Summary

In this chapter we have described the methodical skeleton for method
engineering, called MEMES. It has been built upon OntoFrame, and in
particular, upon the ISD ontology, the ISD method ontology, the ME ontology,
and the ME method ontology. The purpose of MEMES is to provide support to
the engineering of generic and domain-specific methods with any ME strategy.
MEMES views the ME context from three ME perspectives and from three ISD
perspectives. It covers three ME workflows that are the ISDM requirements
engineering, the ISDM analysis and the ISDM evaluation.

The ISDM requirements engineering starts with making decisions on the
feasibility of a contingency framework to the ME context at hand. One or more
frameworks can be selected to aid the elicitation and structuring of the
characterizations of the concerned contexts (i.e. the prior contexts, the ME
context at hand, and the target contexts) and the concerned methods. Next, the
ME context at hand is analyzed to figure out, for instance, what is the level of
knowledge of, experience from, and skills in method engineering in the
organization. Also a selection between the problem-driven approach and the
policy-driven approach is made. In the next tasks the target contexts and the
prior contexts on three layers are characterized and analyzed. Based on the
information about the aforementioned contexts, requirements for the ISD
method are specified and classified. Next, existing ISD methods are analyzed to
find out to what extent they can be used as the basis for integration and/or
adaptation in the ME context. Finally, ME goals are stated and structured
according to the processing layers and the contextual domains.

The ISDM analysis aims to produce high-level descriptions about the ISD
method. This workflow is composed of three main tasks, called the infological
ISD modelling, the conceptual ISD modelling and the inter-perspective ISD
modelling. For the workflow, two competing approaches, the conceptual
approach and the functional approach, have been specified. Each of the tasks is
supported by discussions of relevant issues and step-by-step procedures. In the
descriptions it is also shown how OntoFrame can be utilized in engineering
different parts of ISD methods.

The ISDM evaluation in practice is composed of a large variety of tasks.
MEMES provides the meta model of the main issues related to the evaluation of
the ISD method, as well as a set of generic steps for the evaluation. The meta
model covers concepts such as an evaluation context, an evaluation criterion, an
evaluation technique, a methodical thing, and a feature. Each concept has been
defined. The steps of the ISDM evaluation are to be instantiated to suit a
particular evaluation context.

MEMES was described in the structure of the methodical views defined in
Chapter 9. Hence, we first characterized the background (cf. the historical
view), application area (cf. the application view), and basic assumptions and
approaches (cf. the generic view) of the artifact. After that we detailed the

526

conceptual contents (cf. the contents view) and functional structure (cf. the
structural view) of MEMES. By this we demonstrated that the concepts and
constructs specified in OntoFrame are fully applicable to the construction and
presentation of new artifacts. More about the ways in which we utilized
OntoFrame and MEMES themselves in the process of engineering MEMES will
be said in the next chapter.

To our knowledge, MEMES is the only ME artifact which provides
comprehensive support, in terms of contextual issues, for method engineering.
It is also the only one, which has been constructed in the deductive fashion,
based on the sound theoretical foundation. In the next chapter we will present
the results from a large comparative analysis of existing artifacts, which show
that MEMES compares favorably with the other artifacts also in the other
respects.

12 EVALUATION OF MEMES

In the preceding chapter we have defined MEMES (Method Engineering
MEthodical Skeleton) as a normative prescription for the ME context and
described it in terms of ME workflows, which structure and guide the ME
process. In this chapter our purpose is to evaluate MEMES, in particular its
applicability. In Chapter 1 we defined the goals for the applicability of MEMES
in terms of framing, analytical and constructive intentions. Our evaluation in
this chapter covers all of these three intentions.

The chapter is organized as follows. In Section 12.1 we apply one of the
ME workflows in MEMES, known as ISDM evaluation, to make sense of and
structure the evaluation context at hand. In Section 12.2 we use MEMES as a
frame to describe and analyze the processes of, and the deliverables from, the
OSSAD project. In Section 12.3 we describe and evaluate how MEMES
performed, in the constructive sense, in the MEMES effort. In Section 12.4 we
use MEMES and OntoFrame as the analytical framework to make a
comparative analysis of those existing artifacts in the ME literature, which are
aimed to provide methodical support for ME. The chapter ends with a
summary and discussions.

12.1 Evaluation Context

In Section 11.10 we presented the meta model of issues related to the evaluation
of an ISD method and the set of generic steps for the evaluation. The steps to
perform are: analyze the evaluation context at hand, decide what features in
general are important to evaluation, select an evaluation technique, specify
evaluation criteria, fix the methodical thing(s) for the evaluation, carry out the
evaluation, and make a summary of and draw conclusions from, the evaluation.
We consider this situation as an evaluation context and apply these steps to
make sense of and carry out the evaluation of MEMES.

528

The evaluation context at hand is a research context (RW context), the
purpose of which is to assess the ME methodical skeleton developed in this
work. This is a one-person effort, in which the engineer of MEMES also acts as
the evaluator. In Section 11.6 we stated the goals for MEMES in terms of
internal and external properties. The goals that are based on the internal
properties are: MEMES should be based on a solid and sound view of the
relevant sub-domains, and MEMES should be modular and flexible. These
goals are satisfied by the use of OntoFrame as the conceptual foundation. The
goal concerning the external properties is: MEMES should be applicable. In this
chapter we concentrate on the evaluation of the applicability of MEMES for
three intentions of use. The intentions are: framing intention, constructive
intention, and analytical intention. The applicability for the framing intention
means that MEMES should provide concepts and constructs, which help us
make sense of and structure the phenomena of ME in reality. The applicability
from the viewpoint of the constructive intention means that MEMES should
support the engineering of a methodical artifact. The applicability for the
analytical intention means that MEMES should provide concepts and constructs
for the analysis and comparison of existing ME artifacts. Next, we tell how we
will evaluate the applicability of MEMES from these viewpoints.

To evaluate how MEMES serves as a frame for conceiving the phenomena
of ME, we make a retrospective analysis of one of our prior ME contexts. As
mentioned in Chapter 11, the author has been involved in four prior ME efforts.
In the first context the aim was to develop a language and a “design model” for
a conceptual schema design (Leppänen 1984a). The second context dealt with
an international project, which pursued a methodology for the analysis and
design of office support systems (Conrath et al. 1989). The third context was a
project which engineered a method for strategic planning of information
technology and services (Leppänen et al. 1991). In the fourth context a method
for database application design for teaching purposes was constructed
(Leppänen 1993; Leppänen 2001). We select the OSSAD project as the target of
our retrospective analysis for the following reasons. The OSSAD project
engineered a domain-specific method without considering too much how to
customize or configure it. This matches with the purpose of MEMES. Second,
the other contexts either concentrated on specifying a language, not a method
(cf. the first context), or on engineering methods mainly by the integration
strategy (cf. the third and fourth ME contexts). Because MEMES does not offer
specific support for method integration, we do not consider them here. The
selected prior ME context is analyzed in Section 12.2.

To evaluate how MEMES performs in the constructive sense, we make a
retrospective analysis of the effort, which yielded MEMES. As said in Chapter
11, we have applied MEMES in the engineering MEMES itself. Hence, in this
effort there were actually two processes, parallel to each another, the RW
process and the reflection process. In the RW process we constructed, step by
step, the ME skeleton, and in the reflection process we tried to learn about this
RW process and its outcome in order to elaborate the skeleton. The whole effort

529

was accomplished iteratively following the reflection-in-action approach (Schön
1983). The MEMES effort is analyzed in Section 12.3.

To evaluate the applicability of MEMES in the analytical sense, we carry
out a comparative analysis of existing ME artifacts. Although in the ME
literature there is no complete ME method, nor anything that would come even
close to it, we select the most advanced suggestions for ME artifacts for our
analysis. In this conceptual evaluation we compare MEMES with existing ME
artifacts for two purposes: to examine the usefulness of MEMES as a frame, and
to find out how MEMES compares with the existing ME artifacts. We describe
the selected ME artifacts as well as the criteria, process and results of the
comparative analysis in Section 12.4.

12.2 Evaluation through the OSSAD Project

In this section we make a retrospective analysis of the OSSAD project to
evaluate MEMES as a frame. First, we outline the OSSAD project and describe
the research setting. Then, we describe the objectives and process of the OSSAD
project as well as the OSSAD methodology and analyze them in terms of
MEMES. At the end we collect findings of and lessons from the retrospective
analysis.

12.2.1 Research Setting

The OSSAD project (1985-1989) was the ESPRIT Project launched with the aim
to develop a methodology176 for Office Support Systems Analysis and Design.
It was funded by the European Union and companies, which participated in the
project. The project was implemented as cooperation between academic and
industrial partners from four countries, Finland, France, Germany, and Italy.
The project engineered the comprehensive methodology that was published in
a manual (Conrath et al. 1989) and in articles (e.g. Beslmuller et al. 1986;
Beslmuller et al. 1987; Conrath et al. 1988; Charbonnel et al. 1991; Conrath et al.
1992; Vincent et al. 1992; Conrath et al. 1999; Savolainen 1999). This author’s role
as a researcher (1986 – 1989) in the project was to comment on and ideate the
conceptual foundation of the methodology, to contribute to some specific parts
of the methodology, as well as to field test the methodology in a Finnish
organization (Leppänen et al. 1988; Leppänen et al. 1989a).

The project is relevant from the viewpoint of this study for the following
reasons. First, it engineered a comprehensive domain-specific method. Second,
the engineering was not “just another academic exercise” but it was firmly
linked to practice. An indication of this is that the methodology in its various

176 A methodology means “a set of tools and procedures from which one can abstract a

sub-set for particular goals and environmental conditions of a project” (Dumas et al.
1986, 3).

530

versions was field tested several times in practice. Third, the engineering
occurred at the time when there was available no such body of knowledge of
method engineering as we have at present. That gives us the possibility to
analyze the context and its outcomes as “pre-methodical” ME instances.

As said above, we apply the retrospective analysis (cf. Fitzgerald 1991) to
make sense of the process and outcomes of the OSSAD project. We set up two
goals for the analysis. First, we try, using MEMES as the frame, to find out
essential features and approaches of the OSSAD project, as well as to discover
possible problems and speculate how these could have been avoided with
methodical support such as that offered by MEMES. Second, our aim is to
investigate how MEMES performs as a frame in this kind of analysis.
Assessments of the OSSAD projects are not intended as criticism against the
project or its members. It has to be remembered that at the time when the
project was seen through the ME field was in its infancy.

Conducting the retrospective analysis in a proper way would necessitate
keeping a record or log of the process in the context. This is so because it is
often difficult to remember details at the end, which may be several years later
(Fitzgerald 1991). The OSSAD project produced no material solely for this kind
of research purpose. However, there is a large collection of documents,
including the manual of the methodology, field test reports, memos, working
papers, etc. that are applicable for the analysis. This material is not sufficient for
a comprehensive and in-depth analysis of the process and outcomes, but it suits
for our purposes.

12.2.2 OSSAD Process

The primary objective of the OSSAD project177 was “to develop, implement, and
validate a methodology (a set of methods) that can be used to design effective
and acceptable computer-based office systems” (Baron et al. 1989, 2). This
primary objective was decomposed into four sub-goals concerning “the
description of an office work and information management systems, the
creation, application and evaluation of measures of performance, the
development of a model to describe and explain office work, information
management systems, etc., and the development, application and evaluation of
the means to evaluate the performance of various office support systems”
(Baron et al. 1989, 2-3).

The ME work in the OSSAD project was divided into four ME stages. In
the first of these stages a more detailed plan and schedule for ME work were
made, the project organization composed of several working groups was
established, and the approaches, fundamental principles and structure of the
methodology were delineated. Four research fields were explored: taxonomies
of office activities, a language for describing the office, a model for representing
office work and organization, and performance measurements of office

177 Esprit Project No. 285, R & D Area 4.1: Office Systems Science and Human Factors.

Esprit = European Strategic Program for Research in Information Technology.

531

activities (Dumas et al. 1986, 5). The work in these fields contributed to e.g.
concepts and notations of office models. In the OSSAD approach, the notion of
a methodology was defined to mean “a set of tools and procedures from which
one can abstract a sub-set suited for particular goals and environmental
conditions of a project. This subset is called a ‘method’” (Dumas et al. 1986, 3).
A methodology was drafted around four dimensions (Dumas et al. 1986, 6): (a)
“subdivision of the project into steps (What has to be done and how to do it?)”,
(b) “organizing the project (Who will accomplish the tasks?)”, (c) “selection of
the set of instruments out of the tool box (Which tools are to be used for each
step and how?)”, and (d) “documentation for project work and management”.

In the second stage of the OSSAD project the two first phases (i.e.
‘Contracting Phase’ and ‘Analysis Phase’) in the OSSAD methodology were, on
a general level, engineered. About the rest of the phases it was only mentioned
that “they deal with the design of alternatives, choice, implementation,
evaluation and the like” (Dumas et al. 1986, 7). The OSSAD methodology for
the two phases was field tested in three countries (France, German and Italy).
The common application area for field tests was savings banks. Experience from
the field tests (Dumas et al. 1986; Beslmuller et al. 1987) were analyzed and
utilized to refine the methodology. In the third stage the OSSAD methodology
was enhanced with three more phases, which were ‘Design System’,
‘Implement Changes’, and ‘Monitor System Performance’. Also in this stage, the
OSSAD methodology was field tested, now in four countries (Finland, France,
Germany and Italy) (Baron et al. 1989).

The purpose of the fourth stage in the OSSAD project was to refine,
elaborate and complete the methodical support to the analysis and design of
office support systems, covering for the whole life cycle. Work contained a very
laborious process of restructuring, streamlining, detailing, and verifying
descriptions of functions, activities, operations and procedures of the
methodology. In this stage the decision was made to convert the descriptions of
the OSSAD methodology to follow the terminology of the OSSAD methodology
itself. The manual was finalized in 1989 (Conrath et al. 1989).

Next, we describe the process of the OSSAD project in terms of ME
workflows of MEMES. First, we make it for the part which corresponds to the
ISDM requirements engineering workflow.

In the OSSAD project the ME context as well as the target contexts were
characterized, but not with any specific contingency framework. The ME
context at hand was outlined at the beginning and later elaborated during the
process. By its basic nature, the project was a research project, which was set up
to fulfill concrete objectives. Despite its “academic flavor”, the project was -
through its participants, ways of working, and contributions - closely and
firmly related to ISD practice. This premise “colored” all considerations and
solutions in the project. The project applied primarily the policy-driven
approach (cf. Section 11.7.2), as it aimed to provide a new methodology for the
development of office support systems. That ‘new’ was concretized to mean the
specification and deployment of more office-specific concepts and structures, as

532

compared to the other methods of that time, as well as to provide more
possibilities for users to participate in the development.

No prior contexts on the ME layer, nor on the ISD layer, were analyzed
explicitly or separately. Instead, the participants brought with them their
knowledge about and experience from the past contexts of method engineering
and deployment they had participated in. The key participants in the OSSAD
project were distinguished scientists or practitioners with long experience from
the consultancy and software industry. The OSSAD project characterized the
target contexts such as the one below:

While early systems were usually developed for a single purpose, current
technologies (e.g. the micro-computer and local area networks) support a variety
of tasks, and the trend is to increase the level of integration across not only tasks
but people as well. The consequence is that the nature of office work is changing
and will continue to change, and to accomplish this work effectively an office […]
depends on the appropriate integration of the organizational and technical
support systems (Conrath et al. 1989, 1)

Requirements for the OSSAD methodology were specified throughout the ME
project. The first requirements were very general, concerning generic
approaches and principles. Later, they were detailed and made more
structured. An example of the generic requirements is: “The resulting need is to
ensure that integration of the organizational and technical support system is
done in a well-planned, comprehensive and beneficial fashion” (Conrath et al.
1989, 1)

Existing ISD methods were not analyzed in an explicit fashion.
Participants had good knowledge about the application area (i.e. office systems)
and its evolution, as well as about methods available at that time (e.g. AXIAL,
MERISE, SADT, X-TOP, OFFIS, OAM, MOBILE-Burotique, etc.). There were
also some comparisons of relevant methods available in the literature (e.g.
Newman 1980; Bracchi et al. 1984). Nevertheless, an in-depth analysis of
existing methods would have given a more solid basis for the ME work. The
knowledge was summed up with statements such as: “most of the existing
system design methods focus on technical aspects of the office systems and pay
virtually no attention to problems of organizational structure”, “few
approaches purport to be comprehensive and detailed enough”, and “methods
ignore organizational change issues” (Conrath et al. 1989, 1).

Based on the perceived problems in ISD practice and shortcomings in the
methods available, several goals for the OSSAD methodology were stated in
terms of ISD approaches, coverage and ISD actors. Examples of the goals are:
the OSSAD methodology should be “concerned with the entire process – from
the initial contact with someone interested in changing the existing support
systems, to their design, implementation and ex post evaluation”. It should be
“developed on the assumption that those who use it are not experts in the
design and implementation of integrated organizational /technical –support
systems”. “The target audience […] is expected to be composed of those who

533

work in the areas of information systems, office automation, organization and
methods, organisational design and like. (Conrath et al. 1989, 1). Furthermore,
in the early stage of the project a set of main ISD principles were defined for the
OSSAD methodology (Dumas et al. 1986, 6). The principles were: contingency,
problem-orientation, participation, iterativeness, and experimentation. Later,
the set was enhanced with the principle of decomposition/aggregation
(Conrath et al. 1989, 2).

Next, we describe and analyze the process of the OSSAD project in terms
of the ISDM analysis workflow. According to MEMES the ISDM analysis
workflow is composed of three main tasks: infological ISD modeling,
conceptual ISD modeling and inter-perspective ISD modeling. There are also
three approaches (i.e. the functional approach, the conceptual approach, and
the mixed approach) which affect how and in which order these tasks are
carried out.

The OSSAD project applied the mixed approach to the ISDM analysis. It
deployed an information flow view to delineate the functional structure of the
analysis and design process of an office support system, and at the same time it
made an attempt to establish a new kind of view of an office and office support
system. For infological ISD modeling the process was decomposed into phases,
later known as functions, and further into activities, operations, etc. Likewise,
the notions of a packet and a resource were defined and connected to functional
notions (cf. the information flow view). For conceptual ISD modeling a special
work stream was established to define the basic notions of office and office
support system. It followed the IS-driven approach (cf. Section 11.8.3), resulting
in that also an office and an office support system were modeled in terms of
information flows. We return to discuss the feasibility of this view later. From
the tasks of conceptual ISD modeling (cf. Section 11.8.3) the OSSAD project
addressed infological IS ontology engineering, datalogical IS ontology
engineering, and physical IS ontology engineering but ignored systelogical IS
ontology engineering and conceptual IS ontology engineering. This concretely
shows how function oriented view the project had adopted. No special
activities for inter-perspective ISD modeling were carried out.

Finally, we describe how the OSSAD methodology was evaluated (cf. the
ISDM evaluation workflow in MEMES). Conceptual evaluation was organized
in the way in which various versions and parts of the methodology were
commented in other groups. By this way most of the deficiencies and
inconsistencies in structures, naming and notations were revealed and
improved. The decision to apply the terminology and notation of the
methodology in describing the OSSAD methodology itself enabled easier and
more transparent internal verification. The methodology was also empirically
tested several times in practice (Dumas et al. 1986; Leppänen et al. 1988; Baron et
al. 1989). Experience from field tests was utilized to make improvements in the
methodology.

The OSSAD project carried out also engineering actions, which are not
covered in MEMES. For instance, the OSSAD methodology provides some

534

concepts and constructs for the ISD actor domain, such as a role, a unit and an
actor. It also enables the modeling of physical and technological support for
office work. These issues pertain to the ISD datalogical perspective and the ISD
physical perspective, which belong to the ISDM design workflow and the ISDM
implementation workflow, respectively. Because they are not covered in
MEMES, we ignore them in our consideration.

12.2.3 OSSAD Methodology

In this section we briefly describe the OSSAD methodology and use MEMES as
the frame to analyze it. Of numerous features of the methodology we
concentrate on the main principles, the phase structure and the office models178.
The descriptions are based on the OSSAD manual (Conrath et al. 1989).

The OSSAD methodology has been built upon a number of fundamental
premises and beliefs, known as the OSSAD principles. The following is a
summary of these principles: (1) Contingency: It is not realistic to tackle the
world of office systems with one unique method. That is why OSSAD proposes
a methodical framework, which allows the tailoring of the methodology to a
specific project situation. (2) Decomposition/Aggregation: One has to able to
examine a system at various levels of detail. (3) Experimentation: No method is
likely to yield an ideal solution without any experience in its use. (4) Iteration:
The use of feedback during the analysis, design and implementation of a system
implies that the procedure is iterative. (5) Participation: The users are invited to
analyze the existing situation and to model and suggest effective alternatives.

The methodology is functionally divided into five functions (originally
called phases): Define Project, Analyze Situation, Design System, Implement
Changes, and Monitor System Performance. Define Project involves
establishing the basis upon which a particular study will be undertaken. It
results in a contract for the re-organization, outlining the terms of reference and
plans for the development. Analyze Situation concerns the collection,
processing and presentation of the data needed to describe the organization and
its environment for diagnostic purposes. The purpose is to identify the
problems which should be resolved, and the opportunities which could be
discovered by the introduction of a new and/or revised office support system.
In Design System, one searches for alternative organizational and technical
systems that will effectively respond to the identified problems and improve
performance in general. Implement Changes convert things, which to this point
have been conceptual, into something that is concrete, into an operational
system. It consists of acquiring hardware and software, making and executing
plans for reorganizing, educating and training, and making the system
operational. Monitor System Performance is devoted to the analysis of an
implemented office support system to identify whether or not it functions as

178 We have also made an in-depth analysis of the abstraction structures included in the

OSSAD methodology (Leppänen 1989a). This is not considered here.

535

intended. It is composed of developing instruments and procedures, collecting
and analyzing data, and devising recommendations for modifications.

The methodology provides three basic models for describing office and
office support systems: Abstract Model, Descriptive Model, and Specification
Model. The Abstract Model is composed of four basic concepts: function, sub-
function, activity, and packet. A packet stands for an informational or material
object in our terminology. The relationships between the actions (i.e. functions,
sub-functions, and activities) and the packets are input/output/visited
relationships. In addition, there are the ascendant/descendant relationships (cf.
the partOf relationship) between the actions and between the packets. As a
conclusion from the above we can say that the Abstract Model is a pure instance
of applying the IS infological perspective.

In the Descriptive Model the functions, sub-functions and activities are
decomposed into operations, tasks, and procedures. Tasks can be assembled to
establish roles and (organizational) units. Corresponding to the concept of a
packet in the Abstract Model, the concept of a resource is used in the
Descriptive Model to mean “data or objects which are inputs to, or outputs
from, operations / tasks / procedures / roles / units” (Conrath et al. 1989, 11).
A facility is a physical and/or technological support used to perform work. In
addition, the concept of an actor is used to mean “an individual who fulfills a
role and/or who possesses the capabilities, such as education and experience,
to fulfill a role” (Conrath et al. 1989, 11). To conclude, the Descriptive Model
mainly highlights the features of office support systems from the IS datalogical
perspective.

The third basic model, the Specification Model, corresponds mainly to the
IS physical perspective. The OSSAD methodology distinguishes between two
systems: the organizational support system (cf. HIS) and the technical support
system (cf. CIS) (Conrath et al. 1989, 7). Both of them require a specification
model. The technical specification model is intended to serve as the basis for
hardware and software acquisition. More specifically, the technical
specifications encompass the following components: user interfaces, software,
databases and knowledge bases, hardware, system interconnections, and
quality and control features. The organizational specifications are broken down
into positions/roles, communication linkages, and decision making systems
(incl. job descriptions and organization charts).

At a rather late stage in the OSSAD project, the decision was made to
convert the descriptions of the OSSAD methodology itself to apply the
terminology of two OSSAD models: each function in the OSSAD methodology
is, therefore, presented in an abstract model and in a descriptive model. These
two models are deployed to differentiate between situation-independent
features and situation-dependent features (cf. the contingency principle). The
abstract model of the OSSAD methodology applies to all applications of the
OSSAD methodology, whether involving a large or a small organizational unit
(Conrath et al. 1989, 3). It provides the essentials of office support system
analysis and design. A descriptive model of the OSSAD methodology describes

536

how in a certain kind of situation the analysis and design should be
accomplished. Because the set of situations is large, the manual provides
description models only for one or two situations in each phase.

12.2.4 Findings and Lessons

In this section we collect findings of and lessons from the retrospective analysis
of the OSSAD project. First, we describe problems in the OSSAD process and
methodology, identify ME approaches applied in the OSSAD project, and
characterize the scope, emphasis and nature of the OSSAD methodology.
Second, we present assessments of how MEMES performed as the frame in the
analysis.

The OSSAD project was a comprehensive ME effort covering, to a large
extent, all five ME workflows recognized in the ME ontology. Some tasks of the
ME workflows were, however, insufficiently addressed. Methods and models
of that time, for instance, should have been more carefully analyzed. With
respect to conceptual ISD modeling, the project ignored tasks of systelogical IS
ontology engineering as well as tasks of conceptual IS ontology engineering.
Ignoring the IS conceptual perspective resulted in that the rich variety of office
documents and communication and the semantics of office work were not
considered. This led to a rather narrow domain of office models (see below).

ISDM analysis started with balancing the functional approach and the
conceptual approach and later proceeded with the emphasis on establishing
and refining the functional features of the methodology (cf. ISD infological
perspective). In ISD conceptual modeling the project clearly applied the IS-
driven approach. The OSSAD methodology was the target of several kinds of
evaluation. First and foremost, field tests in four countries provided a
noteworthy proof of the applicability of the methodology in practice.

The OSSAD methodology is quite extensive covering ISD phases from
contracting to implementation. The methodology is structured according to two
major constructs: the phase structure and the ‘perspective-based’ office
modeling structure. Functionally office support system analysis and design is
decomposed into five functions, corresponding to our phase structure. Three
models (i.e. Abstract Model, Descriptive Model, and Specification Model)
provide concepts and constructs for viewing from three different IS
perspectives. The Abstract Model reflects the essence of office work from the IS
infological perspective. The Descriptive Model applies the IS datalogical
perspective, and the Specification Model provides concepts and constructs for
the IS physical perspective. In the OSSAD methodology the first three phases
and the first two models are described in more detail. This is justified by having
several existing methods that can be used to fulfill the possible gaps in the
support of later phases. Through the scope and contents of the Specification
Model the methodology becomes more oriented towards the development of a
technical office system than towards the design of human and social aspects of
an office support system. This is actually contrary to the goals stated.

537

The OSSAD project was running at the time when several office models
had been published in the field of office information systems. The best-known
office models were SCOOP (Zisman 1977), ICN (Ellis 1979), Form Flow Model
(Ladd et al. 1980), OFFIS (Konsynski et al. 1982), OMEGA (Barber 1983), TAM
(Sasso 1984), and SOS (Bracchi et al. 1984). Common to all of them is that they
view an office in terms of information flows (Auramäki et al. 1992a), whether as
a set of interconnected operations, activities, or tasks. In the models of the
OSSAD methodology the same orientation can be clearly seen. In this sense the
methodology can be classified as having a functionalist approach to an office
(Hirschheim 1986). Implied from the above, we can say that as regards to the
concepts and constructs, the OSSAD Methodology did not bring much that was
essentially new. During the OSSAD project human and social aspects were
emphasized and communication was seen as vital. Unfortunately, the OSSAD
methodology fails to adequately cope with these aspects (cf. the SAMPO model
(Auramäki et al. 1988; Auramäki et al. 1992a)). What was new in the
methodology is how it categorizes the features into three models, each of which
reflects a particular view on the office and office work. Also its techniques for
data collection and analysis as well as explicit guidelines for defining
performance measures are innovative (cf. Auramäki et al. 1992b). It lacks a
model with which the conceptual contents of office documents could be
modeled. That means that the methodology applies a kind of document-based
approach to office modeling (cf. Ladd et al. 1980; Zloof 1981; Ellis et al. 1982) in
which documents are treated as data objects without explicit knowledge of their
contents. The terms used to model an office, and in particular informational
objects (i.e. ‘packet’ and ‘resource’) are not very illustrative, neither “office-
like”. Clearly, more effort would have been required to come up with better
“essentials” of the office and office work. Any simple categorization of office
document types would have been welcome, something similar to genres
perhaps (e.g. Yates et al. 1992; Orlikowski et al. 1994).

Then, how did MEMES perform in the analysis? It provided conceptual
constructs and “building blocks” which helped us structure the conceptions
about the OSSAD process and the OSSAD methodology. We were able, for
instance, to identify the basic ME action structures and to point out limitations
in the ME life cycle of the OSSAD project (cf. the analysis of existing methods,
tasks of systelogical IS ontology engineering, and tasks of conceptual IS
ontology engineering). Second, we could recognize ME approaches followed in
the OSSAD project (e.g. the functional approach and the IS-driven approach),
based on the ISD perspectives and the IS perspectives adopted, which help us
understand the rationale of ME actions. We found ISD constructs and IS
constructs embedded in MEMES helpful in analyzing the OSSAD methodology.
The collection of the main OSSAD models (i.e. Abstract Model, Descriptive
Model, and Specification Model), for instance, was found to follow closely three
IS perspectives respectively. All the models were recognized to reflect the view
of information flows on an office and an office work.

538

12.3 Evaluation through the MEMES Effort

In this section we examine how MEMES performed as a prescriptive artifact in
the engineering of MEMES itself (cf. the constructive intension). First, we
explain why the MEMES effort is interesting from the research viewpoint, and
what principles, resulting from the use of the reflection-in-action approach,
shaped the MEMES process. Second, we describe the MEMES process in more
detail. Third, we present findings of and lessons from the MEMES effort.

12.3.1 Research Setting

The MEMES effort is interesting from the research viewpoint for several
reasons. First, evaluative studies of method engineering in practice are fairly
rare. Second, as far as we know there are no studies that would address method
engineering for method engineering. Third, two parallel processes, induced by
the application of the reflection-in-action approach, offer an interesting research
domain to make sense of, structure and evaluate. In the following, we describe
and evaluate the MEMES effort by means of retrospective analysis.

The MEMES effort was carried out applying the reflection-in-action
approach (Schön 1983). The approach makes the distinction between two
theories of action (Argyris et al. 1978): espoused theories, which are those that
an individual claims to follow, and theories-in-use that are those that can be
inferred from action. The latter are tacit, cognitive maps by which actions are
designed. They can be made explicit by reflecting in action (Heiskanen 1995, 7).

In our case there was only one person, who acted in two roles, as a
practitioner and as a researcher. The practitioner was the method engineer and
the user of MEMES. The researcher was the one who, based on his reflections,
formulated and elaborated prescriptions for method engineering. The
practitioner sought to discover the paricular features of a problematic situation,
and from the gradual disovery, framed the situation and tried to fomulate a
solution. An essential ingredient of situation framing in action design is the
notion of a generative metaphor (Heiskanen 1995, 8). This is a vehicle for
seeing the phenomena under study as something. In the MEMES effort our
metaphor was based on the assumed analogy between ISD contexts and ME
contexts, and between ME contexts and RW contexts. In our view, the ME
context possesses typical features of the ISD context (e.g. Olle et al. 1983; Kumar
et al. 1992; Tolvanen 1998), and correspondingly the RW context resembles the
ME context.

Reflection is the practice of periodically stepping back to ponder one’s
immediate environment (cf. Raelin 2001, 11). We can categorize kinds of
reflection according to (a) the target of reflection, (b) the timing of reflection,
and (c) the primary goals of reflection (cf. Raelin 2001; Heiskanen 2005,
Baskerville et al. 1998). Based on the target, Raelin (2001) and Heiskanen (2005)
distinguish between content reflection, process reflection, and premise

539

reflection. Content reflection is about how a practical problem was solved.
Process reflection studies the procedures and the sequence of the events.
Premise reflection questions the presuppositions underlying the problem. Based
on the timing of reflection, Heiskanen (2005) recognizes anticipatory,
contemporaneous, and retrospective reflection. Furthermore, we can
distinguish between three kinds of goals of reflection: organizational
development, system design, and scientific knowledge (Baskerville et al. 1998,
95).

Reflection in the MEMES effort concerned contents, process, and premises,
with the aim to contribute to method engineering and scientific knowledge. It
appeared as contemporaneous reflection in the form of a fluid process structure.
A fluid structure “defines activities very loosely, allowing substantial
simultaneity or leaving the temporal location of various activities relatively
undefined” (Baskerville et al. 1998, 95).

Figure 132 illustrates, in a more concrete way, the two processes in the
MEMES effort. It expresses how the RW process and the reflection process
make up an iterative process. It also shows the role of MEMES in this process.
The RW process means actions of engineering the ME skeleton for the
construction of an ISD method. The reflection process means actions of learning
from the aforementioned RW process and engineering ME guidelines for the
construction of the ME methodical skeleton. The practitioner starts the RW
process by considering a particular ME problem (e.g. how to decompose the ME
analysis workflow into ME tasks). He tries to make sense of the problem space
by using his intuition and the selected generative metaphor according to which
the ME can be conceived as the ISD context. He produces, for instance, a
tentative sub-division of the ME analysis workflow into ME tasks to be
included in the body of MEMES (for ME). Next, he changes his role into a
researcher and starts the process of reflection on what he just did, with the

MEMES
for ME

RW process

MEMES
for RW

Reflection
process

produces

isAppliedBy

produces

reflectsFrom

isAppliedBy

FIGURE 132 Iteration between the RW process and the reflection process

540

aim to formulate guidelines for how the corresponding problems should be
solved in a general case. Using the generative metaphor he tries to reconstruct
and restructure the past RW process by engineering the corresponding part of
MEMES (for RW). After this, the researcher returns into the role of a
practitioner, and repeats the RW process, now with the reconstructed
guidelines (MEMES for RW) in order to re-engineer MEMES for ME. This may
be followed by still another reflection process with the help of the re-engineered
MEMES.

In iteration within and between the RW process and the reflection process
MEMES acts in three roles. First, MEMES is an outcome of the RW process.
Second, MEMES is applied as the frame through which the RW process is
reflected. Third, MEMES acts as a prescription produced by the reflection
process and applied in the RW process.

The reflection-in-action approach was implemented in the form of self-
reflection, not as collaboration between researchers and pracitioners. Thus, our
way of conducting the research clearly differed, for instance, from the one
named as ‘reflective IS action research’ in Baskerville et al. (1998, 110). Due to
this fact, the findings and lessons reported on the MEMES effort are mainly
subjective and only of moderate significance from the viewpoint of validation.
We also acknowledge the danger of post-rationalization and one-sidedness
(Heiskanen 2005, 8) when making interpretations about problem settings,
decisions, and events in the MEMES effort. However, we believe that including
the retrospective analysis of the MEMES effort in the thesis increases our
understanding of an ME effort in general, and of how MEMES performed as the
prescription in the MEMES effort in particular.

12.3.2 MEMES Process

In this section we describe, in more detail, the RW process and how it was
related to the reflection process. In particular, we elaborate the role of MEMES
in the process. In the description of the RW process we refer to an “engineering
space” (Figure 133), which is composed of two dimensions, one for the RW
workflows (RW RE, RW analysis, RW evaluation) and the other for the ME
workflows (ISDM RE, ISDM analysis, ISDM evaluation). The former stands for
the RW process and the latter corresponds to the ME process covered by those
parts of MEMES that were engineered in the RW process. RW RE, for instance,
means requirements engineering in the RW context, in particular for MEMES.
ISDM RE, in turn, means requirements engineering for an ISD method. The
analysis workflow in both of the dimensions is sub-divided into two parts
standing for the infological modeling and the conceptual modeling,
respectively. Because at the first stages of the RW process MEMES was not yet
viewed as a composition of the aforementioned parts, the topmost row in
Figure 133 corresponds to a general view of MEMES. The numbers between 1
and 20 and the arrows connecting them show how the RW process progressed
and iterated.

541

FIGURE 133 A detailed description of the cyclic ME process

The RW process started with considering the requirements engineering for an
ISD method from the ISD conceptual perspective (1). The ISD conceptual
perspective was applied to obtain a rationale and basis for engineering the core
ontology and the context ontology. This was followed by RW analysis (2) and
RW evaluation (3) from the same perspective. RW evaluation means checking
the internal consistency and coherence of the ontologies, comparing them with
existing artifacts in the literature and applying the engineered parts of the core
ontology in the analysis of the OSSAD methodology (Leppänen 1989a). These
tasks constituted a functional totality within which several iteration cycles were
carried out. We refer to this totality as the first RW stage179. This stage began in
small-scale in the 1980’s and strengthened in the 1990’s.

The second RW stage was triggered in 2000 when the goal to develop a
more normative support for ME was set up. In this stage the historical view, the

179 For the MEMES effort no phase structure with milestones and baselines were

defined. Therefore, we refer to these functional wholes as the RW stages.

542

generic view and the application view of MEMES was outlined (4). The work
done so far in the conceptual IS modeling was reconsidered and plans to
enhance it into the ME ontology was made (5). The functional structure of
MEMES was also sketched (6). All these results were evaluated in terms of their
consistency and coherence (7). The process in this stage contained several
iterations. Implied from the above, we can say that our ME approach to this end
was clearly conceptual.

In the third stage the RW work moved to enhance the ME ontology. So far
only some parts of the core ontology and the context ontology were established.
We specified more concrete goals for the missing parts of OntoFrame (8) and
started the engineering work to fulfill these goals (9). Engineering the
contextual ontologies, the ISD ontology, the ISD method ontology, the ME
ontology and the ME method ontology was executed in a highly iterative
process including repetitive evaluations (10). During that stage several changes
and enlargements were also made in the core ontology and the context
ontology. Also the view of methodical support provided by MEMES was
clarified and refined.

In the fourth stage we concentrated on refining the functional structure of
MEMES based on the ME workflow structure delineated in the second stage.
We started with elaborating goals for the ISDM requirements engineering
workflow and decomposed the workflow into ME tasks (11-13). In the same
way we carried out RW actions for the two other ME workflows, the ISDM
analysis (14-16) and ISDM evaluation (17-20). Here we specified, among other
things, ME tasks for engineering an ISD ontology and an IS ontology (cf.
conceptual ISD modeling in Section 11.8.3). The process was highly iterative
including evaluation in terms of internal and external criteria.

After outlining the RW process of engineering MEMES above, we will
next describe in which stage and how we could deploy MEMES as a methodical
support in this RW process.

The first stage was carried out without MEMES. The process was guided
by general knowledge about conceptual modeling (in the 1980’s) and
metamodeling (in the 1990’s), collected from the literature and experienced
from practice. In the second stage we made a conscious decision to start
applying the reflective approach according to which the problem space and the
solution space of the RW process were framed with those parts of MEMES
which were already available. This decision was made for two reasons. First,
this way we could, with only short delays, obtain individual and concrete
knowledge about how parts of MEMES just sketched functioned. Second, the
RW process was highly complicated and difficult to manage and MEMES,
although a half-ready artifact, could substantially benefit the process.

In the third stage we could not utilize MEMES because it did not yet
contain normative prescriptions for ontology engineering. However, major
decisions on essential structures of MEMES made in the preceding stage framed
the process and its outcomes in this stage. Engineering of the topmost
ontologies in OntoFrame shaped some conventions, which we later wrote into

543

prescriptions of how to make conceptual ISD modeling. In the fourth stage we
could fully benefit from MEMES. For instance, in specifying tasks for the ME
RE workflow (Section 11.7), we reconsidered the specifications made for RW
requirements and goals. Likewise, in specifying guidelines for infological ISD
modeling (Section 11.8.2) we applied the same guidelines as in modeling ME
from the infological perspective.

12.3.3 Findings and Lessons

Our purpose in this section is to describe the MEMES effort in terms of MEMES
and uncover the approaches, action structures and motives for the RW actions
performed. We also assess the applicability of MEMES in the MEMES effort.

We did not use any special contingency framework in the RW
requirements engineering. Instead, we applied OntoFrame whenever it seemed
to be applicable. When analyzing the RW context at hand, we recognized it
possessing features of both the problem-driven approach and the policy-driven
approach. Our experience from the four prior ME efforts had convinced us that
ME in practice is too often ‘engineering by trials’ without any systematic way of
thinking and working. Experiences reported from other ME projects (e.g.
Vidgen 2002; Polo et al. 2002; Serour et al. 2002; Fitzgerald et al. 2003; Backlund et
al. 2003, Bajec et al. 2004) confirmed our view of the unsatisfying state of the art
in ME. On the other hand, we had no detailed problems to be solved. Instead,
we recognized the need to develop a new approach by which method
engineering could be considered and managed in a more comprehensive and
uniform manner, and to implement this approach into the form of generic
methodical support.

We analyzed documents reporting on the backgrounds, processes,
deliverables and experiences of our prior ME contexts (CSDM (Leppänen
1984a), OSSAD (e.g. Baron et al. 1989; Conrath et al. 1989), SPITS (Leppänen et al.
1991), DBSD (Leppänen 1993; Leppänen 2001)) in order to obtain an overview
of how the contexts were accomplished and with which results. Because the
material available from these contexts was not originally made for research
purposes and it does not cover all the decisions and phases, we do not want to
overemphasize its significance to this research. However, it appeared to be
useful in summoning up thoughts emerged in the prior contexts. Short
descriptions of these prior ME contexts are presented in Section 11.3.

We did not specify ISDM requirements in a separate ME task. Instead, we
established an overall conception of the level of detail in which MEMES should
be presented and of the application area (i.e. the nature of the target ME context
and the ME strategy), which MEMES should support. These are reported in
Sections 11.2 and 11.4, respectively.

We made a comprehensive analysis of ME approaches, meta models, ME
techniques and ME procedures in the literature. In addition, we reviewed
reports of single ME efforts in practice (e.g. Jaaksi 1997; Vidgen 2002; Polo et al.
2002; Serour et al. 2002; Fitzgerald et al. 2003; Backlund et al. 2003, Bajec et al.
2004). The purpose of these reviews was two-fold. On one hand, we wanted to

544

learn what kind of support for ME there was already available. On the other
hand, we were interested in needs and motivations for, processes of, and
experience from, engineering ME methods, or parts thereof.

Based on the analysis of the prior contexts and the ME literature, we stated
goals for our RW effort. In this task we had to take into consideration the scarce
resources we had for the work and to set the goals at a reasonable level. The
goals of MEMES are reported in Section 11.5.

In the RW analysis workflow we postponed the engineering of the
“procedural” part of MEMES (Kumar et al. 1992), thus following the conceptual
approach to the RW analysis (cf. Section 11.8.1). The reasons for this are evident.
Although there were some conceptual frameworks for analyzing, comparing
and assessing ISD methods, they were far from being suitable as an ISD
ontology. Without having a profound understanding of what ought to be
engineered, it is not possible to engineer actions (i.e. ME actions) of engineering.

The process of engineering OntoFrame followed the top-down approach
(Uschold et al. 1996; Noy et al. 2001). Consequently, we started conceptual ISD
modeling with building main parts of the core ontology. Then, we carried out a
comprehensive search for theories addressing the notion of a context and
specified the fundamental categorization of contextual domains containing
specific contextual concepts and constructs. After that, we extended our
engineering work to address the ISD sub-domain and the ME sub-domain.

The RW analysis workflow was carried out as a highly iterative process.
At each level of detail we decomposed and inter-related ME actions and ME
deliverables, always trying to ensure that ME models were properly grounded
on OntoFrame. In the inter-perspective ME modeling we followed a variant of
the conceptual approach (cf. Figure 120 in Section 11.8.4). We started with the
ISD ontology (C x C) but selected the ME workflow structure from the ME
ontology to establish a rough decomposition of ME work into ME workflows.
After that we derived ME deliverables from the ISD constructs (D x C). In the
later cycles of the RW process we made cross-checking to ensure the
consistency of MEMES.

In the RW evaluation we applied the generic steps of the ISDM evaluation
workflow (cf. Section 11.9). The basis, process and outcomes of this evaluation
are reported in this chapter.

To sum up our experience from the RW process and its results, we can say
that the generative metaphor in the first stages and MEMES in the later stages
of the MEMES effort appeared to be viable and beneficial. Conceiving ME
contexts as ISD contexts and correspondingly the RW context as an ME context
enabled us to make our first choices and specifications of concepts and
constructs of MEMES. Later, MEMES highlighted, in a structured fashion, those
issues that should be analyzed and reframed. MEMES povided steps by which
we could, for instance, split the workflow of RW requirements engineering into
manageable and inter-related tasks and carry out them. By the help of MEMES
we could also integrate our earlier work done for the core ontology and the
context ontology into the methodical skeleton. MEMES helped us categorize

545

relevant engineering issues on the basis of the ME perspectives and the ISD
perspectives in a way which guided us in making decisions on the scope of
MEMES (cf. the datalogical and physical perspectives on the ME and ISD layers
were excluded) and helped us plan for the next ME steps and complete them.
MEMES also offered a useful set of ME approaches from which we selected the
mix of the policy-driven approach and the problem-driven approach to the RW
requirements engineering and the conceptual approach to the RW analysis.

What could we have done better, or in another way? If the RW process
was to start now, it would be better first to outline MEMES on a general level
(see steps (4) – (7) in Figure 133). Based on this outline, it would be much easier
to decide on the objectives and scopes of OntoFrame. Nevertheless, the next
steps would be conducted to engineer OntoFrame, with the top-down approach
as we did. Second, in engineering the first component ontologies of Ontoframe
we should have been more conscious of what we are doing and how, so that the
conventions used could have been devised into structured steps earlier than it
occurred in the MEMES effort. This would have saved us from gratuitous
iterations and groping. However, the resulting version of OntoFrame itself
would hardly be different from the present as to its structure and contents.

How valid are the conceptions presented above? As mentioned in Section
12.3.1, in these kinds of subjective evaluations there is a risk of post-
rationalization and one-sidedness. We have been conscious of that risk and
tried to avoid it. Some of the conceptions are based on the facts. For instance,
the detailed description of the MEMES process in Figure 133, used to illustrate
how complicated, multifaceted and iterative the process was, has been made in
a precise manner on the basis of written working plans, notices and memos. It is
not a result of post-rationalization but a view of what really happened.
OntoFrame and MEMES just povided useful means to portray how the process
navigated from one array of engineering issues to the others. Assessments of
the quality of the support MEMES provided for the MEMES effort are naturally
subjective but to increase their credibility we have provided plenty of
arguments.

12.4 Comparative Analysis of ME Artifacts

In this section we make a comparative analysis of those artifacts in the ME
literature which are aimed to provide methodical support to ME efforts. We call
them the ME artifacts. The analysis is divided into two parts. First, we examine
the backgrounds, application areas, ME strategies and ME approaches of the
ME artifacts. Second, we analyze the coverage and emphases of the ME artifacts
in terms of ME workflows, perspectives and contextual domains. Our aim here
is to find out how MEMES compares with the existing ME artifacts, and how
useful MEMES is as a frame of reference in this kind of comparative analysis.

546

The ME literature is quite large. We can distinguish between three groups
of ME artifacts there. The first group comprises a large variety of meta models
and metamodeling languages developed and used to model methods, or parts
thereof. This group contains two kinds of meta models, that are meta data
models and meta process models. Meta data models are used to metamodel the
conceptual contents and notations of data models. Examples of the meta data
models and metamodeling languages are ER (Chen 1976), eERM (Rosemann et
al. 2002, Scheer 1998), NIAM (Nijssen et al. 1989), OPRR (Smolander 1991),
ASDM (Heym et al. 1992), CoCoA (Venable 1993), GOPRR (Kelly et al. 1996),
Telos (Jarke et al. 1995), and MEL/MDM (Harmsen 1997)). More about meta
data modeling languages and differences between them can be found in
Venable (1993), Saeki et al. (1994), Harmsen et al. (1996) and Tolvanen (1998,
155). Meta process models and modeling languages have been developed for
modeling SE/ISD process models. Meta process models and process modeling
languages are presented in Bandinelli et al. (1993), Deiters et al. (1994), Christie
(1993), Shepard et al. (1992), Dutton (1993), and Kaiser et al. (1993). Evaluations
of and comparisons between process modeling languages are reported e.g. in
Söderström et al. (2002).

The second group of the ME literature comprises ME strategies, ME
approaches and ME techniques. In what follows we shortly discuss some of
them. Kumar et al. (1992) propose a methodology for developing a situation-
specific methodology. They distinguish between four ME strategies: modular
construction, stakeholder-value based composition, the use of automated
computer-based support, and a supporting organizational structure for ME.
The proposal does not provide any concrete guidelines for courses of action in
ME. van Slooten et al. (1993) present a framework and a procedure to configure
development scenarios from project characterizations defined by project
contingency factors. Oei (1995) suggests the MMT approach (the Meta Model
Transformation approach) to relate meta models of languages in an open
ordering and transformation scheme by means of a set of basic meta model
transformations. The MMT approach can serve for comparison, integration, and
evolution of modeling languages. Kinnunen et al. (1996) suggest an O/A (Object
/ Activity) matrix –based technique for describing and analyzing the
interoperability of method components. van Slooten et al. (1996) provide a wide
contingency model for ME and discuss its use in the choice of route map
fragments and method fragments. Grundy et al. (1996) sketch an integrated
method engineering approach based on the MViews framework. Saeki (1998)
presents an approach to integrate multiple methods through the use of a meta
model and a CASE tool to demonstrate that the approach is beneficial.
Leppänen (2000) defines the concept of consistency from several perspectives
and provides an ME technique and a set of ME approaches to ensure the
conceptual consistency of an ISD method. Hruby (2000b) describes a process
framework for the specification of development processes that considers
management and software development artifacts as objects and evolution as
collaborations between them. None of the aforementioned ME artifacts can be

547

considered to come even close to the notion of an ME method. They either
remain on a very general level (cf. ME strategies and ME approaches) or they
cover only a small part of the ME process (cf. ME techniques).

The third group of the ME literature contains artifacts that aim to offer
more comprehensive support for ME. No one in this group is, however, a
complete ME method if weighed with the criteria given in Section 10.5. This
group contains the dissertation works of Harmsen (1997) and Tolvanen (1998).
Both of them suggest specific approaches to ME (a situational ME in Harmsen
(1997) and an incremental ME in Tolvanen (1998)) and offer general-level
procedures to implement the approaches. In addition, this group contains the
ME artifacts of Gupta et al. (2001), Song (1997), Vlasblom et al. (1995), Nuseibeh
et al. (1996) and Ralyte et al. (2003). Gupta et al. (2001) define a representation
system for a method requirements specification and describe an automated
process for instantiating a technical meta model. Song (1997) defines a
framework for the integration of design methods and gives principles of
applying it. Vlasblom et al. (1995) propose the three-level description of a
method and present a “protocol” for the construction of a development model.
Nuseibeh et al. (1996) outline a multi-perspective ME approach based on the
notion of Viewpoint and describe, on a general level, a process of method
design and construction. Ralyte et al. (2003) present a generic process model
supporting the integration of different approaches to situational method
engineering. Though some of the artifacts in this group are not described in
detail (e.g. Nuseibeh et al. 1996; Ralyte et al. 2003), they are included here
because of their special features of support for ME.

For our comparative analysis we have selected the ME artifacts in the third
group. In the following, we first describe results from the overall analysis and
then deepen the view with considerations of the coverage and emphases of the
ME artifacts. In both of these parts we make comparisons to MEMES.

12.4.1 Overall Analysis

The purpose of the overall analysis is to disclose the backgrounds, application
areas, ME strategies and ME approaches of the selected ME artifacts. These
issues concern the historical view, the application view, and the generic view,
respectively (see the ME method ontology in Section 10.5). To put it more
precisely, the issues considered are:
• Historical view. What are the theoretical foundations and research

methodologies used to engineer the ME artifact (cf. the prior RW
contexts)? Has the ME artifact been applied and with which experience (cf.
the prior ME contexts)? Which arguments are given to justify the
applicability and validity of the ME artifact?

• Application view. For which kind of ME contexts is the ME artifact intended
(cf. the target ME context)? The application area can be characterized with
types of ISD methods (i.e. generic, domain-specific, organization-specific,

548

vs. project-specific) and ME strategies (i.e. creation, integration,
adaptation).

• Generic view. Which kinds of ME strategies and ME approaches does the
ME artifact apply to?

The summary of the results from the overall analysis is presented in Table 34. In
what follows, we briefly describe the selected ME artifacts and analyze them in
terms of the defined issues.

Harmsen (1997) presents (a) an ontology for products of information
systems development, called the Methodology Data Model, (b) a method
engineering language, called MEL, and (c) a process of situational method
engineering with heuristics and formalized method assembly rules. MEL can be
used to represent and administrate method fragments. The situational approach
to method engineering is based on the principle of controlled flexibility
according to which for each situation, whether a project or an organization, a
specific method is built. The notion of a situational method corresponds to an
organization-specific method or a project-specific method in our terminology.

The process of method engineering has been rooted on the theory of
situational method engineering. The approach to develop the theory is said
(ibid p. 16) to follow the so-called Lockean inquiry system (Churchman 1971),
and three stages are distinguished in it: theory building, theory testing and
theory expanding. At the first stage a number of methods were metamodeled
and analysed to develop the ontology of the IS and MEL. At the second stage a
CAME (Computer Aided Method Engineering) tool was designed and
implemented to test the theory. At the third stage experiences got from tests
resulted in corrections and enlargements into the ontology and MEL, as well as
in establishing and formalizing method assembly rules. Some studies are also
mentioned in which the theory has been empirically tested.

Harmsen (1997) advocates the contingency approach, which provides a set
of factors to characterize fragments and IS engineering situations. Second,
Harmsen (1997) applies the integration strategy in constructing a method from
method fragments. Method configuration process is seen as a part of project
management, meaning that a method evolves during the project.

Tolvanen (1998) presents a set of constructs of method modeling
languages, defines guidelines and mechanisms for collecting and analyzing
modeling-related experiences, and explains their implications for method
improvements. Related to the latter, he brings out principles of incremental
method engineering and studies method development through experience-
based method refinement. The principles are aimed at supporting organizations
to develop their own methods, known as local methods.

Tolvanen advocates a view according to which local method engineering
is a learning process “in which experience of successful (or unsuccessful) ISD
efforts needs to be incorporated into future ME efforts: every use situation of
methods should evaluate and analyze methods with a view to improving them”

549

TA
BL

E
34

O

ve
ra

ll
an

al
ys

is
 o

f t
he

 M
E

ar
tif

ac
ts

 R

ef
er

en
ce

R

W
 c

on
te

xt

M
E

co
nt

ex
t

M
E

st
ra

te
gi

es
 a

nd
 M

E
ap

pr
oa

ch
es

H

ar
m

se
n

(1
99

7)

Lo
ck

ea
n

in
qu

ir
y

sy
st

em
: t

he
or

y
bu

ild
in

g
–

th
eo

ry
 te

st
in

g
–

th
eo

ry
 e

xp
an

di
ng

A
 s

itu
at

io
na

l m
et

ho
d

is
 e

ng
in

ee
re

d
ba

se
d

on
 o

rg
an

iz
at

io
na

l c
on

tin
ge

nc
ie

s
an

d
th

e
us

e
of

 a
 m

et
ho

d
ba

se

Si
tu

at
io

na
l m

et
ho

d
en

gi
ne

er
in

g
by

 a
ss

em
bl

y
of

m

et
ho

d
fr

ag
m

en
ts

 (c
f.

in
te

gr
at

io
n

st
ra

te
gy

)

To
lv

an
en

(1

99
8)

Ite

ra
tio

n
of

 c
on

ce
pt

ua
l a

nd

em
pi

ri
ca

l r
es

ea
rc

h
(a

ct
io

n
re

se
ar

ch
) t

o
pr

od
uc

e
m

et
am

od
el

lin
g

co
ns

tr
uc

ts
 a

nd

pr
in

ci
pl

es
 fo

r i
nc

re
m

en
ta

l M
E

A
n

IS
D

 m
et

ho
d

is
 in

cr
em

en
ta

lly

co
ns

tr
uc

te
d

fo
r a

 g
iv

en
 p

ro
je

ct
 b

as
ed

on

 m
et

ho
d

sp
ec

ifi
ca

tio
ns

 in
 a

 m
et

ho
d

ba
se

In
cr

em
en

ta
l a

pp
ro

ac
h

to
 lo

ca
l m

et
ho

d
en

gi
ne

er
in

g

M
et

a-
da

ta
 m

od
el

lin
g

ap
pr

oa
ch

G
up

ta
 et

 a
l.

(2
00

1)

--
M

et
ho

d
en

gi
ne

er
in

g
fo

r a
 s

pe
ci

fic

pr
oj

ec
t

D
ec

is
io

n
m

ak
in

g
ap

pr
oa

ch
 to

 IS
D

Im

pl
em

en
ta

tio
n-

in
de

pe
nd

en
t a

pp
ro

ac
h

to
 M

E

So

ng
 (1

99
7)

A
na

ly
si

s
of

 e
xi

st
in

g
m

et
ho

ds

an
d

pr
ac

tic
al

 e
xp

er
im

en
ts

In

te
gr

at
io

n
of

 u
se

fu
l i

de
as

 a
nd

no

ta
tio

ns
 fr

om
 o

th
er

 m
et

ho
ds

M
et

ho
d

in
te

gr
at

io
n

on
 tw

o
le

ve
ls

 o
f d

et
ai

l

V
la

sb
lo

m
 et

 a
l.

(1
99

5)

--
A

 p
ro

je
ct

-s
pe

ci
fic

 m
et

ho
d

is

en
gi

ne
er

ed
 b

as
ed

 o
n

si
tu

at
io

n
pr

of
ile

s
Fl

ex
ib

ili
za

tio
n

ap
pr

oa
ch

 to
 IS

D
 m

et
ho

d

C
on

tin
ge

nc
y

ap
pr

oa
ch

N

us
ei

be
h

et
 a

l.
(1

99
6)

Pr
ac

tic
al

 e
xp

er
ie

nc
es

M

et
ho

d
en

gi
ne

er
in

g
in

 th
e

co
nt

ex
t o

f
m

ul
ti-

pe
rs

pe
ct

iv
e

so
ftw

ar
e

de
ve

lo
pm

en
t

V
ie

w
Po

in
t a

pp
ro

ac
h

In
te

gr
at

io
n

st
ra

te
gy

Ra
ly

te
 et

 a
l.

(2
00

3)

--
Si

tu
at

io
na

l e
ng

in
ee

ri
ng

 o
f a

 p
ro

je
ct

-
sp

ec
ifi

c
m

et
ho

d
Si

tu
at

io
na

l m
et

ho
d

en
gi

ne
er

in
g

A
pp

ro
ac

h
to

 su
pp

or
t t

he
 in

te
gr

at
io

n
of

di

ffe
re

nt
 M

E
st

ra
te

gi
es

550

 (ibid p. 170-171). This experience-based learning is realized through an
incremental process. Tolvanen divides the process into two kinds of steps: a
priori steps and a posteriori steps. A priori ME steps are method selection,
method construction and tool adaptation. A posteriori ME steps are collection
of experiences, analysis of method use, and method refinement. His view on
meta modelling and method engineering is limited to meta data models only.

Research in Tolvanen (1998) applied conceptual and empirical methods.
Seventeen ISD methods were modeled and their meta data models were
validated through implementation by a CASE tool. The method specifications
were used to analyze method knowledge to extend languages for method
modeling. Second, an action research strategy was followed in two case studies
in which methods were developed and adapted to local needs. Experiences got
from these cases were used to refine the principles and mechanisms for
collection and analysis of experiences from ISD efforts (Tolvanen 1998, 29-30).

Gupta et al. (2001) define a representation system for a method
requirements specification (MRS) and describe an automated process for
instantiating a technical meta model with an MRS. This instantiation is used to
produce the actual method, which is then given to a metaCASE tool to produce
a CASE tool. Interesting in the ME approach is that a method is first specified
on a ”relatively abstract” level with statements of method requirements, and
then it is elaborated and instantiated. The approach is based on a belief that
method engineers are experts of the domain of methods, but not necessarily
experts of meta models and how to instantiate them. The approach applies the
static and dynamic views on methods (Prakash 1997; Prakash 1999) reflecting
the ISD as a decision making process.

Proposals contained in the paper have been used to construct the CAME
tool part of a CASE shell, called MERU (Method Engineering Using Rules).
Nothing is said about research work resulting in the proposals, neither about
validation of results, although through MERU some proofs by implementation
are provided.

Song (1997) defines a framework for the integration of design methods
and gives general principles of applying it. The framework views integration
mainly as an effort to enhance the existing method with properties or
components of some other method(s). In the framework four kinds of
integration are distinguished: model integration, principle integration, process
integration, and representation integration. Further, two approaches to
integration are recognized: function-driven integration and quality-driven
integration. Song does not provide any method of integration, neither any
uniform procedure. Instead, he gives an outline of steps for function-driven
integration and quality-driven integration on two levels of detail. The
framework and the steps have been derived from the analysis of existing
methods and practical experiments. No validation has been made in a rigorous
sense. It is mentioned that "feedback from these experiments has been positive;
designers appreciate the common forum for generalizing, communicating and
applying ideas” (ibid p. 108). No generic philosophy can be found underlying

551

the ideas. The framework and the steps are suggested for situations in which it
is seen beneficial “to borrow ideas and notations from other methods” (ibid p.
107).

Vlasblom et al. (1995) propose the three-level description of the method.
The levels are the generic level, the model level, and the specific level. The
generic level is composed of building blocks for various elements of the
method. The model level contains development models for specific application
domains. The lowest level corresponds to project-specific development
methods. With these levels a more flexible method architecture and method
engineering process are pursued. Vlasblom et al. (1995) present the so-called
”seven-point protocol” to be followed in establishing a development method
that “is optimally tailored to a project”. The protocol is composed of seven
questions, like “Which products are to be deliverables?” and “For which target
group are they intended”? Vlasblom et al. (1995) also suggest steps of how to
utilize a development model in a specific situation, as well as steps to construct
a development model. Nothing is said about the research process, neither about
validation. Several examples of development models with situation profiles,
taken from practice, are provided to show “that the concepts described are of
practical significance” (ibid p. 604).

Nuseibeh et al. (1996) outline an ME approach based on multi-perspective
development. The key concept of the approach is Viewpoint that is “a loosely
coupled, locally managed, distributable object that encapsulates representation
knowledge, development process knowledge and specification knowledge
about an ISD” (ibid. p. 268). An ISD method is a collection of method fragments,
each of which describes how to develop a single ViewPoint specification. A
Viewpoint is internally divided into five ‘slots’: style (notation), work plan
(development process), specification (one described in the notation, produced
by the development process), domain (label identifying the area of concern of
the ViewpPoint), and work record (specification development status, history
and rationale). A ViewPoint template contains the first two ‘slots’. A method is
a configuration of ViewPoint templates. This implies that an ISD process is not
a sequential series of procedures but dynamically created as the development
proceeds.

Nuseibeh et al. (1996, 270) outline a process of method design and
construction. They also present considerations of method integration.
Integration is seen useful in three types of cases (cf. Kronlöf 1993): (1)
integrating common features of several methods, (2) extending a main method
with some new features of other methods, and (3) restricting a main method by
replacing or overriding some of its features. To advance the integration they
advocate the use of pairwise inter-ViewPoint relationships or rules. The
ViewPoint framework and the Viewer (CASE-tool) have been deployed in a
number of case studies and research environments (ibid p. 272). A set of
standard methods have been modelled. These experiments are said to provide
feedback on improving the structure and organisation of the ViewPoint
framework.

552

Ralyte et al. (2003) present a generic process model supporting the
integration of different approaches to situational method engineering. The
generic model contains three ME techniques: assembling method chunks,
extending an existing method, and generating a method by
abstraction/instantiation of a model/meta-model. The paper also shows how
other ME techniques could be integrated in the generic model. Nothing is said
about the theoretical basis underlying the work, or about the applied research
methodology. Validation of the generic model is suggested to be part of the
future project.

To summarize, only in three of the ME artifacts analyzed (Harmsen 1997;
Tolvanen 1998; Song 1997) the research context is considered. Harmsen (1997)
compares the research process to the Lockean inquiry system but does not
describe the process in more detail. Tolvanen (1998) makes very clear what
research methods have been used and how. Song (1997) mentions the practical
background of his artifact. The absence of discussions about the research
context may partly be due to the limited space of the articles but it is more
probable that there have not been any profound theoretical grounds, nor the
use of any rigorous research methods.

Among the analyzed artifacts the target ME context is most commonly a
situation in which a project-specific method is configured (Tolvanen 1998;
Gupta et al. 2001; Vlasblom et al. 1995; Ralyte et al. 2003). In Harmsen (1997) a
constructed method is either an organization-specific method or a project-
specific method. Principles presented in Song (1997) and Nuseibeh et al. (1996)
apply also to other kinds of ME contexts. As regards with the ME strategies, the
artifacts of Harmsen (1997), Song (1997) and Nuseibeh et al. (1996) are clearly
based on integration. Tolvanen (1998) favors the adaptation strategy. Gupta et
al. (2001) and Vlasblom et al. (1995) give no preference to ME strategies. Ralyte
et al. (2003) recognize a number of ME strategies and pursue to integrate them
with the generic model.

In this study we have clearly and firmly grounded MEMES on the
conceptual and theory-based foundation, OntoFrame. We have also, in a
comprehensive manner, brought out the research methodology (i.e. research
process, research methods) by which MEMES has been produced (cf. Section
1.4). We have discussed the verification and validation of MEMES in Section 1.5
and reserved Chapter 12 solely for the evaluation of MEMES. MEMES is aimed
at the engineering of a generic or domain-specific method. It can be used in
conjunction with any ME strategy, although with some elaborations.

12.4.2 Coverage and Emphases of the ME Artifacts

The purpose of this section is to analyze the coverage and emphases of the
selected ME artifacts in terms of ME workflows, perspectives and contextual
domains.

In the analyzed ME artifacts the process of method engineering is
decomposed in different terms: e.g. into phases (Gupta et al. 2001), steps
(Harmsen 1997; Tolvanen 1998; Song 1997; Vlasblom et al. 1995; Nuseibeh et al.

553

1996), and strategies (cf. Ralyte et al. 2003). Because the notion of a phase has the
connotation of a temporally ordered entity and ME actions, such as ‘assembly
of method fragments’ (Harmsen 1997) and ‘method construction” (Tolvanen
1998) are too large-scale to be considered as steps, we prefer to use the ME
workflow structure in this analysis. Based on our ME ontology, the process of
ME is composed of five workflows: ISDM requirements engineering (RE), ISDM
analysis, ISDM design, ISDM implementation, and ISDM evaluation. The
summary of the analysis in terms of these ME workflows is presented in Table
35.

To reveal which features in the ME context are emphasized in the selected
ME artifacts, we deploy the perspectives and the contextual domains defined in
OntoFrame. For the ME context we use the ME perspectives to categorize the
support the ME artifacts offer to conceive, understand, structure and represent
contextual phenomena of method engineering. Since method engineering also
addresses, through the conceptual contents of the ISD method, the ISD context,
we include the ISD context in the scope of our analysis as well. For the ISD
context we apply the ISD perspectives and the ISD domains. The summary of
the analysis of the coverage and emphases of the ME artifacts in terms of
perspectives and contextual domains is presented in Table 36. We use the
following abbreviations in the table: for the perspectives: S = systelogical, I =
infological, C = conceptual, D = datalogical, P = physical, and for the domains:
P = purpose, Ar = Actor, An = Action, O = object, F = facility, L = location, T =
time. To distinguish whether the ME artifacts consider the ISD objects as
representational deliverables (D) or conceptual constructs (C) we use the
markings O/D and O/C, respectively. To express the emphasis the ME artifacts
give to the contextual domains, we use the following markings: X = concerned
to a large extent, x = concerned to a small extent, - = not concerned.
Respectively, we use capital letters (e.g C) and lower letters (e.g. c) to indicate
how extensively the perspectives are addressed in the artifacts. In the following
we shortly describe the processes and deliverables of the selected ME artifacts
and analyze them in terms of the defined issues.

In Harmsen (1997) the process of situational method engineering is
decomposed into three main steps. The first step is the characterization of the
situation, meaning that ISD project goals are determined and a preliminary
scenario is generated and adapted with situational factors (or contingency
factors), and possibly with performance indicators. The second step is the
selection of method fragments, which is induced by the produced
characterizations as the project scenario. Method fragments are characterized by
a number of properties, many of which are directly related to scenario aspects.
Using these relevant properties the method fragments supporting the project
scenario can be selected. The third step is the assembly of method fragments in
which the selected fragments are integrated to form a situational method. To
avoid defects and inconsistencies in and between the fragments, a number of
method assembly quality assurance rules are defined and applied. These rules
concern completeness, consistency, efficiency, soundness, and applicability.

554

TA
BL

E
35

A

na
ly

si
s

of
 th

e
M

E
ar

tif
ac

ts
 in

 te
rm

s
of

 M
E

w
or

kf
lo

w
s

 R
ef

er
en

ce

IS
D

M
 R

E
IS

D
M

 A
na

ly
si

s
IS

D
M

 d
es

ig
n

IS
D

M

im
pl

em
en

ta
tio

n
IS

D
M

 e
va

lu
at

io
n

H
ar

m
se

n
(1

99
7)

C
ha

ra
ct

er
iz

at
io

n
of

si

tu
at

io
n

Se
le

ct
io

n
of

 m
et

ho
d

fr
ag

m
en

ts

A
ss

em
bl

y
of

 m
et

ho
d

fr

ag
m

en
ts

Se
le

ct
io

n
of

 m
et

ho
d

fr
ag

m
en

ts

A
ss

em
bl

y
of

 m
et

ho
d

fr
ag

m
en

ts

--
A

ss
em

bl
y

ru
le

s
en

fo
rc

em
en

t

To
lv

an
en

(1

99
8)

A
na

ly
si

s
of

 IS
D

en

vi
ro

nm
en

t

M
et

ho
d

se
le

ct
io

n
M

et
ho

d
co

ns
tr

uc
tio

n
M

et
ho

d
re

fin
em

en
t

--
M

et
ho

d
co

ns
tr

uc
tio

n
To

ol
 a

da
pt

at
io

n
M

et
ho

d
re

fin
em

en
t

Ev
al

ua
tio

n
of

 e
xi

st
in

g
m

et
ho

ds

C
ol

le
ct

io
n

of
 e

xp
er

ie
nc

es

A
na

ly
si

s
of

 m
et

ho
d

us
e

G
up

ta
 et

 a
l.

(2
00

1)

M
et

ho
d

re
qu

ir
em

en
ts

en

gi
ne

er
in

g
(M

et
ho

d
na

tu
re

 p
ar

t)

M
et

ho
d

re
qu

ir
em

en
ts

en

gi
ne

er
in

g
(S

im
pl

e
m

et
ho

d
pa

rt
 &

M

ap
pi

ng
 m

et
ho

d
pa

rt
)

M
et

ho
d

de
si

gn

M
et

ho
d

co
ns

tr
uc

tio
n

an
d

im
pl

em
en

ta
tio

n
--

So
ng

 (1
99

7)

--

Pr
op

er
ty

 in
te

gr
at

io
n

Pr
in

ci
pl

e
in

te
gr

at
io

n
A

rt
ifa

ct
 in

te
gr

at
io

n
Pr

oc
es

s
in

te
gr

at
io

n

Pr
oc

es
s

in
te

gr
at

io
n

Re
pr

es
en

ta
tio

n
in

te
gr

at
io

n

--
--

V
la

sb
lo

m
 et

al

. (
19

95
)

A
na

ly
si

s
of

 a
 p

ro
je

ct

si
tu

at
io

n
(s

pe
ci

fic

si
tu

at
io

n
pr

of
ile

)

M
od

ifi
ca

tio
n

of
 th

e
be

st
-m

at
ch

ed

de
ve

lo
pm

en
t m

od
el

M
od

ifi
ca

tio
n

of
 th

e
be

st
-m

at
ch

ed

de
ve

lo
pm

en
t m

od
el

M
od

ifi
ca

tio
n

of
 th

e
be

st
-m

at
ch

ed

de
ve

lo
pm

en
t m

od
el

--

N
us

ei
be

h
et

al

. (
19

96
)

--
M

et
ho

d
de

si
gn

 a
nd

co

ns
tr

uc
tio

n

M
et

ho
d

de
si

gn
 a

nd

co
ns

tr
uc

tio
n

M
et

ho
d

de
si

gn
 a

nd

co
ns

tr
uc

tio
n

--

Ra
ly

te
 et

 a
l.

(2
00

3)

Se
t m

et
ho

d
en

gi
ne

er
in

g
go

al

C
on

st
ru

ct
 a

 m
et

ho
d

C
on

st
ru

ct
 a

 m
et

ho
d

C
on

st
ru

ct
 a

 m
et

ho
d

--

555

TA
BL

E
36

 ..
...

..A
na

ly
si

s
of

 th
e

M
E

ar
tif

ac
ts

 in
 te

rm
s

of
 p

er
sp

ec
tiv

es
 a

nd
 c

on
te

xt
ua

l d
om

ai
ns

M

E

IS
D

R

ef
er

en
ce

Pe

rs
pe

ct
iv

es

P
A

r
A

n
O

F

L
T

Pe
rs

pe
ct

iv
es

P

A
r

A
n

O
/

D

O
/

C

F
L

T

M
EM

ES

S
&

 I
&

 C

X
X

X
X

-
-

-
S

&
 I

&
 C

X

X
X

X
X

-
-

-
H

ar
m

se
n

(1
99

7)

I &
 C

 &
 d

X

x
X

X
X

-
-

I &
 C

-

-
X

X
X

X
-

-
To

lv
an

en
 (1

99
8)

I &

 C

-
-

X
X

x
-

-
C

-

-
-

-
X

-
-

-
G

up
ta

 et

al
.(2

00
1)

i &

 C

-

-
x

X
-

-
-

I &
 C

X

-
X

X
X

-
-

-

So
ng

 (1
99

7)

i &
 C

-

-
x

x
-

-
-

I &
 c

-

-
X

X
x

-
-

-
V

la
sb

lo
m

 et
 a

l.
(1

99
5)

s

&
 i

x
-

x
x

-
-

-

-
-

-
-

-
-

-
-

N
us

ei
be

h
et

 a
l.

(1
99

6)

i &
 c

-

-
x

x
-

-
-

I
-

-
X

X
-

-
-

-

Ra
ly

te
 et

 a
l.

(2
00

3)

s
&

 i
X

-
x

x
-

-
-

-

-
-

-
-

-
-

-

 Le
ge

nd
:

 Pe
rs

pe
ct

iv
es

:
Co

nt
ex

tu
al

 d
om

ai
ns

:

Em

ph
as

is
:

S
=

Sy
st

el
og

ic
al

P

=
Pu

rp
os

e

F
=

Fa
ci

lit
y

X

=
co

nc
er

ne
d

to
 a

 la
rg

e
ex

te
nt

I =

 In
fo

lo
gi

ca
l

A
r =

 A
ct

or

L

=
Lo

ca
tio

n

x
=

co
nc

er
ne

d
to

 a
 s

m
al

l e
xt

en
t

C
 =

 C
on

ce
pt

ua
l

A
n

=
A

ct
io

n

T
=

Ti
m

e

- =
 n

ot
 c

on
ce

rn
ed

D

 =
 D

at
al

og
ic

al

O
 =

 O
bj

ec
t

O
/D

 =
 O

bj
ec

ts
 a

s
re

pr
es

en
ta

tio
na

l d
el

iv
er

ab
le

s

O

/C
 =

 O
bj

ec
ts

 a
s

co
nc

ep
tu

al
 c

on
st

ru
ct

s

556

The steps in the situational ME process cover, at least to some degree, all the
ME workflows except ISDM implementation (e.g. there are no rules for
customization nor instantiation). The ME context is described from the ME
infological and ME conceptual perspectives, and, to a smaller extent, from the
ME datalogical perspective. Thus, ME purposes, ME actions (steps), ME
deliverables (incl. method fragments) and ME facilities (CAME, Decamerone)
are described. Some references to ME actors are also given. The conceptual
contents of the ME deliverables are described from the ISD infological and ISD
conceptual perspectives, including descriptions of ISD actions (process types),
ISD deliverables (products) and ISD facilities (CASE tools). The conceptual
contents of the ISD deliverables are also structured. Some descriptions of
Decamerone are so technical that they belong to the physical ME perspective.

The process of incremental method engineering by Tolvanen (1998) is
divided into two kinds of steps: a priori steps and a posteriori steps. The a
priori ME steps are method selection, method construction, and tool adaptation.
The a posteriori ME steps are collection of experiences, analysis of method use,
and method refinement. In the first step the ISD environment is analyzed
according to situation-independent and situation-dependent ISD method
criteria. In the second step the selected methods are constructed. This means
integration and adaptation of one or more methods, or parts thereof. In the
third step the methods constructed are adapted into a CASE tool. This means
customizing or building a tool for the method or selecting a set of tools which
cover all the method knowledge (ibid p. 70).

In the a posteriori part of ME, experiences from the use of the constructed
ISD method are first collected in terms of models produced during the ISD,
meta models, reports on stakeholder interviews, etc. The experiences are
analyzed according to the defined analysis mechanisms. Evaluation of method
use can lead to modifications in the method and tool support. These
modifications are done in the final step. The iterative nature of the ME process
implies that the refined method can be taken as such or as a re-refined method
in the next ISD project (Tolvanen 1998, 190-192).

A part of method selection, the analysis of ISD environment, belongs to
the ISDM RE workflow. The rest of the method selection as well as method
construction and method refinement correspond to the ISDM analysis
workflow because the process concerns neither ISD actors nor ISD facilities.
Part of method construction and tool adaptation belong to the ISDM
implementation because there the method is particularly tied to technical
infrastructure of the project. A part of the first step as well as the fourth and
fifth steps address issues of the ISDM evaluation workflow. For these steps
Tolvanen (1998) provides descriptions of ME actions. ME deliverables are, to a
large degree, addressed from the ME conceptual perspective only. Because the
incremental ME process has been established on the considerations of the meta
data model (i.e. the GOPRR model (Kelly et al. 1996)), the only concerned
domain in the ISD context is the ISD object domain, considered from the ISD
conceptual perspective.

557

In Gupta et al. (2001) method engineering is composed of three main
phases: (1) method requirements engineering (MRE), (2) method design (MD),
and (3) method construction and implementation (MCI). In the MRE phase the
method requirements definition is first produced. Method requirements are
“high-level abstraction of services, that a method will provide, and constraints
under which it functions” (ibid p. 136). They are a part of project characteristics
and are obtained from the project context in which the method is to be applied.
Second, the MRE yields a Method Requirements Specification (MRS), which is a
technical document describing what a method that meets the MRS has to offer.
Being independent from implementational issues, an MRS details the nature of
the method but not the method itself. An abstract language, called MRSL, has
been developed to express a MRS. The MD phase translates an MRS into an
instantiation of the technical meta model. The method construction phase
generates the method and builds the CASE tool. A CAME tool, referred to as
MERU, has been built to provide assistance in the tasks of three ME phases
(Gupta et al. 136-137).

Gupta et al. (2001) apply a three-layer architecture to specify an ISD
method. At the highest level, the generic view of a method offers a basis for
building the abstract model and MRSL. It is used in the MRE phase. The second
layer, the metamodel layer, defines the decisional metamodel that is used in the
MD phase to make an instantiation. At the third layer, the method is finally
produced from the instantiation performed in the second phase. This layer is
used in the method construction phase.

The suggestion of Gupta et al. (2001) is the only one among the analyzed
ME artifacts that clearly distinguishes between different levels of abstraction on
which a method can be conceived (cf. the generic view, the metamodel view
and the construction view). It also differentiates between three “phases” of the
engineering of the method, based on those abstraction levels. These phases
stand for our four ME workflows in such a way that the tasks of MRE phase
belong partly to the ISDM RE (cf. the method nature) and partly to the ISDM
analysis (cf. the simple method and mapping method). The MD phase and the
MCI phase correspond to the ISDM design workflow and the ISDM
implementation workflow, respectively. Issues of the ISDM evaluation
workflow are not addressed in Gupta et al. (2001). The ME context is mainly
considered from the ME conceptual perspective, because the emphasis in the
article is on the MRS language and the decisional metamodel. The ME actions
are outlined only on a very general level (cf. the ME infological perspective).
The article also contains a short description of MERU. The ISD context is
perceived from the ISD infological and ISD conceptual perspectives. Gupta et al.
(2001) define the notion of a generic work procedure that is composed of
procedure elements, which in turn can contain several work elements. A
procedure element is an objectified relationship between a product part and a
method block. Product parts are contained in the product under development.
A method block is a pair consisting of an objective and an approach.
Conceptual structures are used to represent the architecture of the product.

558

Song (1997) gives an outline of the steps for function-driven and quality-
driven integration. The steps are divided into two parts, corresponding to high-
level integration and low-level integration. The former concerns artifact models,
properties, principles, representations, and processes. The latter involves model
components (e.g. classes), criteria, guidelines, measures and notations.

The function-driven integration is applied when new functionalities are
searched for the existing method from other methods, or parts thereof. In the
high-level integration, the process starts with consideration of property
integration with the aim of revealing properties that are not effectively
supported by the existing method. Next, new and promising ISD principles are
searched for and integrated into the existing method. Some of these steps
correspond to the ISDM RE workflow but because Song (1997) does not provide
any guidance to requirements engineering of the method we locate these steps
in the ISDM analysis workflow in Table 35. In the artifact model integration the
existing method is enhanced with new artifact models (IS meta models), and in
the process integration the processes for specifying the new artifact models are
associated into the existing method. These steps are related to the ISDM
analysis workflow. Finally, in representation integration the notations of design
artifacts are made uniform. This is concerned in the ISDM design workflow in
our ontology. The low-level integration considers issues that are related to the
ISD datalogical perspective in the ME design workflow.

The quality-driven integration does not aim to enhance the functionalities
of the ISD method but to improve its quality in terms of more general criteria
(e.g. more maintainable software, more efficient ISD process, etc.). At the high-
level, the quality-driven integration consists of at most process and
representation integration, and at the low-level it concerns guidelines,
measures, actions, and notations. The steps can be located into the ME
workflows as above.

The integration process is described in terms of ME deliverables, not by
detailing steps. In the ISD context the ISD actions (processes) and the ISD
deliverables (artifacts) are distinguished.

Based on the three-level architecture of the method, Vlasblom et al. (1995)
suggest steps for deploying development models in specific situations. The
process starts with the project initiator analyzing the project situation and
consulting the library of available development models. After choosing the
model the profile of which best matches the specific situation profile, it is
modified until a scenario for project direction and operation is achieved (ibid p.
602). In addition, Vlasblom et al. (1995) provides steps to the construction of a
development model from existing approaches / projects. The steps are:
familiarization with the established practice (i.e. completed projects),
formalization of the development model, establishing the model situation
profile, and feedback to the library of building blocks. The steps cover, to some
extent, first four of our ME workflows. They are, however, described on a
highly general level, viewing from the ME systelogical and ME infological
perspectives.

559

Nuseibeh et al. (1996) generally outline a ME process of method design
and construction. The process is composed of the following steps: (1) identify
development techniques: derive from the requirements of a method the
techniques that the target method will deploy, (2) identify ViewPoint templates
that need to be constructed to describe these techniques, (3) describe templates,
(4) reuse templates, (5) identify and describe inter-ViewPoint relationships, and
(6) construct local (ViewPoint) development process models. Nuseibeh et al.
(1996) also consider method integration, and to advance the integration they
advocate the use of pairwise inter-ViewPoint relationships or rules.

In Nuseibeh et al. (1996) the descriptions of the ME context and the target
ISD context are given on a very general level. The ME steps concern the ISDM
analysis, ISDM design, and ISDM implementation workflows, the emphasis
being on the ISDM analysis. The ISD context is perceived through ViewPoint
patterns, meaning that ISD actions (“work plan”) and ISD deliverables
(“specification”) are mainly considered from the ISD infological perspective.

The generic process model by Ralyte et al. (2003) is based on a strategic
process meta-model, called Map (Rolland et al. 1999), and describes ME process
in terms of intentions and strategies. An intention is a goal that can be achieved
by the performance of the process (expressed like “Set Method Engineering
Goal”, Ralyte et al. 2003, 97). A strategy represents the manner in which the
intention can be achieved. Ralyte et al. (2003) present separate models for
assembly-based method engineering, extension-based method engineering, and
paradigm-based method engineering. The process models are expressed in the
form of a graph in which nodes stand for intentions and edges correspond to
strategies. The model applies the ME systelogical perspective and, partly, the
ME infological perspective. It does not explicitly recognize the ME deliverables.

To summarize from the analysis of the coverage and emphases of the ME
artifacts, we can state that the only ME artifact which applies the ME workflow-
like action structure is the one of Gupta et al. (2001). But because it considers the
ME context mainly from the ME conceptual perspective, ME actions are only
generally outlined. ME actions of the ISDM evaluation are ignored. Harmsen
(1997) and Tolvanen (1998) apply an ME action structure that consists of the
collection of knowledge, selection of methods (fragments in Harmsen (1997))
and integration (Harmsen 1997) and/or adaptation (Tolvanen 1998). In the ME
steps Harmsen (1997) includes also project performance and method base
administration, whereas Tolvanen (1998), based on his incremental approach,
specifies three steps succeeding the method use. In Song (1997) ME work is
decomposed into steps based on the target of integration. The steps take a
rather narrow scope to the ME workflows. In Vlasblom et al. (1995) and
Nuseibeh et al. (1996) ME work is only partially, and on a general level, covered.

In all the ME artifacts support for the ME context is mainly focused on ME
actions and ME deliverables. ME purposes are considered in Harmsen (1997),
Ralyte et al. (2003) and partly in Vlasblom et al. (1995). In some ME artifacts
(Harmsen 1997; Tolvanen 1998) ME facilities are also discussed. Harmsen (1997)
provides the most extensive treatment of issues within the ME domains. The

560

ME infological and ME conceptual perspectives are most commonly applied
among the ME artifacts. In the ISD context the ISD infological perspective and
the ISD conceptual perspective are considered in Harmsen (1997), Gupta et al.
(2001) and Song (1997). Tolvanen (1998) addresses the ISD conceptual
perspective, and Nuseibeh et al. (1996) consider the ISD infological perspective.

To help the comparison of the selected ME artifacts with MEMES, we have
included MEMES in the same table (Table 36) with the others. As specified in
Chapter 11, MEMES applies three perspectives (systelogical, infological, and
conceptual), on the ME layer as well as on the ISD layer. Implied from the
perspectives applied, MEMES addresses four contextual domains. On the ISD
layer MEMES addresses ISD objects as representational artifacts and conceptual
constructs. Compared to the analyzed ME artifacts MEMES is more
comprehensive in terms of ME workflows, perspectives and contextual
domains. In MEMES the ME workflows are decomposed into well-structured
tasks and steps. In the other ME artifacts ME actions are mostly expressed in
short outlines. They are very far from being considered even as an ME method
skeleton. In this sense, our proposal for a method skeleton means a considerable
enlargement and elaboration of the body of methodical knowledge about ME.

12.4.3 Conclusions from the Comparative Analysis

The purpose of our comparative analysis was to find out how MEMES
compares with the existing ME artifacts and how MEMES performs as a frame
in the comparative analysis. The following conclusions can be drawn from the
analysis of seven ME artifacts.

There are only some ME artifacts (i.e. Harmsen 1997; Tolvanen 1998; Song
1997) for which information is provided about the processes and methods by
which the artifacts have been produced. In contrast, we have explicitly
described our research process and research methods. We have also brought
out how MEMES has been validated and verified. Most of the analyzed artifacts
(Tolvanen 1998; Gupta et al. 2001; Vlasblom et al. 1995; Ralyte et al. 2003) are
targeted at engineering a project-specific method. As regards the ME strategies,
there are ME artifacts that apply the integration strategy (e.g. Harmsen 1997;
Song 1997), and those which follow the adaptation strategy (e.g. Tolvanen 1998;
Gupta et al. 2001). Ralyte et al. (2003) recognize a number of ME strategies and
pursue to integrate them with the generic model. MEMES is aimed at the
engineering of a generic or domain-specific method. It can be used in
conjunction with any ME strategy, although with some elaborations.

Gupta et al. (2001) is the only ME artifact in the ME literature which
decomposes the ME process into ME workflows based on ISD perspectives.
However, it considers the ME mainly from the ME conceptual perspective, and
the ME actions are only generally outlined. In most of the ME artifacts (e.g.
Harmsen 1997; Tolvanen 1998) the ME process is decomposed into the steps
such as the collection of knowledge, selection of methods, and integration and /
or adaptation. Tolvanen (1998) specifies also three steps succeeding the method
use. Some artifacts provide a narrower and/or more general view of the ME

561

process. Harmsen (1997) provides the most extensive treatment of issues within
the ME domains. The other ME artifacts mostly focus on ME actions and ME
deliverables from the ME infological and ME conceptual perspectives. From the
ISD perspectives some of the ME artifacts (e.g. Harmsen 1997; Gupta et al. 2001;
Song 1997) apply the ISD infological and ISD conceptual perspectives. The
other artifacts are more limited in their scope. MEMES suggests approaches and
steps for three ME workflows based on the perspectives. It applies three
perspectives (i.e. systelogical, infological, and conceptual) on the ME layer as
well as on the ISD layer. Thus, compared to the analyzed ME artifacts MEMES
is more comprehensive. Since we have used the notion of comprehesiveness in
the contextual sense (cf. ME workflows, perspectives and contextual domains),
what has been said above means that with MEMES, compared to the other ME
artifacts, it is much better possibilities to recognize, understand, represent and
engineer contextual features of ME contexts, ISD contexts and ISD methods.

 MEMES was found to be a feasible frame of reference in the comparative
analysis. It provided a useful categorization of methodical views with which the
background and orientation of the ME artifacts could be revealed, analyzed and
compared. The ME workflow structure of MEMES also assisted in the analysis
and comparison of functional aspects of the ME artifacts on a general level. The
perspectives and the contextual domains, on the ME layer as well as on the ISD
layer, helped us factorize and assess the coverage and emphases of the objects
systems of the ME artifacts. MEMES offers still more means to elaborate the
analysis. The IS perspectives and the IS domains can be used to examine which
kinds of phenomena in the IS and the OSIS are recognized in the ME artifacts.
Futhermore, it is possible to analyze and compare, on a more detailed level,
which concepts and constructs the ME artifacts suggest to use for viewing
reality.

12.5 Summary and Discussions

The purpose of this section was to evaluate the applicability of MEMES from
the viewpoints of framing, constructive and analytical intentions. We applied
one of the ME workflows in MEMES, namely the ISDM evaluation, to make
sense of and structure this evaluation context at hand. Following the steps
contained in the workflow we specified the evaluation criteria, selected the
evaluation methods, carried out the process of evaluation and reported on
findings and lessons. Here, we present the summary of the evaluation process
and its results.

We evaluated MEMES in three ways. First, we made the retrospective
analysis of one of the prior ME contexts, namely the OSSAD project, to examine
how MEMES serves as a frame. The analysis showed that the process of the
OSSAD project could be structured and analyzed with a large variety of ME
action structures provided by MEMES. The ME strategies and the ME

562

approaches specified in MEMES served as a concrete basis with which the
orientation of the the OSSAD project and the OSSAD methodology could be
analyzed. The IS ontology, embedded in MEMES, was viable in the evaluation
of the universes of discourse of the main office models. In conclusion, we argue
that MEMES provides structured and feasible means to the retrospective
analysis of ME contexts from multiple viewpoints. The information got from the
analysis is useful to making improvements in the applied conventions. The
retrospective analysis also yielded a structured view of main features (e.g.
coverage and emphasis) and approaches of the OSSAD project and revealed
some problems. The OSSAD project was found quite comprehensive although it
paid insufficient attention to some ME tasks (e.g. analysis of existing methods
and models) and perspectives (e.g. IS conceptual perspective). The essence and
main characteristics of the project seem to be induced by the functional
approach applied in the ISDM analysis workflow and the IS-driven approach in
ISD modeling. The OSSAD methodology itself is rather extensive covering
several phases, ranging from contracting to implementation of an office support
system. However, it totally ignores conceptual modeling. The first three phases
are emphasized in the methodology. The methodology is structured upon two
major constructs: phase structure and office modeling structure. Three basic
models provide concepts and constructs for viewing an office and office work
from three different IS perspectives, which appeared to be comparable to the IS
infological, IS datalogical, and IS physical perspectives in MEMES. In all these
models the functionalist approach (Hirschheim 1986) is applied, meaning that
an office is seen as a set of information flows in which the semantics of
documents remains uncovered.

Second, we made a retrospective analysis of the MEMES effort to evaluate
how MEMES performed in the constructive sense. We presented a detailed
description of how MEMES was deployed, according to the reflection-in-action
approach, in the MEMES effort and tried to find out how useful it was. We
presented a structured view of the MEMES effort decomposed into two parallel
and iterative sub-processes, the RW process and the reflection process. We
showed that MEMES provided constructs with which the RW process and its
deliverables could be framed and described in a structured and comprehensive
fashion. MEMES helped us categorize ME actions and issues according to well-
defined action structures and perspectives. The target of the effort was so
abstract and fuzzy that it would have been very difficult, without the support of
gradually enlarging MEMES, to make sense of and shape it. Although the RW
process was highly iterative, the use of MEMES, even in its early versions, made
iterations manageable and thus the RW process more efficient. To conclude,
based on the analysis of, and the experience from, the MEMES effort, we argue
that MEMES offered a feasible support for the engineering of MEMES. We
have, however, to remember that the retrospective analysis was based on
subjective assessments. It is also noteworthy that the MEMES effort was not an
ordinary ME endeavor but a research project, which engineered the ME
skeleton. Hence, from the evidence obtained here we cannot conclude that

563

MEMES would be applicable to all kinds of ME efforts. Regardless of what has
been said above, we believe that since MEMES, even as a half-ready artifact,
appeared to be useful in the MEMES effort, it has much to offer also for other
kinds of ME efforts, once it is first elaborated into a complete ME method.

Third, we made a comparative analysis of existing ME artifacts to evaluate
the applicability of MEMES in the analytical sense and to find out how MEMES
compares with those artifacts. For the comparative analysis we selected the
most advanced artifacts in the ME literature. The first part of the analysis
uncovered the backgrounds, application areas and ME approaches of the
artifacts. In the second part we considered the coverage and emphases of the
artifacts in terms of ME workflows, perspectives and contextual domains. The
analysis showed that only few ME artifacts have been constructed upon a
sound theoretical basis and with a proper research methodology. Most of the
artifacts have been engineered for the purposes of method customization or
configuration, not to engineer a generic or domain specific method. The
integration strategy is most commonly applied. There are some artifacts that
cover the ME workflows more extensively than MEMES. However, they do not
provide as detailed guidelines for the workflows as MEMES does. Nor do they
cover as comprehensively as MEMES does the perspectives and contextual
domains on the ME and ISD layers. All but one (i.e. Gupta et al. 2001) deploy
“technical” meta models which do not allow the recognition of all that diversity
of contextual aspects which is typical of the ISD methods. To conclude from the
use of MEMES as a framework in the comparative analysis, we can say the
following. First, MEMES provided a useful categorization of methodical views
with which the background and orientation of the ME artifacts could be
analyzed and compared. Second, the ME workflow structure included in
MEMES was found feasible in the analysis and comparison of functional
aspects of the ME artifacts on a general level. Third, the perspectives and the
contextual domains, both on the ME layer and on the ISD layer, helped us
factorize and assess the coverage and emphases of the objects systems of the
ME artifacts. Fourth, due to the fact that MEMES is strongly anchored on the
contextual approach and OntoFrame, it provides relevant concepts and
constructs for the recognition, understanding, representing and engineering of
contextual aspects and structures of ISD methods. This gives us a general basis
to argue for the suitability of MEMES as a “yardstick” to the analysis and
comparison of the ME artifacts.

13 CONTRIBUTIONS AND FURTHER RESEARCH

Organizations are nowadays required to act more effectively, to face shorter
time-frames and respond in environments where they are confronted by an
accelerating pace of change. Rapid and pervasive transformations in business,
technology and application environments increase pressures to develop new
and better information systems with higher productivity. This intensifies
demands to renew and customize current ISD methods, as well as to engineer
new kinds of ISD methods. Method engineering (ME) is related, in an intrinsic
and pervasive fashion, to every ISD effort. Those days are over when ME was
regarded as an “unnecessary nuisance” which could be accomplished with
minimum effort. At present ME is an endeavor which has to be performed
effectively with proper methodical support. Unfortunately, there is a paucity of
ME artifacts that could provide adequate support for ME efforts.

Our objective in this thesis has been to develop intellectual and methodical
support for method engineering. The research domain consists of the following
sub-domains: IS, ISD, ISD method, ME, ME method. The research problem
stated in Chapter 1 is: How to conceive and methodically support the
engineering of an ISD method? We have responded to this research problem by
crafting two design artifacts (in terms of Hevner et al. 2004), the ontological
framework and the method skeleton for ME. The ontological framework, called
OntoFrame, aims to provide a coherent and comprehensive groundwork for
conceiving, understanding, structuring and presenting phenomena in the
research domain. The method skeleton for ME, called MEMES, contributes to
the support of ME process.

In this chapter we first present an overview of the two design artifacts,
considering how they respond to the research questions derived from the
research problem mentioned above. Second, we apply the research framework
of Hevner et al. (2004) to describe each part of OntoFrame and MEMES,
highlighting their motivation, importance, novelty and significance.
Furthermore, we point out some limitations in our contributions. Third, we
bring out several directions for further research.

565

13.1 Contributions

13.1.1 Overview

We have decomposed the research problem into three research questions in
Chapter 1. The questions are: (1) What is the conceptual foundation with which
phenomena in the research sub-domains can be conceived, understood,
structured and presented? (2) What is the nature, contents and structure of an
ISD method? (3) How to structure and support the process of method
engineering? In what follows, we describe our contributions in terms of how
they are able to answer these questions. In Table 37 we show which parts of our
work contribute to each of the research questions.

TABLE 37 Research problems and contributions

Research problems Contributions Chapters
RQ1: What is the conceptual foundation with which
 phenomena in the research sub-domains can be
 conceived, understood, structured and
 presented?

OntoFrame Chapters 2-
10

RQ2: What is the nature, contents and structure of an
 ISD method?

ISD ontology
ISD method ontology
ME ontology

Chapter 8
Chapter 9
Chapter 10

RQ3: How to structure and support the process of
 method engineering?

ME ontology
ME method ontology
MEMES

Chapter 10
Chapter 10
Chapters
11-12

To answer the first research question we have engineered the extensive
ontological framework (OntoFrame) that covers the five research sub-domains.
OntoFrame has been anchored upon several theories. The selection of theories
has been guided by the pursuit of generality and the contextual approach.
Implied from the former we gave the preference to the theories that help us
form a holistic view of the issues in the research sub-domains. These theories
are philosophy, semiotics and systems theory. On the other hand, we saw it of
vital importance to recognize, understand, structure and represent meanings of
things in reality. This is enabled through viewing things as parts in their
contexts. Resulting from the exhaustive search for theories that recognize the
importance of meaning we selected semantics, pragmatics and theories of
human and social action. These theories constitute the underpinning upon
which the contextual approach has been defined. OntoFrame is a five-
dimensional framework. The first dimension stands for generality. At the one
extreme of this dimension there is one concept, a thing, from which all the other
concepts have been derived. At the other extreme there is a very large set of
concepts intended for the recognition of features of ISD contexts and ME
contexts. The second dimension is formed by the categorization of features into

566

seven contextual domains (i.e. the purpose domain, the actor domain, the action
domain, the object domain, the facility domain, the location domain, and the
time domain). The third dimension stands for the strictly defined perspectives
(i.e. the systelogical perspective, the infological perspective, the conceptual
perspective, the datalogical perspective, and the physical perspective) through
which particular views of the features in reality can be established and applied.
The fourth dimension contains four processing layers (i.e. IS, ISD, ME, RW).
Finally, the fifth dimension involves levels on which models can be specified
(i.e. instance models, type models, meta models, meta meta models, etc.).

The most important research subject of this thesis is an ISD method.
Therefore it was taken as the target of our second research question: What is the
nature, contents and structure of an ISD method? As regards the nature of an
ISD method, we have given, based on the literature survey, an overview of roles
and extent in which ISD methods are used in practice. We have also provided a
structured description of benefits from, and problems in, the method use in
practice. Second, we have presented a holistic definition of the ISD method and
defined the ISD method ontology, which highlights, in a more structured and
comprehensive fashion than any other presentation, various facets of the
notion. We have also defined a framework which, based on the view of the ISD
method as a “carrier” of ISD knowledge, helps classify ISD methods. As regards
the contents of an ISD method, we have defined, applying once again the
contextual approach, the comprehensive ISD ontology, which specifies in a
structured manner the features that an ISD method should describe and/or
prescribe. The ISD ontology covers four ISD domains (i.e. the ISD purpose
domain, the ISD actor domain, the ISD action domain, and the ISD object
domain) and four ISD perspectives (the ISD systelogical perspective, the ISD
infological perspective, the ISD conceptual perspective, and the ISD datalogical
perspective). To elaborate the structure of an ISD method, we have defined
seven methodical views based on the semiotic ladder. According to these views,
an ISD method can be seen as being composed of the issues related to prior ME
contexts and prior ISD contexts (the historical view) and to target ME contexts
and target ISD contexts (the application view), of conceptual constructs (the
contents view), of linguistic expressions (the presentation view), of physical
things in electronic or paper form (the physical view), and of method
components (the structural view). To elaborate the structural view, we have
also defined the contextual interface of a method component and a five-
dimensional scheme for the classification of components.

To answer the third research question, we have crafted MEMES, the method
skeleton for method engineering, by deploying the “building blocks” offered by
the ISD ontology, the ME ontology, and the ME method ontology. The purpose
of MEMES is to provide support for the engineering of generic and domain-
specific methods. MEMES covers three ME perspectives (i.e. the ME systelogical
perspective, the ME infological perspective, and the ME conceptual perspective)
and three ISD perspectives (i.e. the ISD systelogical perspective, the ISD
infological perspective, and the ISD conceptual perspective). It is composed of

567

three ME workflows: ISD method requirements engineering, ISD method
analysis, and ISD method evaluation. MEMES is not a complete ME method. To
make MEMES more complete, it has to be enhanced with the issues related to at
least the ME datalogical perspective and the ISD datalogical perspective. The
applicability of MEMES has been evaluated by conceptual and empirical
methods.

13.1.2 OntoFrame

OntoFrame is composed of four main parts: the core ontology, the contextual
ontologies, the layer-based ontologies, and the method ontologies. These are
further divided into several component ontologies. We will briefly discuss each
of them in the next sub-sections. Here we consider OntoFrame as a whole,
summarizing its engineering process, assessing it with quality criteria defined
in Chapter 1 and discussing its implications to research and practice.

OntoFrame has been built upon two disciplines, metamodeling and
ontology engineering, and with two approaches, the inductive approach and
the deductive approach. In building the core ontology we made a thorough
analysis of existing generic frameworks and ontologies and derived our
ontology from them by selection, integration, and customization. In engineering
the contextual ontologies we first searched for disciplines and theories that
address social and organizational contexts and derived a basic categorization of
concepts into contextual domains from them. After that we enriched the
contents and structure of each contextual domain by analyzing existing
artifacts. For the other parts of OntoFrame we applied the deductive approach
by specializing concepts and constructs into lower-level ontologies from higher-
level ontologies. In this process we utilized heavily the literature of existing
artifacts in order to elaborate and customize the derived concepts and
constructs and make them consistent with specific sub-domains. We applied the
integration strategy of ontology engineering whenever it was possible. In this
way we could import existing knowledge from other sub-domains in cases
where these views and concepts were sufficiently clear and stable and they
matched with our general premises.

The engineering of OntoFrame was based on the comprehensive analysis
of the literature, accomplished in several phases. First we conducted an
extensive analysis of fifteen of the most advanced frameworks, meta models,
frames of reference and ontologies related to the IS, ISD, ISD methods, and ME
(Section 2.5). In addition, comparative analyses of existing artifacts were carried
out on more detailed level in each of the sub-domains. These analyses are
related to fundamental concepts (cf. the core ontology) in Section 3.10, the
notions of information system, object system, and utilizing system in Section
5.1.6, IS concepts and IS perspectives (cf. the context ontology and the
perspective ontology) in Section 6.4, and meta levels (cf. the model level
ontology) in Section 7.3. Furthermore, we analyzed and compared frameworks
of ISD (cf. the ISD ontology) in Section 8.5, frameworks, architectures and
reference models of ISD methods (cf. the ISD method ontology) in Section 9.7,

568

and classifications of ISD method components in Section 9.8.6. Finally, we
analyzed and compared existing ME artifacts in Section 12.4. We have also
presented a plethora of references to the pertinent literature in each subject
matter area in order to describe and compare different conceptions and
concepts. These analyses and references clearly revealed the great divergence
which prevails in the concerned fields at present. Comparisons with OntoFrame
showed that our ontological framework is much more comprehensive than any
of the existing artifacts. Recalling that OntoFrame has been engineered
according to the contextual approach, OntoFrame recognizes in the most
extensive way the contextual features of the research sub-domains.

OntoFrame is presented in informal and semi-formal fashions. The
concepts and constructs of the component ontologies are defined in English and
collected into the unified vocabulary in Appendix 1. In addition, the concepts
and constructs in each of the component ontologies are presented in meta
models in the UML-based ontology representation language (Appendix 2).

Next, we briefly consider how OntoFrame meets the goals stated in
Section 1.3. The goals were expressed in terms of comprehensiveness,
contextuality, consistency, coherence, generality, clarity, naturalness,
generativeness, extensibility, modularity, theory basis, and applicability. The
evidence obtained from the comparative analyses, together with the use of
“universal” theories as the basis of the most component ontologies, strengthens
our confidence that OntoFrame addresses, in a comprehensive fashion, relevant
contextual phenomena in all five sub-domains. To advance the consistence and
coherence of OntoFrame we metamodeled it in a disciplined fashion and
formed the unified vocabulary. The meta models enforced the specificity of the
concepts, relationships and constraints. The definitions in the vocabulary
explicitly show how the concepts are inter-related through their intensions. To
balance between specificity and generality OntoFrame has been composed of
ontologies at several levels. The most generic component ontologies in the core
ontology provide concepts that refer to the fundamentals of reality (e.g. thing,
relationship, point of view). Clarity and naturalness are qualities about which
we have not carried out empirical studies. Nevertheless, several features in
OntoFrame have positive impacts on these qualities. For instance, rooting the
concepts of OntoFrame upon proper theories (cf. semiotics and linguistics)
contributes to naturalness, and the modular structure of the framework
enhances its clarity. In addition, we have extensively utilized the established
terminology that is commonly used in current ISD methods.

The generative structure is inherent to OntoFrame due to the top-down
approach by which the concepts and constructs of lower level ontologies have
been derived from those of higher level ontologies. OntoFrame is composed of
clearly structured parts and components. The framework with the generative
nature and modular structure is easier to extend, if necessary. Extensions can be
carried out by specializing some of the concepts in OntoFrame, or integrating
new concepts into the existing ones. OntoFrame has been rooted in several

569

theories, ranging from philosophy, semiotics and linguistics to systems theory,
activity theory, and ISD theories.

The last goal in the list concerns the applicability of OntoFrame for
framing, analytical and constructive intentions. We have deployed OntoFrame
as a frame in multiple comparative analyses of existing artifacts. We found it to
be a feasible framework with which the backgrounds, comprehensiveness,
coverage, emphasis, etc. of models, meta models, frameworks, reference
models, architectures, etc. could be recognized and analyzed. OntoFrame has
been used mainly as a general-purpose framework, and it should be elaborated
and customized when deployed with more specific aims. OntoFrame has also
been used as a groundwork for the construction of MEMES. The extensive
vocabulary of OntoFrame was found feasible in specifying the scope, structure
and contents of MEMES. In particular, the main structures of the ISD ontology,
the ME ontology and the ME method ontology offered usable building blocks
from which the structure of MEMES could be crafted in a straightforward
manner. The use of OntoFrame to frame the universe of discourse has not been
investigated in this work. Hence, to find out how OntoFrame performs in this
respect requires empirical studies in future.

Next, we consider rigor from the viewpoint of OntoFrame. Rigor
“addresses the way in which research is conducted (Hevner et al. 2004, 87)). It
“is derived from the effective use of the knowledge base - theoretical
foundations and research methodologies” (ibid p. 88). This study has been
rooted in two disciplines: metamodeling and ontology engineering.
Metamodeling is a young discipline without established theoretical and
methodological traditions. In ontology engineering there are also divergent
conceptions about how to engineer and validate an ontology (Gomez-Perez
1995; Gruninger et al. 1995; Guarino 1997; Shank et al. 2003). Some researchers
use competence questions to ascertain the comprehensibility and usefulness of
an ontology (e.g. Gruninger et al. 1995). Others suggest reviews, problem
solving and transaction testing (e.g. Shank et al. 2003). OntoFrame is too large to
be derived from and validated with competence questions. We have aspired at
rigor with the following means. We have strongly utilized relevant theories on
each level of OntoFrame (i.e. the deductive approach). At the same time we
have imported views and concepts from the existing literature about
fundamental elements of reality, information systems, IS development, ISD
methods, etc. We have applied the integration strategy to combine these into a
consistent and coherent whole. In integration, contradictory views have been
reconciled by principles of metamodeling.

Implied from the above, we argue that OntoFrame is of benefit to both
research and practice. With the component ontologies contained in OntoFrame
it is possible to achieve a clear understanding of the contextual phenomena in
information systems, information system development and method
engineering. OntoFrame provides a reference background for scientists and
professionals, thus enabling them to express themselves about matters in the
concerned sub-domains in a structured and well-defined way. The second

570

thrust of the thesis is to provide a comprehensive and unified framework
allowing to relate different approaches to each other. It provides bridges
between various approaches, disciplines, and decades. OntoFrame also
provides an extensive, consistent and coherent groundwork for teachers and
students, who can benefit from its large collection of meta models and
comprehensive vocabulary with clear definitions.

In the following sub-sections we describe in more detail the contents of the
main parts of OntoFrame, the principles with which they have been engineered,
and how they compare with the existing artifacts.

13.1.3 Core Ontology

The core ontology (Chapter 3) provides key concepts and constructs for
conceiving, understanding, structuring and representing fundamental
phenomena in reality. These fundamentals serve as a basis upon which all other
parts of OntoFrame are anchored, thus furthering the consistency and
uniformity of the large ontological framework. The core ontology is composed
of seven component ontologies: the generic ontology, the semiotic ontology, the
intension/extension ontology, the language ontology, the state transition
ontology, the UoD ontology, and the abstraction ontology.

We have engineered the core ontology with the top-down approach (cf.
Noy et al. 2001; Uschold et al. 1996), with the adherence to the constructivist
position, and with strictly defined viewpoints. The generic ontology is a top
ontology (Guarino 1998), which defines the most fundamental concepts and
constructs (e.g. thing, relationship, point of view). Applying specific points of
view we have specialized lower-level ontologies from the core ontology. For
instance, things have been specialized into concepts, referents, and signs, and
concepts have been further specialized into abstract and concrete concepts,
individual and generic concepts, type and instance concepts, and basic and
derived concepts. Correspondingly, conceiving the signs from the language
viewpoint we have recognized expressions, symbols, labels, proper names and
common nouns. With the viewpoint distinguishing between static things and
dynamic things we have defined the notions of state, event, and state transition.

Special attention in the core ontology has been given to the abstraction
structures, thus emphasizing the importance of abstraction to human
perception and thinking. We have specified the basic concepts, structural rules,
and constraints for four basic principles of abstraction (i.e. classification,
aggregation, generalization, and grouping). Also the intensional and
extensional derivations of predicate concepts have been defined. In addition,
we have distinguished between the first-order abstraction and the second-order
abstraction. While the first-order abstraction concerns things, the second-order
abstraction (or the predicate abstraction) pertains to predicates characterizing
things. The predicate abstraction is useful in defining perspectives through
which the complexity of reality can be managed.

We have briefly reviewed well-known top ontologies and made a
comparative analysis of two of the most acknowledged approaches to ontology

571

engineering at the core level in the IS field: the BWW model (Wand 1988a;
Wand et al. 1989; Wand et al. 1990a; Wand et al. 1990b) and the Frisco
Framework (Falkenberg et al. 1998). The BWW model is based on the
philosophy of Bunge (1977) according to which the world is made of things that
possess properties. Wand (1988a) and Wand et al. (1989, 1990a, 1990b) apply
Bunge’s ontology to define essential concepts of an IS. The Frisco framework
(Falkenberg et al. 1998) aims to provide an ordering and transformation
framework allowing one to relate many different IS modelling approaches to
each other. Based on the constructivist position, the framework has been built,
piece by piece, upon one individual concept, called a thing. The framework is
composed of five layers: the fundamental layer, the layer of actors, actions and
actands, the layer of cognitive and semiotic concepts, the layer of system
concepts, and the layer of organizational and information system concepts.

Our comparative analysis showed that both of the artifacts contain several
deficiencies. Due to its objectivist assumptions, Bunge’s ontology is oriented
towards the physical world, and therefore does not provide concepts for human
perception and social context. It can also be questioned whether the BWW
model includes constructs that are not relevant for perceiving IS’s. The BWW
model does not address the issues of the semiotic ontology, the
intension/extension ontology, and the language ontology. In addition, only
some of the concepts in the UoD ontology and the abstraction ontology are
recognized in the model. The Frisco framework does not provide the notion of a
point of view, which is important to distinguish and discuss different
conceptions about reality. It does not explicitly recognize the semiotic concepts,
although they are needed as a baseline for more specialized concepts and
constructs. Its suggestions for abstraction concepts are inadequate.

13.1.4 Contextual Ontologies

The contextual ontologies (Chapters 4-7) help us recognize, understand and
model phenomena in reality as contexts and/or within contexts. They also
assist in distinguishing between different kinds of contexts and examining and
modeling contexts from strictly defined points of view. The contextual
ontologies comprise four component ontologies: the context ontology, the layer
ontology, the perspective ontology, and the model level ontology.

The notion of a context is important to the understanding of things in
reality for many reasons. The only way to make sense of a thing is to associate it
with its proper environment, whether intentionally, structurally, functionally,
organizationally, locationally, and/or historically determined. A thing itself can
be a complex context, and it cannot be understood without decomposing it into
contextual ingredients. A context is a universal concept, which plays an
important role in several disciplines. Also in the IS field, context is frequently
referred to (e.g. Mylopoulos 1998; Motschnik-Pitrik 1999; Motschnik-Pitrik 2000;
Abecker et al. 2000; Myrhaug 2001; Rolland et al. 1995; NATURE Team 1996;
Rolland et al. 2000). There are also approaches which refer, although not with
the term of context, to contextual aspects (e.g. Zachman 1987; Sowa et al. 1992;

572

Loucopoulos et al. 1998; Kirikova 2000; Mentzas et al. 2001; Chiu et al. 1999)).
Regardless of its importance, context is not included in any uniform ontology in
the IS field.

We have constructed the contextual ontologies with five principles. First,
we wanted to ensure a sound theoretical basis for these ontologies. For this
reason, we made an extensive search for and review of theories on three
topmost steps in the semiotic ladder (Stamper 1973; Stamper 1996). The selected
theories highlight various aspects of the meaning of a thing. Second, we
explicitly specified the contextual approach according to which phenomena in
reality can be perceived as contexts and/or within contexts. According to the
approach a context is composed of parts which all have specific roles of their
own. It is a totality in which each of its parts gets the meaning through its
position in the whole and through the relationships it has with the other parts.
The parts in the context reflect specific aspects of some of the seven contextual
domains that are: purpose, actor, action, object, facility, location, and time.
Depending on the chosen point of view (i.e. the semantic view, the pragmatic
view, the activity theoretic view), a different set of contextual domains forms
the “nucleus” of the context, thus affecting what parts at least should be
perceivable in the totality for being considered a context.

Third, derived from semiotic viewpoints we defined the notions of
information system, object system and utilizing system, and recognized four
processing layers on which information processing may be situated. The
processing layers are: information system, information system development,
method engineering, and research work. Fourth, we specialized the notion of a
point of view to define five generic perspectives. These perspectives are:
systelogical, infological, conceptual, datalogical, and physical perspectives.
They assist us to recognize certain contextual aspects in the information
processing contexts. Their use is necessary to manage the complexity faced with
in reality. Fifth, we applied the principle of classification to establish a hierarchy
of model levels. The hierarchy is composed of instance models, type models,
meta models, meta meta models, etc. Models are specialized into a) informal,
semi-formal, and formal models, b) subjective, inter-subjective, and objective
models, c) structural and dynamic models, and d) descriptive and prescriptive
models. The model levels are related to one another with relationships based on
the language ontology and the abstraction ontology.

The contextual ontologies differ substantially from the related works. In
our comparative analysis of the most advanced IS artifacts we found that
Iivari’s conceptual framework (Iivari 1989a) and the ISA framework (Zachman
1987; Sowa et al. 1992), although containing large varieties of concepts and
constructs corresponding to our context ontology, dismiss several important
contextual parts and suggest conceptualizations that remain on quite a general
level. Other presentations, such as Essink (1986, 1988), Falkenberg et al. (1998),
Harmsen (1997) and Olle et al. (1988a), were found even more limited. With
respect to the perspective ontology, Iivari’s framework (Iivari 1989a) is the most
comprehensive. Other relevant works are Essink (1986, 1988), Freeman et al.

573

(1994), Olle et al. (1988a), Sowa et al. (1992) and van Swede et al. (1993).
Although these presentations specify viewpoints that are, to some extent,
comparable to ours, the relationships between the viewpoints are not defined as
strictly as we have done and the contents of the viewpoints are not defined on
such a level of detail and with such a large scope that would compare with
ours. What also makes our approach novel is that the perspective ontology is
applicable on all the processing layers, not only for the IS’s.

The layer ontology and the model level ontology do not provide any new
fundamental principles or insights compared to the earlier work (e.g. Gasser
1986; Iivari 1989a; Falkenberg et al. 1992a; ISO 1990; Brinkkemper 1990; OMG
2002) when considered on a general level. In both of the ontologies the issues
are, however, considered through the contextual point of view, resulting in, for
instance, that the relationships between IS, ISD and ME are specified in a more
detailed manner. Our approach is novel in specifying that the contextual
ontologies are orthogonal to each other, thus implying that the information
processing contexts on each layer can be perceived from the viewpoint of any
contextual domain and from any perspective, and modeled on multiple model
levels. The component ontologies used together provide an effective intellectual
device for the conceptualization of sophisticated contextual IS phenomena.

13.1.5 ISD ontology

The ISD ontology (Chapter 8) provides necessary concepts and constructs for
conceiving, understanding, structuring and representing contextual phenomena
in ISD. It is composed of two main parts: the ISD domains and the ISD
perspectives. The ISD domains comprise concepts and constructs within four
contextual domains (i.e. the ISD purpose domain, the ISD actor domain, the ISD
action domain, and the ISD object domain). The ISD perspectives specialize the
generic principles defined in the perspective ontology and offer concepts and
constructs for viewing ISD from four ISD perspectives (i.e the ISD systelogical
perspective, the ISD infological perspective, the ISD conceptual perspective,
and the ISD datalogical perspective). The ISD ontology is a conceptualization of
the contents of an ISD method. Thus, any attempt to specify an ISD method
requires the existence of the ISD ontology.

We have deployed the contextual approach to derive the concepts and
constructs of the ISD ontology from, and to inter-relate them with, the
contextual ontologies. Our aim has been to include only those parts in the ISD
ontology that are common to most of the ISD approaches. As we know, there
are a large variety of conceptions about ISD, reflecting divergent paradigms
(Hirschheim et al. 1989; Iivari 1991; Hirschheim et al. 1992a), ISD approaches (cf.
Hirschheim et al. 1992a; Hirschheim et al. 1995; Iivari et al. 1998a), and ISD
principles. Our purpose has been to constitute a generic and uniform
conceptualization of the nature, structure and behavior of ISD that could be
shared by different approaches. The ISD ontology provides a solid baseline for
the definition of the ISD method ontology and ontologies on the ME layer.

574

In the comparative analysis of six advanced ISD artifacts, proposed for the
description, analysis, comparison and/or engineering of the ISD methods, our
ISD ontology was found the most comprehensive. Only some of the analyzed
artifacts provide concepts for the ISD purpose domain and the ISD actor
domain. Also the ISD object domain is insufficiently addressed. There exists no
artifact that provides ISD perspectives. Although all the artifacts contain some
constructs for the ISD action domains, our ISD ontology comprises, for instance,
a much richer collection of ISD action structures (i.e. the ISD management –
execution structure, the ISD workflow structure, the ISD phase structure, the
ISD problem solving structure, and the IS modelling structure). These structures
appeared to be useful in analyzing other artifacts and structuring the contents
of the ISD method. Most of the analyzed artifacts turned out to be totally
lacking of the theoretical basis. They have just been abstracted from existing
ISD methods. This situation is unsatisfactory for two reasons. First, with a
sound theoretical background we can ensure that ISD phenomena become
properly conceived, understood and structured. Second, abstracting from
existing methods replicates properties of existing methods and does not help
recognize phenomena of ISD outside the methods. Our ontology is based on the
contextual approach built upon several underlying theories. This increases our
confidence that the most essential features of ISD are included in the ISD
ontology.

13.1.6 ISD Method Ontology

The ISD method ontology (Chapter 9) provides concepts and constructs to
conceive, understand, structure and present contextual aspects of ISD methods.
It is based on several fundamental classifications related to ISD knowledge and
ISD methods. We distinguished between bodies of knowledge about ISD
processes, application domains, IC technologies, and human and social issues.
We also differentiated between generic methods, domain-specific methods,
organization-specific methods, and project-specific methods. Moreover, we
specified seven basic views of the methods, referring to them as the methodical
views. These views are: the historical view, the application view, the generic
view, the contents view, the presentation view, the physical view, and the
structural view.

We presented criteria for acknowledging an artifact as the ISD method.
We also recognized and defined three types of artifacts that provide methodical
support although they are not acknowledged to be methods. These artifacts are
the ISD methodical framework, the ISD methodical skeleton, and the ISD
methodical tool kit. By applying the structural view, we defined the notions of a
method component and a contextual interface. We also presented a multi-
dimensional classification of method components based on the contextual
ontologies. We illustrated these notions with examples of method components
and method integration. Finally, we made a literature analysis to compare our
classification of method components with those presented in the literature. Our
classification was found to be the most comprehensive and multi-faceted.

575

In the ISD literature there is a large variety of conceptions about the
nature, structure, contents, role, and significance of ISD methods (see Sections
9.2, 9.3, 9.4 and 9.6). There is also a myriad of different methods developed for
ISD. Several attempts to cope with this divergence and to establish a shared
conceptualization of the contents and structure of the ISD method have been
made in the field (e.g. Iivari et al. 1983; Lyytinen 1986; Heym et al. 1992a; Avison
et al. 1995a; Hirschheim et al. 1995). We made an extensive analysis of seven
well-known frameworks and models aimed either at the comparison and
evaluation of the ISD methods, or at categorizing method knowledge. The
analysis clearly brought out how divergent conceptions and views in the
literature really are. It also showed our ISD ontology covers, much better than
the others, the contextual features in the ISD and ISD method. In this sense it is
more comprehensive than the current presentations. In addition, our way of
structuring the parts and features of the ISD method, based on the contextual
approach and the methodical views, makes the ontology more contextual,
explicit and easier to apply.

13.1.7 ME Ontology

The ME ontology (Chapter 10) provides concepts and constructs to conceive,
understand, structure and present contextual phenomena in method
engineering. It is composed of two main parts, the ME domains and the ME
perspectives. The ME domains comprise concepts and constructs within four
contextual domains (i.e. the ME purpose domain, the ME actor domain, the ME
action domain, and the ME object domain). The ME perspectives specialize the
generic principles defined in the perspective ontology and offer concepts and
constructs for viewing ME from four ME perspectives (i.e. the ME systelogical
perspective, the ME infological perspective, the ME conceptual perspective, and
the ME datalogical perspective).

The ME ontology has been founded on the basic classifications of ME
strategies, ME processes and ME contexts, as well as on the framework
integrating these classifications. We distinguished between three ME strategies:
creation, integration and adaptation. We also specified six ME processes. Three
of them “transform” the ISD method more specific to a certain organization or
project (i.e. customization, configuration, and realization). The other three ME
processes (i.e. abstraction, deconfiguration, and decustomization) generalize
descriptions of the ISD method and are reverse to the aforementioned
processes. Based on the above classifications, we recognized three kinds of ME
contexts: the method development context, the method customization context,
and the method configuration context. Finally, we applied the contextual
approach to construct the holistic definition of the ME context. These
classifications together with the concepts and constructs of the ME domains
offer a comprehensive and solid conceptualization of method engineering.

Method engineering is a rather young discipline. For this reason there is a
large variety of concepts and terms used to refer to phenomena in the ME
context. Divergent prefixes have been coined (e.g. situation ME, incremental

576

ME, context-specific ME, simulation-based ME, assembly-based ME, and
ontology-based ME) to highlight specific features in the foundations, strategies,
approaches, and processes of ME. In the middle of this mix of diverse
approaches and nomenclature it is important to have a common vocabulary
with which it is possible to recognize, understand, and express the structural,
functional, organizational, and behavioral aspects of ME. As far as we know, no
serious attempt has been earlier made to achieve such a comprehensive and
uniform conceptual foundation and vocabulary for ME as we have presented
here.

13.1.8 ME Method Ontology

The ME method ontology (Chapter 10) is composed of concepts and constructs
with which contextual aspects of ME methods can be conceived, understood,
structured and represented. As was the case with the ISD method ontology, we
deployed also here the seven methodical views to decompose the ME method
ontology into seven parts. The contents view on the ME method corresponds to
the ME ontology. We distinguished between generic ME methods, domain-
specific ME methods, organization-specific ME methods, and project-specific
ME methods. Furthermore, we defined the notions of an ME method
component, an ME model, and an ME technique.

The ME literature provides only fragmented views on the ME context and
methodical support to it. There is no uniform suggestion for what the ME
method should contain and how it should be structured. Compared to this, our
ME method ontology means a substantial complement to the body of the
current knowledge. Upon this ontology we have constructed the method
skeleton for ME, which we will describe in the next sub-section.

13.1.9 MEMES

MEMES (ME MEthodical Skeleton) (Chapters 11 and 12) is a normative
prescription of the ME context, structuring and guiding the process of method
development. It has been firmly anchored on the ontological framework, in
particular on the ISD ontology, the ISD method ontology, and the ME ontology,
and the ME method ontology. MEMES covers three ME perspectives (i.e. the
ME systelogical perspective, the ME infological perspective, and the ME
conceptual perspective) and three ISD perspectives (i.e. the ISD systelogical
perspective, the ISD infological perspective, and the ISD conceptual
perspective). It is aimed to give generic support for all the ME strategies.

MEMES contains three ME workflows: the ISD method (ISDM)
requirements engineering, the ISDM analysis, and the ISDM evaluation. In the
ISDM requirements engineering ME stakeholders’ requirements concerning the
nature, structure and contents of the ISD method are identified, elicited,
prioritized and finally stated as parts of the ME goals. The ISDM analysis
denotes an ME workflow which aims to produce high-level descriptions of the
ISD method from the ISD infological perspective, and the ISD conceptual

577

perspective. In the ISDM evaluation one or more ISD methods, or parts thereof,
are evaluated using the defined criteria. For each of the aforementioned ME
workflows, sets of approaches and steps have been provided.

MEMES has been built using the deductive approach to method
engineering. This is in contrast to all other efforts in which the inductive
approach to ME has been deployed. Our approach has brought several
advantages. The conceptual content of MEMES is coherent and consistent.
MEMES is clearly organized with the main constructs of the ME purpose, ME
action and ME object domains. The contents of ME deliverables become evident
through well-defined models on multiple model levels. The deductive approach
has also given, compared to the artifacts engineered inductively, a more solid
basis to elaborate, customize, and configure MEMES further towards a specific
ME method.

Next, we consider how MEMES meets the goals stated in Chapter 11. It
was required that MEMES is based on a solid and sound view of the relevant
sub-domains. This goal is satisfied by the use of OntoFrame as the conceptual
groundwork. Second, it was demanded that MEMES is modular and flexible.
MEMES has been build from well-defined constructs of ME workflows, ME
perspectives and ME deliverables. All these constructs are rooted on the specific
parts of the ME ontology, the ISD ontology and the IS ontology. This
foundation serves as a conceptual basis with which “modules” in MEMES can
be distinguished, elaborated, reorganized, customized and configured.

It was also required that MEMES is applicable. We investigated the
applicability of MEMES with empirical and conceptual methods. Because
MEMES is not a complete ME method but a methodical skeleton, its use in real
ME contexts was restricted. Therefore, we decided to make the retrospective
analyses of two prior ME contexts. The first retrospective analysis addressed
the OSSAD project with the aim to examine how MEMES served as a frame and
to understand its process and outcomes (cf. framing intention). Second, we used
MEMES as a prescription in the contruction of MEMES itself (cf. constructive
intention). In the process of construction we deployed the reflection-in-action
approach (Schön 1983) according to which the whole process was composed of
two parallel and iterative sub-processes, the RW process and the reflection
process. We described and evaluated this MEMES effort with the means of
retrospective analysis. MEMES was conceptually evaluated by conducting a
comparative analysis of ME artifacts in the literature. The purpose was to find
out how MEMES compares with those artifacts and how MEMES is suited as an
analytical tool (cf. analytical intention).

The two retrospective analyses showed that the approaches, processes and
deliverables of the ME efforts could be clearly recognized, structured,
represented and assessed with the concepts and constructs provided by
MEMES. The use of MEMES in engineering MEMES itself was found useful in
many ways. MEMES helped us categorize and structure ME actions and ME
deliverables. It made iterations more manageable and the RW process more
efficient. These assessments are, however, based on the researcher’s subjective

578

views. This reduces their significance from the viewpoint of validation. More
empirical research is needed to obtain stronger evidence on these issues. In the
comparative analysis MEMES offered a solid foundation with which the
backgrounds, application areas, ME approaches, comprehensiveness and
emphases of existing ME artifacts could be analyzed and compared. The
analysis showed that only a few existing ME artifacts have been constructed
upon a sound theoretical basis and with proper research methodologies. Most
of the analyzed artifacts have been engineered for the purposes of method
customization or configuration, not to engineer a generic or a domain-specific
method. Although there are some artifacts that cover the ME workflows more
extensively than MEMES, they do not provide as detailed guidelines for the ME
workflows as MEMES does. Nor do they cover, as comprehensively as MEMES
does, the perspectives and the contextual domains on the ME and ISD layers.

13.1.10 Discussion of the Contributions

OntoFrame, together with MEMES, constitute a very large whole. To many of
the parts in them we have presented significant contributions, while the other
parts have been included in the thesis mainly to achieve a coherent and
consistent body of work. As far we know, there is no other presentation that
would cover such a large spectrum of research sub-domains, on such a detailed
level, as we do in this work. We have intentionally aspired after this kind of
holistic view in order to avoid the fragmentation of views and conceptions that
is typical of most of the research in our field. The holistic view provided in this
study enables the recognition, comparison, and integration of current artifacts
that have been built upon more limited foundations and views. We also hope
that upon the groundwork established in this study it is easier in future to
engineer specific artifacts that yet are compatible and interoperable with each
other.

Owing to its comprehensiveness the thesis is capable of building bridges
between different disciplines, sub-domains, approaches, and time periods. First,
anchoring OntoFrame on relevant theories has created connections to e.g.
philosophy (cf. ontology engineering in general and the core ontology in
particular) and linguistics (cf. the contextual approach). For establishing the
process of engineering OntoFrame we have combined and applied the
principles of ontology engineering and metamodeling. Second, OntoFrame
provides a coherent and consistent view on the issues in five sub-domains: IS,
ISD, ISD method, ME, and ME method. To achieve this has required the
assimilation of quite different views inherent to the sub-domains. Third, there
exist a number of approaches with divergent views on ISD (e.g. transformation
approach, decision making approach, problem solving approach, learning
approach, etc.). We have tried to identify and define concepts and constructs
that can be shared by these approaches, and include them in OntoFrame, in
order to provide the possibility to obtain an integrated view on the concerned
issues and to specialize the concepts and constructs, when needed, according to
specific approaches. Fourth, we have intentionally brought forward and

579

acknowledged conceptions and propositions presented in the past decades.
Many scientists, such as Brodie, Chen, Codd, Ein-Dor, Falkenberg, Gorry,
Guttag, Hoare, Iivari, Järvinen, Kent, Kerola, Langefors, Mumford, Sisk, Smith
& Smith, Stamper, Welke, Yourdon, and Zisman, just to mention some of them,
have presented, as early as in the 1970’s, seminal ideas that still are worthy of
respecting and comparing with more recent ones.

In evaluating and comparing the existing artifacts we have frequently
applied the criterion of comprehensiveness. This criterion should not be
regarded as a quantitative measure. In contrast, it is highly qualitative and
closely related to contextuality. By applying the contextual approach we have
tried to distinguish, define and include in OntoFrame and MEMES the most
relevant concepts and constructs that are needed to identify, understand and
represent the contextual features in the five research sub-domains. Thus, when
assessing the comprehensiveness of artifacts by using OntoFrame or MEMES as
the “yardstick” we have actually wanted to find out the degree to which the
artifacts analyzed take into account the contextual features of the subject
matters.

Comprehensiveness is not a value in itself. In fact, it may be questioned
whether OntoFrame is too large and too complicated to be feasible. It is
sometimes said that “simple is beautiful”. For instance, Simon’s framework of
problem solving (Simon 1960) is composed of only three main concepts,
intelligence, design, and choice, and it is universally known and frequently
applied. We do not want to deny the benefits of simple frameworks. However,
in order to cope with such a large research domain as we do here, a framework
inevitably becomes complex. This does not, however, mean that in all situations
all the concepts and constructs in OntoFrame, or in MEMES, should be used.
Both of the artifacts have a modular structure allowing the selection of only
those perspectives, components and constructs that are actually needed.

One of the biggest challenges in this thesis has been to cope with the
complexity caused by the large number of the parts and components included
in OntoFrame, the extensive number of references made to the relevant
literature, and the great divergence of views and terminologies integrated into
OntoFrame. It can be estimated that the complexity of work has increased
“exponentially” in relation to the number of the concepts and constructs
included in Ontoframe. Management of that complexity is one of the
contributions of this work.

13.2 Further Research

The thesis offers numerous possibilities to direct further research. In this section
we consider how the results of the thesis can be elaborated, extended and
deployed in research to come.

580

OntoFrame provides a baseline for many kinds of specializations and
elaborations. Let us consider one example. In pervasive computing paradigm
location-awareness is nowadays generalized into context-awareness (Matheus
et al. 2003), thus emphasizing that it is not enough to know where someone or
something is located. In contrast, it is necessary to comprehend more generally
in which circumstances someone or something acts or something occurs. To
perceive, understand, structure and represent the relevant contextual features
of those circumstances necessitates the construction and deployment of a
context model that suits the needs of an application area. OntoFrame can
provide a foundation to decide on the relevant features of a context and to
engineer such kind of context model. More specifically, the context ontology
can be used to decide which contextual features are relevant to “context-
awareness”. The model level ontology offers concepts and constructs to specify
how to model those features. The perspective ontology and the ISD method
ontology can be used to consider how to integrate the constructed conceptual
model into a methodical body containing other models and techniques.

OntoFrame and MEMES can be extended along several dimensions.
MEMES, for instance, addresses only three ME perspectives and three ISD
perspectives. To enhance MEMES into a complete ME method it is necessary to
extend it with the concepts and constructs of at least the ME datalogical
perspective and the ISD datalogical perspective. The extension with the ME
datalogical perspective means that the ME context is described / prescribed,
not only in terms of ME purposes, ME actions and ME deliverables, but also
with references to ME roles, ME positions and ME facilities. In parallel to
decomposing ME actions into tasks and operations, ME workflows should be
specialized to fit a particular ME strategy and ME approach. After these
extensions MEMES can provide specialized ME workflows for method creation,
method integration and method adaptation. The extension with the ISD
datalogical perspective implies that MEMES also contains the ISDM design
workflow which helps specify how the ISD effort is to be accomplished. This
means, for instance, that instructions are given for how ISD roles and ISD
positions are established, how ISD actions are decomposed onto a more
detailed level, and how CASE tools are used in the ISD.

OntoFrame and MEMES can be utilized in conceptual, empirical and
constructive research in many ways. In the following we first consider four
examples of using OntoFrame in conceptual research. After that we discuss the
use of OntoFrame and MEMES in empirical and constructive research.
OntoFrame has been used in this thesis as a framework in the literature analysis
of a large variety of issues. There are many other issues on which this kind of
research can be carried out with OntoFrame. For instance, models could be
assessed and compared either with the core ontology or with the context
ontology. Enterprise ontologies, such as the TOVE (Toronto Virtual Enterise,
Fox 1992) and the Enterprise Ontology (Uschold et al. 1998) could be analyzed
with the support of the context ontology to find out how they perceive
contextual features of the enterprise. The extensive abstraction ontology

581

provides a solid basis for analyzing abstraction structures included in
conceptual models in fields such as information systems, software engineering,
and artificial intelligence.

Second, empirical studies aiming at testing hypotheses are based on
conceptual models specifying the underlying concepts and relationships
between them. Conceptual models are constructed to reflect how the concerned
slices of reality are viewed. OntoFrame can provide an integrated foundation
from which relevant parts can be separated for the use of empirical studies, and
elaborated if necessary (cf. the ontology of software maintenance by
Kitchenham et al. (1999) for empirical studies of maintenance). Likewise,
OntoFrame can be used to compare and integrate conceptual models of the
empirical studies carried out in the same or interrelated domains. This way we
can unite fragmented views that empirical studies commonly portray.

Third, OntoFrame can be used to explain and support the evolution of ISD
methods. Changes in business environments and technology have constantly
led into situations in which existing approaches, methods and techniques have
been found inappropriate. Thereupon, customary conventions have been
abandoned and new working procedures have been searched for. These kinds
of “discontinuation points” have enabled breaking out of rigorous methods and
led to the search for, the birth of, and the diffusion of new computing and
development approaches and paradigms. Following these “discontinuation
points”, freedom in the selection of one’s own working habits has decreased
through demands for more efficiency with “rigor” methods. This kind of cyclic
evolution of methods and method use has characterized the last decades. An
example of this kind of juncture was a shift from formal life-cycle approaches
and “universal” structured methods, such as ISAC (Lundeberg et al. 1981), SA
(Gane et al. 1979) and Structured Design (Yourdon et al. 1979), to more novel
approaches (e.g. evolutionary and prototyping approaches) and methods (e.g.
methods for decision support systems, office information systems, and expert
information systems). The latest “discontinuation point” came up with the
emergence of WWW technologies and business needs for web applications.
Web development required shorter time scales, a tighter linkage between
business models and software architecture, and greater importance on the
contents management of web sites (Henderson-Sellers 2003, 78). These
requirements were not possible to achieve with the disciplined use of rigor
object-oriented methods, known as plan-driven methods (Boehm 2002). A new
approach, called the agile approach, was born with new “values”(Cockburn
2001). OntoFrame can be used as a foundation to investigate e.g. what kinds of
trends and “discontinuation points” have existed, and what kinds of changes in
views with regards to the IS ontology, the ISD ontology and the ISD method
ontology can be identified. OntoFrame can also be used in the next upcoming
“discontinuation point”, whatever that might be, to analyze needs for, and to
find insights into, new structures and features, as well as to elaborate them into
more detailed constructs.

582

Fourth, we have witnessed the emergence of domain-based and ontology-
based approaches in the SE/IS fields during the recent years. Domain-based
development means that a common basis for understanding is first founded
through defining shared concepts and vocabulary, and then upon this basis
software is designed and implemented. Domain-based development is a focal
issue in domain analysis (e.g. Arango et al. 1991; Wartik et al. 1992; Sutcliffe
2000), domain modeling (e.g. Kaasboll et al. 1996), and domain-specific
modeling and languages (Tolvanen et al. 2003; Tolvanen et al. 2004). Domain-
specific modeling aims to raise the level of abstraction beyond programming by
specifying the solution directly using domain concepts (Luoma et al. 2004, 1).
Ontology-based development, in turn, aims to achieve a common basis for the
understanding of things in some domain (cf. domain-specific ontology), in
some task (cf. task-specific ontology), or in some application (cf. application –
specific ontology) (Guarino 1998). This basis can be used, for instance, in
application integration (e.g. Ciocoiu et al. 2000) and knowledge integration
through the Semantic Web (e.g. Baclawski et al. 2002). A domain-specific
ontology is also expected to offer a natural means of representing real world
knowledge for database design (Sugumaran et al. 2002) and deriving object-
oriented frameworks and patterns (e.g. Guizzardi et al. 2001a; Guizzardi et al.
2001b). OntoFrame offers a comprehensive baseline to investigate how the
domain-based approaches and the ontology-based approaches differ from one
another and how to support the research into and development with those
approaches.

Research in this thesis has mostly applied conceptual research methods.
To obtain stronger evidence on the applicability of the design artifacts
constructed, more empirical research is needed. For instance, ISD projects could
be investigated, with the approach of Sabherwal et al. (1993) for instance, to find
out how explicit the constructs included in the ISD ontology, the ISD method
ontology and the ME ontology are in practice, and how they should be
instantiated into project-specific methods. This would be a part of the process
by which component ontologies of OntoFrame could be validated. Second, to
gain experience from the use of MEMES, it should be applied in the engineering
of an ISD method in practice. Because MEMES is a method skeleton, it should
be first elaborated with the issues related to at least the ME datalogical
perspective and the ISD datalogical perspective. Case studies can also be used
to collect information about how ME workflows, not included in MEMES, are
carried out in practice. Empirical studies, carried out as case studies or action
research, are also needed to investigate how method engineering is organized
in practice, and how those parts of ISD methods that have been recently
modified in, or integrated into, the current methods are used in ISD projects.

Finally, it should be investigated what kinds of functionalities are needed
in CAME (Computer Aided Method Engineering) environments to support the
use of MEMES in method engineering. The current CAME and MetaCase
environments (e.g. Ernst & Young 1995; Kelly et al. 1996; Harmsen 1997) are
quite limited in this respect, because most of them address only the ISD

583

conceptual perspective. Also those which support the engineering of ISD
processes succeed in it only partly. As far as we know, MERU (Gupta et al. 2001)
is the only CAME tool which supports the ME from more than one perspective,
but also its capabilities in terms of ME perspectives and ISD perspectives are
insufficient when compared to those required by the use of MEMES.

584

REFERENCES

Abecker, A., Bernardi, A., Hinkelmann, K., Kuhn, O. & Sintek M. 2000. Context-

aware, proactive delivery of task-specific knowledge: The KnowMore
Project. International Journal on Information Systems Frontiers, Vol. 2, No.
3-4, 139-162.

Ackoff, R. L. 1971. Towards a system of systems concepts. Management Science,
Vol. 17, No. 11, 661-671.

Acuna, S. & Juristo, N. 2004. Assigning people to roles in software projects.
Software – Practice and Experience, Vol. 34, No. 7, 675-696.

Agile Alliance 2002. Agile Manifesto [Referred on 15.3.2004]. Available at URL:
<http://www.agilealliance.org>.

Ahituv, N. & Neumann, S. 1990. Principles of information systems for
management. USA: Wm. C. Publishers.

Aken van, J. 1982. On the control of complex industrial organizations. Boston:
Kluwer-Nijhoff Publishing.

Aktas, A.Z. 1987. Structured analysis and design of information systems. New
Jersey: Prentice-Hall.

Alabiso, B. 1988. Transformation of data flow analysis models to object oriented
design. In Proc. of Conf. on Object-Oriented Programming, Systems and
Languages (OOPSLA’88). Special Issue of SIGPLAN Notices, Vol. 23, No.
11, 335-353.

Albano, A., Bergamini, R., Ghelli, G. & Orsini, R. 1993. An object data model
with role. In R. Agrawal, S. Baker & D. Bel (Eds.) Proc. of the 19th Int. Conf.
on Very Large Data Bases (VLDB’93). San Mateo: Morgan Kaufmann, 39-
51.

Albert, M., Pelechano, V., Fons, J., Ruiz, M. & Pastor, O. 2003. Implementing
UML association, aggregation, and composition. A particular
interpretation based on a multidimensional framework. In J. Eder & M.
Missikoff (Eds.) Proc. of the 15th Int. Conf. on Advanced Information
Systems Engineering (CAiSE 2003). LNCS 2681, Berlin: Springer, 143-157.

Allen, J. 1984. Towards a general theory of action and time. Artificial
Intelligence, Vol. 23, No. 2, 123-154.

Allen, P. & Frost S. 1998. Component-based development for enterprise
systems: applying the SELECT Perspective. Cambridge: Cambridge
University Press, SIGS Books.

Alston, W. 1980. Theories of meaning. In A. Lehrer & K. Lehrer (Eds.) Theory of
Meaning. New Jersey: Prentice-Hall, 17-43.

Alter, S. 1996. Information systems: a management perspective. Redwood City:
The Benjamin/Cummings Publishing Company.

Amberg, M. 1996. A pattern–oriented approach to a methodical evaluation of
modeling methods. Australian Journal of Information Systems, Vol. 4, No.
1, 3-10.

585

Anda, B., Dreiem, H., Sjøberg, D. & Jørgensen, M. 2001. Estimating software
development effort based on use cases – experiences from industry. In
Proc. of 4th Int. Conf. on the Unified Modelling Language (UML 2001) –
”Modelling Languages, Concepts and Tools”, Toronto, Canada, October
1-5, 2001 [Referred on 20.3.2002]. Available at URL: <http
://www.idi.ntnu.no/emner/sif8080/docs/faglig/uml2001-anda.pdf>

Andersen, N., Kensing, F., Lundin, J., Mathiassen, L., Munk-Madser, A.,
Pasbech, M. & Sorgaard, P. 1990. Professional systems development:
experiences, ideas and action. Hemel Hempstead: Prentice-Hall.

Ang, J. 1993. Performance criteria of a sound office analysis methodology.
International Journal of Information Management, Vol. 13, No. 1, 51-67.

ANSI/X3 SPARC 1975. American National Standards Institute, Study Group on
Data Base Management Systems, Interim Report, FDT Bulletin 7 (2).

Anthony, R. 1965. Planning and control systems: a framework for analysis.
Boston, Harward University, Graduate School of Business Administration.

Aoyama, M. 1993. Concurrent development process model. IEEE Software, Vol.
10, No. 4, 46-55.

Arango, G. 1994. Domain analysis methods. In W. Schäfer, R. Prieto-Diaz & M.
Matsumoto (Eds.) Software Reusablity. Chichester, England: Ellis
Horwood, 17-49.

Arango, G. & Prieto-Diaz, R. 1991. Introduction and overview: domain analysis
concepts and research directions. In R. Prieto-Diaz & G. Arango (Eds.)
Domain Analysis and Software Systems Modeling. Los Alamitos, CA:
IEEE Computer Society Press Tutorial, 9-32.

Argyris, C. & Schön, D. 1974. Theory in practice: increasing professional
effectiveness. USA: Jossey-Bass.

Argyris, C. & Schön, D. 1978. Organizational learning: a theory of action
perspective. Reading: Addison-Wesley.

Armenise, P., Bandinelli, S., Ghezzi, C. & Morzenti, A. 1993. A survey and
assessment of software process representation formalisms. International
Journal of Software Engineering and Knowledge Engineering, Vol. 3, No.
3, 410-426.

Arnauld, A. 1964. The art of thinking: Port-Royal Logic. Translated by J. Dickoff
& P. James. New York: Bobbs-Merrill.

Arnesen, S. & Krogstie, J. 2002. Assessing enterprise modelling languages using
a general quality framework. In T. Halpin. K. Siau, J. Krogstie (Eds.) Proc.
of 7th CaiSE/IFIP WG8.1 International Workshop on Evaluation of
Modelling Methods in Systems Analysis and Design (EMMSAD’02),
Toronto, 66-77.

Arnold, P., Bodoff, S., Coleman, D., Gilchrist, H. & Hayes, F. 1991. An
evaluation of five object-oriented development methods. Bristol: HP
Laboratories Technical Report, HPL-91-52.

Astels, D., Miller, G. & Noval, M. 2002. A practical guide to eXtreme
programming. The Coad Series, New Jersey: Prentice-Hall.

586

Auramäki, E., Hirschheim, R. & Lyytinen, K. 1992a. Modelling offices through
discourse analysis: The SAMPO Approach. The Computer Journal, Vol. 35,
No. 4, 342-352.

Auramäki, E., Hirschheim, R. & Lyytinen, K. 1992b. Modelling offices through
discourse analysis: a comparison and evaluation of SAMPO and OSSAD
and ICN. The Computer Journal, Vol. 35, No. 5, 492-500.

Auramäki, E., Lehtinen, E. & Lyytinen, K. 1988. A speech-act-based office
modeling approach. ACM Trans. on Office Information Systems, Vol. 6,
No. 2, 126-152.

Auramäki, E. & Leppänen, M. 1989. Exceptions and office information systems.
In B. Pernici & A. Verrijn-Stuart (Eds.) Proc. of the IFIP WG 8.4 Working
Conf. on Office Information Systems: the Design Process. Amsterdam:
North-Holland, 167-182.

Austin J. 1962. How to do things with words, edited by J. Urmson & M. Sbisa.
Cambridge: Harward University Press.

Avison, D. 1996. Information system development methodologies: a broader
perspective. In S. Brinkkemper, K. Lyytinen & R. Welke (Eds.) Proc. of the
IFIP TC8, WG8.1/8.2 Working Conf on Method Engineering. London:
Chapman & Hall, 263-277.

Avison, D. & Fitzgerald, G. 1995a. Information systems development:
methodologies, techniques and tools. 2nd ed., London: McGraw-Hill.

Avison, D. & Fitzgerald, G. 2003. Where now for development methodologies.
Comm. of the ACM, Vol. 46, No. 1, 79-82.

Avison, D. & Nandhakumar, J. 1995b. The discipline of information systems: let
many flowers bloom. In E. Falkenberg, W. Hesse & A. Olive (Eds.) Proc. of
the IFIP Int. Working Conf. on Information System Concepts – Towards a
Consolidation of views. London: Chapman & Hall, 1-17.

Avison, D. & Wood-Harper, T. 1990. Multiview: an exploration in information
systems development. Maidenhead: McGraw-Hill.

Avison, D., Wood-Harper, A., Vidgen, R. & Wood, R. 1996. Multiview: a further
exploration in information systems development. Maidenhead: McGraw-
Hill.

Backlund, P., Hallenborg, C. & Hallgrimsson, G. 2003. Transfer of development
process knowledge through method adaptation and implementation. In
Proc. of the 11th European Conference of Information Systems (ECIS 2003),
Naples.

Baclawski, K., Kokar, M., Kogut, P., Hart, L., Smith, J., Holmes, W., Letkowski,
J. & Aronson M. 2001. Extending UML to support ontology engineering
for the semantic web. In Proc. of the 4th Int. Conf. on UML (UML2001),
Toronto.

Baclawski, K., Kokar, M., Kogut, P., Hart, L., Smith, J., Letkowski, J. & Emery, P.
2002. Extending the Unified Modeling Language for ontology
development. Software and Systems Modeling, Vol. 1, No. 2, 142-156.

Bai, G. 1998. Embryonic approach to the development of information systems.
Journal of Strategic Information Systems, Vol. 6, No. 4, 299-311.

587

Bailey, R. 1989. Human performance engineering – using human
factors/ergonomics to achieve computer system usability. 2nd edition.,
London: Prentice-Hall.

Bajaj, A. 2001. EOUC (Ease of use of a concept): an experimental methodology
to compare the use-of-use of each concept in a conceptual model. In J.
Krogstie, K. Siau & T. Halpin (Eds.) Proc. of the 6th CaiSE/IFIP8.1 Int.
Workshop on Evaluation of Modeling Methods in Systems Analysis and
Design (EMMSAD’01), Interlaken, Switzerland.

Bajaj, A. 2002. Measuring the effect of number of concepts on the readability of
conceptual models. In T. Halpin, K. Siau & J. Krogstie J. (Eds.) Proc. of 7th
CaiSE/IFIP WG8.1 International Workshop on Evaluation of Modelling
Methods in Systems Analysis and Design (EMMSAD’02), Toronto, 191-
202.

Bajaj, A. & Ram, S. 1999. An empirical methodology to evaluate the
completeness of conceptual business process models. Journal of
Information Technology, Cases and Applications, Vol. 4, No. 1, 5-30.

Bajec, M., Krisper, M. & Rupnik, R. 2004. The scenario for constructing flexible,
people-focused systems development methodologies. In T. Leino, T.
Saarinen & S. Klein (Eds.) Proc. of the 12th European Conference of
Information Systems, The European IS Profession in the Global
Networking Environment (ECIS-2004), Turku, Finland.

Baldwin, D. 1993. Applying multiple views to information systems: a
preliminary framework. Data Base, Vol. 24, No. 4, 15-30.

Baldwin, J. (Ed.) 1940. Dictionary of philosophy and psychology. New York:
Peter Smith.

Bandinelli, S., Fuggett, A. & Ghezzi, C. 1993. Software process model evolution
in the SPADE environment. IEEE Transactions on Software Engineering,
Vol. 19, No. 12, 1128-1144.

Bansler, J. & Havn, E. 1994. Information systems development with generic
systems. In W. Baets (Ed.): Proc. of the Second European Conference on
Information Systems. Nijenrode University, Breukelen: Nijenrode
University Press, 707-715.

Barber, G. 1983. Supporting organizational problem solving with a workstation.
Trans. on Office Information Systems, Vol. 1, No. 1, 45-67.

Barbic, F., Ceri, S., Bracchi, G. & Mostacci P. 1985. Modeling and integrating
procedures in office information systems design. Information Systems,
Vol. 10, No. 2, 149-168.

Barbier, F. & Henderson-Sellers, B. 2001. The whole-part relationship in object
modeling: a definition in c01Or. Information and Software Technology,
Vol. 43, No. 1, 19-39.

Bardram, J. 1998. Collaborations, coordination, and computer support. Aarhus
University, Department of Computer Science, Dissertation Thesis.

Baron, R. & Beslmuller, E. (Eds.) 1989. Field Test Report, OSSAD Esprit Project
No. 285, Munich.

588

Barron, T., Chiang, R. & Storey, V. 1999. A semiotic framework for information
systems classification and development. Decision Support Systems, Vol.
25, No. 1, 1-17.

Barros, O. 1991. Modeling and evaluation of alternatives in information
systems. Information Systems, Vol. 16, No. 5, 537-558.

Basili, V. & Rombach, H. 1987. Tailoring the software process to project goals
and environments. In Proc. of 9th Intern. Conf. on Software Engineering,
IEEE Computer Society, 345-357.

Baskerville, R. 1989. Logical controls specification: an approach to information
systems secuity. In H. Klein & K. Kumar (Eds.) Proc. of the IFIP Working
Conf. on Systems Development for Human Progress. Amsterdam: North-
Holland, 241-255.

Baskerville, R. 1996. Structured artifacts in method engineering: the security
imperative. In S. Brinkkmer, K. Lyytinen & R. Welke (Eds.) Proc. of the
IFIP TC8, WG8.1/8.2 Working Conf. on Method Enginering - Principles of
Method Construction and Tool Support. London: Chapman & Hall, 8-28.

Baskerville, R. & Pries-Heje J. 2001. Racing the e-bomb: how the internet is
redefining information systems development. In L. Russo, B. Fitzgerald &
J. DeGross (Eds.), Proc. of IFIP TV8/WG8.2 Working Conf. on Realigning
Research and Practice in Information Systems Development: The Social
and Organizational Perspectives. Amsterdam: North-Holland, 49-68.

Baskerville, R. & Pries-Heje, J. 2004. Short cycle time systems development.
Information Systems Journal, Vol. 14, No. 3, 237-264.

Baskerville, R., Travis, J. & Truex, D. 1992. Systems without method: the impact
of new technologies on information systems development projects. In K.
Kendall, K. Lyytinen & J. DeGross (Eds.) The Impact of Computer
Supported Technologies on Information Systems Development. IFIP
Trans. A8. Amsterdam: North-Holland, 241-269.

Baskerville, R. & Wood-Harper, A. 1998. Diversity in information systems
action research methods. European Journal of Information Systems, Vol. 7,
No. 2, 90-107.

Bass, L., Clements, P. & Kazman R. 1998. Software architecture in practice.
Reading: Addison-Wesley.

Batini, C., Ceri, S. & Navathe, S. 1992. Conceptual database design: an entity-
relationship approach. Redwood City: Benjamin/Cummings Pub.

Benjamin, P., Menzel, C., Mayer, R., Fillion, F., Futrell, M., deWitte, P. &
Lingineni, M. 1994. Information Integration for Concurrent Engineering
(IICE). Ohio: Amstrong Laboratory AL/HRGA Wright-Patterson Air
Force Base, IDEF5 Method Report.

Benyon, D. 1990. Information and data modelling. Oxford: Blackwell Scientific
Publications.

Benyon, D. & Skidmore, S. 1987. Towards a tool kit for the systems analyst. The
Computer Journal, Vol. 30, No. 1, 2-7.

Bergenti, F. & Poggi, A. 2000. Exploiting UML in the design of multi-agent
systems. In A. Omicini, R. Tolksdorf & F. Zambonelli (Eds.) Engineering

589

Societies in the Agent World (ESAW’2000). LNCS 1972, Berlin: Springer,
106-113.

Bergheim, G., Sanders, E. & Sölvberg A. 1989. A taxonomy of concepts for the
science of information systems. In E. Falkenberg & P. Lindgren (Eds.)
Proc. of the IFIP TC8/WG8.1 Working Conference on Information Systems
Concepts: an In-Depth Analysis. Amsterdam: North-Holland, 269-321.

Bergsten, P., Bubenko, J., Dahl, R., Gustafsson, M. & Johansson, L. 1989.
Ramatic – A CASE Shell for implementation of specific CASE tools,
Tempora T6.1 Report, First draft, SISU.

Bertalanffy von, L. 1968. General system theory. New York: George Braziller.
Bertels, K. & Nauta, D. 1969. Introduction to the notion of model (In Dutch:

Inleiding tot het modelbegrips), De Haan, Bussum.
Bertino, E. & Guerrini, G. 1995. Objects with multiple most specific classes. In

W. Olthoff (Ed.) Proc. of the 9th European Conf. on Object-Oriented
Programming (ECOOP’95), LNCS 952, Berlin: Springer-Verlag, 102-126.

Bertolazzi, P., Fugini, M. & Pernici, B. 2001. Information system design based on
reuse of conceptual components. In M. Rossi & K. Siua (Eds.) Information
Modeling in the New Millennium. London: IDEA Group Publishing, 219-
230.

Berztiss, A. 1999. Domain analysis for business software systems. Information
Systems, Vol. 24, No. 7, 555-568.

Berztiss, A. & Bubenko J. 1995. A software process model for business
reengineering. In A. Solvberg, J. Krogstie & A.H. Selveit (Eds.) Proc. of
Conf. on Information Systems Development for Decentralised
Organizations. London: Chapman & Hall, 184-200.

Beslmuller, E., Caserta, S., Conrath, D. & Dumas P. 1987. OSSAD methodology:
results of the analysis phase. Munchen: OSSAD Interim Report.

Beslmuller, E., Conrath, D. & Simone C. 1986. Bridging the gap between users
and vendors of office support systems. In The Commission of the
European Communities (Eds.) ESPRIT’85, Part 2. Amsterdam: North-
Holland, 1025-1032.

Bezivin, J. & Gerbe O. 2001. Towards a precise definition of the OMG/MDA
framework. In Proc. of the 16th Annual International Conference on
Automated Software Engineering (ASE 2001), Los Alamitos, California:
IEEE Computer Society, 273-280.

Bielkowics, P. 2002. Evaluating information systems development methods: a
new framework. In Z. Bellahsene, D. Patel & C. Rolland (Eds.) Proc. of the
8th Int. Conf. on Object-Oriented Information Systems (OOIS’2002). LNCS
2425, Berlin: Springer–Verlag, 311-322.

Bielkowicz, P. & Tun, T. 2001. A comparison and evaluation of data
requirement specification techniques in SSADM and the Unified Process.
In K. Dittrich, A. Geppert & M. Norrie (Eds.) Proc. of the 13th Int. Conf. on
Advanced Information Systems Engineering (CAiSE 2001). LNCS 2001,
Berlin: Springer-Verlag, 46-59.

590

Bittner, T. 1999. On ontology and epistemology of rough location. In C. Freksa
& D. Mark (Eds.) Spatial information theory - Cognitive and
computational foundations of geographic information science (COSIT 99).
LNCS 1661, Berlin: Springer-Verlag, 433-448.

Bittner, T. & Stell J.G. 2002. Vagueness and Rough Location. Geoinformatica,
Vol. 6, No. 2, 99-121.

Bjerknes, G., Ehn, P. & Kyng, M. (Eds.) 1987. Computers and Democracy.
Avebury, Aldershot, UK.

Blackmore, S. 2000. The meme machine. Oxford: Oxford University Press, 2000.
Blum, B. 1994. A taxonomy of software development methods. Comm. of the

ACM, Vol. 37, No. 11, 82-94.
Bochman, A. 1990. Concerted instance-interval temporal semantics: temporal

ontologies. Notre Dame Journal of Formal Logic, Vol. 31, No. 3, 403-414.
Bock, D. & Ryan, T. 1993. Accuracy in modeling with extended entity

relationship and object oriented data models. Journal of Database
Management, Vol. 4, No. 4, 30-39.

Bodart, F., Flory, A., Leonard, M., Rochefeld, A., Rolland, C. & Tardieu, H. 1983.
Evaluation of CRIS 1 I.S. development methods using a three cycles
framework. In T. Olle, H. Sol & C. Tully (Eds.) Information Systems
Design Methodologies: a Feature Analysis. Amsterdam: North-Holland,
191-206.

Bodart, F., Patel, A., Sim, M. & Weber R. 2001. Should optional properties be
used in conceptual modeling? A theory and three empirical tests.
Information Systems Research, Vol. 12, No. 4, 384-405.

Bodger, S. 1987. Through the interface – a human activity approach to user
interface design. Aarhus University, Department of Computer Science,
Dissertation Thesis.

Boehm, B. 1984. Verifying and validating software requirements and design
specifications. IEEE Software, Vol. 1, No. 1, 75-88.

Boehm, B. 1988. A spiral model of software development and enhancement.
IEEE Computer, Vol. 21, No. 5, 61-72.

Boehm, B. 2002. Get ready for agile methods, with case. IEEE Computer, Vol.
35, No. 1, 64-69.

Boer, N.-I., van Baalen, P. & Kumar K. 2002. An activity theory approach for
studying the situatedness of knowledge sharing. In Proceedings of the 35th
Hawaii Intern. Conf. on Systems Sciences.

Boertien, N., Steen, M. & Jonkers, H. 2001. Evaluation of component-based
development methods. In J. Krogstie, K. Siau & T. Halpin (Eds.) Proc. of
6th CaiSE/IFIP8.1 Int. Workshop on Evaluation of Modeling Methods in
Systems Analysis and Design (EMMSAD’01).

Bommel, P. van ter Hofstede, A. & van der Weide Th. 1991. Semantics and
verification of object-role models. Information Systems, Vol. 16, No. 5, 471-
495.

Booch, G. 1991. Object oriented design with applications. Redwood City: The
Benjamin Cummings Publishing Co., Inc..

591

Booch, G., Rumbaugh, J. & Jacobson I. 1999. The Unified Modeling Language –
user guide. Reading: Addison-Wesley.

Borgida, A. 1985. Features of languages for the development of information
systems at the conceptual level. IEEE Software, Vol. 2, No. 1, 63-72.

Borgida, A. 1988. Modelling class hierarchies with contradictions. In H. Boral &
P.-A. Larson (Eds.) Proc. of ACM SIGMOD International Conference on
Management of Data, Chicaho, IL., 434-443.

Borgida, A., Mylopoulos, J. & Wong, H. 1984. Generalization / specialization. In
M. Brodie, J. Mylopoulos & J. Schmidt (Eds.) On Conceptual Modelling.
Berlin: Springer-Verlag, 87-114.

Borgo, S., Guarino, N. & Masolo C. 1996. Towards an ontological theory of
physical objects. In Proc. of IMACS-IEEE/SMC Conference on
Computational Engineering in Systems Applications (CESA’96),
Symposium of Modelling, Analysis and Simulation, Lille, France, 535-540.

Borning, A. 1986. Class versus prototypes in object-orietned languages. In Proc.
of the Fall Joint Computer Conference. Washington: IEEE Computer
Society Press, IEEE Catalog Number 86CH2345-7, 36-40.

Bracchi, G. & Pernici, B. 1984. The design requirements of office systems. ACM
Trans. on Office Information Systems, Vol. 2, No. 2, 151-170.

Brachman, R. 1983. What IS-A is and isn’t: an analysis of taxonomic links of
semantic networks. IEEE Computer, Vol. 16, No. 10, 30-36.

Brandt, I. 1983. A comparative study of information systems design
methodologies. In T. Olle, H. Sol & C. Tully (Eds.) Information Systems
Design Methodologies – A Feature Analysis. Amsterdam: North-Holland,
9 – 36.

Bratman, M. 1987. Intentions, plans, and practical reason. Cambridge: Harward
University Press.

Brezillon, P., Pomerol, J.-Ch. & Saker I. 1998. Contextual and contextualized
knowledge: an application in subway control. International Journal of
Human-Computer Studies, Vol. 48, No. 3, 357-373.

Briand, L. & Labiche, Y. 2002. A UML-based approach to system testing.
Software and Systems Modeling, Vol. 1, No.1, 10-42.

Brinkkemper, S. 1990. Formalization of information systems modeling.
University of Nijmegen, Amsterdam: Thesis Publishers, Dissertation
Thesis.

Brinkkemper, S. 1996. Method engineering: engineering of information systems
development methods and tools. Information and Software Technology,
Vol. 38, No. 4, 275-280.

Brinkkemper, S., Harmsen, F. & Oei, H. 1995. Configuration of situational
process models: an information systems engineering perspective. In W.
Schäfer (Ed.) Proc. of 4th European Workshop on Software Process
Technology (EWSPT '95). LNCS 913, Berlin: Springer-Verlag, 193-196.

Brinkkemper, S., Saeki, M. & Harmsen, F. 1999. Meta-modelling based assembly
techniques for situational method engineering. Information Systems. Vol.
24, No. 3, 209-228.

592

Brodie, M. 1978. The application of data types to databases. Universität
Hamburg, Fachbereich für Informatik, Bericht Nr. 51.

Brodie, M. 1981. Association: a database abstraction. In P. Chen (Ed.) Entity-
relationship Approach to Information Modelling and Analysis.
Amsterdam: North-Holland, 583-608.

Brodie, M., Mylopoulos, J. & Schmidt J. (Eds.) 1984. On conceptual modelling.
Berlin: Springer-Verlag.

Brodie, M., Rijanovic, D. & Silva, E. 1983. On a framework for information
systems design methodologies. In T. Olle, H. Sol H. & C. Tully (Eds.)
Information Systems Design Methodologies – A Feature Analysis.
Amsterdam: North-Holland, 231-242.

Brodie, M. & Silva, E. 1982. Active and passive component modeling: ACM /
PCM. In T. Olle, H. Sol & A. Verrijn-Stuart (Eds.) Information Systems
Design Methodologies: a Comparative Review. Amsterdam: North-
Holland, 41-92.

Brodie, R. 1996. Virus of the Mind: The New Science of the Meme. Integral
Press.

Brody, B. 1980. Identity and essence. Princeton: Princeton University Press.
Bubenko, jr. J. & Lindencrona, E. 1984. Konceptuell modellering –

informationanalys. Lund: Studentlitteratur.
Buckingham, R., Hirschheim, R., Land, F. & Tully C. 1987. Information systems

curriculum: a basis for course design. In R. Buckinham, R. Hirschheim, F.
Land & C. Tully (Eds.) Information Systems Education: Recommendations
and Implementation. Cambridge: Cambridge Unversity Press.

Budde, R., Kuhlenkamp, K., Mathiassen, L. & Zullighoven H. (Eds.) 1984.
Approaches to prototyping. Berlin: Springer-Verlag.

Bull, M. 1989. Systems development using structured techniques. London:
Chapman & Hall Ltd.

Bunge, M. 1974. Treatise on basic philosophy, Vol. 1, Semantics I: Sense and
Reference. Dortrecht: D. Reidel Publishing Company.

Bunge, M. 1977. Treatise on basic phisolophy, Vol. 3: Ontology I: The furniture
of the world. Dortrecht: D. Reidel Publishing Company.

Burns, R. & Dennis, A. 1985. Selecting the appropriate application development
methodology. Database, Vol. 17, No. 1, 19-23.

Burrell, G. & Morgan, G. 1979. Sociological paradigms and organizational
analysis. London: Heinemann.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. & Stal, M. 1996.
Pattern-Oriented Software Architecture – A System of Patterns. New York:
John Wiley & Sons.

Calway, B. 1995. Semiotic approach for object abstraction. In E. Falkenberg, W.
Hesse & A. Olive (Eds.) Proc. of the IFIP Int. Working Conf. on
Information System Concepts – Towards a Consolidation of views.
London: Chapman & Hall, 234-246.

Carey, J. & Carlson, B. 2002. Framework process patterns: Lessons learned
developing application frameworks. Reading: Addison-Wesley.

593

Carey, M. & McLeod, R. 1988. Use of system development methodology and
tools. Journal of Systems Management, Vol. 39, No. 3, 30-35.

Carnap, R. 1956. Meaning and necessity. A study in semantics and modal logic.
Chicago: Chicago University Press.

Carroll, J. 2003. The process of ISD methodology selection and use: a case study.
In. Proc. of the 11th European Conference of Information Systems (ECIS
2003), Naples.

Carroll, J. 2004. Completing design in use: closing the appropriation cycle. In
Proc. of the 12th European Conference of Information Systems (ECIS 2004):
The European IS Profession in the Global Networking Environment,
Turku, Finland.

Carroll, J. & Rosson, M. 1991. Deliberated evolution: stalking the view matcher
in design space. Human-Computer Interaction, Vol. 6, No. ¾, 281-318.

Carvalho, J. 1999. Information systems? Which one do you mean? In E.
Falkenberg, K. Lyytinen & A. Verrijn-Stuart (Eds.) Proc. of IFIP WG8.1 Int.
Working Conf. on Information System Concepts: An Integrated Discipline
Emerging. Dordrecht: Kluwert Academic Publishers, 259-276.

Castano, S., De Antonellis, V. 1993. Reusing process specification. In N.
Prakash, C. Rolland & B. Pernici (Eds.) Proc. of the IFIP WG8.1 Working
Conf. on Information System Development Process. Amsterdam: North-
Holland, 267- 283.

Castano, S. & De Antonellis, V., Francalanci, C. & Pernici B. 1994. Reusability-
based comparison of requirements specification methodologies. In A.
Verrijn-Stuart & T. Olle (Eds.) Methods and Associated Tools for the
Information Systems Life Cycle. Amsterdam: North-Holland, 63-84.

Castro, J., Kolp, M. & Mylopoulos, J. 2001. A requirements-driven development
methodology. In K. Dittrich, A. Geppert & M. Norrie (Eds.) Proc. of the
13th Int. Conf. on Advanced Information Systems Engineering (CAiSE
2001). LNCS 2001, Berlin: Springer, 108-123.

Champeaux de, D. & Faure, P. 1992. A comparative study of object-oriented
analysis methods. Journal of Object-Oriented Programming, Vol. 5, No. 1,
21-33.

Chandrasekaran, B., Josephson, J. & Benjamins, R. 1998. Ontology of tasks and
methods [Referred on 12.5.2001]. Available at URL
<http://www.cse.ohio-state.edu/~chandra/Ontology-of-Tasks-Methods.

 PDF> (expanded version of those presented at the 1997 AAAI Spring
Symposium and the 1998 Banff Knowledge Acquisition Workshop).

Chandrasekaran, B., Josephson, J. & Benjamins, R. 1999. What are ontologies,
and why do we need them? IEEE Intelligent Systems, Vol. 14, No. 1, 20-26.

Chang, L.-h., Lin, T.-c. & Wu S. 2002. The study of information system
development (ISD) process from the perspective of power development
stage and organizational politics. In Proc. of the 35th Hawaii Intern. Conf.
on Systems Sciences.

Charbonnel, G., Calmes, F. & Dumas, P. 1991. La Méthode OSSAD Tome 2,
Guide Pratique OSSAD, Les Editions d’Organization, Paris.

594

Chatzoglou, P. 1997. Use of methodologies: an empirical analysis of their
impact on the economics of the development process. European Journal of
Information Systems, Vol. 6, No. 4, 256-270.

Chaves, A. & Carvalho, J. 1996. Expressiveness and legibility in conceptual
modeling: a comparison of three techniques. In K. Siau & Y. Wand (Eds.)
Proc. of the Workshop on Evaluation of Modelling Methods in Systems
Analysis and Design (EMMSAD’96), Crete, Creece.

Checkland, P. 1981. Systems thinking, systems practice. Chichester: John Wiley
& Sons.

Checkland P. 1988. Information systems and system thinking: time to unite?
International Journal of Information Management. Vol. 8, No. 4, 239-248.

Chen, P. 1976. The entity-relationship model – toward a unified view of data.
ACM Trans. on Database Systems. Vol. 1, No. 3, 9-36.

Chen, W. & Hirschheim, R. 2004. A paradigmatic and methodological
examination of information systems research from 1991 to 2001.
Information Systems Journal, Vol. 14, No. 3, 197-235.

Chikovsky, E. 1988. Software technology people can really use. IEEE Software,
Vol. 5, No. 2, 8-10.

Chisholm, R. 1996. A realistic theory of categories – an essay on ontology. 1st
edition, Cambridge: Cambridge University Press.

Chiu, D., Li, Q. & Karlapalem, K. 1999. A meta-modeling approach to workflow
management systems supporting exception handling. Information
Systems, Vol. 24, No. 2, 159-184.

Chomsky, N. 1966. Syntactic structures. The Hague: Mouton.
Christie, A. 1993. A graphical process definition language and its application to

a maintenance project. Information and Software Technology. Vol. 25, No.
6/7, 364-374.

Chung, L., Nixon, B., Yu, E. & Mylopoulos J. 2000. Non-functional requirements
in software engineering. Dordrecht: Kluwert.

Churchman, C. W. 1971. The design of inquiring systems. New York: Basic
Books.

Ciborra, C. 1998. Crisis and foundation: an inquiry into the nature and limits of
models and methods in the information systems discipline. Journal of
Strategic Information Systems, Vol. 7, No. 1, 5-16.

Ciborra, C. 1999. A theory of information systems based on improvisation. In
W. Currie & B. Galliers (Eds.) Rethinking Management Information
Systems – An Interdisciplinary Perspective. Oxford: Oxford University
Press, 136-155.

Cimitile, A. & Visaggio, G. 1994. A formalism for structured planning of a
software project. International Journal of Software Engineering and
Knowledge Engineering, Vol. 4, No. 2, 277-300.

Ciocoiu, M., Gruninger, M. & Nau D. 2000. Ontologies for integrating
engineering applications. Journal of Computing and Information Science
in Engineering, Vol. 1, No.1, 12-22.

595

Clark, H. & Carlson, T. 1981. Context for comprehension. In J. Long & A.
Baddeley (Eds.) Attention and Performance, IX. Hillsdale, NJ: Erlbaum,
313-330.

Clarke, B. 1981. A calculus of individuals based on “connection”. Notre Dame
Journal of Formal Logic, Vol. 22, No. 3, 204-218.

Cleland, D. & King, W. 1972. Management: a systems approach. New York:
McGraw-Hill.

Clifford, J. & Rao, A. 1988. A simple, general structure for temporal domains. In
C. Rolland, F. Bodart & M. Leonard (Eds.) Temporal Aspects of
Information Systems. Amsterdam: North-Holland, 17-28.

Cockburn, A. 2000. Selecting a project’s methodology. IEEE Software, Vol. 17,
No. 4, 64-71.

Cockburn, A. 2001. Agile software development. Reading: Addison-Wesley.
Codd, E. 1970. A relational model of data for large shared data banks. Comm. of

the ACM, Vol. 13, No. 6, 377-387.
Codd, E. 1972. Further normalization of the data base relational model. In R.

Rustin (Ed.) Data Base Systems. Englewood Cliffs: Prentice-Hall, 33-64.
Codd, E. 1979. Extending the data base relational model to capture more

meaning. ACM Trans. on Database Systems, Vol. 4, No. 4, 397-434.
Colter, M. 1984. A comparative examination of system analysis techniques. MIS

Quarterly, Vol. 8, No. 1, 51-66.
Conklin, J. & Begeman, M. 1988. gIBIS: a hypertext tool for exploratory policy

discussion. ACM Trans. on Office Information Systems, Vol. 6, No. 4, 303-
331.

Conradi, R., Fernström, C. & Fuggetta, A. 1993. A conceptual framework for
evolving software processes. ACM Software Engineering Notes, Vol. 18,
No. 4, 26-35.

Conrath, D., De Antonellis, V. & Simone, C. 1988. A comprehensive approach to
modeling office organization and support technology. In B. Pernici & A.
Verrijn-Stuart (Eds.) Proc. of the IFIP WG8.4 Working Conf. on Office
Information Systems: The Design Process. Amsterdam: North-Holland, 73-
92.

Conrath, D., De Antonellis, V. & Simone, C. 1992. Dynamic modeling for office
support system analysis and design. In H. G. Sol & R. L. Crosslin (Eds.)
Dynamic Modelling of Information Systems, II. Amsterdam: North-
Holland, 75-93.

Conrath, D. & Dumas, P. (Eds.) 1989. Office support systems analysis and
design (OSSAD) – a Manual, IOT, Munich.

Conrath, D. & Savolainen, V. 1999. Overview of the OSSAD methodology. In V.
Savolainen (Ed.) Perspectives of Information Systems. Berlin: Springer-
Verlag, 67-89.

Constantine, L. 1991. Building structured open teams to work. In Proc. of
Software Development ’91. San Francisco: Miller-Freeman.

Cooper, R. & Swanson, B. 1979. Management information requirements
assessment: the state of the art. Data Base, Vol. 11, No. 2, 5-16.

596

Corcho, O., Fernandez-Lopez, M. & Gomez-Perez, A. 2003. Methodologies,
tools and languages for building ontologies. Where is their meeting point?
Data & Knowledge Engineering, Vol. 46, No. 1, 41-64.

Costa, H. 1999. Epistemic context, defeasible inference and conversational
implicature. In P. Bouquet, L. Serafini, P. Brezillon, M. Benerecetti & F.
Castellani (Eds.) Proc. of 2nd International and Interdisciplinary on
Modeling and Using Context (CONTEXT’99). LNAI 1688, Berlin: Springer-
Verlag, 15-27.

Cotterman, W. & Kumar, K. 1989. User cube: a taxonomy of end users. Comm.
of the ACM, Vol. 32, No. 11, 1313-1320.

Couger, D., Higgins, L. & McIntyre, S. 1993. (Un)structured creativity in
information systems organizations. MIS Quarterly, Vol. 17, No. 4, 375-397.

Coulondre, S. & Libourel, T. 2002. Towards a new role paradigm for object-
orietend modeling. In J.-M. Bruel & Z. Bellahsene (Eds.) Advances in
Object-Oriented Information Systems (OOIS 2002). LNCS 2426, Berlin:
Springer-Verlag, 44-52.

Cranefield, S. & Purvis, M. 1999. UML as an ontology modelling language. In
Proc. of the Workshop on Intelligent Information Integration. Held in
conjunction with the 16th Intern. Joint Conf. on Artificial Intelligence
(IJCAI-99).

Cronholm, S. & Goldkuhl, G. 1994. Meanings and motives of method
customization in CASE environments – observations and categorizations
from an empirical study. In B. Theodoulidis (Ed.) Proc. of the 5th
Workshop on the Next Generation of CASE Tools, University of Twente,
67-79.

Cronholm, S. & Ågerfalk, P. 1999. On the concept of method in information
systems development. In T. Käkölä (Ed.) Proc. of the 22nd Information
Systems Research Seminar in Scandinavia (IRIS 22): “Enterprise
Architectures for Virtual Organisations”, Vol. 1. University of Jyväskylä,
Department of Computer Science and Information Systems, Technical
Reports TR-21, 229–236.

Curtis, B. & Kellner, M. & Over, J. 1992. Process modeling. Comm. of the ACM,
Vol. 35, No. 9, 75-90.

Curtis, B., Krasner, H. & Iscoe, N. 1988. A field study of the software design
process for large systems. Comm. of the ACM, Vol. 31, No. 11, 1268-1287.

Cysneiros, L., Leite, J. & Neto J. 2001. A framework for integrating non-
functional requirements into conceptual models. Requirements
Engineering, Vol. 6, No. 2, 97-115.

Dahchour, M., Pirotte, A. & Zimanyi, E. 2002. A generic role model for dynamic
objects. In A. Banks Pidduck, J. Mylopoulos, C. Woo & T. Ozsu (Eds.)
Proc. of the 14th Int. Conf. on Advanced Information Systems Engineering
(CAiSE’2002). Berlin: Springer, 643-658.

Dahl, O.-J., Myhrhaug, B. & Nygaard, K. 1968. SIMULA 67 Common Base
Language. Norwegian Computer Center, Oslo.

597

Dahlbom, B. & Mathiassen L. 1993. Computer in context. The philosophy and
practice of systems design. Cambridge: Blackwell.

Dam, K. & Winikoff, M. 2004. Comparing agent-oriented methodologies. In P.
Giorgini, B. Henderson-Sellers & M. Winikoff (Eds.) Proc. of the 5th Int.
Workshop on Agent-Oriented Information Systems (AIOS-2003) at
AAMAS’03. LNCS 3030, Berlin: Springer-Verlag, 79-94.

Danzinger, M. & Haynes, P. 1989. Managing the CASE environment. Journal of
Systems Management, Vol. 40, No. 5, 29-32.

Dart, P. & Zobel, J. 1988. Conceptual schema applied to deductive databases.
Information Systems, Vol. 13, No. 3, 273-287.

Dasgupta, S. 1989. The structure of design process. In M. Yovits (Ed.) Advances
in Computers. New York: Academic Press, 1-68.

Davies, I., Green, P., Milton, S. & Rosemann, M. 2003. Using Meta Models for
the Comparison of Ontologies. In K. Siau, T. Halpin, J. Krogstie (Eds.)
Proc. of 8th CAiSE/IFIP8.1 Int. Workshop on Evaluation of Modeling
Methods in Systems Analysis and Design (EMMSAD’03), 160-169.

Davis, G. 1982. Strategies for information requirements determination. IBM
Systems Journal, Vol. 21, No. 1, 4-30.

Davis, G. & Olson, M. 1985. Management information systems – conceptual
foundations, methods and development. 2nd edition. New York: McGraw-
Hill.

Dawkins, R. 1976. The selfish gene. New York: Oxford University Press.
De, P., Sen, A. & Gudes, E. 1982. A new model for data base abstraction.

Information Systems, Vol. 7, No. 1, 1-12.
De Cindio, F., De Michelis, G., Simone, C., Vassalo, R. & Zanaboni A. 1986.

CHAOS as a coordinating technology. In I. Greif (Ed.) Proc. of MCC Conf.
on Computer-Support for Collaborative Work (CSCW’86), 325-342.

Deiters, W. & Gruhn, V. 1994. The funsoft net approach to software process
management. International Journal of Software Engineering and
Knowledge Engineering, Vol. 4, No. 2, 229-256.

Demirors, O., Demirors, E., Tarhan, A. & Yildiz A. 2000. Tailoring ISO/IEC
12207 for instructional software development. In Proc. of the 26th
Euromicro Conference.

Dietz, J. 1987. Modelling and specification of information systems (In Dutch:
Modelleren en specificeren van informatiesystemen). Technical University
of Eindhoven, Dissertation Thesis.

Dietz, J. 1992. Subject-oriented modeling of open active systems. In E.
Falkenberg, C. Rolland & E. El-Sayed (Eds.) Proc. of the IFIP WG81.
Conference on Information Systems Concepts: Improving the
Understanding. Amsterdam: North-Holland, 227-238.

Dietz, J. 1994. Modeling business processes for the purpose of redesign. In Proc
of IFIP TC8 Open Conference on Business Process Reengineering.
Amsterdam: North-Holland, 249-258.

Dietz, J. 1999. Understanding and modeling business processes with DEMO. In
J. Akoka, M. Bouzeghoub, I. Comyn-Wattia & E. Metais (Eds.) Proc. of the

598

18th Intern. Conf. on Conceptual Modeling (ER’99). Berlin: Springer-
Verlag, 188-202.

Dietz, J. 2003. The atoms, molecule and fibers of organizations. Data &
Knowledge Engineering, Vol. 47, No. 3, 301-325.

Dik, S. 1989. The theory of functional grammar, Part I: The structure of the
clause. Functional Grammar Series, Dordrecht: Fories Publications.

Dilley, R. (Ed.) 1999. The problem of context. Berghahn Books.
Dogru, A. 2003. A process model for component-oriented software engineering.

IEEE Software, Vol. 20, No. 2, 34-41.
Dominques, E., Zapata, M. & Rubio, J. 1997. A conceptual approach to meta-

modelling. In A. Olive & J. Pastor (Eds.) Proc. of 9th Int. Conf. on
Advanced Information Systems Engineering (CAiSE’97). Berlin: Springer,
319-332.

Dowson, M. 1987. Iteration in the software process. In Proc. of the 9th Int. Conf.
on Software Engineering. New York: ACM Press, 36-39.

D’Souza, D. & Wills A. 1999. Objects, components, and frameworks with UML:
The Catalysis approach. Reading: Addison-Wesley.

Dumas, P., de Petra, G. & Charbonnel, G. 1986. Towards a methodology for
office analysis: Introduction and field study. Esprit #285 / OSSAD,
Internal Report.

Duranti, A. & Goodwin, C. (Eds.) 1992. Rethinking context: language as an
interactive phenomenon. Cambridge: Cambridge University Press.

Dutton, J. 1993. Commonsense approach to process modelling. IEEE Software,
Vol. 10, No. 4, 56-64.

Ein-Dor, P. & Segev, E. 1978. Managing management information systems.
Reading: Lexington.

Ein-Dor, P. & Segev, E. 1993. A classification of information systems: analysis
and interpretation. Information Systems Research, Vol. 4, No. 2, 166-204.

ELEKTRA 1998. EKD User Guide. Esprit Programme 7.1, Project No. 22927.
Ellis, C. 1979. Information control nets: a mathematical model of office

information flow. In P.F. Roth & G.J. Nutt (Eds.) Proc. of Conf. on
Simulation, Measurement, and Modeling of Computer Systems. New
York: ACM Press, 225-240.

Ellis, C. & Bernal M. 1982. OFFICETALK-D: an experimental office information
systems. In Proc. of ACM SIGOA Conference on Office Systems. New
York: ACM Press, 131-140.

Elmasri, R. & Navathe, S. 2000. Fundamentals of database systems. 3rd edition,
Reading: Addison-Wesley.

Eloranta, K. 1974. Heuristiikat ja heuristisuus. University of Tampere, Finland.
Dissertation Thesis (in Finnish).

El-Sayed, A.-Z. 1999. An autopoetic view of the concept “information system”.
In E. Falkenberg, K. Lyytinen & A. Verrijn-Stuart (Eds.) Proc. of IFIP
WG8.1 Int. Working Conf. on Information System Concepts: An Integrated
Discipline Emerging (ISCO-4).

599

Engeström, Y. 1987. Learning by expanding: an activity theoretical approach to
developmental research. Helsinki: Orienta-Konsultit.

Engeström, Y. 1999. Activity theory and individual and social transformation.
In Y. Engeström, R. Miettinen & R. Punamäki (Eds.) Perspectives on
Activity Theory. Cambridge, UK: Cambridge University Press, 19-38.

Episkopou, D. 1987. The theory and practice of information systems
methodologies: a grounded theory of methodology evolution. University
of East Anglia, UK, Dissertation Thesis.

Ernst & Young 1995. Navigator Systems Series, Relaese 3.0 (on CD-ROM).
Essink, L. 1986. A modeling approach to information system development. In T.

Olle, H. Sol & A. Verrijn-Stuart (Eds.) Proc. of the IFIP WG 8.1 Working
Conf. on Comparative Review of Information Systems Design
Methodologies: Improving the Practice. Amsterdam: North-Holland, 55-
86.

Essink, L. 1988. A conceptual framework for information systems development
methodologies. In H. J. Bullinger et al. (Eds.) Information Technology for
Organizational Systems. Amsterdam: North-Holland, 354-362.

Euromethod 1996, The Euromethod Documentation (Version 0) [Referred on
1.2.2002]. Available at URL: <http://www.eesi.es/Euromethod/docover.
html>.

Evernden, R. 1996. The information framework. IBM Systems Journal, Vol. 35,
No. 1, 37-68.

Fairley, R. 1985. Software engineering concepts. New York: McGraw-Hill.
Falbo, R., de Menezes, S. & Rocha, A. R. 1998a. Using ontologies to improve

knowledge integration in software engineering environments. In Proc. of
2nd World Multiconference on Systemics, Cybernetics and Informatics
(SCI’98/ISAS’98), Vol. I. International Institute of Informatics and
Systemics, Caracus, Venezuela, 296-304.

Falbo, R., de Menezes, S. & Rocha A. R 1998b. A systematic approach for
building ontologies. In Proc. of the Sixth IberoAmerican Conf. on Artificial
Intelligence (IBERAMIA’98), Lisbon, Portugal, 349-360.

Falkenberg, E. 1976. Significations: the key to unify data base management.
Information Systems, Vol. 2, No. 1, 19-28.

Falkenberg, E:, Hesse, W., Lindgreen, P., Nilsson, B., Oei, J. L. H., Rolland, C.,
Stamper, R., van Asche, F., Verrijn-Stuart, A. & Voss, K. 1998. A
framework of information system concepts, The FRISCO Report (Web
edition), IFIP.

Falkenberg, E., Nijjsen, G., Adams, A., Bradley, L., Bugeia, P., Campbell, A.,
Carkeet, M., Lehman, G. & Shoesmith, A. 1983. Feature analysis of
ACM/PCM, CIAM, ISAC and NIAM. In T. Olle, H. Sol & C. Tully (Eds.)
Information Systems Design Methodologies – A Feature Analysis.
Amsterdam: North-Holland, 169- 190.

Falkenberg, E., Oei, J. & Proper, H. 1992a. A conceptual framework for evolving
information systems. In H. Sol & R. Crosslin (Eds.) Dynamic Modelling of
Information Systems II. Amsterdam: North-Holland, 353-375.

600

Falkenberg, E., Oei, J. & Proper, H. 1992b. Evolving information systems:
beyond temporal information systems. In A. Tjoa & I. Ramos (Eds.)
Proceedings of the Data Base and Expert Systems Applications Conference
(DEXA’92). Berlin: Springer Verlag, 282-287.

Fayad, M. & Schmidt, D. 1997. Object-oriented application frameworks. Comm.
of the ACM, Vol. 40, No. 10, 32-38.

Feibleman, J. 1951. Ontology. Baltimore: The Johns Hopkins Press.
Fensel, D., Motta, E., van Harmelen, F., Benjamins, R., Crubezy, M., Decker, S.,

Gaspari, M., Groenboom, R., Grosso, W., Musen, M., Plaza, E., Schreiber,
G., Studer, R. & Wielinga, B. 2003. The unified problem-solving method
development language UPML. Knowledge and Information Systems, Vol.
5, No. 1, 83-131.

Fernandez-Lopez, M., Gomez-Perez, A., Pazos-Sierra, A. & Pazos-Sierra, J. 1999.
Building a chemical ontology using METONTOLOGY and the ontology
design environment. IEEE Intelligent Systems & Theory Applications, Vol.
4, No. 1, 37-46.

Fickas, S. 1985. Automating the transformational development of software.
IEEE Trans. on Software Engineering, Vol. 11, No. 11, 1268- 277.

Fife, D. 1987. How to know a well-organized software project when you find
one. In R. Thayer (Ed.) Tutorial: Software Engineering Project
Management. Washington: IEEE Computer Society Press, 268-276.

Fillmore, C. 1968. The case for case. In E. Bach & R. T. Harms (Eds.) Universals
in Linguistic Theory. New York: Holt, Rinehart and Winston, 1-88.

Finkelstein, A. & Fuks H. 1988. A cooperative framework for program
development. Information and Software Technology, Vol. 30, No. 8, 467-
476.

Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J. & Nuseibeh, B. 1994.
Inconsistency handling in multi-perspective specifications. Trans. on
Software Engineering, Vol. 20, No. 8, 569-578.

Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L. & Goedicke, M. 1992.
Viewpoints: A framework for integrating multiple perspectives in system
development. International Journal of Software Engineering and
Knowledge Engineering, Vol. 1, No. 2, 31-58.

Firesmith, D. 2002. Requirements engineering. Journal or Object Technology,
Vol. 1, No. 4, 93-103.

Firesmith, D. 2003a. Specifying good requirements. Journal of Object
Technology, Vol. 2, No. 4, 77-87.

Firesmith, D. 2003b. Using quality models to engineer quality requirements.
Journal of Object Technology, Vol. 2, No. 5, 67-75.

Firesmith, D. 2004. Creating a project-specific requirements engineering
process. Journal of Object technology, Vol. 3, No. 5, 31-44.

Firesmith, D. & Henderson-Sellers B. 1999. Improvements to the OPEN process
metamodel. Journal of Object-Oriented Programming, Vol. 12, No. 7, 30-
35.

Firesmith, D., Henderson-Sellers, B. & Graham, I. 1997. OPEN Modeling
Language (OML) Reference Manual. New York: SIG Books.

601

Fitzgerald, B. 1991. Validating new information systems techniques: a
retrospective analysis. In H.-E. Nissen, H. Klein & R. Hirscheim (Eds.)
Information Systems Research: Comtemporary Approaches and Emergent
Traditions. Amsterdam: North-Holland, 657-672.

Fitzgerald, B. 1994. Whither systems development: time to move the lamppost.
In C. Lissoni, T. Richardson, R. Miles, A. Wood-Harper & N. Jayaratna
(Eds.) Proc. of the 2nd BCS Conf. on Information Systems Methodologies.
Swindon, UK: BCS Publications, 371-380.

Fitzgerald, B. 1996a. A field study of the usage of systems development
methodologies. University College, Cork, Ireland, ESRC Research and
Discussion Papers Ref. 8/96a.

Fitzgerald, B. 1996b. Formalized systems development methodologies: a critical
perspective. Information Systems Journal, Vol. 6, No. 1, 3-23.

Fitzgerald, B. 1997. Systems development methodologies: a need for new
canons. ESRC Research and Discussion Papers Ref 01/97, University
College, Cork, Ireland.

Fitzgerald, B. 1998a. An empirical investigation into the adoption of systems
development methodologies. Information & Management, Vol. 34, No. 6,
317-328.

Fitzgerald, B. 1998b. An empirically-grounded framework for the information
systems development process. In R. Hirschheim, M. Newman & J. deGross
(Eds.) Proc. of the 19th Int. Conf. in Information Systems. USA:
Omnipress, 103-114.

Fitzgerald, B. & Fitzgerald, G. 1998. Alternative paradigms for information
systems development: from old to new. University College Cork, Ireland,
ESRC Research and Discussion Papers, Paper Ref. 1/98.

Fitzgerald, B., Russo, N. & O’Kane, T. 2003. Software development method
tailoring at Motorola. Comm. of the ACM, Vol. 46, No. 4, 65-70.

Fitzgerald, B., Russo, N. & Stolterman, E. 2002. Information systems
development – methods in action. London: McGraw Hill.

Fitzgerald, G., Stokes, N. & Wood, J. 1985. Feature analysis of contemporary
information systems methodologies. The Computer Journal, Vol. 28, No. 3,
223-230.

Floyd, C. 1984. A systematic look at prototyping. In R. Budde, K. Kuhlenkam, L.
Mathiassen & H. Zullighowen (Eds.) Approches to Prototyping. Berlin:
Springer-Verlag, 1-18.

Floyd, C. 1986. A comparative evaluation of system development methods. In
T. Olle, H. Sol & A. Verrijn-Stuart (Eds.) Information Systems Design
Methodologies: Improving the Practice. Amsterdam: North-Holland, 19-
54.

Floyd, C. 1987. Outline of a paradigm change in software engineering. In G.
Bjerknes, P. Ehn & M. Kyng (Eds.) Computers and Democracy – a
Scandinavian Challenge. Brookfield: Avebury Gower Pub., 193-210.

602

Flynn, D. & Fragoso-Diaz, O. 1993. Conceptual Euromodelling: how do SSADM
and MERISE compare? European Journal of Information Systems, Vol. 2,
No. 3, 169-183.

Forsell, M., Halttunen, V. & Ahonen, J. 2000. Use and identification of
components in component-based software development methods. In W.
Frakes (Ed.) Proc. of the 6th Int. Conf. on Software Reuse: Advances in
Software Reusability (ICSR-6). LNCS 1844, Berlin: Springer, 284-301.

Fox, M. 1992. The TOVE Project: a common-sense model of the enterprise. In F.
Belli & F. Radermacher (Eds.) Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems. LNAI 604, Berlin: Springer-
Verlag, 25-34.

Fox, M. 1998. Enterprise modeling – artificial intelligence. AI Magazine, Vol. 19,
No. 3, 109-121.

Franckson, M. 1994. The Euromethod deliverable model and its contributions to
the objectives of Euromethod. In A. Verrijn-Stuart & T. Olle (Eds.)
Methods and Associated Tools for the Information Systems Life Cycle.
Amsterdam: North-Holland, 131-150.

Frank, U. 2002. Multi-perspective enterprise modeling (MEMO) – conceptual
framework and modeling language. In Proc. of the 35th Hawaii
International Conference on Systems Sciences.

Frankel, D. S. 2003. Model driven architecture applying MDA to enterprise
computing. OMG Press Books.

Freeman, P. 1987. Software perspectives: The system is the message. Reading:
Addison-Wesley.

Freeman, M. & Layzell, P. 1994. A meta-model of information systems to
support reverse engineering. Information and Software Technology, Vol.
36, No. 5, 283-294.

Freundschuh, S. & Egenhofer, M. 1997. Human conceptions of spaces:
implications for GIS. Transactions in GIS, Vol. 2, No. 4, 361-375.

Furtado, A. & Neuhold, E. 1986. Formal techniques for data base design. Berlin:
Springer-Verlag.

Galbraith, J. 1973. Designing complex organizations. Reading: Addision-
Wesley.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. 1995. Design patterns: elements
of reusable object-oriented software. Reading: Addison-Wesley.

Gane, C. & Sarson T. 1979. Structured systems analysis: tools and techniques.
Englewood Cliffs: Prentice-Hall.

Garner, B. & Raban, R. 1999. Context management in modeling information
systems (IS). Information and Software Technology, Vol. 41, No. 14, 957-
961.

Gasser, L. 1986. The integration of computing and routine work. ACM Trans. on
Office Information Systems, Vol. 4, No. 3, 205-225.

Gemino, A. & Wand, Y. 2002. Towards common dimensions in empirical
comparisons of conceptual modelling techniques. In T. Halpin, K. Siau & J.
Krogstie (Eds.) Proc. of 7th CaiSE/IFIP WG8.1 International Workshop on

603

Evaluation of Modelling Methods in Systems Analysis and Design
(EMMSAD’02), 144-151.

Gerstl, P. & Pribbenow, S. 1996. A conceptual theory of part-whole relations
and its applications. Data & Knowledge Engineering, Vol. 20, No. 2, 305-
322.

Ghidini, C. & Serafini, L. 1999. A context-bsed logic for distributed knowledge
representation and reasoning. In P. Bouque, L. Serafini, P. Brezillon, M.
Benerecetti & F. Castellani (Eds.) Proc. of Second International and
Interdisciplinary Conf. on Modeling and Using Context (CONTEXT’99).
LNAI 1688, Berlin: Springer Verlag, 157-172.

Giddens, A. 1984. The constitution of society. Cambridge: Polity Press.
Gigch van, J. 1991. System design modeling and metamodeling. New York:

Plenum Press.
Glasson, B. 1986. Supporting controlled variety in systems development

environments. In T. Olle, H. Sol & A. Verrijn-Stuart (Eds.) Information
Systems Design Methodologies: Improving the Practice. Amsterdam:
North-Holland, 271-288.

Glasson, B. 1989. Model of system evolution. Information and Software
Technology, Vol. 31, No. 7, 351-356.

Godwin, A., Gleeson, J. & Gwillian, D. 1989a. An assessment of the IDEF
notations as descriptive tools. Information Systems, Vol. 14, No. 1, 13-28.

Godwin, A., Gore, M. & Salt, D. 1989b. A comparison of JSD and DFD as
descriptive tools. The Computer Journal. Vol. 32, No. 3, 202 – 211.

Goldkuhl, G. 1991. Information systems design as argumentation – an
investigation into design rationale as a conceptualization of design. In K.
Ivanov (Ed.) Proc. of the 14th Information Systems Research Seminar in
Scandinavia (IRIS’1991), Umeå.

Goldkuhl, G. & Cronholm, S. 1993. Customizable CASE environments: a
framework for design and evaluation. Institutionen for Datavetenskap,
Universitetet och Tekniska Högskolan, Linköping, Research Report.

Goldkuhl, G., Lind, M. & Seigerroth, U. 1998. Method integration as a learning
process. In N. Jayaratna, B. Fitzgerald, T. Wood-Harper & J.-M. Larasquet
(Eds.) Training and Education of Methodological Practitioners and
Researchers. Berlin: Springer-Verlag, 113-118.

Goldkuhl, G. & Röstling, A. 1988. Förändringsanalysi – arbetsmetodik och
förhållningssätt för goda förändringsbelust. Lund: Studentlitterature.

Goldstein, R. & Storey, V. 1999. Data abstraction: Why and how? Data &
Knowledge Engineering, Vol. 29, No. 3, 293-311.

Gomaa, H. & Scott, D. 1981. Prototyping as a tool in the specification of user
specifications. In Proc. of the 5th IEEE International Conference on
Software Engineering. IEEE Computer Society, 333-342.

Gomez, C. & Olive A. 2002. Evolving partitions in conceptual schemas in the
UML. In A. Banks Pidduck, J. Mylopoulos, C. Woo & T. Ozsu (Eds.) Proc.
of the 14th Int. Conf. on Advanced Information Systems Engineering
(CAiSE’2002). Berlin: Springer, 467-483.

604

Gomez-Perez, A. 1995. Some ideas and examples to evaluate ontologies. In
Proc. of the 11th Conf. on Artifical Intelligence for Applications, 299-305.

Gorry, G.A. & Scott-Morton, M. 1971. A framework for management
information systems. Sloan Management Review, Vol. 13, No. 1, 55-57.

Gottlob, G., Schrefl, M. & Röck B. 1996. Extending object-oriented systems with
roles. ACM Trans. on Office Information Systems, Vol. 14, No. 3, 268-296.

Graham, D. 1989. Incremental development: review of nonmonolithic life-cycle
development models. Information and Software Technology, Vol. 31, No.
1, 7-20.

Graham, I. 1995. Migrating to object technology. Reading: Addison-Wesley.
Graham, I., Henderson-Sellers, B. & Younessi, H. 1997. The OPEN process

specification. Reading: Addison-Wesley.
Grant, D. & Ngwenyama, O. 2003. A report on the use of action reseach to

evaluate a manufacturing information systems development methodology
in a company. Information Systems Journal, Vol. 13, No. 1, 21-35.

Gregor, S. 2002. Design theory in information systems. Australian Journal of
Information Systems, Vol. 9, Special Issue, 14-22.

Gregor, S. & Jones, D. 2003. The formulation of design theories for information
systems. In Proc. of 12th Int. Conf. on Information Systems Development
(ISD’03).

Green, P. 1997. Use of information systems analysis and design (ISAD)
grammars in combination in upper CASE tools – an ontological
evaluation. In K. Siau, Y. Wand & J. Parson (Eds.) Proc. of the Second
CAiSE/IFIP8.1 Intern. Workshop on the Evaluation of Modeling Methods
in Systems Analysis and Design (EMMSAD’97), 1-12.

Green, P. & Rosemann M. 2000. Integrated process modeling: an ontological
evaluation. Information Systems, Vol. 25, No. 2, 73-87.

Griethuysen van, J. (Ed.) 1982. Concepts and terminology for the conceptual
schema and the information base. ISO/TC95 Computers and Information
Processing, New York, ISO/TC97/SC5/WG3.

Grosz, G., Rolland, C., Schwer, S., Souveyet, C., Plihon, V., Si-Said, S., Achour,
C. & Gnaho, C. 1997. Modelling and engineering the requirements
engineering process: an overview of the NATURE approach.
Requirements Engineering, Vol. 2, No. 2, 115-131.

Gruber, T. 1993. A translation approach to portable ontology specification.
Knowledge Acquisition, Vol. 5, No. 2, 119-220.

Gruber, T. 1995. Towards principles for the design of ontologies used for
knowledge sharing. International Journal of Human-Computer Studies,
Vol. 43, No. 5/6, 907-928.

Grundy, J. & Venable, J. 1996. Towards an integrated environment for method
engineering. In K. Lyytinen, S. Brinkkemper & R. Welke (Eds.) Proc. of the
IFIP TC8, WG 8.1/8.2 Working Conference on Method Engineering –
Principles of Method Constrcution and Tool Support. London: Chapman
& Hall, 45-62.

605

Gruninger, M. & Fox, M. 1995. Methodology for the design and evaluation of
ontologies. In Proc. of Workshop on Basic Ontological Issues in
Knowledge Sharing (IJCAI-95).

Guarino, N. 1997. Understanding, building and using ontologies. International
Journal of Human-Computer Studies, Vol. 46, No. 2/3, 293-310.

Guarino, N. 1998. Formal ontology and information systems. In N. Guarino
(Ed.) Proc. of Conf. on Formal Ontology in Information Systems (FOIS'98).
Amsterdam: IOS Press, 3-15.

Guarino, N., Carrara, M. & Giaretta, P. 1995. Ontologies and knowledge bases:
towards a terminological clarification. In N. Mars (Ed.) Towards Very
Large Knowledge Bases, Knowledge Building and Knowledge Sharing.
Amsterdam: IOS Press, 25-32.

Guarino, N., Pribbenow, S. & Vieu, L. 1996. Modeling parts and wholes. Data
and Knowledge Engineering, Special Issue, Vol. 20, No. 3, 257-258.

Guarino, N. & Welty, C. 2000. Towards a methodology for ontology based
model engineering. In J. Bezevin & J. Ernst (Eds.) Proc. of the First Int.
Workshop on Model Engineering (IWME-2000).

Guizzardi, G., Falbo, R. & Filho, J. 2001a. From domain ontologies to object-
oriented frameworks. In G. Stumme, A. Maedche & S. Staab (Eds.) Proc. of
Workshop on Ontologies (ONTO’2001), 1-14..

Guizzardi, G., Falbo, R. & Goncalves, J. 2001b. Using framework and patterns to
implement domain ontologies. In C. Werner & A. Russo (Eds.) Proc. of the
16th Brazilian Symposium on Software Engineering (SBES’2001), 36-51.

Gupta, D. & Prakash, N. 2001. Engineering methods from method requirements
specifications. Requirements Engineering, Vol. 6, No. 3, 135-160.

Gustafsson, M., Karlsson, T. & Bubenko, J. 1982. A declarative approach to
conceptual information modeling. In T. Olle, H. Sol & A. Verrij-Stuart
(Eds.) Information Systems Design Methodologies: a Comparative
Review. Amsterdam: North-Holland, 93-142.

Guttag, J. 1977. Abstract data types and the development of data structures.
Comm. of the ACM, Vol. 20, No. 6, 396-404.

Habermas, J. 1984. The theory of communicative action: reason and the
rationalization of society. Boston: Beacon Press, Vol. 1.

Hackathorn, R. & Karimi, J. 1988. A framework for comparing information
engineering methods. MIS Quarterly, Vol. 12, No. 2, 203-220.

Halliday, M. 1978. Language as social semiotic: the social interpretation of
meaning. London: Edwards Arnold.

Halpin, T. 1998. ORM/NIAM Object-Role Modelling. In P. Bernus, K. Mertins &
G. Schmidt (Eds.) Handbook on Information Systems Architecture. Berlin:
Springer-Verlag, 81-101.

Hammer, M. & McLeod, D. 1981. Database description with SDM: a semantic
database model. ACM Trans. on Database Systems, Vol. 6, No. 3, 351-386.

Hardgrave, B. & Dalal, N. 1995. Comparing object oriented and extended entity
relationship models. Journal of Database Management, Vol. 6, No. 3, 15-
21.

606

Hardy, C. Thompson, B. & Edwards, H. 1995. The use, limitations and
customization of structured systems development methods in the UK.
Information and Software Technology, Vol. 37, No. 9, 467-477.

Harmsen, F. 1997. Situational method engineering. University of Twente, Moret
Ernst & Young Management Consultants, The Netherlands, Dissertation
Thesis.

Harmsen, F., Brinkkemper, S. & Oei, J. 1994. Situational method engineering for
information systems project approach. In H. Olle & A. Verrijn–Stuart
(Eds.) Proc. of the IFIP WG 8.1. Conf. on Methods and Associated Tools
for Information Life Cycle (CRIS-94). IFIP Transactions A-55, Amsterdam:
North-Holland, 169-194.

Harmsen, F., Lubbers, I. & Wijers, G. 1995. Success-driven selection of
fragments for situational methods: The S3 model. In K. Pohl & P. Peters
(Eds.) Proc. of the Second Int. Workshop on Requirements Engineering:
Foudations of Software Quality (REFSQ’95). Aachen: Aachener Beiträge
zur Informatik, Band, 104-115.

Harmsen, F. & Saeki, M. 1996. Comparison of four method engineering
languages. In S. Brinkkemper, K. Lyytinen & R. Welke (Eds.) Proc. of the
IFIP TC8, WG8.1/8.2 Working Conf on Method Engineering. London:
Chapman & Hall, 209-231.

Hautamäki, A. 1986. Points of views and their logical analysis. Helsinki: Acta
Philosophica Fennica, Vol. 41.

Hayes, P. 1995. A catalog of temporal theories. University of Illinois: Technical
Report UIUC-BI-AI-96-01.

Hazeyama, A. & Komiya S. 1993. Software process management system
supporting the cooperation between manager and developers. In S.
Brinkkemper & F. Harmsen (Eds.) Proc. of the Fourth Workshop on the
Next Generation of CASE Tools. Memoranda Informatica 93-32,
University of Twente, The Netherlands, 183-188.

Hedberg, B. 1980. Using computerized information systems to design better
organizations and jobs. In N. Björn-Andersen (Ed.) The Human Side of
Information Processing. Amsterdam: North-Holland, 19-37.

Heijst van, G., Schreiber, A. & Wielinga B. 1997. Using explicit ontologies in
KBS development. International Journal of Human and Computer Studies,
Vol. 46, No. 2-3, 293-310.

Heineman, G.T., Botsford, J.E., Caldiera, G., Kaiser, G., Kellner, M. & Madhavji,
N. 1994. Emerging technologies that support a software process life cycle.
IBM Systems Journal, Vol. 33, No. 3, 501-529.

Heiskanen, A. 1995. Reflecting over a practice – Framing issues for scholar
understanding. Information Technology & People, Vol. 8, No. 4, 3-18.

Heiskanen A. 2005. Control, trust, and the dynamics of information system
outsourcing: a case study of contractual software development.
Department of Information Processing Science, University of Oulu,
submitted to be published.

607

Heller, F. 1991. Participation and competence: a necessary relationship. In R.
Russel & V. Rus (Eds.) International Handbook of Participation in
Organizations, 265-281.

Henderson-Sellers, B. 1992. A book of object-oriented knowledge: Object-
oriented analysis, design, and implementation: A new approach to
software engineering. Englewood-Cliffs: Prentice-Hall.

Henderson-Sellers, B. 1999. A methodological metamodel of process. Journal of
Object-Oriented Programming, Vol. 11, No. 9, 56-63.

Henderson-Sellers, B. 2003. Method engineering for OO systems development.
Comm. of the ACM, Vol. 46, No. 10, 73-78.

Henderson-Sellers, B. & Barbier, F. 1999a. What is this thing called aggregation?
In R. Mitchell, A. C. Wills, J. Bosch & B. MeyerProc. (Eds.) Proc. of TOOLS
EUROPE’99. Silver Spring, MD: IEEE Computer Society Press, 236-250.

Henderson-Sellers, B., Collins, G., Due, R. & Graham, I. 2001. A qualitative
comparison of two processes for object-oriented software development.
Information and Software Technology, Vol. 43, No. 12, 705-724.

Henderson-Sellers, B. & Edwards, J. 1993. The O-O methodology for the object
oriented life cycle. Software Engineering Notes, Vol. 18, No. 4, 54-60.

Henderson-Sellers, B. & Edwards, J. 1995. Book Two of Object-Oriented
Knowledge. The Working Object. Sydney: Prentice-Hall.

Henderson-Sellers, B. & Firesmith, D. 1999b. Comparing OPEN and UML: the
two third-generation OO development approaches. Information and
Software Technology, Vol. 41, No. 3, 139-156.

Henderson-Sellers, B. & Mellor, S. 1999c. Tailoring process-focused OO
methods. Journal of Object-Oriented Programming, Vol. 12, No. 4, 40-45.

Hendrix, G. 1979. Encoding knowledge in partitioned networks. In N. Findler.
(Ed.) Associative Networks: Representation and Use of Knowledge by
Computers. New York: Academic Press, 51-92.

Herbst, H. 1995. A meta-model for business rules in systems analysis. In J.
Iivari, K. Lyytinen & M. Rossi (Eds.) Advanced Information Systems
Engineering. LNCS 932, Berlin: Springer, 186-199.

Herbst, H., Knolmayer, T. & Schlesinger, M. 1994. The specification of business
rules: a comparison of selected methodologies. In A. Verrijn-Stuart A. & T.
Olle (Eds.) Methods and Associated Tools for the Information Systems Life
Cycle. Amsterdam: North-Holland, 29-46.

Herbst, H.& Myrach, T. 1997. A repository system for business rules. In R.
Meersman & Mark L. (Eds.) Proc. of the 6th IFIP TC-2 Working Conf. on
Data Application Semantics. London: Chapman & Hall, 119-138.

Hevner, A., March, S., Park J. & Ram S. 2004. Design science in information
systems research. MIS Quarterly, Vol. 28, No. 1, 75-105.

Heym, M. & Österle, H. 1992a. A reference model for information systems
development. In K. Kendall, K. Lyytinen & J. DeGross (Eds.) Proc. of the
IFIP WG 8.2 Working Conference on the Impacts on Computer Supported
Technologies on Information Systems Development. Amsterdam: North-
Holland, 215-240.

608

Heym M. & Österle H. 1992b. A semantic data model for methodology
engineering. In G. Forte & N. Madhavji (Eds.) Proc. of the Fifth CASE ’92
Workshop. Los Alamitos, CA: IEEE Computer Society Press, 215-239.

Hicks, J. 1993. Management information systems: a user perspective. St. Paul:
West Publishing Company.

Hidding, G. 1997. Reinventing methodology: Who reads it and why? Comm. of
the ACM, Vol. 40, No. 11, 102-109.

Hidding, G., Freund, G. & Joseph, J. 1993. Modeling large processes with task
packages. In Proc. of Workshop on Modeling in the Large, AAAI
Conference, Washington, DC.

Hillegersberg van, J. & Kumar, K. 1999. Using metamodeling to integrate object-
oriented analysis, design and programming concepts. Information
Systems, Vol. 24, No. 2, 113-129.

Hirschheim, R. 1986. Understanding the office: a social analytic perspective.
Trans. on Office Information Systems, Vol. 4, No. 3, 331-344.

Hirschheim, R. & Klein, H. 1989. Four paradigms of information systems
development. Comm. of the ACM, Vol. 32, No. 10, 1199-1216.

Hirschheim, R. & Klein, H. 1992a. Paradigmatic influences on information
systems development methodologies evolution and conceptual advances.
In M. Yovits (Ed.) Advances in Computers. Vol. 33. New York: Academic
Press, 293-392.

Hirschheim, R. & Klein, H. 1992b. A research agenda for future information
systems development methodologies. In W. Cotterman & J. Senn (Eds.)
Challenges and Strategies for Research in Systems Development. New
York: John Wiley & Sons Ltd., 235-253.

Hirschheim, R., Klein, H. & Lyytinen, K. 1995. Information systems
development – conceptual and philosophical foundations. Cambridge:
Cambridge University Press.

Hoare, C.A. & Wirth, N. 1973. An axiomatic definition of the programming
language PASCAL. Acta Informatica, Vol. 2, No. 4, 335-355.

Hoc, J.-M. 1988. Cognitive psychology of planning. London: Academic Press.
Hofstede ter, A. & Proper, H. 1998. How to formalize it? Formalization

principles for information system development methods. Information and
Software Technology, Vol. 40, No. 10, 519-540.

Hofstede ter, A., Proper, H. & Weide van der, Th. 1993a. Formal definition of a
conceptual language for the description and manipulation of information
models. Information Systems, Vol. 18, No. 7, 489-523.

Hofstede ter, A. & Verhoef, T. 1997. On the feasibility of situational method
engineering. Information Systems, Vol. 22, No. 6/7, 401-422.

Hofstede ter, A. & Weide van der, Th. 1992. Formalisation of techniques:
chopping dow the methodology jungle. Information and Software
Technology, Vol. 34, No. 1, 57-65.

Hofstede ter, A. & Weide van der, Th. 1993b. Expressiveness in conceptual data
modeling. Data & Knowledge Engineering, Vol. 10, No. 1, 65-100.

609

Holm, P. & Karlgren, K. 1995. Theories of meaning and different perspectives
on information systems. In E. Falkenberg, W. Hesse & A. Olive (Eds.) Proc.
of the IFIP Int. Working Conf. on Information System Concepts – Towards
a Consolidation of views. London: Chapman & Hall, 20-32.

Holt, J. 1997. Current practice in software engineering - A survey. Computing
and Control Engineering Journal, Vol. 8, No. 4, 167-172.

Hommes, B.-J. & van Reijswound, V. 1999. The quality of business process
modeling methods – Illustration of a framework for understanding
modeling quality In E. Falkenberg, K. Lyytinen & A. Verrijn-Stuart (Eds.)
Proc. of IFIP WG8.1 Int. Working Conf. on Information System Concepts:
An Integrated Discipline Emerging. Amsterdam: North-Holland, 117-126.

Hommes, B.-J. & van Reijswound V. 2000. Assessing the quality of business
process modeling techniques. In Proc. of the 33rd Hawaii International
Conf. on Systems Science.

Hong, S., Goor van der, & Brinkkemper S. 1993. A formal approach to the
comparison of object-oriented analysis and design methodologies. In F.
Nunamaker & R. Sprague (Eds.) Proc. of 26th Hawaii Int. Conf. on Systems
Sciences, Vol. IV, 689-698.

Howard, G., Bodnovich, T., Janicki, T., Klein, S., Albert, P. & Cannon, D. 1999.
The efficacy of matching information systems development methodologies
with application characteristics – an empirical study. The Journal of
Systems and Software, Vol. 45, 177-195.

Hruby, P. 2000a. Structuring software development artifacts with UML. Journal
of Object-Oriented Programming, Vol 12, No. 9, 22-33.

Hruby, P. 2000b. Designing customizable methodologies. Journal of Object-
Oriented Programming, Vol. 13, No. 8, 22- 31.

Hughes, J. & Reviron, E. 1996. Selection and evaluation of information system
development methodologies: the gap between the theory and practice. In
N. Jayaratna & B. Fitzgerald (Eds.) Proc. of the 4th Conf. on Information
Systems Methodologies: Lessons Learned from the Use of Methodologies.
British Computer Society, 309-319.

Hull, R. & King, R. 1987. Semantic database modeling survey, Applications and
research issues. ACM Computing Surveys, Vol. 19, No. 3, 210-260.

Hutching, T., Hyde, M., Marca, D. & Cohen L. 1993. Process improvement that
lasts: an integrated training and consulting method. Comm. of the ACM,
Vol. 36, No. 10, 105-113.

IBM 1984. Business systems planning, Information Systems Planning Guide,
GE20-0527-4, Atlanta: IBM Corporation.

IEEE 1990. Standard Glossary of software engineering terminology. IEEE
Standard 610.12-1990.

IEEE 1991. IEEE Std. 830-1984, In IEEE Software Engineering Standards
Collection. New York: IEEE.

Iivari, J. 1978. Pragmatic control of the development of data processing
function, Department of Data Processing Science, University of Oulu,
Licentitate Thesis (in Finnish).

610

Iivari, J. 1982. Taxonomy of the experimental and evolutionary approaches to
systemeering. In J. Hawgood (Ed.) Evolutionary Information Systems.
Amsterdam: North-Holland, 101-119.

Iivari, J. 1983. Contributions to the theoretical foundations of systemeering
research and the PIOCO model. Acta Universitatis Ouluensis, A150,
University of Oulu, Oulu, Finland, Dissertation Thesis.

Iivari, J. 1989a. Levels of abstraction as a conceptual framework for an
information system. In E. Falkenberg & P. Lindgren (Eds.) Information
System Concepts: An In-Depth Analysis. Amsterdam: North–Holland,
323-352.

Iivari, J. 1989b. A methodology for IS development as organizational change: a
pragmatic contingency approach. In H. Klein & K. Kumar (Eds.) Systems
Development for Human Progress. Amsterdam: North-Holland, 197-217.

Iivari, J. 1990a. Hierarchical spiral model for information system and software
development. Part 1: Theoretical background. Information and Software
Technology, Vol. 32, No. 6, 386-399.

Iivari, J. 1990b. Hierarchical spiral model for information system and software
development. Part 2: Design process. Information and Software
Technology, Vol. 32, No. 7, 450-458.

Iivari, J. 1991. A paradigmatic analysis of contemporary schools of IS
development. European Journal of Information Systems, Vol. 1, No. 4, 249-
272.

Iivari, J. 1992. Relationships, aggregations and complex objects. In S. Ohsuga, H.
Kangassalo, H. Jaakkola., K. Hori & N. Yonezaki (Eds.) Proc. of European-
Japanese Conference Information Modelling and Knowledge Bases III:
Foundations, Theory, and Applications. Amsterdam: IOS Press, 141-159.

Iivari, J. 1994. Object-oriented information systems analysis: a comparison of six
object-oriented analysis methods. In T. Olle & A. Verrijn-Stuart (Eds.)
Proc. of the IFIP WG8.1 Working Conference on Methods and Associated
Tools for the Information Systems Life Cycle (CRIS’94). IFIP Transactions
A-55, Amsterdam: North-Holland, 85-110.

Iivari, J. 2003. Towards information systems as a science of meta-artifacts.
Comm. of the Association of Information Systems, Vol. 12, Article 37, 568-
581.

Iivari, J., Hirschheim, R. & Klein, H. 1998a. A paradigmatic analysis of
contrasting IS development approaches and methodologies. Information
Systems Research, Vol. 9, No. 2, 164-193.

Iivari, J., Hirschheim, R. & Klein, H. 2001. A dynamic framework for classifying
information systems development methodologies and approaches. Journal
of Management Information Systems, Vol. 17, No. 3, 179-218.

Iivari, J., Hirschheim, R. & Klein, H. 2004. Towards a distinctive body of
knowledge for information systems experts: coding ISD process
knowledge in two IS journals. Information Systems Journal, Vol. 14, No. 4,
313-342.

611

Iivari, J. & Kerola, P. 1983. A sociocybernetic framework for the feature analysis
of information systems design methodologies. In T. Olle, H. Sol & C. Tully
(Eds.) Proc. of the IFIP WG 8.1 Working Conf. on Feature Analysis of
Information Systems Development Methodologies. Amsterdam: North-
Holland, 87-139.

Iivari, J. & Koskela, E. 1987. The PIOCO Model for information systems design.
MIS Quarterly, Vol. 11, No. 3, 410-419.

Iivari, J. & Linger H. 1999. Knowledge work as collaborative work: a situated
activity theory view. In Proc. of the 32nd Hawaii International Conf. on
System Sciences (HICSS-32). Washington: IEEE Computer Society.

Iivari, J. & Maansaari, J. 1998b. The usage of system development methods: Are
we stuck to old practices? Information and Software Technologies, Vol. 40,
No. 9, 501-510.

ISO 1984. Open Systems Interconnections (OSI) – basic reference model. ISO
7498/TC97/SC21 Information Processing Systems.

ISO 1991. ISO 9000-3, Quality management and quality assurance standards,
Part 3: Guidelines for the application of ISO 9001 to the development,
supply and maintenance of software.

ISO 1990. International Standard. Information Resource Dictionary System
(IRDS) – Framework ISO/IEC 10027.

ISO 1996. Information Technology – Open Distributed Processing - Reference
Model: Overview, 10746-1.

Jaaksi, A. 1995. Object-oriented specification of user interfaces. Software –
Practice and Experience, Vol. 25, No. 11, 1203-1221.

Jaaksi, A. 1997. Object-oriented development of interactive systems, Tampere,
Finland: Tampere University of Technology, Pub. 201, Dissertation Thesis.

Jackson, M. 1983. System development. Englewood Cliffs: Prentice-Hall, Inc.
Jacobson, I., Booch, G. & Rumbaugh, J. 1999. The Unified Software

Development Process. Reading: Addison-Wesley.
Jacobson, I., Christeson, M., Jonsson, P. & Övergaard, G. 1992. Object-oriented

software engineering, A use case driven approach. Reading: Addison-
Wesley.

Janson, M. & Woo, C. 1995. Comparing IS development tools and methods:
using speech act theory. Information & Management, Vol. 28, No. 1, 1-12.

Jarke, M. 1992. Strategies for integrating CASE environments. IEEE Software,
Vol. 9, No. 2, 54-61.

Jarke, M., Gallensdörfer, R., Jeusfeld, M., Staudt, M. & Eherer, S. 1995.
ConceptBase: a deductive object base for meta data management. Journal
of Intelligent Information Systems, Vol. 4, No. 2, 167-192.

Jarke, M., Jeusfeld, M. & Rose, T. 1990. A software process data model for
knowledge engineering in information systems. Information Systems, Vol.
15, No. 1, 85-116.

Jarke, M., Mylopoulos, J., Schmidt, J. & Vassiliou, Y. 1992. DAIDA: an
environment for evolving information systems. ACM Trans. on
Information Systems, Vol. 10, No. 1, 1-50.

612

Jarke, M. & Pohl K. 1993. Vision driven system engineering. In N. Prakash, C.
Rolland & B. Pernici (Eds.) Information Systems Development Process (A-
30). Amsterdam: North-Holland, 3-20.

Jayaratna, N. 1994. Understanding and evaluating methodologies: NIMSAD – a
systemic framework. London: McGraw-Hill.

Jefferies, R., Miller, J., Wharton, C. & Udea, K. 1991. User interface analysis in
real world: a comparison of four techniques. In Proc. of the ACM CHI’91
Conference in Human Factors in Computing Systems, New York, 119-124.

Jenkins, A., Neumann, J. & Wetherbe, J. 1984. Empirical investigation of systems
development practices and results. Information & Management, Vol. 7,
No. 2, 73-82.

Johnson, G., Scholes, K. & Sexty, R. W. 1989. Exploring strategic management.
Englewood Cliffs: Prentice-Hall.

Jones, C. 1986. Systematic software development with VDM. Englewood Cliffs:
Prentice-Hall.

Jones, L. & Kydd, C. 1988. An information processing framework for
understanding success and failure in MIS development methodologies.
Information Management, Vol. 15, No. 5, 263-271.

Kaasboll, J. 1995. Abstraction and concretizing in information systems and
problem domains: implications for system descriptions. In E. Falkenberg,
W. Hesse & A. Olive (Eds.) Proc. of the IFIP Int. Working Conf. on
Information System Concepts – Towards a Consolidation of views.
London: Chapman & Hall, 250-265.

Kaasboll, J. & Smordal, O. 1996. Human work as context for development of
object-oriented modeling technique. In S. Brinkkemper, K. Lyytinen & R.
Welke R. (Eds.) Proc. of the IFIP TC8 WG 8.1/8.2 Working Conf. on
Method Engineering: Principles of Method Construction and Tool
Support. London: Chapman & Hall, 111-125.

Kabeli, J. & Shoval P. 2002. A comparison of the FOOM and OPM
methodologies for user comprehension of analysis specifications. In T.
Halpin, K. Siau & J. Krogstie (Eds.) Proc. of 7th CaiSE/IFIP WG8.1
International Workshop on Evaluation of Modelling Methods in Systems
Analysis and Design (EMMSAD’02), 23-36.

Kahn, K. & Gorry G. 1977. Mechanising temporal knowledge. Artificial
Intelligence, Vol. 9, No. 1, 87-108.

Kaipala, J. 1997. Augmenting CASE tools with hypertext: desired functionality
and implementation issues. In A. Olive & A. Pastor (Eds.) Proc. of the 9th
Int. Conf. on Advanced Information Systems Enginering (CAiSE’97).
Berlin: Springer, 217-230.

Kaiser, G., Popovich, S. & Ben-Shaul I. 1993. A bi-level language for software
process modeling. In Proc. of the 15th Int. Conf. on Software Engineering,
Washington: IEEE Computer Society Press, 132-143.

Kangassalo, H. 1982. On the concept of concept in a concept schema. In H.
Kangassalo (Ed.) Proc. of the First Scandinavian Research Seminar on

613

Information Modelling and Data Base Modelling. Acta Universitatis
Tamperensis, Ser. B., Vol. 17, University of Tampere, Finland, 129-172.

Kangassalo, H. 2002. Foreword., In S. Spaccapietra, S. March & Y. Kambayaski
(Eds.) Proc. of 21st Intern. Conf. on Conceptual Modeling (ER 2002). Berlin:
Springer, V-VI.

Kant, I. 1787. Kritik der reinen Verrnunft, translated by N. Kemp Smith as
Critique of Purse Reason. New York: St. Martin’s Press.

Karam, G. & Casselman, R. 1993. A cataloging framework for software
development methods. IEEE Computer, Vol. 26, No. 2, 34-46.

Karlsson, F. 2002. Bridging the gap – between method for method configuration
and situational method engineering. In Proc. of the Second Annual
Knowledge Foundation Conference for the Promotion of Research in IT.

Karlsson, F., Ågerfalk, P. & Hjalmarson, A. 2001. Method configuration with
development tracks and generic project types. In J. Krogstie. K. Siau & T.
Halpin (Eds.) Proc. of the 6th CaiSE/IFIP8.1 International Workshop on
Evaluation of Modeling Methods in Systems Analysis and Design
(EMMSAD’01).

Kashyap, V. & Sheth, A. 1996. Semantic and schematic similarities between
database objects: a context-based approach. The VLDB Journal, Vol. 5, No.
4, 276-304.

Katayama, T. 1989. A hierarchical and functional software process description
and its enaction. In Proc. of the 11th Int. Conf. on Software Engineering.
IEEE Computer Society / ACM Press, 343-352.

Katz, R. 1990. Toward a unified framework for version modeling in engineering
databases. ACM Surveys, Vol. 22, No. 4, 375-408.

Katzenstein, G. & Lerch, J. 2000. Beneath the surface of organizational
processes: a social representation framework for business process
redesign. ACM Trans. on Information Systems, Vol. 18, No. 4, 383-422.

Kauppi, R. 1967. Einführung in die Theorie der Begriffssysteme. Acta
Universitatis Tamperensis, Serie A., Vol. 15, Tampere, Finland.

Kautz, K. & McMaster, T. 1994. Introducing structured methods: an undelivered
promise? – a CASE study. Scandinavian Journal of Information Systems,
Vol. 6, No. 2, 59-78.

Kavakli, V. & Loucopoulos, P. 1999. Goal-driven business process analysis
application in electricity deregulation. Information Systems, Vol. 24, No. 3,
187-207.

Kavakli, E. & Loucopoulos P. 2003. Goal driven requiremetns engineering:
evaluation of current methods. In K. Siau, T. Halpin & J. Krogstie (Eds.)
Proc. of the 8th CaiSE / IFIP8.1 International Workshop on Evaluation of
Modeling Methods in Systems Analysis and Design (EMMSAD’03), 1-10.

Kayed, A. 2002. Colomb R., Extracting ontological concepts for tendering
conceptual structures. Data & Knowledge Engineering, Vol. 40, No. 1. 71-
89.

Keen, P. 1981. Information systems and organizational change. Comm. of the
ACM, Vol. 24, No. 1, 24-33.

614

Keen, P. & Scott Morton, M. 1978. Decision support systems: an organizational
perspecetive. Reading: Addison-Wesley.

Kelly, J. & Sherif, Y. 1992. Comparison of four design methods for real-time
software development. Information and Software Technology, Vol. 34, No.
2, 76-82.

Kelly, S., Lyytinen, K. & Rossi, M. 1996. MetaEdit+: a fully configurable multi-
user and multi-tool CASE and CAME environment. In Y. Vassiliou & J.
Mylopoulos (Eds.) Proc. of the 8th Conf. on Advanced Information
Systems Engineering (CAiSE’96). Berlin: Springer, 1-21.

Kelly, S. & Tahvanainen V.-P. 1994. Support for incremental method
engineering and MetaCASE. In B. Theodoulidis (Ed.) Proc. of the 5th
Workshop on the Next Generation of CASE Tools. Memoranda
Informatica 94-25. Enschede, The Netherlands: Universiteit Twente, 140-
148.

Kendall, J. & Kendall, K. 1993. Metaphors and methodologies: living beyond the
systems machine. MIS Quarterly, Vol. 17, No. 2, 149-171.

Kent, W. 1978. Data and reality. Amsterdam: North-Holland.
Kerola, P. 1980. On infological research into the systemeering process. In F.

Lucas, T. Land, H. Lincoln K. Supper (Eds.) The Information Systems
Environment. Amsterdam: North-Holland, 199-217.

Kerola, P. & Järvinen, P. 1975. Systemeering II – System theoretical and
cybernetical model of data system development and use (in Finnish).
Helsinki: Gaudeamus.

Kerola, P. & Taggart, W. 1982. Human information processing styles in the
information systems development process. In J. Hawggod (Ed.)
Evolutionary Information Systems, Amsterdam: North-Holland, 63-86.

Kettinger, W., Teng, J. & Guha S. 1997. Business process change: a study of
methodologies, techniques, and tools. MIS Quarterly, Vol. 21, No. 1, 55-80.

Kim, Y. & March, S. 1995. Comparing data modeling formalisms for
representing and validating information requirements. Comm. of the
ACM, Vol. 38, No. 6, 103-115.

Kinnunen, K. & Leppänen M. 1994. O/A matrix and a technique for
methodology enginering. In J. Zupancic & S. Wrycza (Eds.) Proc. of the
Fourth International Conference on Information Systems Development
(ISD’94), 113-125.

Kinnunen, K. & Leppänen 1996. M., O/A matrix and a technique for
methodology engineering. Journal of Systems and Software, Vol. 33, No. 2,
141-152.

Kirchmer, M. 1999. Business process-oriented implementation of standard
software. Berlin: Springer-Verlag.

Kirikova, M. 2000. Explanatory capability of enterprise models. Data &
Knowledge Engineering, Vol. 33, No. 2, 119-136.

Kishore, R., Zhang, H. & Ramesh, R. 2004. A Helix-Spindel model for
ontological engineering. Comm. of the ACM, Vol. 47, No. 2, 69-75.

615

Kitchenham, B. 1996a. Evaluation software engineering methods and tools –
Part 1: The evaluation context and evaluation methods. Software
Engineering Notes, Vol. 21, No. 1, 11-15.

Kitchenham, B. 1996b. Evaluation software engineering methods and tools –
Part 2: Selecting an appropriate evaluation method – technical criteria.
Software Engineering Notes, Vol. 21, No. 2, 11-15.

Kitchenham, B. 1996c. Evaluating software engineering methods and tools –
Part 3: Selecting an appropriate evaluation method – Practical Issues.
Software Engineering Notes, Vol. 21, No. 4, 9-12.

Kitchenham, B., Travassos, H., von Mayrhauser, A., Nielssink, F.,
Schneiderwind, N., Singer, J., Takada, S., Vehvilainen, R. & Yang, H. 1999.
Towards an ontology of software maintenance. Journal of Software
Maintenance: Research and Practice, Vol. 11, No. 6, 365-389.

Klein, H. & Hirschheim, R. 1987. A comparative framework of data modeling
paradigms and approaches. The Computer Journal, Vol. 30, No. 1, 8-15.

Klemke, R. 1999. The notion of context in organizational memories. In P.
Bouguet, P. Brezillon, F. Castellani, L. Serafini & M. Benerecetti Proc. of
Second International and Interdiciplinary Conf. on Modeling and Using
Context (CONTEXT’99). LNAI 1688, Berlin: Springer, 483-486.

Kleppe, A., Warmer, J. & Bast, W. 2003. MDA explained: the Model Driven
Architecture: practice and promise. Reading: Addison Wesley
Professional.

Kling, R. 1987. Defining the boundaries of computing across complex
organizations. In R. Boland & R. Hirschheim (Eds.) Critical Issues in
Information Systems Research. Chichester: John Wiley & Sons, 307-362.

Klir, G. 1969. An approach to general systems theory. New York: van Nostrand
Reinhold Co.

Klooster, M. 1996. Empirical research on the situational dependency of methods
for information systems development projects. University of Twente,
Master’s Thesis.

Kogut, P., Cranefield, S., Hart, L., Dutra, M., Baclawski, K. & Smith J. 2002.
UML for ontology development. The Knowledge Engineering Review,
Vol. 17, No. 1, 61–64.

Kokinov, B. 1999. Dynamics and automaticity of context: a cognitive modeling
approach. In P. Bouquet, L. Serafini, P. Brezillon, M. Benerecetti & F.
Castellani (Eds.) Proc. of 2nd International and Interdisciplinary Conf on
Modeling and Using Context (CONTEXT’99). LNAI 1688, Berlin: Springer
Verlag, 200-213.

Koontz, H. & O’Donnell C. 1972. Principles of management: an analysis of
management functions. 5. edition, New York: McGraw-Hill.

Konsynski, B., Braker, L. & Bracker, W. 1982. A model for specification of office
communication. IEEE Trans. on Communications COM-30 (1), 27-36.

Korpela, M., Mursu, A. & Soriyan, H. 2002. Information systems development
as an activity. Computer Supported Cooperative Work, Vol. 11, No. 1-2,
111-128.

616

Korpela, M., Soriyan, H. & Olufokunbi, K. 2000. Activity analysis as a method
for information systems development: general introduction and
experiments from Nigeria and Finland. Scandinavian Journal of
Information Systems, Vol. 12, No. 1, 191-210.

Koskinen, M. 2000. Process metamodelling: Conceptual foundations and
applications. Jyväskylä Studies of Computing, No. 7, University of
Jyväskylä, Dissertation Thesis.

Koubarakis, M. & Plexousakis, D. 2000. A formal model for business process
modeling and design. In B. Wangler & L. Bergman (Eds.) Proc. of 12th Int.
Conf. on Advanced Information Systems Engineering (CAiSE 2000).
Berlin: Springer-Verlag, 142-156.

Koubarakis, M. & Plexousakis, D. 2002. A formal framework for business
process modelling. Information Systems, Vol. 27, No. 5, 299-319.

Kraiem, N., Bourguida, I. & Selmi, S. 2000. Situational method for information
system project. In Proc. of Int. Conf. on Advances in Infrastructure for e-
Business, e-Education, e-Science, and e-Medicine on the Internet.

Kramer, B. & Luqi, R. 1991. Towards formal models of software engineering
processes. Journal of Systems and Software, Vol. 15, No. 1, 63-74.

Kroenke, D. & Dolan, K. A. 1987. Business computer systems: an introduction.
Santa Cruz, CA: Mitchell Publishing.

Krogstie, J. 1995. Conceptual modeling for computerized information systems
support in organizations. NTH, University of Trondheim, Norway,
Dissertation Thesis.

Krogstie, J. 2002. A semiotic approach to quality in requirements specification.
In K. Liu, R. Clarke, P.B., Andersen, & R. Stamper R. (Eds.) Proc. of IFIP
TC8 / WG8.1 Working Conf. on Organizational Semiotics: Evolving a
Science of Information Systems. IFIP Conference Proceedings, Kluwer,
231-249.

Krogstie, J., Lindland, O. & Sindre, G. 1995. Defining quality aspects for
conceptual models. In E. Falkenberg, W. Hesse & A. Olive (Eds.) Proc. of
the IFIP Int. Working Conf. on Information System Concepts – Towards a
Consolidation of views. London: Chapman & Hall, 216-231.

Krogstie, J. & Sindre, G. 1994. Extending a temporal rule language with deontic
operators. In Proc. of the 6th Int. Conf. on Software Engineering and
Knowledge Engineering (SEKE’94), 314-321.

Krogstie, J. & Sölvberg, A. 1996. A classification of methodological frameworks
for computerized information systems support in organizations. In B.
Brinkkemper, K. Lyytinen & R. Welke (Eds.) Proc. of the IFIP TC8 WG
8.1/8.2 Working Conf. on Method Engineering: Principles of Method
Construction and Tool Support. London: Chapman & Hall, 278-295.

Krogstie, J. & Sölvberg 2000. A., Information systems engineering: conceptual
modeling in a quality perspective. Trondheim, Norway: Information
Systems Groups, NTNU.

Kronlöf, K. (Ed.) 1993. Method integration: concepts and case studies.
Chichester: John Wiley & Sons.

617

Kruchten, P. 2000. The Rational Unified Process: An introduction. Reading:
Addison-Wesley.

Kueng, P., Bichler, P., Kawalek, P. & Schrefl, M. 1996. How to compose an
object-oriented business process model. In S. Brinkkemper, K. Lyytinen &
R. Welke (Eds.) Proc. of the IFIP TC8 WG 8.1/8.2 Working Conf. on
Method Engineering: Principles of Method Construction and Tool
Support. London: Chapman & Hall, 94-110.

Kuhn, T. 1970. The structure of scientific revolution. 2nd edition, Chicago:
University of Chicago Press.

Kumar, K. 1984. Participant values in information systems development.
McMaster University, Hamilton, Ontario, Unpublished Doctoral
Dissertation.

Kumar, K. & Welke, R. 1992. Methodology engineering: a proposal for situation
specific methodology construction. In W. Kottermann & J. Senn (Eds.)
Challenges and Strategies for Research in Systems Development.
Chichester: John Wiley & Sons, 257-269.

Kuutti, K. 1991. Activity theory and its applications to information systems
research and development. In H.-E. Nissen, H. Klein & R. Hirschheim
(Eds.) Information Systems Research: Contemporary Approaches and
Emergent Traditions. Amsterdam: North-Holland, 529-549.

Kuutti, K. 1994. Information systems, cooperative work and activity subjects:
the activity theoretical perspective. Department of Information Processing
Science, University of Oulu, Finland, Dissertation Thesis.

Kyng, M. & Mathiassen, L. (Eds.) 1997. Computers and design in context.
Cambridge, MA, USA: MIT Press.

Ladd, I. & Tsichritzis, D. 1980. An office form flow model. In Proc. of AFIPS
National Computer Conference, Vol. 49. Virginia: AFIPS Press, 533-539.

Lang, M. & Duggan, J. 2001. A tool to support collaborative software
requirements management. Requirements Engineering, Vol. 6, No. 3, 161-
172.

Langefors, B. 1971. Theoretical analysis of information systems. Lund, Sweden:
Studentlitterature.

Langefors, B. & Sundgren, B. 1975. Information systems architecture. New York:
Petrocelli.

Lanzara, G. 1983. The design process: Frames, metaphors and games. In U.
Briefs, C. Ciborra & L. Schneider (Eds.) Systems Design for, with, and by
the Users. Amsterdam: North-Holland, 29-40.

Latour, B. 1999. On recalling ANT. In J. Law & J. Hassard (Eds.) Actor Network
Oxford. England: Blackwell Publishers, 15-25.

Law, D. 1988. Methods for comparing methods: techniques in software
develoment. NCC Publications.

Law, D. & Stamper, R. 1984. Criteria for comparing methodologies for defining
system requirements. GDM/NCC SDSS Joint Research Programme,
Project SD Technical Paper, NCC.

Layder, D. 1993. New strategies in social research. Cambridge: Polity Press.

618

Lee, J., Xue, N.-L. & Kuo, J.-Y. 2001. Structuring requirement specifications with
goals. Information and Software Technology, Vol. 43, No. 2, 121-135.

Lee, R. 1983. Epistemological aspects of knowledge-based decision support
systems. In H. Sol (Ed.) Proc. of Int. Conf. on Processes and Tools for
Decision Support Systems. Amsterdam: North-Holland, 25-36.

Lehman, M. 1984. Program evolution. Information Processing Management,
Vol. 20, No. 1-2, 19-36.

Lei, Y. & Singh, M. 1997. A comparison of workflow metamodels. In Proc. of the
ER-97 Workshop on Behavioural Modelling and Design Transformations:
Issues and Opportunities in Conceptual Modelling, Los Angeles.

Lenat, D. & Guha, R. 1990. Building large knowledge-based systems. Reading:
Addison-Wesley.

Leont’ev, A. 1978. Activity, consciousness, and personality. Englewood Cliffs:
Prentice-Hall.

Leppänen, M. 1984a. Conceptual schema language and a model for view
modeling – a linguistic approach. Department of Information Processing,
University of Jyväskylä, Finland, Licentiate Thesis (in Finnish).

Leppänen, M. 1984b. Abstraction in information systems development. In M.
Sääksjärvi (Ed.) Proc. of the 7th Scandinavian Research Seminar on
Systemeering, Part I. Helsinki: Helsinki School of Economics, Studies B-75,
243-286.

Leppänen, M. 1989a. Abstraction analysis of OSSAD-methodology. Research
Report, University of Jyväskylä, Finland.

Leppänen, M. 1989b. Conceptual analysis of socio-technical analysis. In K.
Fuchs-Kittowski, C. Harman & E. Muhlenberg (Eds.) Proc. of Int. IFIP
TC9.1 Conf. on Information Systems, Work and Organizational Design,
Berlin, GDR, 77-89.

Leppänen, M. 1993. Database design. Jyväskylä: Department of Information
Systems and Computer Science, University of Jyväskylä, Lecture Notes (in
Finnish).

Leppänen, M. 1994. Metamodelling: concept, benefits and pitfalls. In J.
Zupancic & S. Wrycza (Eds.) Proc. of the Fourth Int. Conf. on Information
Systems Development (ISD’94), 126-137.

Leppänen, M. 2000. Toward a method engineering (ME) method with an
emphasis on the consistency of ISD methods. In K. Siau K. (Ed.) Proc. of
the Fifth CAiSE/IFIP8.1 International Workshop on Evaluation of
Modeling Methods in Systems Analysis and Design (EMMSAD’00).

Leppänen, M. 2001. Database application design. Jyväskylä: Department of
Information Systems and Computer Science, University of Jyväskylä,
Lecture Notes (in Finnish).

Leppänen, M., Lyytinen, K. & Halttunen, V. 1991. Tietojenkäsittelystrategian
määrittely – Strateginen tietohallintopalveluiden kehittämismenetelmä
(SPITS) (in Finnish). Jyväskylä: Publications of the Department of
Computer Science, TU-10, University of Jyväskylä.

619

Leppänen, M. & Savolainen, V. 1988. Refinement of OSSAD methodology by
multi-client field tests. In J. Kaasboll J. (Ed.) Report of the 11th Int. Research
Seminar on Information Systems (IRIS’88), 395-429.

Leppänen, M. & Savolainen, V. 1989a. OSSAD application in a Finnish paper
machine company – developing strategies for implementation of
teleservices in a sales department. In R. Baron & E. Beslmuller (Eds.)
OSSAD Field Test Report, ESPRIT Project No. 285, R&D Area 4.1, Office
Systems Science and Human Factors, Munich: IOT, Chapter 4.

Leppänen, M. & Savolainen V. 1989b. A classification framework for OIS
methodologies. In K. Boyanov K. & V. Angelinov (Eds.) Network
Information Processing Systems. Amsterdam: North-Holland, 299-307.

Levinson, S. 1983. Pragmatics. London: Cambridge University Press.
Li, Q. & Dong, G. 1994. A framework for object migration in object-oriented

databases. Data & Knowledge Enginering, Vol. 13, No. 3, 221 - 242.
Liang, Y. 2000. An approach to assessing and comparing object-oriented

analysis methods. Journal of Object-Oriented Programming, June, 27-33.
Liberman, H., Stein, A. & Ungar, D. 1988. Of types and prototypes: the treaty of

Orlando. OOPSLA ’87 Addendum to the Proceedings. Special Issue of
SIGPLAN Notices, Vol. 23, No. 5, 43-44.

Lin, C.-Y. & Ho, C.-S. 1999. Generating domain-specific methodical knowledge
for requirements analysis based on methodology ontology. Information
Sciences, Vol. 114, No. 1-4, 127-164.

Lindgreen, P. 1995. Anything, everything and things playing roles: three
realizing principles as a contribution to a platform for understanding. In E.
Falkenberg, W. Hesse & A. Olive (Eds.) Proc. of the IFIP Int. Working
Conf. on Information System Concepts – Towards a Consolidation of
views. London: Chapman & Hall, 195-214.

Lindland, O., Sindre, G. & Sölvberg A. 1994. Understanding quality in
conceptual modeling. IEEE Software, Vol. 11, No. 2, 42-49.

Lindtner, P. 1992. Domänenwissen in Methoden zur Analyse Betrieblischer
Informationssysteme. The Institute for Information Management,
University of St. Gallen, St. Gallen, Switzerland, Dissertation Thesis.

Liskov, B. & Zilles S. 1974. Programming with abstract data types. In Proc. of
ACM SIGPLAN Conf. on Very High Level Languages, SIGPLAN Notices,
Vol. 9, No. 4, 50-59.

Liu, L. & Yu, E. 2002. Designing web-based systems in social context: a goal and
scenario based approach. In A. Banks Pidduck, J. Mylopoulos, C. Woo C.
& M. Tamer Ozsu (Eds.) Proc. of 14th Int. Conf. on Advanced Information
Systems Engineering (CAiSE’2002). LNCS 2348, Berlin: Springer-Verlag,
37-51.

Ljunberg, J. & Holm, P. 1996. Speech acts on trial. Scandinavian Journal of
Information Systems, Vol. 8, No. 1, 29-52.

Lonchamp, J. 1993. A structure conceptual and terminological framework for
software process engineering. In Proc. of the 2nd Int. Conf. on the Software
Process. Washington: IEEE Computer Society Press, 41-53.

620

Louadi, M., Polladis, Y. & Teng, J. 1991. Selecting a system development
methodology: a contingency framework. Information Resources
Management Journal, Vol. 4, No. 1, 11-19.

Loucopoulos, P. 2000. From information modeling to enterprise modeling. In S.
Brinkkemper, E. Lindencrona & A. Sölvberg (Eds.) Information Systems
Engineering – State of the Art and Research Themes. Berlin: Springer-
Verlag, 67-78.

Loucopoulos, P., Kavakli, V., Prekas, N., Rolland, C., Grosz, G. & Nurcan, S.
1998. Using the EKD approach: the modelling component. ELEKTRA –
Project No. 22927, ESPRIT Programme 7.1.

Louridas, P. & Loucopoulos, P. 1996. A framework for evaluating design
rationale methods. In K. Siau & Y. Wand (Eds.) Proc. of the Workshop on
Evaluation of Modeling Methods in Systems Analysis and Design
(EMMSAD’96).

Lucas, H. 1978. The evolution of an information system: from key-man to every
person. Sloan Management Review, Vol. 19, No. 2, 39-52.

Lundeberg, M. 1982. The ISAC approach to specification of information systems
and its application to the organization of an IFIP working conference. In T.
Olle, H. Sol & A. Verrijn-Stuart (Eds.) Information Systems Design
Methodologies: A Comparative Review. Amsterdam: North-Holland, 173-
234.

Lundeberg, M., Goldkuhl, G. & Nilsson, A. 1981. Information systems
development: A systematic approach. Englewood-Cliff: Prentice-Hall.

Luoma, J., Kelly, S. & Tolvanen, J.-P. 2004. Defining domain-specific modeling
languages: collected experiences. In J.-P. Tolvanen, J. Sprinkle & M. Rossi
(Eds.) Proc. of the 4th OPSLA Workshop on Domain-Specific Modeling
(DSM’04). Jyväskylä: Computer Science and Information Systems Reports,
Technical Reports TR-33, University of Jyväskylä, 1-10.

Lyons, J. 1977. Semantics. Volume I-II, Cambridge: Cambridge University Press.
Lyons, J. 1981. Language and linguisics: An introduction. Cambridge:

Cambidge University Press.
Lyytinen, K. 1985. Implications of theories of language for information systems.

MIS Quarterly, Vol. 9, No. 1, 61-74.
Lyytinen, K. 1986. Information systems development as social action:

framework and critical implications. Jyväskylä Studies in Computer
Science, Economics, and Statistics, No. 8, University of Jyväskylä, Finland,
Dissertation Thesis.

Lyytinen, K. & Robey D. 1999. Learning failure in information systems
development. Info Systems Journal, Vol. 9, No. 2, 85-101.

Macauley, L. 1993. Requirements capture as a cooperative activity. In Proc. of
IEEE International Symposium on Requirements Engineering. Los
Alamitos, California: IEEE Computer Science Press, 174-181.

MacLean, A., Young, R., Belloti, V. & Moran, T. 1991. Questions, options and
criteria: elements of design space analysis. Human-Computer Interaction,
Vol. 6, No. 3/4, 201-250.

621

MacLennan, B. 1982. Values and objects in programming languages. SIGPLAN
Notices, Vol. 17, No. 12, 70-79.

Maddison, R., Baker, G., Bhabuta, L., Fitzgerald, G., Hindle, K., Song, J., Stokes,
N. & Wood J. 1984. Feature analysis of five information system
methodologies. In T. Bemelmans (Ed.) Beyond Productivity: Information
Systems for Organizational Effectiveness. Amsterdam: North-Holland,
277-306.

Makmuri, S. 1998. Best practices for internet commerce. Intelligent Enterprise,
Vol. 1, No. 4, 29-40.

March, S. & Smith, G. 1995. Design and natural science research on information
technology. Decision Support Systems, Vol. 15, No. 4, 251-266.

Markus, M. L. 1983. Power, politics and MIS implementation. Comm. of the
ACM, Vol. 26, No. 6, 430-444.

Markus, M. & Bjorn-Andersen N. 1987. Power over users: its exercise by system
professionals. Comm. of the ACM, Vol. 30, No. 6, 498-504.

Markus, M. L., Majchrzak, L. & Gasser L. 2002. A design theory for systems that
support emergent knowledge processes. MIS Quarterly, Vol. 26, No. 3,
179-212.

Markus, M. L. & Mao J.-Y. 2004. Participation in development and
implementation – updating an old, tired concept for today’s IS contexts.
Journal of the Association for Information Systems, Vol. 5, No. 11-12, 514-
544.

Martin, J. 1982. Strategic data-planning methodologies. Englewood Cliffs:
Prentice-Hall.

Martin, J. 1989. Information engineering. Introduction. Englewood Cliffs:
Prentice-Hall.

Martin, J. & McGlure, C. 1985. Diagramming techniques for analyst and
programmers, Englewood Cliffs: Prentice-Hall.

Martin, R. & Robertson, E. 2000. A formal enterprise architecture framework to
support multi-model analysis. In Proc. of the 5th CAiSE/IFIP 8.1 Int.
Workshop on Evaluation of Modeling Methods in Systems Analysis and
Design (EMMSAD’00).

Massacci, F. 1996. Contextual reasoning is NP –complete. In H. Shrobe & T.
Senator (Eds.) Proc. of the 13th National Conference on Artificial
Intelligence and the 8th Innovation Applications of Artificial Intelligence
Conference, Vol. 2. Menlo Park: AAAI Press, 621-626.

Masters, S. & Kitson, D. 1992. An analysis of SEI Software Process Assessment
Results: 1987-1991. Technical Report CMU/SEU-92-TR-24. Software
Engineering Institute, Carnegie Mellon Uniersity, Pittsburg, Pa.

Matheus, C. J., Kokar, M. M. & Baclawski K. 2003. A core ontology for situation
awareness. In Proc. of the 6th International Conf. on Information Fusion
(FUSION’03), 545 –552.

Mathiassen, L. 1982. Systemudvikling og systemudviklingsmetode, Datalogisk
Afdelning, Matematisk Institut, Aarhus Universitet, Doktorsavhandling.

622

Mathiassen, L. 1998. Reflective systems development. Scandinavian Journal of
Information Systems, Vol. 10, No. 1/2, 67-117.

Mathiassen, L. & Munk-Madsen, A. 1986. Formalizations in systems
development. Behaviour and Information Technology, Vol. 5, No. 2, 145-
155.

Mathiassen, L. & Munk-Madsen, A. 1988. Myths and reality in software
development. Technical Report, Institute of Elecronic Systems, Aalborg
University.

Mathiassen, L., Munk-Madsen, A., Nielsen, P. & Stage, J. 1996. Method
engineering: Who’s the customer? In S. Brinkkemper, K. Lyytinen & R.
Welke (Eds.) Proc. of the IFIP TC8 WG 8.1/8.2 Working Conf. on Method
Engineering: Principles of Method Construction and Tool Support.
London: Chapman & Hall, 232-245.

Mathiassen, L., Munk-Maddsen, A., Nielsen, P. & Stage, J. 2000. Object-oriented
analysis & design. Aalborg, Denmark: Marko Publishing ApS.

Mattos, N. 1988. Abstraction concept: the basis for data and knowledge
modeling. In C. Batini (Ed.) Proc. of the 7th Intern. Conf. on E-R Approach.
Amsterdam: North-Holland, 331-350.

Matwin, S. & Kubat, M. 1996. The role of context in concept learning. In Proc. of
the 13th International Conference on Machine Learning (ICML-96),
Workshop on Learning in Context-Sensitive Domains, Bari, Italy, 1-5.

Mayer, R., Menzel, C., Painter, M., deWitte, P., Blinn, T. & Perakath, B. 1995.
Information integration for concurrent engineering (IICE) IDEF3 Process
Description Capture Method Report [Referred on 23.6.2002]. Available at
URL: < http://www.idef.com/pdf/Idef3_fn.pdf >.

McChesney, I. 1995. Towards a classification scheme for software process
modeling approaches. Information and Software Technology, Vol. 37, No.
7, 363-374.

McDermott, D. 1982. A temporal logic for reasoning about processes and plans.
Cognitive Science, Vol. 6, No. 2, 101-155.

McGregor, D. M. 1960. The human side of enterprise. London: McGraw-Hill.
McGuinness, D., Fikes, R., Hendler, J. & Stein, L. 2002. DAML+OIL: an ontology

language for the Semantic Web. IEEE Intelligent Systems, Vol. 17, No. 5,
72-80.

McLeod, D. & King, R. 1980. Applying a semantic database model. In P. Chen
(Ed.) Entity-relationship Approach to Systems Analysis and Design.
Amsterdam: North-Holland, 193-210.

Meersman, R., Shi, Z. & Kung, C.-H. (Eds.) 1990. Proc. of the IFIP
TC2/TC8/WG2.6/WG8.1 Working Conf. on Artificial Intelligence in
Database and Information Systems (DS-3). Amsterdam: North-Holland.

Melao, N. & Pidd, M. 2000. A conceptual framework for understanding
business processes and business process modeling. Information Systems
Journal, Vol. 10, No. 2, 105-129.

623

Mentzas, G. 1994. A functional taxonomy of computer-based information
systems. International Journal of Information Management, Vol. 14, No. 6,
397-410.

Mentzas, G., Halaris, C. & Kavadias, S. 2001. Modeling business processes with
workflow systems: an evaluation of alternative approaches. International
Journal of Information Management, Vol. 21, No. 2, 123-135.

Merbeth, G. 1991. Maestro II – das integrierte CASE-system von Softlab. In H.
Balzert (Ed.) CASE Systeme und Werkzeuge. BI Wissenschaftsverlag, 319-
336.

Mesarovic, M., Macko, D. & Takahara, Y. 1970. Theory of hierarchical,
multilevel, systems. New York: Academic Press.

Meyer, B. 1990. Introduction to the theory of programming languages.
Englewood Cliffs: Prentice-Hall.

Mi, P. & Scacchi, W. 1996. A meta-model for formulating knowledge-based
models of software development. Decision Support Systems, Vol. 17, No.
3, 313-330.

Middleton, P. 1994. Euromethod: the lessons from SSADM. In W. Baets (Ed.)
Proc. of the 2nd European Conference on Information Systems (ECIS 1994).
Brekelen, The Netherlands : Nijenrode University Press, 359-366.

Middleton, P. 1999. Managing information system development in
bureaucracies. Information and Software Technology, Vol. 41, No. 8, 473-
482.

Miller, G. 1990. Wordnet: an online lexical database. International Journal of
Lexicography, Vol. 3, No. 4, 235-312.

Minsky, M. 1965. Models, minds, machines. In Proc. of IFIP Congress.
Montvale, New Jersey: AFIPS Press, 45-49.

Monteiro, E. 2000. Actor-network theory. In C. Ciborra (Ed.), From Control to
Drift: the Dynamics of Corporate Information Infrastructures. Oxford:
Oxford University Press.

Moody, D. 2003a. The method evaluation model: a theoretical model for
validating information systems design methods. In Ivan et al. (Eds.) Proc.
of the European Conference of Information Systems.

Moody, D. 2003b. Measuring the quality of data models: an empirical
evaluation of the use of quality metrics in practice. In Ivan et al. (Eds.)
Proc. of the European Conference of Information Systems.

Moody, D. 2003c. Theoretical and practical issues in evaluating the quality of
conceptual models. In A. Olive, M., Yoshikawa & E. Yu et al. (Eds.)
Proceedings of the Advanced Conceptual Modelling Techniques, ER 2002
Workshops – ECDM, MoblMod, IWCMO, and eCOMO. LNCS 2784,
Berlin: Springer Verlag, 241-242.

Moor de, A. & Jeusfeld, M. 2001. Making workflow change acceptable.
Requirements Engineering, Vol. 6, No. 2, 75-96.

Morisio, M., Seaman, C., Basili, V., Parra, A., Kraft, S. & Condon, S. 2002. COTS-
based software development: processes and open issues. The Journal of
Systems and Software, Vol. 61, No. 3, 189-199.

624

Morris, C. W. 1938. Foundations of the theory of signs. In O. Neurath, R.
Carnap & C. Morris (Eds.) International Encyclopedia of Unified Science.
Chicago: University of Chicago Press, 77-138.

Morris, C. W. 1946. Signs, language, and behaviour. Englewood Cliffs: Prentice-
Hall.

Morris, C. W. 1964. Signification and significance. Cambridge: MIT Press.
Morris, J. H. Jr. 1973. Types are not sets. In Proc. of the ACM Symposium on

Principles of Programming Languages (POPL). ACM Press, 120-124.
Motik, B., Maedche, A. & Volz, R. 2002. A conceptual modelling approach for

semantic-driven enterprise applications. In R. Meersman & Z. Tari (Eds.)
On the Move to Meaningful Internet Systems - Confederated International
Conferences DOA, CoopIS and ODBASE 2002. LNCS 2519, Berlin:
Springer-Verlag. 1082-1099.

Motschnig-Pitrik, R. 1993. The semantics of parts versus aggregates in
data/knowledge modeling. In C. Rolland, F. Bodard & C. Cauvet (Eds.)
Proc. of the 5th Int. Conf. on Advanced Information Systems Enginering
(CAiSE’93). LNCS 685, Berlin: Springer, 352-373.

Motschnig-Pitrik, R. 1995. An integrating view on the viewing abstraction:
contexts and perspectives in software development, AI, and databases.
Journal of Systems Integration, Vol. 1, No. 1, 23-60.

Motschnig-Pitrik, R. 1999. Context and views in object-oriented languages. In P.
Bouquet, L. Serafini, P. Brezillon, M. Benerecetti & F. Castellani (Eds.)
Proc. of Second International and Interdisciplinary Conf. on Modeling and
Using Context (CONTEXT’99). LNAI 1688, Berlin: Springer Verlag, 256-
269.

Motschnig-Pitrik, R. 2000. A generic framework for the modeling of contexts
and its applications. Data & Knowledge Engineering, Vol. 32, No. 2, 145-
180.

Motschnig-Pitrik, R. & Kaasboll, J. 1999. Part-Whole relationship categories and
their application in object-oriented analysis. IEEE Trans. on Knowledge
and Data Engineering, Vol. 11, No. 5, 779-797.

Motschnig-Pitrik, R. & Mylopoulos, J. 1996. Semantics, features, and
applications of the viewpoint abstraction. In P. Constantopoulos, J.
Mylopoulos & Y. Vassiliou (Eds.) Proc. of the 8th International Conference
on Advanced Information Systems Engineering (CAiSE’96). LNCS 1080,
Berlin: Springer-Verlag, 514-539.

Motschnig-Pitrik, R. & Nykl, L. 2001. The role and modeling of context in a
cognitive model of Rogers' person-centred approach. In V. Akman, P.
Bouquet, R. Thomason & R. Young (Eds.) Third International and
Interdisciplinary Conference on Modeling and Using Context (CONTEXT’
2001). LNCS 2116, Berlin: Springer-Verlag, 275-289.

Motschnig-Pitrik, R. & Storey, V. 1995. Modelling of set membership: the notion
and the issues. Data & Knowledge Engineering, Vol. 16, No. 2, 147-185.

625

Moulin, B. & Creasy, P. 1992. Extending the conceptual graph approach for data
conceptual modelling. Data & Knowledge Engineering, Vol. 8, No. 3, 223-
248.

Moynihan, T. 1993. Modelling the software process in terms of the system
representations and transformation steps used. Information and Software
Tchnology, Vol. 35, No. 3, 181-188.

Moynihan, T. 1996. An attempt to compare object-orientation and functional-
decomposition in communicating information system functionality to
users. In K. Siau & Y. Wand (Eds.) Proc. of the Workshop on Evaluation of
Modeling Methods in Systems Analysis and Design (EMMSAD’96).

Muchlen zur, M. 1999. Evaluation of workflow management systems using
meta models. In Proc. of the 32nd Hawaii International Conf. on System
Sciences, IEEE.

Mumford, E. 1981. Participative systems design: structure and method.
Systems, Objectives, Solutions, Vol. 1, No. 1, 5-19.

Mumford, E. 1983. Designing human systems for new technology, The ETHICS
method. Machester, UK: Machester Business School.

Mumford, E. & Weir, M. 1979. Computer systems in work design – the ETHICS
method. London: Associated Business Press.

Murphy, L. 1996. Information product evaluation as asynchronous
communication in context: a model for organisational research. In Proc. of
the First ACM International Conference on Digital Libaries, 134-142.

Mustonen, S. 1978. Tavoitteisen järjestelmän kyberteettinen analyysi
päätäntäteorioiden ja systemoinnin metatutkimuksessa (in Finnish).
Report A7, Institute of Data Processing Science, University of Oulu, Oulu.

Mylopoulos, J. 1998. Information modelling in the time of the revolution.
Information Systems, Vol. 23, No. 3/4,127-155.

Mylopoulos, J., Berstein, P. & Wong, H. 1980. A language facility for designing
database-intensive applications. ACM Trans. on Database Systems, Vol. 5,
No. 2, 185-207.

Mylopoulos, J., Borgida, A., Jarke, M. & Koubarakis, M. 1990. Telos: a language
for representing knowledge about information systems. ACM Trans. on
Office Information Systems, Vol. 8, No. 4, 325-362.

Mylopoulos, J., Chung, L., Liao, S. & Wang, H. 2001. Exploring alternatives
during requirements analysis. IEEE Software, Vol. 18, No. 1, 92-96.

Mylopoulos, J., Chung, L. & Nixon, B. 1992. Representing and using non-
functional requirements: a process-oriented approach. IEEE Trans. on
Software Engineering, Vol. 18, No. 6, 483-497.

Myrhaug, H. 2001. Towards life-long and personal context spaces. In Proc. of
Workshop on User Modelling for Context-Aware Applications.

Nandhakumar, J. & Avison, D. 1999. The fiction of methodological
development: a field study of information systems development.
Information Technology & People, Vol. 12, No. 2, 176-191.

626

Nardi, B. 1996. Activity Theory and Human-Computer Interaction. In B. Nardi
(Ed.) Context and Consciousness: Activity Theory and Human-Computer
Interaction. Cambridge, Massachusetts: MIT Press, 7-16.

NATURE Team 1996. Defining visions in context: models, processes and tools
for requirements engineering. Information Systems, Vol. 21, No. 6, 515-
547.

Naumann, J.D., Davis, G. & McKeen, J. 1980. Determining information
resources: a contingency method for selection of a requirements assurance
strategy. The Journal for Systems and Software, Vol. 1, No. 4, 273-281.

NCC 1987. The STARTS Guide. 2nd edition, NCC.
Necco, C., Gordan, C. & Tsai, N. 1987. Systems analysis and design: current

practices. MIS Quarterly, Vol. 11, No. 4, 461-476.
Newman, M. & Noble, F. 1990. User involvement as an interaction process: a

case study. Information Systems Research. Vol. 1, No. 1, 89-113.
Newman, W. 1980. Office models and office systems design. In N. Naffah (Ed.)

Integrated Office Systems, Amsterdam: North-Holland, 3-10.
Nguyen, L. & Swatman, P. 2003. Managing the requirements engineering

process. Requirements Engineering, Vol. 8, No. 1, 55-68.
Nguyen, M. & Conradi, R. 1996. Towards a rigorous approach for managing

process evolution. In C. Montangero (Ed.) Proc. of the 5th European
Workshop on Software Process Technology (EWSPT’96). LNCS 1149,
Berlin: Springer-Verlag, 18-35.

Niiniluoto, J. 1999. Critical scientific realism. Oxford: Oxford University Press.
Nijholt, A. 1988. Computers and languages. Amsterdam: North-Holland.
Nijssen, G. & Halpin, T. 1989. Conceptual schema and relational database

design: a fact oriented approach. Englewood Cliffs: Prentice-Hall.
Nilsson, B. 2000. On levels of business modeling, communication and model

architectures. In S. Brinkkemper, E. Lindencrona & A. Sölvberg (Eds.)
Information Systems Engineering – State of the Art and Research Themes.
Berlin: Springer, 275-287.

Nissen, H.-E. 1980. Towards a multi subject groups conception of information
systems. In K. Lyytinen & E. Petola (Eds.) Report of the 3rd Scandinavian
Research Seminar on Systemeering Models. Institute of Computer Science,
University of Jyväskylä, 141-170.

Nissen, H., Jeusfeld, M., Jarke, M., Zemanek, G. & Huber, H. 1996. Managing
multiple requirements perspectives with metamodels. IEEE Software, Vol.
13, No. 2, 37-48.

Nonaka, I. 1994. Dynamic theory of organizational knowledge creation.
Organization Science, Vol. 5, No. 1, 14-37.

Nonaka, I. & Takeuchi, H. 1995. The knowledge-creating company. New York:
Oxford University Press.

Noy, N. & McGuinness, D. 2001. Ontology development 101: a guide to
creating your first ontology. Stanford Knowledge Systems Laboratory
Technical Report KSL-01-05 and Stanford Medical Informatics Technical

627

Report SMI-2001-0880 [Referred on 3.6.2004]. Available at URL:
<http://smi-web.stanford.edu/pubs/SMI_Abstracts/SMI-2001-880.html>

Nunamaker, J., Chen, M. & Purdin, T. 1991. Systems development in
information systems research. Journal of Management Information
Systems Research, Vol. 7, No. 3, 89-106.

Nurminen, M. 1988. People or computers: three ways of looking at information
systems. Lund: Studentlitteratur.

Nuseibeh, B. & Finkelstein, A. 1992. ViewPoints: a vehicle for method and tool
integration. In G. Forter, N. H. Madhavji & H. A. Muller (Eds.) Proc. of the
Int. Workshop on CASE (CASE’92). Montreal, Canada: IEEE Computer
Society Press, 50-60.

Nuseibeh, B., Finkelstein, A. & Kramer, J. 1996. Method engineering for multi-
perspective software development. Information and Software Technology,
Vol. 38, No. 4, 267-274.

Nygaard, K. & Dahl, O.-J. 1978. The development of the SIMULA languages. In
R. Wexelblat (Ed.) ACM SIGPLAN History of Programming Languages
Conference, Los Angeles, SIGPLAN Notices, Vol. 13, No. 8, 245-272.

Oberweis, A. & Lausen, G. 1988. On the representation of temporal knowledge
in office systems. In C. Rolland, F. Bodart & M. Leonard (Eds.) Temporal
Aspects in Information Systems. Amsterdam: North-Holland, 125-139.

Odell, J. 1994. Six different kinds of compositions. Journal of Object-Oriented
Programming, Vol. 7, No. 8, 10-15.

Odell, J. 1996. A primer to method engineering. In S. Brinkkemper, K. Lyytinen,
R. Welke (Eds.) Proc. of the IFIP TC8, WG8.1/8.2 Working Conf. on
Method Engineering: Principles of Method Construction and Tool
Support. London: Chapman & Hall, 1- 7.

Oei, J. 1995. A meta model transformation approach towards harmonization in
information system modeling. In E. Falkenberg, W. Hesse & A. Olive
(Eds.) Proc. of IFIP WG8.1 Working Conf. on Information System
Concepts – Towards a Consolidation of Views. London: Chapman & Hall,
106-127.

Oei, J., Proper, H. & Falkenberg, E. 1994. Evolving information systems:
meeting the ever-changing environment. Information Systems, Vol. 4, No.
3, 213-233.

Ogden, C. & Richards I. 1923.The meaning of meaning. London: Kegan Paul.
Olarnsakul, M. & Batanov, D. 2003. A method for developing component-

oriented applications: a use-context driven approach toward component
coordination. Knowledge and Information Systems, Vol. 5, No. 4, 466-502.

Oliga, J. 1988. Methodological foundations of systems methodologies. Systems
Practice, Vol. 1, No. 1, 87-112.

Olive, A. 1983. Analysis of conceptual and logical models in information
systems development methodologies. In T. Olle, H. Sol & C. Tully (Eds.)
Information Systems Design Methodologies: A Feature Analysis.
Amsterdam: North-Holland, 63-85.

628

Olive, A. 2002. Representation of generic relationship types in conceptual
modelling. In A. Banks Pidduck, J. Mylopoulos, C. Woo & T. Ozsu (Eds.)
Proc. of the 14th Int. Conf. on Advanced Information Systems Engineering
(CAiSE’2002). Berlin: Springer, 675-691.

Olle, T., Hagelstein, J., MacDonald, I., Rolland, C., Sol, H., van Assche, F. &
Verrijn-Stuart, A. 1988a. Information Systems Methodologies – A
Framework for Understanding. 2nd edition. Reading: Addison-Wesley.

Olle, T., Sol, H. & Bhabuta, J. (Eds.) 1988b. Proc. of the IFIP WG8.1 Working
Conf. on Computerized Assistance During the Information Systems Life
Cycle. Amsterdam: North-Holland.

Olle, T.W., Sol, H. & Tully, C. (Eds.) 1983. Proc. of the IFIP WG8.1 Working
Conf. on Feature Analysis of Information Systems Design Methodologies.
Amsterdam: North-Holland.

Olle, T.W., Sol, H. & Verrijn-Stuart, A. (Eds.) 1982. Proc. of the IFIP WG 8.1
Working Conference on Comparative Review of Information Systems
Design Methodologies. Amsterdam: North-Holland.

Olle, T.W., Sol, H. & Verrijn-Stuart, A. (Eds.) 1986. Proc. of the IFIP WG 8.1
Working Conference on Comparative Review of Information Systems
Design Methodologies: Improving the Practice. Amsterdam: North-
Holland.

OMG 2001. Unified Modeling Language, v 1.4 [Referred on 24.6.2002].
Available at URL: http://www.omg.org/docs/formal/01-09-67.pdf.

OMG 2002. Meta-Object Facility (MOF) Specification, v. 1.4, April [Referred on
12.1.2003]. Available at URL: <http://www.omg.org/cgi-bin/doc?formal
/2002-04-03>

OMG 2003. Unified Modeling Language, v 2.0, Superstructure specification
[Referred on 24.6.2004] Available at URL: <http://www.omg.org/
docs/ptc/03-08-02.pdf >.

Opdahl, A. & Henderson-Sellers, B. 2001a. Grounding the OML metamodel in
ontology. The Journal of Systems and Software, Vol. 57, No. 2, 119-143.

Opdahl, A. & Henderson-Sellers, B. 2002. Ontological evaluation of the UML
using the Bunge-Wand-Weber model. Software and Systems Modeling,
Vol. 1, No. 1, 43-67.

Opdahl, A., Henderson-Sellers, B. & Barbier, F. 2001b. Ontological analysis of
whole-part relationships in OO-models. Information and Software
Technology, Vol. 43, No. 6, 387-399.

Opdahl, A. & Sindre, G. 1994. A taxonomy for real-world modeling concepts.
Information Systems, Vol. 19, No. 3, 229-241.

Orlikowski, W. 1996. Improvising organizational transformation over time: a
situated change perspective. Information Systems Research, Vol. 7, No. 1,
63-92.

Orlikowski, W. & Baroudi, J. 1991. Studying information technology in
organizations: research approaches and assumptions. Information Systems
Research, Vol. 2, No. 1, 1-28.

629

Orlikowski, W. & Yates, J. 1994. Genre repertoire: the structuring of
communicative practices in organizations. Administrative Science
Quarterly, Vol. 39, No. 4, 541-574.

Orr, J. 1993. Ethnography and organizational learning: In pursuit of learning at
work. In C. Zucchermaglio & S. Stucky (Eds.) The NATO Advanced
Research Workshop on Organizational Learning and Technical Change.
Berlin: Springer-Verlag, 47-60.

Ouchi, W. 1981. Theory Z. Reading: Addison-Wesley.
Padgham, L. & Taylor, G. 1997. A system for modeling agents having emotion

and personality. In L. Cavedon, A. Rao & W. Wobcke (Eds.) Intelligent
Agent Systems. LNAI 1209, Berlin: Springer-Verlag, 59-71.

Paige, R. 1999. When are methods complementary. Information and Software
Technology, Vol. 41, No. 3, 157-162.

Palvia, P. & Nosek, J. 1993. A field examination of system life cycle techniques
and methodologies. Information & Management, Vol. 25, No. 2, 73-84.

Parker, C. S. 1989. Management information systems: strategy and action.
London: McGraw-Hill.

Parnas, D. 1972. A technique for software module specification with examples.
Comm. of the ACM, Vol. 15, No. 5, 330-336.

Parr, A. & Shanks, G. 2000. A model of ERP project implementation. Journal of
Information Technology, Vol. 15, No. 4, 289-303.

Parsons, J. & Wand , Y. 1993. Object-oriented systems analysis: a representation
view. Working Paper 93-MIS-001, The University of Bristish Colombia.

Parsons, J. & Wand, Y. 1997. Choosing classes in conceptual modeling. Comm.
of the ACM, Vol. 40, No. 6, 63-69.

Parsons, J. & Wand, Y. 2000. Emancipating instances from the tyranny of classes
in information modeling. ACM Transactions on. Database Systems, Vol.
25, No. 2, 228-268.

Paulk, M., Curtis, B., Chrissis, M. & Weber, C. 1993. Capability maturity model,
version 1.1. IEEE Software, Vol. 10, No. 4, 8-27.

Paulson, D. & Wand, Y. 1992. An automated approach to information systems
decomposition. IEEE Trans. on Software Engineering, Vol. 18, No. 3, 174-
189.

Peckham, J. & Maryanski, F. 1988. Semantic data models. ACM Computing
Surveys, Vol. 20, No. 3, 153-189.

Peirce, C. 1955. Philosophical writings of Peirce, edited by J. Buchle. New York:
Dover.

Peirce, C. 1991. The essential Peirce, Vol. 1, edited by N. Houser & C. Kloesel.
Bloomington: Indiana University Press.

Penco, C. 1999. Objective and cognitive context. In P. Bouquet, L. Serafini, P.
Brezillon, M. Benerecetti & F. Castellani (Eds.) Proc. of the Second
International and Interdisciplinary Conf. on Modeling and Using Context
(CONTEXT’99). LNAI 1688, Berlin: Springer-Verlag, 270-283.

630

Peristeras, V. & Tarabanis K. 2000. Towards an enterprise architecture for public
adminstration using a top-down approach. European Journal of
Information Systems, Vol. 9, No. 4, 252-260.

Peters, P., Mandelbaum, M. & Jarke, M. 1996. Simulation-based method
engineering in faderated organizations. In S. Brinkkemper, K. Lyytinen, R.
Welke (Eds.) Proc. of the IFIP TC8, WG8.1/8.2 Working Conf. on Method
Engineering: Principles of Method Construction and Tool Support.
London: Chapman & Hall, 246-262.

Pfleeger, S. & Hatton, L. 1997. Investigating the influence of formal methods.
IEEE Computer, Vol. 30, No.2, 33-43.

Phalp, K. 1998. The CAP framework for business process modeling. Information
and Software Technology, Vol. 40, No.13, 731-744.

Pijl van der, G., Swinkels, G. & Verrijdt, J. 1997. ISO 9000 versus CMM:
standardization and vertification of IS development. Information &
Management, Vol. 32, No. 6, 267-274.

Pirotte, A. & Massart, D. 2004. Integrating two descriptions of taxonomies with
materialization. Journal of Object Technology, Vol. 3, No. 5, 143-149.

Pirotte, A., Zimanyi, E., Massart, D. & Yakusheva, T. 1994. Materialization: a
prowerful and ubiquitous abstraction pattern. In J. Bocca, M. Jarke M. & C.
Zaniolo (Eds.) Proc. of the 20th Int. Conf. on Very Large Data Bases
(VLDB’94). San Mateo: Morgan Kaufmann, 630-641.

Platt, J. 1971. Grammatical form and grammatical meaning: a tagmemic view of
Fillmore’s deep structure case concepts. Amsterdam: North-Holland.

Pohl, K. 1993. The three dimensions of requirements engineering. In C. Rolland,
F. Bodart & C. Cauvet (Eds.) Proc. of the 5th Int. Conf. on Advanced
Information Systems Engineering (CAiSE’93). LNCS 685, Berlin: Springer-
Verlag, 275-292.

Pohl, K. 1994. The three dimensions of requirements engineering: a framework
and its application. Information Systems, Vol. 19, No. 3, 243-258.

Pohl, K. 1996. Process-centered requirements engineering. New York: John
Wiley Research Science Press.

Pohl, K., Dömges, R. & Jarke, M. 1997. Towards method-driven trace capture. In
A. Olive & J. Pastor (Eds.) Proc. of the 9th Int. Conf. on Advanced
Information Systems Engineering (CAiSE’97). Berlin: Springer, 103-116.

Pohl, K., Weidenhaupt, K., Bömges, R., Haumer, P., Jarke, M. & Klamma, R.
1999. PRIME – towards process-integrated modeling environments. ACM
Trans. on Software Engineering and Methodologies, Vol. 8, No. 4, 343-410.

Polo, M., Piattini, M. & Ruiz, F. 2002. Using a qualitative research method for
building a software maintenance methodology. Software – Practice and
Experience, Vol. 32, No. 13, 1239-1260.

Potter, W. & Kerschberg, L. 1988. A unified approach to modeling knowledge
and data. In R. Meersman & A: Sernadas (Eds.) Data and Knowledge (DS-
2). Amsterdam: North-Holland, 265-291.

631

Potts, C. 1989. A generic model for representing design methods. In Proc. of the
11th International Conference on Software Engineering. Los Alamitos:
IEEE Computer Society Press, 217-226.

Prakash, N. 1997. Towards a formal definition of methods. Requirements
Engineering, Vol. 2, No. 1, 23-50.

Prakash, N. 1999. On method statics and dynamics. Information Systems, Vol.
24, No. 8, 613-637.

Prevelakis, V. & Tsichritzis, D. 1993. Perspectives on software developments. In
C. Rolland, F. Bodard & C. Cauvet (Eds.) Proc. of the 5th Int. Conf. on
Advanced Information Systems Engineering (CAiSE’93). LNCS 685,
Berlin: Springer-Verlag, 586-600.

Punter, T. & Lemmen, K. 1996. The MEMA-model: towards a new approach for
methods engineering. Journal of Information and Software Technology,
Vol. 38, No. 4, 295-305.

Päivärinta, T. 2002. Comparison of the genre-based ISD approach to 11 others.
In T. Halpin, K. Siau & J. Krogstie (Eds.) Proc. of 7th CaiSE/IFIP WG8.1
International Workshop on Evaluation of Modelling Methods in Systems
Analysis and Design (EMMSAD’02), 109-120.

Quine, W. 1953a. “On what there is”, reprinted in Quine (1953b), 1-19.
Quine, W. 1953b. From a logical point of view. Cambridge: Harward University

Press.
Raccah, P. 1997. Science, language, and situation. In Proc. of the 2nd European

Conf. on Cognitive Science, Workshop on Context (ECCS’97).
Raelin, J. A. 2001. Public reflection as the basis of learning. Management

Learning, Vol. 32, No. 1, 11-30.
Rahim, M., Seyal, A. & Rahman, M. 1998. Use of software systems development

methods – an empirical study in Brunei Darussalam. Information and
Software Technology, Vol. 39, No. 13, 949-963.

Ralyte, J. 2002. Requirements definition for the situational method engineering.
In C. Rolland, S. Brinkkemper & M. Saeki (Eds.) Proc. of IFIP TC8 / WG8.1
Working Conference on Engineering Information Systems in the Internet
Context. Dordrecht: Kluvert Academic Publisher, 127-152.

Ralyte, J., Deneckere, R. & Rolland, C. 2003. Towards a generic model for
situational method engineering. In J. Eder & M. Missikoff (Eds.) Proc. of
the 15th Int. Conf. on Advanced Information Ssystems Enginering
(CAiSE’03). LNCS 2681, Berlin: Springer-Verlag, 95-110.

Ralyte, J. & Rolland, C. 2001. An assembly process model for method
engineering. In K. Dittrich, A. Geppert & M. Norrie M. (Eds.) Proc. of
the13th Int. Conf. on Advanced Information Systems Engineering
(CAiSE’01). LNCS 2001, Berlin: Springer-Verlag, 267-283.

Ramackers, G. 1994. Integrated object modeling, an executable specification
framework for business analysis and information system design.
Amsterdam: Thesis Publishers, The Netherlands, Dissertation Thesis.

Ramackers, G. & Verrign-Stuart, A. 1990. First and second order dynamics in
information systems. In H. G. Sol & K. M. van Hee (Eds.) Proc. of the

632

International Working Conf. on Dynamic Modelling of Information
Systems. TU-Delf, Department of Information Systems.

Ramesh, B. & Dhar, V. 1992. Supporting systems development by capturing
deliberations during requirements enginerering. IEEE Trans. on Software
Engineering, Vol. 18, No. 6, 498-510.

Ramesh, B. & Jarke, M. 2001. Towards reference models for requirements
traceability. IEEE Trans. on Software Engineering, Vol. 27, No. 1, 58-93.

Ramesh, R. & Whinston, A. 1994. Claims, arguments, and decisions: formalism
for representation, gaming, and coordination. Information Systems
Research, Vol. 5, No. 3, 294-325.

Randell, D. & Cohn, A. 1989. Modelling topological and metrical properties in
physical processes. In R. Brachman, H. Levesque & R. Reiter R. (Eds.)
Proc. of the First Int. Conf. on Principles of Knowledge Representation and
Reasoning. San Mateo: Morgan Kaufmann, 357-368.

Reese, W. 1980. Dictionary of philosophy and religion. Atlantic Highlands, NJ:
Humanities Press.

Rettig, M. & Simons, G. 1993. A project planning and development process for
small teams. Comm. of the ACM, Vol. 36, No. 10, 45-55.

Rittel, H. & Webber, M. 1984. Planning problems are wicked problems. In N.
Cross (Ed.) Developments in Design Methodologies. New York: John
Wiley & Sons.

Roberts, T., Gibson, M., Fields, K. & Rainer, R. 1998. Factors that impact
implementing a system development methodology. IEEE Trans. on
Software Engineering, Vol. 24, No. 8, 640-649.

Roberts, T., Leigh, W., Purvis, R. & Parzinger, M. 2001. Utilizing knowledge
links in the implementation of system development methodologies.
Information and Software Technology, Vol. 43, No. 11, 635-640.

Robey, D. 1984. Conflict models for implementation research. In R. Schultz
(Ed.), Management Science Implementation. New York: American
Elsevier.

Rodrigues, A. & Willians, T. 1997. System dynamics in software project
management: towards the development of a formal integrated framework.
European Journal of Information Systems, Vol. 6, No. 1, 51-66.

Rolland, C., Nurcan, S. & Grosz, G. 2000. A decision making pattern for guiding
the enterprise knowledge development process. Information and Software
Technology, Vol. 42, No. 5, 313-331.

Rolland, C. & Prakash, N. 1996. A proposal for context-specific method
engineering. In S. Brinkkemper, K. Lyytinen & R. Welke (Eds.) Proc. of the
IFIP TC8, WG8.1/WG8.2 Working Conf. on Method Engineering:
Principles of Method Construction and Tool Support. London: Chapman
& Hall, 191-208.

Rolland, C., Prakash N. & Benjamen, A. 1999. A multi-model view of process
modeling. Requirements Engineering, Vol. 4, No. 4, 169-187.

Rolland, C. & Proix, C. 1992. A natural language approach for requirements
engineering. In P. Loucopoulos (Ed.) Proc. of 4th Int. Conf. on Advanced

633

Information Systems Engineering (CAiSE’92). LNCS 593, Berlin: Springer-
Verlag, 257-277.

Rolland, R., Souveyet, C. & Ben Achour, C. 1998. Guiding goal modeling using
scenarios. IEEE Trans. on Software Engineering, Vol. 24, No. 12, 1055-1071.

Rolland, C., Souveyet, C. & Moreno, M. 1995. An approach for defining ways-
of-working. Information Systems, Vol. 20, No. 4, 337-359.

Rosch, E. 1978. Principles of categorization. In E. Rosch & B. Lloyd (Eds.)
Cognition and Categorization. Hillsdale, NJ: Erlbaum, 27-48.

Rose, T. & Jarke, M. 1990. A decision-based configuration process model. In
Proc. of the 12th Int. Conf. on Software Engineering. Los Alamitos: IEEE
Computer Society Press, 316-325.

Rosemann, M. & Green, P. 2002. Developing a meta model for the Bunge-
Wand-Weber ontological constructs. Information Systems, Vol. 27, No. 2,
75-91.

Rosemann, M. & zur Muchlen, M. 1997. Evaluation of workflow management
systems – a meta model approach. In K. Siau, Y. Wand & J. Parsons (Eds.)
Workshop on Evaluation of Modelling Methods in Systems Analysis and
Design (EMMSAD’97).

Rosis De, F. & Pizzutilo, S. 1998. Formal description and evaluation of user-
adapted interfaces. International Journal of Human-Computer Studies,
Vol. 49, No. 2, 95-120.

Rossi, M. 1996. Evolution of OO methods: the unified case. In K. Siau & Y.
Wand (Eds.) Proc. of the Workshop on Evaluation of Modelling Methods
in Systems Analysis and Design (EMMSAD’96).

Rossi, M., Lyytinen, K., Ramesh, B. & Tolvanen, J.-P. 2005. Managing
evolutionary method enginering by method rationale. Journal of the
Association of Information Systems (JAIS), forthcoming.

Royce, W. 1970. Managing the development of large software system: Concepts
and techniques. In Proc. of 9th Int. Conf. on Software Engineering. IEEE
Computer Society Press, 1-9.

Rubenstein-Montano, B., Liebowitz, J., Buchwalter, J., McCaw, D., Newman, B.
& Rebeck K. 2001. The Knowledge Management Methodology Team, A
system thinking framework for knowledge management. Decision
Support Systems, Vol. 31, No. 1, 5-16.

Ruiz, F., Vizcaino, A., Piattini, M. 2004. Garcia, F., An ontology for the
management of software maintenance projects. International Journal of
Software Engineering and Knowledge Engineering, Vol. 14, No. 3, 323-
349.

Rumbaugh, J. 1995. What is a method, Journal of Object-Oriented
Programming, Vol. 8, No. 6, 10-16, 26.

Russo, N., Hightower, R. & Pearson, J. 1996. The failure of methodologies to
meet the needs of current development environments In N. Jayaratna & B.
Fitzgerald (Eds.) Proc. of the 4th Conf. on Information Systems
Methodologies: Lessons Learned from the Use of Methodologies, 387-394.

Russo, N., Wynekoop, J. & Walz, D. 1995. The use and adaptation of system
development methodologies. In M. Khosrowpour (Ed.) Managing

634

Information & Communications in a Changing Global Environment, Proc.
of International Conf. of International Resources Management Association
(IRMA), Atlanta, Idea Group Publishing.

Ryan, K., Kronlöf, K. & Sheehan, A. 1996. Method integration. In N. Jayaratna &
Fitzerald B. (Eds.) Proc. of the 4th Conf. on Information System
Methodologies: Lessons Learned from the Use of Methodologies. London:
British Computer Society, 235-246.

Rzevski, G. 1983. On the comparison of design methodologies. In T. Olle, H. Sol
& C. Tully (Eds.) Information Systems Design Methodologies – A Feature
Analysis. Amsterdam: North-Holland, 259-266.

Saarinen, T. 1990. System development methodology and project success.
Information and Management, Vol. 19, No. 3, 183-193.

Sabherwal, R. & Robey, D. 1993. An empirical taxonomy of implementation
processes based on sequences of events in information system
development. Organization Science, Vol. 4, No. 4, 548-576.

Sabherwal, R. & Robey, D. 1995. Reconciling variance and process strategies for
studying information system development. Information Systems Research,
Vol. 6, No. 4, 303-327.

Saeki, M. 1998. A meta-model for method integration. Information and Software
Technology, Vol. 39, No. 14, 925-932.

Saeki, M. 2003. Embedding metrics into information systems development
methods: an application of method engineering technique. In J. Eder & M.
Missikoff (Eds.) Proc. of the 15th Int. Conf. on Advanced Information
Systems Engineering (CAiSE 2003). LNCS 2681, Berlin: Springer, 374-389.

Saeki, M., Iguchi, K., Wen-yin, K. & Shinokara M. 1993. A meta-model for
representing software specification & design methods. In N. Prakash, C.
Rolland & B. Pernici (Eds.) Proc. of the IFIP WG8.1 Working Conf. on
Information Systems Development Process. Amsterdam: North-Holland,
149-166.

Saeki, M. & Wen-Yin, K. 1994. Specifying software specification & design
methods. In G. Wijers, S. Brinkkemper & S. Wasserman (Eds.) Proc. of the
6th Int. Conf. on Advanced Information Systems Engineering (CAiSE’94).
Berlin: Springer-Verlag, 353-366.

Sage, A. P. & Palmer J. D. 1990. Software systems engineering. New York: John
Wiley & Sons.

Sakai, H. 1983. A method for entity-relationship behavior modeling. In C. G.
Davis, S. Jajodia, P. A. Ng & R. T. (Eds.) Entity-Relationship Approach to
Software Engineering. Amsterdam: North-Holland, 113-129.

Saksena, M., France, R. & Larrondo-Petric, M. 1998. A characterization of
aggregation. In C. Rolland & G. Grosz (Eds.) Proc. of 5th Int. Conf. on
Object-Oriented Information Systems (OOIS’98). Berlin: Springer, 11-19.

Sasso, W. 1984. The task analysis methodology: a procedure for office analysis.
Technical Report, Human-Computer Interaction Lab, University of
Michigan.

635

Saussure de, F. 1931. Grundlagen der allgemeinen Sprachwissenshaft. Berlin: de
Gruyter.

Savolainen, V. 1999. Technical specification of an information system. In V.
Savolainen (Ed.) Perspective of Information Systems. Berlin: Springer
Verlag, 111-125.

Schank, R. 1973. Identification of conceptualizations underlying natural
language. In R. Schank & K. Colby (Eds.) Computer Models of Thought
and Language. San Francisco: Freeman, 187-247.

Scheer, A.-W. 1998. Business process engineering, Reference models for
industrial enterprises. Berlin: Springer-Verlag.

Schipper, M. & Joosten, S. 1996. A validation procedure for information systems
modeling techniques. In K. Siau & Y. Wand (Eds.) Proc. of the Workshop
on Evaluation of Modelling Methods in Systems Analysis and Design
(EMMSAD’96).

Schmitt, J.-R. 1993. Product modeling for requirements engineering process
modeling. In N. Prakash, C. Rolland & B. Pernici (Eds.) Proc. of the IFIP
WG8.1 Working Conf. on Information System Development Process.
Amsterdam: North-Holland, 231- 246.

Schoebbens, P. 1993. Exceptions in algebraic specifications: on the meaning of
“but”. Science of Computer Programming, Vol. 20, No. 1-2, 73-111.

Schrefl, M., Tjoa, A. & Wagner, R. 1984. Comparison-criteria for semantic data
models. In J. K. Aggarwal (Ed.) Proc. of the First Intenartional Conf. on
Data Engineering (ICDE 1984), 120-125.

Schuster, G. & Stuckenschmidt, H. 2001. Building shared ontologies for
terminology integration. In G. Stumme, A. Maedche & S. Staab (Eds.)
Workshop on Ontologies (ONTO’2001).

Schön, D. 1983. The reflective practitioner – How professionals think in action?
New York: Basic Books.

Schönström, M. & Carlsson, S. 2003. Methods as knowledge enablers in
software development organizations. In Proc of the 11th European
Conference of Information Systems (ECIS 2003), Naples.

Sciore, E. 1989. Object specialization. ACM Trans. on Information Systems, Vol.
7, No. 2, 103-122.

Searle, J. 1969. Speech acts – an essay in the philosophy of language. New York:
Cambridge University Press.

Searle, J. 1979. Expression and meaning. New York: Cambridge University
Press.

Searle, J. & Vanderveken D. 1985. Foundations of illocutionary logic. New York:
Cambridge University Press.

Serour, M., Henderson-Sellers, B., Hughes, J., Winder, D. & Chow, L. 2002.
Organizational transition to object technology: theory and practice. In Z.
Bellahsene, D. Patel & C. Rolland (Eds.) Proc. of the 8th Int. Conf. on
Object-Oriented Information Systems (OOIS’02). LNCS 2425, Berlin:
Springer-Verlag, 229-241.

636

Shanaham, M. 1995. Default reasoning about spatial occupancy. Artificial
Intelligence, Vol. 74, No. 1, 147-163.

Shank, G., Tansley, E. & Weber R. 2003. Using ontology to validate conceptual
models. Comm. of the ACM, Vol. 46, No. 10, 85-89.

Sharfstein, B.-A. 1989. The dilemma of context. New York: New York University
Press.

Shehory, O. & Sturm A. 2001. Evaluation of modeling techniques for agent-
based systems. In Proc. of the 5th Int. Conf. on Autonomous Agents
(AGENTS’01). Montreal, Canada: ACM Press, 624-631.

Shepard, T., Wortley, C. & Sibbald S. 1992. A visual software process language.
Comm. of the ACM, Vol. 35, No. 4, 37-44.

Shoham, Y. 1987. Temporal logics in AI: semantical and ontological
considerations. Artificial Intelligence, Vol. 33, No. 1, 89-104.

Short, K. 1991. Methodology integration: evolution of information engineering.
Information and Software Technology, Vol. 33, No. 9, 720-732.

Shoval, P. 1996. Experimental comparisons of entity-relationship and object-
oriented data models. In K. Siau & Y. Wand (Eds.) Proc. of the Workshop
on Evaluation of Modelling Methods in Systems Analysis and Design
(EMMSAD’96), Crete, Creece.

Shoval, P. & Shiran S. 1997. Entity-relationship and object-oriented data
modeling – an experimental comparison of design quality. Data &
Knowledge Engineering, Vol. 21, No. 3, 297-315.

Shubik, M. 1979. Computers and modeling. In M. Dertouzos & J. Moses (Eds.)
The Computer Age: a Twenty Year View. Cambridge, MA: MIT Press, 285-
305.

Simmons, R. 1973. Semantic networks: their computation and use for
understanding English sentences. In R. Schank & K. Colby (Eds.)
Computer Models of Thought and Language. San Francisco: Freeman, 63-
113.

Simon, H. 1960. The new science of management decisions. New York: Harper
& Row.

Simon, H. 1996. The sciences of the artificial. 3rd edition, Cambridge: MIT Press.
Sinha, A. & Vessey I. 1995. End-user data modeling: an ontological evaluation

of relational and object-oriented schema diagrams. Working Paper,
Indiana: Indiana University.

Sisk, H. 1973. Management and organization. Cincinnati: South Western Pub.
Co., International Business and Management Series.

Skidmore, S., Farmer R. & Mills, G. 1992. SSADM Version 4 – Models &
Methods. NCC Blackwell.

Slooten van, K. 1995. Situated methods for systems development. Enschede,
University of Twente, Dissertation Thesis.

Slooten van, K. & Brinkkemper, S. 1993. A method engineering approach to
information systems development. In N. Prakash, C. Rolland & B. Pernici
(Eds.) Proc. of the IFIP WG8.1 Working Conf. on Information Systems
Development Process. Amsterdam: North-Holland, 167-188.

637

Slooten van, K. & Hodes, B. 1996. Characterizing IS development projects. In S.
Brinkkemper, K. Lyytinen & R. Welke (Eds.) Proc. of the IFIP TC8
WG8.1/WG8.2 Working Conf. on Method Engineering: Principles of
Method Construction and Tool Support. London: Chapman & Hall, 29-44.

Slooten van, K. & Schoonhoven, B. 1994. Towards contingent information
systems development approaches. In J. Zupancic & S. Wrycza (Eds.) Proc.
of the 4th Int. Conf. on Information Systems Development (ISD-94), 242-
253.

Smith, F. & Medin, A. 1981. Categories and concepts. Cambridge: Harward
University Press.

Smith, J. & Smith, D. 1977a. Database abstraction: aggregation. Comm. of the
ACM, Vol. 20, No. 6, 405-413.

Smith, J. & Smith, D. 1977b. Database abstraction: aggregation and
generalization. ACM Trans. on Database Systems, Vol. 2, No. 2, 105-133.

Smith, W. 1988. Concepts and thoughts. In R. Sternberg & E. Smith (Eds.) The
Psychology of Human Thought. Cambridge: Cambridge University Press.

Smolander, K. 1991. OPRR: a model for modeling systems development
methods. In K. Lyytinen & V.-P. Tahvanainen (Eds.) Next Generation
CASE Tools. IOS Press.

Smolander, K., Tahvanainen, V.-P. & Lyytinen, K. 1990. How to combine tools
and methods in practice – a field study. In B. Steinholtz, A. Sölvberg & L.
Bergman (Eds.) Proc. of the 2nd Nordic Conference CAiSE’90. Berlin:
Springer-Verlag, 195-211.

Snoek, M. & Dedene, G. 2001. Core modeling concepts to define aggregation.
L’Objet Software, Databases, Networks, Vol. 7, No. 1.

Snook, C. & Harrison, R. 2001. Practitioners’ views on the use of formal
methods: an industrial survey by structured interviews. Information and
Software Technology, Vol. 43, No. 4, 275-283.

Soffer, P., Golany, B., Dori, D. & Wand, Y. 2001. Modelling off-the-shelf
information systems requirements: an ontological approach. Requirements
Engineering, Vol. 6, No. 3, 183-199.

Sol, H. 1983. A feature analysis of information systems design methodologies:
methodological considerations. In T. Olle, H. Sol. & C. Tully (Eds.)
Information Systems Design Methodologies: a Feature Analysis.
Amsterdam: North-Holland, 1-8.

Sol, H. 1992. Information systems development: a problem solving approach. In
W. Cotterman & J. Senn (Eds.). Challenges and Strategies for Research in
Systems Development. New York: John Wiley & Sons, 151-161.

Sol, H. & Crosslin R.L. (Eds.) 1992. Dynamic Modelling of Information Systems
II. Amsterdam: North-Holland.

Sommerville, I. 1998. Software engineering. 5th edition. Reading: Addison-
Wesley Longman.

Somogyi, E. & Galliers R. 1987. From data processing to strategic information
systems – a historical perspective. In E. Somogyi & R. Galliers (Eds.)
Towards Strategic Information Systems. Tunbridge Wells, UK: Abacus
Press, 2-25.

638

Song, X. 1997. Systematic integration of design methods. IEEE Software, Vol. 14,
No. 2, 107-117.

Song, X. & Osterweil, L. 1992. Towards objective, systematic design-method
comparison. IEEE Software, Vol. 9, No. 3, 43-53.

Sorenson, P., Tremblay, J.-P. & McAllister, A. 1988. The Metaview system for
many specification environments. IEEE Software, Vol. 5, No. 2, 30-38.

Sowa, J. 1976. Conceptual graphs for data base interface. IBM Journal of
Research and Development, Vol. 20, No. 4, 336-357.

Sowa, J. 1984. Conceptual structures: Information processing in minds and
machines. Reading: Addison-Wesley.

Sowa, J. 1995. Top-level ontological categories. International Journal of Human-
Computer Studies, Vol. 43, No. 5-6, 669-685.

Sowa, J. 2000. Knowledge representation – logical, philosophical, and
computational foundations. Pacific Grove, CA: Brooks/Cole.

Sowa, J. & Zachman J. 1992. Extending and formalizing the framework for
information system architecture. IBM Systems Journal , Vol. 31, No. 3, 590-
616.

Srinivas, K., 1997. How is context represented in implicit and explicit memory.
In Proc. of the 2nd European Conf. on Cognitive Science (ECCS’97),
Worskhop on Context.

Staab, S., Schnurr, H.P., Studer, R. & Sure, Y. 2001. Knowledge prosesses and
ontologies. IEEE Intelligent Systems, Vol. 16, No. 1, 26-34.

Stachowitz, R. 1985. A formal framework for describing and classifying
semantic data models. Information Systems, Vol. 10, No. 1, 77-96.

Stamper, R. 1973. Information in business and administrative systems. New
York: Wiley & Sons.

Stamper, R. 1975. Information science for systems analysis. In E. Mumford & H.
Sackman (Eds.) Human Choice and Computers. Amsterdam: North-
Holland, 107-120.

Stamper, R. 1978a. Towards a semantic model for the analysis of legislation.
Research Report L17, London School of Economics.

Stamper, R. 1978b. Aspects of data semantics: names, species and complex
physical objects. In G. Bracchi & P. Lockemann (Eds.) Information Systems
Methodology. Berlin: Springer-Verlag, 291-306.

Stamper, R. 1988. Analysing the cultural impact of a system. International
Journal of Information Management, Vol. 8, No. 3, 107-122.

Stamper, R. 1992a. Language and computing in organized behaviour. In R. van
de Riet & R. Meersman (Eds.) Linguistic Instruments in Knowledge
Engineering. Amsterdam: North-Holland, 143-163.

Stamper, R. 1992b. Signs, organizations, norms and information systems. In
Proc. of the 3rd Australian Conf. on Information Systems. Department of
Business Systems, Univ. of Wollongong, Australia, 21-65.

Stamper R. 1996. Signs, information, norms and information systems. In B.
Holmqvist, P. Andersen, H. Klein & R. Posner (Eds.) Signs are Work:

639

Semiosis and Information Processing in Organisations. Berlin: De Gruyter,
349-392.

Stamper, R. 1999. Information systems as a social science: an alternative to the
Frisco fomalism. In E. Falkenberg, K. Lyytinen & A. Verrijn-Stuart (Eds.)
Proc. of IFIP WG8.1 Int. Working Conf. on Information System Concepts:
An Integrated Discipline Emerging. Dordrecht: Kluwert Academic
Publishers, 1-51.

Steenis van, H. 1990. How to plan, develop & use information systems – a guide
to human qualities and productivity. New York: Dorset House Pub.

Steinmann, F. 2000. On the representation of roles in object-oriented and
conceptual modeling. Data & Knowledge Engineering, Vol. 35, No. 1, 83-
106.

Stolterman, E. 1992. How system designers think about design and methods:
some reflections based on an interview study. Scandinavian Journal of
Information Systems, Vol. 4, No. 1, 137-150.

Stolterman, E. 1994. The ‘transfer of rationality’, acceptability, adaptability and
transparency of methods. In W. Baets (Ed.) Proc. of Second European
Conf. on Information Systems (ECIS’94). Breukelen: Nijenrode University
Press, 533-540.

Stowell, F. 1991. Towards client-led development of information systems.
Journal of Information Systems, Vol. 1, No. 3, 173-189.

Strauss, A. 1978. Negotiations: varieties, contexts, processes, and social order.
San Francisco: Jossey-Bass.

Sturm, A. & Shehory, O. 2004. A Framework for evaluating agent-oriented
methodologies. In P. Giorgini, B. Henderson-Sellers & M. Winikoff (Eds.)
Proc. of the Fifth Int. Bi-Conference on Agent-Oriented Information
Systems (AOIS 2003). LNCS 3030, Berlin: Springer-Verlag, 95-111.

Su, X. & Ilebrekke, L. 2002. A comparative study of ontology languages and
tools. In A. Banks Pidduck, Mylopoulos, C. Woo & T. Ozsu (Eds.) Proc. of
the 14th Int. Conf. on Advanced Information Systems Engineering
(CAiSE’2002). Berlin: Springer-Verlag, 761-765

Sugumaran, V. & Storey V. 2002. Ontologies for conceptual modeling: their
creation, use, and management. Data & Knowledge Engineering, Vol. 42,
No. 3, 251-271.

Sumner, M. & Sitek J. 1986. Are structured methods for systems analysis and
design beign used? Journal of Systems Management, Vol. 4, No. 2, 18-27

Sungren B. 1975. Theory of data bases. New York: Petrocelli/Charter.
Sutcliffe, A. 1996. A conceptual framework for requirements engineering.

Requirements Engineering, Vol. 1, No. 3, 170-189.
Sutcliffe, A. 2000. Domain analysis for software reuse. The Journal of Systems

and Software, Vol. 50, No. 3, 175-199.
Swartout, B., Ramesh, P., Knight, K. & Russ, T. 1997. Toward distributed use of

large-scale ontologies. In A. Farquhar & M. Gruninger (Eds.) Proc. of
AAAI Symposium on Ontological Engineering. Stanford, Technical Report
SS-97-06.

640

Swede van, V. & van Vliet, J. 1993. A flexible framework for contingent
information systems modeling. Information and Software Technology,
Vol. 35, No. 9, 530-548.

Söderström, E., Andersson, B., Johannesson, P., Perjons, E. & Wangler, B. 2002.
Towards a framework for comparing process modeling languages. In A.
Banks Pidduck, J. Mylopoulos, C. Woo & T. Ozsu (Eds.) Proc. of the 14th
Intern Conf on Advanced Information Systems Engineering (CAiSE’2002).
Berlin: Springer-Verlag, 600-611.

Tardieu, H. 1992. Issues for dynamic modelling through recent development in
European methods. In H. Sol & R. Crosslin (Eds.) Dynamic Modelling of
Information Systems II. Amsterdam: North-Holland, 3-23.

Teichroew, D. & Heshey, E. 1977. PSL/PSA: A computer-aided technique for
structured documention and analysis of information processing systems.
IEEE Transactions on Software Engineering, Vol. 3, No. 1, 41-48.

Teichroew, D., Macasovic, P., Hershey, E. & Yamato, Y. 1980. Application of the
Entity-Relationship Approach to information processing systems
modeling. ISDOS-project, The University of Michigan.

Thayer, R. 1987. Software engineering project management – a top-down view.
In R. Thayer (Ed.) Tutorial: Software Engineering Project Management.
IEEE Computer Society Press, 15-56.

Thomas, I. & Nejmeh B. 1992. Definitions of tool integration for environments.
IEEE Software, Vol. 9, No. 2, 29-35.

Thomson, I. 1990. SSADM: the last word. Government Computing, Vol. 4, No.
5, 28-29.

Tiles, J. 1981. Things that happen. Aberdeen University Press, Great Britain.
Tollow, D. 1996. Experiences of the pragmatic use of structured methods in

public sector projects. In N. Jayaratna & B. Fitzgerald (Eds.) Proc. of the 4th
Conf. on Information System Methodologies: Lessons Learned from the
Use of Methodologies. London: British Computer Society, 177-186.

Tolvanen, J.-P. 1995. Incremental method development for business modeling:
an action reearch case study. In G. Grosz (Ed.) Proc. of the 6th Workshop
on Next Generation CASE Tools, University of Paris, 79-98.

Tolvanen, J.-P. 1998. Incremental method engineering with modeling tools –
Theoretical principles and empirical evidence. Jyväskylä Studies in
Computer Science, Economics and Statistics, No. 47, University of
Jyväskylä, Finland, Dissertation Thesis.

Tolvanen, J.-P., Gray, J. & Rossi, M. (Eds.) 2003. Proc. of the 3rd OOPSLA
Workshop on Domain-Specific Modeling (DSM’03). Computer Science and
Information Systems Reports, Technical Repots TR-28, University of
Jyväskylä, Finland.

Tolvanen, J.-P. & Lyytinen, K. 1993. Flexible method adaptation in CASE – the
metamodeling approach. Scandinavian Journal of Information Systems,
Vol.5, 51-77.

Tolvanen, J.-P., Rossi, M. & Liu H. 1996. Method engineering: current research
directions and implications for future research. In S. Brinkkemper, K.

641

Lyytinen & R. Welke (Eds.) Proc. of the IFIP TC8, WG8.1/8.2 Working
Conf on Method Engineering. London: Chapman & Hall, 296-317.

Tolvanen, J.-P., Sprinkle, J. & Rossi, M. (Eds.) 2004. Proc. of the 4th OOPSLA
Workshop on Domain-Specific Modeling (DSM’04). Computer Science and
Information Systems Reports, Technical Repots TR-33, University of
Jyväskylä, Finland.

Tomiyama, T., Kiriyama, T., Takeda, H., Xue, D. & Yoshikaya, H. 1989.
Metamodel: a key to intelligent CAD systems. Research in Engineering
Development, Vol. 1, No. 1, 19-34.

Tracz, W., Coglianese, L. & Young, P. 1993. A domain-specific software
architecture engineering process outline. Software Engineering Notes, Vol.
18, No. 2, 40-49.

Tran, Q.-N., Low, G. & Williams, M.-A. 2003. A Feature Analysis Framework
for Evaluating Multi-agent System Development Methodologies. In N.
Zhong & Z. Ras, S. Tsumoto & E. Suzuki (Eds.) Proc. of the 14th Int.
Symposium of Foundations of Intelligent Systems (ISMIS 2003). Berlin:
Springer-Verlag, 613-617.

Truex, D., Baskerville, R. & Klein, H. 1999. Growing systems in emergent
organizations. Comm. of the ACM, Vol. 42, No. 8, 117-123.

Truex, D., Baskerville, R. & Travis, J. 2000. Amethodological systems
development: the deferred meaning of systems development methods.
Accounting, Management & Information Technology, Vol. 10, No. 1, 53-79.

Tsichritzis, D. & Lochovsky, F. 1982. Data models. Englewood Cliffs: Prentice-
Hall.

Tudor, D.J. & Tudor, I.J. 1995. Systems analysis & design: A comparison of
structured methods. Oxford: NCC Blackwell.

Tuikka, T. 2002. Towards computational instrumens for collaborating product
concept designers. University of Oulu, Finland: Oulu University Press,
Dissertation Thesis.

Tun, T. T. & Bielkowicz, P. 2003. A Critical Assessment of UML using an
Evaluation Framework. In K. Siau, T.Halpin & J. Krogstie (Eds.) Proc. of
the 8th CAiSE/IFIP8.1 International Workshop on Evaluation of Modeling
Methods in Systems Analysis and Design (EMMSAD’03), 29- 38.

Turski, W. & Maibaum, T. 1987. The specification of computer programs.
Workingham: Addison-Wesley.

Uschold, M. 1996. Building ontologies: towards a unified methodology. In Proc.
of 16th Annual Conf. of the British Computer Society Specialist Group on
Expert Systems. Cambridge, UK.

Uschold, M. & Gruninger, M. 1996. Ontologies: principles, methods and
applications. Knowledge Engineering Review, Vol. 11, No. 2, 93-155.

Uschold, M. & King, M. 1995. Towards a methodology for building ontologies.
In Workshop on Basic Ontological Issues in Knowledge Sharing, held in
conjunction with IJCAI’95, Montreal, Canada.

Uschold, M., King, M., Maralee, S. & Zorgios, Y. 1998. The Enterprise Ontology.
The Knowledge Engineering Review, Vol. 13, No. 1, 31-89.

642

Varzi, A. 1996. Parts, wholes, and part-whole relations: The prospects of
mereotopology. Data & Knowledge Engineering, Vol. 20, No. 3, 259-286.

Vasconcelos de, F. & Werner, C. 1998. Organizing the software development
process knowledge: an approach based on patterns. International Journal
of Software Engineering and Knowledge Engineering, Vol. 8, No. 4, 461-
482.

Venable, J. 1993. CoCoA: A conceptual data modeling approach for complex
problem domains. State University of New York, Binghampton, USA,
Dissertation Thesis.

Verrijn-Stuart, A. 1989. Some reflections on the Namur conference on
information system concepts. In E. Falkenberg & P. Lindgreen (Eds.)
Information Systems Concepts: An In-Depth Analysis. Amsterdam: North-
Holland, ix-x.

Verrijn-Stuart, A. 1995. Business model representations. In E. Falkenberg, W.
Hesse W. & A. Olive (Eds.) Proc. of the IFIP WG8.1 Working Conf. on
Information System Concepts– Towards a Consolidation of Views.
London: Chapman & Hall, 266-281.

Verrijn-Stuart, A. & Ramackers, G. 1992. Model integration in information
planning tools. In P. Loucopoulos (Ed.) Proc. of the 4th Int. Conf. on
Advanced Information Systems Engineering (CAiSE’92). Berlin: Springer-
Verlag, 481-493.

Veryard, R. 1987. Information management: Implementing a methodology.
Information and Software Technology, Vol. 29, No. 9, 469-474.

Vessey, I. & Conger, S. 1994. Requirements specification: learning object,
process, and data methodologies. Comm. of the ACM, Vol. 37, No. 5, 102-
113.

Vidgen, R. 2002. Constructing a web information system development
methodology. Information Systems Journal, Vol. 12, No. 3, 247-261.

Vincent, P. & Sherwood-Smith, M. 1992. Streamlining office work, The OSSAD
Method. Le Bulletin de I’UATI, No. 2.

Vlasblom, G., Rijsenbrij, D. & Glastra, M. 1995. Flexibilization of the
methodology of system development. Information and Software
Technology, Vol. 37, No. 11, 595-607.

Vonk, R. 1990. Prototyping: the effective use of CASE technology. London:
Prentice-Hall.

Vygotsky, L. 1978. Mind in society: the development of higher psychological
processes. Compiled from several sources and edited by M. Cole M., V.
John-Steiner & S. Scribner, Harvard University Press.

Wagner, G. 1988. Implementing abstraction hierarchies. In C. Batini (Ed.) Proc.
of the 7th Int. Conf. on Entity-Relationship Approach. Amsterdam: North-
Holland, 267-300.

Walls, J., Widmeyer, G. & El Sawy, O. 1992. Building an information system
design theory for vigilant EIS. Information Systems Research, Vol. 3. No. 1,
36-59.

643

Wand, Y. 1988a. An ontological foundation for information systems design
theory. In B. Pernici & A. Verrijn-Stuart (Eds.) Proc. of the IFIP 8.4
Working Conf. on Office Information Systems: The Design Process.
Amsterdam: North-Holland, 201-222.

Wand, Y 1988b. A proposal for a formal model of objects. In W. Kim & F.
Lockhovsky (Eds.) Object-Oriented Concepts, Databases, and
Applications. Reading: Addison-Wesley, 537-559.

Wand, Y. 1996. Ontology as a foundation for meta-modelling and method
engineering. Journal of Information and Software Technology, Vol. 38, No.
4, 281-288.

Wand, Y., Monarchi, D., Parson, J. & Woo, C. 1995a. Theoretical foundations for
conceptual modeling in information systems development. Decision
Support Systems, Vol. 15, No. 4, 285-304.

Wand, Y., Storey, V. & Weber, R. 1999. An ontological analysis of the
relationship construct in conceptual modeling. ACM Trans. on Database
Systems, Vol. 24, No. 4, 494-528.

Wand, Y. & Weber, R. 1989. An ontological evaluation of systems analysis and
design methods. In E. Falkenberg & P. Lindgreen (Eds.) Proc. of the IFIP
TC8 /WG 8.1 Working Conference on Information Systems Concepts: an
In-Dept Analysis. Amsterdam: North-Holland, 79-107.

Wand, Y. & Weber, R. 1990a. An ontological model of an information system.
IEEE Trans. on Software Engineering, Vol. 16, No. 11, 1282-1292.

Wand, Y. & Weber, R. 1990b. Mario Bunge’s ontology as a formal foundation
for information systems concepts. In P. Weingartner & G. Dorn (Eds.)
Studies on Mario Bunge’s Treatise, Poznan Studies in the Philosophy of
the Science and the Humanities, Vol. 18, 123-150.

Wand, Y. & Weber, R. 1993. On the ontological expressiveness of information
systems analysis and design grammars. Journal of Information Systems,
Vol. 3, No. 4, 217-237.

Wand, Y. & Weber, R. 1995b. On the deep structure of information systems.
Information Systems Journal, Vol. 5, N. 3, 203-223.

Wang, X. & Chan, C. 2001. Ontology modeling using UML. In Y. Wang, S. Patel
& R. Johnston (Eds.) Proc. of 7th Int. Conf. on Object-Oriented Information
Systems (OOIS’2001). Berlin: Springer-Verlag, 59-70.

Wangler, B., Wohend, R. & Öhlund, S.-T. 1993. Business modeling and rule
capture in a CASE environment. In S. Brinkkemper & F. Harmsen (Eds.)
Proc. of the 4th Workshop on the Next Generation of CASE Tools.
University of Twente, 189-204.

Wartik, S. & Prieto-Diaz, R. 1992. Criteria for comparing reuse-oriented domain
analysis approaches. International Journal of Software Engineering and
Knowledge Engineering, Vol. 2, No. 3, 403-431.

Wastell, D. 1996. The fetish of technique: methodology as a social defence.
Information Systems Journal, Vol. 6, No. 1, 25-40.

644

Wastell, D. & Newman, M. 1993. The behavioral dynamics of information
systems development: a stress perspective. Accounting, Management &
Information Technology, Vol. 3, No. 2, 121-148.

Watson, H. & Wood-Harper, T. 1995. Methodology as metaphor: the practical
basis for multiview methodology. Information Systems Journal, Vol. 5,
No. 3, 225-231.

Weber, R. 1997. Ontological foundations of information systems. Australia:
Coopers and Lybrand.

Weber, R. & Zhang Y. 1996. An analytical evaluation of NIAM’s grammar for
conceptual schema diagrams. Information Systems Journal, Vol. 6, No. 2,
147-170.

Webster 1989. Webster’s Encyclopedic Unabridged Dictionary of the English
Language. New York: Gramercy Books.

Wegner, P. 1987. Dimensions of object based language design. In N. Meyrowitz
(Ed.) Proc. of Conf. on Object-Oriented Programming, Systems and
Languages (OOPSLA’87), SIGPLAN Notices, Vol. 22, No. 12, 168-182.

Weick, K. E. 1995. Sensemaking in organizations. California: Sage Publications.
Weide, B. & Defazio, S. 1993. A framework for modeling software engineering

processes. International Journal of Software Engineering and Knowledge
Engineering, Vol. 3, No. 3, 531-568.

Weinberger, H., Te’eni, D. & Frank, A. 2003. Ontologies of organizational
memory as a basis for evaluation. In Proc. of the 11th European Conf. of
Information Systems (ECIS 2003), Naples.

Welke, R. 1977. Current information system analysis and design approaches:
framework, overview, comments and conclusions for large – complex
information system education. In R. Buckingham (Ed.) Education and
Large Information Systems. Amsterdam: North-Holland, 149-166.

Welke, R. 1981. IS/DSS: DBMS support for information systems development.
ISRAM WP-8105-1.0, McMaster University, Hamilton.

Welke, R. 1982. Current work on a methodology-based theory of information
systems. In N. Björn-Andersen (Ed.) Towards Tools for Transition Systems
Design Methodologies, IFIP, Den Haag, 17-21.

Welke, R. 1988. The CASE repository. More than another database application.
Ann Arbor: MeaSystem Ltd..

Welke, R. & Konsynski, B. 1982. Technology, methodology & information
systems: a tripartite view. Data Base, Vol. 14, No. 1, 41-57.

White, J. 1982. A decision tool for assisting with the comprehension of large
software systems. In H.-J. Schneider & A. Wasserman (Eds.) Automated
Tools for Information System Design. Amsterdam: North-Holland, 49-65.

Wieringa, R. 1989. Three roles of conceptual models in information system
design and use. In E. Falkenberg & P. Lindgren (Eds.) Proc. of the IFIP
TC8/WG8.1 Working Conf. on Information Systems Concepts: An In-Dept
Analysis. Amsterdam: North-Holland, 31-52.

Wieringa, R. 1999. A survey of structured and object-oriented software
specification methods and techniques. ACM Computing Survey, Vol. 30,
No. 4, 459-527.

645

Wieringa, R., De Jong, W. & Spruit, P. 1995. Using dynamic classes and role
classes to model object migration. Theory and Practice of Object Systems,
Vol. 1, No. 1, 61-83.

Wieringa, R. & Dubois, E. 1998. Integrating semi-formal and formal software
specification techniques. Information Systems, Vol. 23, No. ¾, 159-178.

Wiggins, D. 1980. Sameness and substance. Oxford: Blackwell.
Wijers, G. 1991. Modelling support in information systems development. Delft

University of Technology, Amsterdam: Thesis Publishers, Dissertation
Thesis.

Wild, C., Maly, K. & Liu, L. 1991. Decision-based software development.
Software Maintenance: Research and Practice, Vol. 3, No. 1, 17-43.

Wilesky, R. 1983. Planning and understanding. Reading: Addision-Wesley.
Wilks, Y. 1977. Good and bad arguments about semantic primitives. D.A.I

Research Report No. 42, University of Essex.
Winston, M., Chaffin, R. & Hermann, D. 1987. A taxonomy of part-whole

relations. Cognitive Science, Vol. 11, No. 4, 417-444.
Woo, C. & Chang, M. 1992. An approach to facilitate the automation of semi-

structured and recurring negotiations in organizations. Journal of
Organizational Computing, Vol. 2, No. 1, 47-76.

Wood-Harper, A. & Fitzgerald, G. 1982. A taxonomy of current approaches to
systems analysis. The Computer Journal, Vol. 25, No. 1, 12-16.

Wooldridge, M. & Jennings, N. 1995. Intelligent agents: theory and practice.
The Knowledge Engineering Review, Vol. 2, No. 10, 115-152.

Wordsworth, J. 1996. Software engineering with B. Reading: Addison-
Wesley/Longman.

Wordsworth, J. 1999. Getting the best from formal methods. Information and
Software Technology, Vol. 41, No. 14, 1027-1032.

Workflow Management Coalition 1999. Terminology & Glossary, WFMC-TC-
1011, Feb-1999, version 3.0 [Referred on 14.11.2004]. Available at URL:
<http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.
pdf>.

Wright von, G. 1971. Explanation and understanding. London: Routledge &
Kegan Paul.

Wynekoop, J. & Russo, N. 1997. Studying system development methodologies:
an examination of research methods. Information Systems Journal, Vol. 7,
No. 1, 47-65.

Yadav, S., Shaw, N., Webb, L. & Sutcu, C. 2001. Comments on “Factors that
impact implementing a system development methodology”. IEEE Trans.
On Software Engineering, Vol. 27, No. 3, 279-281.

Yang, O., Halper, M., Geller, J. & Perl, Y. 1994. The OODB ownership
relationship. In D. Patel, Y. Sun & S. Patel (Eds.) Proc. of Conf. on Object-
Oriented Information Systems (OOIS’94). Berlin: Springer-Verlag, 278-291.

Yates, J. & Orlikowski, W. 1992. Genres of organizational communication: a
structurational approach to studying communication and media.
Academy of Management Review, Vol. 8, 299-326.

646

Yourdon, E. 1989. Modern structured analysis. Englewood Cliffs: Prentice-Hall.
Yourdon, E. & Constantine, L. 1979. Structured design: fundamentals of a

discipline of computer program and systems design. Englewood Cliffs:
Prentice Hall.

Yu, E. & Mylopoulos, J. 1995. From E-R to o”A-R” – modelling strategic actor
relationships for business process reengineering. International Journal of
Intelligent & Cooperative Information Systems, Vol. 4, No 2/3, 125-144.

Yu, E. & Mylopoulos, J. 1997. Modelling organizational issues for enterprise
integration. In K. Kosanke & J. Nell (Eds.) Proc. of Int. Conf. on Enterprise
Integration and Modeling Technology (ICEIMT’97). Berlin: Springer-
Verlag, 529-538.

Zachman, J. 1987. A framework for information systems architecture. IBM
Systems Journal, Vol. 26, No. 3, 276-292.

Zdonik, S. & Maier, D. (Eds.) 1990. Readings in object-oriented database
systems. San Mateo: Morgan Kaufmann.

Zhang, Z. & Lyytinen, K. 2001. A framework for component reuse in a
metamodelling-based software development. Requirements Engineering,
Vol. 6, No. 2, 116-131.

Zhou, L., Booker, Q. & Zhang, D. 2002. ROD – Towards rapid ontology
development for underdeveloped domains. In Proc. of the 35th Hawaii
International Conference on Systems Sciences.

Zhou, Q. & Fikes, R. 2000. A reusable time ontology. Research Report,
Knowledge Systems Laboratory, Stanford University.

Zhu, Z. 2002. Evaluating contingency approaches to information systems
design. International Journal of Information Management, Vol. 22, No. 5,
343-356.

Zisman, M. 1977. Representation, specification and automation of office
procedures. The Wharton School, University of Pennsylvania, Dissertation
Thesis.

Zloof, M. 1981. QBE/OBE: A language for office and business automation. IEEE
Computer, Vol. 14, No. 5, 13-22.

Zultner, R. 1993. TQM for technical teams. Comm. of the ACM, Vol. 36, No. 10,
79-91.

647

APPENDIX 1: VOCABULARY

This appendix contains the integrated vocabulary of OntoFrame. The terms
with the definitions are categorized according to the structure of OntoFrame. In
the definitions the concerned terms are written in bold and the terms already
defined in italics. This way we concretely show how the concepts signified by
the terms are related to one another.

I. Core Ontology

The core ontology provides the key concepts and constructs for conceiving,
understanding, structuring and representing fundamentals in reality.

I.1 Generic Ontology

The generic ontology provides the most generic concepts from which the
concepts of all the other component ontologies in Ontoframe have been
derived.

Reality
 Reality is anything that exists, has existed or will (possible) exist.
Subjective reality
 Subjective reality (or the perceived reality) is reality that is the result from

our mental processes.
Physical reality
 Physical reality (or shortly reality) is reality that is independent of any

human thinking. It is the source of sense data, which we obtain, and it is
thus external to us.

Thing
 A thing means any phenomenon in the physical or subjective reality.
Property
 A property is a thing that is used to characterize other thing(s).
Characterized thing
 A characterized thing is a thing that is characterized by at least one

property.
Relationship
 A relationship is a thing that relates two or more characterized things

together, each one associated with one property characterizing the role of
that thing within that relationship.

Role
 A role is a property, that reflects a position the thing holds, or a function the

thing conducts, in the relationship.

648

Point of view
 A point of view is a thing by which some things or some properties of

thing(s) are selected because they are more relevant than the others.
Framework
 A framework is a thing that guides a human being to select the points of

view that are the most appropriate for the case or the problem at hand.

I.2 Semiotic Ontology

The semiotic ontology provides concepts and constructs to recognize semiotic
things in reality. It specializes things according to the semiotic framework.

Concept
 A concept is a thing, some kind of word of mind that refers to a referent

(thing).
Construct
 A construct is a composed of related concepts.
Referent
 A referent is a thing in reality to which a concept refers.
Sign
 A sign is a thing that can stand for something else.

I.3 Intension/Extension Ontology

The intension/extension ontology provides concepts and constructs to specialize
the notion of a concept into more specific notions such as basic concept, derived
concept, individual concept, generic concept, etc.

Intension
 An intension, or comprehension of a concept, consists of all its predicates.
Predicate
 A predicate is a concept, which is used to characterize the (original) concept.
Extension
 An extension of a concept is the set of all (referent) things to which the

intension of the concept applies.
Population
 A population of a concept is the set of the existing (referent) things to which

the intention of the concept applies.
Basic concept
 A basic concept is a concept the intension of which is specified without

using other concepts in question.
Derived concept
 A derived concept is a concept the intension of which is derived from the

predicates of other concepts.
Abstract concept
 An abstract concept is a concept that has no referent things.

649

Concrete concept
 A concrete concept is a concept that is not abstract.
Individual concept
 An individual concept, or a particular, is a concept that can only refer to

one thing.
Generic concept
 A generic concept, or a universal, is a concept that can refer to many things.
Type
 A type is a generic concept.
Instance
 An instance is a member of the extension of a type.

I.4 Language Ontology

The language ontology provides concepts and constructs to specify the syntax
and semantics of a language.

Language
 A language is an abstract thing that is used in communication among

people, between people and computers, or among parts of the computers.
Abstract syntax
 An abstract syntax of a language gives the conceptual components of a

language and rules for connecting them, leaving out representational
details.

Concrete syntax
 A concrete syntax of a language gives notational elements, called the

symbols in the vocabulary of a language, and rules for connecting them
with one another and with the concepts (cf. signification rules).

Semantics
 Semantics of a language defines the relations of symbols to the referents to

which the symbols are applicable.
Vocabulary
 A vocabulary of a language is a non-empty and finite set of symbols.
Symbol
 A symbol is a special sign used as an undividable part of an expression.
Expression
 An expression is a sign of a language and a non-empty and finite

“arrangement” of symbols taken from a vocabulary, constricted by the
syntax and semantics of the language.

Formal language
 A formal language is a language with a precisely defined syntax and

semantics.
Semi-formal language
 A semi-formal language is a language with a precisely defined syntax.
Informal language
 An informal language is a language that is neither formal nor semi-formal.

650

Label
 A label is an elementary expression used to signify a particular concept in

an elementary way.
Proper name
 A proper name is a label signifying an individual concept or a particular.
Common noun
 A common noun is a label signifying a generic concept or a universal.

I.5 State Transition Ontology

The state transition ontology provides the concepts and constructs for
conceiving static and dynamic things in reality.

State
 A state is a thing, which is seen to have some duration.
Transition
 A transition is a binary relationship between two different things, called the

pre-state and the post-state of that transition.
Event
 An event is a thing, which may trigger a transition from the pre-state to the

post-state.
Transition structure
 A transition structure is composed of related transitions.
 Composite transition
 A composite transition is a transition structure with a unique pre-state and

a unique post-state.
Elementary transition
 An elementary transition is a transition that does not contain any transition

structure.
Life cycle
 A life cycle of a thing consists of all the states, transitions and events that are

related to the existence of a thing.

1.6 UoD Ontology

The UoD ontology provides the concepts and constructs for perceiving and
conceiving the UoD, UoD states, UoD behavior, and UoD evolution from a
certain point of view.

Universe of discourse (UoD)
 A universe of discourse (UoD) is a subjective reality that is relevant from

the point of view adopted.
UoD state
 A UoD state is composed of the related states of all those things that are

included in the UoD.

651

UoD behavior
 A UoD behavior is composed of extensional transitions among the UoD

states.
UoD evolution
 A UoD evolution is composed of intensional transitions among the UoD

states.

I.7 Abstraction Ontology

The abstraction ontology provides concepts and constructs for abstraction.

Abstraction
 Abstraction is a principle by which irrelevant things are ignored and the

things relevant to understanding some problem of interest are uncovered.
Concretizing
 Concretizing is the principle inverse to abstraction.
First-order abstraction
 First-order abstraction is abstraction that concerns the concept things and

their abstraction relationships.
Second-order abstraction or predicate abstraction
 Second-order abstraction, or predicate abstraction, means abstraction,

which mainly concerns the predicates of concept things and their abstraction
relationships.

Classification
 Classification is the principle of abstraction by which the concept, called the

type, is generated from other concepts, called instances.
Instantiation
 Instantiation is the principle inverse to classification.
instanceOf relationship
 An instanceOf relationship is the relationship between an instance and its

type.
Meta type
 A meta type is a type, instances of which are types.
Objective classification
 An objective classification is a result of classification in which for a type

there is only one type extension.
Subjective classification
 A subjective classification is a result of classification in which for a type

there may be several (subjective) type extensions.
Permanent classification
 A permanent classification is a result of classification that does not change

in time, that is to say, there is no instance, which refers to more than one
referent.

652

Evolving classification
 An evolving classification is a result of classification that changes in time,

that is to say, there may be an instance, which refers to more than one
referent.

Strict classification
 A strict classification is a result of classification in which for each instance

there is certain type.
Non-strict classification
 A non-strict classification is a result of classification in which there are

instances for which there are no types.
Factual predicate
 A factual predicate is a predicate that mainly contain individual concepts.
Definitional predicate
 A definitional predicate is a predicate that is composed of solely generic

concepts expressed in common nouns.
Intensional predicate derivation
 Intensional predicate derivation means that each predicate of a type is

expected to apply to the corresponding instance concepts.
Extensional predicate derivation
 Extensional predicate derivation means that factual predicates of a type can

be derived from the factual predicates of the instances.
Generalization
 Generalization is the principle of abstraction by which differences between

some types, called subtypes, are suppressed and a new type, called a
supertype, is generated based on the commonalities of the subtypes.

Specialization
 Specialization is the principle of abstraction, inverse to generalization, to

concretize subtypes from the supertype.
isA relationship
 An isA relationship means the relationship between a subtype and its

supertype.
Superset
 A superset is the extension of the supertype.
Subset
 A subset is the extension of a subtype.
One-type specialization
 One-type specialization means specialization in which for each supertype

there is only a subtype.
Hierarchical specialization
 Hierarchical specialization means specialization in which for each

supertype there are several subtypes.
Lattice specialization
 Lattice specialization means specialization in which for each subtype there

may be two or more supertypes.

653

Total specialization
 Total specialization means specialization in which for each supertype

referent there is always one subtype referent.
Partial specialization
 Partial specialization means specialization in which there is a supertype

referent for which there is no subtype referent.
Disjoint specialization
 Disjoint specialization means specialization in which the extensions of the

subtypes are disjoint.
Overlapping specialization
 Overlapping specialization means specialization in which the extensions of

the subtypes overlap.
Composition
 Composition is the principle of abstraction by which a type, called a whole

type, is composed of other types, called part types, or a whole instance is
composed of related part instances.

Decomposition
 Decomposition is the principle inverse to composition, by which a whole

(type) is decomposed into inter-related part(s) (types).
partOf relationship
 A partOf relationship means the relationship between a part (type) and its

whole (type). The parts in the whole are related to one another.
Syntactic composition
 Syntactic composition means composition, which deals with sign things.
Semantic composition
 Semantic composition means composition, which deals with non-sign

things.
Total exclusive composition
 Total exclusive composition means composition in which a thing can be a

part of only one whole.
Arbitrary shared composition
 Arbitrary shared composition means composition in which a thing can be a

part in arbitrary many wholes.
Selectively exclusive composition
 Selectively shared composition means composition in which a thing can be

a part of one whole but of more than one alternative type.
Optional composition
 Optional composition means composition, in which there may be things of

some part type that are related to no things of the whole type.
Essential relationship
 An essential relationship is a partOf relationship between a part type and a

whole type if each part instance must be connected to at least one arbitrary
whole instance of that type.

654

Immutable relationship
 An immutable relationship is a partOf relationship between a part type and

a whole type, if the parts of that part type are permanently related to the
whole since its “birth”.

Homogeneous whole
 A homogeneous whole is a thing that is composed of things of one part

type.
Heterogeneous whole
 A heterogeneous whole is a thing that is composed of several part types.
Single-part whole
 A single-part whole is a thing that contains only one thing of certain part

type.
Multi-part whole
 A multi-part whole is a thing that contains several things of a certain part

type.
Flexible-structure whole
 A flexible-structure whole is a thing in which parts of some part types can

be missing.
Fixed-structure whole
 A fixed-structure whole is a thing, which is composed of parts of all the

defined part types.
Grouping
 Grouping is the principle of abstraction by which a concept, called a group

type, is generated from other concepts, called member types, or to abstract
a group instance from member instances.

Individualization
 Individualization is the principle inverse to grouping by which a member

(type) is distinguished from a group (type) for a more detailed
consideration.

memberOf relationship
 A memberOf relationship means the relationship between a member (type)

and a group (type).
Homogeneous grouping
 Homogeneous grouping means grouping in which for a group type there is

only one member type.
Heterogeneous grouping
 Heterogeneous grouping means grouping in which a group can be formed

from members of several member types.
Categorical grouping
 Categorical grouping means grouping in which a member type is related to

one group type at a time.
Shared grouping
 Shared grouping means grouping in which a thing can be a member type of

several group types.

655

Disjoint grouping
 Disjoint grouping means grouping in which an instance cannot be a

member of more than one group (of the same or different type).
Overlapping grouping
 Overlapping grouping means grouping in which an instance is allowed to

be a member of several groups (of the same of different type).
Mandatory grouping
 Mandatory grouping means grouping in which each member must belong

to some group.
Optional grouping
 Optional grouping means grouping in which an instance can exist without

any memberOf relationship.
Predicate classification
 Predicate classification means predicate abstraction by which predicate

instances are definitionalized into a predicate type.
Predicate instantiation
 Predicate instantiation means predicate concretizing by which a predicate

type is factualized into predicate instances.
Predicate generalization
 Predicate generalization means predicate abstraction by which special

features of predicate subtypes are ignored in order to uncover the features
common to all the predicate subtypes.

Predicate composition
 Predicate composition means predicate abstraction by which a predicate as

an entire construct, called a predicate whole (type), rather than its predicate
part(s) (types) is/are examined.

Predicate grouping
 Predicate grouping means predicate abstraction by which a predicate group

(type) rather than its predicate member(s) (types) is/are examined.

II. Context ontology

The context ontology provides concepts and construct for conceiving,
understanding, structuring, and representing things as contexts and/or within
contexts.

Approach
 An approach provides generalized principles, which help us conceive

reality, recognize problems and/or find potential solutions in it.
Contextual approach
 A contextual approach is a conception-oriented approach, which serves the

recognition, understanding and specification of the purposes, meanings,
and effects of things, through considering them to be contexts and/or parts
within contexts.

656

Context
 A context is a conceptual or intellectual construct that can help us

understand, analyze, and design the natures, meanings, and effects of
more elementary things in the concerned environment or circumstances. It
is a whole, which is determined by the focal thing(s) of which making sense
is important. It is composed of highly related things, each of which
represents certain contextual domain.

Contextual concept
 A contextual concept is a concept, which belongs to some of the contextual

domains.
Contextual relationship
 A contextual relationship is a relationship, which connects two or more

contextual concepts. Contextual relationships contain intra-domain, inter-
domain, and inter-context relationships, explicitly or implicitly defined.

Intra-domain relationship
 An intra-domain relationship is a contextual relationship, which associate

two or more contextual concepts of the same contextual domain.
Inter-domain relationship
 An inter-domain relationship means a contextual relationship that

associates two or more contextual concepts of different contextual domains.
Implicit contextual relationship
 An implicit contextual relationship is a contextual relationship that can be

derived from other basic or implicit contextual relationships.
Contextual framework
 A contextual framework is a framework, which is composed of contextual

concepts related with one another through contextual relationships, and
which is used to conceive things within contexts and/or as contexts.

Contextual role
 A contextual role is a role, which a thing plays when being part of the

context.
Goal-producing context
 A goal-producing context is a context that produces something, which is

used as a goal statement or a requirement in another context.
Actor-producing context
 An actor-producing context is a context that ”produces” objects (e.g. more

skilled persons), which act as actors in another context.
Rule-producing context
 A rule-producing context is a context that produces objects, which are

used as rules in another context (e.g. the method engineering context vs.
the ISD context).

Object-producing context
 An object-producing context is a context that produces objects (e.g.

services), which are utilized in another context (cf. the IS context vs. the
business system context).

657

Facility-producing context
 A facility-producing context is a context that produces objects, which are

utilized as tools or resources in another context (cf. the ISD context
producing software vs. the business context).

Location-producing context
 A location-producing context is a context that produces objects, which are

used as locations in another context.

Purpose domain
 The purpose domain consists of those concepts and constructs, which refer,

directly or indirectly, to goals, motives, or intentions of someone or some
thing. They may also express reasons for why someone exists, something
has been done, someone is used, etc. in a context.

Purpose
 A purpose is a generic concept standing for things in the purpose domain.
Goal
 A goal is a purpose referring to a desired state of affairs.
Reason
 A reason is a purpose that is used as a basis or cause for some action, fact,

event etc.
dueTo relationship
 A dueTo relationship between a goal and a reason is a contextual

relationship meaning that a reason gives an explanation, a justification or a
basis for setting a goal.

Strategic goal
 A strategic goal is a goal with the lifespan of 5 – 10 years.
Tactic goal
 A tactic goal is a goal that shows how to attain strategic goals.
Operative goal
 An operative goal is a goal that is generally determined as concrete

requirements that are to be fulfilled by specified time point.
Hard goal
 A hard goal is a goal that has pre-specified criteria.
Soft goal
 A soft goal is a goal that has not pre-specified criteria.
Criterion
 A criterion is a standard of judgment presented as an established rule or

principle for evaluating some thing.
Requirement
 A requirement means some thing that is necessary and needed, a

statement about the future.
Functional requirement
 A functional requirement is a requirement that can be achieved by

performing a sequence of operations.

658

Non-functional requirement
 A non-functional requirement is a requirement that is defined in terms of

constraints, to qualify the functional requirement related to it.
Problem
 A problem is the distance or a mismatch between the prevailing state and

the state reflected by the goal.
Structured problem
 A structured problem is a problem that is routine, and can be solved using

standard solution techniques.
Semi-structured
 A semi-structured problem is a problem for which there are, only to some

extent, standard solution techniques available.
Unstructured problem
 An unstructured problem (or a wicked problem) is a problem that does not

usually fit a standard mold, and is generally solved by examining different
scenarios, and asking “what if” type questions.

Strength
 Strength means something in which one is good, something that is

regarded as an advantage and thus increasing the possibilities to gain
something better.

Weakness
 Weakness means something in which one is poor, something that could or

should be improved or avoided.
Opportunity
 An opportunity is a situation or condition favourable for the attainment of

a goal.
Threat
 A threat is a situation or condition that is a risk for attainment of a goal.
refinement relationship
 A refinement relationship between the goals is a contextual relationship that

establishes a goal hierarchy, meaning that a goal can be reached when the
goals below it (so-called sub-goals) in the hierarchy are fulfilled.

influence relationship
 An influence relationship is a contextual relationship that indicates that the

achievement of a goal has some influence on the achievement of another
goal.

causalTo relationship
 A causalTo relationship between two problems is a contextual relationship

that means that the appearance of one problem is at least a partial reason for
the occurrence of the other problem.

Actor domain
 The actor domain consists of those concepts, which refer to human and

active parts in a context (i.e. individuals, groups, positions, or
organizations).

659

Actor
 An actor is a human or administrative actor, a generic concept used to refer

to things in the actor domain. Actors have an active role in a context.
Human actor
 A human actor is an individual person or a group of persons.
Person
 A person is a human being, characterized by his/her consciousness,

emotions, personality, beliefs, desires, intentions, social relationships, and
behavior patterns conditioned by his/her culture.

Group
 A group is a set of two or more persons.
Position
 A position is a post of employment occupied by a human actor.
occupiedBy relationship
 An occupiedBy relationship is a contextual relationship showing a position

assigned to a human actor.
Organizational role
 An organizational role is a collection of responsibilities, stipulated in an

operational or structural manner.
supervision relationship
 A supervision relationship is a contextual relationship involving two

positions such as one is a supervisor to another that is called a subordinate.
Organization
 An organization is an administrative arrangement or structure established

for some purposes, manifesting the division of labor into actions and the
coordination of actions to accomplish the work.

Organizational unit
 An organization unit is composed of positions with the established

supervision relationships.

Action domain
 The action domain consists of those concepts and constructs, which refer to

functions, activities, tasks, or operations carried out in a context, that is to
say, to state transitions in reality.

Action
 An action is the generic concept that refers to things (i.e. deeds or events)

belonging to the action domain.
Management – execution structure
 A management – execution structure is a whole composed of one or more

management actions and those execution actions that implements
prescriptions provided by the management actions.

Management action
 A management action aims at providing the execution actions with

prescriptions and resources.

660

Execution action
 An execution action aims to implement prescriptions given by

management actions with the given resources.
Planning
 Planning consists of all those management actions that lead to the creation,

assessment, and selection of alternative future courses of action and the
program for carrying out the actions.

Organizing
 Organizing contains all those management actions that result in the design

of a formal organization structure of actions and authority relationships.
Staffing
 Staffing consists of all those management actions required to fulfill and

sustain filled positions that were established by organizing.
Directing
 Directing consists of all those management actions dealing with the

interpersonal aspects through which the personnel come to understand
and contribute to the achievement of organizational goals.

Controlling
 Controlling consists of all those management actions that ensure that the

actual work goes according to the plans.
Problem solving structure
 A problem solving structure is a whole that is composed of three kinds of

actions: intelligence, design options, and choice.
Intelligence
 Intelligence means actions that search the environment for conditions

calling for a decision and collect information based on which a decision
can be made.

Design
 Design consists of the actions of inventing, shaping and specifying

alternatives for possible courses of action.
Choice
 Choice means the evaluation and comparison of alternatives and the

selection among them.
Rule
 A rule is a principle or regulation governing a conduct, action, procedure,

arrangement, etc. It is composed of four parts: event, condition,
thenAction, and ElseAction.

Event
 An event is an instantaneous happening in the context or in its

environment that is significant for the behavior of the context. An event has
no duration.

Condition
 A condition is a prerequisite for triggering an action.
thenAction
 A thenAction is an action that is carried out when the event occurs and if

the condition is true.

661

elseAction
 An elseAction is an action that is carried out when the event occurs but the

condition is not true.
Dynamic rule
 A dynamic rule is a rule that restricts the allowable transitions between the

pre-states and the post-states.
Static rule
 A static rule is a rule that restricts the allowable states.
Analytic rule
 An analytic rule is a rule that cannot be broken by an inter-subjectively

agreed definition of the terms used in the rule.
Empirical rule
 An empirical rule is a rule that cannot be broken according to shared

explicit knowledge.
Deontic rule
 A deontic rule is a rule that is socially agreed among the persons.
Internal event
 An internal event is an occurrence happening inside the context.
External event
 An external event is an occurrence happening in the environment of the

context.
Temporal event
 A temporal event is an occurrence having time as its impulse.
Action decomposition structure
 An action decomposition structure is a whole composed of actions, sub-

actions, sub-sub-actions, etc.
Action control structure
 An action control structure is a whole in which the actions are logically

related to each other according to an execution order.
sequence relationship
 A sequence relationship between two actions is a contextual relationship

meaning that after selecting one action a certain action is next to be
selected.

selection relationship
 A selection relationship is a contextual relationship meaning that after

selecting one action there is a set of alternative actions from which one
action (or a certain number of actions) is to be selected.

iteration relationship
 An iteration relationship is a contextual relationship meaning that after

selecting one action the same action is selected once more.
Temporal action structure
 A temporal action structure is a whole in which the actions are organized

on the basis of temporal conditions and events.
Temporal event
 A temporal event is a time-driven event.

662

Work procedure
 A work procedure is a whole that is composed of related rules.
Process
 A process is an instance of an action.

Object domain
 The object domain consists of those concepts and constructs, which refer to

some objects, which an action is targeted to in a context. The objects can be
material or informational.

Object
 An object is a generic concept used to refer to things in the object domain.
Material object
 A material object is an object that does not carry or present any

information.
Informational object
 An informational object is an object that carries and/or presents some

information.
Linguistic object
 A linguistic object is an object that is presented in a language.
Conceptual object
 A conceptual object is composed of UoD constructs which are signified by

linguistic object(s).
Service
 A service is some object, tangible or intangible, composed of material and

informational objects, and made for or given to someone from which
it/she/he benefits.

Desciption
 A description is a descriptive object, i.e. representation of information

about a slice of the UoD (the actual or possible world).
Prescription
 A prescription is a prescriptive object, i.e. a representation of the

established practice or authoritative regulation for action.
Assertion
 An assertion is a description, which asserts that a certain state has existed or

exists, or a certain event has occurred or occurs.
Prediction
 A prediction is a description of a future possible world with the assertion

that the course of events in the actual world will eventually lead to this
state.

Rule
 A rule is a prescription which consists of at least two parts ((Event or

Condition) and Action).
Command
 A command is a prescription which has neither event nor condition part.

663

Plan
 A plan is an informational object that may possess aspects of several

intentional subtypes (e.g. description, prediction, and prescription).
Version
 A version is a result of an iterative or phased action toward the final

outcome.

versionOf relationship
 A versionOf relationship is a contextual relationship holding between two

objects, if the properties of, and the experiences from, one object have
influenced upon the creation of another object, provided that they are for
the same purposes and the objects refer to the same UoD.

copyOf relationship
 A copyOf relationship is a contextual relationship that holds between two

objects, if the original object and a copy object are exactly, or to an
acceptable extent, similar.

supports relationship
 A supports relationship is a contextual relationship that involves two

informational objects, such that the information “carried” by one object is
needed to produce the other object.

predAbstract relationship
 A predAbstract relationship between two informational objects is a

contextual relationship meaning that one object is more abstract that the
other object in terms of predicate abstraction and both of the objects signify
the same thing(s) in the UoD.

signifies relationship
 A signifies relationship between a linguistic object and a conceptual object is

a contextual relationship that defines the conceptual meaning of the
linguistic object in terms of UoD constructs, which the linguistic object
signifies.

UoD construct
 A UoD construct means any conceptual construct in the same or different

context.

Facility domain
 The facility domain consists of those concepts and constructs, which refer

to means by which something can be done or is done in a context.
Facility
 A facility is the generic concept in the facility domain, which means either a

tool or a resource.
Tool
 A tool is a thing that is designed, built, installed, etc. to serve a specific

action affording a convenience, efficiency or effectiveness.
Resource
 A resource is a kind of the source of supply, support, or aid. It can be

money, energy, capital, goods, manpower, etc.

664

compatability relationship
 A compatability relationship between two tools (or components) is a

contextual relationship meaning that the interfaces of the tools are
structurally and functionally interoperable.

Configuration
 A configuration is a whole that is composed of the components with

compatible versions.

Location domain
 The location domain consists of those concepts and constructs, which refer

to parts of space occupied by someone or something in a context.
Location
 A location is a generic concept, which refers to a physical or logical location.
Physical location
 A physical location is a spatial thing (e.g. a room or a building), which is

placed in a region of space and which can, through its spatial attachment,
provide a place for some other thing.

Spatial thing
 A spatial thing is some thing that is necessary or beneficial to localize.
Region
 A region is a part or division of space.
Point
 A point is the elementary unit in space specified by a single coordinate

with reference to a system of two or three geographical dimensions.
Area
 An area is any particular extent of space specified with at least two

coordinates.
Geographical dimension
 A geographical dimension means any dimension within which space can

be specified.
Geographical system
 A geographical system is a system of two or three geographical dimensions.
placedIn relationship
 A placedIn relationship between a region and a spatial thing is a contextual

relationship meaning that the spatial thing is located in the region.
Logical location
 A logical location, like a site within a computer network, is a space that is

not attached to any geographical point or area.
topological relationship
 A topological relationship between two regions states how the regions

are related in terms of geographical points or areas along the geometric
dimensions.

connectedTo relationship
 A connectedTo relationship is a contextual relationship meaning that two

sites can communicate with each other by sending messages.

665

Time domain
 The time domain consists of those concepts and construct, which refer to

temporal aspects in a context.
Time
 Time is indefinite, unlimited duration in which something is considered

as happening in the past, present, or future. Most of our knowledge is
founded in time and expressed in terms of time units.

Time unit
 A time unit means a unit of measuring time.
Time point
 A time point is the primitive time unit as an indivisible point on the time

continuum.
Time interval
 A time interval is an abstraction of time points, manifesting duration of

something.
Convex time interval
 A convex time interval is a time interval that consists of continuous time

points.
Non-convex time interval
 A non-convex time interval is an interval with some “holes”.
Time system
 A time system is a totally ordered set of time units.
relatedTo relationship
 A relatedTo relationship means a contextual relationship between two time

systems.
temporal relationship
 A temporal relationship means a contextual relationship between two time

units, which are time points and/or time intervals.

expressedBy relationship
 An expressedBy relationship between an actor and a purpose is an inter-

domain contextual relationship meaning that an actor has expressed a goal, a
requirement, a problem, or the like concerning the context as a whole or some
of its part, in the same or different context.

motivatedBy relationship
 A motivatedBy relationship between a human actor and a purpose is an

inter-domain contextual relationship meaning a subjective or inter-subjective
motive or an inner drive that makes a person or a group to do something or
behave as he/she/it does.

strivesFor relationship
 A strivesFor relationship between an action and a purpose is an inter-

domain contextual relationship expressing a goal, which an action pursues.
intendedFor relationship
 An intendedFor relationship between an object, a facility, or a location, on

one hand, and a purpose, on the other hand, is an inter-domain contextual

666

relationship meaning a goal or a reason for which an object/a facility/an
object is made, acquired, and/or used.

carryOut relationship
 A carryOut relationship is an inter-domain contextual relationship meaning

that an actor conducts an action.
responsibleFor relationhip
 A responsibleFor relationship is an inter-domain contextual relationship

specifying those actions, which an organizational role is responsible for.
occursAt relationship
 An occursAt relationship is an inter-domain contextual relationship defining

when an action is done, has been done or will be done.
ownedBy relationship
 An ownedBy relationship is an inter-domain contextual relationship

meaning that an actor is an “owner” of an object.
viewedBy relationship
 A viewedBy relationship is an inter-domain contextual relationship meaning

that an object is a view, insight, opinion, etc. of an actor.
useAbility relationship
 A useAbility relationship is an inter-domain contextual relationship

meaning that it is possible for an actor to use a facility.
input relationship
 An input relationship is an inter-domain contextual relationship meaning

that an object is used as an input to an action.
output relationship
 An output relationship is an inter-domain contextual relationship meaning

that an action produces an object as its output.
involvedBy relationship
 An involvedBy relationship is an inter-domain contextual relationship

meaning that a UoD construct is involved by an action through informational
objects that signify a UoD construct. Involving may mean creating,
modifying, utilizing, or deleting informational objects.

performs relationship
 A performs relationship is an inter-domain contextual relationship meaning

that an action is performed by a tool.
uses relationship
 A uses relationship is an inter-domain contextual relationship meaning that

an action consumes certain resources.
usedToMake
 A usedToMake relationship is an inter-domain contextual relationship

meaning that a certain facility, i.e. a tool or a resource, is used to produce an
object.

situatedIn relationship
 A situatedIn relationship is an inter-domain contextual relationship meaning

that a human actor/an object/a facility is situated in a location.

667

existsAt relationship
 An existsAt relationship is an inter-domain contextual relationship defining

when a purpose/an actor/an object/a facility/a location exists, has existed,
or will exist.

III. Layer ontology

The layer ontology provides concepts and constructs to conceive, understand,
structure and represent the static and dynamic features of information
processing at four layers. It is composed of two parts. The first part provides the
concepts and constructs related to information processing in general. The second
part of the ontology shows how information processing is structured and
related onto four layers according to the predefined system of layers.

Knowledge
 Knowledge is a relative stable and sufficiently consistent set of (conceptual)

informational objects owned by single human actors.
Explicit knowledge
 Explicit knowledge is a body of knowledge that can be articulated in a

natural or formal language.
Tacit knowledge
 Tacit knowledge is a body of knowledge that is embedded in personal

experience and therefore cannot be (easily) represented externally.
Data
 Data is knowledge represented in a language.
Information
 Information is the knowledge increment brought about by receiving data,

by observing reality, or by inner thought processes by which a person
organizes, compares, assesses his/her knowledge.

Information processing
 Information processing means action(s) by which informational objects are

collected, stored, processed, disseminated and interpreted.
System
 A system is a conceptual construct through which phenomena in reality can

be conceived as a whole (system), contained in the environment,
characterized by emergent predicates, and composed of parts (elements).

Computerized information system
 A computerized information system (CIS) is a system in which all

information processing is automated, that is to say, performed by one or
more computer systems.

Human information system
 A human information system (HIS) is a system, in which human actors play

the only role in the accomplishment of actions to process information in a
structured way.

668

Information system
 An information system is a system, composed of actors, information/data,

facilities and locations, collecting, storing, processing and distributing
information about the relevant parts of reality, called the object system, in
order to enable and/or improve actions in the other context, called the
utilizing system.

Utilizing system
 A utilizing system (US) is a system, which exploits information services,

provided by the information system, in its decision making or operational
actions, in order to make plans and execute changes (i.e. state transitions) in
the controlled system.

Information service
 Information service is a service that is composed informational objects.
Controlled system
 A controlled system is a system, which the utilizing system has control

over.
User
 A user of IS is an actor who potentially increases his/her knowledge about

some phenomena in the object system with the help of the IS.
End-user
 A end-user is an actor, who increases his/her knowledge by interacting

directly with the CIS.
Indirect-user
 An indirect user is an actor, who increases his/her knowledge by getting

results from the CIS through other users of the information system.
Object system
 An object system (OS) means a system about which the IS, due to the

interests of the US, collects, stores, processes and disseminates information
(services) to the US.

Primary action
 A primary action means routine-like information processing.
Development action
 A development action means an action to make changes in routines of the

primary action.
Micro-level development
 A micro-level development means a development action carried by

individual persons as part of their personal work.
Mid-level development
 A mid-level development means a development action carried out in group

works, organized often informally when necessary.
Macro-level development
 A macro-level development means a pre-planned, controlled, and

coordinated development action that involves several individual persons
with various skills, takes weeks or months, sometimes years, and may
costs a lot of money.

669

Processing layer
 A processing layer is composed of information processing actions, which

share the similar goals and the same target (i.e. object) of action.
System of layers
 A system of layers is a system that is composed of processing layers, which

constitute a hierarchical structure, in which actions at a higher layer
produce informational objects to be used as prescriptions for the actions at the
next lower layer.

IV. Perspective ontology

The perspective ontology provides the concepts and constructs for conceiving,
understanding, structuring and representing things in information processing
contexts with a system of pre-defined perspectives180.

Perspective
 A perspective is a strictly defined point of view.
System of perspectives
 A system of perspectives is a (static) system, which is composed of

perspectives and relationships between them.
Systelogical perspective
 The systelogical perspective is a perspective according to which the IS is

seen in relation to its utilizing system (US).
Infological perspective
 The infological perspective is a perspective according to which the IS is

seen as a functional structure of information processing actions and
informational objects, independent from any representational and
implementational features.

Conceptual perspective
 The conceptual perspective is a perspective according to which the IS is

considered through the semantic contents of information it processes.
Datalogical perspective
 The datalogical perspective is a perspective according to which the IS is

viewed through representation-specific concepts as a context, in which IS
actors work with IS facilities to process data.

Physical perspective
 The physical perspective is a perspective, which ties the datalogical concepts

and constructs to the particular organizational and technical environment,
showing how the IS looks like and behaves when it is implemented.

180 The definitions of the perspectives below are expressed in relation to the IS. The

notion of the IS should be here understood generally; It can mean information
processing on any processing layer.

670

V IS ontology181

The IS ontology provides concepts and constructs to conceive, understand,
structure and represent the contextual features of information processing at the IS
layer.

V.1 IS domains

IS purpose
 An IS purpose means an IS goal for the IS and/or s reason for setting up a

goal.
IS goal
 An IS goal is a desired state of affairs in the IS.
IS reason
 An IS reason can be a functional or non-functional requirement for

information processing, a problem in prevailing information processing,
strength and weakness in, and an opportunity and a threat for, existing or
planned information processing.

IS actor
 An IS actor is an actor working in and for the IS.
Human IS actor
 A human IS actor is an individual person or a group of persons working in

and for the IS.
IS role
 An IS role is a collection of responsibilities, stipulated in terms of HIS

actions.
IS position
 An IS position is a position, composed of the defined IS roles and occupied

by a human IS actor.
IS organization
 An IS organization is an organization whose main responsibility is to

develop, manage and/or carry out information processing in a business
organization.

IS organizational unit
 An IS organizational unit is composed of IS positions.
IS action
 An IS action is an action that strives for one or more IS purposes.
IS object
 An IS object is an informational object signifying one or more OSIS

constructs. It is an input to and an output from one or more IS actions.

181 The concepts of this ontology are categorized in the following way. The concepts that

are directly related to the IS are presented in the first part, the IS domains. The
definitions of the IS perspectives as well as the concepts of the utilizing system (US)
and the object system (OS) are included in the second part, the IS perspectives.

671

Transient IS object
 A transient IS object is an IS object, which lasts only a short time (e.g. a

reply to a routine request).
Permanent IS object
 A permanent IS object is an IS object that is valuable enough to “live”

longer (e.g. personnel information, vehicle information).
Data object
 A data object is an IS object represented in some language. It can be in a

digital or non-digital form.
Non-digital data
 Non-digital data means an IS object that is presented in a language that can

be interpreted by a human being.
Digital data
 Digital data is an IS object that is in a digital form and can be read by a

computer.
IS rule
 An IS rule governs one or more IS actions. It is composed of four parts: IS

event(s), IS condition(s), thenISAction(s), and elseISAction(s).
Human information system
 A human information system (HIS) means a system in which human

beings have the only role in the accomplishment of the IS actions.
HIS purpose
 A HIS purpose is a IS purpose which concerns the HIS as a whole, or parts

thereof.
HIS action
 A HIS action is an IS action carried out by a human IS actor, to attain one or

more HIS purpose.
HIS rules
 A HIS rule is an IS rule governing one or more HIS action.
User interface
 A user interface is a part of the CIS which facilitates the interaction

between the users and the CIS.
Dialog
 A dialog means an interaction between a user and the CIS, occurring

through windows.
Window
 A window is a logical whole through which a user can communicate with

the CIS. It is composed of UI components.
UI component
 A UI component is a part of a window. It can be a UI data component or a

UI action component.
UI data component
 A UI data component is a UI component that displays data to a user or

accepts data from a user.
UI data
 UI data is an IS object displayed by the CIS to a user, or got from a user.

672

UI action component
 An UI action component is a UI component intended to the manipulation

of the window and the control of the dialog (e.g. a button, a menu, a slider,
etc).

UI state
 A UI state is a state composed of those UI data, UI data components and UI

action components that are present at the certain time.
UI transition
 A UI transition is a transition from one UI state to another, triggered by an

HIS action or by a CIS action.
UI event
 A UI event means any happening that triggers UI transitions.
Computerized information system
 A computerized information system (CIS) a system in which all data

processing is automated, that is to say, performed by one or more computer
systems.

CIS action
 A CIS action means as IS action that is performed by the CIS.
Transaction
 A transaction is composed of logically related CIS actions.
CIS rule
 A CIS rule is an IS rule governing one or more CIS actions.
Algorithm
 An algorithm is a transaction represented in a formal language.
Hardware architecture
 A hardware architecture consists of interoperable hardware.
Software architecture
 A software architecture is composed of compatible software.
Application software
 An application software is composed of SW components.
Layer
 A layer is a part of the layered software architecture in which layers are

related to one another with the black box strategy or the while box
strategy.

SW component
 A SW component means an executable unit of code that provides physical

black-box encapsulation of related services. Its services can only be
accessed through a consistent, published interface.

Node
 A node is composed of e.g. memory devices, processors, printers and

displays.
Communication line
 A communication line is a line along which data messages are sent from

one node to another.

673

Protocol
 A protocol means a set of conventions or rules that govern the interactions

of processes or software components through communication lines in a CIS or
between CIS’s.

Data storage
 A data storage stands for all kinds of structured digital data (e.g. a data file

and a database).
Database
 A database is a data storage structured according to some database model

(e.g. a hierarchical model, a relational model, an object-relational model,
an object model, a document model, XML-native model).

Data file
 A data file is a data storage that is decomposed into records and data fields.
Memory device
 A memory device is a device for storing permanent data.

V.2 IS Perspectives

IS perspective
 An IS perspective is a perspective with which features of the IS, relevant to

the problem or the situation at hand, can be considered.
IS systelogical perspective
 The IS systelogical perspective is an IS perspective from which the IS is

seen in relation to its utilizing system (USIS).
US purpose
 A US purpose means a goal for business processes and/or a reason for

setting up goal(s).
US organization
 A US organization is an organization (i.e. an enterprise, a department or

some other administrative arrangement), which utilizes, or is going to
utilize, an IS. It is composed of US organizational units.

US actor
 A US actor is an actor working in and for the US context.
US role
 A US role is a collection of responsibilities, stipulated in terms of US

actions.
US position
 A US position is a position composed of the defined US roles and occupied

by a US human actor.
US organizational unit
 A US organizational unit is composed of US positions.
US action
 A US action is an action, which strives for one or more US purposes.
US rule
 A US rule governs one or more US actions.

674

US object
 A US object is a material or informational object that is an input to and/or

an output from one or more US action.
US tool
 A US tool is a tool designed, built, installed, etc. to serve or perform US

actions.
US resource
 A US resource is a resource, like money, energy, goods, manpower, etc.

that is used in the US context.
IS infological perspective
 The IS infological perspective is an IS perspective from which the IS is

seen as a functional structure of information processing and informational
objects.

IS conceptual perspective
 The IS conceptual perspective is an IS perspective, which reveals the

semantic contents of the IS objects.
Entity
 An entity means any perceivable thing in the object system with an

independent existence.
OS relationship
 An OS relationship means some relevant connection, association or like

(i.e. a relationship) between two or more entities.
Attribute value
 An attribute value identifies and characterizes a particular entity or OS

relationship.
OSIS construct
 An OSIS construct in the OSIS means a conceptual construct composed of

specific entities related to one another through OS relationships and
characterized by specific attribute values.

OSIS state
 An OSIS state means a state of the object system (OSIS), or its parts,

composed of OSIS constructs.
OSIS transition
 An OSIS transition means a transition from one OSIS state, called the pre-

state, to another OSIS state, called the post-state.
OSIS event
 An OS event means an event, which may trigger an OSIS transition from

the pre-state to the post-state, and which may be caused by another OSIS
transition.

IS datalogical perspective
 The IS datalogical perspective is an IS perspective from which the IS is

viewed through representation-specific concepts as a context, in which IS
actors work with IS facilities to process data.

IS physical perspective
 The IS physical perspective is an IS perspective, which considers the IS

with all its physical aspects.

675

VI. Model Level Ontology

The model level ontology provides concepts and constructs for conceiving,
understanding, structuring, and presenting things in models within a system of
model levels.

Model
 A model as a thing that is used to help or to enable the understanding,

communication, analysis, design, and/or implementation of some other
thing to which the model refers.

Concept model
 A concept model is a model that is composed of concepts and conceptual

constructs referring to certain things in reality.
Model denotation
 A model denotation is a precise and unambiguous representation of a

concept model in some language.
Physical model
 A physical model is a model that consists of physical parts, which, as an

organized whole, resemble some other thing(s) (e.g. small copies of
airplanes or ships).

Model constructing
 Model constructing is an action by which a physical model is produced

from concrete things by e.g. moulding, building or crafting.
Modeling
 Modeling is an action with which a model is produced.
Model conceptualizing
 Model conceptualizing means a modeling action with which a concept model

is produced by perceiving and conceptualizing the relevant features of the
concrete thing(s).

Model transforming
 Model transforming means a modeling action with which a concept model is

produced by transforming it from some other concept model(s).
Model representing
 Model representing means a modeling action with which a model denotation

is produced by representing concept model(s) by signs of some language.
Model translating
 Model translating means a modeling action with which a model denotation is

produced by translating it from some other model denotation.
Model implementing
 Model implementing means an action with which a model denotation is

implemented into a physical model.
Modeling context
 A modeling context means a context the purpose of which is to produce a

model for a model utilizing context.

676

Informal model
 An informal model is a model that is restricted in its structure by the

modeler’s imagination.
Semi-formal model
 A semi-formal model is a model that is constrained by the syntax of the

language(s) (e.g. diagrams, tables, matrices and structured texts).
Formal model
 A formal model is a model that is represented in a formal language

according to the rigorously defined syntax and semantics.
Subjective model
 A subjective model is a model that reflects the modeler’s subjective

conception about the subject matter.
Inter-subjective model
 An inter-subjective model is a model that reflects sharing conceptions

within a community.
Objective model
 An objective model is a model that reflects “objective truth” (e.g. a formal

model of the Euclidean space).
Modeled context
 A modeled context is a context about which the model is.
Structural model
 A structural model is a model, which is composed of concepts that refer to

static phenomena in the modeled context.
Dynamic model
 A dynamic model is a model, which is composed of concepts that refer to

the behavior in or the evolution of the modeled context.
Instance model
 An instance model is a model, which is mainly composed of the concepts

that are instances of the concepts of another model, called the type model.
Type model
 A type model is a model, which is composed of the concepts that are types of

the concepts of another model, called the instance model.
Model utilizing context
 A model utilizing context is a context for which the model is produced.
Descriptive model
 A descriptive model is a model that is used to portray or predict the

relevant features of the modeled context, in order to support the analysis of
the existing reality or the design of the future reality.

Prescriptive model
 A prescriptive model is a model that is conceived as normative statements,

which specify what is permitted, forbidden or obliged in certain
situations.

Technique
 A technique is a prescriptive model that guides the behavior in the modeled

context. A technique may be composed of procedures and guidelines.

677

Description technique
 A description technique is a technique to create a model and represent it as

a model denotation (e.g. diagramming techniques).
Processing technique
 A processing technique is a technique to create, transform, translate,

analyze, validate and/or verify one or more models.
Procedure
 A procedure is an explicitly specified manner of proceeding in a process.
Guideline
 A guideline is any advice or guide to reach a goal.
Meta concept
 A meta concept is a concept an instance of which is a type concept for some

instance concepts.
Meta level
 A meta level is composed of meta concepts.
Concept level
 A concept level is composed of concepts among which there are no

instanceOf relationships.
System of concept levels
 A system of concept levels is composed of concept levels in such a way that

the concepts on a certain concept level have the instanceOf relationships with
the concepts on the higher concept level.

Model level
 A model level is composed of models that comprise concepts on the same

concept level.
System of model levels
 A system of model level is composed of model levels in such a way that the

models on a certain model level have the instanceOf relationships with the
models on the next higher model level.

Meta model
 A meta model is a model that is composed of meta concepts .
Metamodeling
 Metamodeling is an action by which a meta model is produced.
Deliverable model
 A deliverable model is a model that describes/prescribes the structure and

presentation of informational objects (e.g. a relational scheme with dta types).
Data model
 A data model is a model that describes/prescribes the conceptual contents

of informational objects (e.g. an ER schema).

VII. ISD Ontology

The ISD ontology provides concepts and constructs for conceiving,
understanding, structuring, and representing contextual phenomena of ISD.

678

Paradigm
 A paradigm means the most fundamental set of assumptions adopted by a

professional community, which allow it to share similar perceptions and
engage in commonly shared practices.

ISD approach
 An ISD approach means a generic way of conceiving certain aspects of

ISD, or a generic way of working in ISD.
ISD approach in Category A
 An ISD approach in Category A is a kind of schools of though with

identifiable founders and scientific community as institutionalizations. It
is a set of goals, guiding principles, fundamental concepts, and principles
for the ISD process that drive interpretations and actions in the ISD.

ISD approach in Category B
 An ISD approach in Category B has a specific view of ISD as a context.
ISD approach in Category C
 An ISD approach in Group C has a particular view of some specific

contextual domain(s) of ISD.
Transformation approach
 The transformation approach is an ISD approach in Category B according to

which ISD is seen as sequential steps of transforming ISD deliverables on
one level of abstraction into the ISD deliverables on the next lower level of
abstraction.

Decision making approach
 The decision making approach is an ISD approach in Category B according

to which ISD is seen as a decision making process in which knowledge is
acquired, options are specified, and the “best” options are selected.

Problem solving approach
 The problem solving approach is an ISD approach in Category B according

to which ISD is seen as a problem solving process in which problems at
several levels of details are identified and solved.

Learning approach
 The learning approach is an ISD approach in Category B according to which

ISD is seen as a learning process by which knowledge on application
domain, technology and ISD work is acquired, elaborated and
disseminated.

Political approach
 The political approach is an ISD approach in Category B according to which

ISD is seen as a cooperative process composed of negotiations, bargaining,
power and social interactions.

Knowledge work approach
 The knowledge work approach is an ISD approach in Category B according

to which ISD is viewed as knowledge work.
IS data-oriented approach
 The IS data-oriented approach is an ISD approach in Category C that

regards data as the fundamental parts of an IS.

679

IS process-oriented approach
 The IS process-oriented approach is an ISD approach in Category C that

views information processing actions or processes as the most essential parts of
the IS.

IS user-oriented approach
 The IS user-oriented approach is an ISD approach in Category C that puts

the major emphasis on human beings, their needs, views and interactions
in the IS and in the US.

Life cycle approach
 The life cycle approach is an ISD approach in Category C that decomposes

the ISD work into discrete phases to be accomplished in an order that is
comparable to sequential waterfalls. Each phase should be satisfactorily
completed before the next one begins

Prototyping approach
 The prototyping approach is an ISD approach in Category C that aims,

through prototypes, to increase the understanding of those issues on
which there exists some uncertainty, and thus to decrease risks related to
the ISD process or its outcome.

Incremental approach
 The incremental approach is an ISD approach in Category C that means the

process of constructing a partial implementation of a total system and slowly
adding increased functionality or performance.

Evolutionary approach
 The evolutionary approach is an ISD approach in Category C according to

which an information system is an incremental outgrowth of evolution and
learning and it continues to evolve over time owing to new learning
experiences.

Information system development
 Information development system is a context in which ISD actors carry

out ISD actions, ranging from requirements engineering to
implementation and evaluation of an IS, to produce ISD deliverables
contributing to a renewed or a new IS, by means of ISD facilities in a
certain organizational and spatio-temporal context, in order to satisfy ISD
goals set by ISD stakeholders.

VII.1 ISD Domains

ISD purpose domain
 The ISD purpose domain embraces all those concepts and constructs that

refer to goals, motives, or intentions of someone or something in the ISD
context. The concepts may show a direction toward which it is due to
proceed, a state to be attained or avoided, and reasons for them.

ISD goal
 An ISD goal expresses is a desired state or event with qualities and

quantities, related to an ISD context as a whole or to some of its parts.

680

Hard ISD goal
 A hard ISD goal is an ISD goal with pre-specified criteria for the

assessment of the fulfilment.
Soft ISD goal
 A soft ISD goal is an ISD goal with no pre-specified criteria for the

assessment of the fulfilment.
ISD requirement
 An ISD requirement is some quality or performance demanded in and for

the ISD context. It is a statement about the future.
ISD problem
 An ISD problem is the distance or mismatch between the prevailing ISD

state and the state reflected by the ISD goals.
IS criterion
 A IS criterion is a standard of judgment presented as an established rule

or principle for evaluating some feature(s) of the IS.
IS requirement
 An IS requirement means a condition or capability of the IS needed by an

IS client or an IS worker to solve a problem or achieve a goal.
Functional IS requirement
 A functional IS requirement is an IS requirement that specifies what the IS

should do and for whom.
Non-functional IS requirement
 A non-functional IS requirement is an IS requirement that constraints or

sets some quality attributes upon the services or functions offered by the IS.
IS systelogical requirement
 An IS systelogical requirement is an IS requirement that concerns (e.g. the

benefits and costs of) information services the IS should provide to its
utilizing system.

IS infological requirement
 An IS infological requirement is an IS requirement that expresses

demands on the type and quality of information needed as well as actions
with which the information is to be processed.

IS conceptual requirement
 An IS conceptual requirement is an IS requirement that pertains to the

contents of information to be processed in the IS.
IS datalogical requirement
 An IS datalogical requirement is an IS requirement that concerns e.g. how

to present information, how to divide information processing between persons
and computers, and how to organize responsibilities for information processing
into IS roles and IS positions.

IS physical requirement
 An IS physical requirement is an IS requirement that expresses detailed

demands on physical structures and behavior of the HIS and the CIS.

681

ISD actor domain
 The ISD actor domain consists of all those concepts and constructs that refer

to human and active part of an ISD context.
ISD actor
 An ISD actor is an ISD human actor or an administrative actor that is, one

way or another, involved in an ISD context.
ISD human actor
 An ISD human actor means an individual person or a group of persons

contributing to ISD work.
ISD role
 An ISD role is a collection of ISD responsibilities and authorities,

stipulated in terms of ISD actions.
ISD position
 An ISD position is a position, composed of the defined ISD roles and

occupied by a human ISD actor.
IS owner
 An IS owner is an ISD role in which an ISD actor has financial interest in

the IS and, thereby, the responsibility for, and the authority of, making
decisions on the IS as though it would be his/her property.

IS client
 An IS client is an ISD role for whom the IS is to be developed. He/she is a

beneficiary or a ‘victim’ of the IS.
IS worker
 An IS worker is an ISD role, in which an ISD actor is working with the

current IS and/or is going to work with the new IS.
IS developer
 An IS developer is an ISD role, in which an ISD actor is engaged in

meeting the needs and requirements put forward by ISD actors in the other
roles.

Project manager
 A project manager is an ISD role, in which an ISD actor makes plans on

how to organize an ISD effort. He/She also participates in making
decisions on the execution of the plans.

Vendor/consultant
 A vendor / consultant is an ISD role, which is played by a person from

outside the organization.
ISD stakeholder
 An ISD stakeholder means an ISD actor who is potentially affected by the

IS or ISD and therefore is invited to act in some of the ISD roles.
ISD project
 An ISD project is a temporary effort with the well-defined objectives and

constraints, the established organization, the budget and the schedule,
launched for the accomplishment of ISD.

682

ISD project organization
 An ISD project organization is a composition of ISD positions and ISD

teams wherein the responsibility, authority and communication
relationships are defined.

ISD organizational unit
 An ISD organisational unit is a composition of ISD positions with a

coherent set of organizational goals, authorities and responsibilities.
Steering committee
 A steering committee is a group, which carries the responsibility of the

overall management of the ISD project.
Project team
 A project team is a group that is collected for the execution of an ISD effort.
Leader
 A leader of a project team is an ISD position devoted to the management of

the team and to ensure the proper communication between the members, as
well as between the team and the other teams

IT expert
 An IT expert is a person whose education, skills, experience as well as

his/her former position is related to the information technology and/or
ISD methods.

Business expert
 A business expert is a person, who is knowledgeable in business strategies,

policies, markets, competition, trends, legislation, etc., shortly in how to
make business, in general or in the organization.

Work expert
 A work expert is a person, who masters daily routines, e.g. in making

orders, invoicing, production planning, inventory control, goods
deliveries, etc.

ISD action domain
 The ISD action domain comprises all those concepts and constructs that

refer to deeds or events in an ISD context.
ISD action
 An ISD action is an action carried out to manage and/or execute a part of an

ISD effort.
ISD rule
 An ISD rule governs one or more ISD action.
ISD process
 An ISD process is an instance of an ISD action.
ISD management-execution structure
 The ISD management–execution structure is a functional and behavioral

unity, composed of two kinds of actions, ISD management actions and ISD
execution actions.

ISD management action
 An ISD management action aims to plan, organize, staff, direct, and/or

control ISD work.

683

ISD planning
 ISD planning means all those ISD management actions that specify the goals

of an ISD project and the strategies, policies, programs and procedures for
achieving them.

ISD organizing
 ISD organizing means all those ISD management actions that are needed to

design a formal structure of ISD execution actions and authority
relationships between them.

ISD staffing
 ISD staffing means all those ISD management actions that are needed to fill

and keep filled the ISD positions of the ISD project organisation.
ISD directing
 ISD directing means all those ISD management actions that are needed for

clarifying the assignments of ISD personnel, assigning actions to
organisational units, teams and individuals, motivating and inspiring
personnel, resolving disagreements between personnel and between the
ISD project and outer stakeholders.

ISD controlling
 ISD controlling means all those ISD management actions that are needed

for ensuring that actual ISD actions are executed according to the plans.
ISD execution action
 An ISD execution action aims to produce the required ISD deliverables

under the guidance and control of ISD management.
ISD workflow structure
 The ISD workflow structure is composed of various ISD workflows.
ISD workflow
 An ISD workflow is a coherent composition of ISD actions, which are

organised to accomplish some ISD process, which share the same target of
action, and which produce valuable results for stakeholders.

ISD task
 An ISD task is a part of an ISD workflow.
IS requirements engineering
 IS requirements engineering is an ISD workflow, which aims to identify

and elicit IS clients’ and IS workers’ requirements on an IS, as well as to
establish and maintain, at least to some extent, agreement on what the
information system should do and why.

IS analysis
 IS analysis is an ISD workflow, which models the problem domain.
IS design
 IS design is an ISD workflow, which models the solution domain.
IS implementation
 IS implementation is an ISD workflow, which fleshes out the architecture

and the system as a whole, by carrying IS design models into effect.

684

IS evaluation
 IS evaluation is an ISD workflow, which aims at the assessment of an

existing system, as well as the evaluation of all the specifications, designs
and implementations made for the future system.

ISD phase structure
 The ISD phase structure is composed of sequential ISD phases.
ISD phase
 An ISD phase means an ISD action, executed between two milestones, by

which a well-defined set of goals is met, ISD deliverables are completed,
and decisions are made on to move or not to move into the next phase.

Milestone
 A milestone is a synchronization point where ISD management makes

important business decisions and ISD deliverables have to be at a certain
level of completion.

IS inception
 The IS inception phase is an ISD phase where the focus is on the

understanding of the overall requirements and determining the scope of the
development endeavor.

IS elaboration
 The IS elaboration phase is an ISD phase where the focus is on detailed

requirements engineering, but some systems design and implementation actions
aimed at prototyping can also be done.

IS construction
 The IS construction phase is an ISD phase, which focuses on design and

implementation of the system.
IS transition
 The IS transition phase is an ISD phase into which it is entered when at

least some part of an ISD baseline is mature enough to be deployed.
ISD problem solving structure
 The ISD problem solving structure is a result of seeing ISD as a series of

interrelated decisions, which involve the identification and articulation of
problems, alternative solutions, decisions and justifications.

Intelligence
 Intelligence means ISD actions that search the environment for conditions

calling for a decision.
Design
 Design consists of ISD actions of inventing, shaping and specifying

alternatives for possible courses of action in ISD work.
Choice
 Choice means the evaluation and comparison of each alternative design

option and the selection among them.
IS modeling
 IS modeling is an ISD action which aims to produce an IS model.
IS modeling structure
 The IS modeling structure is composed of IS modeling actions.

685

Elementary modeling structure
 The elementary modeling structure comprises IS modeling actions that are

always present in IS modeling.
Conceptualizing
 Conceptualizing is an ISD action by which relevant perceptions of the

existing reality and conceptions of the imagined reality are interpreted,
abstracted and structured according to some conceptual model.

Representing
 Representing is an ISD action by which conceptions are made "visible" and

proper to communicate about them. Representing yields a model denotation
from a concept model.

Single-model action structure
 The single-model action structure comprises IS modeling actions that

involve a single model at a time.
Creating
 Creating means an ISD action by which an IS model is conceptualized and

represented for some specific use.
Refining
 Refining means an ISD action by which an IS model is corrected, modified,

and/or enlarged.
Testing
 Testing is an ISD action by which a concept model or a model denotation is

checked against the given quality criteria.
Multi-model action structure
 The multi-model action structure comprises IS modeling actions that

involve, some way or another, two or more IS models at the same time.
Transforming
 Transforming is an ISD action by which conceptions structured according

to one IS model are transformed into conceptions structured according to
another IS model.

Translating
 Translating is an ISD action by which an IS model denotation represented in

some language is translated into another language.
Relating
 Relating is an ISD action by which two or more IS models are mapped to

one another by finding common concepts within the IS models or defining
some “bridging” relationships between the concepts of the IS models.

Integrating
 Integrating is an ISD action by which a new model is made by assembling

their concepts and relationships of two or more IS models.

ISD object domain
 The ISD object domain comprises all those concepts and constructs that

refer to something, to which an ISD action is directed.
ISD deliverable
 An ISD deliverable is an ISD object at which ISD actions are targeted.

686

OSISD construct
 An OSISD construct is a part of the object system of ISD.
ISD management deliverable
 An ISD management deliverable is an ISD deliverable produced by ISD

management actions.
ISD execution deliverable
 An ISD execution deliverable is an ISD deliverable produced by ISD

execution actions.
IS model
 An IS model is a model describing/prescribing certain aspects of an IS.
IS implementation
 IS implementation is an ISD deliverable resulting from the

implementation of one or more IS models (e.g. a software module, a
prototype).

ISD baseline
 An ISD baseline is a set of reviewed and approved ISD deliverables that

represents an agreed basis for further evolution and development, and can
be changed only through a formal procedure such as configuration and
change management.

VII.2 ISD Perspectives

ISD perspective
 An ISD perspective is a perspective with which the features of the ISD

context, specific to the problem or the situation at hand, can be considered.
ISD systelogical perspective
 The ISD systelogical perspective is an ISD perspective, which reveals the

support the ISD context provides to its utilizing system (USISD).
ISD service
 An ISD service means all those material or immaterial ISD deliverables that

are produced in the ISD context and delivered to be exploited in the
intended IS contexts.

ISD infological perspective
 The ISD infological perspective is an ISD perspective according to which

the ISD context is seen as a functional structure of information processing
actions and informational objects.

ISD conceptual perspective
 The ISD conceptual perspective is an ISD perspective, which designates

the things the ISD deliverables signify.
Entity type
 An entity type is a generic concept corresponding to the intensional

specification of all those features that are shared by the entities that are
regarded as instances of the entity type.

687

OS relationship type
 The OS relationship type is a generic concept corresponding to the

intensional specification of all those features that are shared by the OS
relationships that are regarded as instances of the OS relationship type.

Entity role
 An entity role means a particular role, which an entity type connected by

an OS relationship type plays in that relationship.
Attribute
 An attribute is a relevant predicate used to characterize an entity or an OS

relationship.
Single-valued attribute
 A single-valued attribute is an attribute that has a single value for a

particular entity or OS relationship.
Multi-valued attribute
 A multi-valued attribute is an attribute that may have many values for a

particular entity or OS relationship.
Composite attribute
 A composite attribute is an attribute that can be divided into smaller parts

that still have independent meanings.
Atomic attribute
 An atomic attribute is an attribute that is not divisible.
Derived attribute
 A derived attribute is an attribute the value of which can be calculated

from the values of other attributes, or derived in some other way from the
existing entities and / or OS relationships.

OSIS construct type
 An OSIS construct type means here a conceptual construct composed of

specific entity types related to one another through OS relationship types and
characterized by attributes.

OSIS state type
 An OSIS state type means a state type of the object system or its parts,

composed of OSIS construct types.
OSIS transition type
 An OSIS transition type is a generic concept corresponding to the

specification of all those features that are shared by OSIS transitions.
OSIS event type
 An OSIS event type means a generic concept corresponding to the

specification of all those features that are shared by OSIS events, which may
trigger an OSIS transition and which may be caused by another OSIS
transition.

OSIS constraint
 An OSIS constraint specifies allowed OSIS states (static constraint) and/or

allowed OSIS transitions (dynamic constraints) between the OSIS states.
ISD datalogical perspective
 The ISD datalogical perspective is an ISD perspective according to which

the ISD context is considered through representation-specific concepts,

688

involving, besides ISD purposes, ISD actors, ISD actions, and ISD
deliverables, also ISD actors and ISD facilities on a general level.

VIII. ISD Method Ontology

The ISD method ontology provides concepts and constructs for conceiving,
understanding, structuring and representing contextual aspects of the ISD
methods.

ISD method
 An ISD method is an artefact anchored on certain historical, intentional

and functional backgrounds and aimed to be applied and deployed as a
prescription in the intended kinds of ISD contexts, in order to make
organizational and technical changes in IS’s possible or more productive.
The ISD method, presented and materialized in certain forms, contains
four kinds of knowledge bringing out how ISD actors carry out ISD actions
to produce ISD deliverables, by means of ISD facilities, in an organizational
and spatiotemporal context, in order to satisfy ISD goals set by ISD
stakeholders. The ISD method is composed of descriptive and prescriptive
parts with a large variety.

Knowledge of ISD process
 Knowledge of ISD process means all the knowledge that concerns how to

accomplish an ISD work.
Knowledge of application domain
 Knowledge of application domain means all the knowledge that concerns

an information system to be designed, its utilization system and its object
system.

Knowledge of IC technology
 Knowledge of IC technology means all thhe knowledge that concerns the

search, acquirement, installation, and deployment of hardware and software
for an IS, as well as for ISD.

Knowledge of human and social issues
 Knowledge of human and social issues means all the knowledge that

concerns human characteristics and behavior as well as social and
organizational aspects that should be taken into account in building an IS
and in organizing ISD work.

Generic ISD method
 A generic ISD method is an ISD method that provides general support,

such as general approaches, principles, models and guidelines, to conduct an
ISD effort in a wide range of ISD contexts.

Domain-specific ISD method
 A domain-specific ISD method is an ISD method that provides more

domain-specific support to conduct an ISD effort in a specific application
domain.

689

Organization-specific ISD method
 An organization-specific method is an ISD method that provides

customized support to conduct an ISD effort in a specific organization.
Project-specific ISD method
 A project-specific ISD method is an ISD method that provides configured

and instantiated support to conduct an ISD effort in a specific project in an
instantiated manner.

Methodical view
 A methodical view is a point of view from which particular aspects of an

ISD method can be considered.
Historical view
 The historical view is a methodical view, which enlightens the backgrounds

of and experiences from the engineering and use of the ISD method. It
involves both the prior ME contexts and the prior ISD contexts.

Application view
 The application view is a methodical view, which outlines where and how

the ISD method can be applied.
Generic view
 The generic view is a methodical view, which provides the general

understanding of the nature of the ISD method.
Contents view
 The contents view is a methodical view, which reveals the conceptual

contents of the ISD method.
Presentation view
 The presentation view is a methodical view from which an ISD method is

seen as a set of expressions presented in some language(s).
Physical view
 The physical view is a methodical view, which reveals the appearance(s) of

the ISD method, that is to say, the media on which the ISD method is made
visible or “functioning”.

Structural view
 The structural view is a methodical view from which the ISD method is seen

as a modular structure of parts with a large variety: of e.g. paradigmatic
assumptions, ISD approaches, ISD principles, background and application
knowledge, concepts, notations, ISD models, ISD techniques, ISD rules, and
ISD guidelines.

Prior ME context
 A prior ME context is an ME context that has contributed to the creation

and engineering of the ISD method.
Prior ISD context
 A prior ISD context is an ISD context in which the ISD method has been

deployed.
Target ISD context
 A target ISD context is an ISD context for which the ISD method is

intended.

690

Target ME context
 A target ME context is an ME context in which the ISD method is to be

customized and instantiated for the use of a particular organization or
project.

ISD model
 An ISD model is a model that prescribes/describes structural and/or

behavioral features of the ISD context(s).
ISD technique
 An ISD technique is a technique, which guides the accomplishment of

specific actions in the ISD context(s).
ISD purpose model
 An ISD purpose model is an ISD model that prescribes/describes problems

in, requirements for, and/or goals of, the intended182 ISD context, or some
part(s) thereof.

ISD actor model
 An ISD actor model is an ISD model that prescribes/describes ISD roles,

ISD positions, ISD organizational units, persons and/or groups participating
one way or another in the intended ISD context.

ISD action model
 An ISD action model is an ISD model that prescribes/describes ISD actions

and their relationships in the intended ISD context.
ISD deliverable model
 An ISD deliverable model is an ISD model that prescribes/describes the

structure and presentation of ISD deliverables and how they are related in
the intended ISD context.

ISD data model
 An ISD data model is an ISD model that prescribes/describes the

conceptual contents of the ISD deliverables in the intended ISD context.
ISD facility model
 An ISD facility model is an ISD model that prescribes/describes resources

and tools available and used in the intended ISD context.
ISD location model
 An ISD location model is an ISD model that prescribes/describes the

nature, structure and features of locations, whether physical or logical,
involved in the intended ISD context.

ISD time model
 An ISD time model is an ISD model that prescribes/describes the time

system used in the intended ISD context.
ISD ID model
 An ISD ID model is an ISD model that prescribes/describes inter-domain

(ID) features of the intended ISD context.

182 An intended ISD context means or a target ISD context (‘prescribe’) or a prior ISD

context (‘describe’).

691

ISD systelogical model
 An ISD systelogical model is an ISD model that describes/prescribes the

support the intended ISD provide or should provide to its utilizing system
(USISD), as well as the assumptions on the target IS’s and their utilizing
systems (USIS).

ISD infological model
 An ISD infological model is an ISD model that describes/prescribes the

purposes, actions and deliverables of the intended ISD context.
ISD conceptual model
 An ISD conceptual model is an ISD model that describes/prescribes the

conceptual contents of the deliverables of the intended ISD context.
ISD datalogical model
 An ISD datalogical model is an ISD model that describes/prescribes the

purposes, actors, actions, deliverables and tools of the intended ISD context,
last two on a general level.

ISD physical model
 An ISD physical model is an ISD model that describes/prescribes, besides

the features mentioned above, yet on a more concrete level, also spatial
and temporal features of the intended ISD context, and all as being
instantiated into a particular ISD context.

ISD IP model
 An ISD IP model is an ISD model that describes/prescribes features of the

intended ISD context from multiple ISD perspectives.
ISD methodical framework
 An ISD methodical framework is composed of IS meta models and/or ISD

meta models.
ISD methodical skeleton
 An ISD methodical skeleton is a normative prescription for the ISD

context, structuring and guiding the ISD process on a general level.
Methodical tool kit
 A methodical tool kit is a collection of more or less unrelated methodical

parts, which do not, as such, constitute any coherent and concrete method
for ISD.

ISD method component
 An ISD method component is a well-defined part of the ISD method that

can be integrated to other ISD method components to form a coherent and
consistent ISD method.

Contextual ISD method component
 A contextual ISD method component is an ISD method component that

contains descriptions/prescriptions of features of ISD within several
contextual domains.

Domain-based ISD method component
 A domain-based ISD method component is an ISD method component that

contains descriptions/prescriptions of features of ISD with one or at most
two contextual domains

692

Ontological component
 An ontological component is an ISD method component, which provides

concepts and constructs for conceptual modeling.
Notational component
 A notational component is an ISD method component, which provides a set

of symbols (without any predefined semantics).
Action-based component
 An action-based component is an ISD method component, which mainly

describes/prescribes ISD actions.
Actor-based component
 An actor-based component is an ISD method component, which

describes/prescribes ISD actors and how they are related (e.g. an
organisational structure).

 Tool-based component
 A tool-based component is an ISD method component, which

describes/prescribes elements and architecture of a computerized
information system.

Construct component
 A construct component is an ISD method component, which cannot be

decomposed into smaller parts without loosing some of its meaningfulness
and integratability.

Contextual interface
 A contextual interface of an ISD method component means a white-box like

description of those contextual relationships through which an ISD method
component can be integrated into other ISD method components. The
contextual relationships are inter-domain relationships and/or intra-domain
relationships.

IX. ME Ontology

The ME ontology provides concepts and constructs to conceive, understand,
structure, and represent contextual features of method engineering.

Method engineering
 Method engineering (ME) means all those actions by which an ISD method

is developed, and later possibly customized and configured to fit the
needs of an organization and/or an ISD project.

ME strategy
 An ME strategy is a generic way of accomplishing an ME effort.
Creation
 Creation means an ME strategy, also known as the “greenfield” or “from

scratch” strategy, that is applied in a situation where no method is available
to be used as a basis for ME.

Integration
 Integration means an ME strategy according to which an ISD method is

engineered by assembling components of existing ISD methods.

693

Adaptation
 Adaptation means an ME strategy according to which an ISD method is

engineered by dropping off or modifying some part(s) of an existing ISD
method, or extending an existing ISD method with some new part(s).

Customization
 Customization means an ME process by which an organization-specific ISD

method is derived from some generic ISD method (or domain-specific ISD
method) by adjusting it with organizational features that fit the traditions,
culture, infrastructure, management policies, etc. of the target organization.

Configuration
 Configuration means an ME process by which a project-specific ISD method

is derived from an organization-specific ISD method.
Realization
 Realization means an ME process by which a project-specific ISD method is

put into action.
Decustomization
 Decustomization is an ME process by which a generic ISD method is

engineered by clearing an organization-specific ISD method from the
knowledge specific to a certain organization.

Deconfiguration
 Deconfiguration means an ME process by which an organization-specific

ISD method is engineered by abstracting project-specific knowledge from an
existing ISD method.

Method engineering context
 A method engineering context is a context in which ME actors carry out

ME actions of (de)customization, (de)configuration, realization, and/or
abstraction to produce a new or improved ISD method, with ME facilities in
a certain organizational and spatiotemporal context, in order to satisfy ME
goals set by ME stakeholders.

Method development context
 A method development context is an ME context that aims to engineer a

generic ISD method or a domain-specific ISD method.
Method customization context
 A method customization context is an ME context that aims to attain an

organization-specific ISD method.
Method configuration context
 A method configuration context is an ME context that aims to engineer a

project-specific ISD method.
Prior ME context
 A prior ME context means a context, which has contributed to the ISD

method that is under consideration/engineering in the ME context at hand.
Target ME context
 A target ME context means a context in which the ISD method under

engineering is later to be customized, configured and/or realized for the
use of certain ISD contexts.

694

Prior ISD context
 A prior ISD context means a context in which the ISD method(s) interested

by the ME context at hand have been applied.
Target ISD context
 A target ISD context means a context for which the ME effort at hand has

been launched.

IX.1 ME Domains

ME purpose domain
 The ME purpose domain embraces all those concepts and constructs that

refer to goals, motives, or intentions of someone or something in the ME
context.

ME goal
 An ME goal expresses a desired state or event with qualities and quantities

related to the ME context as a whole, or to some part of it.
Hard ME goal
 A hard ME goal has pre-specified criteria for the assessment of the

fulfilment.
Soft ME goal
 A soft ME goal has no pre-specified criteria for the assessment of the

fulfilment.
ME requirement
 An ME requirement is some quality or performance demanded from the

ME context, or from some part(s) thereof.
ME problem
 An ME problem is a perceived deviation from a desired state or way of

doing, which may lead to specifying one or more ME requirements and set
up one or more ME goals.

ISDM purpose
 An ISDM purpose is an ME goal or an ME reason pertaining to an ISD

method.
ME actor domain
 The ME actor domain consists of all those concepts and constructs that refer

to human and active part of the ME context.
ME actor
 An ME actor is a human thing or an administrative thing that is, one way

or another, involved in the ME context.
Human ME actor
 A human ME actor means an individual person or a group of persons

contributing to the ME work.
ME role
 An ME role is a collection of ME responsibilities and ME authorities.
ME position
 An ME position is a position, composed of the defined ME roles and

occupied by a human ME actor.

695

ME engineer
 A method engineer is an ME role in which a human ME actor has the main

responsibility for ME actions in an ME effort.
ME project manager
 An ME project manager is an ME role in which a human ME actor makes

plans of and decisions on how to organize an ME effort.
ME stakeholder
 An ME stakeholder is an ME actor who plays in any ME role.
Method expert
 A method expert is a person who has a deep understanding of methods

generally, and of some specific method(s) in particular.
Tool expert
 A tool expert is a person, who has familiarized oneself with tools used in

method engineering (i.e. CAME tools and/or MetaCase tools) and in ISD
(i.e. CASE tools).

Theory expert
 A theory expert is a person, who has special knowledge on theoretical and

methodological issues of method engineering.
ME organization
 An ME organization is a composition of ME positions with a coherent set

of organizational goals, authorities and responsibilities.
ME action domain
 The ME action domain comprises all those concepts and constructs that

refer to deeds or events in the ME context.
ISD modeling structure
 The ISD modeling structure is composed of ME actions modeling ISD on

two levels.
Metamodeling
 Metamodeling is a modeling process, which takes place on one level of

abstraction and logic higher than the standard modeling process.
ME workflow structure
 The ME workflow structure is composed of various ME workflows.
ME workflow
 An ME workflow is coherent composition of ME actions, (a) which are

organized to accomplish some ME process, (b) which share the same target
of action, and (c) which produce results valuable for ME stakeholders.

ME task
 An ME task is a part of an ME workflow.
ISDM requirements engineering
 ISDM requirements engineering means an ME workflow, which aims to

identify and elicit ME stakeholders’ requirements on the nature, contents and
structure of the ISD method.

ISDM analysis
 ISDM analysis means an ME workflow, which aims to produce high-level

descriptions of the ISD method, meaning that the ISD method is considered
from the ISD infological perspective and the ISD conceptual perspective.

696

ISDM design
 ISDM design means an ME workflow, which aims to produce more

elaborated descriptions of the ISD method, meaning that the ISD method is
considered from the ISD datalogical perspective.

ISDM implementation
 ISDM implementation means an ME workflow, which aims to produce

concrete descriptions/prescriptions of the ISD context from the ISD
physical perspective.

ISDM evaluation
 ISDM evaluation means an ME workflow, which aims to produce

assessments of one or more ISD methods according to the defined criteria.
ME object domain
 The ME object domain comprises all those concepts and constructs that

refer to something, to which ME actions are targeted.
ME deliverable
 An ME deliverable is an object to which ME actions are targeted.
ME management deliverable
 An ME management deliverable is an ME deliverable that is produced by

ME management actions.
ME execution deliverable
 An ME execution deliverable is an ME deliverable that is produced by ME

execution actions.
OSME construct
 An OSME construct is a part of the object system of ME.
ME baseline
 An ME baseline is a set of reviewed and approved ME deliverables.

IX.2 ME Perspectives

ME perspective
 An ME perspective is a perspective with which the features of the ME

context, specific to the problem or the situation at hand, can be considered.
ME systelogical perspective
 The ME systelogical perspective is an ME perspective that reveals the

support method engineering provides to its utilizing system (USME).
ME service
 An ME service means a material and immaterial ME deliverable that is

produced in the ME context and delivered to be utilized in the target ISD
contexts.

ME infological perspective
 The ME infological perspective is an ME perspective from which the ME

context is seen as a functional structure of information processing and
informational objects.

ME conceptual perspective
 The ME conceptual perspective is an ME perspective that addresses the

conceptual contents of the ME deliverables.

697

OSISD construct type
 An OSISD construct type in OSISD means a conceptual construct composed

of specific entity types related to one another with OS relationship types and
characterized by attributes.

OSISD state type
 An OSISD state type means a state type of the object system or its parts,

composed of OSISD construct types.
OSISD transition type
 An OSISD transition type is a generic concept corresponding to the

specification of all those features that are shared by OSISD transitions.
OSISD event type
 An OSISD event type means a generic concept corresponding to the

specification of all those features that are shared by OSISD events, which
may trigger an OSISD transition and which may be caused by another OSISD
transition.

OSISD constraint
 An OSISD constraint specifies allowed OSISD states (static constraint)

and/or allowed OSISD transitions (dynamic constraint) between the OSISD
states.

OSis construct meta type
 An OSis construct meta type in OSME is composed of classes related

through associations and class roles to one another.
ME datalogical perspective
 The ME datalogical perspective is an ME perspective from which ME is

seen as a context in which ME deliverables, represented in some language,
are processed by ME actors for certain purposes with some computer-aided
ME tools.

X. ME Method Ontology

The ME method ontology provides concepts and constructs for conceiving,
understanding, structuring and representing contextual aspects of the ME
methods.

ME method
 An ME method is an artifact anchored on historical, intentional and

functional backgrounds and aimed to be applied and deployed as a
prescription in the intended kinds of ME contexts, in order to make
organizational and technical changes in ISD contexts possible or more
productive. The ME method, presented and materialized in several forms,
contains knowledge bringing out how ME actors carry out ME actions to
produce ME deliverables, by means of ME facilities, in an organizational and
spatiotemporal context, in order to satisfy ME goals set by ME stakeholders.
The ME method is composed of descriptive and prescriptive parts in a
large variety.

698

Generic ME method
 A generic ME method is an ME method, which provides general

approaches, principles, models and guidelines to conduct ME efforts in a
wide range of ME contexts.

Domain-specific ME method
 A domain-specific ME method is an ME method, which provides more

domain-specific support to conduct ME efforts in a specific application
domain.

Organization-specific ME method
 An organization-specific ME method is an ME method, which provides

customized support to conduct ME efforts in a specific organization.
Project-specific ME method
 A project-specific ME method is an ME method, which provides

configured and instantiated support to accomplish a particular ME effort.
Prior RW context
 A prior RW context is an RW context, which has contributed to the

creation and engineering of the ME method.
Target RW context
 The target RW context means an RW context in which the ME method is to

be elaborated, customized, configured and/or instantiated for the use of a
particular organization or ME project.

ME strategy
 An ME strategy means a generic way of accomplishing an ME effort, or a

part thereof.
ME approach
 An ME approach means a generic way of perceiving certain aspects of ME

and/or a way of working in ME.
Main ME principle
 A main ME principle expresses essential aspects of a specific way to

structure, accomplish, and/or manage the ME process.
ME method component
 An ME method component is a well-defined part of the ME method that

can be integrated to other ME method components to form a coherent and
consistent ME method.

ME model
 An ME model is a model that describes/prescribes structural, functional

and/or behavioral features of the ME context.
ME technique
 An ME technique is a technique, which guides the accomplishment of

specific actions in the ME context.
ME contextual models
 The ME contextual models mean ME models that can be classified into

eight categories according to which ME domain(s) they address.
ME perspective models
 The ME perspective models mean ME models that can be classified into

five categories according to which ME perspective(s) they address

699

APPENDIX 2: ONTOLOGY REPRESENTATION LANGUAGE

This thesis provides a large number of meta models for describing component
ontologies in OntoFrame. In this appendix we specify the ontology
representation language, in which the meta models are presented.

The ontology representation language is closely based on UML version 1.4
(OMG 2001)183. We deploy only a small part of the UML language. Following
the strategy of MOF (OMG 2002) we have selected only those features of UML,
which are feasible in describing ontologies. That means that even from the set of
the concepts and constructs of the MOF we have excluded some concepts as
unnecessary for our purposes. Compared to UML, we have also made changes
in the semantics of the following concepts:
• Association:
 In UML an association is defined as a structural relationship between two

or more classes. In the ontology representation language an association is
defined as a binary relationship. This limitation is made in concordance
with MOF.

• Aggregation and composition:
 In UML an aggregation is defined as an association that “specifies a

whole-part relationship between the whole and its part” (p. Booch et al.
1999, 458). It represents “a ‘has-a’ relationship, meaning that an object of
the whole has objects of the part” (Booch et al. 1999, 67). A composition is
defined “a form of aggregation with strong ownership and coincident
lifetime of the parts by the whole” (Booch et al. 1999, 460). We define these
concepts to stand for the relationships between the whole and its part in
such a way that the parts are assumed to be inter-related. This assumption
about the internal structure of the parts within the whole is also included
in the notion of an aggregation in OML (Firesmith et al. 1997).

In the table below we define the UML-based concepts and notation for the
ontology representation language. The definitions are based on OMG(2001) and
OMG(2002).

183 Nowadays, there is also the OMG standard for UML 2.0 (OMG 2003), but it was not

available when we started our work.

700

Class

Association

Generalization

Aggregation

Composition

role

1..*

1..1

Concepts Notation

Ontology representation language

Definition

A description of a set of concepts that share
the same predicates.

An semantic connection between two classes,
each one associated in a specific role
(ClassRole). For each association end a range
of allowed cardinalities is specified with the
multiplicity.

A taxonomic association between a more
general class and a more specific class.

A special form of association that specifies a
whole-part relationship between a whole and
its part in such a way that the parts in the
whole are inter-related.

A special form of aggregation which requires
that a part instance is included in at most one
whole at a time, and that the lifetimes of the
parts are coincident with the lifetime of the
whole.

701

YHTEENVETO (FINNISH SUMMARY)

Tietojärjestelmien suunnittelumenetelmiä kehitetään, räätälöidään ja sovitetaan
usein intuitiivisesti ja improvisoiden. Näin toteutettuna menetelmäkehityksellä
on vaarana tuottaa vaikeasti ymmärrettäviä, huonosti soveltuvia ja tehottomasti
sovellettavia suunnittelumenetelmiä. Improvisointiin nojaavalle menetelmä-
kehitykselle on usein ominaista myös suurempi resurssitarve. Merkittävänä
syynä vallitsevalle tilanteelle on se, että menetelmäkehitykseltä itseltään
puuttuu kunnollinen menetelmätuki. Kirjallisuudessa on kyllä esitetty laaja
kirjo menetelmäkehityksen strategioita, lähestymistapoja, tekniikoita ja askel-
tasoisia proseduureja, mutta nämä ovat sittenkin vain osaratkaisuja. Kokonais-
valtaista menetelmää menetelmäkehitykseen ei ole tarjolla. Toisaalta ehdotetut
ratkaisutkin perustuvat suuressa määrin olemassa olevien käytäntöjen kirjaami-
seen. Niiltä puuttuu lähes kokonaan laaja-alainen ja teoreettinen käsiteperusta.

Tämän väitöskirjatyön tavoitteena on ollut kehittää ensiksikin käsitteel-
linen perusta, joka auttaa tunnistamaan, ymmärtämään, jäsentämään ja esittä-
mään tietojärjestelmien suunnittelumenetelmien luonteeseen, sisältöön, raken-
teeseen ja kehittämiseen liittyviä piirteitä ja ilmiöitä. Toisena tavoitteena on
ollut rakentaa teoriapohjaista menetelmätukea menetelmäkehitykselle. Erityise-
nä pyrkimyksenä on ollut hyödyntää kontekstuaalisia piirteitä esiin nostavia
teorioita (esim. semantiikka, pragmatiikkaa, toimintateoria) ja luoda niiden
pohjalta lähestymistapoja, käsitteistöä, malleja ja ohjeistoja menetelmäkehi-
tykseen.

Väitöskirjassa esitetään kaksi konstruktiota, ontologinen kehys ja menetel-
märunko. Ontologinen kehys, nimeltään OntoFrame, on moniulotteinen käsit-
teellinen kehys, joka koostuu eri tasoisista ontologioista. Yleisluonteisin
ontologia on rakentunut ”universaaleista” käsitteistä kuten olevaisesta, suhtees-
ta, roolista, ominaisuudesta ja näkökulmasta. Generatiivisen lähestymistavan
mukaisesti yleisemmistä ontologioista on johdettu spesifisempien ontologioi-
den käsitteet. Mitä spesifisemmälle tasolle edetään, sitä kontekstuaalisempia
käsitteitä ontologiat sisältävät. Spesifisimmät ontologiat koskevat menetel-
mäkehitystä ja sitä tukevia menetelmäkomponentteja. OntoFrame on
rakennettu yhtäältä relevanttien teorioiden päälle (deduktiivinen lähestymis-
tapa) ja toisaalta käyttämällä hyväksi olemassa olevia kehyksiä, viitemalleja,
metamalleja ja ontologioita (induktiivinen lähestymistapa). Kehykseen sisälty-
vien käsitteiden määritelmät esitetään yhtenäisenä sanastona tutkimuksen
liitteessä. Kunkin ontologian käsitteistä ja käsiterakenteista esitetään myös
yksityiskohtaiset UML-pohjaiset metamallit, jotka auttavat muodostamaan
kokonaiskäsityksen ontologioista ja lisäävät esityksen täsmällisyyttä.

Menetelmärunko, MEMES, on tarkoitettu menetelmien yleistasoisten
määritysten tekemiseen ja arviointiin. Se jäsentää menetelmäkehityksen viiteen
tehtäväkokonaisuuteen ja tarjoaa kolmelle niistä lähestymistapoja, periaatteita
ja askeleita. Nämä tehtäväkokonaisuudet ovat: menetelmävaatimusten määrit-
täminen, menetelmäanalyysi (so. karkean tason suunnittelu) ja menetelmä-

702

arviointi. Vaatimusten määrittämisessä tehdään ensin ratkaisu kontingenssi-
viitekehyksen käytöstä ja valitaan sovellettava lähestymistapa. Sen jälkeen
karakterisoidaan ja analysoidaan aiempia tietojärjestelmien suunnittelutilan-
teita, käsillä olevaa menetelmäkehitystilannetta sekä olemassa olevia menetel-
miä. Analyysien tulosten perusteella määritellään vaatimukset ja tavoitteet
menetelmäkehitykselle. Seuraavassa vaiheessa mallinnetaan konstruoitavan
menetelmän kohteena olevaa tietojärjestelmän suunnittelukontekstia infologi-
sesta ja käsitteellisestä näkökulmasta. Tämä työ sisältää muiden muassa
tietojärjestelmää koskevien ontologioiden valinnan ja sovittamisen menetelmää
varten. Menetelmäarvioinnissa valitaan tai määritellään arviointikriteerit,
arviointitekniikka ja suoritetaan itse arviointi annettuja askeleita soveltaen.

Tutkimuksessa on sovellettu konstruktiivista tutkimusotetta ja suunnitte-
luteoreettista paradigmaa. Ontologista kehystä ja menetelmärunkoa arvioidaan
vertailemalla niitä ja niiden osia laajasti olemassa olevaan kirjallisuuteen.
Menetelmäkehystä arvioidaan myös empiirisin menetelmin.

Väitöskirjan tuloksia voivat hyödyntää menetelmäkehitystä tekevät ja
tutkivat organisaatiot. Ontologinen kehys tarjoaa käsitteellisen perustan arvioi-
da ja vertailla olemassa olevia tietojärjestelmien suunnittelumenetelmiä sekä
konstruoida uusia. Laajana kehyksenä se edesauttaa myös siltojen rakentamista
eri tieteenalojen, lähestymistapojen ja aikakausien käsitteiden ja käsitysten
välille. Metodirunkoa voidaan käyttää tarkennettuna ja sovitettuna käytännön
menetelmäkehityksessä. Sen pohjalta voidaan räätälöidä erilaisiin strategioihin,
lähestymistapoihin ja organisaationalisiin tilanteisiin sopivia menetelmäkehi-
tyksen menetelmiä ja tekniikoita.

	ABSTRACT
	ACKNOWLEDGEMENTS
	FIGURES
	TABLES
	CONTENTS
	1 INTRODUCTION
	1.1 Background and Motivation
	1.2 Research Domain
	1.3 Research Questions and Objectives
	1.4 Research Framework
	1.5 Research Methodology
	1.6 Key Research Qualities
	1.7 Structure of the Dissertation

	2 OVERVIEW OF ONTOFRAME
	2.1 Needs for an Ontological Framework
	2.2 Theoretical Backgrounds
	2.3 Outline of OntoFrame
	2.4 Approach and Process of Engineering OntoFrame
	2.5 Comparative Review
	2.6 Summary

	3 CORE ONTOLOGY
	3.1 Related Work
	3.2 Overall Structure
	3.3 Generic Ontology
	3.4 Semiotic Ontology
	3.5 Intension/Extension Ontology
	3.6 Language Ontology
	3.7 State Transition Ontology
	3.8 UoD Ontology
	3.9 Abstraction Ontology
	3.10 Comparative Analysis
	3.11 Summary

	4 CONTEXT ONTOLOGY
	4.1 Contextual Approach
	4.2 Theoretical Basis
	4.3 Elaborating the Notion of a Context and Contextual Domains
	4.4 Contextual Domains
	4.5 Inter-Domain Relationships
	4.6 Implicit Relationships
	4.7 Summary and Discussions

	5 LAYER ONTOLOGY
	5.1 Information Processing
	5.2 Information Processing Layers
	5.3 US and OS at the Processing Layers
	5.4 Summary

	6 PERSPECTIVE ONTOLOGY AND IS PERSPECTIVES
	6.1 Perspective Ontology
	6.2 Perspectives at the Processing Layers
	6.3 IS perspectives
	6.4 Comparative Analysis of IS Perspectives
	6.5 Summary and Discussions

	7 MODEL LEVEL ONTOLOGY
	7.1 Model and Modeling
	7.2 Levels
	7.3 Comparative Analysis of Systems of Levels
	7.4 Models at the Processing Layers
	7.5 Summary and Discussions

	8 ISD ONTOLOGY
	8.1 ISD Paradigms and ISD Approaches
	8.2 Definition of ISD and ISD ontology
	8.3 ISD Domains
	8.4 ISD Perspectives
	8.5 Comparative Analysis
	8.6 Summary and Discussions

	9 ISD METHOD ONTOLOGY
	9.1 Why to Use an ISD Method?
	9.2 Methodology vs. Method
	9.3 ISD Method as a ‘Carrier of ISD Knowledge’
	9.4 Definition of the ISD Method
	9.5 Definition of the ISD Method Ontology
	9.6 Methodical Support
	9.7 Comparative Analysis of ISD Artifacts
	9.8 ISD Method Component
	9.9 Summary and Discussions

	10 ME ONTOLOGY AND ME METHOD ONTOLOGY
	10.1 Motivations for Method Engineering
	10.2 ME Context
	10.3 ME Domains
	10.4 ME Perspectives
	10.5 ME Method Ontology
	10.6 Summary

	11 MEMES - METHODICAL SKELETON FOR ME
	11.1 Need for Methodical Support to ME
	11.2 Definition of the ME Methodical Skeleton
	11.3 Background of MEMES
	11.4 Application Area
	11.5 Goals of MEMES
	11.6 ME Workflows
	11.7 ISDM Requirements Engineering
	11.8 ISDM Analysis
	11.9 ISDM Evaluation
	11.10 Summary

	12 EVALUATION OF MEMES
	12.1 Evaluation Context
	12.2 Evaluation through the OSSAD Project
	12.3 Evaluation through the MEMES Effort
	12.4 Comparative Analysis of ME Artifacts
	12.5 Summary and Discussions

	13 CONTRIBUTIONS AND FURTHER RESEARCH
	13.1 Contributions
	13.2 Further Research

	REFERENCES
	APPENDICES
	YHTEENVETO

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

	Text3: URN:ISBN:9513921867
	Text4: ISBN 951-39-2186-7 (PDF)

