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ABSTRACT 
 
 
Leppänen, Mauri  
An Ontological Framework and a Methodical Skeleton for Method Engineering 
– A Contextual Approach 
Jyväskylä: University of Jyväskylä, 2005, 702 p. 
(Jyväskylä Studies in Computing 
ISSN 1456-5390; 52) 
ISBN 951-39-2186-7 
Finnish summary 
Diss. 
 
Method engineering (ME) is commonly carried out in an intuitive and improvising 
fashion. This is largely due to the lack of explicit methodical support. The literature 
does suggest an array of ME strategies, ME approaches, ME techniques, and ME 
procedures, but the assistance they provide is not satisfying. It can be argued that the 
ME field has not advanced far from its “pre-methodical” stage. An ISD method is an 
abstract and multifaceted notion, and there exist quite diverging views on its nature, 
structure, content, and significance. For this reason, to construct a feasible methodical 
support to method engineering, it is necessary to anchor it upon a theoretically sound 
and uniform conceptual foundation. The objective of this thesis is to construct an 
ontological framework for conceiving, understanding, structuring, and representing 
the phenomena related to an ISD method and its engineering, and to construct a 
methodical skeleton to support the ME process. The thesis crafts two design artifacts, 
OntoFrame and MEMES. OntoFrame is an ontological framework, comprising a 
number of component ontologies with a multi-dimensional structure. These 
components range from highly generic ontologies to ME-specific ones. Resulting from 
the application of a contextual approach in ontology engineering, the ontologies 
highlight, in a multi-faceted manner, contextual features of reality. The framework was 
derived from multiple theories and existing ME artifacts with deductive and inductive 
principles, and it is represented in UML-based meta models. MEMES is a normative 
prescription for ME, structuring and guiding the accomplishment of ME work. It 
consists of three ME workflows: ISD method requirements engineering, ISD method 
analysis, and ISD method evaluation. For each of the ME workflows, ME approaches, 
principles, and steps are suggested in MEMES. Both of the artifacts are evaluated 
extensively in a number of comparative analyses of existing artifacts. MEMES is also 
evaluated with empirical methods. The results of the thesis can be utilized in future 
research to analyze and compare existing artifacts and to construct new ones for the 
use of ISD and ME. MEMES can be applied in practice to support the engineering of 
generic and domain-specific ISD methods. The research follows the design theory 
paradigm and applies conceptual and empirical research methods.  
 
Keywords: information systems development method, method engineering, 
metamodeling, ontology engineering, contextual approach, abstraction, design 
theory 
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1 INTRODUCTION 
 
 
In this chapter we will first describe the background of and motivation for the 
thesis. Second, we will define our research domain and decompose it into five 
sub-domains. We will also give an overview of those disciplines upon which 
this thesis has been built. Third, we will define the main research problem, 
research questions, and research objectives. In addition, we will introduce the 
main contributions, an ontological framework and a methodical skeleton for 
method engineering, and specify concrete objectives for them. Fourth, we will 
describe our research framework based on the design-science paradigm. Fifth, 
we will represent the cyclic and multi-domain research process and outline the 
research methods used in the thesis. Sixth, we will assess our research in terms 
of problem relevance, research contributions, design evaluation, and 
limitations. Finally, we will present the structure of the dissertation.  
 
 
1.1 Background and Motivation 
 
 
Information System Development Methods 
 
Organizations have become highly dependent on advanced information 
technology (IT).  High volumes of business transactions, huge amounts of data 
in databases and data warehouses, exceedingly complex calculation and 
inference rules, and needs for communication with ‘instantaneous’ concurrency 
among thousands of sites around the world cannot be coped with without the 
large-scale use of IT and high quality information systems.  

Information systems are considered investments that have, besides 
operational importance, also strategic significance. This entails high demands 
for information systems development (ISD). A development process should be 
accomplished in an efficient and productive way.  It should also yield an 
information system that satisfies organizational requirements (e.g. security, 
robustness, extendibility, maintainability, cost-effectiveness) as well as user 
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requirements (e.g. functionality, acceptability, accuracy, timeliness, user-
friendliness, reliability, usability, personalizability). 

To support efficient and productive development of information systems, 
hundreds or even thousands of methods have been engineered during the last 
four decades. An ISD method is a prescription used in ISD to make 
organizational and technical changes in an IS possible or more productive. 
More specifically, an ISD method is a composition of paradigmatic 
assumptions, approaches, concepts, notations, models and guidelines. It 
conveys collective knowledge and experience of ISD process, application 
domain, IC technology, and human and social issues (cf. Iivari et al. 2001), 
externalized in the form of text books, manuals, or pro forma documents, and 
disseminated on paper, CD-rom, World-Wide-Web, etc. 

Numerous empirical studies report on how methods can benefit ISD. The 
use of methods improves productivity (Fitzgerald 1998a, 318; Rahim et al. 1998, 
975; Grant et al. 2003; Hardy et al. 1995) and communication (Palvia et al. 1993; 
Rahim et al. 1998, 975; Wastell 1996), and increases user involvement and 
fulfillment of user requirements (Schönström et al. 2003; Rahim et al. 1998, 975; 
Hardy et al. 1995). The methods enable the use of skills more effectively through 
skill specialization and division of labor (Fitzgerald 1998a, 318). They are seen 
as organizational memories (Stolterman 1994; Fitzgerald 1998a) that form useful 
vehicles of organizational and individual learning (Iivari et al. 2001, 183), 
advance process standardization (Roberts et al. 1998, 64; Avison et al. 1995a, 423) 
and improve project management (Avison et al. 1995a; Fitzgerald 1998a; 
Chatzoglou 1997).  

However, there are a many empirical studies that indicate severe 
problems in the use of ISD methods. First, there are studies that show that 
method use is not as frequent as believed (Hardy et al. 1995; Russo et al. 1996, 
Chatzoglou 1997; Fitzgerald 1998a; Iivari et al. 1998b). Second, a large variety of 
explanations have been presented for having problems in the method use. 
Methods are perceived to be prescriptive, burdensome and difficult to apply 
(Middleton 1994, 474) and often too massive and complex to be easily adopted 
and adapted to a specific situation (Hidding 1997, 104). Rahim et al. (1998, 957) 
and Kautz et al. (1994) found out that the difficulty to learn the method was the 
most pressing problem. There exist also disappointments in productivity 
(Avison et al. 2003). The methods are seen to be monolithic (Hidding 1997) or 
one-dimensional (Avison et al. 2003, 81), advocating a single path or approach, 
which is often conceived as one-size-fit-all.  Methods are not contingent on the 
type or size of a project, nor upon the technology environment and 
organizational context (Avison et al. 2003). Sometimes they are seen too detailed 
to efficiently support the planning of a project (Hidding 1997). Many methods 
are documented only on paper, making their use awkward and their 
customization difficult. Tools advocated by method proponents can be costly 
and they may require highly technical skills. Other reported problems include 
the inability of the method to cover the whole life cycle of software projects and 
the failure of the method to reduce project completion time. 
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There are also problems in a way methods are applied. According to 
Wastell (1996), methods may be applied in a ritualistic way, which inhibits 
creative thinking. Developers proceed in slavish and blind adherence to 
methods and lose sight of the fact that development of an actual system is the 
real objective (Fitzgerald 1994; Fitzgerald 1996b; Wastell 1996).  

Part of the problems in method use can be traced back to human, 
organizational or technical settings. For example, without proper training a 
method can be totally ignored or only partly utilized. Incompatibility of the 
approach of a method with organizational culture and traditions may also 
cause unsolved problems.  Further, the use of a method may be experienced as 
a nuisance and a waste of time, if there is no CASE tool supporting ISD work.  
Excluding all the problems due to these environmental issues, there still remain 
many problems that result from unsatisfactory features of existing methods.  

More challenges to ISD and ISD methods are brought about by continuous 
evolution (a) in business and its environment, (b) among application areas, and 
(c) in approaches and technologies of development environments. Business 
processes are changing in various dimensions (e.g. flexibility, interconnectivity, 
coordination style, autonomy) due to market conditions, organizational models, 
and usage scenarios of information systems. They are required to act more 
effectively in shorter time-frames (Fitzgerald 1997). At the same time, business 
processes are getting more complex and difficult to manage.  Businesses are 
increasingly moving towards extensive automation of their private and public 
processes. Increasing domestic and global competition and changing economics 
pressure to deliver information systems “yesterday” to exploit business 
opportunities (Wynekoop et al. 1997). 

Resulting from evolution in business and its environment as well as from 
advancements in IT, novel application areas have emerged. Examples of the 
new areas are:  e-commerce, m-commerce, www-information systems, 
multimedia information systems, trustworthy systems, bioinformatics, and 
ubiquitous systems. Typical for new areas is that they amalgamate 
organizational, conceptual and technical issues from several research fields, in 
the way bioinformatics does from biological data management, genomic 
information retrieval and bio data mining.  

Rapid progress of technology has resulted in new architectural 
frameworks and platforms for information systems, e.g. J2EE, Visual Studio 
.NET, XML-based technology, service-oriented architectures, peer-to-peer 
technology, model-driven architecture (MDA), and grid computing technology. 
This has led to the birth and diffusion of new computing and development 
approaches and paradigms, e.g. object-oriented approach, agent-based 
approach, fuzzy approach, anywhere/any time/any means paradigm, 
generative programming approach, aspect-oriented approach, ontology & 
service oriented (OSO) programming approach, soft computing approach, peer-
to-peer computing paradigm, etc. Especially, the component-based approach 
with reusable components has established a firm foothold in ISD. Companies 
rely far less on in-house development of systems, and buy software packages or 
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outsource ISD instead (Bansler et al. 1994). This might be referred to as the 
industrialization of ISD.  

Parts of the systems are less likely to require large-scale, long-term 
development projects, and more likely to be smaller, short term, incremental 
projects (Baskerville et al. 2001; Fitzgerald et al. 2002; Baskerville et al. 2004). 
With the emergence of light web-based applications, new birth of  ”quick and 
dirty” approaches, currently called agile approaches or short cycle time systems 
development, are getting popular (Agile Alliance 2002; Cockburn 2001; Astels et 
al. 2002; Baskerville et al. 2004). These emphasize e.g. individuals and 
interactions over processes and tools, working software over comprehensive 
documentation, and customer collaboration over contract negotiation. Also, 
emergent organizations require new practices for ISD, such as continuous 
analysis of IS applications, dynamic requirements negotiations, and continuous 
redevelopment (Truex et al. 1999).  

New technologies also enable new ways of working in ISD projects. 
Besides advanced CASE (Computer-Aided Systems Engineering) tools and 
environments (e.g. Rational Rose, Select Enterprise, Silverrun, Prosa, etc.1), 
there are tools, called CAME (Computer-aided Method Engineering) (e.g. 
RAMATIC (Bergsten et al. 1989), ConceptBase (Jarke 1992), Navigator (Ernst & 
Young 1995), MetaEdit+ (Kelly et al. 1996)), with which the methods and 
environments can be tailored according to the needs of projects. Many kinds of 
tools to further cooperation and coordination of ISD have also been taken into 
use. 

To summarize, ISD methods appear to be useful both to ISD processes and 
their outcomes. However, there are several problems in methods and method 
use that should be overcome. In addition, although numerous methods of 
different kinds already exist, more methods with new features are still desired. 
This process of engineering new methods and customizing existing ones is 
propelled by the everlasting changes in organisational and technological 
environments of ISD.  
 
Method Engineering 
 
Method engineering (ME) means all those actions by which an ISD method is 
developed, and later customized and configured to fit the needs of an 
organization and/or an ISD project. The contents of, and relationships between, 
ME actions vary depending on the target, strategy and organizational context of 
ME. First, the ME may aim to produce a generic method, a domain-specific 
method, an organization-specific method, or a project-specific method. Second, 
the strategy of the ME may be “from scratch”, or adapting and/or integrating 
(parts of) existing methods.  Third, the ME or parts thereof can be accomplished 
outside or inside the organization for which the method is to be engineered. 
Fourth, ME actions can be variously scheduled in relation to corresponding ISD 
                                                 
1  See Index of CASE tools: http://www.cs.queensu.ca/Software-Engineering/ 

tools.html . 
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actions. Due to this heterogeneous nature, the process of ME is difficult to piece 
together and structure, and in particular to manage. 

ME has appeared to be problematic in many ways. One set of problems 
arises from a variety of conceptions about the nature and role, which the 
method is seen to have in ISD (e.g. Wastell 1996; Baskerville et al. 1992; 
Baskerville 1996). For example, ISD can be seen as a transformation process 
(Wand 1988a; Tracz et al. 1993), a problem solving process (Sol 1992), a decision 
making process (Iivari 1982; Jarke et al. 1990; Grosz et al. 1997), or a learning 
process (Iivari et al. 1987; Lyytinen et al. 1999; Ramesh et al. 1994). It is very 
challenging to engineer a method that can successfully serve in roles of such a 
variety. Another set of problems stems from the contents and structure of the 
methods. Next, we discuss these problems in relation to ME actions in which 
they are encountered. We use the following taxonomy of ME actions: (a) 
analysis of current methods, (b) characterization of a target ISD context, and (c) 
adaptation and integration.  

In practice the ME never starts with ”an empty table”. Although ME 
would not end up to heavily utilizing existing methods, reviewing them is an 
integral part of every ME effort. Current methods largely differ from each other 
in terms of their assumptions, approaches, concepts, notations, coverage, 
flexibility, formality, etc. Also, ways of describing methods vary from narrative 
texts used in text-books (e.g. Yourdon 1989; Skidmore et al. 1992) to semi-formal 
specifications of the syntax and semantics of notations (cf. UML, Booch et al. 
1999). Often it is difficult to gain a clear conception of what approaches and 
terms in a method really mean. Yet more difficult it is to make precise and 
neutral comparisons between the methods. Although there is a large set of 
literature on feature lists, taxonomies, and frameworks for comparative reviews 
(e.g. Olle et al. 1983; Olle et al. 1986), the support they provide to the analysis is 
inadequate in many respects. In addition, to make reliable assessments on the 
methods, some knowledge of their proved applicability is needed. However, 
experiences from ISD efforts executed in organizations are not structured and 
recorded in a way that enables their effortless utilization. In contrast, 
knowledge of former ISD efforts is usually unstructured in the heads of ISD 
analysts and designers who have, in the worst case, left the organization. To 
summarize, there should be some uniform framework that could be used in 
analyzing current methods and contexts in which the methods have been used.  

ME commonly aims to produce an ISD method for a specific project. To be 
able to select among existing methods and customize the one for the use of the 
project, the target ISD context should be characterized properly. There is a large 
set of contingency frameworks composed of factors to be used for the 
characterization (e.g. Naumann et al. 1980; Davis 1982; Burns et al. 1985; Louadi 
et al. 1991; van Swede et al. 1993; van Slooten et al. 1996; Punter et al. 1996; 
Harmsen 1997; Roberts et al. 1998; Yadav et al. 2001). There are, however, many 
problems related to the use of such frameworks (cf. Kumar et al. 1992; Avison 
1996; Tolvanen 1998; Zhu 2002). What is needed here is a conceptual foundation 
on the basis of which upcoming ISD contexts could be described in a way that is 
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comparative to the descriptions of the application areas of the ISD methods and 
accomplished ISD efforts.  

Method engineering is, to a large extent, conceived as an intuitive and 
creative effort that is hard to systematize. An ISD method seems to be quite 
abstract to perceive and difficult to deal with. This has often resulted in ad hoc –
like decisions and actions in ME.  For instance, one may “rush” for a new 
method, mainly inspired by advertisements or recommendations of consultants, 
without properly contemplating whether the features of the method and the 
needs of the project really match. Second, neglects in ME may lead to adherence 
to the current method, though there is strong evidence, got from previous 
projects, that improvements into the method are urgent.  Third, it may be 
decided to exclude some parts of the current method without considering 
consequences for the usability of the rest of the method. The same kinds of 
concerns pertain to regardless extensions of the current method with 
components taken from other method(s).   

When done carefully ME needs time and resources, which are less and less 
available in contemporary organizations living in the “hectic” world. The 
selection, customization and configuration of a new method for an organization 
can be organized as a separate ME project, which pilots the method in some ISD 
project(s). This kind of ME is in a better position in ensuring resources. In 
contrast, an ME effort that is carried out in parallel with an on-going ISD project 
is experienced as extra work that unnecessarily burdens the budget of the ISD 
project. For this reason, adaptation should be able to be accomplished as 
systematically and efficiently as possible.  

To make ME more efficient, computer-aided engineering environments 
(CAME) and MetaCase tools have been developed. From those dating back to 
the 1980’s (PLS/PSA (Teichroew et al. 1977; Teichroew et al. 1980), MetaView 
(Sorenson et al. 1988), RAMATIC (Bergsten et al. 1989)), tools and environments 
have advanced (Maestro II (Merbeth 1991), ConceptBase (Jarke 1992), Navigator 
(Ernst & Young 1995), MetaEdit+ (Kelly et al. 1996), Decamerone (Harmsen 
1997), and MERU (Gupta et al. 2001), but still they have severe shortcomings in 
functionalities, user-friendliness, flexibility, process support, etc.  

To summarize, an ISD method is conceived to be an abstract artifact that is 
very difficult to engineer. But because methods have been, are, and will be 
significant to the success of ISD, it is extremely important to support their 
development, adaptation, integration, customization, and configuration. There 
are many kinds of problems, which complicate method engineering e.g. in 
analysis and comparison of methods, characterizing prior and target ISD 
contexts, and in integrating and adapting existing methods or parts thereof. The 
ME literature suggests various ME strategies and ME approaches (e.g. Kumar et 
al. 1992; Oei 1995; Harmsen 1997; Tolvanen 1998; Saeki 1998; Leppänen 2000; 
Ralyte et al. 2003), metamodeling languages (e.g. Chen 1976; Nijssen et al. 1989; 
Smolander 1991; Heym et al. 1992a; Jarke et al. 1995; Kelly et al. 1996; Harmsen 
1997; Bandinelli et al. 1993; Deiters et al. 1994; Christie 1993), ME techniques (e.g. 
van Slooten et al. 1993; Kinnunen et al. 1996; Punter et al. 1996; Saeki 2003) and 
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ME procedures (e.g. Vlasblom et al. 1995; Nuseibeh et al. 1996; Song 1997; 
Harmsen 1997; Tolvanen 1998; Gupta et al. 2001). Suggested ME strategies, ME 
approaches, ME techniques and ME procedures constitute an unrelated and 
incompatible set of artifacts that does not nullify the fact that the current 
methodical support to ME is hopelessly inadequate to overcome prevailing 
problems in ME.  
 
Conclusions 
 
We have above discussed information systems development and experience 
from the use of methods in ISD. Despite disputable problems in method use 
and temptations to amethodical approaches (Truex et al. 2000), the ISD methods 
are undoubtedly needed and used in the future. Rapid and pervasive changes 
in business, application and technological environments increase pressure to 
renew current methods, as well as to develop new kinds of methods.  

Method engineering is often seen to be an “unnecessary nuisance” to be 
accomplished with minimum efforts. It is, however, so complicated and 
multifaceted array of intentions, actors, actions, deliverables and tools that it 
has to be taken seriously. Otherwise, problems in methods and method use may 
disperse negative impacts, via failures in ISD, to information systems and to 
business processes in the organization(s) as well. Although ME is highly 
interrelated to ISD endeavors, it has to be appreciated as an “independent” 
effort that is entitled to have proper methodical support. But to develop 
methodical support that goes beyond the present state of the art, we also need a 
uniform and consistent conceptual foundation, which provides appropriate 
concepts and conceptual “building blocks” from which profitable support to 
ME can be constructed. 

In conclusion, we argue that there is the need for (1) a conceptual foundation 
that provides concepts and constructs to conceive, understand, structure and represent 
phenomena related to an ISD method and its engineering, and for (2) a methodical 
support with which the process of method engineering can be accomplished in a more 
structured and productive manner.  
 
 
1.2 Research Domain 
 
 
A research domain is the subject matter under study in a research effort 
(Nunamaker et al. 1991, 91). In this section we describe the research domain of 
our study, starting from the identification of the main subject of the study and 
then describing sub-domains related to it. We also discuss the theoretical 
foundations and the research fields underlying our research domain.  

The main research subject of this thesis is an ISD method. We are 
interested in what kind of artifact an ISD method is, what the conceptual 
contents, structure and representation of an ISD method are, and in particular, 
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how an ISD method can be or should be engineered. Hence, our research domain 
is composed of all those sub-domains that are related to an ISD method.  

An ISD method is the main deliverable of ME actions. To understand the 
underlying intentions of, and assumptions behind, an ISD method, it is 
necessary to know, how the method has been engineered, by whom, why, 
where, and when. This part of the research domain is called the ME domain. 
Second, an ISD method describes / prescribes contexts in which the ISD 
method is to be used, that is to say ISD contexts. To make sense of the essence of 
the ISD context, we need a conceptual foundation, which enables us to 
recognize, structure, represent, manage, and assess phenomena related to the 
information systems development. We call this sub-domain the ISD domain. 
Third, through describing deliverables of an ISD, here called the IS models, an 
ISD method also semantically structures contexts in which the IS models are 
implemented and utilized. Hence, also IS users with their intentions, IS 
processes with their logical and temporal relations, and IS deliverables with 
their contents and meanings are relevant for our study. This sub-domain is 
called the IS domain.  

Hence, our research domain constitutes a multi-layered structure that 
comprises, at least, the IS domain, the ISD domain, and the ME domain. But 
there are still more sub-domains. First, we need concepts and constructs with 
which the nature, structure and representation of an ISD method itself can be 
conceived. Second, to engineer methodical support for ME, we need concepts 
and constructs with which the nature, structure and representation of an ME 
method can be understood. With these complements we have achieved the 
structure of sub-domains, which covers four processing layers (Figure 1). The 
topmost layer corresponds to this research work (RW). The other layers are 
method engineering (ME), information systems development (ISD) and 
information system (IS). In Figure 1 the main deliverables are represented by 
rectangles on each layer. Ellipses stand for processes, which produce the 
deliverables. The layers are related to each other through the 
describes/prescribes relationships. The research work produces RW 
deliverables that embrace an ontological framework and a methodical skeleton 
for ME. Next, we discuss the nature of these two deliverables and the research 
fields underlying them, first for the ontological framework and then for the 
methodical skeleton.  

 
Ontological Framework (OntoFrame) 
 
In order to understand, analyze, compare and engineer ISD methods, we need a 
consistent and coherent set of concepts and constructs.  Information systems 
science is a rather young discipline. For this reason, views and concepts in the 
field greatly differ between schools and approaches. Even for key notions such 
as  ‘information system’,  ‘object system’  and  ‘ISD method’  there are dozens of  
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FIGURE 1 Multi-layered structure of the research domain 
 
different interpretations (Ein-Dor et al. 1993; Mentzas 1994; Carvalho 1999; 
Barron et al. 1999; Avison et al. 1996; Avison et al. 1995a). This is partly due to 
the fact that theories and concepts in them have been established by scientists, 
who have come from different disciplines. Difficulties in finding a common 
“language” result in frequent misunderstandings.  This necessitates conceptual 
and terminological preciseness and clarity. These are subject matters in 
particular in two disciplines. The disciplines are: (a) conceptual modeling, and 
especially metamodeling, and (b) ontology engineering.  

Conceptual modeling means describing some aspects of the physical or 
social world around us for the purposes of understanding, explanation, 
prediction, reasoning, and communication (cf. Kangassalo 2002, VI). A 
conceptual model is intended to provide an accurate, complete representation 
of someone’s or some group’s perceptions of the semantics underlying a 
domain or some part of a domain (Bodart et al. 2001). Typically, models of the 
same domains share, on a general level, some concepts and constructs. These 
similarities can be modeled resulting in models of models, or meta models. A 
discipline studying meta models, languages to represent meta models, and 
procedures to produce meta models, is called metamodeling. Metamodeling is 
also the name of a process, which takes place on one level of abstraction and 
logic higher than modeling process (cf. Tolvanen 1998,  82).  
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Ontology is the study of existence, of all kinds of things – abstract or 
concrete - that make up the world (Sowa 2000, 51). It concerns “what is out 
there” (Quine 1953). Ontology is an explicit specification of a conceptualization 
of some part of reality that is of interest (cf. Gruber 1993, 199). A specification 
can be presented in the form of a vocabulary, a taxonomy, a thesaurus, a 
framework, or a theory (Sugumaran et al. 2002, 253). An ontology provides 
“glasses” through which one can perceive, conceive, and structure the world - 
in our case the research domain. Ontology engineering is a discipline, which 
studies ontologies, ontology representation languages and procedures for 
engineering ontologies. 

Hence, both metamodeling and ontology engineering can be used in 
building a well-defined conceptual foundation. Both of them can be performed 
as a structured process to yield explicitly defined concepts, terminology and 
rules to represent consensual knowledge about relevant domains. A meta 
model as well as an ontology can be presented on a level that is general enough 
to abstract away specificities of a single application area, an ISD context or an 
ME context. Metamodeling and ontology engineering support one another in 
many respects. A meta model facilitates communication about an ontology, 
reveals inconsistencies and anomalies within an ontology, streamlines the 
comparison of ontologies, enables ontology engineering and supports ontology-
based method engineering (Davies et al. 2003). For these reasons, we build our 
conceptual foundation upon these disciplines. To indicate our adherence to 
ontology engineering we name our conceptual foundation the ontological 
framework, shortly OntoFrame. OntoFrame is an ontological framework, 
comprising a number of component ontologies with a multi-dimensional 
structure. These components range from highly generic ontologies to ME-
specific ones.  
 
Methodical Skeleton (MEMES) 
 
Next, we turn our discussion on the nature and the underlying research fields 
of our second RW deliverable that is a methodical skeleton for ME (see Figure 
1). As mentioned above, the ME literature suggests only some ME strategies, 
ME approaches, metamodeling languages, ME techniques and ME procedures. 
To have an overall picture of, and to manage the whole process of method 
engineering, we need a more comprehensive support for ME. With that aim we 
suggest the ME methodical skeleton, called MEMES (Method Engineering 
MEthodical Skeleton). The ME methodical skeleton is a normative prescription of 
the ME context, structuring and guiding the ME process. To elaborate the 
notion of the methodical skeleton and to position it among the other artifacts in 
the literature describing / prescribing an ME effort, we compare it with the 
notions of an ME conceptual framework and an ME methodical framework. An 
ME conceptual framework provides generic concepts and constructs for 
conceiving and structuring ME contexts, or parts thereof. Similar frameworks 
are used at the ISD layer, for instance, to evaluate and compare ISD methods 
(e.g. Iivari et al. 1983; Essink 1986; Iivari 1994; Jayaratna 1994; Tudor et al. 1995). 
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An ME methodical framework is built up from meta models. In a simple form, the 
framework is composed of ISD meta models that are used to semi-formally 
describe the abstract syntax of the ISD models. Meta models provide the 
concepts and constructs used in an ME effort but only for the part that concerns 
phenomena in the ISD domain. In a more comprehensive form, the ME 
methodical framework also includes ME meta models that describe ME process 
models on a general level. Corresponding frameworks at the ISD layer are 
suggested by e.g. Henderson-Sellers et al.  (1999c) and Hruby (2000b)2.  

Both of the ME artifacts introduced above are descriptive and contain no 
normative ingredients. The ME methodical skeleton provides all that have been 
mentioned above, and in addition major constructs for a skeleton-like structure 
of an ME process. This structure integrates and gives normative meanings for 
the meta models mentioned above. The methodical skeleton is not, however, a 
complete ME method. Instead, an ME method can be derived from MEMES.  

MEMES has been firmly grounded on OntoFrame, as seen in Figure 2. In 
the figure the left side describes MEMES in its intentional and functional 
environment. MEMES is to be applied in an ME context to engineer an ISD 
method, which in turn is to be deployed in an ISD context to develop an IS. The 
right side in the figure describes the structure of OntoFrame from the viewpoint 
of the ME method ontology3. The ME method ontology includes the ME 
ontology, the ISD method ontology, the ISD ontology, and the IS ontology. The 
arrows denote how OntoFrame has been deployed to engineer the components 
of MEMES, an ISD method and IS models. We can see that the structure of 
MEMES has been adapted from the ME method ontology. The main 
components of MEMES are ME models, ISD meta models and IS meta models4. 
The ME models have been specialized and instantiated from the ME ontology. 
They describe/prescribe what is to be done, with which and why in the ME 
context. The ISD meta models and the IS meta models have been selected and 
adapted from the ISD ontology and the IS ontology, correspondingly. Likewise, 
the structure of an ISD method is to be adapted from the ISD method ontology. 
The ISD models are specialized and instantiated from the ISD ontology. The 
concepts and constructs of the IS meta models are selected and adapted from 
those belonging to the IS ontology. The IS models are specialized and 
instantiated from the IS ontology.  

The research field studying issues relevant to the ME methodical skeleton, 
and more generally the nature, structure, contents and engineering of methods, 
is  known  as  method engineering (ME)5.  Method  engineering  is  also  regarded 
as  an  approach  to,  or  a process   of,   analysis,  design,   implementation  and  

                                                 
2  The term ‘methodical framework’ is sometimes (cf. Krogstie et al. 1996) used to mean 

a conceptual framework in terms of our taxonomy. 
3  The ontologies within OntoFrame will be defined later in this thesis.  
4  In Chapter 11 we will give a more detailed view of the structure of MEMES.  
5  Kumar and Welke (1992), the “godfathers” of ME, used the term ‘methodology 

engineering’ to refer to “a meta-methodology for designing and implementing ISD 
methodologies” (ibid p. 257). 
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FIGURE 2   MEMES and OntoFrame 
 
evaluation of ISD methods (cf. Brinkkemper et al. 1999, 209; ter Hofstede et al. 
1997, 401; Tolvanen et al. 1996, 296; Harmsen 1997, 25). Since an ISD method is 
often modeled in an early phase of ME, metamodeling is an essential part of 
method engineering. It provides the concepts and notations for IS meta models 
and ISD meta models, as well as rules for using them. 
 
 
1.3 Research Questions and Objectives  
 
 
The main research problem of the thesis is: “How to conceive and methodically 
support the engineering of an ISD method?” This problem can be decomposed into 
the following research questions:  
• What is the conceptual foundation with which phenomena in the research 

sub-domains can be conceived, understood, structured and presented?  
• What are the nature, contents and structure of an ISD method?  
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• How to structure and support the process of method engineering?  
 
As seen from the above, the most essential single subject matter in this study is 
a method, considered from two viewpoints. First, a method appears as the main 
target of method engineering. Second, a method is needed to support and guide 
the process of method engineering. In the former case, we are interested in the 
nature, contents, structure, and models of an ISD method. In the latter case, we 
are challenged with constructing a methodical artifact, which contains the 
essentials of an ME method. But before we can pursue a unified and sound 
view of these issues, we need a comprehensive, consistent and coherent 
conceptual foundation that covers the relevant research sub-domains and 
reveals, in particular, the meanings of those issues.  

To be able to conceive meanings of phenomena in the sub-domains we 
apply a contextual approach, based on the notion of a context.  A context is a 
suitable notion for many reasons. First, it is highly universal, known and 
applied in a number of disciplines, including formal logic (e.g. Costa 1999), 
knowledge representation and reasoning (e.g. Brezillon et al. 1998; Sowa 2000), 
machine learning (e.g. Matwin et al. 1996), pragmatics (e.g. Levinson 1983), 
computational linguistics (e.g. Berthouzoz 1999), sociological linguistic (e.g. 
Halliday 1978), problem solving (e.g. Motschnig-Pitrik et al. 2001), 
organizational theory (e.g Weick 1995), cognitive psychology (e.g. Kokinov 
1999),  and information systems (Kyng et al. 1997). Second, it is a common term 
also in the ordinary speech. Third, the most common aim of the use of context 
in various disciplines is to consider a focal thing or an event of interest as a part 
of the environment (i.e. context) in order to understand its nature and meaning 
(Duranti et al. 1992). That is precisely what we wish to achieve with OntoFrame.  

From the aforementioned research problems we can infer the main 
objectives of this study: (1) to construct an ontological framework for conceiving, 
understanding, structuring, and representing phenomena in an IS, an ISD, an ISD 
method, an ME, and an ME method with contextual concepts, and (2) to construct a 
methodical skeleton to support the ME context.   

The research area is very large. Therefore, we are forced to exclude, 
completely or partly, many interesting research issues. For instance, as we have 
adopted a methodical view on ME, we exclude subject matters that are related 
to IS/ISD technology and technical support to method engineering. Second, we 
mainly focus on “operational” processes of method engineering, not on 
managerial issues. Although we recognize the importance of project 
management and identify generic structures of it, we are neither aiming to 
specialize nor instantiate them into the use of the ME context.  

Next, we define more concrete objectives for the ontological framework 
(OntoFrame) and the methodical skeleton (MEMES).  
 
OntoFrame 
 
OntoFrame is a result from the application of approaches and principles in two 
disciplines: conceptual modeling and ontology engineering. Thereby it has also 
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inherited quality measures from them. In conceptual modeling the quality of a 
model is measured in terms of adequacy or completeness (e.g. Amberg 1996; 
Bajaj et al. 1999; Moynihan 1996; Chaves et al. 1996; Moody 2003b), readability or 
legibility (e.g Hardgrave et al. 1995; Chaves et al. 1996), and easy-to-use or 
efficiency (e.g. Kramer et al. 1991; Bock et al. 1993; Kim et al. 1995; Bajaj 2001; 
Gemino et al. 2002). In addition to the single criteria mentioned above, research 
in conceptual modeling has produced comprehensive frameworks of quality 
criteria (e.g. Lindland et al. 1994; Krogstie 1995; Krogstie et al. 2000).  

In ontology engineering, there are no such well-established quality criteria 
(Weinberger et al. 2003). Gruber (1995), for instance, proposes clarity, coherence, 
extendibility, minimal coding bias, and minimal ontological commitment. Fox 
(1998) defines functional completeness, generality, efficiency, perspicuity, 
precision/granularity, and minimality. Uschold et al. (1996) apply the qualities 
of clarity, coherence, and extendibility. Weinberger et al. (2003) distinguish 
between conceptual coverage, utility and usability. Ruiz et al. (2004) require that 
ontology is clear, precise, coherent and consistent. 

In specifying objectives for the ontological framework we should also 
learn from qualities specified for conceptual frameworks (e.g. Iivari et al. 1983; 
Bodart et al. 1983; Brodie et al. 1983; Essink 1986; van Swede et al. 1993; 
Falkenberg et al. 1998). Brodie et al. (1983), for instance, brings out the following 
requirements for an ISD method framework: general, precise, comprehensive, 
balanced, flexible, and unbiased. The Frisco6 framework (Falkenberg et al. 1998) 
has been built by five principles (ibid p. 10): global consistency, generality, 
simple is beautiful, anchoring information system concepts in related fields, and 
a conceptual foundation to be build upon.  

Based on the works in conceptual modeling and ontology engineering, as 
well as taking into account qualities related to conceptual frameworks, we 
specify the following objectives for OntoFrame:  
1. Comprehensiveness  
 OntoFrame should cover all the sub-domains mentioned above (i.e. IS, 

ISD, ISD method, ME, and ME method). Due to their extensiveness, all the 
phenomena contained in them cannot, of course, be addressed in the 
framework.  

2. Contextuality 
OntoFrame should enable to contextualize phenomena of reality, that is to 
treat them as contexts, or as parts of a context.  

3. Consistency 
 In OntoFrame there should be no contradictions between the definitions of 

concepts and constructs. 
4. Coherence 
 In OntoFrame each concept should be related, directly or indirectly, to 

every other concept in a well-established way. 
 
 
                                                 
6  Frisco = A FRamework of Information System COncepts. 



 

 

33

5. Generality  
 OntoFrame is meant to be as general as possible, in order to be shared by 

various communities and to help find the right level of generality at which 
modeling approaches can be related to each other and to which new 
emerging modeling approaches can be attached. This objective cannot be 
fully achieved due to great discrepancies between views of schools and 
approaches. 

6. Clarity 
 OntoFrame should effectively communicate the intended distinctions 

between the concepts. This means that ambiguity should be minimized in 
the definitions. 

7. Naturalness 
OntoFrame should be based on mental structures that are inherently 
typical for human conceptions and abstractions. 

8. Generativeness  
 OntoFrame should be established in a way that allows one to derive 

specific concepts of the framework from more general concepts by 
specialization.  

9. Extensibility  
 OntoFrame should be extendable with new and more specialized 

concepts. Extensions should be possible without the revision of existing 
definitions. In this sense the purpose of the framework is to serve as a kind 
of “crystallization kernel” (cf. Falkenberg et al. 1998).  

10. Modularity 
 OntoFrame should be composed of well-defined modules, which together 

constitute an integrated whole.  
11. Theory bases 
 OntoFrame should be anchored on relevant and sound theories, such as 

semiotics, semantics, pragmatics, and systems theory.  
12. Applicability  
 OntoFrame should be applicable for three kinds of intentions, descriptive, 

analytical and constructive intentions. In the descriptive sense OntoFrame 
should offer concepts and a terminology for conceiving, understanding, 
structuring and presenting phenomena in the concerned sub-domains. In 
the analytical sense OntoFrame should provide the key concepts and 
constructs for the analysis and comparison of existing artifacts. An artifact 
here means an ontology, a meta-model, a framework, a frame of reference, 
a method, etc. of the concerned sub-domains. In the constructive sense 
OntoFrame should support the construction of other artifacts, in particular 
ISD methods and ME methods, by providing a conceptual foundation for 
these artifacts. 

 
OntoFrame is composed of ontologies at various levels. Therefore, we next 
consider the aforementioned objectives from the viewpoint of ontology 
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engineering7. The main purpose of an ontology is to advance communication 
between people. To fulfill this aim, the concepts and constructs in each part of 
OntoFrame should be natural and clear (Gruber 1995; Uschold et al. 1996). The 
view provided by an ontology about a slice of reality should be comprehensive, 
consistent and coherent (Gruber 1995; Uschold et al. 1996; Fox 1998; Ruiz et al. 
2004). These objectives can be furthered by building an ontology upon relevant 
and sound theories. Some of these theories should lay the foundation for 
viewing phenomena of reality as contexts or parts of a context. Resulting from 
the contextual approach applied in this thesis, the comprehensiveness is not 
interpreted as a quantitative measure, evaluated in the numbers of concepts 
and constructs, but in terms of how faithfully an ontology, or a set of ontologies, 
is able to reflect contextual features in reality. To be applicable in more than one 
specific situation, an ontology should capture general semantics of reality (Fox 
1998). To balance between specificity and generality demanded by the sub-
domains, OntoFrame should be composed of ontologies at several levels of 
generality. No single ontology, neither any ontological framework, can ever 
become complete (Gruber 1995; Uschold et al. 1996). To ease making extensions 
and still maintaining the coherence and consistence of the structure, OntoFrame 
should be generative and modular. And last but not least, OntoFrame should be 
applicable. An ontology that fulfils all the other goals but fails to provide 
support for the intended purposes is useless. That is why we want to emphasize 
this goal in particular 

The objectives are interrelated in many ways. On one hand, there are 
objectives that have positive influence on the other objectives. For instance, the 
derivation of concepts from more generic concepts helps establish and maintain 
the framework consistent and coherent. Rooting the concepts on the proper 
theories contributes to the naturalness of the framework. Furthermore, 
extensibility can be advanced by the modular structure and the generativeness 
of the framework. On the other hand, there are objectives that are, at least to 
some degree, contradictory to the other objectives. For instance, the more 
comprehensive the framework becomes, the more difficult it is to fulfil the 
objectives of clarity, consistence and coherence.  

To build a comprehensive and uniform conceptual foundation for our 
research domain is very challenging. This was experienced, although on a much 
smaller scale, by the Frisco group (Falkenberg et al. 1998), when it was building 
a conceptual foundation for the IS domain. Difficulties are multiplied here, as 
we extend the scope of the conceptual foundation far beyond the IS domain. We 
agree with Harmsen (1997, 144) that no universal foundation can be established, 
partly due to the relative immaturity of the information system science. 
Therefore, we pursue a foundation that is a coherent and consistent 
representation of the research domain and that can also be used to relate 
varying views. We strive for these objectives with the following means. First, 
we carefully select those views that are in harmony with one another. By this 
                                                 
7  OntoFrame could be, respectively, considered from the viewpoint of conceptual 

modeling as well. 
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we try to ensure that among the concepts based on the views there are no 
inherent inconsistencies. Second, we apply the integration strategy to couple 
aggregates of view-based concepts together. Whenever bare integration is not 
enough, we adapt concepts to get them properly connected to our framework.   

The ontological framework is presented in two forms, informally and 
semi-formally. Every concept and construct within the framework is defined in 
natural language. The definitions are embedded in the text and also included in 
the vocabulary in Appendix 1.  We use meta models to give an overview of the 
concepts and constructs in each part of the sub-domains. This form is also used 
to specify constraints imposing the relationships between the concepts. Meta 
models are presented in a UML based language. For some core parts of 
OntoFrame we also use the first order predicate calculus to define axioms. 
 
MEMES 
 
While the ontological framework provides concepts and constructs for the sub-
domains, MEMES aims at providing methodical “building blocks” and 
guidelines to carry out an ME effort. MEMES is not intended to be a method in 
a strict sense. To build a comprehensive method would require the specification 
of ingredients, such as models with notations, techniques with a large variety, 
quality metrics, procedures for ME project management, etc (cf. Graham et al. 
1997, 2). To reach such a level of concreteness and comprehensiveness would be 
impossible in this study.  

The ISD literature suggests artifacts that come close to the notion of a 
methodical skeleton. In the Unified Process (Jacobson et al. 1999) the notion of a 
process is defined to refer to “a concept that works as a template that can be 
reused by creating instances of it” (ibid p. 24). It is compared to a class form, 
which can be used to create instances. The OPEN framework (Graham et al. 
1997) is “a framework for third-generation OO software development methods” 
(ibid p. 4). It is “a methodical framework”, which can be instantiated to have 
specific methodological processes (Henderson-Sellers et al. (1999b,  40)8. Besides 
instantiable meta models, the Unified Process and the OPEN framework 
provide descriptions of ISD actions and ISD deliverables on a rather detailed 
level.  

Both the Unified Process and the OPEN framework concern ISD, whereas 
MEMES is to support ME. Regardless of this dissimilarity, we compose, as is 
done in the Unified Process and the OPEN framework, MEMES from meta 
models. We also include prescriptive models in MEMES (see Figure 2). 
Resulting from anchoring MEMES upon the conceptual basis provided by 
OntoFrame, we pursue the categorizations and structures of views, actions, and 
deliverables of ME, which makes MEMES much more modular and flexible for 
adaptations and instantiations, as compared to the OPEN framework and the 
Unified Process. 
                                                 
8 The OPEN framework is also called “a methodological metamodel of process” and 

“architecture of a process metamodel” (Henderson-Sellers 1999,  63).  
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There are a large variety of criteria suggested for the evaluation and 
comparison of ISD methods in the ISD literature (e.g. CRIS9 conferences, 
EMMSAD10 workshops, UML Conferences). Some of them are common in the 
frameworks mentioned above. Because MEMES is not a method, we have 
selected only a small set of criteria to be used as the objectives of MEMES. The 
objectives of MEMES are as follows:  
1. MEMES should be based on a solid and sound view on the sub-domains. 

The methodical skeleton should be built upon a conceptual foundation 
that is anchored on sound theories. Satisfying this objective is furthered by 
the use of the concepts and constructs in OntoFrame for conceiving and 
structuring the target and the process of method engineering with 
contextual concepts. 

2. MEMES should be modular and flexible. 
MEMES should be composed of structural and functional components that 
facilitate the elaboration, customization and configuration of the skeleton 
into a specific ME method. Despite the modular structure, MEMES should 
constitute a uniform, consistent and coherent totality.  

3. MEMES should be applicable.  
MEMES should be applicable for framing, constructive and analytical 
intentions. The framing intension means that MEMES should provide 
concepts and constructs to help make sense of and structure phenomena 
in ME in reality. The constructive intention means that MEMES should 
support the engineering of an ISD method, or parts thereof. The analytical 
intention means that MEMES should provide concepts and constructs for 
the analysis and comparison of existing ME artifacts. ME artifacts here 
mean ME strategies, ME approaches, ISD meta models, ME techniques, 
and ME procedures.  

 
MEMES is to be presented in natural language, supported with diagrams 
illustrating structural and functional features of the skeleton.  
 
 
1.4 Research Framework 
 
 
Up till now, we have described the background and the motivation of this 
study, outlined the research domain and defined the research questions and 
objectives.  In this section we position and characterize our study with the 
research framework of Hevner et al. (2004).  

According to Hevner et al. (2004), there are two paradigms within the 
research in the information systems discipline. These paradigms are the 
behavioral-science paradigm and the design-science paradigm. The behavioral-
                                                 
9  CRIS = Comparative Review of Information Systems (e.g. Olle et al. 1983; Olle et al. 

1986; Olle et al. 1988b). 
10  EMMSAD = Evaluation of Modeling Methods in Systems Analysis and Design. 
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science paradigm tries “to develop and verify theories that explain or predict 
human or organisational behaviour” (ibid p. 75). The design-science paradigm 
seeks “to extend the boundaries of human and organizational capabilities by 
creating new and innovative artifacts” (ibid p. 75). It is fundamentally a 
problem solving paradigm (Simon 1996), in which knowledge and 
understanding of a problem domain and its solution are pursued by the 
building and application of the designed artifacts. During the last decade the 
design-science paradigm has matured as a respectable and supported paradigm 
(e.g. Walls et al. 1992; March et al. 1995; Markus et al. 2002; Gregor 2002; Iivari 
2003; Gregor et al. 2003; Hevner et al. 2004). 

Our research clearly belongs to the design-science paradigm. We are 
pursuing the ontological framework (OntoFrame) and the methodical skeleton 
(MEMES), which both are design artifacts intended for the use of ME. To make 
the conception of the paradigm more concrete, we consider the research 
framework (Hevner et al. 2004) in Figure 3. We describe the main parts of the 
framework and characterize our study in the light of it. 

The research framework is composed of three related main parts: 
environment, IS research and knowledge base. Environment ”defines the 
problem space in which reside the phenomena of interest”(ibid p. 79). In our 
case the environment means purposes, actors, actions, deliverables, and tools 
involved in method engineering. From this environment arise the needs for the 
engineering of specific methodical support.  

Environment

Method engineering
- ME purpose
- ME actors
- ME actions
- ME deliverables
- ME tools

IS research Knowledge Base

Develop / Build

Justify / Evaluate

Foundations
- Theories

- Frameworks
-Instruments
- Constructs

- Models
- Methods

- Instantiations

Methodologies:
- Techniques
- Formalisms
- Measures

- Validation criteria

Needs Applicable

knowledgeAssess Refine

Application in Additions to  
 
FIGURE 3   Research framework (cf. Hevner et al. 2004, 80) 
 
Knowledge base ”provides the raw materials from which and through which 
research is accomplished” (ibid p. 80). It is composed of foundations and 
methodologies. Foundations contain theories, frameworks, instruments, 
constructs, models, methods, and instantiations. For our study the foundations 
contain theories (e.g. semiotics, semantics, pragmatics, systems theory), 
frameworks for IS and ISD, meta models and meta meta models, modeling 
languages, ontologies, and so on. Methodologies provide guidelines to justify 
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and evaluate the designed artifacts. These embrace methods for conceptual and 
empirical research, measures, and validation criteria. 

IS research means the process by which a research effort is accomplished. It 
is composed of two complementary parts: development/build and 
justify/evaluate. The former means designing and, in some cases, 
implementing artifacts to be applied in the environment. The latter comprises 
actions with which designed artifacts are evaluated and justified.  

Three main parts are related to one another, as denoted by arrows in 
Figure 3. The environment defines needs or “problem” for a research. The 
knowledge base provides applicable knowledge to be used, advanced and 
accumulated in the research. The IS research contributes design artifacts to be 
applied in the environment, thus benefiting it. The research also contributes to 
the knowledge base with new or improved frameworks, instruments, 
constructs, models, methods, etc.  

March et al. (1995) and Hevner et al. (2004) distinguish between four kinds 
of design artifacts: constructs, models, methods, and instantiations. Constructs 
provide “the vocabulary and symbols used to define problems and solutions”, 
thus impacting on the way in which tasks and problems are conceived  (Hevner 
et al. 2004, 83). They constitute a conceptualization of a domain (March et al. 
1995). Models use constructs to represent a real world situation. Models are 
composed of “propositions or statements expressing relationships among 
constructs” (March et al. 1995)11. Methods define processes and provide 
guidelines to perform tasks (Hevner et al. 2004; March et al. 1995). Instantiations 
“show that constructs, models, or methods can be implemented in a working 
system” (Hevner et al. 2004, 79).  

Our research contributes two kinds of design artifacts: a construct and a 
method. OntoFrame is a comprehensive construct composed of ontologies, 
which provide vocabularies to conceive, understand, structure and represent 
phenomena in the sub-domains. MEMES is a method – according to the 
terminology of the design-science - containing prescriptions for the 
accomplishment of an ME effort.  

Next, we apply three parts of the research framework to characterize our 
study. The environment of the research and needs for the study were discussed 
in Section 1.1 (Background and Motivation). We concluded that there is a need 
for a conceptual foundation and a methodical support. These needs were 
targeted to and “packaged” into the forms of the ontological framework and the 
methodical skeleton in Section 1.2. Concrete objectives of the artifacts were 
detailed in Section 1.3. 

As the research domain of this study is very large, our knowledge base 
includes a large array of fundamentals and methodologies. We have made 
numerous surveys of the relevant literature, analyzed them for their 
applicability for our purposes, and compared them to our artifacts. The results 
from these surveys and analyses are reported in appropriate sections in the 
                                                 
11  Note that the meaning given by March et al. (1995) to the notion of a model differs 

from which we later associate to the notion in this study. 
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thesis. For example, to establish the contextual approach in Chapter 4, we made 
a comprehensive search for theories addressing the notion of a context, and 
built, based on them, a foundation for distinguishing between seven contextual 
domains.  

The research process itself has been very complicated and iterative. We 
will describe the process and research methods applied during the process in 
Section 1.5. Hevner et al. (2004) suggest seven guidelines for making and 
reporting on research based on the design-science paradigm. We will apply 
guidelines to consider problem relevancy, research contributions, design 
evaluation, and limitations as the key research qualities of our study in Section 
1.6.  
 
 
1.5 Research Methodology  
 
 
A research methodology consists of the combination of the process, methods, and 
tools that are used in conducting research in a research domain (Nunamaker et 
al. 1991, 91). In this section we first discuss the process by which our research 
has been conducted and then describe research methods that we have followed. 
 
1.5.1 Research Process 
 
To illustrate the process of this study, we use a simple grid of four subfields 
(Figure 4). The subfields are: ME practice, evaluation, ME method engineering, 
and ontology engineering. Our research process has progressed across the 
subfields in a cyclic manner. The process started with engineering ontological 
constructs and continued with putting them in practice and evaluating 
experience from that. In certain stage, we entered the sub-field of ME method 
engineering, reengineered ontologies, tested them in practice, and so on. The 
figure is not meant to portray an exact registration of all the stages of the 
process but rather a symbolic presentation of iterations between different kinds 
of research approaches and fields. In the following we first discuss our research 
process in each subfield and then summarize the description.  
 
 
 
 
 
 
 
 
 
FIGURE 4   Research process 
 

Evaluation ME method 
engineering 

ME practice Ontology  
engineering 
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ME practice stands for all those efforts in which the researcher has been 
involved in developing an ISD method in practice. There are four projects that 
belong to this subfield.  The first attempt was made, when we developed a 
language and a “design model” for conceptual data base design based on the 
linguistic approach (Leppänen 1984a). In the language essential pragmatic (i.e. a 
sender, a receiver, a sending time, a receiving time, a mode), semantic (i.e. 
entity type, relationship type, attribute, property type, time, constraints) and 
syntactical elements were distinguished. The design model was built from 
generic constructs (e.g. workflow structure, system decomposition structure, 
abstraction structures, problem solving structure).  The model was composed of 
two layers: a frame layer consisting of generic concepts and constructs, and a 
core layer standing for instantiated concepts and constructs.  

The second attempt was related to a large international Esprit12 project, 
called OSSAD (Office Support Systems Analysis and Design) into which the 
research group (Vesa Savolainen, Mauri Leppänen) from the University of 
Jyväskylä was accepted in 1986.  The other project partners were from France 
(D. Conrath CETME Aix-en-Provence, P. Dumas CETMA Toulon, G. 
Charbonnel CETMA Toulon), Italy (V. de Antonellis University of Milan, C. 
Simone University of Milan, G. de Petra IPACRI Rome, C. de Santis IPACRI, 
Rome), and Germany (S. Sorg IOT Munchen, E. Beslmuller IOT Munchen). The 
purpose of the project (1985-1989) was to develop a method for the analysis and 
design of office support systems. The researcher’s role in the project was to 
comment on, and ideate, the conceptual foundation of the method, to contribute 
to some specific parts of the method, as well as to field test the method in a case 
organization (Leppänen et al. 1988; Leppänen et al. 1989a). The project 
engineered the comprehensive method that was published in the manual 
(Conrath et al. 1989) and in numerous articles (e.g. Beslmuller et al. 1986; 
Beslmuller et al. 1987; Conrath et al. 1988; Charbonnel et al. 1991; Conrath et al. 
1992; Vincent et al. 1992; Conrath et al. 1999; Savolainen 1999).   

The third attempt dates back to 1988/1989 when the researcher 
participated in a large consulting project to plan an information technology and 
service strategy for the city of Jyväskylä. For the project, a method, called SPITS 
(Strategic Planning of Information Technology and Services) (Leppänen et al. 
1991), was first engineered. In the method, the process of strategic planning is 
decomposed into three parts: analyzing the service strategy, planning the IS 
strategy, and planning the implementation of the IS strategy. For each part, 
several design techniques were selected from existing methods and customized 
to fit the needs of the project. Researchers acted as teachers, mentors and partly 
as designers in the project. Experiences of the applicability of the method were 
collected by interviews, although they were not reported in public. 

The fourth attempt to method engineering in practice concerned 
engineering a method for database application design for the purposes of 
teaching. The first version of the method was developed during 1985-1993 
(Leppänen 1993). The method was based on a view of the centralized 
                                                 
12  Esprit = European Strategic Program for Research in Information Technology. 
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architecture and the use of the Ingres database management system. The second 
version was engineered for web-based database application design with Oracle 
8i (Leppänen 2001). Both of the methods were constructed by selecting and 
customizing models and techniques from existing methods. The methods were 
used by students in their designing and implementing small-scale database 
applications in project groups of 2 – 4 members. The course has been lectured 
seven times so far, and about 100 projects have been accomplished with the 
methods. 

Ontology engineering means establishing a conceptual foundation for 
conceiving, understanding, structuring and representing phenomena in the 
domains of IS, ISD, ISD method, ME, and ME method. The first concepts and 
constructs were defined for the core part of OntoFrame in Leppänen (1984a). 
The work continued with elaborating definitions of core concepts, abstraction 
structures and abstraction strategies (Leppänen 1984b). Later the ontology was 
extended and refined by establishing a contextual approach, which recognizes 
concepts within seven contextual domains. This work laid the ground for the IS 
ontology. In the last stages, the ontological framework was extended to cover 
the ISD domain and the ME domain as well. During the cyclic process, 
definitions and categorizations of new and old concepts and constructs have 
been modified and elaborated several times.  

Evaluation comprises two kinds of actions: (1) making analyses and 
comparative reviews of definitions, classifications, models, frameworks, and 
methods presented in the literature, and (2) reflecting from the practice of 
method engineering. The purpose in the first case has been to learn existing 
knowledge in the research sub-domains and compare it to artifacts produced in 
each stage of this study. Examples of the early work on these issues are a 
classification of research methods (Leppänen et al. 1988), an analysis of the 
OSSAD method (Leppänen 1989a), and a conceptual analysis of socio-technical 
methods (Leppänen 1989b). The OSSAD method was analyzed on the basis of 
its core concepts and abstraction constructs. Socio-technical methods were 
analyzed with the concepts of seven contextual domains. Later, several 
comparative analyses have been conducted related to the IS ontology, the ISD 
ontology, ISD method ontology, and the ME method ontology. Also 
suggestions for ME strategies, ME approaches, ME techniques, and ME 
procedures have been evaluated. The results of these analyses are reported in 
this study. The evaluation of experience from the application of the artifacts of 
this work has been made with two empirical methods. First, we applied 
retrospective analysis (cf. Fitzgerald 1991) to investigate documents and notes 
from the OSSAD project and to elicit findings and lessons to be used in 
elaborating the artifacts. Second, we applied the reflection-in-action approach 
(Schön 1983) to constructing MEMES with applying MEMES itself. Results from 
these analyses are reported in this thesis.  

The first serious attempts to contribute to ME method engineering were 
made in 1994, when a technique for describing, analyzing and refining 
conceptual relationships of ISD techniques and ISD models within an ISD 
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method was developed (Kinnunen et al. 1994; Kinnunen et al. 1996). This 
technique was applied to test the interoperability between techniques of the 
SPITS method (Leppänen et al. 1991). Next, activities, benefits and pitfalls of 
metamodeling were distinguished based on an early version of the ontological 
framework (Leppänen 1994). Later, a model integration technique, analogous to 
a view integration technique (Batini et al. 1992), was developed to ensure the 
consistency in integrating an ISD method from method components (Leppänen 
2000). Also a set of ME approaches were defined. In the last few years, the 
research was extended to cover more comprehensive methodical and 
procedural structures of ME. This work was based on the established 
OntoFrame and experiences got from ME practice.  

Engineering a methodical skeleton itself was, in fact, an instance of ME 
effort. This effort did not aim to build an ISD method but an artifact that is a 
kind of pre-stage of an ME method. Nevertheless, the engineering process of 
MEMES should apply exactly the same structural and dynamic building blocks 
that are included in MEMES itself. This observation made us to decide to 
systematically follow MEMES while the incremental and cyclic process went 
along. Instant feedbacks substantially contributed to the theoretical part of 
method engineering. 

To summarize, our research process has been highly iterative, crossing 
four sub-fields. The work has been interplay between theoretical considerations, 
analysis of literature, empirical work and its evaluation. The process reflects a 
learning cycle (Checkland 1981, 254) in which each deliverable (i.e. an ontology, 
an ME technique, and a methodical skeleton) is created, applied, learned from, 
and refined. 
 
1.5.2 Research Methods 
 
To support the research process we have applied two kinds of research 
methods. The first method is conceptual. By this method we have defined 
OntoFrame and MEMES and conducted a large set of comparative analyses of 
the existing literature to show how our framework differs from other artifacts 
(i.e. ontologies, meta-models, frameworks, and frames of reference). Second, we 
have applied several empirical methods. During the OSSAD project, a field test 
was carried out to collect experiences on applying the OSSAD method in 
practice (Leppänen et al. 1988). The application of the SPITS method in a large 
municipal organization was carried out as a case study. Experiences from users 
were collected here too. The use of the database application design method by 
students corresponds to a laboratory experiment in a sense that all the project 
groups (ca. 100 groups in seven years) applied the same method (in two 
versions) in application design. However, no specific research setting was 
defined neither used in these situations. Nevertheless, the researcher got a very 
“rich” picture of the applicability of the method during the guidance hours that 
were provided for groups in each of 5 – 6 phases, as well as through exhaustive 
documentations produced by each project group.  
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We do not explicitly report on the results from the aforementioned 
investigations in this study. Instead, we have selected two efforts to be analyzed 
here in more depth. They are the OSSAD project and the MEMES effort. We 
apply the retrospective analysis (cf. Fitzgerald 1991) to make sense of the 
process and outcomes of the OSSAD project. In the analysis we use MEMES as 
a frame to find out essential features and approaches of the OSSAD project, to 
discover possible problems, and speculate how these could have been avoided 
with a methodical support such as MEMES. Second, we apply the retrospective 
analysis to describe and evaluate, how MEMES performs as a prescription for 
the engineering process of MEMES itself. The process is conducted according to 
reflection-in-action approach (Schön 1983). The major characteristics of this 
approach are a fluid and reflective process model and the use of a generative 
metaphor in situation framing (Heiskanen 1995).  
 
 
1.6 Key Research Qualities 
 
 
Hevner et al. (2004) suggest seven guidelines for the design science to be 
determined “when, where, and how to apply each of them in a specific research 
project” (ibid p. 82). Guidelines are based on the view according to which 
design science is inherently a problem solving science. These guidelines concern 
design artifacts, problem domain, contributions, design evaluation, research 
contributions, design as a search process, and communication of research. In 
this section we apply the guidelines to consider our study from the viewpoint 
of design science. We discuss problem relevancy, research contributions, design 
evaluation, and limitations of this study.  
 
1.6.1 Problem Relevancy 
 
According to Hevner et al. (2004), the objective of research should be “to acquire 
knowledge and understanding that enable the development and 
implementation of technology-based solutions to heretofore unsolved and 
important business problems” (ibid p. 84). The most essential words in the 
statement are ‘unsolved’ and ‘important’ problems.  

We described the background and the motivation of our study in Section 
1.1. We arrived at the following conclusions: There are severe problems in methods 
and method use in practice, and more methods with new approaches and features are 
required to provide methodical support for emerging application areas. On the other 
hand, method engineering in practice suffers from serious problems, which complicate 
and hamper the analysis, design, and implementation of ISD methods. The current ME 
literature provides a large array of ME artifacts, but they are inadequate to overcome 
the problems. No single artifact among them can be seen to come even close to the ME 
method as the notion is generally understood. Concluded from the above, we argue 
that there are clearly unsolved problems, which we are addressing in our study. 
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The ISD community has divergent conceptions and opinions of the nature, 
role and significance of a method in ISD (Baskerville et al. 1992; Wastell 1996; 
Pfleeger et al. 1997; Truex et al. 2000; Fitzgerald et al. 2002; Chang et al. 2002). On 
the basis of the large review made in this study among the ISD literature, we 
argue that methods, in one form or another, are needed in practice. Considering 
a huge number of information systems, their diffusion into a vast spectrum of 
application fields, and their significance to business, we can conclude that 
getting some of the problems solved in method engineering is clearly of 
considerable importance. Later in this study we show the problem areas to 
which we have in particular contributed.  
 
1.6.2 Research Contributions 
 
Hevner et al. (2004) argue that design-science research “must provide 
contributions in the areas of the design artifact, design construction knowledge 
(i.e. foundations) and/or design evaluation knowledge (i.e. methodologies)” 
(ibid p. 87). This study contributes to foundations (see Figure 3). We suggest the 
extensive ontological framework (OntoFrame) and the methodical skeleton 
(MEMES) to be used in ME. Contributions can be evaluated in terms of their 
novelty, generality, and significance (Hevner et al. 2004). Here we consider our 
contributions with the first two criteria. The third criterion is relevant for 
considerations at the end of this study, after the design artifacts have been 
described in more detail.  

We will show in the following chapters that at present there is no unified, 
coherent and theory-based framework that would support the understanding 
and structuring of phenomena in the sub-domains. Furthermore, there is a large 
set of aspects in individual sub-domains that are poorly understood and/or 
covered in artifacts. Our response to this situation is to apply the principles of 
ontology engineering in building a coherent and unified framework. 
Furthermore, we anchor the framework upon generic and relevant theories (e.g. 
semiotics, semantics, pragmatics, systems theory) to ensure the 
comprehensiveness of the framework. The main “yardstick” used in the 
evaluation of comprehensiveness is, resulted from our contextual approach, 
how well the framework covers contextual features of the subject matters.  
These approaches make our ontological framework (OntoFrame) quite novel 
and different from all other suggestions.  

MEMES stands out from the others, first due to the approach deployed to 
engineer it, and second due to its structure and contents. Most of the ME 
artifacts at present have been engineered by externalizing ME conventions in 
practice. This is the inductive approach to the ME research. The ME practice is, 
however, still in its infancy, and so many of the established conventions are 
undeveloped and not worth of writing into prescriptions in ME artifacts.  We 
have adopted another approach. Still taking into account the experience and 
lessons from ME practice, we have started to engineer the main functional and 
modeling structures of MEMES on the grounds of the ontological framework. 
Hence, we apply the deductive approach to the ME research. This way we are 



 

 

45

able to look at ME efforts with “new eyes” and find solutions that have not been 
discovered earlier. As mentioned above, the ME literature provides inadequate 
support to ME efforts. Although MEMES is not a complete method, it 
nevertheless covers the most essential parts of ME. For these parts it provides 
both generic specifications in meta models and specific guidelines for the 
accomplishment of ME actions. Many of these suggestions are novel.  

OntoFrame and MEMES are intended for the general use. OntoFrame is 
composed of a large number of ontologies, each of which can be used to 
conceive, understand, structure, and represent phenomena in an appropriate 
sub-domain. Also in the selections of approaches and views underlying the 
ontologies we have aimed for generality. MEMES is a methodical skeleton that 
provides generic support for ME, whatever ME strategy (i.e. “from scratch”, 
integration, adaptation) is followed. Guidelines and steps contained in MEMES 
are described in the way, which enables their deployment in a large variety of 
situations. 
 
1.6.3 Design Evaluation 
 
Hevner et al. (2004) state that “the utility, quality, efficacy of a design artifact 
must by rigorously demonstrated via well-executed evaluation methods” (ibid 
p. 85). In this section we consider the evaluation of OntoFrame and MEMES in 
terms of verification and validation.  

The outcomes of this research are conceptual and highly abstract. 
Verification and especially validation of these kinds of artifacts have been 
recognized to be problematic, both in ontology engineering (e.g. Gomez-Perez 
1995; Gruninger et al. 1995; Guarino 1997; Shank et al. 2003) and in method 
engineering (e.g. Fitzgerald 1991; Schipper et al. 1996). Therefore, we first 
discuss the notions of validation and verification in general and then describe 
how our outcomes are verified and validated.  

In the ME field, validation has been discussed in relation to e.g. models 
and techniques. According to Flon Arnesen et al.  (2002), the validity of a model 
“means that all statements made in the model are correct relative to the 
domain” (ibid p. 68).  Schipper et al. (1996) state that validation of a modeling 
technique “is a means to determine whether the technique serves its intended 
purpose” (p. 1). According to Fitzgerald (1991) the term ‘validation’ is used “to 
mean the justification of the technique in terms of its power, effectiveness and 
practicality in relation to its purpose and objective” (p. 659). He emphasizes in 
particular well-foundedness, soundness, and applicability of a technique to the 
case or circumstances.  

In this study, we distinguish between two dimensions to the evaluation of 
the artifact: validation and verification (Weinberger et al. 2003). Validation 
means a process of seeking evidence of the applicability of the artifact to the 
predefined intentions of use (cf. Schipper et al. 1996, 1). The features of the 
artifact affecting the applicability are called external features. Verification means 
a process of acquiring evidence that the artifact fulfills the objectives related to 
internal features of the artifact. Examples of internal features are consistence 
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and coherence of the concepts (Weinberger et al. 2003). Hence, in both cases, it is 
a question about the evaluation of the features of the artifact based on the 
predefined objectives. In the following we first use the term ‘evaluation’ when 
discussing the assessment of the properties of the artifact in general. After that, 
we show in which case evaluation means verification and in which case it is a 
question about validation of the artifact in our work.  

Evaluation should start with describing the researcher’s intentions for the 
use of the artifact (Schipper et al. 1996,  7). Next, objectives in terms of internal 
and external features should be derived. That is exactly what we have reported 
on in Section 1.3. There are many ways to derive and express the features (cf. 
Sol 1983, 4). In the simplest case, features are presented in a list without any 
clear connection to intentions. There are many examples of this kind of lists in 
the literature (see e.g. Olle et al. 1983; Olle et al. 1986).  A better way is to 
prioritize the features based on the intentions or other explicated grounds. The 
third way is to use an “idealized” artifact as a “frame of reference” of 
assessments (Sol 1983, 4). An idealized artifact is usually developed by deriving 
it from features of existing artifacts, e.g. including “best properties” of the 
existing artifacts in the artifact. Instead of, or besides, the existing artifacts, 
derivation can be based on some underlying theory (cf. the socio-cybernetic 
framework in Iivari et al. (1983)). 

Evaluation can be done conceptually or empirically. Conceptual 
evaluation can be conducted in two ways: (a) focusing on the artifact only, or 
(b) comparing it to some other artifact(s). In the first case evaluation concerns 
the artifact and/or the process of engineering. In a comparative analysis, the 
artifact is evaluated by comparing it to one or more existing and comparable 
artifacts (e.g. Henderson-Sellers et al. 1999a; Kabeli et al. 2002; Kavakli et al. 
2003). This way one tries to prove that the artifact is “better” than the others in 
some relevant terms (e.g. comprehensiveness). Conceptual evaluation can be 
supported by formalization. For instance, consistence and coherence of the 
artifact can be more easily proven through formal definitions and axioms (ter 
Hofstede et al. 1998, 521). Besides enforcing the defining of concepts into a more 
rigorous direction, a successful completion of formalization itself gives an 
evidence of ‘formalizability’ of the ideas underlying the artifact (ter Hofstede et 
al. 1992; ter Hofstede et al. 1998). Yet stronger evidence can be got implementing 
the artifact into e.g. a software tool (e.g. Harmsen 1997; Gupta et al. 2001). 
Successful implementation provides evidence of the implementability of the 
ideas included in the artifact. However, it is important to point out that even a 
successful implementation of the artifact into a software tool does not prove 
that the artifact is useful. To evidence that requires empirical tests of the tool.  

Empirical evaluation is based on experiences got from using the artifact in 
one or more contexts. Contexts can differ from each other in four ways. First, 
the context can be hypothetic or real. A hypothetic context may concern 
hypothetic and often simplified problems to be solved in a laboratory or the 
like. A real context is a working situation solving real problems in an 
organization. Second, users of the artifact from whom experiences are collected 
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can be developers of the artifact (e.g. in Fitzgerald 1991), students, or real 
workers in an organization. The strongest evidence can be got from real 
workers (e.g. in Moynihan (1996) and Grant et al. (2003)) but due to problems in 
involving them, it is common to recruit students into the work (e.g. Shoval et al. 
1997; Chaves et al. 1996).  Third, the artifact can be deployed as a whole or for 
some part only in a context. If the artifact is large, like a method, it is common 
to concentrate on features related to some part (e.g. Moody 2003a). Fourth, 
evaluation in a context can be carried out as one time action or as a sequence of 
assessments. In the latter case, evaluation can be included as an inherent part of 
evolutionary engineering of the artifact (e.g. Tolvanen 1998).  

Next, we consider, based on the taxonomies and definitions given above, 
how the features of OntoFrame and MEMES are evaluated.  We apply two 
kinds of research methods in this work. The first method is conceptual and it 
concerns verification of the qualities. The second method is empirical and it is 
used in validation. In what follows we discuss verification and validation of the 
framework and skeleton with relation to the objectives stated in Section 1.3.  

To support the achievement and evaluation of clarity, consistency and 
coherency of the concepts and constructs within OntoFrame, we use semi-
formal meta models in presenting the ontologies. In addition, we make cross-
checking among the definitions of the concepts. Generality of the framework is 
supported by the stratified structure of the framework in which specialized 
concepts are derived from the fundamental concepts. We demonstrate the 
suitability of OntoFrame to relating concepts of different approaches by 
numerous comparisons. Generativeness and modularity result from the process 
by which we establish the framework. Extensibility is furthered by 
generativeness and modularity. To obtain strong evidence of the naturalness of 
the framework would require tests in real contexts, with real workers, and we 
do not do it here. Instead, we argue for the naturalness of OntoFrame by 
referring to the nature of theories underlying the framework. The fact that the 
framework is theory-based becomes evident from the use of theories.  

All the evaluation means discussed above are examples of verification of 
the internal features of OntoFrame. In contrast, the evaluation of 
comprehensiveness and applicability presumes validation. Comprehensiveness 
is evaluated in two ways: (a) founding on and comparing to the relevant 
theories, and (b) making comparative analyses of existing artifacts. OntoFrame 
is aimed to be applicable for three kinds of intentions. As to the analytical 
intentions, we refer to the results from the comparative analyses to claim for 
applicability. To gain evidence from the applicability of OntoFrame in the 
constructive sense, OntoFrame is applied to construct MEMES. To validate the 
applicability of OntoFrame in the descriptive sense would require empirical 
tests. These are not made in this study.  

For MEMES it has been stated that it has to be based on a solid and sound 
view on the domain area. Reaching this objective is aided by anchoring MEMES 
to the theory-based ontological framework. The fact that MEMES is component-
based becomes evident by viewing its structure. Validation of the applicability 
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of MEMES is carried out conceptually and empirically. Conceptual validation is 
carried out with a comparative analysis of existing ME artifacts (cf. the 
analytical intention of use). Empirical validation is accomplished in two ways: 
(b) by the retrospective analysis of the process and outcome of the OSSAD 
project (cf. the framing intension of use), and (b) by the retrospective analysis of 
the process of applying MEMES in the engineering of the skeleton itself 
according to the reflection-in-action approach (Schön 1983) (cf. the constructive 
intention of use). In addition, experience from all those efforts in which the 
researcher has been involved has been utilized in engineering MEMES.  
 
1.6.4 Limitations 
 
This thesis is quite large and addresses a number of sub-domains. Even so there 
are some limitations that we have made during the study. First, both 
OntoFrame and MEMES could have been refined further. We have consciously 
excluded some less essential parts from the lower levels of OntoFrame in order 
to keep the size of the framework reasonable. Formalization of the framework 
could have been augmented by more axioms to specify rules and constraints 
more precisely. The scope of MEMES has been limited to cover three ME 
workflows (i.e. the ISD method (ISDM) requirements engineering, the ISDM 
analysis, and the ISDM evaluation) out of five. Although this is enough to have 
an overview of method engineering and to cope with decisions on methodical 
structures on a general level, the skeleton could have been extended to deal 
with the other workflows (i.e. the ISDM design and the ISDM implementation) 
with equal weight. Also more procedures and guidelines, for instance, for 
alternative ways of engineering, could have been included in MEMES. 

 Second, there are some limitations in our research methodology. One of 
the most severe limitations in this study is that the method skeleton is not 
properly tested in a real context. We do have heavily utilized experience on ME 
practices in which we have been involved, as described above. We have also 
applied MEMES in a step-by-step process of engineering of the skeleton itself. 
But these contexts do not fully satisfy requirements presumed from the 
empirical validation of MEMES in terms of applicability and usefulness. For 
this reason, the skeleton should be first elaborated into a specific ME method, 
and then this ME method should be used in an ME effort to engineer a specific 
ISD method. This way we could obtain a more reliable conception of how 
MEMES performs. In fact, to have a strong evidence of the applicability and 
usefulness of MEMES, validation should also address the use of the ISD method 
engineered in the development of some specific information system. Due to the 
largeness of this study, it was not possible to include these kinds of case studies 
in the thesis. They will be subjects of future research. 
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1.7 Structure of the Dissertation 
 
 
The thesis is organized into thirteen chapters. The structure of the chapters 2 – 
13 is illustrated in Figure 5. The arrows between the boxes express how the 
subject matters dealt with in the chapters are based on the considerations in 
preceding chapters. In Chapter 2 we will present an overview of OntoFrame. 
After motivating needs for the framework and describing its theoretical 
foundations, we will outline the modular structure of the framework. For each 
part the intention and the domain are described. After that we will portray the 
approach and the process applied in ontology engineering. Finally, we present 
a comparative review of the most relevant artifacts in the IS literature. 

Chapter 3 defines the fundamental concepts of the research domain as the 
core ontology. The core ontology is composed of seven sub-ontologies: the 
generic ontology, the semiotic ontology, the intention/extension ontology, the 
language ontology, the state transition ontology, the UoD ontology, and the 
abstraction ontology. After reviewing the relevant works and describing the 
overall structure, we will present meta-models with concept definitions for each 
of the sub-ontologies. Concepts are widely compared to those presented in the 
literature. In addition, we will present a comparative analysis of two most-well 
known artifacts, namely the Frisco framework and the BWW model. In the 
analysis we compare the objectives, ontological positions, basic structures, 
coverage, and emphases of the artifacts with the core ontology. 

Chapter 4 presents the context ontology. First, we will define the 
contextual approach and characterize its application domain and objectives. 
Next we will review the literature to establish a theoretical basis for the 
contextual approach. Deriving from the selected theories (e.g. semiotics, 
semantics, pragmatics and some theories of human and social action), we will 
elaborate the notions of a context and a contextual domain. For each contextual 
domain, we will present a meta-model and define their contextual concepts and 
constructs. In addition, we will define inter-domain and implicit relationships.  

Chapter 5 specifies the layer ontology. First, we will define the basic 
concepts related to information and information processing. We will also 
distinguish between the information system, the object system, the utilizing 
system, and the controlled system. Next we will recognize the primary actions 
and the development actions in information processing. Deriving from this 
dichotomy, we will define the system of four processing layers: information 
system, information system development, method engineering, and research 
work. Each layer will be characterized from the teleological, functional and 
structural viewpoints. The contents of and relationships between the contexts 
positioned at the layers will be discussed, and the notions of the utilizing 
system and object system will be specialized to concern each of the processing 
layers.  
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Chapter 6 addresses the perspective ontology. We will start with defining the 
perspective ontology by establishing the system of perspectives along particular 
dimensions and by defining the contents of five perspectives (i.e. systelogical, 
infological, conceptual, datalogical, and physical perspectives). We will 
consider how the perspectives are applied at the four processing layers. Next 
we will define the IS perspectives and relationships between them. Finally, we 
will present a comparative analysis of IS perspectives suggested in the IS/ISD 
literature. The analysis is composed of three parts, giving an overview of and 
revealing the conceptual contents and detailed concepts of the perspectives.  

Chapter 7 presents the model level ontology. Here we will first define the 
notions of model and modeling and present the main classifications of the 
models. Second, we will extend our considerations to concern models at meta 
levels. We will also derive classifications of models and meta models based on 
the contextual domains and the perspectives. Third, we will present a 
comparative analysis of conceptions about the meta levels in the ISD literature. 
Fourth we will examine in more detail how the contextual ontologies are 
related to one another.   

Chapter 8 addresses the ISD ontology. We will start with discussing and 
classifying the ISD paradigms and the ISD approaches and give a 
comprehensive definition of ISD. Second, we specify the first part of the ISD 
ontology, which is composed of meta models and concept definitions within 
four ISD domains (i.e. ISD purpose domain, ISD actor domain, ISD action 
domain, and ISD object domain). Also an overview of the inter-domain 
relationships will be provided. Third, we will present the second main part of 
the ISD ontology, which consists of four ISD perspectives. The perspectives are 
the ISD systelogical perspective, the ISD infological perspective, the ISD 
conceptual perspective, and the ISD datalogical perspective. Also the inter-
perspective relationships will be discussed. Fourth we will make a comparative 
analysis of artifacts (i.e. frameworks, meta models and the like) presented in the 
literature. The purpose of the analysis is to obtain an overview of the artifacts, 
to find out how they differ from one another, and compare them with the ISD 
ontology in terms of comprehensiveness and focus.  

Chapter 9 presents the ISD method ontology. First we will consider why 
the ISD methods are actually needed and used in practice by reviewing 
empirical studies. Second, we will discuss the difference between the terms 
‘methodology’ and ‘method’. Third, we will delineate the concept of the ISD 
method as a ‘carrier’ of ISD knowledge and specify basic classifications of ISD 
methods. Fourth, we will define seven fundamental views from which the ISD 
method can be conceived, and present an integrative definition of the ISD 
method that highlights the essential features of the method from all seven 
views. Fifth, we will establish the ISD ontology that is composed of parts 
corresponding to the seven views. Sixth, we will apply the ISD method 
ontology to consider, from a larger perspective, a range of methodical support 
and specify a taxonomy of methodical artifacts. We will also discuss the criteria 
for acknowledging an artifact as an ISD method. Seventh, we will make a 
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comparative analysis of frameworks and categorizations of the ISD methods 
proposed in the literature. Eighth, we will consider the notion of method 
component in more detail. We will define the notion, present a classification 
scheme and specify a contextual interface of the method component. We will 
also discuss the integration of method components, illustrate the discussion 
with examples, and make a comparative analysis of the conceptions of the 
method component in the literature.  

Chapter 10 defines the ME ontology and the ME method ontology. First, 
we will describe needs for method engineering and reasons behind them. Based 
on a short literature survey we will present basic classifications of ME strategies 
and ME processes and derive a fundamental categorization of ME contexts 
from them. We will also provide a definition of the ME context that integrates 
various contextual aspects of method engineering. Next we will present the first 
main part of the ME ontology addressing four ME domains. For each ME 
domain the concepts and constructs will be defined and described in ME meta 
models. After that we will provide the second main part of the ME ontology 
including four ME perspectives. Finally we will define the notion of ME method 
and derive the ME method ontology from the ISD method ontology established 
in Chapter 9.  

Chapter 11 presents the methodical skeleton for ME. First, we will argue 
for the needs for methodical support to ME and define MEMES in terms of its 
intention, basis and contents. Also relations between MEMES and OntoFrame 
will be demonstrated. Second, we will derive the views and structure of 
describing MEMES in this work. Third, we will describe the background and 
application area of MEMES and state the goals for MEMES. Fourth, we will 
present the overall structure of MEMES in terms of ME workflows. Fifth, we 
will describe the approaches and steps of three ME workflows (i.e. the ISD 
method requirements engineering, the ISD method analysis, and the ISD 
method evaluation).  

Chapter 12 provides evaluations of MEMES. First, we will apply MEMES 
itself to make plans for the evaluation. Second, we will report on the 
retrospective analysis and reflection-in-action approach applied to evaluate 
MEMES in two ME efforts (i.e. the OSSAD project and the MEMES effort). The 
OSSAD project engineered a method for office support systems analysis and 
design (Conrath et al. 1989). The MEMES effort means the process of 
engineering MEMES itself. Third, we will use MEMES as an analytical 
framework to make a comparative analysis of those artifacts, which are aimed 
to provide methodical support to ME.  

In Chapter 13 we will summarize the results of the thesis, discuss their 
implications to research and practice, and describe directions for future 
research. 



 

 

 
 
 
 
 
 
 
 
 
 
 
2 OVERVIEW OF ONTOFRAME 
 
 
Method engineering needs a comprehensive and uniform foundation, a kind of 
conceptual “platform”, upon which conceptions and representations of an ISD 
method and a process of engineering an ISD method can be established. The 
purpose of this chapter is to present an overview of such a foundation. We call 
it the ontological framework, and shortly OntoFrame.  

This chapter is organized as follows. In Section 2.1 we discuss needs for an 
ontological framework. Next, we consider the suitability of metamodeling and 
ontology engineering for theoretical grounds of OntoFrame. In Section 2.3 we 
describe the domain and overall structure of Ontoframe. In addition, we discuss 
and select forms in which OntoFrame will be presented. In Section 2.4 we 
delineate the approach and the process by which OntoFrame has been 
engineered. In Section 2.5 we make a comparative review of the relevant 
literature in order to give an overview of the state of the art and to show how 
our framework differs from the others. The chapter ends up with a summary. 
 
 
2.1 Needs for an Ontological Framework 
 
 
Becoming aware of phenomena in reality and understanding their meaning 
necessitates that a human being has a mental structure that gives a means to 
focus, structure, and organize perceptions (cf. Koskinen 2000, 77). The more 
abstract thinking a work requires, the more necessary it is to hold and utilize 
well-defined concepts in doing the work. Concepts are not separate but 
constitute webs of associations in which each concept has its specific roles and 
constraints. These webs are called conceptual frameworks. A conceptual 
framework means a structure of named and defined concepts, views, etc. by 
means of which an individual or group conceives and communicates ideas (cf. 
Webster 1989). It is a kind of intellectual structure, which determines which 
phenomena are meaningful to us and which are not.  
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Our ontological framework is a conceptual framework. Its purpose is to 
provide a unified conceptual foundation for conceiving, understanding, 
structuring, and representing phenomena in ME. But what is actually ME? 
What are those features it holds, which we should become aware of and which 
we should be able to communicate about? That is what we try to figure out in 
this section, in order to grasp the baseline and premises for the ontological 
framework.  

The most essential individual thing in ME is an ISD method. It is the main 
target of engineering. An ISD method is a highly abstract and multifaceted 
notion about which there are quite different conceptions. It is ‘externalized’ in 
the form of a manual, a textbook, or a Power Point slice show, and marketed as 
written documentation, consultant services, part of a CASE tool, etc. This 
concrete side of an ISD method is easy to understand and agree on. But what 
are the nature and contents of an ISD method? Which kinds of phenomena do 
texts and diagrams in manuals, textbooks, and slices refer to? What actually 
happens in ISD and what is the role of an ISD method in this process? These are 
examples of questions that should be asked when engineering an ISD method, 
and not only asked but also pursued to obtain “right” answers. As said above, 
in the literature there are quite different views (answers) on these issues. In 
what follows, we give examples of these views to demonstrate the variety of 
conceptions and to motivate our search for a unified conceptual foundation.  

An ISD method is commonly considered to contain collective knowledge 
and experience of ISD (Tolvanen 1998; Fitzgerald et al. 2002; Schönström et al. 
2003). There are, however, varying conceptions on a degree to which an ISD 
method as a “knowledge base” can convey and provide knowledge for ISD 
developers (Wastell 1996; Wordsworth 1999; Truex et al. 2000). Those that are 
the most optimistic think that all the ISD knowledge can be thought to reside 
outside the ISD practice – in books and in learned institutions, whereas some 
others see the most relevant knowledge reside in ISD practice itself (cf. method-
in-action). Some part of the community appreciates formal methods (e.g. Jones 
1986; Pfleeger et al. 1997; Wordsworth 1999), whereas others stand on the side of 
informal and even amethodological approaches (Wastell 1996; Ciborra 1999; 
Truex et al. 2000). This confusion is not much relieved by results from empirical 
studies of the nature and significance of ISD methods to ISD work (cf. 
Stolterman 1992; Hardy et al. 1995; Fitzgerald 1996a; Chatzoglou 1997; Hidding 
1997; Rahim et al. 1998; Avison et al. 2003), as they are partly contradictory.  

An ISD method is defined to be an approach (e.g. Brinkkemper 1996; 
Truex et al. 2000; Russo et al. 1996), a way of accomplishing (Kruchten 2000), a 
description of a technique (Hirschheim et al. 1995), a procedure (Kitchenham et 
al. 1999), and a system (Jones et al. 1988; Krogstie 1995). From the structural 
viewpoint, an ISD method is seen as “a collection of procedures, techniques, 
tools, and documentation aids” (Avison et al. 1995a, 10), as “a collection of 
procedures and heuristics” (Nuseibeh et al. 1996, 269), as “an organized 
collection of concepts, methods, beliefs, values and normative principles” (Iivari 
et al. 1998a, 165), and as “a system of rules, techniques, and tools” (Krogstie 
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1995, 13). Implied from these samples, there seem to be quite different 
conceptions about the structure of an ISD method. Which of the aforementioned 
parts are mandatory to acknowledging an artifact as an ISD method is also an 
open question.  

Having considered an ISD method from the structural viewpoint, we next 
turn to examine its contents. The view of what an ISD method contains depends 
on what kind of effort we think ISD is, and that, in turn, is affected by adopted 
paradigmatic assumptions (Hirschheim et al. 1989; Iivari 1991; Hirschheim et al. 
1992a), schools of though (Iivari 1991; Iivari et al. 1998a), and ISD approaches 
(Wood-Harper et al. 1982; Lyytinen 1986; Hirschheim et al. 1995). ISD can be 
seen, for instance, as a transformation process (e.g. Lundeberg et al. 1981; 
Lehman 1984; Moynihan 1993; Tracz et al. 1993; Jacobson et al. 1999), as a 
decision making process (e.g. Jarke et al. 1990; Wild et al. 1991; Grosz et al. 1997), 
as a problem solving process (e.g. Bodart et al. 1983; Sol 1992; Blum 1994; 
Jayaratna 1994), as a learning process (e.g. Iivari et al. 1987; Ramesh et al. 1994; 
Lyytinen et al. 1999), or as a cooperative process containing negotiations, 
bargaining, power and social interactions (e.g. Keen 1981; Markus 1983; 
Newman et al. 1990; Chang et al. 2002). There are also ISD approaches, which 
differ from one another in how they emphasize certain parts in ISD or how they 
structure the ISD process (cf. Wood-Harper et al. 1982; Bracchi et al. 1984; Barbic 
et al. 1985; Graham 1989; Vessey et al. 1994). The “world views” reflected by 
these approaches seem to be so far from one another that it is difficult to 
distinguish what is common to them. Perhaps one common denominator is a 
conception about ISD as a context where people carry out specific actions, with 
the support of tools, to produce IS models and their implementations. If this is 
the case, we have still a problem: what is a context? 

Context plays an important role in many disciplines, such as in formal 
logic, knowledge representation and reasoning, machine learning, 
computational linguistics, organizational theory, sociology, neurology, etc. Also 
in the IS field there are several approaches that consider the notion of a context 
important (e.g. Searle 1979; Auramäki et al. 1988; Sowa 1984; Engeström 1999; 
Kuutti 1991; Motschnig-Pitrik 1995; Motschnig-Pitrik 1999; Rolland et al. 1995). 
Which view of these disciplines should we prefer, and what are the essential 
ingredients of a context according to such a view?  

Developing information processing in an organizational context is a 
complex endeavour. To manage the complexity, different viewpoints, levels of 
abstraction, and perspectives have been specified and deployed (e.g. Welke 
1977; Olive 1983; Essink 1986; Olle et al. 1988a; Iivari 1989a; Avison et al. 1990; 
Sol 1992; Sowa et al. 1992; van Swede et al. 1993; Freeman et al. 1994; ISO 1996; 
Booch et al. 1999). With a set of well-established perspectives it is easier to 
determine scopes within which development issues are taken into consideration 
in a step-by-step fashion. But which of the defined viewpoints and perspectives 
are beneficial and suitable for the premises and selections we have made 
before?  
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ISD work produces and deploys a large variety of IS models. What is 
actually a model? How is it produced and represented? What kinds of models 
exist and for which kinds of purposes they are suitable? Different kinds of 
conceptions about these issues have been suggested (c.f. Minsky 1965; 
Checkland 1981; Gigch 1991; Wijers 1991; Krogstie 1995; Hirschheim et al. 1995; 
Falkenberg et al. 1998; Ramesh et al. 2001; Rosemann et al. 2002). Models appear 
at several meta levels, and surprisingly, divergent conceptions exists also about 
sets of meta levels (e.g. Bergheim et al. 1989; ISO 1990; Brinkkemper 1990; Gigch 
1991; Wijers 1991; Heym et al. 1992a; Jarke 1992; Harmsen 1997; Falkenberg et al. 
1998; OMG 2002).  

We have raised, up till now, a number of questions to which answers 
should be sought – and found - in order to establish a coherent and consistent 
conceptual foundation. To succeed in this task, still more fundamental issues 
must, however, be considered first. These issues are related to views of and 
conceptions about reality in general: How do we conceive structural and 
behavioral features of reality? How do we present our conceptions, and how do 
we use abstraction mechanisms to derive generic conceptions from instances 
and details? About these fundamentals also there are divergent assumptions 
and suggestions in the literature (cf. Aristotles, Kant, Husserl, Peirce, Ogden & 
Richards, Lyons, Morris). Commitment to certain assumptions and views has a 
substantial effect on what kinds of approaches and viewpoints are applicable in 
considering more IS-specific and ISD-specific issues.  

In conclusion, method engineering may seem to be a well-structured effort 
with a confined scope. In practice, the situation is far from that. Method 
engineering involves, through the ISD method under construction, a huge 
collection of issues, ranging from the nature, structure and contents of an ISD 
method to the fundamentals of reality. With the short review of the literature 
presented above we have shown that there exists a large variety of assumptions 
and viewpoints about almost every single issue. To ensure a unified, coherent 
and consistent conceptual foundation for ME, it is necessary that the questions 
and issues raised above are carefully contemplated and answered, and 
“compatible” conceptual constructs are established and integrated.  

That is what we are going to do in this work. The conceptual foundation is 
presented as an ontological framework, called OntoFrame. In Section 1.3 we 
defined the goals for OntoFrame, requiring that it should be comprehensive, 
contextual, consistent, coherent, and general. Further, we presume that 
OntoFrame is clear, natural, generative, extensible, modular and based on 
sound theories. Finally, we require that OntoFrame has to be applicable for 
three intentions. First, it should offer concepts and constructs for conceiving, 
understanding, structuring and representing phenomena in the concerned sub-
domains (the descriptive intention). Second, it should serve as a conceptual 
foundation for the analysis and comparison of existing artifacts (the analytical 
intention). An artifact here means an ontology, a meta-model, a framework, a 
frame of reference, a technique, a method, etc. in the sub-domains. Third, 
OntoFrame should support the construction of other artifacts, in particular ISD 
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methods and ME methods, by providing a conceptual foundation for the 
artifacts.  

The literature reviews and comparative analyses made in this study show 
that regardless of numerous frameworks, frames of references, meta models, 
etc. suggested in the literature, there is none that would come even close to 
satisfying the stated goals (see the conclusions from the reviews and analyses in 
Sections 2.5, 3.10, 5.1.6, 6.4, 7.3, 8.5, 9.7, 9.8.6, and 12.2). They mostly cover only 
one or two sub-domains, and also in these sub-domains they address only part 
of the essential phenomena.  
 
 
2.2 Theoretical Backgrounds 
 
 
The purpose of this section is to shortly describe those disciplines, on which 
OntoFrame has been established, and derive fundamental views and principles 
of the framework from them. The disciplines are metamodeling and ontology 
engineering. For both of these disciplines we describe main concepts, 
approaches, principles and processes.  
 
Metamodeling 
 
Metamodeling is a discipline that studies models of models, called meta 
models, languages to represent meta models, and procedures to produce meta 
models. Generally speaking, a model is a thing that is used to help or enable the 
understanding, communication, analysis, design and/or implementation of 
some other thing to which the model refers. A representation of a model is 
called a model denotation (cf. Falkenberg et al. 1998, 55). A model denotation is 
presented in some modeling language. A meta model is a specification of the 
abstract syntax of a modeling language (cf. Oei 1995, 113).  Also a meta model is 
represented in some language that is called a meta modeling language or a 
meta language. The abstract syntax of that language is specified by a model 
called a meta meta model.  

Metamodeling is also seen as a process. It takes place on one level of 
abstraction and logic higher than the application modeling process (cf. Gigch 
1991; Tolvanen 1998, 82). It comprises several sub-processes: e.g. abstracting 
from existing models, transforming from another meta model, translating from 
another meta model denotation, revising an existing meta model, and 
integrating other meta models. Metamodeling can be used to compare methods 
(e.g. Hong et al. 1993; Rossi 1996), to support standardization efforts (e.g. Booch 
et al. 1999), and to establish linkages between ISD methods (e.g. Ramackers 
1994; Song 1997; Saeki 1998; Pohl et al. 1999). 

Depending on what is the target of metamodeling, we can distinguish 
between different kinds of meta models: e.g. meta data models, meta process 
models, meta actor models, meta goal models, etc. Respectively, there are 
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processes of meta data modeling, meta process modeling, meta actor modeling, 
and meta goal modeling.  

The first attempts in metamodeling focused on data models (Teichroew et 
al. 1980). Meta models were built on some variants of semantic models (Hull et 
al. 1987), mostly on ER-based models (Sorenson et al. 1988; Welke 1988; 
Smolander 1991; Venable 1993) or NIAM–based models (Bommel et al. 1991; ter 
Hofstede et al. 1992; ter Hofstede et al. 1993a).  Meta data modeling languages 
are based on set-theoretic constructs (Bergsten et al. 1989), predicate logic 
(Brinkkemper 1996; Harmsen 1997), attribute grammar (Katayama 1989), or 
object-oriented constructs (e.g. Object-Z, Saeki et al. 1994). Examples of specific 
meta data modeling languages are ASDM (Heym et al. 1992a), CoCoA (Venable 
1993), GOPRR (Kelly et al. 1996), Telos (Jarke et al. 1990; Nissen et al. 1996), and 
MEL/MDM (Harmsen 1997). More about meta data modeling languages and 
differences between them can be found in Venable (1993), Saeki et al. (1994), 
Harmsen et al. (1996), and Tolvanen (1998, 155).  

In the meta process modeling we can recognize several approaches to 
process modeling (Curtis et al. 1992; McChesney 1995; Heineman et al. 1994): 
e.g. process programming approach, functional approach, plan-based approach, 
Petri-net approach, and system dynamic approach. There are also different 
perspectives into processes (Curtis et al. 1992): functional, behavioral, 
organizational, and informational perspectives. Numerous languages for 
process modeling have been suggested (e.g. Bandinelli et al. 1993; Deiters et al. 
1994; Christie 1993; Shepard et al. 1992; Dutton 1993; Kaiser et al. 1993). These 
are based on e.g. logic based rules, attribute grammars, state transition 
diagrams, Petri nets, etc. (Curtis et al. 1992; Armenise et al. 1993; Finkelstein et al. 
1994; McChesney 1995). Some evaluations of and comparisons between process 
modeling languages are reported e.g. in Söderström et al. (2002).   

Regardless of whether the purpose is to produce a meta data model, a 
meta process model, etc., three metamodeling approaches can be distinguished: 
top-down, bottom-up, and mixed approaches. In the top-down approach, 
concepts and constructs of a meta model are derived from relevant theories 
and/or generic views and assumptions on the relevant domains. The bottom-
up approach focuses on modeling selected models generalizing their concepts 
and constructs. In the mixed approach, both generic views and existing models 
are sources for producing meta models.  

To illustrate a process of metamodeling, we next apply the bottom-up 
approach and the ER model (Chen 1976). The process starts with the selection of 
models for metamodeling and with the decision on the aims of metamodeling. 
The aims can be related to evaluation, comparison, integration, mapping, etc. of 
models. They determine the level of detail, focus and emphasis of 
metamodeling. Second, main concepts in the models are identified and named. 
For example, in the DFD model (Yourdon 1989) the main concepts are ‘process’, 
‘store’ and ‘external’. They are regarded as entity types. Also main relationships 
between the concepts are recognized. In the DFD model, there is only one 
relationship called ‘data flow’ that relates externals, stores, and processes to one 
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another. It is called the relationship type in the ER model. Third, main 
properties identifying or characterizing entity types or relationship types are 
recognized and named.  These properties are attributes. For ‘store’ we can find 
two attributes, ‘identifier’ and ‘name’. Further, roles that entities can play in 
relationships are identified.  In the DFD model there are two roles, ‘input’ and 
‘output’.  Fourth, constraints imposing on the concepts and the relationships are 
defined. In the DFD model there is a constraint that does away with a ‘data 
flow’ to directly relate ‘external’ and ‘store’ to one another. The steps described 
above are performed in an iterative way and in parallel with presenting the 
resulting meta model in a graphical notation. The process also comprises 
evaluation, refinements and restructuring of the meta model. If a target of 
metamodeling is large, like an ISD method, special steps are needed to integrate 
meta models (e.g. Song 1997; Harmsen 1997; Leppänen 2000).  
 
Ontology Engineering  
 
The notion of ontology appears in two meanings in the literature. It means, on 
one hand, a branch of philosophy dating back to 17th century13. In this sense, 
ontology is the study of existence, of all kinds of entities – abstract or concrete – 
that make up the world (Sowa 2000, 51). It concerns “what is out there” (Quine 
1953) and “the basic traits of the world” (Bunge 1974, 38). Ontology engineering 
here means a discipline, which studies ontologies, ontology representation 
languages and procedures for engineering ontologies. On the other hand, the 
notion of ontology is used to refer to an ontology of some application or 
domain. In that sense, an ontology is regarded as “consensual knowledge 
represented in a generic and formal way to be reused and shared across 
applications and by groups of people” (Corcho et al. 2003, 44). Ontologies are 
kinds of frameworks unifying different viewpoints and serving as a basis for 
the communication between people, between people and systems, and between 
systems. Thus they function in a way like a lingua-franga (Chandrasekaran et al. 
1999). Ontology engineering is a process, which aims to capture that consensual 
knowledge.  

We define an ontology to mean an explicit specialization of a 
conceptualization of some part of reality that is of interest (cf. Gruber 1993, 199). 
A specialization can be presented in the form of a vocabulary, a taxonomy, a 
thesaurus, a conceptual framework, and a theory. A vocabulary or a glossary is a 
list of terms that have been enumerated explicitly. Each term has been defined 
or at least characterized properly. A taxonomy or a taxonomic skeleton is a 
classification of terms based on similarities in their meanings. In a taxonomy the 

                                                 
13  Actually, one of the first philosophers having interests in ontological contemplations 

is said to be Heraclitus in the sixth century B.C.. He distinguished, among others, a 
set of top-level ontological categories (Sowa 2000, 56). 
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terms are related with subsumption or generalization relations14. A taxonomy 
mostly takes a form of a tree structure, but it can also have a lattice structure, or 
be in the form of multi inheritance graph. A thesaurus is a networked collection 
of vocabulary terms with associative relationships. A conceptual framework is a 
graph with concepts, relationships and rules for combining concepts (cf. 
Sugumaran et al. 2002, 253). A theory, commonly in an axiomatic form, defines 
concepts, relationships and rules formally with axioms (Guarino et al. 1995). 
Ontologies that are mainly in the form of taxonomies are called lightweight, 
and ontologies that model the domain in a deeper way and provide more 
restrictions on domain semantics are called heavyweight ontologies (Corcho et 
al. 2003, 44). 

Another way of classifying ontologies is based on the level of generality 
(Guarino 1998, 7; van Heijst et al. 1997). Top-level ontologies describe very general 
concepts like space, time, matter, object, event and action, independently of a 
particular problem or domain. Domain ontologies and task ontologies describe, 
respectively, the vocabulary related to a generic domain (like medicine, or 
automobiles) or a generic task or activity (like diagnosing or selling). The 
concepts in those ontologies are specialized from the ones introduced in the 
top-level ontology. Application ontologies describe concepts depending both on a 
particular domain and task, and they are often specializations of both of the 
aforementioned ontologies. The boundaries between the kinds of ontologies are 
vague (van Heijst et al. 1997). 

Further, we can distinguish between a meta ontology and an instance 
ontology. A meta-ontology provides concepts, relationships, and rules to specify 
instance ontologies (cf. Uschold et al. 1996, 15). In other words, a meta-ontology 
specifies semantics of an ontology language. In the simplest case, a meta-
ontology is composed of concepts such as class, entity, and relation15.  

An ontology is represented in a language that can be informal or formal. A 
degree of formality varies from informal definitions of concepts expressed in a 
natural language to definitions stated in a formal language. Uschold et al. (1996) 
distinguish between highly informal, semi-informal, semi-formal, and 
rigorously formal ontologies. A highly informal ontology is loosely expressed in 
a natural language. A semi-informal ontology is expressed in a structured form 
of a natural language. A semi-formal ontology is expressed in an artificial, 
formally defined language. In a rigorously formal ontology the terms are 
meticulously defined with semantics and theorems.   

Formality required from the ontology language is, to a large extent, 
dependent on the degree of automation in the tasks, which the ontology is to 
support. If an ontology is to be a framework for communication among people, 

                                                 
14  In some cases, concepts within a taxonomy may also be related by the whole-part 

and type instance relationships. 
15  The term ’meta-ontology’ is involved by synonym and homonym problems. van 

Heijst et al. (1997), for instance, use the term ‘representation ontology’ to mean meta-
ontology (see also Davies et al. 2003), and Wand (1996, 281) calls any domain-
independent ontology, like the ontology of his own, a meta ontology.  
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the representation of an ontology can be informal. If an ontology is to be used 
by software tools or intelligent agents, the semantics of an ontology must be 
made much more precise. Formal ontology languages include so-called 
traditional ontology languages, such as enriched first-order predicate logic (e.g. 
CycL, KIF, KL-ONE), frame-based languages (e.g. Ontolingua, F-logic, OCM), 
and description logic based languages (e.g. Loom) (Su et al. 2002, 4). In addition, 
there are web standards (e.g. XML, RDF) and web-based ontology languages 
(e.g. OIL, DAML+OIL, OWL, SHOE, XOL). Furthermore, graphical languages 
like CLEO (a graphical language for expressing ontologies (Falbo et al. 1998a)), 
LINGO (Falbo et al. 1998b) and UML (Cranefield et al. 1999; Kitchenham et al. 
1999; Baclawski et al. 2001) have been used to present ontologies. 

In the ontology engineering literature a variety of ontology engineering 
approaches are suggested (Noy et al. 2001, 6; Uschold et al. 1996, 20-22). The 
most common classification of the approaches is: top-down approach, bottom-
up approach, and middle-out (or mixed) approach. A top-down engineering 
process starts with the definition of the most general concepts in the domain 
and continues with subsequent specializations of the concepts. A bottom-up 
engineering process starts with the definition of the most specific concepts, i.e. 
the leaves of the hierarchy, and continues with subsequent abstractions of these 
concepts into more general concepts. A middle-out or mixed engineering process 
is a combination of the two others. According to it, one defines the most 
important concepts first and then generalizes and specializes them 
appropriately.  

Further, a large range of principles, guidelines, and even methods have 
been presented for ontology engineering (e.g. Uschold et al. 1995; Uschold 1996; 
Gruninger et al. 1995; Swartout et al. 1997; Fernandez-Lopez et al. 1999; Staab et 
al. 2001)16. However, none of the methods is fully mature if compared to 
methods in software engineering and knowledge engineering fields (Corcho et 
al. 2003). It is also common that each proposal applies its own approach. 
Nevertheless, we present next an outline of a process, which contains typical 
activities of ontology engineering (cf. Uschold et al. 1996). 

The process starts with deciding why the ontology is wanted, what it will 
be used for and what kind of scope it has. Next, building the ontology is 
started. First, key concepts and relationships in the domain of interest are 
identified and defined (‘capture phase’). Also terms with which to refer to such 
concepts and relationships are determined. Second, concepts and relationships 
as well as constraints related to them are presented in a chosen ontology 
representation language (‘coding phase’). During the capture phase and/or the 
coding phase, possibilities to integrate parts of existing ontologies are 
examined, and if found beneficial, integration is carried out. The ontology 
engineered is evaluated based on defined criteria such as clarity, consistency 
and reusability. The ontology together with assumptions about the main 

                                                 
16  See also: Falbo et al. 1998a; Guarino et al. 2000; Noy et al. 2001; Schuster et al. 2001; 

Zhou et al. 2002; Kayed et al. 2002.  
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concepts is documented. Also the primitives used to express the definitions in 
the ontology (i.e. the meta-ontology) should be recorded.  
 
Conclusions 
 
Our objective is to build a conceptual framework by which knowledge about an 
ISD method and its engineering can be conceived, understood, structured and 
represented. This body of knowledge is related to five sub-domains: IS, ISD, 
ISD method, ME, and ME method. The knowledge should be able to be 
represented with generic concepts and easy-to-read notations in order to 
facilitate its general use.  

Concluded from the descriptions of two disciplines above, we can state 
that both metamodeling and ontology engineering can provide theoretical 
“building blocks” for our framework. Metamodeling creates, extends, modifies, 
and integrates models of models that describe / prescribe particular sub-
domain(s). Ontology engineering in turn collects, organizes and represents 
“consensual” knowledge of the concerned sub-domains. Ontologies can serve 
as unifying frameworks for different viewpoints. Both of these disciplines 
suggest languages to present artifacts, i.e. meta models and ontologies, 
respectively. The languages are specified with meta meta models in meta 
modeling and with meta ontologies in ontology engineering. These two 
disciplines allow a range of formality with which artifacts can be presented.  

For the aforementioned reasons, we deploy concepts, approaches, 
principles and processes of metamodeling and ontology engineering in this 
work. To emphasize the “ontological roots” of our framework, we call it the 
ontological framework. The framework is a kind of “umbrella” comprising a 
generic ontology and a large set of domain-specific ontologies. The generic 
ontology is anchored in the philosophy of science. Most of the domain-specific 
ontologies are rooted on contextual concepts. The ontologies are presented in 
meta models composed of concepts, relationships and constraints.  Some of the 
domain-specific ontologies (e.g. the model level ontology) are directly 
established on main constructs and principles of metamodeling. A process of 
engineering the domain-specific ontologies has been adapted from processes 
used in ontology engineering (see more closely in the next section). In the 
integration of the ontologies principles common in metamodeling are deployed.  
 
 
2.3 Outline of OntoFrame  
 
 
OntoFrame is an ontological framework, comprising a number of component 
ontologies with a multi-dimensional structure. These components range from 
highly generic ontologies to ME-specific ones. In this section we outline the 
framework by describing its sub-domains, structure and representation.  
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2.3.1 Sub-Domains 
 
OntoFrame is a conceptual framework that should provide concepts and 
constructs for conceiving, understanding, structuring, and representing 
phenomena in ME as contexts and/or within contexts. In Section 2.1 we showed 
that the scope of the framework is very large, addressing several sub-domains. 
In this section we introduce the sub-domains by describing how reality is 
conceived through different views in this work. 

We start with the most generic view according to which a human being 
lives in the ‘physical’ reality (the objective reality) and he/she has personal 
conceptions (the subjective reality) about it. He/She becomes aware of 
phenomena in reality through perceiving and interacting with it17. Interaction 
changes the subjective reality and often the objective reality as well. From this 
viewpoint, the reality “appears” to be single phenomena that are here called 
things (Bunge 1977). Taking a more specific viewpoint, things can be seen to be 
related to one another, thus constituting structures. 

A still more specific view of reality is obtained when considering how 
human beings become to conceive reality and get their conceptions represented. 
This is facilitated by the use of the concepts of semiotics (Ogden et al. 1923), as 
well as of the notions of extension and intension. Furthermore, if there is a need 
to make sense of signs and their relations and meanings, basic concepts 
pertaining to the syntax and semantics of a language are taken into the use 
(Lyons 1977). Up till now, no view has been introduced to aid the recognition of 
changes in reality. For this purpose, the concepts of state and transition, known 
in systems theories (e.g. Klir 1969), can be used. Human beings have excellent 
abilities to build and maintain complex concept structures, infer from them and 
make abstractions from them. To understand abstractions and to support 
human beings in that requires a special view with abstraction concepts.  

To conceive and make sense in more depth about how things are related 
to one another in reality and what are the meanings of those relationships, 
things must be viewed within meaningful contexts. Hence, it is necessary to 
have the notion of a context that clearly distinguishes the essential constituents 
of the context. At this stage reality manifests itself so complex and multifaceted 
that it is also necessary to have means to define and apply well-structured 
perspectives. It also becomes evident that phenomena are related to information 
processing at different layers and conceptualized by concepts at different meta 
levels. Hence, we need views that help us distinguish and structure processing 
layers and meta levels. 

A still more specific view is needed if focusing on phenomena related to 
information systems and their development. These are special kinds of contexts, 
with particular kinds of purposes, actors, actions and outcomes. ISD methods, 
in turn, are prescriptions for ISD contexts. To conceive, understand, structure 
and represent features of ISD methods we need still another view, which offers 
                                                 
17  Note that other human beings are part of the ‘physical reality’ and interacting with 

that also comprises the interplay with other human beings. 
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specific concepts and constructs related to e.g. the nature and structure of an 
ISD method. Also method engineering is a special kind of context. To make 
sense of phenomena related to that we need specific concepts and constructs.   

In conclusion, conceiving reality in more depth necessitates the 
availability and use of more specific views. Views enable the recognition and 
representation of phenomena in a number of sub-domains. Implied from the 
above, we can distinguish between five sub-domains: IS, ISD, ISD method, ME 
and ME method. In addition, there is the generic sub-domain underlying and 
integrating the other sub-domains.  
 
2.3.2 Overall Structure 
 
OntoFrame is composed of four main parts that are: the core ontology, the 
contextual ontologies, the layer-based ontologies, and the method ontologies.  
Decomposition of the framework into the main parts has been made according 
to specificity of the ontologies (Guarino 1998, 7). Each main part is further 
divided into several sub-parts that are called component ontologies. The overall 
structure of the framework is presented in Figure 6. Arrows between the 
rectangles representing the main parts denote from which more specific 
concepts have been derived. In the following, we describe each of the main 
parts and their component ontologies in terms of their purpose, domain, and 
theoretical foundation (see Tables 1-4).   
 

Core ontology
- Generic ontology
- Semiotic ontology
- Intension/extension
  ontology
- Language ontology
- State transition
  ontology
- UoD ontology
- Abstraction ontology

Contextual
ontologies

- Context ontology
- Layer ontology
- Perspective ontology
- Model level ontology

Method
ontologies

- ISD method ontology
- ME method ontology

Layer-based
ontologies

- IS ontology
- ISD ontology
- ME ontology

 
 
FIGURE 6 An overall structure of the ontological framework 
 
The purpose of the core ontology is to provide the key concepts and constructs 
for conceiving, understanding, structuring and representing fundamentals of 
reality. It comprises seven component ontologies, each of which has its own 
purpose and role in the core ontology. The component ontologies are: the 
generic ontology, the semiotic ontology, the intension / extension ontology, the 
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language ontology, the state transition ontology, the UoD ontology, and the 
abstraction ontology (Table 1). 
 
TABLE 1 Core ontology 
 

Ontology Purpose Domain Theories 
Generic ontology To provide the most 

generic concepts from 
which all the other 
concepts can be derived  

Reality Philosophy of 
science 

Semiotic ontology To provide concepts for 
the recognition of 
semiotic phenomena  

Linguistic, 
conceptual and 
physical reality 

Semiotics 

Intension/extension 
ontology 

To provide concepts for 
categorizing concepts 
and defining their 
semantic meanings 

Conceptual and 
physical reality 

Philosophy of 
science 

Language ontology To provide concepts for 
defining the syntax and 
semantics of a language 

Language  Linguistics 

State transition 
ontology 

To provide concepts for 
the recognition of 
dynamic phenomena 

Static and 
dynamic 
phenomena 

Systems theory 

UoD ontology To provide consolidated 
concepts for conceiving 
from a selected 
viewpoint 

Subjective view Systems theory, 
Philosophy of 
science 

Abstraction 
ontology 

To provide concepts for 
abstraction  

Abstraction Philosophy of 
science, 
Abstraction theory

 
The generic ontology provides the most generic concepts from which all other 
concepts can be derived by instantiation and/or specialization. This ontology 
corresponds to the top ontology in Guarino (1998). The most elementary 
concept is ‘thing’, which means any phenomenon in the ‘objective’ or subjective 
reality. The core ontology has roots in philosophy of science, especially in 
Bunge (1977). The semiotic ontology defines concepts that are needed to 
recognize semiotic phenomena. The main concepts, adopted from semiotics 
(Ogden et al. 1923), are ‘concept’, ‘sign’, and ‘referent’. The intension / extension 
ontology serves a conceptual mechanism to specialize the notion of a concept 
and define its semantic meanings. The notions of intension and extension 
enable to differentiate between e.g. ‘basic concept’, ‘derived concept’, ‘abstract 
concept’, ‘concrete concept’, ‘instance concept’ and ‘type concept’. 
Considerations of the intension / extension ontology are mainly based on the 
philosophical basis by Hautamäki (1986).  

The language ontology provides concepts for defining the syntax and 
semantics of a language. Based on linguistics (e.g. Morris 1938), it contains 
concepts such as ‘language’, ‘alphabet’, ‘symbol’, and ‘expression’. The state 
transition ontology is composed of concepts and constructs for the recognition of 
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dynamic phenomena in reality in terms of states, state transitions, and events. 
The view of the ontology is based on systems theory (e.g. Klir 1969). The 
universe of discourse ontology, shortly the UoD ontology, is composed of 
consolidated concepts through which reality can be conceived as a totality 
determined by a selected viewpoint.  These concepts are ‘UoD state’, ‘UoD 
behavior’ and ‘UoD evolution’. On a general level, this ontology is based on 
systems theory and philosophy of science. The abstraction ontology serves 
concepts and constructs to abstraction by classification, generalization, 
aggregation, and grouping. Rooted on the intension / extension ontology, it 
also distinguishes between the first order abstraction and the second order 
abstraction (or predicate abstraction). It is based on the philosophy of science 
and abstraction theories.  

The contextual ontologies help us recognize, understand and model 
phenomena in reality as contexts and within contexts. Among the contextual 
ontologies, there are four component ontologies. The ontologies are: the context 
ontology, the layer ontology, the perspective ontology, and the model level 
ontology (Table 2). The component ontologies are orthogonal to one another. 
 
TABLE 2   Contextual ontologies 
 

Ontology  Purpose Domain Theories 
Context 
ontology 

To provide concepts to 
conceive phenomena as 
contexts and within 
contexts 

Social and human 
contexts 

Pragmatics, 
Theories of human 
and social action  

Layer ontology To provide concepts to 
structure and relate 
information processing 
and its development  

Information 
processing and its 
development 

Systems theory,  
Information 
systems science 

Perspective 
ontology 

To provide concepts for 
distinguishing and 
applying perspectives 

Information 
processing in the 
organizational 
context 

Systems theory, 
Semantics, 
Abstraction theory

Model level 
ontology 

To provide concepts for 
the creation, 
specification and 
presentation of models 

Modeling, 
modeled, and 
model utilization 
contexts 

Linguistics, 
Philosophy of 
science 

 
The most essential ontology among the contextual ontologies is the context 
ontology. It recognizes seven contextual domains, called the purpose domain, 
the actor domain, the action domain, the object domain, the facility domain, the 
location domain, and the time domain. For each contextual domain, essential 
concepts and constructs are provided. The ontology is rooted on semantics, 
pragmatics and some theories of human and social action (Leont’ev 1978; 
Vygotsky 1978; Engeström 1987; Kuutti 1991). The layer ontology helps us 
structure and relate, on a general level, phenomena of information processing 
and its development at several layers. The layers are: information system (IS), 
information systems development (ISD), method engineering (ME), and 
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research work (RW). This ontology is based on systems theory and information 
systems science. The perspective ontology provides a set of well-defined 
perspectives to focus and structure the perceptions of contextual phenomena. 
The perspectives are: systelogical, infological, conceptual, datalogical, and 
physical perspectives. The perspective ontology is based on systems theory, 
semantics, and abstraction theory. With the model level ontology, one is able to 
create, specify and present models, in different modes, about reality. The kernel 
in this ontology is a hierarchy composed of instance  models, type models, meta 
models, meta meta models, etc. The ontology is based on linguistics and 
philosophy of science.  

The third main part of OntoFrame is called the layer-based ontologies. While 
the layer ontology gives the basic structures for distinguishing between the 
processing layers and relating them to one another and the context ontology 
provides the generic concepts for recognizing contextual phenomena in any 
context, the layer-based ontologies elaborate the views on the IS, ISD and ME 
domains. These ontologies are: the IS ontology, the ISD ontology and the ME 
ontology (Table 3). 
 
TABLE 3   Layer-based ontologies 
 

Ontology Purpose Domain Theories 
IS ontology To provide concepts to 

conceiving, structuring 
and representing 
contextual phenomena 
in the IS 

IS context IS theories 

ISD ontology To provide concepts to 
conceiving, structuring 
and representing 
contextual phenomena 
in ISD  

ISD context IS & ISD theories 

ME ontology To provide concepts to 
conceiving, structuring 
and representing 
contextual phenomena 
in ME 

ME context  

 
The IS ontology helps us conceive, understand, structure, and represent 
phenomena in information-intensive contexts. Besides the information system, 
the ontology recognizes systems that are related to the IS (i.e. the object system, 
the utilizing system, and the controlled system). The ISD ontology provides 
concepts for the perception, understanding, structuring and representing of 
contextual phenomena in information processing development. The concepts 
are categorized along the perspective ontology. The ISD ontology has been built 
by selecting, abstracting, modifying and integrating concepts from multiple 
theories in the IS and ISD domains. Respectively, the ME ontology provides 
concepts to the perception, understanding, structuring and representing of 
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contextual phenomena in method engineering. These concepts are also 
categorized along the perspectives. The ontology has been built on the basis 
provided by rather general and insufficient ME literature. 

The fourth main part of the framework is called the method ontologies 
(Table 4). It provides concepts and constructs by which one can conceive, 
understand, structure, and represent the nature, structure and contents of a 
method. Instead of defining a generic method ontology, we define the ISD 
ontology and the ME ontology. This is done for two reasons. First, we are 
particularly interested in methods for development of information processing at 
various layers, and not in methods for product design, manufacturing, or the 
like.  Second, ME is commonly seen to be analogous to ISD (Olle et al. 1988a; 
Kumar et al. 1992; Tolvanen 1998), and thus deriving the ME method ontology 
from the ISD method ontology is assumed to be a straightforward effort. In 
building the ISD and ME method ontologies, we have deployed the contextual 
ontologies and concepts from the ISD and ME domains, respectively.  
 
TABLE 4   Method ontologies 
 

Ontology Purpose Domain Theories 
ISD method 
ontology 

To provide concepts for 
conceiving, under-standing 
and representing of the 
nature, structure and 
contents of an ISD method 

ISD method IS & ISD theories 

ME method 
ontology 

To provide concepts for 
conceiving, under-standing 
and representing of the 
nature, structure and 
contents of an ME method 

ME method  

 
To summarize, the rationale to the decomposition of the ontological framework 
into the main parts and further into component ontologies is based on types of 
phenomena that are seen relevant to conceive and structure separately. 
According to the most generic view, reality is seen as being composed of things. 
This view is gradually specialized by applying several theories: philosophy of 
science, semiotics, semantics, pragmatics, and theories of human and social 
action. Finally, the views are “contextualized” into the domains of information 
systems, information system development and method engineering.  

The modular structure of the framework benefits the building and use of 
OntoFrame in many ways. It helps us manage the complexity inherently 
resulting from a myriad of concepts and constructs. As seen from the above, 
there are multiple “dimensions” within the framework along which the 
concepts are situated. Without this modular structure it would be almost 
impossible to guarantee the coherence and consistence of the concepts and 
constructs. When applying the framework, the modular structure also guides 
the user to select the component ontology that is the most useful to his/her 
problem at hand.   
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2.3.3 Presentation 
 
There are four degrees of formality by which the ontologies can be presented: 
highly informal, semi-informal, semi-formal and rigorously formal (Uschold et 
al. 1996). OntoFrame is mainly aimed at a means for the perception and 
communication between human beings. It is not aimed at the communication 
between people and computers, neither at the interaction between computers. 
On the other hand, the framework comprises a very large set of concepts and 
constructs, and most of them are highly abstract. For these reasons it is 
important to present the framework in a concise but understandable form. We 
have decided to deploy two forms of representation: semi-formal and highly 
informal. The semi-formal form is used to give an overview of the framework 
and facilitate communication between human beings with different 
backgrounds. This form is also used to specify constraints imposing the 
concepts and relationships. From a variety of semi-formal languages we have 
chosen a graphical language (see arguments by Guizzardi et al. 2001a,   2). Due 
to the inability of a graphical language to express details and deep meanings of 
things we also use a natural language to give a precise definition for each 
concept and construct. The definitions are embedded in the text and enclosed in 
Appendix 1.   

There are many options for a graphical language. The first choice could 
have been made among special ontology representation languages, such as 
CLEO (a Graphical Language for Expressing Ontologies, Falbo et al. 1998a), 
LINGO (Falbo et al. 1998b), DAML+OIL (McGuinness et al. 2002) and OWL18. 
Most of these languages are designed to express deep generalization or 
subsuming hierarchies of concepts that are typical for ontologies built in 
artificial intelligence. The second choice could have been made among 
“traditional” graphical notations used in conceptual modeling, such as e.g. the 
ER notation (Chen 1976), the EER notation (e.g. Elmasri et. al. 2000), the NIAM 
notation (Nijssen et al. 1989), the GOPRR notation (Kelly et al. 1996), and the 
conceptual graph language (Sowa 2000). These notations have been designed to 
express a large range of relationship types, not only the generalization 
relationships. In addition, in these it is possible to include roles and multiplicity 
constraints in the graphical representations.   

We, however, decided to select the UML language. UML (Unified 
Modeling Language) is a graphical language for visual object modeling. It has 
been standardized by OMG (Object Management Group) first in 1998, and the 
latest standardized version, UML 2.0, is from 2003 (OMG 2003). There are many 
reasons for this selection (cf. Kogut et al. 2002). UML has a very large and 
rapidly expanding user community, which guarantees that OntoFrame is easier 
to understand than if we represented it in some ontology representation 
language or in a traditional ER-like notation. UML has an intrinsic mechanism 
for defining extensions for specific domains, like for ontology modeling. The 
UML is supported by widely adopted CASE tools, which are more accessible 
                                                 
18  http://www.w3.org/TR/2003/PR-owl-guide-20031215/ . 
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than current ontology tools such as Ontolingua19 and Protégé20, which require 
expertise in knowledge representation. Further, some research projects have 
also applied UML for ontology representation (e.g. Cranefield et al. 1999;  
Bergenti et al. 2000; Wang et al. 2001; Baclawski et al. 2002). 

UML defines several types of diagrams that can be used to model static 
and dynamic features of a system (Booch et al. 1999). Because our framework is 
static, we apply the notation of the class diagram. The notation is very 
expressive. Although it is based on few key concepts (object class, association, 
role), it contains a large variety of specialized constructs, e.g. generalization, 
aggregation, and composition relationships. Constraints related to associations 
can be presented by multiplicities (1, 0..1, * , 1..*). If necessary, the special 
constraint expression language, called OCL (Object Constraint Language), can 
be used to formulate well-formed logic-based expressions 

The class diagram contains many concepts that are not needed in the 
presentation of OntoFrame (e.g. class association, dependency association, 
operation/method etc.). Therefore, we separate a subset of the concepts of the 
class diagram, like OMG has done in defining the MOF (Meta Object Facility) 
model (OMG 2002). The MOF model is aimed at modeling the UML language 
itself, CWM (Common Warehouse Metamodel), and CCM (CORBA Component 
Model)21. Even from the set of the concepts and constructs of the MOF model 
we exclude some concepts, such as attribute, as unnecessary for our purposes. 
Our UML-based language for ontology representation is specified in Appendix 
2. 

An ontology representation language is a meta-ontology (Uschold et al. 
1996, 15). By selecting the subset of UML as our graphical notation does not 
mean that we adopt the corresponding concepts as the concepts of our meta-
ontology. As said above, our meta-ontology is the generic ontology, which is 
based on the notions such as ‘thing’ and ‘relationship’.  We only use UML as the 
notation and do not commit to its concepts.  

In addition to constraints visible in the diagrams of the meta models, we 
define axioms to make some constraints within the component ontologies in the 
core ontology more explicit. Axioms are presented in the first-order predicate 
logic.  
 
 
2.4 Approach and Process of Engineering OntoFrame  
 
 
In this section we first describe what kinds of approaches and strategies to 
ontology engineering we have applied in building OntoFrame and why. 
Second, we describe the process by which we have engineered the component 
ontologies.  
                                                 
19  http://www.ksl.stanfrod.edu/sns.shtml 
20  http://www.smi.stanford.edu/projects/protégé 
21  www.dstc.edu.au/Research/Projects/MOF/Tutorial.html 
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Ontology engineering comprises categorizing, naming and relating things 
in an explicit way. There are two sources of ontological categories (Sowa 2000, 
51): observation and reasoning. Observation provides knowledge of the 
physical world, and reasoning makes sense of observation by generating a 
framework of abstraction.  This work is not based on observation of the 
physical world. Instead, we have extensively utilized and reasoned from the 
literature on the relevant sub-domains. 

We distinguish between two approaches to the utilization of literature in 
ontology engineering. In the inductive approach, source material is collected from 
individual instance-level artifacts, i.e. ontologies, frameworks, and methods. A 
more generic framework is then abstracted from these artifacts. In the deductive 
approach some universal-like theoretic constructs are first selected from the 
literature and then used as underlying structures for a framework. We have 
applied both of these approaches. First, in building the core ontology we have 
made a thorough analysis of generic frameworks and ontologies (e.g. Bunge 
1977; Wand 1988a; Wand et al. 1990a; Falkenberg et al. 1998) and derived by 
selection, integration, and customization our ontology from them. In contrast, 
in engineering the context ontology we have first searched for disciplines and 
theories (e.g. pragmatics (Levinson 1983) and theories of human and social 
action (e.g. Leont’ev 1978; Engeström 1987)) that address social contexts and 
derived from them the fundamental categorization of concepts into seven 
contextual domains. After that we have enriched the contents and structure of 
each domain deriving from existing artifacts. The elementary structures in the 
perspective ontology, the model level ontology and the layer ontology have also 
been derived from the relevant theories. For the rest of OntoFrame we have 
applied the deductive approach to derive lower-level ontologies from higher-
level ontologies. In this process we have also heavily utilized the existing 
literature to complete and customize the derived concepts and constructs to fit 
in the concerned sub-domains.  

We can find two pure representatives of the aforementioned approaches 
in the literature. Harmsen (1997) has built his MDM model (Methodology Data 
Model) by deriving from existing classifications and frameworks. The use of the 
inductive approach has resulted in a large set of IS-specific and ISD-specific 
concepts that are justified through their source artifacts.  A drawback of this 
approach is that it does not encourage bringing forward new and innovative 
insights. In the BWW model22 (Wand et al. 1990a; Wand et al. 1995b) for 
modeling information systems, fundamental concepts and constructs have been 
adapted from Bunge’s ontology (Bunge 1977). By the use of the deductive 
approach the model pursues “universality” of concepts and constructs. The 
rationale behind the selection of Bunge’s ontology has been (cf. Wand et al. 
1995a,  287): An IS is a representation of another (“real-world”) system. Because 
ontology is a branch of philosophy dealing with modeling reality, it is suitable 
to model information systems concepts. However, there is always a risk in 
selecting theories that have not originally been crafted for the field concerned. 
                                                 
22  Here we consider the representation model only.  
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As Wand, Monarchi, Parson and Woo (1995) present, Bunge’s “ontology is not 
generally accepted ontology, it seems to assume an ‘objective reality’, and it 
does not deal with the organisational and behavioural aspects of IS”. Green and 
Rosemann (2000, 82) raise a question about whether the BWW model “is over-
engineered”, that is to say, whether it includes constructs that are not relevant. 
Further, Wand and Weber (1993) and Weber (1997) have recognized problems 
in understandability, comparability, and applicability of the BWW 
representation model constructs.  

We have tried to overcome the aforementioned kinds of problems by 
applying both of the approaches. Theory-based constructs give underlying 
structures that are “tested”, enhanced and elaborated by the inductive 
derivation from current artifacts. The use of theories advances not only the 
soundness of the framework but also innovations.  

Another way to characterize the process of ontology engineering is to use 
the categorization of the approaches into top-down, bottom-up and mixed 
approaches (Uschold et al. 1996; Noy et al. 2001, 6). Our process has mainly 
followed the top-down approach. The process can be divided into four stages:  
(1) building the core ontology, (2) deriving the contextual ontologies, (3) 
deriving the layer-based ontologies, and (4) deriving the method ontologies (see 
Figure 6). The first versions of the abstraction ontology were made based on 
some preliminary assumptions and constructs within the generic, semiotic, and 
intension/extension ontologies (Leppänen 1984b). The process to define 
concepts and constructs was iterated and extended to cover the whole core 
ontology. Next, a comprehensive search for theories that address the notion of a 
context with the purpose of explicating the meaning of a thing was carried out. 
As a result the fundamental categorization of contextual domains was specified 
and later enhanced with contextual concepts and constructs integrating and 
adapting existing artifacts. Also some refinements in the core ontology were 
made at this stage. Third, the concepts and constructs of the ISD and ME 
domains were defined and structured to establish the ISD and ME ontologies, 
respectively. Finally, the method ontologies (the ISD method ontology and the 
ME method ontology) were defined based on the “lower” level ontologies.  

The main strategies for ontology engineering are: (a) creation “from 
scratch”, (b) adaptation of existing ontologies, and (c) integration of existing 
ontologies, or parts thereof. The ontology engineering literature most 
commonly applies the first strategy. Due to our source material and the 
multiplicity of sub-domains addressed in our work, we preferred to apply the 
integration strategy whenever it was possible. In this way we could import 
existing knowledge from sub-domains in which views and concepts are more 
stabilized and fit the overall premises. Adaptation was carried out when 
needed. 

In line with aforementioned approaches and strategies we have specified a 
procedure of ontology engineering, which we have used in engineering each of 
the component ontologies in OntoFrame. The procedure is composed of the 
following steps: 
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• Determine the purpose and domain of the ontology. 
 Decide for what purposes the ontology is to be used and what is the 

domain the ontology should address. 
• Consider reusing existing artifacts. 
 Review existing literature to find parts in ontologies for exploitation, 

preferably through integration and/or adaptation. Consideration of their 
usefulness is based on their fit in terms of purpose and domain. 

• Conceptualization. 
 Based on the review and analysis of the existing literature, identify key 

concepts and relationships of the ontology. Decide on terms for concepts 
and relationships and resolve possible synonym and homonym problems. 
Formulate definitions for the concepts.  If some part can be extracted from 
existing ontologies, carry out actions to integrate that part to the body of 
the framework.  

• Formalization. 
 Present the concepts and relationships as well as constraints in the 

graphical form in UML. Sophisticated constraints are presented with 
axioms in the first-order predicate logic.   

• Evaluation. 
 Evaluate the ontology with a set of predefined criteria (i.e. clarity, 

consistency, coherence, extensibility).  
• Documentation. 
 Report on source materials used in the reviews as well as on decisions, 

with argumentations, made in the identification, selection and definition 
of concepts and constructs in the ontology.  

 
For the whole framework, the description of the purposes and sub-domains 
given in Section 2.3.1 corresponds to the outcome of the first step. For each 
component ontology, the purposes and domains are shortly mentioned in 
Section 2.3.2. More detailed discussions of them are given for each component 
ontology in next chapters.  
 
 
2.5 Comparative Review   
 
 
The purpose of this section is to briefly describe relevant models, meta-models, 
and frameworks, called artifacts in short, and compare them with OntoFrame. 
First, we define the criteria for the selection of artifacts into our review and 
specify the issues to be considered. Then we report on the results of the review 
carried out at two levels of detail.  The purpose of the review is to portray a 
general picture of the related work. This picture will be sharpened in next 
chapters where comparative analyses will be carried out in relation to specific 
component ontologies.  
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The literature suggests hundreds of frameworks, meta models, frames of 
reference and ontologies concerning IS, ISD, ISD methods, and/or ME.  Merely 
for the assessment and comparison of ISD methods there are dozens of artifacts. 
Many of them are not ontological. They may just provide a list of features for 
characterizing ISD methods, or bring forward a set of taxonomies for the 
recognition and definition of approaches and viewpoints. To be ontological 
means that an artifact is composed of well-defined concepts and constructs 
addressing essential features of specific sub-domains.  

We apply four criteria in the selection of artifacts for our review. The 
criteria are: purpose, coverage, familiarity, and specificity. Purpose means a 
reason for which an artifact has been developed. The purpose of an artifact 
must match with at least one of the intentions of OntoFrame (i.e. descriptive, 
analytical, and constructive intentions). Coverage means the sub-domain(s) that 
an artifact covers. The minimum requirement for coverage is that the concerned 
sub-domains of the artifact must belong to the set of sub-domains of our 
framework. In addition, we prefer artifacts with a large scope in this sense. 
Familiarity means that an artifact is well-known, i.e. published in a recognized 
journal or in the proceeding of a recognized conference. Specificity means that 
concepts and constructs within an artifact are defined in a specific way, and 
preferably supported by formal or semi-formal (graphical diagrams) 
representations.  This criterion excludes those artifacts that only contain lists of 
features (e.g. Brandt 1983; Maddison et al. 1984). The use of the criteria led to the 
selection of 15 artifacts. Among them there are three models, nine frameworks 
and four meta models23. 

The comparative review is carried out in two parts. In the first part for 
each artifact, name, purpose, sub-domains and representation form are found 
out. Purpose of an artifact can be e.g. classification, categorization, analysis, 
comparison, evaluation, selection, integration, construction, etc. Sub-domain 
encompasses issues referred to by an artifact. It can be BS (business system), IS, 
ISD, ISD method, ME, and/or ME method. A business system means a system 
that utilizes the IS. Representation form means a way in which the concepts and 
constructs of an artifact are represented. Alternative forms are e.g. defined in a 
natural language,  presented in a graphical notion,  specified by axioms, etc. 
The summary of the first part of the review is presented in Table 5 (in the 
alphabetic order of the name of the first author or editor).  

The fifteen artifacts can be classified into four groups according to the sub-
domains they primarily address. The groups are: (1) comprehensive artifacts, 
(2) BS / IS domain-based artifacts, (3) ISD domain-based / ISD method-based 
artifacts, and (4) ME domain-based artifacts. In the following we shortly 
describe and analyze the artifacts within each group. 

There are only two artifacts that can be considered comprehensive. They 
are the MDM (the Methodology Data Model) by Harmsen (1997) and the Frisco 
framework by Falkenberg et al. (1998). The MDM  contains concepts referring to 
                                                 
23  One artifact (Heym et al. 1992a; Heym et al. 1992b) is composed of a framework and a 

model.  
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TABLE 5   Names, purposes, sub-domains and representation forms of the reviewed 
artifacts 

 
Nr. Name/ 

Reference 
Purpose Sub-

domain  
Representation form 

[1] MADIS 
framework 
(Essink 1986, 
Essink 1988) 

“aimed at providing 
capability for matching 
available methods and 
techniques to particular 
problem classes”.   
..“aimed at providing 
means to integrate 
elements of different 
methods” (Essink 1988, 
354) 

IS, ISD Definitions in English for 
some concepts. 
Concept classification in 
the matrix form. 

[2] Frisco-
framework 
(Falkenberg et 
al. 1998) 

“To provide an ordering  
and transformation 
framework allowing to 
relate many different IS 
modeling approaches to 
each other” 
(ibid p. 1) 

IS Definitions in English 
and in the first order 
predicate logic.  

[3] Organizational 
metamodel 
(Freeman et al. 
1994) 

“to represent all aspects 
of an information system, 
necessary for system 
understanding and 
software maintenance at 
four levels of abstraction” 
(ibid p. 283) 

IS Definitions in English. 
The meta-model in an 
extended ER diagram 
with some additional 
notational devices (no 
cardinalities). 

[4] Process meta-
model  
(Grosz et al. 
1997) 

“an overview of the 
process theory for 
modeling and 
engineering the RE 
process” (ibid p. 115) 

ISD, ME Definitions in English. A 
process meta-model in an 
ER-like notation. 

[5] MDM 
(Methodology 
Data Model) 
(Harmsen 
1997) 

“To describe parts of ISD 
methods, thus 
supporting method 
engineering”  
(Harmsen et al. 1996, 218) 

IS, ISD, 
ISD 
method 
ME 

Definitions in English, 
supported with the use of 
first order predicate 
calculus, extended with 
functions and operators. 

[6] Framework 
and ASDM (a 
Semantic Data 
Model) 
(Heym et al. 
1992a, 1992b) 

a framework for 
describing ISD, and a 
semantic data model 
(ASDM) for describing 
ISD methods (Heym et al. 
1992a,   215-16) 

ISD, ISD 
method 

Definitions in English. 
Semantic data model in a 
graphical notation 
(Lindtner 1992).  

(continues) 
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TABLE  5  (continues) 
 

Nr Name/ 
Reference 

Purpose Sub-
domain  

Representation 
form 

[7] Conceptual 
framework 
(Iivari 1989a) 

to facilitate “the systematic 
recognition, comparison and 
synthesis of different 
perspectives on the concept 
of an information system”  
(ibid p. 323) 

BS, IS Definitions in 
English, the 
framework in the 
OS (object system) 
graphs (Iivari et al. 
1983).  

[8] Hierarchical 
spiral 
framework 
(Iivari 1990b) 

”a hierarchical spiral 
framework for IS and SW 
development including 
evolution dynamics, main-
phase dynamics, learning 
dynamics related to each 
other” (ibid p. 451) 

ISD Conceptual 
structures of ISD 
actions defined in 
English and partly 
described with 
diagrams and in a 
formal syntax. 

[9] Framework for 
understanding 
(Olle et al. 
1988a) 

“a framework for tacking 
systems planning, analysis 
and design, into which many 
existing methodologies can 
be fitted” (ibid p. vi) 

BS, IS Definitions in 
English. 
The framework in 
data structure 
diagrams. 

[10] Decision-
oriented meta-
model 
(Gupta et al. 
2001) 

a decision-oriented meta-
model to be used for 
instantiating a method 
representation 

ISD, ISD 
method 

Definitions in 
English. Essential 
concepts and 
relationships in ER-
like graphic 
diagrams; in 
addition a formal 
language (MRSL).  

[11] Meta-model 
(Saeki et al. 
1993) 

“a meta-model for 
representing software 
specification and design 
methods” (ibid. p. 149) 

ISD Definitions in 
English. The meta-
model in an ER-like  
notation. 

[12] Framework 
(Song et al. 
1992) 

“A framework for aiding the 
understanding and handling 
the complexity of methods 
integration and thus making 
integration more systematic” 
(ibid. p. 116). 

ISD, ISD 
method 

Definitions in 
English, a 
schematic ER 
diagram for ISD 
method 
components. 

[13] ISA framework 
(Sowa et al. 
1992) 

to provide “a taxonomy for 
relating the concepts that 
describe the real world to the 
systems that describe an 
information system and its 
implementation” (ibid p. 590)

BS, IS Concepts partly 
defined in English. 
The framework 
partly presented in 
an  ”ER style” 
graph. 

      (continues) 
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TABLE  5  (continues) 
 

Nr Name/ 
Reference 

Purpose Sub-
domain  

Representation form 

[14] Framework 
(van Swede et 
al. 1993) 

“for classifying ISD 
modelling techniques, to 
assess the modelling 
capacity of development 
methods, and as a 
checklist for project 
leaders to construct 
project scenarios” (ibid p. 
546) 

IS Definitions in English 
for most of the 
concepts, grouped by 
perspectives. 

[15] BWW model 
(Wand 1988a;  
Wand et al. 
1989) 

“is aimed at to be used as 
an ontology to define the 
concepts that should be 
represented by a 
modelling language, that 
is the semantics of the 
language” (Wand et al. 
1995a,  287) 
 

IS Original definitions of 
concepts in English 
(Wand 1988a), later 
partly formalized with 
a mathematic notation 
(Wand et al. 1990a), 
and presented in an 
ER-like notation 
(Rosemann et al. 2002). 

 
IS, ISD and ISD method and, to some extent, to ME. The Frisco framework 
focuses on the IS domain, but because it explicitly defines a very large set of 
concepts and constructs within it, thus covering several component ontologies 
within our framework, we regard it as a comprehensive artifact. 

The BS / IS domain-based artifacts (Essink 1986; Essink 1988; Freeman et 
al. 1994; Iivari 1989a; Olle et al. 1988a; Sowa et al. 1992; van Swede et al. 1993; 
Wand et al. 1995a) contain concepts and constructs that facilitate the 
recognition, understanding and representation of structural and dynamic 
features of BS’s and IS’s. All but Wand et al. (1995a) also provide a set of 
perspectives to classify and structure the features according to pre-defined 
viewpoints. The artifacts in this group aim at e.g. “providing means to integrate 
elements of different methods” (Essink 1988, 354), “the systematic recognition, 
comparison and synthesis of different perspectives on the IS” (Iivari 1989a,  
323), “relating the concepts that describe the real world to the systems that 
describe an IS and its implementation” (Sowa et al. 1992, 590), and  “classifying 
ISD modeling techniques, assessing the modeling capacity of development 
methods and enabling a checklist for project leaders to construct project 
scenarios” (van Swede et al. 1993, 546).  

The third group is composed of those artifacts, which provide concepts 
and constructs for the ISD domain (Essink 1988; Iivari 1990b; Grosz et al. 1997; 
Saeki et al. 1993) and / or for the ISD method (Heym et al. 1992a; Gupta  et al. 
2001; Song et al. 1992). For the ISD domain, Iivari (1990b) and Grosz et al. (1997) 
apply mainly a process view, whereas Heym et al. (1992a), Gupta et al. (2001), 
and Song et al. (1992) take a broader perspective on the ISD context. The 
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purpose of the artifacts in this group is mostly to describe, assess, compare and 
integrate ISD methods or techniques.  

In the literature, there are very few artifacts that describe structural and 
dynamic features of the ME domain. Among the artifacts reviewed here, such 
artifacts are those developed by Grosz et al. (1997) and Harmsen (1997).  Grosz 
et al. (1997) apply a process meta-model for structuring ”meta-way-of-working” 
in the meta-processes of the ME. Harmsen (1997) presents some conceptual 
structures that belong to the ME domain.  

In all the artifacts the concepts are defined in English. In addition, some 
artifacts are represented in a graphical notion, based on an ER-like model 
(Freeman et al. 1994; Grosz et al. 1997; Gupta et al. 2001; Saeki et al. 1993; Song et 
al. 1992; Sowa et al. 1992) or on a more specific model (Heym et al. 1992a; Iivari 
et al. 1989; Iivari et al. 1990b; Olle et al. 1988a). Some artifacts also use more 
formal forms, such as first-order predicate calculus (Harmsen 1997) and a 
formal language (MRSL in Gupta et al. 2001). The BWW model, originally 
defined in English (Wand 1988a; Wand et al. 1989), was later formalized in a 
mathematical notation (Wand et al. 1990a) and presented in a graphical notation 
based on the extended ER model (Rosemann et al. 2002; Davies et al. 2003).  

In the second part of the review we analyze the scope and emphases of the 
artifacts, using the overall structure of OntoFrame as the basis for the 
comparison. We give grades between 0 and 5 to show a degree to which the 
concepts and constructs in the artifact correspond, in terms of scope and 
quantity, to the concepts and constructs in our component ontology.  The 
grades have the following meanings:  0 = not considered, 1  = considered 
slightly, 2  = considered fairly, 3 = considered equally, 4  = considered more, 5 = 
considered most. Note that the comparison is proportional to our framework, 
not to other parts of the artifact, neither to other artifacts. Still more detailed 
analyses will be presented in the next chapters, where we will look for concept-
level correspondences. The overview of the results of the analysis is presented 
in Table 6. The numbers in the title row refer to the order numbers used in 
Table 5. Next, we discuss the results in the order of the main parts of 
OntoFrame. 

Only five artifacts provide concepts and constructs belonging to the core 
ontology (comprises the first seven component ontologies in Table 6). The most 
comprehensive artifact in this respect is the Frisco Framework (Falkenberg et al. 
1998), which addresses all seven component ontologies. However, concepts and 
constructs related to abstraction are only slightly covered. Next in 
comprehensiveness is the BWW model (Wand 1988a; Wand et al. 1989), which 
provides a rather large set of fundamental concepts and constructs (cf. the 
generic ontology) and a particularly deep consideration of phenomena related 
to states and state transitions. In contrast, it overlooks phenomena related to 
semiotics and language. The third artifact addressing the core ontology is 
Iivari’s   (1989a)   framework.   It  is   rather   strong in   defining   concepts   and  
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constructs belonging to the state transition ontology and the UoD ontology but 
does not consider the other parts of the core ontology. In the MDM (Harmsen 
1997) some fundamental concepts and abstraction concepts are defined. In 
addition, it contains a few concepts and constructs related to the state transition 
ontology. The decision-oriented meta-model, presented by Prakash (1999) and 
refined by Gupta et al. (2001), is derived from “the simplest meta-model” 
(Gupta et al. 2001, 140). The meta-model is composed of the concepts ‘thing’ and 
‘is_related’, which have their counterparts in our generic ontology.  

All the artifacts, except the BWW model (Wand 1988a; Wand et al. 1989), 
provide concepts related to our four contextual ontologies (i.e. the context 
ontology, the layer ontology, the perspective ontology, the model level 
ontology). The most comprehensive treatment is given in artifacts, which are 
focused on the BS / IS domain. The context ontology and the perspective 
ontology are most strongly addressed by the frameworks of Iivari (1989a) and 
Sowa et al. (1992). Other artifacts defining concepts and constructs of those 
component ontologies are the frameworks of Essink (1986, 1988) and Olle et al. 
(1988a). Falkenberg et al. (1998) and Harmsen (1997) define a large set of 
concepts and constructs related to the context ontology but they offer nothing to 
the perspective ontology. The two other contextual ontologies, the model level 
ontology and the layer ontology, are addressed by Essink (1986, 1988), 
Falkenberg et al. (1998); Grosz et al. (1997), Harmsen (1997) and Heym et al. 
(1992a), but on a rather general level.  

Concepts and constructs related to the ISD ontology and/or to the ISD 
method ontology are defined on a detailed level in Heym et al. (1992a), while 
the artifacts of Harmsen (1997) and Gupta et al.  (2001) remain in their 
definitions on a coarse level. The other artifacts addressing these ontologies, 
although only slightly, are Grosz et al. (1997), Iivari (1990b), Olle et al. (1988a), 
Saeki et al. (1993), and Song et al. (1992).  

The only artifacts that reach the ME ontology are the process meta-model 
by Grosz et al. (1997) and the Methodology Data Model by Harmsen (1997). 
Their definitions for concepts and constructs cover, however, only a small part 
of the ME domain.  

To summarize, among the reviewed artifacts there is none that would 
come even close to OntoFrame when regarding the coverage of the concerned 
sub-domains. In this phase we must, however, to point out that most of the 
artifacts have been published in articles for which space allowed in journals or 
proceedings is quite limited. Thus, it is not fare to expect these artifacts to be as 
coverable as those presented in dissertation theses or the like24. With these 
words in mind, we conclude that the most comprehensive artifact is the MDM 
by Harmsen (1997) but it also ignores many of the essential ontologies (e.g. the 

                                                 
24  There are some researchers (e.g. Falkenberg, Iivari, Jarke) and research groups (e.g. 

Wand and Weber), which have contributed to several sub-domains in separate 
articles. Because the articles have been published at different times, they do not 
necessarily form unified and coherent wholes. It has not been possible for us to 
analyze those collections of articles in this work.  
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semiotic ontology, the intension/extension ontology, the language ontology, 
the perspective ontology) and addresses some others too superficially. The 
Frisco framework (Falkenberg et al. 1998) contains a large set of concepts but the 
concepts are exclusively related to the core ontology, the context ontology and 
the model level ontology.  

We have above considered the comprehensiveness of artifacts in terms of 
their coverage of the IS, ISD, ISD method, and ME domains. We have good 
reasons for that. In the IS/ISD literature, coherence and uniformity among the 
basic concepts is commonly demanded. Our review showed in a concrete way 
that this demand is far from being fulfilled. Some artifacts concentrate on the 
fundamental concepts, while others define concepts and constructs related to 
e.g. the ISD domain or the ME domain. In the definitions on the “lower levels” 
the fundamental concepts are taken as granted thus jeopardizing the 
consistence and coherence of the defined concepts. Our approach aims to assure 
that all the ontologies, from top to bottom, share the same basic assumptions 
and views. Deriving specific concepts from fundamental concepts on the 
“bottom levels” helps us guarantee the consistence and coherency of the 
concepts and constructs within all fifteen component ontologies.  

As said above, we will refer to the reviewed artifacts and compare them 
with OntoFrame in more detail in the next chapters. Besides those artifacts 
considered here, we will widely discuss a large number of other presentations 
that are not comprehensive enough to be catered in this section. To show the 
literature foundation on which we have built OntoFrame, we present references 
to the most relevant literature in Table 7. It is a small sub-set of those, which 
will be referred in the next chapters. The references are grouped according to 
the ontologies in OntoFrame and presented in the alphabetic order. We do not 
distinguish the IS ontology here, because it mostly shares the literature 
mentioned in relation to the context ontology. There are hardly any articles, 
which specifically address the ME method ontology. In Table 7 we mention 
some works, which we have used when deriving the ME method ontology from 
the ISD method ontology.  
 
 
2.6 Summary 
 
 
The purpose of this chapter was to give an overview of OntoFrame. First, we 
motivated OntoFrame with needs for a unified, coherent, and consistent 
conceptual foundation. Second, we anchored OntoFrame on the theoretical 
foundations of metamodeling and ontological engineering. Both disciplines are 
interested in shared knowledge and its representation in meta models or 
ontologies, respectively. Third, we outlined OntoFrame by describing various 
views from which reality can be conceived for specific purposes and 
distinguished a multi-layered structure of sub-domains that OntoFrame should 
address.   Fourth,  we   described  the   overall   structure   of   OntoFrame.   It  is  
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TABLE 7   Other relevant literature 
 

Ontology References 
Core ontology Berztiss 1999, Dominques et al. 1997, Goldstein et al. 1999, 

Hautamäki 1986, Henderson-Sellers et al. 1999a, Kangassalo 1982, 
Krogstie 1995, Mattos 1988, Motschnig-Pitrik et al. 1999, Motschnig-
Pitrik et al. 1995, Mylopoulos et al. 1990, Opdahl et al. 1994, Schrefl et 
al. 1984, Sowa 2000, Wand et al. 1999. 

Context ontology Barros 1991, Baskerville 1996, Bittner et al. 2002, Engeström 1999, 
Fillmore 1968, Herbst 1995, Koubarakis et al. 2000, Kavakli et al. 
1999, Kerola 1980, Levinson 1983, Liu et al, 2002, Loucopoulos et al. 
1998, McDermott 1982, Mesarovic et al. 1970, Ramackers 1994, 
Randell et al. 1989, Sowa 2000, Searle 1979,  Stamper, 1975, Yu et al. 
1997, Zhou et al. 2000. 

Layer ontology Bertalanffy 1974, Falkenberg et al. 1992a, Gasser 1986, Nonaka 1994, 
Stamper 1996, Verrijn-Stuart 1989, Welke et al. 1982. 

Perspective 
ontology 

Avison et al. 1996, van Griethuysen 1982, ISO 1996, Langefors et 
al.1975, Olive 1983, Peirce 1955, Sol 1992, Welke 1977. 

Model level 
ontology 

Bergheim et al. 1989, Brinkkemper 1990, Gigch 1991, ter Hofstede et 
al. 1997, ISO 1990, Jarke 1992, OMG 2002, Wijers 1991. 

ISD ontology Baskerville 1989, Boehm 1988, Bracchi et al. 1984, Checkland 1988, 
Cysneiros et al. 2001, Glasson 1989, Goldkuhl et al. 1993, Hirschheim 
et al. 1989, Hirschheim et al. 1992, Iivari 1991, Iivari et al. 2001, Jarke 
et al. 1992, Kruchten 2000, Lyytinen 1986, Nature Team 1996, Saeki 
1998, Simon 1960, Thayer 1987, Vlasblom et al. 1995, Wood-Harper 
et al. 1982. 

ISD method 
ontology 

Avison et al. 1996, Fitzgerald et al. 2002, Hidding et al. 1993, 
Hirschheim et al. 1995, Iivari 1983, Iivari et al. 2001, Karam et al. 
1993, Lyytinen 1986, Mathiassen et al. 1986, Schön 1983, Stamper 
1973, Tolvanen 1998, Vlasblom et al. 1995, Zhang et al. 2001. 

ME ontology Backlund et al. 2003, Brinkkemper et al. 1999, Henderson-Sellers et 
al. 1999c, Hidding et al. 1993, Kruchten 2000, Kumar et al. 1992, 
Vlasblom et al. 1995, Ralyte 2002, Ralyte et al. 2001, Ralyte et al. 2003, 
Rolland et al. 1996, Saeki 1998, van Slooten et al. 1993, Song 1997, 
Tolvanen 1998, Zhang et al. 2001, Veryard 1987.  

ME method 
ontology 

Harmsen 1997, Iivari et al. 2001, Kinnunen et al. 1996, Rossi et al. 
2005, Saeki 2003, van Slooten et al. 1993, Stamper 1973.  

 
composed of four main parts, called the core ontology, the contextual 
ontologies, the  layer-based  ontologies,  and  the  method ontologies. Each main 
part was further divided into component ontologies. For each component 
ontology, the purpose, domain and theoretical foundations were described. 
Theories in this work include e.g. philosophy of science, semiotics, semantics, 
pragmatics, theories of human and social action, systems theory, and 
information systems science.  

Fifth, we discussed alternative forms of presenting OntoFrame and 
decided to present definitions in English and meta models in a sub-set of UML. 
Sixth, we described various approaches and strategies to engineering 
OntoFrame and selected to use the mixed approach and the integration 
strategy. We also presented a procedure for engineering component ontologies. 
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Seventh, we presented a comprehensive review of the artifacts in the literature, 
to give an overview of the related work and to compare the scope and 
emphases of the artifacts with OntoFrame. From the analysis we concluded that 
there is no artifact that would come even close to OntoFrame when regarding 
the coverage of the concerned sub-domains. Even the most comprehensive 
artifact, the one by Harmsen (1997), ignores many essential ontologies and 
addresses many other sub-domains too superficially. Some artifacts concentrate 
merely on the fundamental concepts, while the others define concepts and 
constructs for “lower-level” domains, such as ISD and ME. In the latter case, the 
fundamental concepts are taken as granted, thus jeopardizing the consistence 
and coherence of the totality. Our approach aims to assure that all the 
ontologies, from top to bottom, share the same basic assumptions and views.  
  



 

 
 
 
 
 
 
 
 
 
 
 
3 CORE ONTOLOGY  
 
 
The purpose of this chapter is to present the core ontology that constitutes the 
topmost level in OntoFrame. The core ontology provides key concepts and 
constructs to conceiving, understanding, structuring and representing the 
fundamentals of reality. It is composed of seven component ontologies: the 
generic ontology, the semiotic ontology, the intension/extension ontology, the 
language ontology, the state transition ontology, the UoD ontology, and the 
abstraction ontology.  

The chapter is organized as follows. First, we make a short survey of the 
related work. Second, we describe the overall structure of the core ontology. In 
the next seven sections we present the component ontologies. For each 
component ontology, the concepts and constructs are defined and described in 
meta models. Also, relevant literature is extensively referred to and compared. 
After presenting the component ontologies, we provide a categorization of the 
relevant literature and make a comparative analysis of two of the most 
prominent presentations. The purpose of the analysis is to reveal the objectives, 
ontological positions, basic structures, coverage and emphases of the 
presentations. The chapter concludes with a summary. 
 
 
3.1 Related Work 
 
 
What are things? What is the essence that remains inside things even when they 
change in color, size, etc? How are things related? Do concepts exist outside our 
mind? These are questions that Ontology has tried to answer for thousands of 
years. Work of philosophers and scientists has resulted in a large variety of 
categorizations and generic ontologies, providing primitive concepts for 
making sense of the essence of things and of their existence. In this thesis it is 
not possible, or even reasonable, to discuss widely various schools of thought 
and approaches of engineering generic ontologies. Instead, to relate the core 
ontology to the prior work, we present a short overview of philosophical 
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positions, well-known categories and generic ontologies. A more detailed 
analysis of two presentations is presented in Section 3.10. 

In defining the fundamental concepts for perceiving and conceiving the 
essentials of reality one has to commit oneself to some philosophical or 
metaphysical positions and assumptions (“Weltanschauung”). In the past few 
decades, there has been a vivid discussion going on, also in the information 
system field, about these paradigmatic assumptions (e.g. Klein et al. 1987; Floyd 
1987; Nurminen 1988; Hirschheim et al. 1989; Iivari 1991; Stamper 1999; 
Orlikowski et al. 1991; Hirschheim et al. 1992a; Dahlbom et al. 1993; Iivari et al. 
1998a; Chen et al. 2004). This discussion has yielded various classifications of 
the assumptions about e.g. the nature of reality (ontology), and what is human 
knowledge and how it can be acquired (epistemology). Here we consider the 
ontological assumptions as presented in Falkenberg et al. (1998)25:  
• Objectivism. There is one reality, independent of any observer and 

interpreter. That is why reality and perceived reality are the same. 
• Constructivism. There is one reality, independently of any observer. Each 

human being perceives and conceives reality differently. That is why 
reality and perceived reality are not exactly the same. 

• Mentalism. There is more than one reality, because reality is perceived and 
conceived solely by the senses of human beings, and hence reality is 
completely dependent on the observer.  

 
One of the first philosophers, Aristotle, distinguished between different modes 
of being and defined a system of categories. Aristotle’s categories include 
substance, quality, quantity, relation, activity, having, situatedness, spatiality, 
and temporality26. Later, Immanuel Kant presented his categorization (Kant 
1787), which is organized into four classes each of which presents a triadic 
pattern: quantity (unity, plurality, totality), quality (reality, negation, 
limitation), relation (inherence, causality, community) and modality (possible, 
existence, necessity). Since then, there have been several categorizations made 
in the philosophy of science (e.g. Husserl, Whitehead, Pierce, and Heidegger).  

In recent decades, research into fundamental categorizations, or 
ontologies, has extended into the fields of Artificial Intelligence (AI) and 
Information Systems (IS). In AI, some of the best known top-level ontologies, or 
upper ontologies, are Sowa (2000), Cyc and SUMO. Sowa’s top-level ontology 
(Sowa 2000) includes the basic categories and distinctions derived from a 
variety of sources in logic, linguistics, philosophy, and artificial intelligence. 
The ontology, containing 27 concepts, has a lattice structure where the top 
concept is the universal type. The universal type contains all the possible 

                                                 
25  The trichotomy is based on three semantic principles presented by Stamper (1992b, 

28). There are several other options for the classification, especially in the philosophy 
of science (e.g. Niiniluoto 1999). Here, we are satisfied with the one in Falkenberg et 
al. (1998) because it is simple enough for our purposes.   

26  This system of categories was presented in the Categories, the first treatise in 
Aristotle’s collected works (cf. Sowa 2000,  56).  
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instances of the ontology. The direct subclasses of the universal type are: 
independent, relative, mediating, continuant, physical, abstract, and occurrent.  

Cyc’s upper ontology aims to provide the most general concepts of human 
consensus reality (Lenat et al. 1990). The Cyc Knowledge Base contains 
thousands of terms and millions of assertions. In the following we only mention 
the most generic terms in the ontology (see more in http://www.cyc. 
com/cycdoc/vocab/vocab-toc.html). The class ‘thing’ is the root of the 
ontology. A thing can be an individual, a partiallyIntangible or a 
mathematicalOrComputationalThing. An individual is a temporalThing, a 
spatialThing, or a partiallyIntangibleIndividual. A temporal thing can be 
somethingExisting or a timeInterval. The upper ontology also contains terms 
such as event, situation, relation, attributeValue, predicate, role, and collection.  

SUMO27 (Suggested Upper Merged Ontology) is promoted by the IEEE 
Standard Upper Ontology Working Group and was officially approved as an 
IEEE standard project in December 2000. The root of the ontology is entity that 
can be either physical or abstract. A physical entity is either an object or a 
process. An abstract entity can be a quality, an attribute, a class, a relation, a 
proposition, a graph, or a graphElement.  

Also in the IS field some suggestions for top-level ontologies have been 
made (e.g. Wand et al. 1990a; Falkenberg et al. 1998). The BWW model (e.g. 
Wand 1988a; Wand et al. 1989; Wand et al. 1990a; Wand et al. 1990b) is based on 
Bunge’s ontology (Bunge 1977) according to which the world is made of things 
that possess properties. Things are concrete or conceptual. Properties are 
intrinsic or mutual. Properties of conceptual things are termed attributes. 
Attributes are characteristics assigned to things according to human 
perceptions. The Frisco28 framework (Falkenberg et al. 1998) aims to provide an 
ordering and transformation framework to allow relating different IS modelling 
approaches to each other. The concepts in the framework have been derived 
from one single concept, thing, by specialization (Falkenberg et al. 1998, 34). The 
other primitive concepts include predicator, predicated thing, composite thing, 
elementary thing, relationship, state, transition, entity, type, etc.  

There are several other, not so well-known, presentations which aim to 
establish a common foundation for modelling the real world. For instance, 
Opdahl et al. (1994), based on some modifications of the DFD language, propose 
primitive concepts such as item, attribute, value, domain, substance, and data. 
Krogstie (1995, 8) defines elementary concepts for modelling computerized 
information systems. He starts with defining the notion of a phenomenon to 
mean “something as it appears in the mind of a person” (ibid p. 8). Related to a 
phenomenon he defines the notions of property, state, transition and event.  

Ontologies differ from one another in terms of their purpose, 
extensiveness and contents. They also differ in how they view changes in 
reality. Static ontologies primarily describe what things exist, their attributes 
and relationships (Mylopoulos 1998, 136). Dynamic ontologies view dynamic 
                                                 
27  http://suo.ieee.org/  
28  Frisco = FRamework of Information Systems Concepts. 
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aspects in terms of states, state transitions and processes. There are also 
ontologies in which things and events are equally treated (e.g. Feibleman 1951; 
Brody 1980; Tiles 1981). Mylopoulos (1998) also distinguishes the intentional 
ontologies and the social ontologies. The intentional ontologies address the 
world composed of agents and things agents believe in, want, prove or 
disprove, and argue about. The social ontologies cover settings, permanent 
structures or shifting networks of alliances and interdependencies. They are 
characterized in terms of actors, positions, roles, authorities, commitments, etc. 
These two kinds of ontologies provide views that go beyond the scope of our 
core ontology.  

In defining the core ontology we have utilized those existing ontologies 
that have been engineered in particular for the IS field. To ensure the 
uniformity and coherence of the core ontology, we have been obliged to fill 
some ‘gaps’ not addressed by any existing ontologies, and make some 
adaptations to get  the “pieces” fit together.  
 
 
3.2 Overall Structure 
 
 
The purpose of the core ontology is to provide key concepts and constructs for 
conceiving, understanding, structuring and representing fundamentals in 
reality. It is composed of seven component ontologies: the generic ontology, the 
semiotic ontology, the intension/extension ontology, the language ontology, 
the state transition ontology, the UoD ontology, and the abstraction ontology 
(see Figure 7). In the following, each component ontology and its theoretical 
basis are discussed.  

The generic ontology aims to provide the most generic concepts from 
which the concepts of all other ontologies in OntoFrame can be derived. The 
most generic concept is thing. Derivation of the concepts of the other ontologies 
from the generic concepts is carried out by instantiation and specialization. The 
core ontology has its roots in the philosophy of science. 

The semiotic ontology is based on the basic concepts in the theory of signs 
– semiotics (Ogden et al. 1923; Peirce 1955; Morris 1946). The semiotic ontology 
specializes the notion of a thing into three semiotic notions: sign, concept and 
referent. Between the notions there are three well-defined relationships: 
signifies, refersTo, and standsFor. In the intension/extension ontology the 
notion of a concept, in turn, is elaborated into more specialized concepts, such 
as basic concept, derived concept, individual concept, and generic concept. 

In the language ontology the focus is on the notion of a sign represented in 
a language. Based on the linguistics, a language is defined as a composition of a 
vocabulary, syntax and semantics, and sub-concepts of a sign are specialized. 
To enable distinguishing between static and dynamic features in reality, the 
state transition ontology with the notions of state, transition and event are 
defined. The concepts in this ontology have been  established on general system 
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FIGURE 7   An overall structure of the core ontology 
 
theory (von Bertalanffy 1968; Klir 1969). The UoD ontology provides concepts 
related to the universe of discourse (UoD): UoD state, UoD behavior and UoD 
evolution. Through these concepts, personal or inter-personal points of view on 
reality can be distinguished, discussed and compared. The UoD ontology is 
rooted on theories of conceptual modelling (e.g. van Griethuysen 1982; Brodie et 
al. 1984).  

The abstraction ontology specializes the notion of a concept, providing 
sub-concepts for four kinds of abstraction: classification, generalization, 
composition, and grouping. Abstraction, rooted in Aristotelian philosophy, 
means ignoring irrelevant things to uncover the features relevant to the 
problem at hand. Depending on whether the things are entities with at least 
some independence or predicates merely used to characterize the entities, we 
can distinguish between the first-order abstraction and the predicate abstraction 
(or the second-order abstraction). 

In Figure 7 the seven component ontologies of the core ontology are 
depicted with six rectangles and one triangle. For the generic ontology and the 
semiotic ontology the most essential concepts are also presented. Later in 
Section 3.10 also the other “boxes” are filled by the concepts defined in the next 
sections. The relationships between the ontologies are presented with arrows 
standing for specialization. Because the figure is highly simplified, all 
relationships are not made visible.  
 



  

 

89

3.3 Generic Ontology 
 
 
The generic ontology provides the most generic concepts from which the 
concepts of all the other component ontologies in Ontoframe can be derived.  

Reality is anything that exists, has existed or will (possible) exist. We 
distinguish between the subjective reality and the objective reality (Bunge 1977; 
Lyons 1977)29. The subjective reality (or the perceived reality) is the result from 
our mental processes. The physical reality (or the reality in short) is independent 
of any human thinking. It is the source of sense data, which we obtain, and it is 
thus external to us. We agree that it is not possible to say anything sure about 
the physical reality, because our conceptions of it are ultimately dependent on 
our senses, skills of understanding and personal points of view. However, there 
is no doubt that some kind of physical reality really exists, independently of us, 
and that reality manifests itself through a huge variety of phenomena. 
Conceptions an individual has about the physical reality may be quite different 
from the ones other individuals have. That does not prevent us from trying to 
distinguish and name the phenomena of reality. Consequently, we accept the 
constructivist position (cf. Stamper 1992b; Falkenberg et al. 1998). 

We define a thing30 to mean any phenomenon in the physical or subjective 
reality. That is all we can say about the physical reality. Saying more would 
require the use of more specialized concepts and structures, which necessarily 
means using perceptions and conceptions of a human being31, that is, becoming 
part of the subjective reality. A thing may be a ball, the weight of the ball, the 
intention of a player running to reach the ball, or the number on the back of the 
player.  

In the subjective reality things are characterized with one or more 
properties. A property is a thing that is used to characterize other thing(s). A 

                                                 
29  Habermas (1984, 100) divides reality into three worlds: objective world (the totality 

of all entities about which true statements are possible), subjective world (the totality 
of the experiences of the speaker to which he/she has privileged access), and social 
world (the totality of all legitimately regulated interpersonal relations). According to 
Wand et al. (1995a, 290) the physical reality can be replaced by an “inter-subjective” 
reality when necessary. 

30  We have selected the term ’thing’ to stand for the most elementary concept for two 
reasons. First, many well-known ontologies in the field (e.g. Wand et al. 1990a; Lenat 
et al. 1990; Miller 1990; Falkenberg et al. 1998) use the same term, yet with somewhat 
different meanings, to denote the elementary concept. Second, another alternative, 
‘object’, is overloaded with other kinds of use, also in this study. Besides ‘thing’ and 
‘object’, other terms are also suggested in the literature (e.g. ’phenomenon’ in 
Krogstie (1995, 8)), but we consider them instances of specific approaches with no 
large support.   

31  Actually, seeing the physical reality consisting of things is also an assumption, which 
contains mental interpretation. But we want to have some concept with which we 
can refer to phenomena in reality. Falkenberg et al. (1998, 29) talk about “parts” or 
“aspects” of the “world”.  
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characterized thing is a thing that is characterized by at least one property. A ball 
is a thing that is characterized by the property weight. Things may be related to 
other things in many ways. A relationship is a thing that relates two or more 
characterized things together, each one associated with one property 
characterizing the role of that thing within that relationship. A role is a property 
that reflects a position the thing holds, or a function the thing conducts, in the 
relationship32. Serving is the relationship that relates a player and a ball, and 
ownership is the relationship, which shows that a shirt belongs to a player. 
Because the relationship is a thing, relationships between relationships can also 
be recognized. A characterized thing can be related through one or more 
relationships, and a relationship can relate two or more things (see Figure 8).  
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FIGURE 8   Generic ontology 
 
A thing can be perceived and conceived in various ways. Let the thing be the 
player with the number 9 on his back. He is known as 'John Smith', having a six 
years career in professional football teams in the UK. He is also known as a 
partner of the company investing on young talented players. Third, the thing is 
conceived as a close relative, who should take care of his injured knee. 
Consequently, for the same thing in the physical reality there are at least three 
different conceptions: one possessed by the TV-commentator, the other by a 

                                                 
32  There is a large number of literature considering the nature, characteristics and 

evolution of role (e.g. Kaasboll 1995; Lindgreen 1995; Gottlob et al. 1996; Halpin 1998; 
Steinmann 2000; Dahchour et al. 2002; Coulondre et al. 2002). It is not possible here to 
discuss them further.  
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young player dreaming of a professional career, and the third one by his wife 
looking at TV. The human mind produces a variety of subjective conceptions 
from the same thing in the physical reality, depending on the point of view 
adopted. 

The notion of a point of view is vague in everyday life as well as in 
scientific treatises. Here we see it as a way to view or consider something (cf. 
Webster 1989). To put it more precisely, we can say that every thing has many 
properties, and to adopt a point of view is to consider some of these properties 
relevant. Using a point of view, some things and some properties of the thing(s) 
are selected because they are more relevant than others. When a statement is 
made from that point of view, then the reasons for the statement are just 
selected properties (cf. Hautamäki 1986, 65). A point of view itself is, of course, 
a thing.  

Applying a point of view leads to a more or less limited or "predefined" 
conception of certain things and their properties in reality. To derive and relate 
the views, a framework is commonly deployed. A framework is a thing that 
guides a human being to select the points of view that are the most appropriate 
for the case or the problem at hand. A framework can be intuitive or formally 
established, vague or rigid. The framework relating the viewpoints of the 
human beings interested in the thing on the football field is an example of the 
intuitive and vague framework. It could be called the "sociometrical" 
framework by which one explores what members of a group perceive, think 
and feel about the other members of the group. The categorization of the reality 
into two parts, subjective and physical, is based on the philosophical 
framework. It is more rigid because it is grounded on the ontological and 
epistemological theories, which state the possible points of view, their 
conceptual contents and relations. Another example of the rigid framework is 
the semiotic framework, which we shall apply in the next section. 
 
 
3.4 Semiotic Ontology 
 
 
The semiotic ontology provides concepts and constructs to recognize semiotic 
things in reality. It specializes things according to the semiotic framework based 
on the theory of signs - semiotics33. In semiotics, three realms are distinguished: 
the realm of signs, the realm of concepts, and the realm of referents. By 
applying Ogden's and Richards' meaning triangle (Ogden at al. 1923), the 
semiotic framework can be illustrated such as in Figure 934.  

                                                 
33  The semiotics, as sketched by Peirce (1955) and de Saussure (1931) and elaborated by 

Morris (1946), concerns signs and their relations to the other things that are essential 
to the creation, use and understanding of the signs. The term "semiotics" originates 
from Greek in which "semeion" means a sign or a mark. 

34  We use Ogden's and Richards' meaning triangle instead of other alternatives (e.g. 
Morris 1946; Peirce 1955) because of its simplicity and familiarity. 
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FIGURE 9   The semiotic framework as the meaning triangle 
 
Using the semiotic framework, we can distinguish between three kinds of 
things: concept things, sign things and referent things. Concepts are mental 
things, words of mind (cf. Hautamäki 1986). In philosophy and psychology they 
are regarded as ideas, thoughts or mental constructs by means of which the 
mind apprehends or comes to know things. They are basic epistemological 
components of human knowledge. We call wholes, which are composed of 
related concepts, constructs. A referent is a thing in reality to which a concept 
refers. It can be a physical thing, a process, an event, Wonderland that Alice 
visited, or the like. A sign or a symbol is any thing, which can stand for 
something else. It is a representation of a concept expressed in a symbolic or 
iconic language. Our world is full of things that are used as signs: words, 
pictures, facial expressions, body postures, films, traffic lights, etc. Here we 
mainly consider verbal representations.35. 

In the meaning triangle the relationships between the concepts, the 
referents and the signs are denoted by the edges. Based on the triangle we 
present the semiotic ontology in the meta model in Figure 10. A sign signifies or 
designates a concept. A concept refers to a referent. A sign stands for a referent, 
but it is not directly associated with a referent because a sign may have several 
meanings leading to different referents36.  
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FIGURE 10   Semiotic ontology  
 
                                                 
35  We want to be faithful to the original term ‘sign’ although its denotation may give 

rise to a conception of a more elementary linguistic thing.  
36  It is only the case of an idealized observation in which it is assumed that each 

referent in reality leads to at most one sensation or concept construct, and each 
sensation has at most one sign. 
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We can distinguish between three elementary human processes through which 
the semiotic things are produced (cf. Falkenberg et al. 1998, 46-47). Perceiving 
means a process whereby a human being observes reality with his/her senses 
and forms a specific pattern of visual, auditory or other sensations of it in 
his/her mind. Conceiving means a process whereby perceptions are organised, 
abstracted and derived to form concepts. Representing means a process whereby 
a human being describes some of his/her concepts in a language. 

Three points of view based on the semiotic framework lead to the certain 
comprehension of the arrangement of things: (a) the things under the 
observation or consideration are in the position of referent things, (b) abstract 
things produced from these through perception and other mental processes are 
concept things, and (c) the things used to signify concept things are sign things.  

The significance of the semiotic framework becomes more obvious when 
several contexts are concerned. A thing seen as the sign thing Sign1 in the 
context Cxt1 in Figure 11 may be regarded as a referent thing in the context 
Cxt2. Further, the referent thing in the context Cxt2 is referred by another 
concept thing and signified by another sign thing (Sign2 in Figure 11). The 
semiotic framework is here horizontally shifted37.  

 
 
                   Concept2    Concept1 
   
 
 
 
 Sign2 Referent2 =  Sign1 Referent1 
 
 
 
 
 
  Cxt2    Cxt1 
     
FIGURE 11   Horizontal shift in the semiotic framework 
 
In everyday language, the term 'thing' is commonly used to mean a referent. 
Therefore, also in this study the term 'thing' is used to denote a referent 
whenever there is no danger of confusion. Otherwise, more precise terms like 
'sign (thing)’, 'concept (thing)’, and 'referent (thing)’ will be used. To distinguish 
between the names of various kinds of things, quotation marks are used in the 
following way. The signs are enclosed in simple quotes (e.g. 'John'). The names 
of referents are expressed in double quotes (e.g. "John"). The names of concepts 

                                                 
37  We call the shift horizontal when a sign is seen as a referent or a referent is seen as a 

sign in another context. The shift is vertical when a concept is seen as a referent (see 
more in Section 7.2). 
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are expressed without any quotes (e.g. John). We use initial capital letters in the 
names of the things in the examples. 
 
 
3.5 Intension/Extension Ontology 
 
 
The intension/extension ontology provides concepts and constructs to specialize 
the notion of a concept into more specific notions such as basic concept, derived 
concept, individual concept, generic concept, etc. It is established upon the 
concepts of intension and extension (cf. Lyons 1977). In the philosophy, 
intension and extension are related to the concept things, whereas in the 
linguistics they are envisioned as associated with the sign things. Here the 
concepts are defined from the philosophical viewpoint. 

The intension or comprehension of a concept consists of all its concept 
predicates, shortly predicates. Predicates are concepts, which are used to 
characterize the (original) concept (cf. Hautamäki 1986,  37). They are properties 
of things referred by the concept. They determine the applicability of the 
concept38. For instance, the concept Animal is a predicate of the concept Cat. An 
intension makes up an idea, and none of its constituent parts can be removed 
without destroying the idea (cf. Arnauld 1964). The core intension of a concept 
consists of all those peculiar predicates (earmarks) that are essential to handle 
the concept. Usually, a working definition of the concept is based on the core 
intension (Bunge 1977, 67). 

To put it more formally, the intension of the concept ci, IN(ci), can be 
defined as follows39: 

 
 IN(ci) = <pi1,...,pin>, 

 
where pik is a predicate constructed from the characteristics of the concept ci.  

The extension of a concept is the set of all (referent) things to which the 
intension of the concept applies. The things exist, have existed in the past, or 
will possibly exist in the future40. The population of a concept is the set of the 

                                                 
38  According to Wiggins (1980) there are two kinds of predicates: sortal predicates and 

non-sortal predicates. Sortal predicates are divided into substantial (like apple or 
human being) and non-substantial (like food and student) predicates, while non-
sortal predicates include generic predicates such as thing and characterizing 
predicates such as red. 

39  Predicates within the intension are interrelated in many ways, constituting 
complicated concept structures (cf. Kangassalo 1982, 150). To explicitly define those 
structures would require the mobilization of a much more comprehensive set of basic 
concepts. This goes beyond this study. Here the intension is defined as a whole of 
concept predicates. The notion of a whole is defined in Section 3.9.2.3. 

40  In the literature, two kinds of views of the notion of extension are presented. 
According to the first view, the extension refers to the set of the existing referents 
(e.g. Kangassalo 1982, 155; Bubenko et al. 1984, 131, 286; Tsichritzis et al. 1982). This 



  

 

95

existing (referent) things to which the intension of the concept applies. The 
formal definition for the extension of the concept ci is: 

 
 EXT(ci) = {ri1 ,…, rim,…}, 
 
where rij means a referent to which the concept ci applies.  The extension of a 
concept may be a finite set, as it is in the case of John’s shirt, or an infinite set, as 
it is in the case of natural numbers.  

If two concepts have the same intension, then they always have the same 
extension. In fact, they can be considered to be the same concept. Two concepts 
may have the same extension, but have different intensions. 

A concept can be defined analytically or extensionally41. An analytic 
definition specifies the meaning by providing a concept with the intension. An 
extensional definition specifies the range of application, or an extension of the 
concept. Often extensions are sets that are too unwieldy to be observed in their 
entirety, so they cannot serve as a basis of practical definitions. 

A basic concept (or primitive concept, Dominques et al. 1997) is a concept 
the intension of which is specified without using other concepts in question (i.e. 
based only on epistemological knowledge). A derived concept is a concept the 
intension of which is derived from predicates of other concepts. 

For some concept, one corner of the meaning triangle may be absent: a 
person may have a concept referring to a referent thing for which he knows no 
sign, or he may have a sign for a concept that has no (real) extension. The 
concepts with no referent things are called abstract concepts. An example of the 
abstract concept is a Unicorn. It is defined as a mammal with one horn in the 
middle of its forehead, but because it does not exist (or exists in one’s 
imagination), its (real) extension is an empty set. The other concepts are called 
concrete concepts. The concepts, which can only refer to one thing, are called 
individual concepts or particulars. The concepts referring to many things are 
generic concepts or universals.  

In the fields of conceptual modelling (e.g. Chen 1976), information systems 
(e.g. Olle et al. 1982; Olle et al. 1983) and knowledge engineering (e.g. Brodie et 
al. 1984; Meersman et al. 1990), a generic concept is called a type concept, or 
shortly a type. It is normally specified by an analytical definition. Elements of 
the extension of a concept type are called instances.  

We have above defined the extension of a concept as being composed of 
“real” referents to which the concept refers. In some cases it is beneficial to 
                                                                                                                                               

set is also called denotation (Sowa 1984; Stachowitz 1985). The second view regards 
the extension as the set of all possible referents to which the intension of the concept 
may apply (e.g. Carnap 1956; Falkenberg 1976). In this case, the concept of 
population is used to refer to the set of existing referents (Falkenberg 1976, 22; 
Gustafsson et al. 1982, 8; Falkenberg et al. 1998). We prefer to apply this latter view. 
Bunge (1974, 68) uses the terms 'total extension' and 'actual extension', or 'population' 
to make the distinction between the two views.  

41  Smith and Medin (1981) discuss these further in terms of classical, probabilistic and 
prototype definition. 
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deploy the notion of a conceptual extension (cf. Hautamäki 1986, 37). A 
conceptual extension is composed of those referent concepts that apply to the 
intension of the type concept.  We discuss this notion further in Chapter 7. 

In Figure 12 the concepts and relationships of the intension/extension 
ontology are presented in the meta model.  
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FIGURE 12   Intension/extension ontology  
 
 
3.6 Language Ontology 
 
 
The language ontology provides concepts and constructs to specify the syntax 
and the semantics of a language. In the discussion above a sign is used to mean 
any thing that signifies a concept and stands for a referent. Here, we specialize 
the notion of a sign and associate it with a language. 

A sign is always represented in some language. A language is an abstract 
thing that is used in communication among people, between people and 
computers, or among parts of the computers42. A language is composed of 
syntax and semantics43.  Syntax consists of two parts: an abstract syntax and a 
concrete syntax. An abstract syntax gives the conceptual components of a 
language and rules for connecting them, leaving out representational details 
(ter Hofstede et al. 1998, 520). A concrete syntax gives notational elements, called 
the symbols in the vocabulary of a language, and rules for connecting them 
with one another and with the concepts (cf. signification rules). Semantics of a 
language defines the relations of symbols to the referents to which the symbols 
are applicable (Morris 1938). It is composed of inter-subjectively agreed rules of 
what the different expressions mean (cf. Krogstie et al. 1996, 285). A vocabulary 
of a language is a non-empty and finite set of symbols (Falkenberg et al. 1998, 
47). A symbol is a special sign used as an undividable part of an expression 
(Falkenberg et al. 1998, 47). Examples of symbols are “cat” and “,” in the English 
                                                 
42  There is also communication between animals but we ignore that. 
43  In some literature (e.g. Levinson 1983), the definition of a language includes 

pragmatics, too.  
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language and an arrow in the graphical language of UML. A linguistic 
expression is a sign of a language and a non-empty and finite “arrangement” of 
symbols taken from a vocabulary, constricted by the syntax and semantics of 
the language. An arrangement can be - like in case of a natural language – a 
sequence of symbols, or multi-dimensional, like in case of a graphical language.  

A formal language is a language with a precisely defined syntax and 
semantics. A semi-formal language is a language with a precisely defined syntax 
(Krogstie et al. 1996, 285). An information language is neither formal nor semi-
formal (Krogstie 1995, 475). There are many alternative approaches to define a 
formal semantics. It can be defined as translational semantics, operational 
semantics, denotational semantics, and axiomatic semantics (Meyer 1990; ter 
Hofstede et al. 1998, 520). Sometimes semantics is seen as a composition of two 
parts: static semantics and dynamic semantics. The static semantics of a 
language defines how an instance of a concept construct should be connected to 
other instances to be meaningful, and the dynamic semantics define the 
meaning of a well-formed construct. The meaning of an expression written in 
the language is defined if the expression is well formed (i.e. if it fulfills the rules 
defined in the static semantics). 

A label is an elementary sign used to signify a particular concept in an 
elementary way. If there are several labels signifying the same concept, the 
labels are called synonyms. If the same label signifies several concepts, it is a 
homonym situation (Falkenberg et al. 1998, 49). If a label signifies a particular, it 
is called a proper name. If a label signifies a universal, it is called a common noun.  

In Figure 13 the concepts and relationships of the language ontology are 
presented in the meta model.  
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FIGURE 13   Language ontology  
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3.7 State Transition Ontology 
 
 
Until now we have discussed the things without considering at all whether they 
are static or dynamic. Most of the concepts derived from the notion of a thing 
equally apply to structural things (e.g. person) and dynamic things, such as 
events (e.g. marriage ceremony) and processes (e.g. car driving). The state 
transition ontology provides concepts and constructs for conceiving static and 
dynamic things in reality44.  

Some things are conceived as having a static existence. A state is a thing, 
which is seen to have some duration. For instance, “John is waiting for Mary” is 
a state, as is also “Bell is ringing”. A common type of state is a so-called state of 
existence. The state of existence can be instance-level, like “John exists” meaning 
that the person called John really exists, or type-level, like “Person exists”, 
meaning that the concept Person is recognized through the more or less 
persistent intension. The state of existence can be related to any structural thing.  

Some other things are conceived as changes of states. A transition is a 
binary relationship between two different things, called the pre-state and the 
post-state of that transition (Falkenberg et al. 1998). The pre-state of a transition 
is the state valid before that transition. The post-state of a transition is the state 
that is valid after that transition. In the transition, at least one part of the pre-
state must not be included in the post-state, or vice versa (Falkenberg et al. 1998, 
38). Examples of transitions are the relationship between the states “John is 
waiting for Mary” and “John and Mary enter the restaurant Estrella”, and the 
relationship between the states “Bell is ringing” and “Bell is quiet”.  

An event is a thing, which may trigger a transition from the pre-state to the 
post-state (Falkenberg et al. 1998). It is an instantaneous happening with no 
(significant) duration. Examples of events are “Mary arrives” and “the button is 
pressed”. An event does not necessarily mean the transition because it may 
require occurrences of other events as well as some specific conditions become 
true. For example, after Mary has arrived, she and John enter the restaurant, 
provided that they like the menu outside the door. There are several kinds of 
events. Some of them may be caused by transitions from certain pre-states to 
certain post-states.   

Transitions can be related to each other to form transition structures. Given 
the transitions [transition]: tx (s1, s2) and [transition]: ty (s3, s4), we can 
distinguish between three basic transition structures (Falkenberg et al. 1998, 38):  
1. sequence 

sequence(tx , ty ) is a sequence of transitions if s3  is a part of s2. The 
resulting state-transition structure has s1 as pre-state and s4 as post-state. 

2. choice 
choice(tx , ty ) is a choice of transitions if the intersection of s1 and s3  is not 
empty, and the result is either transition  tx  or  ty, but not both. 

                                                 
44  Note that it may depend on the selected point of view whether a certain thing is 

regarded as a static thing or a dynamic thing. 
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3. concurrence 
concur(tx , ty ) means concurrent transitions if the intersection of  s1 and s3 
is not empty and the transition tz can be defined with the pre-state ‘s1 
union s3 ‘  and the post-state ‘s2 union s4 ‘. 

 
Further, we can distinguish between an elementary transition and a composite 
transition. A composite transition is a transition structure with a unique pre-state 
and a unique post-state. An elementary transition does not contain any transition 
structure (Falkenberg et al. 1998, 39). 

For each basic concept in the state transition ontology defined above, type 
and instance concepts can be distinguished. Thus, we have a state type and a 
state instance, a transition type and a transition instance45, and an event type 
and an event instance.  

A life cycle of a thing consists of all the states, state transitions and events 
that are related to the existence of a thing (e.g. John), starting from the event of 
coming into existence (e.g. birth), continuing with changes in its states (e.g. in 
the marital status), discretely or continuously, and ending up with the event of 
termination (cf. Sakai 1983). A life cycle can be linear or contain some cyclic 
parts. 

The main concepts and relationships of the state transition ontology are 
presented in the meta model in Figure 14. 
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FIGURE 14   State transition ontology  
 
 
3.8 UoD Ontology 
 
 
Human beings become conscious of reality through the concepts and constructs 
they possess and apply. Depending on a situation, they select and deploy points 
of view through which they “look at “ reality. Through the adoption of a point 

                                                 
45  A transition instance is called a transition occurrence in Falkenberg et al. (1998, 39). 
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of view, a basic set of concepts and constructs becomes selected. We call a 
universe of discourse (UoD) a subjective reality that becomes relevant from the 
point of view adopted.  The notion of UoD is formally defined as follows. 
 
 UoD := <cij >, 
 
meaning that the UoD is a whole consisting of concepts. The UoD is defined as 
a whole to emphasize that the concepts included in the UoD are highly 
interrelated (see the definition of the notion of a whole in Section 3.9.2.3). The 
UoD ontology provides concepts and constructs for perceiving and conceiving 
the UoD’s, UoD states, UoD behavior, and UoD evolution from a certain point 
of view.  

Based on the concepts defined in the preceding section, we can say that a 
UoD state is composed of all the related states of those (concept) things that are 
included in the UoD. Let the UoD be the slice of reality concerned by a secretary 
responsible for order processing. So the UoD consists of products, customers, 
orders, reorders, invoices, etc. The UoD state is composed of the states in which 
orders are (e.g. to be issued, processed, delivered, invoiced, or paid), in which 
products in the inventory are, etc.   

Transitions from UoD states to other UoD states reflect the dynamic 
nature of the UoD. There are two kinds of transitions occurring in the UoD: 
extensional and intensional. Extensional transitions encompass e.g. emergence 
of new things of certain type (e.g. new products have been ordered), shifts of 
things from one type to another (e.g. from invoicedOrder to paidOrder), 
changes in certain qualities or quantities (e.g. decrease in quantity_on_hand), 
etc. Thus, extensional transitions in the UoD concern the population of the thing 
types in the UoD. They constitute the UoD behavior. Intensional transitions affect 
the intensions of the types in the UoD. More types may emerge and existing 
types may be changed, reinterpreted or vanish. In the example of order 
processing, intensional transitions may be caused by emergence of a new type 
of things, say Suppliers (earlier all the products were manufactured in the 
enterprise), a new way of paying (ePaying), or by some changes in the 
intensions of current types. These kinds of transitions constitute the UoD 
evolution46. It goes without saying that the borderline between extensional 
transitions and intensional transitions depends on the chosen point of view. The 
UoD of our work will also evolve along the elaborations accomplished into 
OntoFrame.  

The concepts and relationships of the UoD ontology are presented in the 
meta model in Figure 15. In the figure we can see that the UoD is composed at 
least one UoD state. If it contains several states, it may also involve extensional 
transitions (the UoD behavior) and/or intensional transitions (the UoD 

                                                 
46  Ramackers et al. (1990) distinguish between the first-order and second-order 

dynamics in the IS. Falkenberg et al. (1992a, 1992b) define the concepts of first-order 
evolution and second-order evolution. In the former, types can be changed, and in 
the latter, also meta types can be changed.  
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evolution) in the states. The UoD ontology, in a sense, integrates the other 
component ontologies in the core ontology. The notion of UoD state reflects all 
kinds of structural phenomena in the UoD perceived from the selected point of 
view. Likewise, UoD behavior and UoD evolution stand for all kinds of changes 
occurring in the UoD. Due to this integrative nature, the meta model of the UoD 
ontology is presented in a general level in Figure 15. 
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FIGURE 15   UoD ontology  
 
 
3.9 Abstraction Ontology 
 
 
Conceiving is a complex process that is carried out by epistemological methods 
to organize knowledge. Doing this, human beings unconsciously apply some 
abstraction, which permits one to suppress details of particular things and to 
emphasize those features that are pertinent to the problem at hand. Besides 
organizing, abstraction is a fundamental means for producing knowledge. To 
take a full advantage of abstraction requires that the concepts and principles 
underlying it are made explicit and deployed consciously.  

The purpose of this section is to explicitly define the concepts and 
principles of abstraction. First, the main categories of the principles are 
presented based on the general definition of abstraction. Second, the concepts 
and principles in the first category, called the first-order abstraction, are 
intensionally and extensionally defined. Third, the principles are jointly 
discussed to highlight their interrelations. Fourth, the concepts and principles of 
the second category, called the second-order abstraction or the predicate 
abstraction, are defined. This section ends with the summary and discussions. 
 
3.9.1 Abstraction Categories 
 
Abstraction is not an easy concept to pin down. It means different things to 
different people and tends to be used in an incantatory rather than a scientific 



102 

 

manner. The term comes from Latin47 and means a withdrawal or a removal. It 
has long roots in the history of science48.  It is used to mean abstraction from 
unnecessary details, abstraction from the “how” to the “what”, abstraction from 
instance-level to type-level, and so on. On the other hand, abstraction is used to 
refer to a mental and representational process, or to a principle for, or to a result 
of, that process. In this study, abstraction is seen as the principle by which 
irrelevant things are ignored and the things relevant to understanding some 
problem of interest are uncovered. Abstraction is used to manage the 
complexity. This implies that some information is lost. If this is not the case, 
then there is no abstraction, just a transformation. The principle inverse to 
abstraction is called concretizing.  

Abstraction can be performed in many ways. In the following, some 
examples are given. Instead of looking at individual persons (John, Mary, and 
Paul), the attention can be entirely focussed on Persons in general, or more 
specifically, on Systems Analysts and System Designers in which roles John, 
Mary and Paul are acting. Likewise, a Machine with its functional features may 
be of interest, and not its Components. For a discussion a Labor Union with its 
properties can be more relevant than Persons as its members. These cases 
exemplify abstraction, which concerns things in different scopes and meanings: 
e.g. as types, subtypes, wholes, and groups. This kind of abstraction that 
concerns the concept things and their abstraction relationships is called the first-
order abstraction.  

On the other hand, there are cases in which only some properties about 
the things are interesting. For instance, what a customer wants to know about a 
Machine may be related to its functional properties only. Characteristics related 
to its electrical wiring and other physical features are irrelevant for him/her. 
Likewise, somebody may be interested in the financial status of a Person. For 
someone else, the physical skills that a Person possesses are more relevant. 
Mental health is an example about still another aspect abstracted from a large 
variety of properties related to a Person. Essential to all these cases is that 
abstraction here concerns predicates of the given thing (a Machine or a Person). 
The process of abstraction is guided by a specific criterion. In the case of a 
Machine, the criterion is related to independence from the physical structure. 
The cases of a Person illustrate specific criteria related to finance, physics or 
healthy. The abstraction, which mainly concerns predicates of the concept 
things, is called the predicate abstraction or the second-order abstraction.  

The main abstraction categories, the first-order abstraction and the 
predicate abstraction, are closely intertwined. As will be shown in Section 3.9.3, 
the predicate abstraction mostly behaves like the first-order abstraction, except 

                                                 
47  Trahere, abstrahere, abstractio means “to pull”, “to separate”, and “to draw from”. 
48  In Aristotelian philosophy, abstraction is a form of inquiry by which the mind 

separates “form” from “matter” in search of the “universals” (Reese 1980). To Locke 
is attributed the following definition: “Abstraction takes place by drawing out what 
is common to a group of individual things, on the basis of a comparison of their 
similarities and differences” (Baldwin 1940).  



  

 

103

that it operates with the predicates (i.e. the so-called secondary things).  
Furthermore, these main categories of abstraction are shown to be un-
orthogonal.  

Abstraction is of major importance to all kinds of human action. Therefore, 
it is widely discussed in the AI and IS literature (e.g. Smith et al. 1977a; Smith et 
al. 1977b; McLeod et al. 1980; Brachman 1983; Winston et al. 1987; Mattos 1988; 
Iivari 1992; Motschnig-Pitrik et al. 1995; Mylopoulos 1998; Motschnig-Pitrik et 
al. 1999; Goldstein et al. 1999; Wand et al. 1999). Unfortunately, the discussion 
has brought out insights that are, to a considerable extent, vague and confusing. 
First, there are quite divergent views on the principles and concepts of the basic 
forms of abstraction49. Second, there are different opinions about what 
conceptual mechanisms are included in abstraction. Mylopoulos (1998), for 
instance, considers contextualization, materialization, parameterization, and 
normalization to be instances of abstraction mechanisms. It goes beyond the 
scope of our study to analyze and compare discrepancies among the 
suggestions in the literature. Our aim here is to build a uniform and coherent 
abstraction ontology, which provides concepts and constructs for abstraction. It 
should be strongly rooted on the concepts in more elementary parts of the core 
ontology defined above, and specify in a simple and comprehensible fashion 
structural and behavioral features of abstraction.   
 
3.9.2 First-Order Abstraction 
 
In this section we define four main principles of the first-order abstraction. They 
are: classification, composition, generalization and grouping50. All these 
principles are semantically irreducible modeling primitives that enable us to 
conceive reality more clearly. To provide a proper understanding of the 
abstraction principles, it is necessary to specify the structural properties, explicit 
or derived, of the principles, in a formalized way. To meet this requirement, the 
definitions of the principles of classification, generalization, composition and 
grouping are divided into three subsections. For each type of the first-order 
abstraction, we shall first define structural rules. In doing this, we introduce the 
basic concepts and constructs. Second, we shall complete the structural rules by 
specifying structural constraints. Third, we specify rules for the intensional and 
extensional derivation of predicates in each kind of abstraction51.  

                                                 
49  To give just one example, Ralyte et al. (2003, 108), for instance, regard abstraction as a 

reverse principle to instantiation, and consider specialization/generalization and 
aggregation/decomposition to be separate from abstraction. 

50  Goldstein et al. (1999, 296) calls classification and generalization with the common 
term ‘inclusion abstraction’. 

51  Defining completely the semantics of the abstraction principles would also require 
the discussion of operations, which create, change and dismiss each instance 
structure. This study, however, does not aim at conceptualizing the environment of 
the ontology engineering. Therefore, we regard it adequate to use the structural 
constraints, including minimum and maximum multiplicities, to bring out a 
necessary set of behavioral properties of the abstraction principles. 
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3.9.2.1 Classification  
 
Classification is the principle of abstraction by which the concept cty, called the 
type, is generated from other concepts ciin, called instances. By classification, 
features special to individual things are ignored to uncover features common to 
all the things of interest. Thus, the type is a generic characterization of all the 
predicates shared by each instance of that type. Respectively, a thing is an 
instance of the type if it has all the predicates defined in the type, and at least 
some of them are instantiated. The principle inverse to the classification is 
called instantiation. It is used to obtain instances that conform to the constraints 
associated with the predicates specified by the type. Classification serves two 
primary functions: cognitive economy (indexing instances to facilitate storage 
and retrieval) and inference (reasoning about instances based on the types to 
which they are assigned) (Rosch 1978; Smith 1988).  

Consider the example of Person and John. Person is a type characterized 
by the predicates hasName, hasAddress and isMarriedTo. John is an instance of 
the type Person. It is characterized by the predicates [hasName]:John and 
[hasAddress]:MainStreet3. 

Based on the informal definition above, we can define the instanceOf 
relationship to be the relationship between an instance ciin and a type cty as 
follows: 
 
 instanceOf (ciin, cty ) 
 
The relationship above was defined intensionally. Defining it
extensionally would require the enumeration of all the instances that are 
considered to apply the intension of the type. The extension of a type stands for 
the set of things, each of which fulfils the intension determining that type. The 
relationship instanceOf is non-reflexive, non-transitive and non-symmetric. 

The semantics of the concepts of type (cty ) and instance (cjin ) can be 
elaborated by the following axioms52:  
 
Axiom 1.     for each i,j: partOf (pi, IN(cty)) -> partOf (pi, IN(cjin))  
  
Axiom 2.     for each i,j exist k: partOf (pi,IN(cty)) -> (instanceOf (pijk, pi) and 
 partOf (pijk, IN (cjin))) 
 
By Axiom 1 we state that all the predicates pi contained in the intension of the 
type cty are also contained by the intensions of all the instances cjin. Axiom 2 
states that at least some of the predicates of the type must be included as being 
instantiated in the intension of each instance.  

In Figure 16 the basic concepts and relationships related to the principle of 
classification are presented in a metamodel. Let us consider it with a simple 
example. Assume that the type is Person and an instance is John. Then the 
                                                 
52  In the axioms we use the partOf relationship that will be defined in Section 3.9.2.3. 
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TypeExtension consists of all those persons, including John, who are referred to 
by the instance concepts of the type Person. The concepts of Type and Instance 
are defined by their intensions, which are composed of predicates, 
TypePredicates and InstPredicates, respectively. All the predicates in the 
TypeIntension (e.g. hasName, hasAddress, hasTwoLegs) are included in the 
InstIntension, some of them being instantiated (e.g. [hasName]: John).  
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FIGURE 16   Meta model of the concepts and relationships of classification  

 
Applying the principle of classification iteratively, a hierarchy of concepts with 
the instanceOf relationships is established. Hence, also a type can be regarded 
as an instance of some other thing. For instance, a Person is an instance of the 
type Concept. A Concept is defined, as we have learned in Section 3.3, by the 
intension composed of predicates. When instantiating a Concept into a Person, 
the predicates characteristics to a Person have to be specified. When 
instantiating a Person, in turn, still more specific predicates have to be 
provided. To make the difference between a type (Person) and its types 
(Concept), we take into use the term ‘meta type’. A meta type is a type, instances 
of which are types.   
 
Structural Constraints 
 
Until now, the relationships between the concepts pertaining to the 
classification have been considered on a general level. Here, we elaborate the 
concepts by considering structural constraints enforced to them53. The 
constraints are presented as multiplicity constraints in Figure 16. Let us start 
with a simple case and then extend it with diverging assumptions.   

In Figure 16 we can see that there may be one or more instances that apply 
to the intensional definition of the certain type. A thing can be an instance of 
one or more types. For a type, there is one and only one TypeExtension. It can 
be empty or include several referents. An instance that is related to a certain 
type, refers to only one referent, if any. A referent can be referred to by several 
instances, provided that the instances apply to different types. Likewise, a 

                                                 
53  We are aware that there are various classification theories and models (cf. Rosch 

1978; Smith et al. 1981; Sowa 2000) that have different conceptions about what classes 
and instances are. Our aim is here to consider the structural constraints on a general 
level.  
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referent can be a member of several TypeExtensions. A TypeIntension is 
composed of one or more type-level predicates. An InstIntension is composed 
of one or more predicates that are either type-level predicates or instance 
predicates (InstPredicates). Instance predicates are instantiations of some type-
level predicates (TypePredicates).  

The meta model presented in Figure 16 is based on four basic 
assumptions: it reflects (a) one person's view (b) at a certain time. Further, it is 
assumed that (c) each instance applies to at least one type, and (d) an instance is 
an individual concept. Accepting or rejecting one or more of these assumptions 
affects how the principle of classification is understood. This means that a set of 
specializations of the principle of classification emerges. It is worth of noticing 
that cases, which deviate from the basic assumptions, are commonly conceived 
as exceptions and therefore either ignored or handled in an inadequate way in 
the literature. Let us see to what kinds of specialized forms the deviations from 
the assumptions lead.  

First, each person interprets phenomena in reality subjectively. 
Consequently, from the inter-subjective viewpoint, for a type there may be 
several TypeExtensions. For instance, different persons may conceive a 
Customer in various ways. Thus, we can distinguish between the objective 
classification and the subjective classification. Second, comprehensions about the 
meanings of the concepts can evolve in time. This implies that we may have an 
instance, which refers to more than one referent. To cope with this, we need the 
dichotomy of the permanent classification and the evolving classification.  

Third, the assumption of associating an instance to at least one type is 
questioned in several fields of information processing. Especially, in the object-
oriented programming (e.g. Borning 1986; Liberman et al. 1988; Sciore 1989) 
there are approaches that, instead of the strict classification of instances, prefer 
to postpone typing as late as possible54. Consequently, we can distinguish 
between the strict classification and the non-strict classification.  

Fourth, we consider a case in which an instance concept is a generic 
concept and the corresponding type concept is a meta type (see Figure 1755).  
Let the instance be Person and the type Concept. Like above, the type has its 
TypeExtention but an instance (e.g. Person) does not refer to one referent only. 
Therefore in the meta model there is InstExtension. Note that in this case 
TypeExtension does not contain (real) referents referred to by its instances. In 
some literature (e.g. Hautamäki 1986, 37) TypeExtension is said to contain 

                                                 
54  In the object-oriented programming (e.g. Bertino et al. 1995) approaches such as 

instance_by_instance approach, explorative programming, and template-approach 
are suggested. In the information modeling field Parsons and Wand (1997, 2000) 
suggest a two-layered approach where instances (things, objects, or entities) are not 
tied to particular classes. This approach affords flexibility in accommodating 
multiple views, evolving the views, and integrating information from different 
sources. 

55  Note that the meta model in Figure 17 does not reflect subjective differences between 
conceptions about extensions, nor evolution of the extension in time.  
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instance concepts  (e.g. TypeExtension of Concept contains Person, Car, 
Building etc.), meaning that TypeExtension is conceptual56. We adopt this view. 
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FIGURE 17  Meta model of the concepts and relationships of classification in the case of 

generic and meta type concepts 
 
Predicate Derivation 
 
As defined in Section 3.5, each concept is defined by its characterizing concepts, 
called predicates. These predicates are included in the intension of a concept. 
Some of the predicates are derived from predicates of some other concepts. This 
is traditionally called "property inheritance" (e.g. Smith et al. 1977b). In this 
study, "inheritance" is discussed more generally under the notion of predicate 
derivation. For each principle of the first-order abstraction there are specific 
rules for predicate derivation. Before discussing the derivation in conjunction 
with classification, we distinguish between two kinds of predicates, factual and 
definitional (cf. Mylopoulos et al. 1980, 188; Schrefl et al. 1984, 121). 

Factual predicates mainly contain individual concepts. Definitional predicates 
are composed of solely generic concepts expressed in common nouns. Most of 
the predicates of the type are definitional, while individual concepts have also 
factual predicates. In fact, factual predicates are instances of some definitional 
predicates of the type. For instance, while John is instantiated from the type 
Person, Age and Salary, as predicates of Person, are instantiated into the 
predicates [Age]: 45 and [Salary]: 5000.  

There are two kinds of predicate derivation, intensional and extensional. 
In the intensional predicate derivation, each predicate of the type is expected to 
apply to the corresponding instance concepts. Thus, the derivation proceeds 
downwards from the type to its instance concepts. Derived predicates are 
usually definitional although factual predicates are also possible. For example, 
the predicate "The manager earns at least 500 dollars more than his 
subordinates" should be true for each individual Manager. Sometimes in 
defining a new generic concept, the predicate derivation can proceed from the 
bottom up:  individual predicates of the instances effect the selection and 
                                                 
56  Note that Concept can be associated to Person with two kinds of relationships: 

instanceOf and isA. If the relationship between Person and Concept was the isA 
relationship, the TypeExtension would contain the real referents (i.e. real persons).  
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specification of predicates of a new type. This approach may be called "concept 
prototyping". 

On the other hand, we can logically infer some properties of a population. 
Note that the populations are also concepts. Assume that Age and Salary are 
predicates of the concept Person. Then Average_Age and Maximum_Salary can 
be predicates of the type PersonPopulation. For a specific PersonPopulation, 
factual predicates can be derived from the factual predicates of the instances 
included in the extension of PersonPopulation. This kind of derivation is known 
as the extensional predicate derivation.  
 
3.9.2.2 Generalization 
 
Generalization is the principle of abstraction by which differences between some 
types, called subtypes cisb, are suppressed and a new type, called a supertype csp, 
is generated based on the commonalities of the subtypes. By generalization the 
number of predicates in the intension is reduced, and hereby the extension is 
enlarged. The inverse principle, called specialization, is used to achieve subtypes 
from a supertype.57  

By generalization one can focus on the things on a proper level in the 
specific/generic dimension. For example, instead of considering a Vehicle as 
the type, Trucks, Helicopters, Cars or Gliders may be regarded as being more 
appropriate for considerations. Through the subtypes it is also possible to 
specify, elaborate and employ the point of view that best suits the problem at 
hand. The supertypes offer a means to integrate "local" views. For example, 
features of Vendors, Customers, Employees and Employers can be joined with 
the supertype Person. Our work contains more examples of the use of 
generalization/specialization. The generic concept Thing has been first 
specialized by the semiotic framework into the notions of Concept, Referent 
and Sign. Further, Abstract and Concrete Concepts, as well as an Individual 
Concept and a Generic Concept are derived from the concept of Concept 
through specialization based on the notions of intension and extension.  

The relationship between the subtype cisb and its supertype csp is called the 
isA relationship. It is formally defined as follows:  
 
 isA(cisb ,csp). 
 
The isA relationship is reflexive, non-symmetric and transitive58. The semantics 
of the isA relationship between the subtype cisb and the supertype csp is 
elaborated by the following axioms:  

                                                 
57  ter Hofstede and van der Weide (1993b, 71) state that because specialization and 

generalization originate from different axioms in set theory and have a different 
expressive power, they are not inverse to each other. We do not agree with them. 

58  In the literature various meanings to the isA relationship are given. Brachman (1983), 
for instance, presents a list of ten different meanings, containing a kind_of 
relationship, conceptual containment, role value restriction, set membership, 
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Axiom 3.     for each i,j: partOf (pi, IN(csp)) ->  partOf  (pi, IN(cj sb)) 
 
Axiom 4.     for each k,j:  memberOf  (rkj, EX(cjsb)) -> memberOf  (rkj, EX(csp)) 
 
The first (intensional) axiom states that all the predicates of csp are also 
contained by the intension of each cisb. According to the second (extensional) 
axiom, known also as the specialization constraint (Gomez et al. 2002, 469), 
referents rkj of each subtype must be members of the extension of the supertype.  
The extension of the supertype and the extension of the subtype are named the 
superset and the subset, correspondingly. 

The principle of specialization itself can be specialized based on the 
criteria used in specialization. Subtypes can be specified according to (a) factual 
predicates (called discriminators in the UML terminology (Booch et al. 1999)), 
(b) specifications given by users, or (c) operators used in the specialization (cf. 
McLeod et al. 1980; Hammer et al. 1981). For example, using Sex of a Person as 
the criterion results in the subtypes Man and Woman. A particular type of 
specialization by factual predicates is the case in which a subtype is derived 
from the population of the subtype excluding those instances that belong also to 
the extension of some other subtype. For instance, Unmarried may be defined 
as a subtype of Person, excluding Married (Gomez et al. 2002, 470). User-
specified subtypes do not depend on any particular predicate but on the 
personal views or opinions stated explicitly (e.g. Excellent_student, 
Good_student, Poor_student). These two subtypes of specialization are 
intensional by their nature. An example of the extensional one is a set operator-
defined subtype. It is established by set operations over the population of the 
type (e.g. Vehicles_owned_by_John).  

If a predicate is used as a criterion for the specialization, the predicate of 
the supertype must be the supertype of the corresponding predicates of the 
subtypes (cf. Mylopoulos et al. 1980, 195). For example, when the predicate Age 
is used to specialize the supertype Person into the subtypes Adult and Child, 
Age is the supertype of the subtypes Age_of_Adult (e.g. 18-100) and 
Age_of_Child (e.g.  0-17 years). 

A supertype may be regarded, from another point of view, as a subtype of 
another supertype. For instance, a Customer is a Person, which, in turn, is a 
Living_thing. Thus, the iterative use of the principle of generalization generates 
a hierarchy of concepts within which the concepts are interrelated with each 
other by the isA relationships. Each subtype hierarchy must have a unique root, 
and no cycles are allowed in the hierarchy59. 

 

                                                                                                                                               
predication, abstraction, etc. However, he also includes into his list some forms of 
abstraction that are here considered to be classification (e.g. set membership). In this 
study we cannot go into details of his taxonomy.  

59  The formal definitions of the aforementioned axiomatic rules are omitted here (see 
more in Dart et al. (1988, 279). 
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In Figure 18 the meta model of the concepts and relationships related to 
generalization / specialization is presented. The figure shows only those 
relationships that are essential to the principle of abstraction. Next, we shall 
consider the multiplicities of the relationships. 
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FIGURE 18   Meta model of the concepts and relationships of generalization 

 
Structural Constraints 
 
Just as with classification, structural constraints for generalization are also 
specified through the multiplicities of the relationships between the key 
concepts (Figure 18). Based on the kind of the isA relationship between the 
supertype and the subtype, we can distinguish between the one-type 
specialization, the hierarchical specialization, and the lattice specialization. In the first 
case, for each supertype there is only one subtype. In the second case, for each 
supertype there are several subtypes. In the lattice specialization, for a subtype 
there may be two or more supertypes. The isA relationship is depicted 
according to lattice specialization in Figure 18. 

Based on the multiplicity of the equalsTo relationship between a 
SPReferent and a SBReferent, we can distinguish between the total 
specialization and the partial specialization. In the total specialization, for each 
SPReferent there is always one SBReferent (e.g. Hourly_Employee and 
Salaried_Employee). In the partial specialization, there may be SPReferents for 
which there are no SBReferents (e.g. Person can be Secretary, Technician, 
Engineer, or some other that is not specified). 

Based on the kind of relationship between the extensions (SBExtension 
and SPExtension), we can define the disjoint specialization and the overlapping 
specialization. Let SBExtensioni stand for the extension of the subtype cisb. 
Specialization is disjoint if the following axiom holds: 
 
Axiom 5. for each i, j (i # j):   

isA(cisb ,csp) and isA(cjsb ,csp) ->  
SBExtensioni  ∩ SBExtensionj  = {Ø }  
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Otherwise specialization is overlapping.  Hence, there are four basic compound 
types of specialization: disjoint and total, disjoint and partial, overlapping and 
total, and overlapping and partial (Elmasri et al. 2000). In some cases, a special 
name is used for specialization with certain specific properties. Gomez et al. 
(2002, 469), for instance, calls specialization that is both disjoint and complete 
the partition.  
 
Predicate Derivation 
 
How predicate derivation is carried out in conjunction with generalization 
depends on the form of the generalization structure. Here, we first discuss 
predicate derivation in the hierarchical specialization and then describe how it 
is carried out in conjunction with the lattice specialization. 

The predicate derivation, originally introduced as property inheritance in 
the artificial intelligence (Brachman 1983), refers to the principle by which all 
the predicates of a supertype are passed on to all of its subtypes. Thus, since 
Name is a predicate of Person, it is also a predicate of Engineer, Secretary and 
Trucker. Likewise, the definitional predicate "Person can be married only to one 
Person at a time" implicitly obliges the instances of every subtype of Person. 
The intensional definitions of subtypes can be further particularized by the 
predicates that are specific for the subtypes. So the intensional predicate 
derivation proceeds from the top to the bottom. The axiom for the intensional 
predicate derivation can be formulated as follows:  
  
Axiom 6.  for each i, j: 
 (isA (cisb, csp) and partOf (pj, IN(csp))) -> partOf (pj, IN(cisb)), 
 
where cisb is  a subtype, csp is its supertype and pj is a predicate. Extensional 
predicate derivation in conjunction with generalization occurs such as in 
classification. 

There are three basic modes of predicate derivation, known as the strict 
derivation, the default derivation and the exceptional derivation. In the strict 
derivation, the relationship isA (cisb, csp) implies that cisb necessarily inherits all 
the predicates of csp, without any exception60. In reality some exceptions always 
appear (cf. the well-known example about a Bird and a Penguin: a Penguin is a 
Bird but it does not fly). A way to manage them is to take the derivation as a 
default, and allow some of the predicates of the supertype to be overridden. 
This is called the default derivation (cf. Borgida et al. 1984, 92-93; Mylopoulos 
1998). A special case of this is the way in which a predicate is refined during 
derivation. For example, a predicate of Person is "Age is between 0 and 120". A 
Student is a Person but its predicate is "Age is between 16 and 60"61. Another 

                                                 
60  The strict derivation is also called the is_a –derivation (Zdonik et al. 1990). The non-

strict derivation is called the is_like –derivation or the a kind_of –derivation (Wegner 
1987). 

61  Mylopoulos (1998, 141) uses the term ‘strict’ for this kind of inheritance.  
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way to prepare for the exceptions is to explicitly specify the exception types as 
the special kinds of types (Mylopoulos et al. 1980; Borgida 1988, 438). 

For the lattice specialization, the derivation principles presented above are 
refined by special rules. The most common form of predicate derivation here is 
the multiple derivation (cf. Wagner 1988, 270), which provides a mechanism to 
derive predicates from multiple higher-level supertypes (cf. Peckham et al. 1988, 
161) applying special derivation strategies. By the AND-strategy, a subtype 
inherits all the predicates of each supertype (e.g. Amphibious_Vehicle vs. 
Land_Vehicle and Sea_Vehicle). In the OR-strategy the predicates of only one 
supertype are inherited by a subtype (e.g. Owner vs. Person and Company). 
 
3.9.2.3 Composition 
 
Composition62 is the principle of abstraction by which a type, called a whole type 
cw, is composed of other types, called part types cp. Composition can also be 
used to abstract part instances into whole instances. For example, Work_Station is 
a whole type composed of part types Processor, Main_Memory, Display, etc. In 
the composition, predicates of and relationships between the parts are 
abstracted to form a whole. Besides the abstracted predicates, the intension of a 
whole contains predicates that characterise the whole itself. These are called 
emergent predicates (cf. Bunge 1997; Wand et al. 1999; Varzi 1996). Processing 
power of Work_Station is an emergent predicate because it depends on 
qualities of several parts. The inverse to composition is decomposition by which a 
whole (type) is decomposed into inter-related part(s) (types). A thing that 
cannot be decomposed is called an elementary thing (cf. Falkenberg et al. 1998). 

Essential to a whole is that its parts are interrelated, in contrast to a group 
whose “elements” are considered to be unrelated (see Section 3.9.2.4). Parts can 
be characterized by one or more of the following properties (Motschnig-Pitrik et 
al. 1999, 781): (a) spatial and/or temporal proximity with respect to one another 
and/or the whole; (b) propagation of some structural and behavioral properties 
from a part to a whole; (c) propagation of some structural and behavioral 
properties from a whole to a part; and (d) particular ordering or constellation of 
parts.  

Composition can concern sign things or non-sign things. For example, a 
Vehicle can be seen as a whole that is composed of the following parts: 
Identification_Number, Manufacturer, Price, Weight, Medium_Category and 
Propulsion category (Smith et al. 1977b,  114). This kind of composition is 
known as the syntactic composition. The semantic composition deals with the non-

                                                 
62  This is also called the aggregation (e.g. Smith et al. 1977a; Goldstein et al. 1999), 

whole-part (Barbier et al. 2001), part-whole and meronymic relation (see Opdahl et al. 
2001b) 
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sign things. For example, a Train is seen as being composed of an Engine and a 
number of Coaches and/or Wagons.63  

The relationship between the part (type) cnp and the whole (type) cw is 
referred to as the partOf relationship. It is defined as follows: 
 
 partOf (cnp,cw) 
 
For example, a Term is a part of a Formulae, and a Coach is a part of a Train. 
The partOf relationship is irreflexive and antisymmetric. The semantics of the 
principle of composition can be elaborated by the following axioms: 
 
Axiom 7.      IN(cw ) = E  U X  IN(cip)  
 
Axiom 8.     WExtension  ⊆  X  PExtensioni 
 
where cw  is a whole (type), cip is a part (type) of cw, E stands for the emergent 
predicates and X is used for Cartesian product.  The first axiom expresses how 
the intension of a whole is constructed. As can be seen, the intension is much 
more complicated that the union of the intensions of the parts. According to the 
second axiom, the extension of the whole is a subset of Cartesian product of the 
extensions of the parts (cf. Furtado et al. 1986, 81)64.  

Also a whole (type) can be regarded, from another viewpoint, as a part 
(type) of another whole (type). For example, a Piston is a part of a Motor, and a 
Motor is a part of a Car. The principle of composition thus generates a 
composition hierarchy in which the concepts are interrelated with one another 
by the partOf relationships. Each composition hierarchy may have multiple 
roots but it cannot contain any cycles. In the hierarchy, the partOf relationship 
may be transitive, but only in cases where the parts and the wholes are of the 
same kinds. According to Winston et al. (1987) there are at least six kinds of 
whole-part relationships: (a) component / object  (e.g. Processor / Computer); 
(b) member / collection (e.g. Conductor / Orchestra); (c) portion / mass (e.g. 
Slice / Pie); (d) stuff / object (e.g. Steel / Bike); (e) feature / activity (e.g. Spoon 
/ Eating); (f) place / area (e.g. Helsinki / Finland)65. For transitivity of the 
partOf relationship, this means that, for instance, partOf(Conductor_arm, 
Conductor) and partOf(Conductor,Orchestra) does not imply that 
partOf(Conductor_arm, Orchestra) (Motschnig-Pitrik et al. 1999, 781). 

                                                 
63  Iivari (1992) distinguishes between aggregation as a conceptual abstraction and 

aggregation as a linguistic abstraction. This division corresponds to our dichotomy of 
the semantic composition and the syntactic composition.  

64  To consider the issue more deeply would call for the introduction of concepts such as 
conceptual containment, sum and product (Kauppi 1967; Kangassalo 1982). It is not 
possible to go into such detail here. 

65  Note that only some of the kinds of the partOf  relationships listed by Winston et al. 
(1987) actually are partOf relationships in our terminology.  
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In Figure 19 the meta model of the concepts and relationships related to 
the principle of composition is presented. Next, we consider the multiplicities of 
the relationships in more detail.  
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FIGURE 19  Meta model of the concepts and relationships of composition 
 
Structural Constraints 
 
The multiplicities of the partOf relationship depend on the nature and 
properties of the relationship. In the literature several classifications for the 
partOf relationship are presented (e.g. Winston et al. 1987; Motschnig-Pitrik 
1993; Odell 1994; Gerstl et al. 1996; Saksena et al. 1998; Henderson-Sellers et al. 
1999a; Motschnig-Pitrik et al. 1999; Snoek et al. 2001; Barbier et al. 2001; Albert et 
al. 2003). Henderson-Sellers and Barbier (1999a) and Barbier et al. (2001) base 
their classification on the division of the properties of the partOf relationship 
into primary properties and secondary properties. A primary property is such 
that any form of the partOf relationship must own it. Secondary properties are 
used to distinguish between special kinds of partOf relationships. The primary 
properties are: (a) there exist emergent predicates, (b) there exist resultant 
predicates, (c) the relationship is irreflexive at the instance level, (d) the 
relationship is antisymmetric at the instance level, and (e) the relationship is 
antisymmetric at the type level. Resultant properties require collaborations 
between wholes and parts while emergent properties do not. For instance in the 
case of an egg, its freshness is an emergent property and its taste is a resultant 
property (Barbier et al. 2001, 22). Irreflexivity at instance level means that no 
thing can be a part of the thing itself. Antisymmetry at instance level and at 
type level means that if a thing A is related through the partOf relationship 
with another thing B, then B cannot be a part of A.  

The idea of the primary and secondary properties of the partOf 
relationship can be further refined with two dimensions distinguished by 
Motschnig-Pitrik et al. (1999). The dimensions are: degree of sharing and degree 
of dependence.  The degree of sharing indicates to which extent a part can be 
shared by more than one whole. This dimension gives rise to purely static 
constraints. The degree of dependence means how mandatory and persistent is 
the relationship between a part and a whole. Based on the degree of sharing we 
can distinguish two extremes, namely total exclusiveness and arbitrary sharing. 
The partOf relationship is total exclusive if a thing can be a part of only one 
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whole. For example a Motor can be a part of only one Car (see Figure 20). The 
partOf relationship is arbitrary shared if a thing can be a part in arbitrary many 
wholes. For example, a Figure can be a part of a Book_Chapter, an Article and a 
Documentation (Motschnig-Pitrik et al. 1999, 785).  
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FIGURE 20   Special types of composition based on the degree of sharing 
 
Depending on whether the partOf relationship is considered to hold between 
the types (type level relationship) or the instances (instance-level relationship), 
the impacts of the degree of sharing on the relationship vary. Type-level 
sharing - or interclass sharing as Motschnig-Pitrik et al. (1999, 785) call it - 
means that although a certain Motor cannot be used as a part of more than one 
Car, Motors of certain type can be used as parts in Cars of more than one type. 
An example of type-level exclusiveness is the case in which a Windows 
message may be part of several Windows programs, but not of anything else. 
Further, we can distinguish selectively exclusive sharing (Motschnig-Pitrik et al. 
1999, 786), which means that a thing can be a part of one whole but of more 
than one alternative type (e.g. parts like Screw and Battery). 

Within the dimension of the degree of dependence we have two extremes 
(see Figure 21). The partOf relationship can bind a part to the whole with a 
lifetime dependence, meaning that the existence of a part instance totally 
depends on the existence of the whole instance. In another case, there may be 
things of certain part type that are related to things not of the whole type. This 
kind partOf relationship is called optional.  
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FIGURE 21 Special types of composition based on the degree of dependence or 

alternatively on the variety of parts 
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Related to the degree of dependence is the notion of essentiality. The partOf 
relationship between a part type and a whole type is essential  (or mandatory) if 
each part instance must be interconnected to at least one arbitrary whole 
instance of that type. Thus, essentiality imposes a weaker constraint, and forms 
a prerequisite to the lifetime dependence.  For instance, a Module must be a 
part of some Workspace.  The extreme kind of lifetime dependence requires 
that since its “birth” the thing is permanently related to the whole (cf. the 
composition relationship in UML (Booch et al. 1999)). This kind of relationship 
is called immutable66. 

Until now we have considered the kinds of partOf relationships from the 
viewpoint of a part. Similar treatment can be made from the viewpoint of a 
whole. Hence, we can recognize the following kinds of wholes. A homogeneous 
whole is a thing that is composed of things of one part type (e.g. a Puzzle). A 
heterogeneous whole is a thing that is composed parts of several part types (e.g. a 
Train). A single-part whole is a thing that contains only one thing of a certain part 
type (e.g. a Train with one Engine). A multi-part whole is a thing that contains 
several things of a certain part type. A flexible-structure whole is a thing in which 
parts of some part type can be missing (e.g. a Room without a Window). A 
fixed-structure whole is a thing, which must be composed of one or more parts of 
all the defined part types (e.g. a Train with an Engine and at least one Wagon). 
 
Predicate Derivation 
 
Predicate derivation within the composition hierarchy is not so common as in 
conjunction with generalization. Values of quantitative predicates of non-sign 
things can increase or decrease when going upwards in the composition 
hierarchy. For example, the weight of a whole can be derived accumulating the 
weights of the parts. This kind of predicate is monotonically increasing (cf. 
Mattos 1988, 343). There are also monotonically decreasing predicates. An 
example of semantic derivation rules is the one declaring that the Name of a 
Family is determined according to the Name of the Mother or the Father (cf. 
Stamper 1978b,   303-304). 

Intensional predicate derivation is suggested in the literature (e.g. Brodie 
1978), especially in conjunction with sign things. But in the most cases the real 
essence of predicate derivation is misunderstood. For instance, Brodie (1978, 4) 
argues that "each property of a constituent (i.e. part) becomes a constituent 
property of the aggregate”. If this would be the case, there would be no 
abstraction. Unfortunately, it is not possible here to discuss these issues further.  
 
 
 
 
 
                                                 
66  Motschnig-Pitrik et al. (1999, 789-790) further distinguish between three kinds of 

immutable relationships.  
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3.9.2.4 Grouping  
 
Grouping67 is the principle of abstraction by which a concept, called a group type 
cg, is generated from other concepts, called member types cim. Grouping can also 
be used to abstract a group instance from member instances. By grouping, a 
group (type) as a unity is examined rather than its members (member types) 
and the features of members (member types) are abstracted away to obtain the 
essentials of the group (type). The principle inverse to grouping is called 
individualization by which a member (type) is distinguished from a group (type) 
for a more detailed consideration. 

Examples of groups are a Labor_Union whose members are Employees, a 
School consisting of Departments, and an Enterprise comprising Divisions. 
Essential to grouping is that the members of a group are of one type, and there 
is no internal structure between the members within a group. 

The relationship between a member (type) and a group (type) is called the 
memberOf relationship. It is defined as follows: 
 
 memberOf (cim, cg) 
 
meaning that cim is a member (type) of a group (type) cg . The relationship is 
irreflexive, antisymmetric and intransitive. The semantics of the principle of 
grouping can be elaborated by the following axioms: 
 
Axiom 9. IN(cg ) = A U E , where partOf (A, IN(cim)) 
 
Axiom10.  for each i, exists j: (memberOf (cm, cg) and instanceOf (cim, cm) and 
             instanceOf (cjg, cg))  memberOf (cim, cjg ) 
 
At the type-level the first axiom states that the intension of a group type is 
composed of some part (A) of the intension of the member type (cim), as well as 
of the predicates (E) specific to the group type as such (e.g. Name, Address and 
Budget of a Labor Union). Correspondingly, at the instance level the axiom 
states that the intension of a group is composed of some part of the intensions 
of the members, as well as of the predicates specific to a group. This makes the 
notion of a group different from the notion of a set. While two sets are equal if 
and only if they have the same members, this is not necessarily so for groups. 
Two groups having the same members, for example, two specific clubs, may 
differ in their internal identifiers or by the values of some predicates associated 
with the group. Such a predicate can be the minimum age required to become a 
member of a club (Motschnig-Pitrik et al. 1995, 153). The second axiom binds the 
type-level concepts and the instance-level concepts together by stating that if a 
type cm is a member of another type cg, then there is the memberOf relationship 

                                                 
67  This principle is also called set membership (Falkenberg et al. 1998), association 

(Brodie 1981; Peckham et al. 1988; Goldstein et al. 1999), partitioning, and cover 
aggregation (Schrefl et al. 1984) (see also Potter et al. 1988). 
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between each instance of the member type and some instance of the group type. 
This holds, of course, only if the grouping is mandatory. 

A membership rule for a group is either predicate-defined or user-defined. 
The predicate-defined membership is stated explicitly in the intension of a 
group type while the membership of the second type is determined instance-by-
instance by a human being. 

A group can be regarded, from another point of view, as a member of 
another group. For instance, Unions can form an organisation called 
United_Unions. Thus, the principle of grouping generates a hierarchy of 
concepts within which the concepts are interrelated with each other by the 
memberOf relationships. Note that as the relationship is intransitive, an 
Employee is a member of a Union but not a member of a United_Unions. 

Figure 22 presents the meta model of the key concepts and relationships of 
grouping. 
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FIGURE 22   Meta model of the concepts and relationships of grouping 
 
Structural Constraints 
 
Based on the multiplicity constraints related to the memberOf relationships in 
Figure 22, we can distinguish between different kinds of grouping. We illustrate 
these with examples presented in the meta models in Figure 2368. Let us first 
consider type level variations. In homogeneous grouping, for a group type there is 
only one member type. In heterogeneous grouping a group can be formed from 
members of several member types. Groups can also differ in type-level sharing 
(Motschnig-Pitrik et al. 1995, 160). In categorical grouping a member type is 
related to one group type at a time. In shared grouping a thing can be a member 
type of several group types. For example, an Employee may be a member of a 
Union as well as a member of a Working group.  

A set of kinds of grouping can be enlarged with instance-level discussions. 
Disjoint grouping means that an instance cannot be a member of more than one  
                                                 
68  The meta models in Figure 23 are not aimed to be complete specifications of the 

“subtypes” of grouping. Multiplicity constraints are presented in those ends of the 
partOf relationships, which are specific to the types.  For instance, for a mandatory 
grouping it is essential that each member instance is related to at least one group 
instance.  
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FIGURE 23   Special kinds of grouping 
 
group (of the same or different type). In overlapping grouping an instance is 
allowed to be a member of several groups (of the same or different type). In 
mandatory grouping, each member must belong to some group, whereas in 
optional grouping an instance can exist without any memberOf relationship.  
 
Predicate Derivation 
 
Predicate derivation within the grouping hierarchy is addressed in only a few 
studies (see Mattos 1988, 338; Schrefl et al. 1984, 122). This would indicate that 
derivation is not possible in conjunction with grouping. Contrary to this 
opinion, we can recognize both extensional and intensional predicate 
derivation, although derivation rules are case-specific.  Some factual predicates 
of a group instance can be derived e.g. by counting the number of its members 
(i.e. cardinality), or by applying aggregate functions (e.g. Avg_Age, 
Max_Salary) to the factual predicates of member instances. This kind of 
extensional predicate derivation proceeds in the bottom-up manner. Likewise, 
as Brodie et al. (1983, 597) suggests, predicates of a member type can establish a 
basis for the specification of predicates of the group type (cf. Axiom 9). The 
intensional predicate derivation proceeds upwards. For example, the 
intensional specification of a Union states that persons of a certain kind (e.g. 
employees) can become members of a Union. 
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3.9.2.5 Synthesis and Integration 
 
In the sections above we have defined the principles, the key concepts, and the 
structural rules of four kinds of abstraction and discussed predicate derivation 
related to them. A variety of things in the reality is so immense that it is 
impossible to expect any set of abstraction principles to completely cover all the 
occurrences of abstraction to which a human being is capable in his/her 
observing and conceiving reality. We have identified the most basic kinds of 
principles of abstraction – as a matter of fact, by applying abstraction by 
generalization among the abstraction principles. In doing so we have not 
considered all the details and interpretations related to various principles of 
abstractions (cf. Brachman’s (1983) taxonomy for the isA relationship). To sum 
up the discussions, we present the names of the principles, the inverse 
principles, the relationships and the key concepts of the first-order abstraction 
in Table 8.  
 
TABLE 8   Summary of the first-order abstraction 
 

Abstraction 
principle 

Concretizing 
principle 

Relationship Key concepts 

Classification Instantiation instanceOf 
 (ciin, cty ) 

instance, type 
 

Generalization Specialization isA (cisb ,csp). subtype, supertype 
 

Composition Decomposition partOf (cnp ,cw ) part (type)  
whole (type) 

Grouping Individualization memberOf (cim,cg) member (type), 
group (type) 

 
The principles of abstraction are seldom applied one at a time. Most typically, 
two or more principles are deployed in an integrated fashion. For instance, 
Person is seen as a type, of which Mary and John are instances. At the same 
time Person is a supertype for Man and for Woman, in the role of Secretary in 
Project organization, as well as a member type of the group type Union. To 
illustrate the integration of the principles of the first-order abstraction at the 
type level, a conceptual model is presented in Figure 24, which contains 
examples of each abstraction relationship.  

To have an integrated view on the abstraction principles on the meta level, 
we present below an integrated meta model of the key concepts and 
relationships of the first-order abstraction. As seen in Figure 25, the common 
basis for all the abstraction principles is the concept Thing (see Section 3.4.) 
from which all the concepts of abstraction are specialized. Classification is used 
to distinguish between the types and the instances (and the meta types). 
Generalization concerns the types only. The principles of composition and 
grouping can be formulated specifically for the types and the instances. As 
shown in the sub-sections above, the multiplicities of the relationships vary 
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substantially depending on the nature and structure of abstraction. In Figure 25 
we present the multiplicities of the most common structures. 
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FIGURE 24 A type-level example of applying four principles of the first-order abstraction 
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FIGURE 25  Integrated meta model of the key concepts and relationships of classification, 

generalization, composition and grouping 
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3.9.3 Predicate Abstraction 
 
Hitherto, four principles of the first-order abstraction have been specified. The 
first–order abstraction can also be called the vertical abstraction because in 
carrying out an abstraction process one perceives and builds structures of 
things (i.e. instances, types, wholes, and groups) on several abstraction levels. 
There is, however, another kind of abstraction in which one proceeds to another 
direction. For example, from the chosen things all the features except those 
causing financial  consequences are  abstracted  away.  This kind  of abstraction 
concerns the predicates of (concept) things and is called the predicate 
abstraction or the second-order abstraction or the horizontal abstraction. The 
purpose of predicate abstraction is to hide irrelevant predicates in order to reveal 
the predicates significant for the issues addressed. 

As implied from the definitions given for the concepts of a point of view 
and a thing in Section 3.3, the predicates can also be treated as things. For 
example, the instance John of the type Person is characterized by the predicates: 
[Age]: 20, [Lenght]: 190, [Eyes_Color]: Blue. The predicate [Eyes_Color]: Blue 
can be regarded as an instance of the predicate type Eyes_Color. Further, 
Eyes_Color is a subtype of the predicate type Color. So, it clearly depends on 
the selected point of view what phenomena are regarded as things. To express 
explicitly the chosen point of view, the former things (e.g. Person) are called the 
primary things, and the latter things (e.g. Eyes_Color) are called the secondary 
things. Respectively, the predicates of the secondary things can be seen as the 
tertiary things. For example, the secondary thing Eyes_Color is characterized by 
the "value set" and the semantic rules for the interpretation of this secondary 
thing. Some of the characterizing predicates may be values69. 

We can conclude that the predicates can be regarded as secondary, 
tertiary, etc. things (see Figure 26), and consequently, the principles of predicate 
abstraction can now quite simply be derived by specializing from the principles 
of the first-order abstraction. 

In this section, we first define the principles of predicate abstraction and 
give some examples of them. Second, we consider consequences of predicate 
abstraction to the primary things. We show that the vertical and horizontal 
abstractions are not orthogonal. The section ends with some conclusions. 

By predicate classification the features special to individual predicates are 
ignored in order to uncover features common to all the predicates of interest. A 
predicate type is a generic characterization of all the features (i.e. secondary 
predicates) shared by each predicate instance. For example, [Has_Color]:Blue is  

                                                 
69  The notion of a value is philosophically extremely vague (Bunge 1974) and has 

different meanings in various fields (cf. Kent 1978; MacLennan 1982). The definitions 
of values such as numbers are usually implicitly contained in some branch of the 
mathematical or logical theory (Bunge 1974). They may also contain a set of auxiliary 
rules, which express in a specific context certain properties of the value class (e.g. 
Max_Value). It is beyond the scope of our study to examine this issue further.  
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FIGURE 26  Meta model of the primary and secondary things 
  
a predicate instance of the predicate type Has_Color. Likewise, Owned_by is a 
predicate type, and one of its instances might be [Owned_by]:John. In Section 
3.9.2.1, the concepts of definitional predicate and factual predicate were 
introduced. Now we can state that the predicate classification means the 
definitionalization of the predicate instances into the predicate types, and the 
predicate instantiation means the factualization of the predicate types into the 
predicate instances. 

Since the intensional definition of a concept is composed of predicates, it is 
obvious that predicate abstraction directly affects the concept formulation. Let 
Ball be a type and one of its concept predicates be Has_Color. Factualization of 
this predicate type to e.g. the predicate instance [Has_Color]:Blue creates a new 
primary type Blue_Ball, which is a subtype of the type Ball. The type Ball has 
many other predicates. Each act of factualization restricts the extension of the 
type so that finally we get one instance of the primary type. Thus we can say 
that definitionalization and factualization of predicates are closely related to 
abstraction and concretizing of the primary things. 

By predicate generalization special features of predicate subtypes are 
ignored in order to uncover the features common to all the predicate subtypes. 
This results in a predicate supertype. For instance, the primary type Enterprise 
has the concept predicate Owned_by. Predicate subtypes of that are 
Owned_by_Person and Owned_by_Organization. Likewise, the predicate type 
Has_Weight of the primary thing type Automobile has at least two predicate 
subtypes: Has_Gross_Weight and Has_Net_Weight. Another predicate type of 
Automobile is Owned_by_Person. This can be specialized into two subtypes: 
Owned_by_Man and Owned_by_Woman. These examples show that the 
predicate generalization and specialization can have varying effects upon the 
corresponding primary types. Generally speaking, predicate specialization 
induces the first-order specialization. This is exemplified in the case of 
Enterprise: a new primary type Enterprise_owned_by_Person is specialized 
from the type Enterprise. But this does not hold for all cases. In the example of 
Weight no changes to the primary type is caused, because for each Automobile 
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it applies to specify Gross_Weight and Net_Weight. What happens instead is 
that the specification of the predicate type is made more precise. Also non-strict 
predicate derivation causes exceptions to the general principle mentioned 
above.  

By predicate composition a predicate as an entire construct, called a 
predicate whole (type), rather than its predicate part(s) (types) is/are examined. 
Predicate decomposition backgrounds a part of the predicate whole (type) for a 
more detailed consideration. For example, the predicate whole type 
Born_in_Date of the primary type Person can be decomposed into 
Born_in_Year, Born_in_Month and Born_in_Day. The same can be done for the 
predicate whole type Living_in_Address. Predicate composition/ 
decomposition has usually no direct effect upon the abstraction of the 
corresponding primary types. Only predicate(s) (types) may become more 
detailed.  

By predicate grouping a predicate group (type) rather than its predicate 
member(s) (types) is/are examined. The inverse process is predicate 
individualization. For example, the predicate type Has_Color_Composition70 
contains a reference to the predicate group type Color_Composition, which can 
be individualized into member colors. It is worth of noting that as far as only 
the colors themselves are concerned we use grouping. But if portions that colors 
have in the composition are of any importance, the predicate abstraction 
follows the principle of composition resulting in the predicate part types Color 
and Portion. Predicate grouping/individualization has no direct effect on the 
first-order abstraction.  

To conclude, we have defined the key concepts for each principles of the 
predicate abstraction and given illustrative examples. The principles, the 
relationships and the key concepts are summarized in Table 9. The discussion 
has been firmly based on the presumption that the predicates are special kinds 
of concept things (i.e. isA (p, c)). This has given us a reason to argue that the 
structural rules and constraints, as well as the rules for predicate derivation 
given for the primary things, hold for the predicates, too. Due to this generative  
 
TABLE 9   Summary of the predicate abstraction 
 

Predicate abstraction 
principle 

Relationship Key concepts 

Predicate classification 
 
Predicate generalization 
 
Predicate composition 
 
Predicate grouping 
 

instanceOf (piin, pty) 
 
isA (pisb , psp) 
 
partOf (pip, pw ) 
 
memberOf (pim, pg ) 

predicate instance, 
predicate type 
predicate supertype, 
predicate subtype 
predicate part (type), 
predicate whole (type) 
predicate group (type), 
predicate member (type) 

                                                 
70  Color composition is a common expression in English. Unfortunately, it refers to the 

other principle of abstraction, viz. composition. 
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nature of the abstraction framework, the space required for formulating the 
predicate abstraction is less than the significance of this issue would suggest.   
 
3.9.4 Summary and Discussions 
 
In this section we have defined the abstraction ontology that is based on two 
basic categories of abstraction. The first-order abstraction concerns the primary 
things and their basic relationships. The second-order abstraction or the 
predicate abstraction concerns the predicates and their relationships. We have 
distinguished between four basic abstraction principles: classification, 
generalization, composition, and grouping. For each type of principle we have 
provided the definitions of the key concepts, the structural rules, and 
discussions about the predicate derivation. This has been done first for the first-
order abstraction, and then for the predicate abstraction. Finally we have also 
discussed the relationships between the first-order abstraction and the predicate 
abstraction. To promote the consistence and coherence of the abstraction 
ontology we have presented the key concepts and relationships of each 
abstraction principle in meta models. As far as we know, this has not been done 
in any earlier work. 

As mentioned above, in the IS literature there are quite divergent views on 
the principles and concepts of the basic forms of abstraction. It has not been 
possible for us to analyze or compare divergent conceptions here. Instead next 
we shortly consider conceptual mechanisms that are suggested to involve 
abstraction, although they do not belong to any single basic category.  

Mylopoulos (1998) includes into the abstraction “mechanisms”, besides 
classification, generalization, and aggregation, also materialization, 
contextualization, normalization, and parameterization. Materialization, 
originally introduced by Pirotte et al. (1994), relates a class, such as Car_Model, 
to a more concrete class, such as Car. The Car_Model class contains 
information, such as Model_Name, Sticker_Price, and available options for 
Engine_Size. The class Car models information about individual cars, such as 
Manufacture_Date, Serial_Number, and Owner. The formal properties of 
materialization constitute a combination of those of classification and 
generalization (Pirotte et al. 1994, Pirotte et al. 2004).  

The term contextualization is used to cover a large variety of ways to 
apply a certain point of view. It means “an abstraction mechanism which allows 
partitioning and packaging of the descriptions being added to an information 
base” (Mylopoulos 1998, 142-143). Mechanisms to apply points of view 
comprise partitioned networks in knowledge representation (e.g. Hendrix 
1979), workspaces, versions and configurations in CAD and software 
engineering (e.g. Katz 1990), views in data bases (e.g. Elmasri et al. 2000; 
Motschnig-Pitrik et al. 1996), perspectives in hypertext bases (e.g. Prevelakis et 
al. 1993), and viewpoints (e.g. Finkelstein et al. 1992). In terms of our abstraction 
ontology, contextualization means abstraction with multiple principles of the 
first-order abstraction as well as of the predicate abstraction.  
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Normalization means “normal-case first abstraction” (Borgida 1985) 
where the common things, states and events are first modeled, while special 
and exceptional situations are later dealt with. Exceptions are discussed in 
programming languages (e.g. Borgida 1988) as well as in specifications (e.g. 
Schoebbens 1993). Abstracting exceptional things and aspects away is a very 
complicated process, which can only partly be supported by the basic principles 
of abstraction.  Parameterization is a common mechanism to enhance 
reusability in programming and specification languages.  Parameters, such as 
resource and customer, can be used in programs, which are to be used, for 
instance, in a library (book and libraryUser) and a car rental company (car, 
renter). Parameterization can be modeled by the principles of generalization.  

There are also presentations that discuss the so-called “role-abstraction” 
(e.g. Albano et al. 1993; Li et al. 1994; Wieringa et al. 1995; Kaasboll 1995; 
Steinmann 2000; Dahchour et al. 2002). Dahcjour et al. (2002), for instance, 
present a generic role model, which is based on the role relationship that 
connects a superclass (e.g. Person) to more than one role classes (e.g. Student, 
Employee). Unlike in generalization, each instance of the superclass can be 
related to any number of role classes.  

Finally, Olive (2002, 675) uses the term ‘generic relationship type’ to mean 
relationship types that may have several realizations in a domain. He includes 
abstraction relationships such as the partOf and memberOf relationships but 
also the materialization relationship (e.g. Pirotte et al. 1994) and the owns 
relationship (e.g. Yang et al. 1994).  

These examples concretely show how complex and multifaceted concept 
abstraction is. They also exhibit to what extent abstraction and its all modes 
have been addressed and used in knowledge representation, information 
systems, data bases, programming languages, etc. We believe that our ontology, 
although covering only two categories and four basic principles promotes the 
understanding and application of abstraction. Parts of abstraction that are 
excluded from the abstraction ontology are partly addressed through the 
notions of point of view (Section 3.3) and of perspective (Chapter 6).  
 
 
3.10 Comparative Analysis  
 
 
Conceiving reality and its phenomena with fundamental concepts and 
constructs is widely discussed in the literature. It is not possible for us here to 
make an extensive review of the relevant literature. Instead, we first present a 
general categorization of the literature and give some examples of each 
category. Second, we select two presentations for a more detailed analysis. We 
define the goals of the analysis, describe the selected presentations and compare 
them with one another, as well as with the core ontology.  
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3.10.1 Categorization of Relevant Literature 
 
The relevant literature can be sub-divided into three categories. The first 
category comprises universal, top-level ontologies that aim to provide 
conceptual foundations for the representation of common sense knowledge. 
Examples of the presentations belonging to this category are the top-level 
ontologies of Bunge (1977), Chisholm (1996), Feibleman (1951), Brody (1980) 
and Tiles (1981). This category also includes upper ontologies developed for 
artificial intelligence and knowledge representation, such as Cyc (Lenat et al. 
1990), SUMO71 (Suggested Upper Merged Ontology), and Sowa’s categorization 
(Sowa 2000).  

The second category contains comprehensive conceptual frameworks and 
ontologies established for the IS field. The best representatives in this category 
are the Frisco framework (Falkenberg et al. 1998) and the BWW model (Wand  
1988a; Wand et al. 1990a). Other presentations are Telos (Mylopoulos et al. 1990),  
Opdahl et al. (1994), and Krogstie (1995). 

The third category is composed of those presentations in the IS field that 
cover only some part of our core ontology. From a large array of this kind of 
presentations we mention here only those that address the abstraction ontology. 
We can distinguish two kinds of presentations. First, there are suggestions that 
give a comprehensive consideration for multiple principles of abstraction. The 
most notable presentations of this kind are Schrefl et al. (1984), Mattos (1988), 
Kaasboll (1995), Mylopoulos (1998), and Goldstein et al. (1999). Second, there 
are presentations that address only some of the abstraction principles, such as 
classification (e.g. Parsons et al. 2000), generalization (e.g. Smith et al. 1977b; 
Brachman 1983; Gomez et al. 2002), composition (e.g. Smith et al. 1977a; Winston 
et al. 1987; Mostchnig-Pitrik 1993; Motschnig-Pitrik et al. 1999; Varzi 1996; Gerstl 
et al. 1996; Guarino et al. 1996; Henderson-Sellers et al. 1999a; Opdahl et al. 
2001b; Barbier et al. 2001), and grouping (e.g. Motschnig-Pitrik et al. 1995). 
 
3.10.2 Targets and Goals of Analysis 
 
From the aforementioned categories we regard the second one (i.e. 
comprehensive conceptual frameworks and ontologies for the IS field) as the 
most relevant for our purposes. From instances of this category we select two 
most prominent presentations for our comparative analysis. They are the Frisco 
framework and the BWW model. The Frisco framework (Falkenberg et al. 1998) 
is the result of the work of the IFIP WG 8.1 Task Group FRISCO (FRamework of 
Information System COncept), established in 1988. The framework “provides a 
reference background for scientists and professionals in the IS field comprising 
a consistent and coherent system of concepts and a suitable terminology..” 
(Falkenberg et al. 1998, 2). The Frisco framework has been selected for the 
analysis because it is the most serious attempt to reach an agreement on the 
common terminology and conceptual foundation in the IS field. It lasted for 
                                                 
71  http://suo.ieee.org/  
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approximately ten years and involved a large community of distinguished 
scientists. The BWW model (Wand 1988a; Wand et al. 1989; Wand et al. 1990a; 
Wand et al. 1990b; Wand et al. 1993; Wand et al. 1995b) is based on Bunge’s 
ontology (Bunge 1977). It consists of three models: the representational model, 
the state-tracking model, and the good decomposition model. We consider here 
only the representational model. It is aimed to be used “as an ontology to define 
the concepts that should be represented in an IS modeling language, that is the 
semantics of the language” (Wand et al. 1995a,  287). The BWW model has been 
selected for the comparative analysis because it is the only presentation in the IS 
field that is firmly based on a universal ontology. The model has also been 
widely applied for more than ten years.  

The comparative analysis is composed of two parts. In the first part we 
present an overview of objectives, ontological positions, and structures of the 
presentations. Objectives refer to purposes for which the presentations are 
aimed. Ontological positions are analyzed by using the trichotomy of 
objectivistic, constructivistic and mentalistic viewpoints (Stamper 1992b; 
Falkenberg et al. 1998). The basic structure means a way in which the sets of 
concepts are sub-divided and organized in the presentations. The aim of the 
second part is to reveal the coverage and emphases of the presentations. For 
this purpose we distinguish their key concepts and constructs, and using the 
core ontology as a “yardstick” we consider which parts are missing in the 
presentations and which parts are missing from our ontology, compared to the 
presentations. Emphases are seen in numbers of concepts and constructs 
defined for certain domains. 
 
3.10.3 Results of Analysis 
 
3.10.3.1 Overview 
 
Table 10 summarizes the general features of the core ontology, the Frisco 
framework and the BWW model in terms of objectives, ontological positions 
and basic structures.  The core ontology is aimed to provide key concepts and 
constructs for conceiving, understanding, structuring and representing 
fundamentals in reality, and to derive more specific concepts from them. It has 
been constructed based on the assumptions of the constructivist position. The 
core ontology is composed of seven parts, each having its own particular view 
on reality. The generic ontology provides the minimal set of concepts to 
conceive things, their relationships and properties in reality. The semiotic 
ontology applies a universal theory, the semiotics, to distinguish between three 
realms. The extension/intension ontology serves as a conceptual mechanism to 
specialize the notion of a concept and to define its semantic meaning. This 
ontology is needed in particular for establishing the abstraction ontology. The 
language ontology provides concepts for defining the syntax and semantics of a 
language. The state transition ontology is composed of concepts and constructs 
for the recognition of dynamic phenomena in reality. The UoD ontology is 
composed of consolidated concepts through which reality can be perceived as a 
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totality, whether static, dynamic or evolving, determined by a selected point of 
view. Finally, the abstraction ontology serves a rich collection of concepts and 
constructs with which human beings can cope with the complexity of reality.  
 
TABLE 10   Summary of the objectives, ontological positions and basic structures of the 

presentations 
 

 Core ontology Frisco framework BWW model 
Objective “to provide the key 

concepts and 
constructs to 
conceive, 
understand, 
structure and 
represent 
fundamentals in 
reality” 

“to provide an 
ordering and 
transformation 
framework to relate 
different IS modeling 
approaches to each 
other” (Falkenberg et 
al. 1998,  1) 

“is aimed to be used as 
an ontology to define the 
concepts that should be 
represented by a 
modeling language, that 
is the semantics of the 
language” (Wand et al. 
1995a,  287). 

Position Constructivist 
position 

Constructivist position Objectivist position 

Structure Modular structure: 
generic ontology, 
semiotic ontology, 
extension/intension 
ontology, language 
ontology, state 
transition ontology, 
UoD ontology, 
abstraction ontology 

Layered structure: 
fundamental layer, 
layer of actors, actions 
and actands, layer of 
cognitive and semiotic 
concepts (+ two more 
layers) 

No (explicitly) defined 
structure 

 
The Frisco framework is aimed “to provide an ordering and transformation 
framework to relate different IS modeling approaches to each other” 
(Falkenberg et al. 1998, 1). It is also hoped that “based on the definitions of basic  
concepts,  it  will  be  possible  to  achieve  a clear understanding of the various 
kinds of information systems” ... “and to provide a bridge between the various 
disciplines involved, in particular between computer science and social 
sciences”  (ibid p. 1). The framework has adopted the constructivist position 
according to which reality exists independently of any observer, but the 
observer is aware of the fact that we only have access to our own (mental) 
“conceptions” (ibid p. 26). The only concepts referring to the physical reality are 
domain (a domain comprises a “part” or “aspect” of the “world” under 
consideration (ibid p. 46)), domain component, and domain environment. All 
the other concepts are related to the mental reality.   

The framework is composed of several layers. At the bottom there is the 
fundamental layer, which “specifies universal and generic view” (ibid p. 32). 
The layer contains concepts such as thing, relationship, entity, type, state, 
transition, and time. From the concepts at this fundamental layer, all the other 
concepts are derived. The other layers are: the layer of actors, actions, and 
actands, the layer of cognitive and semiotic concepts, the layer of system 
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concepts, and the layer of organizational and information systems. From these 
layers three lowest ones contain concepts that correspond to concepts in our 
core ontology. The layer of actors, actions and actands is motivated with the 
need to consider explicitly what causes transitions (i.e. actions performed by 
actors). The cognitive and semiotic concepts, in turn, are needed to represent 
one’s conceptions of some domain.  

The BWW (Bunge-Wand-Weber) model is “aimed at to be used as an 
ontology to define the concepts that should be represented by a modeling 
language, that is the semantics of the language” (Wand et al. 1995a,  287). It can 
be used to evaluate the capability of a method by examining the mapping 
between ontological constructs and the constructs of the method. The 
fundamental premise is that any modeling grammar must be able to represent 
all things in the real world that might be of interest to users of information 
systems; otherwise, the resultant model is incomplete (Rosemann et al. 2002,  
78). The model has been applied, for instance, to evaluate relational and object-
oriented schema diagrams (Sinha et al.  1995), NIAM model (Weber et al. 1996), 
various ISAD grammars (Green 1997), modeling constructs within the OPEN 
Modeling Language (OML) (Opdahl et al. 2001a), and views in the Architecture 
of Integrated Information Systems (ARIS) (Green et al. 2000).  

The BWW model is based on Mario Bunge’s ontology (Bunge 1977), which 
is premised on assumptions of objectivists, who believe that the real world 
exists independently of any observer and merely needs to be mapped to 
adequate descriptions. The BWW model distinguishes between the real word, 
composed of things, and the world we know via the models of things, that is 
the mental world.  

In the BWW model no clear internal structure among the key concepts has 
been defined. However, there is a set of fundamental concepts (i.e. thing, 
property, state, transition, and stable state) from which all other concepts have 
been derived (Wand et al. 1990b; Wand et al. 1995b, 211). We can also 
distinguish concepts that are related to (a) things and their properties, (b) states 
(e.g. laws and lawful states), (c) history (e.g. event, coupling), and (d) systems 
(Wand et al. 1990b). These divisions are, however, not based on any explicitly 
defined principle.  
 
3.10.3.2 Concepts and Constructs 
 
In this section we present the key concepts and constructs in the core ontology, 
the Frisco framework and the BWW model. Since the core ontology has already 
been defined in the preceding section, we present here only the integrated meta 
model of its concepts. For the two other presentations, we present the 
definitions of the concepts and constructs as they are given in the original 
references and described in meta models.   
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A. Core Ontology  
 
The meta model in Figure 27 gives an overview of the structure and contents of 
the core ontology and illustrates its generative and modular nature. We can see 
that the generic ontology with the fundamental concepts gives the basis from 
which first the semiotic concepts (i.e. sign, concept, and referent) and later the 
other particular concepts are specialized. The semiotic ontology is in an 
important position in differentiating things into signs, concepts and referents. 
The extension/intension ontology serves as the basis for the fundamental 
categorizations of  concepts  on which  the  abstraction ontology, in turn, builds 
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FIGURE 27  Core ontology 
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more specialized concept structures. The state transition ontology concerns the 
behavior of things. The UoD ontology gives means to integrate relevant 
conceptions into a totality, known as the universe of discourse, which is 
perceived either from the static, behavioral or evolutionary viewpoint. The 
language ontology derives its language-related concepts from the concept of a 
sign. In the large abstraction ontology the common base of the principles of 
abstraction is the concept thing, from which all the concepts of abstraction are 
specialized. Classification is used to distinguish between types and instances. 
Generalization concerns types. Composition and grouping can be applied to 
types and instances. The principles, concepts and constructs of the first-order 
abstraction mostly apply to the predicate abstraction, which concerns predicates 
in the intentions of the primary concept things. 
 
B. Frisco Framework 
 
The Frisco framework is composed of almost 100 well-defined concepts on five 
layers. The layers are: the fundamental layer, the layer of actors, actions, and 
actands, the layer of cognitive and semiotic concepts, the layer of system 
concepts, and the layer of organizational and information system concepts. 
From the concepts, those on the three lowest layers are mostly relevant for the 
analysis here. Next, we first present the definitions of the comparable concepts, 
as they are given in Falkenberg et al. (1998), and then describe the meta model 
of the concepts and constructs. 

A thing is any part of a conception of a domain. The set of all things under 
consideration is the conception of the domain. A predicator is a thing, used to 
characterize or qualify other things. A predicated thing is a thing being 
characterized or qualified by at least one predicator. A relationship is a special 
thing composed of one or several predicated thing(s), each one associated with 
one predicator characterizing the role of that predicated thing.  

A set membership is a special relationship between a thing, characterized by 
the predicator called ‘has-element’, and another thing, characterized by the 
predicator called ‘is-element-of’. An elementary thing is a thing, not being a 
relationship and not being characterized by the predicator ‘has-element’. A 
composite thing is a thing, not being an elementary thing. An entity is a 
predicated thing as well as an elementary thing. A type of things is a specific 
characterization applying to all things of that type. A population of a type of 
things is a set of things, each fulfilling the type characterization.  An instance of 
a type of things is an element of a population of that type.  

A transition is a special binary relationship between two different 
composite things, called the pre-state and the post-state of that transition. A 
state is a composite thing, involved as pre-state or as post-state in some 
transition. Transitions can be related to each other, to form state-transition 
structures. A composite transition is a state-transition structure with a unique pre-
state and a unique post-state. A transition occurrence is a specific occurrence of a 
transition. A rule determines a set of permissible states and transitions in a 
specific context.  
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An actor is a special thing conceived as being “responsible” or 
“responsive” and as being able to “cause” transitions. An action is a transition 
involving a non-empty set of actors in its pre-state. An actand is a thing 
involved in the pre-state or post-state of an action. A human actor is a 
responsible actor.  

A domain comprises any “part” or “aspect” of the “world” under 
consideration. A perception is a special actand resulting from an action whereby 
a human actor observes a domain with his senses and forms a specific pattern 
of visual, auditory or other sensations of it in his mind. A perceiving action is a 
special action of a human actor having a domain as input actand and a 
perception as output actand. A perceiver is a human actor involved in a 
perceiving action. A conception is a special actand resulting from an action 
whereby a human actor aims at interpreting a perception in his mind. A 
conceiving action is a special action of a human actor having a perception and 
possibly some action context as input actand and a conception as output actand. 
A conceiver is a human actor involved in a conceiving action.  

A symbol is a special entity used as an undivisible element or a 
representation in a language. An alphabet of a language is a non-empty and 
finite set of symbols. A symbolic construct is a non-empty and finite 
“arrangement” of symbols taken from an alphabet. A language is a non-empty 
set of permissible symbolic constructs. A representation is a special actand 
describing some conception(s) in a language. A representation action is a special 
action of a human actor having a conception and possibly some action context 
as input actand(s) and a representation as output actand. A representer is a 
human actor involved in a representing action. A label is a special entity being 
an elementary representation and used to referring to some conception in an 
elementary way. A reference is a special binary relationship between a 
conception and a representation used to refer to that conception.  

In Figure 28 concepts on three layers of the Frisco framework are 
metamodeled. Bold lines are used to show boundaries between the layers. The 
upper part contains the concepts of the fundamental layer. The lower part 
contains the cognitive and semiotic concepts (i.e. the third layer). The concepts 
not surrounded by the bold line belong to the layer of actors, actions and 
actands (i.e. the second layer)72. Although these concepts do not belong to the 
scope of the core ontology, we have included them in the meta model, because 
they form the important “bridge” through which the relevant cognitive and 
semiotic concepts have been defined. The meta model is not aimed to be a 
precise presentation of relationships between the concepts for two reasons. 
First, the definitions in the Frisco Report (Falkenberg et al. 1998) do not provide 
an unambiguous basis for such a presentation, in particular as to the 
multiplicity constraints. Second, we are not going to go into such details in our 
analysis. Based on the meta model we can now make the following general 
remarks about the Frisco framework.   
                                                 
72  Note that this layer in the Frisco framework contains many other concepts. They are 

not included here because they correspond to the context ontology in OntoFrame.   
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FIGURE 28  Meta model of the relevant part of the Frisco framework 
 
On the fundamental layer, the most focal concept is thing, which is defined via 
the relation to conception, that is to say, to concern the mental world. 
Connections between the mental world and the physical world remain vague. 
The most fundamental concepts (thing, relationships, predicator, predicated 



  

 

135

thing) are related to one another in the way that is similar to ours. The 
fundamental layer also contains concepts for states and transitions.  

The cognitive and semiotic concepts are structured according to basic 
mental processes: perceiving, conceiving, and representing. To relate them 
through the input/output relationships the concepts of action, actor, and actand 
are defined. In this the aim is to emphasize the human nature of processes and 
their outputs (perceptions, conceptions, representations). The language-related 
concepts are defined based on the notion of representation.  
 
C. BWW Model  
 
The BWW (Bunge – Wand – Weber) model has been described and applied in 
several studies (e.g. Wand 1988a; Wand 1988b; Wand et al. 1989; Wand et al. 
1990a; Wand et al. 1990b; Paulson et al. 1992; Wand et al. 1993; Parsons et al. 
1993; Wand et al. 1995a; Wand et al. 1995b; Wand 1996; Green 1997; Weber et al. 
1996; Weber 1997; Wand et al. 1999; Green et al. 2000; Parsons et al. 2000; Opdahl 
et al. 2001a; Soffer et al. 2001; Rosemann et al. 2002). During more than ten years 
the terminology in, and the contents of, the BWW model have, to some extent, 
evolved. The model is also rather extensive. Thus, to make a condensed and 
coherent description of the model is very challenging. Although there are some 
BNF representations of the BWW constructs (e.g. Wand et al. 1993; Weber 1997), 
it is not easy to transform them into the form of a meta model. Rosemann et al. 
(2002) present a meta model of some of the most essential BWW constructs in 
the form of an extended ER model, called eERM (Scheer 1998), but the meta 
model covers only a part of those concepts that are relevant to this study. 
Nevertheless, we make here an attempt to present a short overview of the 
model and describe it in a meta model. We base our presentation on Wand et al. 
(1993), Wand et al. (1995b), Green et al. (2000), and Rosemann et al. (2002). First, 
we present the definitions of those concepts in the representational model (i.e. 
one of the three models in the BWW model), which are embraced by the scope 
of the core ontology73. We also describe the selected part of the model in the 
meta model (see Figure 29). At the end of the section we present general 
remarks of the described model.  

The world is made up of things that possess properties. There are concrete 
things, which are called substantial individuals or entities, and conceptual things 
(e.g. mathematical concepts). Domain modelling is based upon someone’s view 
of the existing or possible reality. The notion of a concrete thing applies to 
anything perceived as a specific object by someone, whether it exists in the 
physical reality or only in someone’s mind.  

There are no things without properties. Moreover, properties are always 
attached to things. Properties of concrete things are called substantial properties. 
Properties of conceptual things are called formal properties, attributes or 
predicates. There are two kinds  of  properties:  intrinsic properties that depend  
                                                 
73  Due to the selected scope we have excluded e.g. system-related concepts of the 

representational model from our consideration. 
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FIGURE 29  Meta model of the relevant part of the BWW model 
 
on one thing only (e.g. the Height of a Person), and mutual or relational 
properties that depend on two or more things (e.g. being a University_Student). 
Properties themselves cannot have properties. The properties of a thing include 
laws, which are constraints on other properties and can specify relationships 
among properties (e.g. a “law” connecting Rank and Salary of an Employee). A 
class is a set of things that can be defined only via their possessing a single 
property. A sub-class is a set of things that can be defined via their possessing 
the set of properties in a class plus an additional set of properties. A kind is a set 
of things that can be defined only via their possessing two or more properties. 

Things can associate to form composite things, whether of composite or 
primitive things. If things associate to form a thing, then each of the former is a 
component of the latter. A property of a composite thing can be inherited  (i.e. a 
property of a component) or be emergent (i.e. a property of none of the 
components). A property that belongs to a component thing is called a 
hereditary property. A composite thing must possess emergent properties. 

The properties of a thing exist, whether or not humans are aware of them. 
Human conceive of things, however, in terms of models of things. Such models 
are conceptual things. Properties of conceptual things are termed attributes. 
Attributes are characteristics assigned to (models of) things according to human 
perceptions. For example, people attribute Color to a thing while the real 
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property is the reflection of some wavelength. Every property can be modelled 
as an attribute but not every property will be described in terms of attributes. 
The same property might be represented by more than one attribute, and 
several properties might map into one attribute (for example, the notion of IQ 
reflects many properties of a human being). Not every attribute has to represent 
a property (e.g. the Name of a Person). 

An attribute is represented as a function from a set of things and a set of 
‘observation points’ (in particular time) into a set of values. This is the basis for 
defining a model of a thing as a functional schema, which is a set of attribute 
functions defined over a certain domain. The state of a thing comprises the 
values of the functions in the functional schema at a given time point in a 
certain domain. Because of the laws, called state laws, not all possible 
combinations of state function values represent valid states of a thing. A lawful 
state space is the set of states of a thing that comply with the state laws of the 
thing.  

Every change is tied to things and every thing changes. When a thing 
changes, some of its properties must change. An event is a change of a state of a 
thing. An event space is the set of all possible events that can occur in the thing. 
An external event is a change of state due to the actions of other things. An 
internal event is a change in the state of a thing due to a transformation inside 
the thing. A well-defined event is an event in which the subsequent state can 
always be predicted given that the prior state is known; otherwise an event is a 
poorly defined event. A transformation is a mapping from one state to another 
state. A lawful transformation defines which events in a thing are lawful.   An 
unstable state is a state that will be changed into another state by virtue of the 
action of transformation in the system; otherwise, the state is a stable state. It 
follows from above that a thing can change state from a stable state only due to 
an external event. The history of a thing means the chronologically ordered 
states that a thing traverses.  

Figure 29 presents the meta model of the concepts and relationships of the 
selected part of the BWW model. We can make the following remarks on the 
basis of the meta model. First, the most fundamental concepts are thing and 
property. There is no isA relationship between them. Both the things and the 
properties are specialized in several ways. Things are either concrete or 
conceptual, and either composite or primitive. Properties are substantial or 
formal, emergent or hereditary, and intrinsic or mutual. In the BWW model 
there is no basic concept referring to relations between things. A relation is 
regarded as a special kind of property, that is, mutual property. A class and a 
kind are defined extensionally. A special feature of the BWW model is that it 
provides two concepts for characterizing “thing”, namely property and 
attribute. An attribute is a “mental” counterpart to a “physical” property. 
Besides the aforementioned fundamental concepts, the selected part of the 
BWW model contains concepts related to states and transformations from one 
state to another. Via these concepts the BWW model extends to provide a large 
set of system-related concepts. These are excluded from this presentation.  
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3.10.3.3 Counterparts and Coverage   
 
To have a more concrete view about how the core ontology, the Frisco 
framework, and the BWW model compare with one another we present 
concepts organized according to the structure of the core ontology in Table 11.  
The table also helps to analyze the coverage and emphases of the three 
presentations. It should be noted that although some concepts are located in the 
same rows, it does not mean that the meanings of the concepts are exactly the 
same. The suggestion made here is that the concepts are, to a large extent, 
comparable. We are not going to discuss differences between the meanings in 
details (for the definitions see the preceding sections). Those concepts in the 
Frisco framework and the BWW model, for which there are no counterparts in 
the core ontology, are presented in the last row in Table 11.  

The Frisco framework addresses mainly the subjective reality (through 
conceptions) but it does also recognize the physical world, although it refers to 
it in a “vague” way (i.e. domain, “world”). All the concepts specialized from 
thing concern the subjective reality. The most fundamental concepts (i.e. thing, 
relationship, predicator, predicated thing) have direct counterparts in our 
ontology. The notion of a role is not explicitly defined but substituted with the 
use of predicator. The Frisco framework does not define the concepts ‘point of 
view’ and ‘framework’. Neither does it recognize the specific semiotic concepts. 
The only concept in the intension/extension ontology that is defined in the 
framework is population.  

Because we have used the Frisco framework to elaborate our language 
ontology, it is natural that there are many similarities between these two 
presentations as regards this part74. It is, however, worth of noting that in the 
Frisco framework the conceptual basis for the language-related concepts is 
tightly bound to concepts of a human actor and his mental processes. In 
contrast, we have derived the concepts directly  from the  semiotic concepts and 
delayed the introduction of the “contextual” aspects to the next upper level of 
OntoFrame. 

Also for the state transition ontology the concepts of the core ontology and 
the Frisco framework are similar to one another. The only exception is the 
notion of an event, which is missing from the Frisco framework. The concepts of 
the UoD ontology are not included in the Frisco framework either. The 
abstraction ontology is covered quite superficially in the Frisco framework. The 
only concepts defined are: type/instance, composite thing/component and set 
membership. These are definitely not enough when considering the importance 
abstraction has in mental processes.  

In addition to the concepts having counterparts in the core ontology, the 
Frisco framework defines a number of concepts that are mostly related to 
mental processes of a human being and their outcomes. We save the notion of 

                                                 
74  Actually, we established the language ontology before the Frisco framework was published, but we 

later noticed needs to refine it according to the Frisco framework.   
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an entity for the specific use in modeling the UoD (see Chapter 6). The notions 
of rule, actor, action and actand are given counterparts in the context ontology 
(Chapter 4).  

The BWW model recognizes clearly the physical world, due to its 
objectivist position, and provides several concepts for characterizing and 
structuring   it.  A   bridge   between   the  physical   world  and   the  “mind”  is  

 
TABLE 11  Concepts of the core ontology, the Frisco framework, and the BWW model 
 

Core ontology Frisco framework BWW model 
Generic ontology   
   physical reality domain, “world” world 
   subjective reality  mind 
   thing thing thing 
   relationship relationship mutual property 
   property predicator intrinsic property, attribute 
   characterized thing predicated thing  
   role   
   point of view   
   framework   
Semiotic ontology   
   sign   
   concept   
   referent   
Intension/extension ontology   
   predicate   
   intension   
   extension population  
   population   
   basic concept   
   derived concept   
   abstract concept  conceptual thing 
   concrete concept   
   individual concept   
   generic concept   
Language ontology   
   language language  
   semantics   
   abstract syntax   
   concrete syntax   
   vocabulary alphabet  
   symbol symbol  
   expression representation,  

symbolic construct 
 

   label label  
   proper name   
   common noun   

     (continues) 
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TABLE 11   (continues) 
 

Core ontology Frisco framework BWW model 
State transition ontology   
   state state state 
   transition transition transformation 
   event  event 
   transition structure state-transition structure  
   sequence sequence  
   choice choice  
   concurrence concurrence  
   elementary transition elementary transition  
   composite transition composite transition  
   life cycle   
UoD ontology   
   Universe of Discourse   
   UoD state   
   UoD behavior  history 
   UoD evolution   
Abstraction ontology   
Classification   
   instOf   
   type type class, kind 
   instance instance  
Generalization   
   isA   
   supertype   
   subtype   
Composition   
   partOf   
   whole composite composite 
   part component  
Grouping   
   memberOf set membership  
   group   
   member   
Not included in the core 
ontology 

transition occurence, 
elementary thing, entity, 
rule, actor, action, actand, 
human actor, perceiving 
action, conceiving action, 
representing action, 
perception, conception 

concrete thing, primitive 
thing,  
substantial property, formal 
property, hereditary 
property,  
emergent property, 
state law, external event, 
internal event, well-defined 
event, unstable state, stable 
state,  poorly defined event  

 
constructed via the notion of an attribute that is a characteristic assigned to 
things according to human perceptions. The model does not contain the notion 
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of a relationship. Instead, it links two or more things together with the notion of 
a mutual or relational property.   

The BWW model does not address the semiotic ontology, the 
intension/extension ontology nor the language ontology. Instead, it provides a 
substantial consideration for states and transformations from one state to 
another. This area is important for the model due to its system-theoretic basis. 
Only some of the concepts in the UoD ontology and the abstraction ontology 
are recognized and defined.  

Due to the differences between the approaches of the core ontology and 
the BWW model, the BWW model contains several concepts that are not 
included in our core ontology. The BWW model provides, for example, rich 
sub-categorizations for the notions of property, event and state.  

We consider it important to distinguish between two realities, the physical 
reality and the subjective reality. Likewise, we see it necessary to have specific 
concepts for identifiable beings (thing), their characteristics (property) and 
relations (relationship). Conceiving a phenomenon in reality as a thing, a 
property, or a relationship, depends on the selected point of view, which in turn 
may be determined by a selected framework. Furthermore, it is important to 
make the semiotics, as a universal theory, visible in the core ontology. 
Therefore, we have used the semiotic ontology as a focal point from which the 
specializations of the notion of a concept, on one hand, and the derivation of 
language-related concepts, on the other hand, have started. The 
intension/extension ontology contains rich categorizations of concepts and 
provides a foundation for deriving specific concepts and constructs of the 
abstraction ontology. In the core ontology abstraction is strongly emphasized 
for several reasons. First, abstraction is vital to human conceiving and thinking. 
Second, abstraction, in all its forms, is the major mechanism with which all the 
concepts in the extensive OntoFrame have been derived.  

The language ontology provides concepts that are fundamental for the 
presentation of concepts and constructs. The state transition ontology gives 
means to distinguish between static and dynamic phenomena in reality. The 
UoD ontology is needed to couple together the phenomena that are relevant 
from an adopted point of view.   
 
3.10.4 Conclusions 
 
To conclude from the comparative analysis, we can state that the Frisco 
framework is, to a large extent, similar to the core ontology of OntoFrame as 
regards the generic ontology, the language ontology and the state transition 
ontology. In contrast, it provides insufficient support for perceiving, 
understanding, structuring and presenting phenomena that are addressed by 
the semiotic ontology, the intension/extension ontology, the UoD ontology, and 
in particular the abstraction ontology. The BWW model differs from the two 
others as regards its objectivist position. It provides rich concepts for the 
domains of the generic ontology and the state transition ontology, but much 
less support for the other domains. The core ontology of OntoFrame provides 
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the most comprehensive support for those domains, which have above been 
argued to be important. A large number of concepts included in the core 
ontology have been specialized from one single concept (thing), thus ensuring 
coherence and consistency, and structured into component ontologies, thus 
promoting the modularity of the ontology.  
 
 
3.11 Summary 
 
 
In this chapter we defined the core ontology to be the ”heart” of OntoFrame.  
The core ontology is composed of seven component ontologies: the generic 
ontology, the semiotic ontology, the intension/extension ontology, the 
language ontology, the state transition ontology, the UoD ontology, and the 
abstraction ontology. For each component ontology, the concepts and 
relationships were defined and presented in meta models in our ontology 
representation language. Following a generative approach, the concepts of the 
core ontology were specialized from those defined in more generic component 
ontologies. This yielded a modular structure, which helps the interpretation, 
use and integration of the concepts and constructs. The related work was 
widely referred and compared with each component ontology. In addition, an 
extensive comparative analysis of the two most prominent presentations, the 
Frisco framework and the BWW model, was made to find out their objectives, 
ontological positions, basic structures, coverage and emphasizes. The analysis 
showed that the core ontology provides the most comprehensive and 
modularized set of concepts for perceiving, structuring and presenting 
fundamentals in reality. 

Our goal has been to engineer the core ontology that is as generic as 
possible. In addition, the ontology should reflect, in a multifaceted fashion, the 
diversified phenomena in reality, without going too much into details in any 
specific domains. Starting with these aims, we first applied a very general view 
according to which reality means just things. With a slightly more specific 
viewpoint we recognized properties of things and relationships between things. 
A conception about whether to have a thing, a property or a relationship 
depends on the selected point of view. Having built the generic foundation (i.e. 
the generic ontology), we selected and applied universal theories - semiotics, 
linguistics and systems theory. Based on these theories we can trust that the 
corresponding component ontologies remain sufficiently general. To achieve 
more specific concepts in the essential domains, we finally applied the notions 
of intension, extension, UoD, and abstraction to derive the rest of the 
component ontologies in the core ontology.  

As far as we know, this kind of approach is quite rare in the literature. The 
Frisco Group (Falkenberg et al. 1998) did use a generative approach to derive 
specific concepts from elementary concepts. Its outcomes cover, however, only 
a part of the scope of our core ontology. In the other prominent presentation, 
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the representational model, as a part of the BWW model (Wand et al. 1989, 
Wand et al. 1990a), has been engineered based on Bunge’s ontology, in which 
some kind of generative approach has also been applied. The representational 
model is, however, quite “unstructured” and ignores many of the essential 
aspects of reality. Although the Frisco framework and the BWW model are two 
of the most notable presentations, they have not been compared earlier to this 
degree. Hence, this chapter also contributes to knowledge about similarities in 
and differences between them.   



 

 
 
 
 
 
 
 
 
 
 
 
4 CONTEXT ONTOLOGY  
 
 
In Chapter 3 we defined the core ontology, which provides the most 
fundamental concepts, in a modular structure, for perceiving reality. In the core 
ontology, individual things are related to other things through basic viewpoints 
and frameworks, thus establishing conceptual constructs with which one can 
make sense of phenomena in reality. In the semiotic ontology, for instance, 
things are related to one another through the semiotic relationships. In the state 
transition ontology things are conceived as states, transitions between states, or 
events triggering transitions. The points of view and frameworks applied in the 
core ontology are, however, too simple to provide an adequate support for the 
understanding of complex phenomena related to human and organizational 
actions. We need a new, more sophisticated approach and framework. In this 
chapter we define a contextual approach and an ontology, called the context 
ontology, which applies the contextual approach.   

The general objective of the context ontology is to provide concepts and 
constructs, which help us understand the nature, purposes and meanings of 
individual things. The basic idea in the ontology is to aid the conceiving of an 
individual thing as a part of a whole, called a context. Thus, instead of viewing 
the UoD as a generic structure of things, the context ontology guides us to see 
things in special roles or meanings in a context. The context ontology is one of 
four contextual ontologies, the other ontologies being the layer ontology, the 
perspective ontology, and the model level ontology (Figure 30). All these 
ontologies have been derived from the core ontology. The three other 
ontologies will be presented in the next chapters.  

This chapter is organized as follows. First, we define the contextual 
approach, characterize its application domain and objectives, and establish the 
theoretical basis for the approach. After a comprehensive literature review and 
discussion, the contextual approach is anchored on the underlying theories, 
including semantics, pragmatics, and theories of human and social action. 
Second, we elaborate the notion of a context and its conceptual structure.  
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FIGURE 30  Focus of Chapter 4 
 
A context is defined as a construct that is composed of concepts within seven 
contextual domains. Third, we define key concepts and relationships for all the 
seven contextual domains and present them in meta models. We also make 
plenty of references and comparisons to the relevant works. Fourth, we define a 
large set of inter-domain relationships and consider how implicit relationships 
between the contextual domains and between the contexts can be inferred from 
the basic relationships. The chapter ends with a summary and discussions.  
 
 
4.1 Contextual Approach 
 
 
In defining component ontologies on lower levels of OntoFrame our aim is to 
find approaches and sets of concepts that enable us to capture more specific 
aspects and meanings of things in reality. In this chapter our point of departure 
is the notion of a context and its potential to support our aim. A context seems 
to be a suitable notion for many reasons. First, it is a highly universal concept 
that is known and applied in a large number of disciplines, raging from formal 
logic and computational linguistic to organizational theory and information 
systems. Second, it is a common term also in the normal speech. Third, the most 
common aim of the use of context in various disciplines is to consider a focal 
thing or an event of interest as a part of the environment (context) in order to 
understand its nature and meaning (Duranti et al. 1992). That is precisely what 
we wish to achieve with our ontology.  

In this section we define the approach, referred to as the contextual 
approach that is based on the notion of a context. This approach is of high 
importance, not only to the context ontology, by also to OntoFrame as a whole. 
Therefore, we want to make a serious attempt to define the approach in a way, 
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which firmly anchors it on the relevant theories and provides an advantageous 
baseline to establishing the context ontology.  
 
4.1.1 Definition 
 
We start with considering the notion of an approach. Generally speaking, an 
approach is seem something that provides generalized principles, which help us 
conceive reality, recognize problems and/or find potential solutions in it. 
Implied from the above, we can distinguish between the conception-oriented 
approaches, the problem-space oriented approaches, and the solution-space 
oriented approaches. These approaches are interrelated: the problem-space 
oriented approaches are based on conception-oriented approaches, and the 
solution-space oriented approaches are based on the application of some 
problem-space oriented approaches. Metaphorically put, we can say that an 
approach sets a path or a road along which goals set for conceiving or problem 
solving can be approached. 

The contextual approach is a conception-oriented approach. A general 
definition of the contextual approach goes as follows: the contextual approach is a 
conception-oriented approach, which serves the recognition, understanding 
and specification of the purposes, meanings, and effects of things, through 
considering them to be contexts and/or parts within contexts. To elaborate the 
definition, the following issues need to be addressed: (a) an application domain 
at which the contextual approach is aimed, (b) objectives of the approach, (c) 
theories underlying the approach, and (d) conceptual contents of the approach. 
In addition, (e) some examples of outcomes from applying the approach should 
be provided.  

In defining the contextual approach we proceed in a top-down fashion. 
First, we characterize the application domain (Section 4.1.2) and specify the 
objectives for the contextual approach (Section 4.1.3). Second, we establish the 
theoretical foundation for the approach (Section 4.2) from which the content of 
the approach is then derived (Section 4.3). Third, we elaborate the contents of 
the context ontology by explicitly defining the contextual concepts and 
constructs (Sections 4.4-4.6). The definitions form direct outcomes of applying 
the contextual approach. More evidence of the applicability of the approach will 
be provided in the following chapters. 
 
4.1.2 Application Domain  
 
The goal of our study is to develop a conceptual foundation for the analysis, 
design, and implementation of information systems development methods. 
This goal addresses a number of sub-domains such as information systems, 
information systems development, and method engineering. These sub-
domains are parts of the application domain of the contextual approach. These 
all embody, to a high degree, human and social action. In the following we 
characterize the application domain on two levels, first as a generic human and 
social action, and then more specifically as the analysis, design, and 
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implementation of ISD methods. Human and social action has been subject to a 
wide array of research in several fields, e.g. in anthropology, philosophy, 
psychology, linguistics, organizational theories, sociology, economics, politics, 
law, statistics, library science, cybernetics, systems theory, computer science, 
and information systems. Here, we content ourselves only with common 
insights and views. 

Human and social action can be characterized in terms of six intrinsic 
properties. The most significant property of a human being is his/her ability to 
use a semantically and pragmatically rich language. It enables one to observe, 
conceive, understand, and describe relevant features of reality. Second, a 
human being is able to analytically, heuristically or intuitively make 
conclusions, based on his/her observations, in order to promote his/her 
understanding and management of the environment. Third, a human being is, 
to a high degree, oriented towards the goals emerging from the needs of 
his/her own, on one hand, and from the expectations of the environment, on 
the other hand. Fourth, a human being is able to learn in several areas including 
language usage, sensations, norms, etc. This, together with his/her orientation 
to goals, facilitates the application, construction and reconstruction of norms 
and rules. Fifth, human beings make their most prominent achievements in 
cooperation with others, under the goals, norms and values they have jointly 
established. A prerequisite for cooperation is a common language, understood 
and cultivated by all members in the society. Sixth, a great deal of human and 
social action is primarily concerned with information. Information is essential in 
rendering human and social actions effective. 

The view of the application domain of the contextual approach becomes 
more concrete when relating to information processing. The application domain 
comprises people developing and applying rules, norms and facilities to collect, 
process, store, distribute, and utilize information in order to make actions of the 
others and/or of their own possible or more effective (cf. Nissen 1980). This 
kind of human and social action is visible at several processing layers. At the 
root layer (IS), information is collected, processed, transmitted and utilized in 
order to make “right” decisions on business actions. At the next layer (ISD), 
information is collected, processed, transmitted and utilized in order to make 
“right” decisions on designing and implementing IS’s. At the third layer (ME), 
information is collected, processed, transmitted and utilized in order to make 
“right” selections and adjustments of ISD methods.  Finally, at the highest layer 
(RW), information is collected, processed, transmitted and utilized in order to 
engineer ME methods. For all four layers it is important that the nature and 
meaning of information processed and of actions performed are adequately 
understood.  
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4.1.3 Objectives 
 
The contextual approach is a conception-oriented approach, which aims at the 
following objectives:  
1. The approach should be natural.  
 The approach should reflect an intuitive view, held by a human being, on 

the structure and aspects of reality.  
2. The approach should be easy and flexible to apply.  
 The approach should be easy to learn and use, and flexible by its 

conceptual structure, in order to enhance its applicability for different 
purposes.  

3. The approach should have a sound theoretical basis.  
 The approach should be based on sound theories on information 

processing as well as on human and social action.  
4. The approach should cover essential aspects of a context. 
 The approach should guide us to conceive, structure and represent the 

most essential aspects of the contexts.  
5. The approach should help perceive the nature, meaning and effect of individual 

things in a totality.  
 This means, for instance, that the meaning of data can only be understood 

if knowledge is available of those situations in which the data is created, 
processed and/or utilized. Likewise, it is hard to understand the essence 
of action if the action is not connected, at least, to its objectives, to objects 
that are involved, and to subjects conducting the action (cf. Kuutti 1991). It 
seems equally evident that the ultimate intentions of persons can only be 
revealed by observing their behavior in real situations.  

 
The contextual approach is not intended for the studies of specific features or 
structures of facilities, persons or any other elementary things alone. Instead, its 
purpose is to bring the things together and provide a framework to interrelate 
them, in order to help us find out their purposes and meanings.  
 
 
4.2 Theoretical Basis 
 
 
The purpose of this section is to establish the theoretical basis for the notion of 
context. We approach this along three paths: (a) we make a short survey of the 
literature to find out those disciplines for which context is an essential research 
issue, (b) we make a review of those theories that pursue the same contextual 
objectives as we do, and (c) we search for studies which, although lacking any 
theory, work with concepts which can be considered to be essential parts of a 
context. After that we are ready to make a synthesis and complete the 
definitions of the context and the contextual approach in Section 4.3. 
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4.2.1 On the Notion of a Context 
 
The notion of a context75 plays an important role in many disciplines, such as in 
formal logic (e.g. Costa 1999), knowledge representation and reasoning 
(Brezillon et al. 1998; Sowa, 2000; Ghidini et al. 1999), machine learning (Matwin 
et al. 1996), pragmatics (Levinson 1983), computational linguistics (Clark et al. 
1981; Berthouzoz 1999), sociological linguistic (Halliday 1978), problem solving 
(Motschnig-Pitrik et al. 2001), organisational theory (Weick 1995), sociology 
(Layder 1993), neurology, cognitive psychology (Kokinov 1999), and 
information systems (Kyng et al. 1997).  Due to the large variety of research 
fields, it is no surprise that there is no general agreement on a unique, shared 
notion of a context. Rather the interpretation of the notion itself is context-
sensitive. Linguists may see it as a psychological construct, a subset of a 
hearer’s assumptions about the world that is used in interpreting an utterance.  
To an organisational theorist context is a social environment in which actions 
are taken. To a sociologist, a context is provided by macro-social forms, such as 
gender, national ethos, and economic maturity of a society (Berztiss 1999). Even 
within the same discipline, conceptions of context may vary a lot. In 
philosophy, for instance, it is questioned, whether context is internal, part of the 
state of the mind, or external, part of the state of reality. Is it explicitly 
represented in the human mind or just implicitly (Kokinov 1999)?  Because of 
this large variety of interpretations, it would be better to speak of “family-
resemblance” concept (Penco 1999, 269). 

Some of the confusion results from an ambiguity in the English word 
‘context’. According to Webster’s Encyclopedic Unabridged Dictionary 
(Webster 1989), context means (1) “the parts of a written or spoken statement 
that precede or follow a specific word or passage, usually influencing its 
meaning or effect”, and (2) “the set of circumstances or facts that surround a 
particular event, situation, etc.”. Hence, the notion of a context can refer to the 
text, to the information contained in the text, to the thing that the information is 
about, or the possible uses of the text, the information, or the thing itself (cf. 
Sowa 2000). The ambiguity results from which of these aspects happen to be the 
central focus. 

In spite of inconsistencies and diverging interpretations, a context is of 
vital importance in many disciplines, especially in that sense in which we are 
interested about it, that is to say in revealing meanings of things.  As Klemke 
(1999, 481) states, psychologist perform memory test to analyze the effect of a 
context on the remembrance of words (Srinivas 1997). Researchers from 
machine learning study the effects of a context on the automatic learning of 
concepts (Matwin et al. 1996). Organizational research people use 
communication models to investigate the role of a context in information 
product evaluation (Murphy 1996) and cognitive scientists stress the 
importance of a context for expertise (Raccah 1997). In artificial intelligence, the 

                                                 
75  In Latin contexere means weaving or joining together. 
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notion of a context was introduced in a logic framework by McCarthy as early 
as in 1971 in his Turing Award talk (Massacci 1996). 

Due to its importance and universality, we adopt a context as the most 
essential concept of our contextual framework. Also, the way a context is used 
as the environment through which the meanings of its parts are explained 
encourages us to the use of the concept (Duranti et al. 1992). A context is 
characterized with the following generic features: (a) It is determined and 
shaped by one or more focal parts of which making sense is important. (b) It is 
composed of parts, which all have specific roles of their own. (c) It is a totality 
in which each part gets its meaning through the position it holds in the whole 
and through the relationships it has with the other parts. In the next sections, 
our aim is to elaborate these general characterizations into the precise 
definitions of the context and the contextual approach.   
 
4.2.2 Relevant Theories  
 
In this section we make a review of those basic theories that pursue the same 
contextual objectives as we do. From the viewpoint of our study, the most 
promising theories are those, which have their focus on human and social 
action, and for which features of information and data processing are essential. 
In general, the semiotics as a theory of signs meets these requirements. Peirce 
(1991) divided semiotics into three branches: syntactics, semantics, and 
pragmatics76. Semiotics itself is, however, too general and superficial in its 
treatment of contextual aspects. Stamper (1973, 1996) has extended the set of 
three semiotic branches into the semiotic ladder, which builds a bridge between 
the physical world and the social word and helps to distinguish between the 
different conceptions of meaning. The steps in the ladder are: physical world, 
empirics, syntactics, semantics, pragmatics, and social world. In Table 12 for 
each step, essential things and conceptions of meanings are presented (cf. 
Falkenberg et al. 1998, 140-145). 

Elements in the physical world are physical signals and marks. They have 
almost nothing to do with meaning. In the empirics, the considerations are 
focused on a process of encoding of messages, transmission of them over a 
channel, disrupted by noise and entropy, and finally of decoding messages 
back. “Meaning” in this environment stands for the equivalence of codes, and 
so the view of meaning is highly technical and narrow. Syntactic “meaning” can 
be manifested through transformations of symbolic forms to other forms 
according to the rules. Not until on the semantic step of the semiotic ladder are 
meanings discussed in the real sense. As it is known, there are several theories 
of semantic meaning (Alston 1980; Lyytinen 1985; Holm et al. 1995). Most of 
them maintain a view of a dictionary-like or universal meaning of words that 
ignores effects an individual interpreter has on the meaning. More close to the 
subjective   meaning   can    be    reached   in   pragmatics,    which   considers   a  
                                                 
76  The words syntactics (or syntax), semantics, and pragmatics were introduced by 

Charles Morris (1964) in his presentation of Peirce’s three branches of semiotics. 
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TABLE 12  Steps in the semiotic ladder 
 

Steps of the ladder Things Meaning 
Physical world signals, marks, traces,… equivalence of signals 
Empirics codes, entropy, channel,… equivalence of codes 
Syntactics signs, formal structures, 

production rules,… 
through transformation rules 

Semantics meaning, objective reality,... mapping from syntactic 
structures onto features of real 
world77  

Pragmatics intentions, communication, 
speakers, utterances, 
contexts 

defined in terms of the actual 
social consequences which stem 
from communication 

Social world beliefs, expectations, norms, 
attitudes, commitments 

defined in terms of social 
norms involved 

 
relationship between the  signs  as  meaningful   utterance and the behaviour of 
responsible agents78. This view interlinks information, expression, message, or 
whatever, to a context in which that something is expressed and interpreted by 
someone, at the concrete time and place. The most in-depth consideration of 
meaning is possible when conducted in conjunction with the social world. The 
social world embraces norms of many kinds, ways of behaving, sets of values, 
shared models of reality, common attitudes, organisational cultures, etc.  

As said above, we are interested in theories which focus on information 
and its meaning, as well as on the understanding of human and social action. 
Thus our concern is related to the upper part of the semiotic ladder, i.e., 
semantics, pragmatics and social world.  Compared to the meanings Webster 
Dictionary provides for a context, we can see that the first two (i.e. semantics 
and pragmatics) are more or less related to the first conception, and the social 
world is related to the second conception in Webster (1989). 

Next, we shortly describe theories of semantics, pragmatics and social 
world with the aim to recognize their essential principles and concepts that 
could elaborate our conceptions of the contextual approach and the context. We 
also describe some approaches based on the theories. 
 
 
 
 

                                                 
77  Note that this view is maintained in the objectivistic position. Another view, 

favoured by the constructivist position, considers meaning as being “constructed and 
continuously tested and repaired through people using syntactic structures to 
organise their co-ordinated actions” (Falkenberg et al. 1998, 143).  

78  The semantics-pragmatics distinction is commonly discussed in linguistics and in the 
philosophy of language. However, it is not altogether clear; see, for example, the 
discussion in Levinson (1983, Chapter 1). For present purposes, we say that 
semantics is concerned with context-free meaning, while pragmatics is concerned 
with context-dependent meaning. 
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4.2.3 Semantics  
 
Semantics is the study of meaning. Due to a variety of semantic theories, there 
is a spectrum of “meanings” of meaning in the linguistic literature. Alston 
(1980) classifies the theories of meaning into three groups, which he calls 
referential, ideational and behaviour theories. Lyytinen (1985) defines five 
“language views” that have resulted in different conceptions of meanings. The 
views are: the Fregean core, the Chomskyan grammar, Piage’s schema, the 
Skinnerian response, and Ordinary speaking. Holm et al. (1995) distinguish 
between the referential theory, the ‘traditional’ theory, the ideational theory, the 
stimulus-response theory, and meaning in use. Generally speaking, meaning 
can be considered as a function from signs to reality (Stamper 1992b). We apply 
here the classification of semantic principles presented by Stamper (1996). 
Stamper distinguishes between the objectivist principle, the mentalistic 
principle, and the constructivist principle.  

According to the objectivist meaning, an observer ‘sees’ the objective 
connection between the sign and the referent that is independent of the 
observer. There is only one reality, independently of any observer and 
interpreter. Meaning is what a sign refers to, or stands for (Lyons 1981), in other 
words, meaning is the relation between the sign and what is referred to. 
According to the mentalistic meaning, there is no one (physical) reality, because 
reality is conceived and perceived solely by the senses of human beings. 
Meaning of the sign is the idea or concept, associated with it in the mind of 
anyone who knows it (Lyons 1981). According to the constructivist meaning, a 
community establishes and alters the relationship between the sign and the 
referent. There is one reality but that is perceived and conceived differently. 
The meaning of the sign is the way it is used. Of the three semantic principles, 
first two clearly belong to semantics, while a major part of the constructivist 
principle concerns the issues that we regard as belonging to pragmatics. This is 
how we deal with them below.  

Next, we consider two semantic approaches based on the objectivist 
principle. These are: case grammar and conceptual graphs. In both of them, one 
can see the purpose “to create a mapping from natural language sentences into 
a formal specification of a grammar” (cf. the Chomskyan grammar view in 
Lyytinen (1985)) and “to create a formal language such that every fact in the 
world corresponds to a structure in the formal language” (cf. the Fregean core 
view in Lyytinen (1985)).  
 
Case Grammar 
 
Fillmore (1968) introduced a case grammar as a representation of a universal 
semantics of a natural language. He distinguishes between the surface level 
cases corresponding to grammatical functions and the deep level cases (called 
semantic cases) corresponding to underlying roles that the sentence participants 
play with respect to the main verb. The case grammar is founded on a set of 
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semantic cases and a set of rules, which can provide the semantics for simple 
sentences describing actions.  

According to Fillmore (1968) “the case notions comprise a set of universal, 
presumably innate, concepts which identify certain types of judgments human 
beings are capable of making about the events which are going on around them, 
judgments about such matters as who did, who it happened to, and what got 
changed”(ibid p. 24). The sentence in its basic structure consists of a verb and 
one or more noun phrases, each associated with the verb in a particular case 
relationship. The notion of case is a language element that is more stable than 
surface-level grammatical terms such as subject and object. For this reason, the 
case grammar is sometimes said to reveal the “deep structure” of a sentence. 
Fillmore (1968, 24-25) defines six cases: 
• Agentive. The case of the typically animate perceived instigator of the 

action identified by the verb. 
• Instrumental. The case of the inanimate force or object causally involved in 

the action or state identified by the verb. 
• Dative. The case of the animate being affected by the state or action 

identified by the verb. 
• Factitive. The case of the object or being resulting from the action of state 

identified by the verb, or understood as a part of the meaning of the verb. 
• Locative. The case, which identifies the location or spatial orientation of the 

state or action identified by the verb. 
• Objective. The case, which identifies the things, which are affected by the 

action or state identified by the verb. 
 
In his article, Fillmore (1968) did not preclude a possibility that “additional 
cases will be needed” (ibid p. 25). So, the set of cases is open ended. None of the 
cases can be interpreted as matched by the surface-level relations, subject and 
object, in any particular language. Consequently, the same word can 
correspond to different cases in different sentences. In the basic structure of 
sentences, Fillmore distinguishes between what he calls the ‘proposition’, a 
tenseless set of relationships involving verbs and nouns, and what he calls the 
‘modality’ constituent. This latter includes such modalities on the sentence-as-a-
whole as negation, tense, mood, and aspect.  

Fillmore’s case grammar has been criticised (e.g. Platt 1971; Nijholt 1988), 
especially as to the notion of case itself and the criteria on which cases are 
identified.  Likewise, there are many presentations, which suggest different 
notions of case and different sets of cases (e.g. Schank 1973; Wilks 1977; 
Simmons 1973; Dik 1989). Nevertheless, the grammar has been widely applied, 
including in the fields of information systems and computer science. For 
instance, Rolland and Proix (1992) propose a natural language approach to 
requirements engineering. The approach adapts the notion of case to make it 
applicable, not only to words, but also to clauses in sentences. The set of cases 
includes: owner, owned, actor, target, constrained*, constraint*, localization*, 
action*, and object, in which * denotes the cases that are applicable to clauses, 
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too. Rolland and Achour (1998) present an approach to guide the construction 
of use case specifications, which is based on a set of linguistic patterns derived 
from case grammars by Fillmore (1968), Dik (1989), and Simmons (1973).  
 
Conceptual Graphs 
 
Conceptual graphs form a knowledge representation language based on 
linguistics, psychology, and philosophy (Sowa 1984, 69). They are an extension 
of Peirce’s existential graphs (Sowa 2000, 476). Besides Peirce’s primitives, 
conceptual graphs provide means of representing case relations, generalized 
quantifiers, indexicals, and other aspects of natural languages. They were first 
proposed as a mechanism for representing database semantics (Sowa 1976). 
Later, the emphasis has been on the AI field, and this is where they have 
received the most attention. 

In a conceptual graph, the boxes are called concepts and the circles are 
called conceptual relations. Sowa (1984, 2000) presents a set of primitive 
concepts and relations. The set can be extended with user-defined ones. 
Examples of concepts are (Sowa 1984): ACT (an event with an animate agent), 
ARRIVE (a mobile entity arrives at a place), PLACE (a role played by a 
stationary entity), STATE (has duration, as opposed to events), and TOOL (an 
entity that plays the role of an instrument for some act). Examples of relations 
are (Sowa 1984): agent (links an actor to an act), destination (links an act to an 
entity towards which the act is directed), instrument (links a tool to an act), 
location (links something to a place), object (links an act to an entity, which is 
acted upon), and point-in-time (links something to a time at which that 
something occurs). In addition, Sowa (2000) provides the concept of context. It 
stands for a nested conceptual graph that describes the referent.  

Conceptual graphs are widely applied, also in the IS field. To give just 
some examples, Bezivin et al. (2001) use the conceptual graphs to clarify 
metamodeling layers and OMG/MDA architecture. Kayed et al.  (2002) extract 
ontological concepts for tendering conceptual structures. de Moor  et al. (2001) 
apply conceptual graphs in workflows.  Moulin and Creasy (1992) extend the 
conceptual graph approach for data conceptual modelling.  
 
4.2.4 Pragmatics 
 
The modern usage of the term ‘pragmatics’ is attributable to the philosopher 
Charles Morris (1964) who distinguished three branches of inquiry within the 
semiotics: syntactics, semantics, and pragmatics. His conception about the 
pragmatics was very broad, covering psychological, biological and sociological 
phenomena, which occur in the functioning of signs. Thus, it would include 
disciplines which are now known as psycholinguistics, sociolinguistics, 
neurolinguistics and many more besides. Since Morris' introduction, the term 
has been treated and defined in many ways (see Levinson 1983). Our intention 
here is first to generally characterize the scope of pragmatics, and then bring up 
those issues in pragmatics which could benefit us in elaborating the contextual 
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approach. In addition, we select one theory, the speech act theory, for 
considerations in more detail. 

Generally speaking, pragmatics is the study of language use. Assuming 
that semantics is concerned with the statements of truth conditions, we can say 
that pragmatics deals with all those aspects of meaning that are not captured in 
a truth-functional semantics. One of the most favoured definitions in the 
linguistic literature is as follows: “pragmatics is the study of the ability of 
language users to pair sentences with the contexts in which they would be 
appropriate” (Levinson 1983, 23). This definition forms a first indicator of the 
significance of context to the pragmatics. 

Instead of trying to define analytically the concept of pragmatics, we can 
enumerate issues that are addressed in pragmatics. According to Levinson 
(1983, 27), pragmatics is the study of deixis, implicature, presuppositions, 
speech acts and aspects of discourse structure. There are also other suggestions 
for the list. Especially the relation to sociolinguistics (e.g. conversational 
structure) is vague. Nevertheless, deixis is, in most cases, included in 
pragmatics. 

We conclude that pragmatics is the study of the relations between 
language and context. In such a study one of the most essential issues deals 
with deixis. Deixis concern the ways in which “languages encode or 
grammaticalize features of the context of expressions or speech events, and thus 
also concern ways in which the interpretation of expressions depends on the 
analysis of that context of expressions” (Levinson 1983, 54). Traditional 
categories of deixis are person, place and time deixis79. 

Person deixis concerns the encoding of the role of participants in the 
speech event. The category 'first person' is the grammaticalization of the 
speaker's reference to herself, 'second person' the encoding of the speaker's 
reference to one or more addresses, etc. Such participant-roles are encoded in 
pronouns in a language. Time deixis concerns the encoding of temporal points 
and periods relative to the time at which an expression was presented.  This 
kind of deixis is grammaticalized in deictic adverbs of time like now, then, 
yesterday and this year. Place deixis concerns the encoding of spatial locations 
relative to a location of the participants in the speech event. It is 
grammaticalized in demonstratives like this and that, and in deictic adverbs of 
place like here and there. 

Above, deixis was mainly considered from the grammatical point of view. 
Although we are not interested in the ways the deixis are organized in 
language, their explicit appearance in the expressions makes us convinced that 

                                                 
79  Besides the traditional categories considered above, two more deixis aspects have 

been lately distinguished (Levinson 1983): discource deixis and social deixis. The 
former concerns the encoding of reference to the portions of the unfolding discourse 
in which the expression is located, and the latter concerns the encoding of social 
distinctions that are relative to participant-roles (cf. honorifics). These kinds of deixis 
aspects go beyond our interests. 
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they are also conceptually of vital importance. That is to say, the concepts 
underlying the deixis are good candidates for contextual concepts. 
 
Speech Act Theory 
 
Speech act theory is the systematic study of linguistic regularities and the 
meaning of utterance. It is concerned with the pragmatic use of language. The 
speech act theory originated with Austin (1962) and was further elaborated by 
Searle (Searle 1969; Searle 1979; Searle et al. 1985). The basic notion is that 
people do things with words. Words change the world, rather than merely 
describe it. Uttering a sentence is the performance of an act, called a speech act.  

By uttering a sentence, four concurrent acts occur: propositional act, 
illocutionary act, utterance act, and perlocutionary act (Searle et al. 1985). A 
propositional act expresses the propositional contents of a message. An 
illocutionary act is performed when a speaker utters a sentence in an 
appropriate context with certain intentions. A propositional act always occurs 
as part of an illocutionary act. An utterance act refers to the simple uttering of a 
sentence. A perlocutionary act means producing effects on the feelings, 
attitudes and behaviour of the hearer. 

The most important type of speech act, especially for us, is that of the 
illocutionary act. It is composed of three constituents: context, content, and 
illocutionary force. All these constituents are essential for constructing and 
understanding the meaning of a sentence. Content refers to the propositional 
content of the message. Context is defined in terms of speaker, hearer, time, 
place, and the possible world. The first four define a context in which a speaker 
utters something to a hearer sometimes and somewhere.  The possible world 
refers to the residual features of the context. It is something more than the 
“actual world”, and it enables to talk about “what could be”. An illocutionary 
force covers several issues. Here we are interested in the concept of 
commitment. According to the speech act theory, commitments are created 
through communication. Depending on types of illocutionary acts, different 
kinds of commitments can be distinguished: assertives, directives, commissives, 
declaratives, and expressives. 

Along the application of the speech act theory to the IS research the 
prevailing language perspective changed from a referential one to 
communication oriented one. The speech act based approaches, recently called 
language/action approaches, have been explored and elaborated (see e.g. 
Proceedings of Language/Action Conferences), but also criticized, extensively. 
Proponents of the approach are, for instance, Auramäki et al. (1988) and 
Auramäki et al. (1992a) who suggest methods and principles for analyzing 
offices as systems of communicative action according to the SAMPO (Speech-
Act based office Modeling aPprOach) approach.  De Cindio et al. (1986) 
developed a coordinator, called CHAOS, based on the language/action 
approach. Dietz (1992, 1994, 1999, 2003) presents the DEMO approach and 
framework to model open active systems and business processes. The approach 
makes a distinction between subjects, which are the active elements of the 
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system, and objects to be acted upon.  Woo et al.  (1992) present an approach to 
facilitate the automation of semi-structured and recurring negotiations in 
organizations. Janson et al. (1995) use the speech act theory to compare IS 
development tools and methods.  

The speech act theory has been criticized as a philosophical and linguistic 
theory as such and due to problems with a rationalistic design of work 
(Ljungberg et al. 1996). Wand et al. (1995a, 295) argue that the speech act theory 
lacks a comprehensive overall picture of how actions fit and relate to each 
other. They also state that the theory focuses on unidirectional speech act 
performance and is restricted to spoken discourse. In spite of the criticism, the 
speech act theory provides views of the meaning and related concepts that are 
beneficial for our study. 
 
4.2.5 Theories of Human and Social Action 
 
The complexities of organisational practice in information systems put 
demands on research and knowledge. There are many conceptual approaches 
aiming to describe and explain these complex phenomena. Some of the 
approaches emphasize the action concept. According to them, it is difficult, or 
even impossible, to create good scientific descriptions and explanations about 
organizational practice without acknowledging actions. Although such 
approaches may have differing theoretical perspectives, they have a unifying 
interest in the action concept and its explanatory power. Examples of such 
approaches are activity theory (Engeström 1987, 1999), actor-network theory 
(Latour 1999; Monteiro 2000), and structuration theory (Giddens 1984). There 
are also other approaches, which have theoretical influences of more or less 
explicit action orientation, such as social phenomenology, symbolic 
interactionism, ethnomethodology, soft systems theory, critical social theory, 
hermeneutics, social semiotics, socio-pragmatism, situated cognition theory, 
practice theory and affordance theory. Along with this interest in action comes 
also an interest in many related issues, such as knowledge, language, 
communication, social interaction, social institutions, coordination, artefacts, 
power and values. 

A prominent representative of approaches pertaining to social and 
organizational issues is the activity theory. The activity theory presents highly 
general propositions of the nature of human activity incorporating several 
psychological, educational, cultural and developmental approaches (Leont’ev 
1978; Vygotsky 1978). It is a philosophical framework for studying different 
forms of human praxis as developmental processes, at both individual and 
social levels interlinked at the same time (cf. Kuutti 1991, 530). According to the 
theory, there exists a fundamental type of context, called an activity.  Activity is 
a minimal meaningful context for individual actions. Relations within an 
activity are direct ones but are mediated by various artifacts such as 
instruments, signs, procedures, machines, methods, laws, forms of work 
organization, etc. These artifacts have been created and transformed by humans 
during the development of the activity itself (Kuutti 1991, 531). 
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Based on the theory, Engeström (1987, 1999) developed an applicable 
model of the systemic structure of human activity. The fundamental concepts of 
the model are (see Figure 31): subject, object, tool (mediating artifact), rules, 
community, division of labor, as well as outcome from the activity. The 
concepts are interrelated in terms of mediating: the relationship between subject 
and object is mediated by tools, the relationship between subject and 
community is mediated by rules, and the relationship between object and 
community is mediated by the division of labor. An activity consists of actions 
or chains of actions, which in turn consist of operations. Actions are related to 
goals.  
 
                  Tool 
 
 
 
                    Subject               Object      Outcome 
 
 
 
 
 Rules             Community       Division of labor 
 
FIGURE 31  Engeström’s activity model (Engeström 1999) 
 
The activity theory has been applied and elaborated in various sub-fields of 
information systems, e.g. in user interface design (e.g. Bodger 1987; Nardi 1996), 
information systems development (e.g. Korpela et al. 2000; Korpela et al. 2002), 
computer-supported collaborative work (e.g. Kuutti 1991; Kuutti 1994; Bardram 
1998), product concept design (e.g. Tuikka 2002), knowledge management (e.g. 
Boer et al. 2002), and method engineering (e.g. Kaasboll et al. 1996). 
 
4.2.6 Context-Related Approaches  
 
Context is used as a key concept also in other fields, although without any 
explicitly defined context-based theories. Here we make a short review of the 
studies which aim to specify and understand the meaning of things through the 
notion of a context. 

In databases, Motschnig-Pitrik (1999, 2000) proposes a context mechanism 
for object-oriented database languages, extending the functionality of views. 
Individual views are interpreted as context for drawing entities or objects 
visible from these views and intentionally neglecting others. Contexts are 
associated with relativized naming, authorization, and channels for change 
propagation. Contexts are objects in their own right, and they can be classified, 
associated with properties, enclosed in contexts and dealt with like ordinary 
objects. 
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Enterprise modeling aims to capture essential enterprise knowledge, in 
order to provide a clear, unambiguous picture of how the enterprise functions 
currently and what are the requirements and the reasons for change 
(Loucopoulos et al. 1998; Loucopoulos 2000; Kirikova 2000).  An enterprise 
knowledge model can serve as a means of understanding and communication 
between the different participants.  The model covers e.g. goals, actors, 
activities, physical and informational objects, business rules, and their 
interrelations within a totality, which could be called a context.  

Workflow means “the automation of a business process, in whole or part, 
during which documents, information or tasks are passed from one participant 
to another for action, according to a set of procedural rules” (Workflow 
Management Coalition 1999, 8). Workflow management system (WfMS) is a 
system that “defines, creates and manages the execution of workflows through 
the use of software..” (ibid p. 9). To analyze, design and compare WfMS’s,  
metamodels (e.g. Rosemann et al. 1997; Lei et al. 1997) and reference models (zur 
Muhlen 1999) have been engineered. Based on them, workflow systems address 
persons, organizations, positions, roles, tasks, resources, objects, and their 
relationships in a complex manner (Mentzas et al. 2001; Chiu et al. 1999). 

User modeling has produced new theories and methods to analyze and 
model computer users in short and long-term interactions. A user model is an 
explicit representation of properties of individual users or user classes. It allows 
the system to adapt its performance to user needs and preferences. Methods for 
personalizing human-computer interaction based on user models have been 
successfully developed, applied and evaluated in a number of domains, such as 
information filtering, e-commerce, adaptive natural language and hypermedia 
presentation, and tutoring systems. Recently user modelling has also addressed 
problems of personalized interaction in mobile, ubiquitous and context-aware 
computing (e.g. Abecker et al. 2000). A user context can be composed of an 
environment context, a personal context, a task context, a social context, and a 
spatiotemporal context (Myrhaug 2001)  

Process modeling aims at systematic analysis, design and implementation 
of processes. Some of the approaches look at processes through the notion of a 
context. In the NATURE project (Rolland et al. 1995; NATURE Team 1996) a 
process theory for modeling and engineering the requirements engineering 
process was crafted. According to the approach, a requirements engineer is 
commonly in a situation where his/her reaction depends on both the situation 
and the intention he/she has in mind, that is to say, it depends on the context 
he/she is placed in. A context is the association of a given situation and the 
decision, which can be taken on it. A situation is defined as being a part of the 
product it makes sense to make decision on.  There are three kinds of contexts: 
executable contexts, choice contexts, and plan contexts. At the most detailed 
level, the execution of the requirements engineering process can be seen as a set 
of transformations performed on the product under development, each 
transformation resulting from the execution of a deterministic action. The 
process theory pertaining to NATURE has been later applied and elaborated in 
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many studies (e.g. Rolland et al. 1996; Grosz et al. 1997; Rolland et al. 1999; 
Rolland et al. 2000).  

For information systems architectures Zachman (1987) introduced a 
framework that was later extended by Sowa and Zachman (1992). It contains 
two dimensions, views and aspects, and is described by a matrix with rows and 
columns. The views are determined through the perspectives of different 
stakeholders. The stakeholders having particular views on an information 
system are a planner, an owner, a designer, a builder, and a component sub-
contractor. The aspects of an information system are data, function, network, 
people, time, and motivation, thus realizing the set of interrogatives presented 
originally by Zachman (1987): “Why”, “Who”, “What”, “Where”, “When” and 
“How”80. In the framework, presented in the form of matrix, essential concepts 
and conceptual relations are named for each of 30 cells. The framework has 
been applied and refined in many studies. Short (1991) has used the framework 
with six aspects to propose a framework for a classification of ISD methods. 
Evernden (1996) has extended the framework into the Information FrameWork 
that is aimed at managing information. Martin et al. (2000) have formalized the 
structure of the framework based on the notion of a frame. Garner et al.  (1999) 
have enhanced the framework to elicit and manage the complexity of IS 
requirements.  
 
4.2.7 Elicitation of Contextual Domains 
 
In the previous sections, we have reviewed theories and approaches that share 
our aim to promote the understanding of the meaning of things in a whole. The 
theories and approaches for the review were selected from the topmost steps of 
the semiotic ladder (i.e. semantics, pragmatics and social world), on one hand, 
and from a large set of literature, which, yet lacking in-depth theories, aim at 
“contextual thinking”. To conclude from the review we argue that the basic 
contextual domains are related to purpose, actor, action, object, facility, 
location, and time. The arrangement of these domains into a context can be 
illustrated by the following contextual view, also called the seven S’s view:  
 

”For Some purpose, Somebody does Something for Someone with Some 
means, Sometimes and Somewhere” 

 
Next, we justify our argument by summarizing the review. For the summary 
we select seven major theories or approaches from which we extract the most 
essential concepts and locate them in those contextual domains to which they 
primarily belong. The summary is presented in Table 13.   

                                                 
80  There is a large set of studies, which also use the same set of interrogatives (‘5Ws and 

H’) for various purposes; e.g. Bull (1989), Curtis et al. (1992), Zultner (1993), Couger et 
al. (1993), Krogstie et al. (1996), Fitzgerald et al. (1998), Söderström et al. (2002), and 
Zhu (2002). 
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In the case grammar by Fillmore (1968), we can identify the following 
correspondences between the cases and the contextual domains. An action is 
expressed by a main verb, an actor corresponds to agentive (i.e. an animate 
instigator of the action), and an object stands for objective (i.e. a thing affected 
by the action).  Further, a location means locative (i.e. the location or spatial 
orientation). The cases of dative and factitive are not so clear. We associate 
dative to the object domain because it is defined as an animate affected by the 
action. Because factitive can be understood as part of the meaning of the verb 
(Fillmore 1968), we regard it as part of the object domain.  In addition to the 
named cases, the case grammar contains the modality constituents that reflect 
time (tense) and purpose (mood or aspect). 

In pragmatics (Levinson 1983) several obvious counterparts to the 
contextual domains can be found. Person deixis, place deixis and time deixis 
correspond to actor, location and time, respectively. A verb mostly expresses 
action in the context. In addition, there are other essential concepts that can be 
classified into the domains: e.g. intention (purpose), speaker and hearer (actor), 
performative act (action), utterance (object), as well as coding and receiving 
time (time) which can be seen as specialized concepts, each having been derived 
from one of the seven generic contextual domains.  

In speech act theory (Searle 1969; Searle 1979; Searle et al. 1985), illocution 
within an illocutionary act corresponds to purpose. A speaker and a hearer are 
actors who are concerned with speech acts (action). The concept of context in 
speech act theory is composed of time, place and the possible world. The first 
two have their counterparts among the contextual domains. 

In activity theory (Engeström 1987) an activity is regarded as the 
fundamental type of context. Individual actions and operations get their 
meanings within an activity.  Subject refers to an individual or a group, whose 
agency is chosen as the point of view. Object refers to the raw material or 
problem space at which the activity is directed and which is molded and 
transformed into an outcome.  Tool is an intermediating artifact, physical or 
symbolic, external or internal, which is used to transform the object.  Subject, 
object and tool have their counterparts within the domains. The other concepts 
of the activity model, namely rules, community, division and outcome, are 
more specialized concepts or constructs in the contextual domains, and 
therefore they are not included in the table. Note that there are various 
derivatives of the original activity theory (e.g. Kuutti 1994; Korpela et al. 2000), 
which may have somewhat different counterparts in contextual domains. 

In enterprise modeling, especially in the one based on the EKD approach 
(Loucopoulos et al. 1998), the concepts of goal, actor, activity, object and 
temporal event are defined and applied. Also a large set of relationships 
between the concepts are introduced to address the structure and behavior of 
an enterprise. 

In the NATURE approach (NATURE Team 1996; Grosz et al. 1997) context 
is the “central generic” notion for representing ways-of-working. A context is 
composed of decisions in a certain situation. A situation is a part of the product 
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(object).  A decision reflects a choice a requirements engineer can make and 
refers to an intention (purpose). An intention expresses what the engineer 
wants to achieve. An executable context implements a decision, meaning that its 
intention is realized by an action (action). An action changes a product part 
(object). 

In the framework for information systems architecture (Sowa et al. 1992) 
the aspect dimension is based on six interrogatives ‘why’ (motive), ’who’ 
(people), ’how’ (function), ‘what’ (data), ’where’ (network) and ‘when’ (time). 
On a general level, they correspond to the following contextual domains: 
purpose, actor, action, object, location, and time, respectively. In Table 13 the 
generic terms for each aspect are used instead of the aspect names. Note that 
location is seen as a node of the network, and agent can also be a software 
component.  
 
4.2.8 Summary 
 
The purpose of this section was to build the theoretical foundation for the 
contextual approach. For this purpose, we started with outlining a general 
conception of a context, and then explored disciplines and approaches for 
which the purposes, meanings and effects of things, as well as the notion of a 
context are important. On the basis of the semiotic ladder, we confined 
ourselves to consider theories and approaches on the three topmost steps of the 
ladder (i.e. semantics, pragmatics and social world). In addition, we analyzed a 
set of context-related approaches that, although not building on any specific 
theories, share our aims at understanding and specifying the meaning of things 
through the notion of a context. The comparative review of this literature gave 
us justification for the importance of context, as well as for the division of 
contextual issues into seven domains: purpose, actor, action, object, facility, 
location, and time.  In the next section we will elaborate the contextual 
approach and the contents of those domains.  
 
 
4.3 Elaborating the Notion of a Context and Contextual Domains  
 
 
In this section we first give the elaborated definition of a context and outline the 
contents of the contextual domains. Second, we define the contextual 
framework and discuss different variations of contexts with the notion of a 
contextual role. Third, we consider whether there are domains that are 
compulsory or particularly essential to perceiving the UoD as a context. Finally, 
we present classifications of contexts. 

In Section 4.2.1 we characterized a context with the following words: (a) It 
is determined and shaped by one or more focal parts of which making sense is 
important. (b) It is composed of parts, which all have specific roles of their own. 
(c) It is a totality in which each part gets its meaning through the position it 
holds in the whole and through the relationships it has with the other parts. 
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After establishing the theoretical basis of the contextual approach, we can 
now present a more elaborated definition. It is composed of two parts, the 
teleological part and the structural part:  

 
A context is a conceptual or intellectual construct that can help us 
understand, analyze, and design natures, meanings, and effects of more 
elementary things in the concerned environment or circumstance.  
 
A context is a whole, which is determined by the focal thing(s) of which 
making sense is important. It is composed of interrelated things, each of 
which represents a certain contextual domain.  
 

The contextual domains are: purpose, action, actor, object, facility, location, and 
time. In the following the contents of the domains are outlined: 
• Purpose domain consists of those concepts and constructs which refer, 

directly or indirectly, to goals, motives, or intentions of someone or some 
thing. They may also express reasons for why someone exists, why 
something has been done, why someone is used, etc. in a context. 

• Actor domain consists of those concepts and constructs, which refer to 
individuals, groups, positions, or organizations. Actors have an active role 
in a context.  

• Action domain consists of those concepts and constructs which refer to 
functions, activities, tasks, or operations carried out in a context. 

• Object domain consists of those concepts and constructs which refer to 
something which an action is targeted to. The object can be material or 
informational.  

• Facility domain consists of those concepts and constructs which refer to 
means by which something can be done or is done. The facility can be a 
tool or a resource. 

• Location domain consists of those concepts and constructs which refer to 
parts of space occupied by someone or something. The location can be 
physical, like a room or building, or logical, like a site in a communication 
network. 

• Time domain consists of those concepts and constructs which refer to 
temporal aspects in a context. 

 
To concretize a view of the relationship between the contextual approach and 
the core ontology we present Figure 32. According to the core ontology, and in 
particular on the basis of the UoD ontology (Section 3.8), reality is seen as a 
universe of discourse (UoD), which is composed of concepts. According to the 
contextual approach, a UoD is seen as a context, which is composed of concepts 
from seven contextual domains. In Figure 32 the outermost rectangles stand for 
the contextual domains, and the innermost rectangles correspond to the generic 
concepts that are here used as the representatives of the other contextual concepts 
of the concerned domains. The contextual concepts are inter-related to one 
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another through contextual relationships, including intra-domain, inter-domain 
and inter-context relationships. In Figure 32 inter-domain relationships are only 
depicted. 
 

Action

Actor

Purpose

Object

Facility

Location

Time

Context

Domain

UoD

Concept

*

*

*

*

*

*

* 1..*

1..*

1..*

1..*

Contextual framework

 
 
FIGURE 32  Contextual framework 
 
In Section 3.3 (the generic ontology) we defined a framework to mean a thing 
that guides a human being to select the points of view that are the most 
appropriate for the case or the problem at hand. Here we specialize the notion 
and define the contextual framework as follows: The contextual framework is a 
framework, which is composed of contextual concepts related with one another 
through contextual relationships, and which is used to conceive things as 
contexts and/or within contexts. Furthermore, we can derive the definition of 
the context ontology: The context ontology provides concepts and constructs for 
conceiving, understanding, structuring, and representing things as contexts 
and/or within contexts, in order to promote our understanding of the nature, 
purposes, and meanings of the things. 
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Next, we move on to consider the notions of contextual role and role 
constraint, which further clarify our conceptions about a context and the 
contextual concepts. 

A context is a whole composed of things. Each thing has a specific role in a 
context. For instance, a librarian is an actor in his/her searching for a copy of a 
book, asked by a customer, and a ladder is a facility, by the help of which a 
librarian tries to reach the upper shelf. A role, which a thing plays when being 
part of a context, is called a contextual role. There are certain constraints as to 
what things can play in which of the contextual roles. These are called role 
constraints. In the following, we consider the role constraints. 

First, the same contextual role can be held by one or more things. For 
instance, in a communication context a sender sends a message to a receiver. A 
sender and a receiver are both actors. Likewise, in the context where John is 
collecting and analyzing samples of insects, and in the context where goods are 
transmitted from one location to another, there are two things from the same 
domain.  Note that this does not mean that their specific roles would be the 
same. 

Second, the same thing cannot be in the different contextual roles in the 
same context. For instance, it is not possible that a thing is an actor and an 
object in the same context81.  Instead, it is quite possible that a thing is in 
different roles in different contexts. For instance, a stool is a facility for the 
librarian but an object of manufacturing in a factory.  Likewise, Mary acts as a 
librarian (actor) and visits a hairdresser (as an object).  

Third, it is not possible for any thing to act in all the contextual roles. For 
instance, a thing belonging to the action domain cannot be in the role of actor in 
the same or different context.  In fact, there are two domains the concepts of 
which can, only to a very limited extent, participate in the roles of the other 
domains. These are purpose and action. Among the contextual domains the 
following intersections, presented in pairs, are allowed: actor – object; object - 
purpose; object – action; object - facility; object – location; location – facility; 
time – object82.  

Next, we consider whether some domains are more essential than others, 
perhaps even to such a degree, that without things of those domain(s), the UoD 
cannot be interpreted as a context at all. Phrased in terms of the abstraction 
ontology, it is a question about the essentiality in the composition (cf. Section 
3.9.2.3): Is a context a whole with essential partOf relationships with contextual 
parts? If yes, what is the “nucleus” of the context? 

We distinguish between three different views of the “nucleus” of a 
context, based on three approaches. The approaches are: the semantic approach, 

                                                 
81  In fact, there are contexts in which this general constraint does not hold. For instance, 

a person can think about himself/herself or hit himself/herself, meaning that the 
person is an actor and an object in the same context. These kinds of cases are, 
however, exceptional.  

82  The time system of one context can be an object of creation, integration, revision, etc. 
in another context. 
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the pragmatic approach, and the approach based on the activity theory.  A 
characteristic of the semantic approach is its aim to reveal the meaning of an 
expression through the analysis of its deep structure (e.g. Chomsky 1966; 
Fillmore 1968). For this purpose many semantic approaches concentrate on the 
main verbs. The verbs commonly correspond to concepts in the action domain. 
Besides the verbs, the subjects (mostly corresponding to the actors) and the 
objects (mostly corresponding to the objects) are also considered. Adjectives 
and adverbs (viz. purpose, facility, time, and location) are not seen so 
important.  

According to the pragmatic approach, one focuses on revealing the 
meaning of a linguistic expression through looking at the situations in which 
the expression is created, transmitted and interpreted. Therefore, the most 
important part of a context is, as a matter of course, the object (i.e. expression), 
but knowledge on the actors (speaker, hearer), the (linguistic or instrumental) 
actions and the purposes (intention) are also needed. Concepts of the location 
domain and the time domain are not seen as important. Concepts of the facility 
domain are also insignificant in the pragmatic approach.  

For the approach based on the activity theory, it is important to get a 
comprehensive and rich picture of an activity (viz. context and action). Thus, 
besides the action domain, which constitutes the very core of a context, the 
actor (subject), object (object) and facility (tool) domains are focal to the 
approach. The purpose, location and time domains are on the “outer level”.  

The views of the three approaches are illustrated in Figure 33. In the 
figure, for each view the contextual domains are divided onto three layers, of 
which the inmost one stands for the “nucleus” of a context. It is important to 
note that a context from the viewpoint of the semantic approach is interpreted 
through the contents of a linguistic expression. In contrast, a context from the 
viewpoint of the pragmatic approach is a situation in which expressions are 
uttered and used. For the approach based on the activity theory, a context is a 
situation in which objects of any kind are handled or dealt with otherwise. The 
arrows in the figure denote the signifies relationships between the linguistic 
objects and their conceptual referents. 

Implied from the above, we can conclude that there is no universally fixed 
domain or set of domains, which should always be included in a context. A 
context itself is a choice (Dilley 1999). However, depending on the purpose for 
which the contextual framework is to be used, a context should contain at least 
concepts from the action domain (the semantic and activity theoretic 
approaches) and from the object domain (the pragmatic approach). Concepts 
from the actor domain may also prove essential. It is important to notice that to 
obtain a deep understanding of the meaning of some part in a context, other 
domains should also be involved, one way or another.  Further, as for any 
whole that is composed of parts, the intension of a context must also contain so-
called emergent predicates, to ensure right interpretation of the features of the 
UoD. In this chapter, we introduce the concepts of all the domains without 
giving any preferences for the domains.    
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FIGURE 33  Three views on the “nucleus” of the context 
 
At the end of this section, we present some classifications of the contexts. 
Depending on which of the contextual domains is the most essential, we can 
distinguish between the purpose-centered contexts (cf. i* model (Yu et al. 1995)), 
the actor-centered contexts, the action-centered contexts (cf. activity theory 
(Engeström 1987), the framework of activity analysis (Korpela et al. 2000)), the 
object-centered contexts, the facility-centered contexts, and the location-
centered contexts. Based on the role the action and time domains have in the 
consideration, we can identify the static contexts and the dynamic contexts.  

Furthermore, we can use the inter-context relationships to categorize the 
contexts. Assume a situation where a thing is an output from an action in one 
context and an input to another context. Extending the classification of Kuutti 
(1991, 536-537) we can now say that there are at least six different kinds of 
contexts:  
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• Goal-producing context. One context produces something which is used as a 
goal statement or a requirement in another context.  

• Actor-producing context. One context ”produces” objects (e.g. more skilled 
persons) which act as actors in another context. 

• Rule-producing context. One context produces objects which are used as 
rules for another context (e.g. a method engineering context vs. an ISD 
context). 

• Object-producing context. One context produces objects (e.g. services) which 
are utilized in another context (cf. an IS context vs. a business system 
context). 

• Facility-producing context. One context produces objects which are utilized 
as tools or resources in another context (cf. an ISD context producing 
software vs. a business context). 

• Location-producing context. One context produces objects which are used as 
locations in another context.  

 
 
4.4 Contextual Domains 
 
 
Having established the contextual approach and the contextual framework, we 
next define the concepts and constructs within each contextual domain, 
specializing from the notion of a concept defined in the core ontology. After 
that we specify inter-domain and inter-context relationships. The context 
ontology embraces all the concepts and constructs in the contextual domains, as 
well as the inter-domain and inter-context relationships. In each sub-section, we 
also discuss the relevant literature to demonstrate an extent to and a manner in 
which the concepts and constructs are recognized and interpreted in the 
literature. 
 
4.4.1 Purpose Domain 
 
The purpose domain embraces all those concepts and constructs that refer to 
goals, motives, or intentions of someone or something. The concepts are also 
used to express reasons for which something exists or is done, made, used, etc. 
(Webster 1989). They may show a direction toward which it is due to proceed, 
or a state that needs to be attained or avoid (cf. Loucopoulos et al. 1998; Sutcliffe 
2000). They can also exhibit reasons to use or apply a facility, a time (system), or 
a location. The concepts are commonly named with terms such as objective, 
goal, intention, target, end, reason, aim, etc. We use purpose as the general term 
in this domain83. 
                                                 
83  Purpose is one of the key concepts in philosophy. Aristotle used the word telos, 

which is the goal or final cause of an action. Peirce argued that purpose is the 
Thirdness that relates some mind or mindlike entity (first), which directs the course of 
a process (second) toward some goal (third) (Sowa 2000, 265) 
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The purpose domain is important to our UoD, in which conscious human 
beings are conducting purposeful acts to attain desirable states. Explicit 
capturing of purposes is essential because it enables us to represent, not only 
“what” information, but also “why” information” (cf. Koubarakis et al. 2000, 
144). However, we are not claiming that every act or event in the UoD is 
purposeful. There are lots of human and social activities, like chattering in a 
corridor, that are not pre-determined. There are a large variety of occurrences 
that are mere incidences. 

Purpose can be expressed or can manifest oneself in many ways. On one 
hand, it can be regarded as an objective or goal (of e.g. an actor or action) 
meaning a desired state of affairs. It can also be related to an object, a facility, a 
location or a time (system), meaning the purpose, which they are aimed at. On 
the other hand, purpose can be expressed indirectly through a reason for 
something or someone. A reason is a basis or cause for some action, fact, event 
etc. (Webster 1989). A reason can be a requirement, a problem, a strength/a 
weakness and/or an opportunity/a threat. Between a goal and a reason there is 
the dueTo relationship meaning that a reason gives an explanation, a justification 
or a basis for setting a goal.  In the following we define the sub-concepts of goal 
and reason. The meta model of the purpose domain is presented in Figure 34. 
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FIGURE 34  Meta model of the purpose domain 

 
Since a goal can be considered as a desired state (Loucopoulos et al. 1998, 9; 
Koubarakis et al. 2000, 144), we can specialize the goals based on their lifespan. 
Strategic goals are kinds of missions, answering questions such as “What is the 
direction of an enterprise in the future”. Their spans are generally 5 – 10 years. 
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Tactic goals show how to attain strategic goals. They are defined by some 
measurable factors within a shorter time frame. Operative goals are generally 
determined as concrete requirements that are to be fulfilled by a specified point 
of time. An example of the operative goal is “improvement of delivery time 
with 10% next year”. The more concrete the goals are, the more close to 
operational rules they are in dictating how to fulfill the goals (Wangler et al. 
1993, 190). The goals can also be categorized based on whether it is possible to 
define clear-cut criteria for the assessment of the fulfillment of goals. Hard goals 
have pre-specified criteria, and soft goals have not (Lin et al. 1999). A criterion is a 
standard of judgment presented as an established rule or principle for 
evaluating some thing. Further, the goals can be classified based on kinds of 
contexts they appear. There are business goals, information system goals, 
project management goals, etc. (Kueng et al. 1996,  100). 

In some cases, purposes are expressed in terms of requirements.  
Requirements mean something that are necessary and needed. They are 
statements about the future (NATURE Team 1996, 525). Actually, the goals and 
the requirements are two sides of a coin: some of the stated requirements can be 
accepted to be goals to which actors want to commit. Also for the requirements 
there are many categorizations. One of them divides the requirements into the 
functional requirements and the non-functional requirements. A functional 
requirement can be achieved by performing a sequence of operations (cf. Lee et 
al. 2001, 125). A non-functional requirement is defined in terms of constraints, to 
qualify the functional requirement related to it. Non-functional requirements 
can involve e.g. performance, safety, quality, maintainability, portability, 
usability, reliability, confidentiality, security, and accuracy. 

Instead of directly referring to a desirable state, a purpose can also be 
expressed through an indirect reference to problems that should be solved 
(Berztiss et al. 1995, 189). A problem is the distance or a mismatch between the 
prevailing state and the state reflected by the goal (cf. Goldkuhl et al. 1988; 
Jayaratna 1994, 242). To reach the goal, the distance should be eliminated or at 
least reduced. Associating the problems to the goals expresses reasons, or 
rationale, for decisions or actions towards the goals (cf. Ramesh et al. 1994, 296). 
The problems are commonly divided into structured, semi-structured and 
unstructured problems (e.g. Simon 1960; Gorry et al. 1971)84. Structured problems 
are those that are routine, and can be solved using standard solution 
techniques. Semi-structured and unstructured problems (sometimes called wicked 
problems (Rittel et al. 1984; Hevner et al. 2004, 81)), however, do not usually fit a 
standard mold, and are generally solved by examining different scenarios, and 
asking “what if” type questions.  

Other expressions for the reasons, of not so concrete kind, are strengths, 
weaknesses, opportunities and threats related to something for which goals are 
set or are to be set (cf. SWOT-analysis, e.g. Johnson et al. 1989).  Strength means 
something in which one is good, something that is regarded as an advantage 
                                                 
84  Checkland (1981) divides the problems into well-structured and ill-structured 

problems.  
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and thus increasing the possibilities to gain something better. Weakness means 
something in which one is poor, something that could or should be improved or 
avoided. Opportunity is a situation or condition favourable for attainment of a 
goal (Webster 1989). Threat is a situation or condition that is a risk for 
attainment of a goal. Strengths and weaknesses are internal factors, while 
opportunity and threat are external to the UoD.  

Next we shall define intra-domain relationships in the purpose domain, 
first those relating the goals and then those related to the requirements and the 
problems.  

A general goal is refined into more concrete goals. The refinement 
relationship between the goals establishes goal hierarchies, meaning that a goal 
can be reached when the goals below it (so-called sub-goals) in the hierarchy 
are fulfilled. Sub-goals are means (“how”) to more general goals (“what”), for 
which the goals at still upper levels express “why”. Consequently, the 
relationship can be called goal/means –relationship (e.g. Lindland et al. 1994), 
goal operationalisation, or goal satisfying –relationship, relating a satisfied goal 
and a satisfier goal (Kavakli et al. 1999, 192; Jarke et al. 1992,  25). In some cases, 
a sub-goal may contribute to the achievement of two or more general goals. In 
this case, the resulting structure is a goal graph, rather than a goal hierarchy. To 
specify which sub-goals are contributing in each case, AND and OR operators 
are used in the specifications.  The refinement relationship is irreflexive, non-
symmetric and transitive.  

To indicate that the achievement of a goal has some influence on the 
achievement of another goal, the influence relationship85 is used. Influence can be 
positive or negative (cf. Berztiss et al. 1995, 189; Loucopoulos et al. 1998, 10; 
Kavakli et al. 1999, 192). A positive influence between two goals means that the 
achievement of one goal assists the achievement of another goal. A negative 
influence means that the achievement of one goal hampers, jeopardizes or 
obstructs the achievement of another goal. Based on the kind of influence, the 
relationship may be referred to as the conflict relationship or the support 
relationship (Kavakli et al. 1999, 192; Lee et al. 2001, 128). 86 

As mentioned above, the goals and the requirements are two sides of a 
coin. Therefore, also the relationships between the requirements are similar to 
those between the goals. Consequently, a requirement can influence on another 
requirement, and a requirement can be a refinement of another requirement. 
The relationships between the problems manifest causality, and they can be 
analyzed with the aid of problem matrices (e.g. Lundeberg et al. 1981) or 
problem graphs. The causalTo relationship between two problems means that the 
appearance of one problem is at least a partial reason for the occurrence of the 
other problem.  
 
 
 
                                                 
85  Liu et al. (2002, 40) call this relationship the contribution link.  
86  Liu et al. (2002, 40) define also the relationships of correlation and dependency.  
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4.4.2 Actor Domain 
 
The actor domain consists of all those concepts and constructs that refer to 
human and active parts in a context87. Among other things actors perform, own, 
communicate, borrow, send, receive objects in the contexts. They are 
responsible for and/or responsive to triggering and causing changes in the 
states of objects in the same context or in other contexts. They are aware of their 
intentions and able to react to fulfill their goals. Their actions and reactions can 
be routine or intuitively caused.  

Depending on a viewpoint, an actor is seen as a human actor or as an 
administrative actor. A human actor can be an individual person or a group of 
persons. A person is a human being, characterized by his/her consciousness, 
emotions, personality, beliefs, desires, intentions, social relationships, and 
behavior patterns conditioned by his/her culture (cf. Bratman 1987; Padgham et 
al. 1997). A person may be a member of none or several groups. An 
administrative actor is a position or a set of positions. A position is a post of 
employment occupied by a human actor. It is a set of addressable role 
expectations with the following properties: (a) it is occupied by a human actor, 
(b) it is to take care of given responsibilities, and (c) it has limited 
communication possibilities with other positions (cf. van Aken 1982)88.  The 
occupiedBy relationship between a position and a human actor is antisymmetric, 
irreflexive, and intransitive (see Figure 35).  

A position is occupied by zero or many human actors. If an actor occupies 
more than one position, it should be ensured that the positions have no 
opposing roles, resulting in role conflicts. For each position, specific 
qualifications  in terms  of skills,  demands  on education  and  experience, etc. 
are specified. Also many other specific constraints are related to the 
assignments but they are not discussed here. 

An organizational role, shortly a role89, is a collection of responsibilities, 
stipulated in an operational or structural manner. In the former case, a role is 
composed of tasks that a human actor  occupying the position with that role has  
to perform. These kinds ofroles are called the process roles (Workflow 
Management Coalition 1999). In the latter case, a role is charged with 

                                                 
87  Note that our notion of actor cannot be a non-human thing. In this respect, our 

approach differs from many others (e.g. agent in Sowa (2000, 330), and actor in 
Ramackers (1994, 227) and Falkenberg et al. (1998)). Krogstie (1995, 10-11) 
distinguishes between a social actor, which can be an individual or an organization, 
and a technical actor that is a computational actor (hardware or software) or some 
other device (e.g. a clock). We regard a technical actor as a facility. 

88  Zur Muchlen (1999, 5, 11) defines also the concept of position type (e.g. secretary), 
because for a certain position type there may be several positions (instances) and a 
specific position (instance) is occupied by a person. This viewpoint is common in the 
workflow systems.  

89  We defined the notion of a role to be a part of the generic ontology. Here, a role 
means an organizational role. We use the shorter term when there is no risk for 
confusion.   
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responsibilities for some objects. The role of a database administrator, for 
instance, is charged with responsibilities, which focus on databases of the 
enterprise. A role can be played by many persons through the position(s) they 
hold. A role also summarises a set of skills or capabilities necessary to discharge 
the responsibilities required by the role. 
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FIGURE 35  Meta model of the actor domain 

 
The positions are related, directly or indirectly, with each other. An indirect 
relationship between the positions is established through relationships to and 
between other concepts. For instance, an intentional dependency (Kavakli et al. 
1999, 193, called a goal dependency in Loucopoulos et al. 1998) reflects the fact 
that the achievement of a goal that a position is about is dependent on the 
achievement of a goal of another position. These kinds of indirect relationships 
are discussed in Section 4.6.  Here, we next define the most essential direct 
relationship between the positions, namely the supervision relationship.  

The supervision relationship involves two positions in which one is a 
supervisor to another that is called a subordinate. A supervisor position has 
responsibility and authority to make decisions upon the positions subordinate 
to it, and those occupying the subordinate positions have responsibility for 
reporting on one’s work and results to those occupying the supervisor position. 
Responsibility is the obligation owed by subordinates to their supervisors for 
exercising authority delegated to them in a way to accomplish results expected 
(cf. Koontz et al. 1972). It is assigned to the position at the time the position is 
created or modified. Authority is the degree of discretion in positions 
conferring actors occupying these positions the right to use their judgment in 
decision making (Koontz et al. 1972). The supervision relationship is irreflexive 
and antisymmetric. The transitiveness of the relationship depends on the type 
of organizational structure and policy. 

An organization is an administrative arrangement or structure established 
for some purposes, manifesting the division of labor into actions and the 
coordination of actions to accomplish the work. It can be permanent and 
formal, established with immutable regulations, procedures and rules. Or it 
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may be temporally set up, like a project organization, for specific and often 
short-range purposes. Further, an organization may be informal and 
continuously evolving as those driven by the social relations emerged through 
informal interactions between individuals.  

An organization is an extremely multifarious and complex concept. It 
involves human, social, juridical, economical, technical, cultural, etc. aspects.  
An organizational structure is reflected by many kinds of artifacts. An artifact is 
an object made by people, usually with skills, for subsequent use (Baskerville 
1996, 10). It has a physical persistence but not necessarily physical embodiment. 
Artifacts represent different rules and protocols by which the members of the 
organization may choose to behave. These are, for instance, organization charts, 
personnel policies, workplace divisions, and union agreements (Baskerville 
1996, 12). Human behavior quite commonly conflicts with its artifacts. For 
example, in many organizations the CEO’s secretary wields real power more 
than authorized by superiors  (Baskerville 1996, 10). The interaction between 
the structure and the human and organizational behavior occur through social 
processes; changing the structure influences the behavior and vice versa. Here 
we are not able to model an organization with all its special characteristics but 
view the notion through the elementary artifacts. 

An organization can be enterprise-wide or established for some part of the 
enterprise. In the latter case, we use the term ‘organizational unit’. Hence, we 
have organizational units of Marketing, Financing, and Data Administration. 
An organizational unit is composed of positions with the established supervision 
relationships, and an organization is composed of organizational units. The 
supervision relationships between the organizational units are derived from the 
ones between the positions in the concerned units. The organizational units 
with their positions and supervision relationships establish an organizational 
structure. 

There are a large variety of organizational structures. Traditionally, 
organizational structures are divided into autocratic, participative, and 
egalitarian organizations, corresponding to the well-known theories of X, Y and 
Z (McGregor 1960; Ouchi 1981). Looking from a more technical viewpoint, we 
can distinguish between hierarchical and matrix-like organizations, as well as 
some hybrid forms. In a hierarchical organization structure, for each 
subordinate there is only one superior, except for the one that has the power 
over all the other positions. The positions are organized strictly according to the 
main functions, which justifies the use of the term ‘functional organization’. In a 
matrix –like organization, for one subordinate there can be several superiors 
with different authorities.  
 
4.4.3 Action Domain 
 
The action domain comprises all those concepts and constructs that refer to deeds 
or events in a context, that is, to state transitions in reality. Action is used as the 
generic concept to refer to things belonging to the action domain. Actions can 
be autonomous or cooperative. They can mean highly abstract work like studies 
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in mathematics, or at the other extreme, physical execution of a step-by-step 
procedure with detailed routines. They can be momentary or last hours, days or 
even years. The most essential characteristic of actions is that they somehow 
change the world, that is to say, execute state transitions (cf. Section 3.7), in 
either physical or mental sense. The former are called causal actions and the 
latter knowledge-producing actions (Koubarakis et al. 2002, 304-305). The 
knowledge-producing actions are perceptual or communicative actions. 
Although it is difficult to describe actions independently from related 
contextual domains90, we here consider the concepts and relationships of the 
action domain separately from the other domains.  Later in Section 4.5 the 
concepts of the action domain will be related to concepts of the other domains.  

The actions can be classified according to several criteria. There are a large 
number of action structures, which an action is a part of. We divide the action 
structures into specific structures and generic structures. The specific structures 
are the management – execution (Mgmt-Exec) structure and the problem 
solving structure. The generic structures comprise the decomposition structure, 
the control structure and the temporal structure. An essential notion related to 
all the action structures is a rule. In the following, we will first discuss the 
specific structures, then the notion of a rule and finally the generic action 
structures (see the meta model of the action domain in Figure 36). 

It is a commonplace to distinguish between the management actions and 
the execution actions91. The management – execution structure is composed of 
one or more management actions and those execution actions that implement 
prescriptions provided by the management actions. The management – 
execution structure is one of the cornerstones in systems theories (e.g. 
Mesarovic et al. 1970), which are concerned with control and coordination, as 
well as of organizational theories (Weick 1995). The dichotomy is so far-
reaching that the kinds of actions can be considered to mold conceptions of the 
contexts in which they are. Consequently, we  can  talk  about  the management 
contexts and the execution contexts. The management actions aim to provide 
execution   actions  with   prescriptions   and   resources. This  means  planning,  

                                                 
90  In some approaches (e.g. Loucopoulos et al. 1998; Kavakli et al. 1999, 191), processes 

as individual occurrences of actions are perceived as composites of four key 
components: the roles, the activities, the objects, and the rules. 

91  For instance, Kerola and Järvinen (1975) distinguish between eight functions in ideal-
seeking purposeful systems, including logistic functions, managerial or control 
functions, and supporting functions. Iivari (1989a) defines the conversion function 
(involves changes in quality, quantity, place and/or time of objects) and the 
development/rearrangement function (reorganizing authority relationships, 
reallocation of action into positions, etc.). van Slooten et al. (1993, 179) divide the 
processes into three categories: primary processes (transform inputs to outputs 
which are useful for the environment), regulative processes (regulate primary 
processes, like policy making, planning, control), and maintenance processes (obtain 
and maintain the means (e.g. staff, machines) of the organization). Verrijn-Stuart 
(1995, 271) presents a functional categorization into (a) productive activities (primary 
or core business) and (2) control, coordination and supportive activities. 
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FIGURE 36  Meta model of the action domain 
 
organizing, staffing, directing and controlling the actions of the execution 
contexts, in order to ensure the achievement of goals and constraints given from 
the environment (cf. Cleland et al. 1972; Sisk 1973).  The management actions 
deploy procedures, practices, technologies, and know-how to make their 
courses of action effective. The purpose of the execution actions is to implement 
the prescriptions with the given resources. 

The management actions are further divided into planning, organizing, 
staffing, directing and controlling actions (e.g. Thayer 1987). Planning consists of 
all those management actions that lead to the creation, assessment, and 
selection of alternative future courses of action and the program for carrying 
out the actions. It involves the definition of objectives and constraints as well as 
the development of strategies, policies, and procedures to achieve the 
objectives. Strategies define long-range goals and incorporate methods to obtain 
those goals. Policies are concerned with predetermined management decisions 
about e.g. personnel recruitment. Procedures establish customary ways of 
handling future actions and thereby allow little if any discretion.  

Organizing contains all those management actions that result in the design 
of a formal organization structure of actions and authority relationships. It 
determines and decomposes actions required to achieve the objectives and 
arranges these actions into logical groups called roles and positions. The 
essential part of organizing is the creation of position titles, the descriptions of 
each organizational position, and the definition of the scopes, duties, 
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authorities, and relationships for each position. Staffing consists of all those 
management actions required to fulfill and sustain filled positions that were 
established by organizing. This includes selecting candidates for the positions, 
making formal assignments, and training or otherwise developing both 
candidates and incumbents to accomplish their tasks effectively. 

Directing consists of all those management actions dealing with the 
interpersonal aspects through which the personnel come to understand and 
contribute to the achievement of organizational goals. Once selected, 
assignments are clarified to the subordinates. The actors are guided, motivated, 
led and stimulated towards improved performance. Controlling is all those 
management actions that ensure the actual work goes according to the plans. It 
measures performance against the goals and the plans, shows when a deviation 
occurs, and by putting in motion corrective or complementary actions, helps 
ensure the accomplishment of plans. Controlling means observing and 
comparing the performance against the set standards. 

As the PSC model (Kerola 1980) suggests, the pair of management and 
execution actions can be recognized in different contents and forms in 
organizations, depending on a point of view. As a matter of fact, the pair may 
also be recognized within a management action as well as within an execution 
action. Thus, there is a hierarchy of management and execution actions in 
which upper structures are concerned with long run policies and objectives and 
lower structures are implementing short run goals. A control lifespan means a 
time period for which plans are made and during which their execution is 
controlled.  According to the control lifespan, the actions can be categorized 
into strategic level, tactic level and operational level actions (cf. strategic 
planning, management control, and operational control in Anthony (1965)). 

The other kind of the specific action structure is the problem solving 
structure. It is based on the stages of problem solving (Simon 1960). 
Consequently, the problem solving structure is composed of three kinds of 
actions: intelligence, design options, and choice. Intelligence means actions that 
search the environment for conditions calling for a decision. They collect 
information based on which a decision can be made. Design consists of actions 
of inventing, shaping and specifying alternatives for possible courses of action. 
If the available information is found insufficient, the problem solver may 
choose to go back to the intelligence stage before making any further move. 
Choice means the evaluation and comparison of each alternative and the 
selection among them. The choice is complicated by multi-preferences, 
conflicting interests, and uncertainty. If needed, more information is collected, 
more alternatives are specified and/or specifications are further refined or 
revised. Hence, the stages constitute an iterative rather than a sequential 
process. 

The action structures are enforced by rules. A rule is a principle or 
regulation governing a conduct, action, procedure, arrangement, etc (Webster 
1989). It is composed of four parts (Herbst 1995, 187; Herbst et al. 1994, 29), 
event, condition, thenAction, and elseAction, leading to the well-known ECAA 
structure. An event is an instantaneous happening in the context, or in its 
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environment, that is significant for the behaviour of the context. It means 
anything that has happened, happens, or can happen. An event has no 
duration. A condition is a prerequisite for triggering an action. A thenAction is an 
action that is done when the event occurs and if the condition is true. An 
elseAction is an action that is done when the event occurs but the condition is 
not true. 

The parts of a rule are inter-related in many ways. First, both an event and 
a condition can be decomposed into more elementary parts with the logical 
operators AND and OR (cf. Herbst 1995, 188-189). Also thenAction and 
elseAction can be at any decomposition level. The execution of an action may 
raise a new event, which in favorable circumstances (e.g. the pre-defined 
conditions are true) leads to the execution of new actions. This is the way the 
rules enforce the implementation of the control structure of actions.  For 
instance, consider the following rule: When a damage is reported and if the 
information about the damage is available, then a claims handler in the 
insurance company registers the damage provisionally and raises the event 
‘Damage-provisional-registered’; else he sends the damage form to the policy 
holder and raises the event ‘Damage-Form-Sent’ (Herbst et al. 1997, 123). 

The rules can be classified in many ways (Krogstie 1995). A dynamic rule 
restricts the allowable transitions between the pre-states and the post-states. A 
static rule restricts the allowable states. An analytic rule is a rule that cannot be 
broken by an inter-subjectively agreed definition of the terms used in the rule 
(e.g. the age of a person is never below 0). An empirical rule is a rule that cannot 
be broken according to shared explicit knowledge (e.g. no one can travel faster 
than the speed of light). Analytic and empirical rules are rules of necessity, in 
other words they must always be satisfied. Deontic rules are socially agreed 
among the persons. Thus, a deontic rule can be violated without redefining the 
terms in the rule. The deontic rules can be classified into obligations, 
recommendations, permissions, discouragements, and probibitions (Krogstie et 
al. 1994). 

As said above, the execution of an action causes one or more state 
transitions92. Every state transition is a potential event triggering another action. 
We can distinguish between three kinds of events (cf. Brinkkemper 1990, 54, 
Loucopoulos et al. 1998, 32): internal, external and temporal events. An internal 
event is an occurrence happening inside the context (e.g. A stock item passes the 
re-order level). An external event is an occurrence happening in the environment 
of the context (e.g. A client phones for information on a particular stock item). A 
temporal event is an occurrence having time as its impulse (e.g. On  31st of 
December at 12.00 a list of the total inventory has to be printed). A temporal 
event can be internal or external.   

In practice many kinds of exceptions are experienced. An exception is “ a 
case to which a rule, general principle, etc. does not apply” (Webster 1989). 
Exceptions can be classified according to their relations to “normal” cases 
                                                 
92  Note that there are state transitions which are not necessarily caused by actions; e.g. 

catching fire as a result from lightning. 
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(Auramäki et al. 1989, 172-175). Here, it is not possible discuss the exceptions in 
more detail. Next, we move on to define the generic action structures that are 
the decomposition structure, the control structure and the temporal structure. 

In the decomposition structure, actions are divided into sub-actions, these 
further into sub-sub-actions, etc. Sub-actions may be functions, activities, tasks, 
operations, etc. Decomposition aims at reaching the level of elementary actions, 
where it is not possible or necessary to further decompose. The level of 
elementary actions depends on a point of view. Functional decomposition 
yields a hierarchical structure, which reveals the parts of each action, not their 
selection criteria neither the order in which they are to be performed.  

A more specific view on the relationships between the actions can be 
obtained by looking at the control structure. The control structure indicates the 
way in which the actions are logically related to each other and the order in 
which they are to be executed. The control structures are: sequence, selection, 
and iteration93. The sequence relationship between two actions act1 and act2 means 
that after selecting the action act1 the action act2 is next to be selected. This 
implies that act1 logically precedes act2. For example, in order to go in, a door 
must be opened, and sending a submitted paper to referees requires that the 
paper is first received by the program chairman.  In information processing the 
sequence relationship is commonly a manifestation of the need of the action act2 
to have at least part of the output from action act1 as its input. The sequence 
relationship is antisymmetric and irreflexive. The relationship can be indirect or 
direct. It is direct if there is no other action act3 between the actions act1 and act2 
in the sequence order. The direct sequence relationship is not transitive, 
whereas the indirect sequence relationship is transitive. 

The selection relationship means that after selecting the action act1 there is a 
set of alternative actions act2,.., actn from which one action (or a certain number 
of actions) is to be selected.  For example, after receiving reviews from the 
referees, an acceptance letter or a rejection letter is sent to the author(s). A 
selection is made based on contextual criteria. The criteria can be quite complex. 
They may prescribe to select one, two or several alternative actions. If several 
can be selected, the criteria can state which of them are mandatory or 
prioritized.  

The iteration relationship means that after selecting the action act1 the same 
action is selected once more. The selection is repeated until the stated 
conditions become true.  For instance, a referee writes a review report for all the 
papers he/she has got for review. There can be different reasons for iterations: 
revision of an object due to better knowledge (“re-do”); iteration for the same 
object, each time on a more detailed level (“refine”); performing the action, each 

                                                 
93  The terms ‘sequence’, ‘selection’ and ‘iteration’ are adopted here due to the tradition 

in programming languages (e.g. Hoare et al. 1973), although some of them are a bit 
problematic. For instance, the term ‘sequence’ gives an impression of a temporal 
relationship according to which one action cannot start before the other action has 
finished. The temporal aspect is not, however, involved here.  
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time for different objects, due to, for instance, lack of processing capacity in 
terms of manpower, facilities, or space (“repeat”) (cf. Goldkuhl et al. 1993).  

Note that a part of the control structure can also contain an inner control 
structure. For instance, the sequence relationship can associate two actions, 
which in fact are complex actions including compositions of actions with, say, 
another sequence relationship or an iteration relationship. Likewise, among a 
set of alternative actions, there can be an inner control structure specifying, for 
instance, in which logical order selected actions should be executed.  

The third generic action structure is the temporal structure. The temporal 
structure is like the control structure but with temporal conditions and events. A 
temporal condition means a condition, which contains at least one temporal 
expression. A temporal event is a time-driven event. In the temporal structure, 
the actions are bound to the time axis, with either absolute or comparative 
terms. An absolute term signifies a time unit (time point or time interval) in 
some time system; e.g. at 10.00 pm. Conditions and events are expressed in 
comparative terms if they signify, for instance, the beginning or ending events 
of some other actions; e.g. act2 should not start before the end of the action act1. 
Hybrid terms contain absolute and comparative parts: e.g. if an order is not 
assembled within 20 days after the order is registered, remind the responsible 
clerk (Herbst 1995, 188),  

The temporal structures are specified using temporal constructs94, such as 
during, starts, finishes, before, overlaps, meets, and equal. Constructs are used 
to specify the relationships between the starting and/or ending events, or 
between the durations of the actions. With these constructs, overlapping, 
parallel, disjoint (non-parallel) and overlapping executions of actions can be 
distinguished. Two actions are said to be overlapping if the durations of their 
executions overlap; i.e. the action act2 starts before the action act1 ends. The 
actions are (strictly) parallel if the durations are equal or the duration of one 
action is included in the duration of the other action. Two actions are said to be 
disjoint if their durations do not overlap. The actions are strictly sequential, if 
the action act2 starts exactly after the action act1 ends; i.e. there is no elementary 
time unit between the ending event and the starting event. More temporal 
concepts and relationships will be defined in Section 4.4.7.   

The generic action structures can be positioned in a continuum to reflect 
an extent to which the relationships between actions are constrained. Consider 
the action structures in Figure 37. In the decomposition structure the 
relationships between the actions are specified on the most general level. The 
action act is decomposed into four parts and one part further into three 
subparts. No other relationships, except the partOf relationships, are specified. 
On the next general level (the control structure), the parts are also interrelated 
by logical relationships (an arrow describes a sequence, a box containing parts 
describes a selection, and an arrow returning to the part stands for an iteration). 
On the most specific level (the temporal structure) the parts are bound to the 

                                                 
94  The temporal constructs will be specified in Section 4.4.7.  
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time axis, in this case with comparative terms (i.e. without explicit references to 
time units). 
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FIGURE 37  The action act seen from the viewpoints of  three generic structures 
 
An aggregate of related rules constitutes a work procedure (cf. Iivari 1989a,  333), 
which prescribes how the course of action should proceed. Depending on the 
knowledge of, and a variety of, actions, work procedures may be defined at 
different levels of detail. Hoc (1988) identifies three kinds of modes of 
prescriptions: declarative, functional and procedural. Declarative prescriptions 
express the desired state of the UoD, often in terms of expected outcomes (i.e. 
“What”). Procedural prescriptions give more explicit, often step-by-step, 
guidance for the course of actions (i.e. “How”). An intermediate type of 
prescriptions, termed the functional prescriptions, establishes relations between 
the actions and the positions but does not have the status of prescriptions for 
operational procedures.   

The considerations above have dealt with the concepts and relationships 
in the action domain at the type level. Due to the importance of the actions in 
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the context ontology and a large variety of instance-level occurrences of actions, 
we next consider the actions at the instance level. 

An instance of an action is called a process. For one action, several process 
enactments can occur. A process may have sub-processes, which may have sub-
sub-processes, etc. A process can occasionally terminate and after a while 
resume. Another process can be enacted, one after another, as a new iteration of 
the same action. Consequently, a variety of instance-level structures, which the 
process enacted from the certain action may have, is very large but all of them 
have to comply with the structures and rules specified for the action. To 
illustrate the relationships between an action and its processes as well as a 
variety of processes of an action, we present the process p1 of the action act on 
the decomposition, control and temporal levels in Figure 38. We can see that in 
the process p1 two sub-sub-processes p121 and p122, corresponding to the sub-
actions act21 and act22, are enacted. The sub-process p13 is executed with 
iteration, leading to the enactment of three sub-sub-processes p131, p132 and 
p133. 
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FIGURE 38  The process p1 of the action act seen on three levels of action structures 
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Due to the fact that action is such a focal notion to information processing, even 
more classifications for actions are presented in the IS literature. Most of them 
can be categorized based on the contextual domains. Hence, depending on 
whether the actor of an action is a human being, a computerized tool or both, 
the actions can be classified into manual, automatic or semi-automatic actions. 
Manual actions are totally performed by human beings, whereas automatic 
actions are executed by a computerized tool (e.g. auto pilot system in an air 
plane). Linguistic actions (cf. speech acts in Searle et al. (1979)) deal with 
linguistic objects, whereas instrumental actions concern physical objects with no 
representational function. Personal actions are conducted by individuals, while 
collaborative actions presume group work. Based on the time domain, we can 
distinguish between non-recurring actions and recurring actions. Further, we 
can recognize centralized actions and decentralized actions.  
 
4.4.4 Object Domain 
 
The object domain contains all those concepts and constructs that refer to 
something, which an action is directed to. It can be a message, a decision, an 
argumentation, a list of problems, a program code, CASE tool graphics on the 
screen, a workstation, etc. In general, an object can be a conception in a human 
mind, the data represented in some carrier, or physical material such as timber, 
a machine or a house (cf. the semiotic realms). Also a person as a physical thing 
can be an object as is the case when a person is in the barber. In the literature an 
object is called an information/material set (Olle et al. 1988a), material/ 
information (Iivari 1989a), a dataset (Harmsen 1997), data (van Swede et al. 
1993), a document (Ang et al. 1993), a resource (Freeman et al. 1994), and an 
actand (Falkenberg et al. 1998).  We use ’object’ as the generic term to signify 
any concept in the object domain. 

Based on the nature of the objects we can distinguish between material 
objects and informational objects. Material objects do not carry or present any 
information, whereas informational objects do. For us, objects of special interest 
are in the form of data or information. We call them data objects, or linguistic 
objects, and information objects or conceptual objects, respectively95.  Service is 
something tangible or intangible, composed of material and/or informational 
objects, made or given for someone from which it benefits.  

Linguistic objects can be classified according to languages in which they 
are presented. They can be formal, semi-formal or informal (cf. the language 
ontology in Section 3.6). Informational objects can be classified based on the 
intentions by which the objects are provided and used. Our aim here is to 
develop a simple (lattice) taxonomy that serves as a basis to elaborate further 
the object domain. The taxonomy has benefited from the classifications of 
Stamper (1973, 1975, 1978a), Searle et al. (1985), and Lee (1983). Next we define 

                                                 
95  This division is in accordance with the well-know distinction between a datum as ”a 

representation of information” and information as “an interpretation of a datum” (cf. 
Langefors 1971).  
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the concepts included in the taxonomy (see Figure 39 for the meta model of the 
object domain). 
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FIGURE 39  Meta model of the object domain 
 
Stamper (1978a) distinguishes between the denotative and affective modes of a 
language. Accordingly, there are informational objects, which merely signify 
objects in the UoD, and those which affect upon the human feelings. We 
constrain ourselves to discuss mainly the informational objects in the denotative 
mode. These informational objects can be descriptive or prescriptive. A 
descriptive object, called a description, is a representation of information about a 
slice of the UoD (the actual or possible world). It provides a picture of reality to 
enable an actor as a planner or as a decision maker to take actions even if 
he/she is at some distance from the "world" in question. A prescriptive object, 
called a prescription, is a representation of the established practice or an 
authoritative regulation for action. It is information that says what must or 
ought to be done. It can be in the form of an order or an instruction, a rule or a 
regulation, a recommendation or an advice.  

A distinction between a description and a prescription can be illustrated 
and elaborated by the direction of fit (Searle et al. 1985). The direction of fit 
discloses how the propositional content of an informational object relates to 
reality. Three main cases are: (a) The propositional content fits a state of affairs 
in reality; (b) States of affairs are changed to fit the propositional content; (c) 
The propositional content induces the intended alteration in the state of affairs. 
The two first cases correspond to the descriptions and the prescriptions, 
respectively. The third case stands for declarations, which are not distinguished 
in our ontology. 
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An informational object can be descriptive in various ways. An assertion is 
a description, which asserts that a certain state has existed or exists, or a certain 
event has occurred or occurs. The propositional content of the assertion fits a 
past or existing state of affairs. A prediction is a description of a future possible 
world with the assertion that the course of events in the actual world will 
eventually lead to this state (cf. Lee 1983). 

Also the prescriptions can be specialized. First, a prescription can be 
expressed in different forms. Most commonly a prescription can be reduced 
into the ECAA form: If Event and Condition, then Action1; else Action2 (Herbst 
1995). As defined in Section 4.4.3, a prescription with at least two parts ((E or C) 
and A) is called a rule. A prescription with neither an event part nor a condition 
part is called a command.  Second, the prescriptions are different from one 
another in regard to their stability. On one hand, we have prescriptions that, to 
a high degree, remain unchanged. A good example of these is the rule which 
forbids Muslims from eating pork. On the other hand, there are prescriptions 
that are subject to periodic or occasional changes (e.g. the tax legislation). Third, 
we can distinguish between first-order and second-order prescriptions 
(Stamper 1978a). Second-order prescriptions are used to modify first-order 
prescriptions in certain contexts.  

An informational object may possess aspects of several intentional 
subtypes. For instance, a plan is, on one hand, a description about what is 
intended. It can also be regarded as a kind of prediction, which is augmented 
with intentions of action. It is assumed that the future possible world described 
in the plan would not normally come out, except for the intended actions (cf. 
Lee 1983). On the other hand, no plan is prepared without considering its 
implementation. Consequently, it contains a requirement to act in order to 
change the states of affairs. As regard to the states in which a plan can appear 
during the courses of action, we can distinguish possible, probable, proposed, 
and approved plans (cf. Glasson 1986, 272). 

There are many important relationships between the objects.  Except the 
abstraction relationships, most of the relationships are type-specific. In the 
following we consider five generic relationships between the informational 
objects, which are:  the versionOf relationship, the copyOf relationship, the 
supports relationship, the predAbstract, the signifies relationship, and the 
partOf relationship.  

An object is often produced gradually through several iterations. A version 
is a result of an iterative or phased action toward the final outcome. It can be a 
preliminary or tentative object, the final product itself, or something between 
them. The versionOf relationship holds between two objects obj1 and obj2, if  
properties of, and  experience from, the object obj1 have influenced the creation 
of another object obj2 intended for the same purposes and if the objects refer to 
the same UoD (cf. the is_derived_from relationship in Katz (1990)). In some cases, 
the objects are considered versions albeit the purpose has evolved. The creation 
can get its start from “scratch” or it can be based on updating, elaborating or 
improving the earlier version. The versionOf relationship is irreflexive, 
antisymmetric, and transitive. The versions can establish a version tree, in 
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which several alternative versions are made from one object and one of the 
versions is selected for further development. The process of producing versions 
is iterative. 

We may have several copies from an object. A characteristic of the copyOf 
relationship is that the original object and a copy object are exactly, or to an 
acceptable extent, similar. Depending on the nature of the original object, there 
may be some or even millions of copies (cf. an e-mail message forwarded as a 
copy to thousands of users through a public mailing list). If the copies are equal 
to the original object, there is no need to maintain the knowledge about which 
of the objects is original. In this case the copyOf relationship is reflexive, 
symmetric, and transitive. Otherwise, the relationship is irreflexive, 
antisymmetric and intransitive. 

The supports relationship involves two informational objects, obj1 and obj2, 
such that the information “carried” by the object obj1 is needed to produce the 
object obj2. For instance, to place an order, it is necessary to know what the 
current quantity-on-hand of the product is, who the potential suppliers are, 
what the prices of the products are, what the delay of supplying is, etc. The 
supports relationship is irreflexive, antisymmetric and intransitive. We can 
distinguish between two subtypes of the supports relationships. Depending on 
the role in which the information conveyed by the object obj1 plays in 
producing the object obj2, the relationship can be the data supports relationship 
or the control supports relationship. In the data supports relationship, obj1 means 
“raw data” that is converted into obj2. In the control supports relationship, obj1 
means “control data”, i.e. rules, policies, principles or other prescriptions, 
according to which the object obj2 is to be produced. The versionOf relationship 
is a subtype of the data supports relationship. 

The predAbstract relationship between two informational objects means that 
one object is more abstract that the other object in terms of predicate abstraction 
(see Section 3.9.3) and both of the objects signify the same thing(s) in the UoD. 
For instance, a document containing the description of functional properties of 
a machine is more abstract, in terms of predicate abstraction based on the 
realization criterion, than another document, which contains a diagram of 
electric wiring. The predAbstract relationship is irreflexive and antisymmetric. 
In a hierarchical system of predicate abstraction levels, the relationship is also 
transitive.  

The signifies relationship defines the conceptual meaning of the linguistic 
object in terms of UoD constructs, which the object signifies.  The relationship is 
a specialization of the relationship between a sign and a concept, defined in the 
semiotic ontology (Section 3.4)96.  The UoD construct means any conceptual 
construct in the same or different context97.  Above we distinguished between 
five kinds of informational objects: assertion, prediction, plan, rule and 
command. They reflect various illocutionary forces (Searle 1969, 1979) or 
“pragmatic meanings”. It would be possible to specialize the signifies 
                                                 
96  We use the term ‘signifies’ for the relationship here in spite of this specialization.  
97  The notion of a UoD construct will be discussed more closely in Section 6.3.3. 
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relationship into five special relationships between a specific linguistic object 
and a UoD construct, one for each of the object kinds. This is not done here.  

The partOf relationship in the object domain means that the object is 
composed of two or more other objects that are called object parts (cf. product 
elements or sub-products in Schmitt (1993, 238)). 
 
4.4.5 Facility Domain 
 
The facility domain contains all those concepts and constructs that refer to the 
means by which something can be accomplished, i.e. something, which makes 
an action possible, more efficient or effective. We distinguish between two main 
kinds of facilities: tools and resources (see the meta model of the facility domain 
in Figure 40). 
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FIGURE 40  Meta model of the facility domain 
 
A tool is a thing that is designed, built, installed, etc. to serve in a specific action 
affording a convenience, efficiency or effectiveness. A tool may be, for instance, 
a simple and concrete instrument held in hand and used for cutting or hitting. 
Or, it may be a highly complicated computer system supporting an engineer in 
his/her controlling a nuclear power station. In contrast to an actor, a tool has a 
supportive role in the context: it is activated or taken “into hand” when needed 
by a skilled actor. In a technical context, a tool may have a major role in action 
(cf. an auto pilot in the air plane), but there also it is assumed to be under the 
control of a human being98. Tools can be manual, computer aided, or computerized.   

                                                 
98  By this standpoint, we strongly support McGregor (1960) who points out a difference 

between a human being and a machine: ”The distinctive potential contribution of the 



 

 

189 

A resource is a kind of source of supply, support, or aid. It can be money, 
energy, capital, goods, manpower, etc. (Barros 1991, 539).  The resources are not 
interesting in terms of pieces, e.g. in individual coins or men, but rather in 
terms of amount. When a resource is used, it is consumed, and when 
consuming, the amount of the resource diminishes. Thus, a resource is a thing, 
about which the main concern is how much it is available (cf. Liu et al. 2002, 39). 
In this respect, the notion of a resource sharply differs from the notion of a tool. 

There are a great number of relationships between the concepts within the 
facility domain, representing functional, structural and other kinds of 
connections. As we do not want to emphasize too much technical aspects of a 
context, we content ourselves with defining some examples of the relationships 
among the computer aided and computerized tools. These are: compatibility, 
versionOf, and configuration.  

For being operative and useful, the tools should be compatible. Two tools 
are compatible if their interfaces are structurally and functionally interoperable. 
The compatibility relationship is reflexive and sometimes symmetric. 
Compatibility can be considered from several viewpoints. For instance, the 
basic reference model of Open Systems Interconnection (OSI), developed by 
ISO (1984), establishes an architecture with seven compatible layers. On each 
layer, a particular viewpoint is applied to establish compatibility for data 
communication between components of information processing systems. In this 
case compatibility is not symmetric. Besides on data, compatibility can be based 
on presentation, control, and process of the tools (Thomas et al. 1992). 

Tools are commonly composed of one or more components. Components 
develop through consecutive versions. Only some versions of a component are 
compatible with certain versions of the other component. To manage 
compositions of components of different versions, the notion of a configuration 
is used. A configuration is a whole that is composed of the components with 
compatible versions. For instance, a software house must manage customized 
configurations of software for specific platforms or for other special 
requirements of customers (see Pohl (1994) for discussions of upwards and 
downwards compatibility). 
 
4.4.6 Location Domain  
 
The location domain contains all those concepts and constructs that refer to parts 
of space occupied by someone or something. A location can be physical or 
logical. A physical location, such as a room, a building or a city, is a spatial thing, 
which is placed in a region of space and which can, through its spatial 
attachment, provide a place for some other thing (e.g. a person in a building). 
We distinguish between spatial things and the space they are placed in (Borgo 
et al. 1996; Bittner 1999). A spatial thing may be a building, a street, a river or the 

                                                                                                                                               
human being in contrast to the machine, at every level of an organization, stems from 
his capacity to think, to plan, to exercise judgment, to be creative, to direct and to 
control his own behavior. 



 

 

190 

like, that is to say, some thing that is necessary or beneficial to localize. A region 
is a part or division of space99. A point is the elementary unit in space specified 
by a single coordinate with reference to a system of two or three geographical 
dimensions. An area is any particular extent of space specified with at least two 
coordinates. A geographical dimension means any dimension within which space 
can be specified. A geographical system is a system of two or three geographical 
dimensions. A spatial thing is associated with a region by the placedIn 
relationship. Distinguishing a spatial thing from a region it is placed in is 
important to enable recognizing that something is moved across space 
(Shanaham 1995). Depending on the match between the granularities of the 
spatial things and the regions of space, the placedIn relationship can denote an 
exact place, a part place or a rough place (Bittner et al. 2002).   

A logical location, like a site within a computer network, is a space that is 
not attached to any geographical point or area. We make a clear distinction 
between a location as a space and the contents of the location. The latter can, 
depending on a viewpoint, be an actor, an object, or a facility.  Next, we define 
relationships in the location domain (see the meta model of the location domain 
in Figure 41). 
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FIGURE 41  Meta model of the location domain 
 
With the expansion of geographical information systems (GIS’s) and other 
location-aware applications, e.g. in 3G networks, it has become more and more 
necessary to collect, model, store and analyze information originating from 
                                                 
99  There are many alternative ways to divide space. Sowa (1995, 670), for example, 

defines three elementary “geographical features” with which space can be divided: 
area, line, and point. 
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maps, digital images, satellites, roads, transportation networks, etc. A 
prerequisite for these is that the relationships between the locations are strictly 
defined. There is a special theory of parts, called mereology (e.g. Varzi 1996), 
which defines wholes and parts and their location-based relationships. The 
most essential relationships are the partOf relationship, also called the parthood 
relationship, and the topological relationships. The geographical partOf 
relationship associates both the spatial things and the regions of spaces. Cities 
contain buildings, which comprise apartments, which  consist of rooms, etc.  
Granularity of  the  regions depends on the scale and metrics relevant from the 
adopted viewpoint100. Regions are measured as areas along the geographical 
dimensions or abstracted as points in spatial space101.   

Geometrical dimensions enable to establish various topological 
relationships between the regions. A topological relationship between two regions 
states how the regions are related in terms of geographical points or areas along 
two or three geometric dimensions. Depending on the spatial theory applied, 
various primitive relationships have been defined. Randell’s theory (e.g. 
Randell et al. 1989), based upon Clarke’s (1981) calculus of individuals, for 
instance, assumes the primitive dyadic relationship ‘connects’, which means 
that the connected regions share a common point. Based on this primitive, other 
relationships like disconnected, externally connected, partial overlap, being a 
tangential part of the other, etc. can be defined. Based on different spatial 
theories, relationships such as separates, contains, surrounds, above, below, to 
the side of, etc. can be defined (cf. Stamper 1978a, 67).  The topological 
relationships are used in topological operations, such as interpolation and 
proximity analysis, to make inferences.  

For the logical locations, e.g. terminal sites, we propose different 
relationships. For instance, in an electronic mail system, it is necessary to 
maintain knowledge about all possible sites and connections between them. The 
connectedTo relationship means that two sites can communicate with each other 
through exchange of messages.  
 
4.4.7 Time Domain  
 
The time domain contains all those concepts and constructs that refer to the 
temporal aspects of the UoD. Time is indefinite, unlimited duration in which 
something is considered as happening in the past, present, or future (Webster 
1989). Most of our knowledge is founded in time and expressed in terms of time 
units. The two fundamental time units are the time point and the time interval. 
The time point is the primitive as an indivisible point on the time continuum 
(e.g. Kahn et al. 1977). The time interval is an abstraction of time points, 

                                                 
100  There is a specific set of literature that deals with different classifications in this 

respect (see for an overview in Freundschuh et al. 1997).  
101  The approaches in topology literature differ from one another in their view of what 

are the primitives. Some regard the regions as primitives (Clarke 1981), whereas 
others operate with more elementary particulars like lines and points.  
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manifesting duration of something. Note that a point in time is relative, 
dependent on the chosen point of view.  For instance, a day is, in one context, a 
time point, and, alternatively, a time interval in some other contexts.  

There are many different time theories in the literature. Based on Hayes 
(1995) we distinguish between (a) instant-based theories (e.g. McDermott 1982, 
Shoham 1987), which operate with time points, (b) interval-based theories (e.g. 
Allen 1984), which are founded on intervals, and (c) temporal theories (e.g. 
Bochman 1990), which treat both time points and intervals as independent 
primitives. Here we follow the instant-based approach, because it is more 
natural to regard an interval as being composed of time points. Next we 
consider the sub-concepts of, and the relationships between, the time units. The 
meta model of the time domain is presented in Figure 42. 
 

Time unit

Time system

Non-convex interval

Calendar timeClock-time

Time intervalTime point

Convex interval

1..*
belongsTo

*

temporal relationship

1..*
1..*

relatedTo

Time

2..*

1..*

*

1..*

 
 
FIGURE 42  Meta model of the time domain 
 
There are many kinds of time intervals. First, there are convex time intervals 
and non-convex time intervals (Zhou et al. 2000). A convex time interval is an 
interval that consists of continuous time points (e.g. January 3, 2002). A non-
convex time interval is an interval with some “holes” (e.g. Wednesday). Further, 
we can distinguish the regular non-convex time intervals. “Every Wednesday in 
September”, for instance, consists of 4 or 5 connected intervals, each of which 
represents a Wednesday.  

Time expressions can be definite or indefinite (Oberweis et al. 1988). To a 
definite expression, only one predicator applies whereas for an indefinite 
expression, like “something happens before or during the time unit tim1”, 
several predicators combined with OR-operators are used. Time expressions 
can make absolute or comparative references to time units. Absolute references 
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contain only concepts in the time domain, whereas the interpretation of 
comparative references, such as “something happens after the action act1 is 
accomplished”, applies concepts in the other contextual domains (e.g. in the 
action domain), too. 

It is common to all human and social behavior that time is perceived in 
relation to some socially constructed time system. A time system is a totally 
ordered set of time units (Clifford et al. 1988).  It is always based on a certain 
time resolution or granularity, which is selected to suit the purposes in hand. In 
physics, one of the billion fractions of a second is a relevant time unit, whereas 
in paleontological research, units of millions of years are used to express eras, in 
which prehistoric organisms have lived and evolved. The most universal time 
systems are Julian and Gregorian calendars. A more customized time system is 
a fiscal time containing fiscal year and fiscal month, which may vary in 
different countries. Another universal time system is the clock time system that 
enables reckoning and measuring time through the natural and prominent 
cycles of day and night. For organizational contexts, a composition of the 
common calendar date with the clock time system suffices. Because time is also 
said to be “the system of those sequential relations that any event has to 
another” (Webster 1989), we consider time as a generic concept generalized 
from the concepts of time unit and time system. 

The relationships between the time systems may grow to very 
complicated constructs. To define a relatedTo relationship between the time 
systems usually requires that some elementary time system is established; e.g. a 
continuous number line with real numbers.  The time systems form hierarchies 
in which a time point in one time system at a higher level (e.g. Calendar-Year) is 
seen a time interval from the perspective of another time system on a lower 
level (a Calendar-Month). It is much more difficult, however, to relate the 
systems containing weeks or other not so straightforward time units to the 
other time systems. For our study, the relationships between the time systems 
are not an essential issue and therefore we do not discuss it more. 

A large set of temporal relationships can be defined for the time points and 
the time intervals. Three binary relationships defined for the time points are: 
before, after and equal-point. Following Allen’s time theory (Allen 1984), we can 
further define a minimal set of relationships between the time intervals (intv)102: 
• during (intv1, intv2). intv1 is fully contained with intv2. 
• starts (intv1, intv2). intv1 shares the same beginning as intv2, but ends 

before intv2 ends. 
• finishes (intv1, intv2). intv1 shares the same end as intv2, but begins after 

intv2 begins. 
• before (intv1, intv2). intv1 is before intv2, and they do not overlap in any 

way. 
• overlaps (intv1, intv2). intv1 starts before intv2 and they overlap. 

                                                 
102  There are also other suggestions (e.g. De et al. 1982) that contain even 28 temporal 

relationships.  
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• meets (intv1, intv2). intv1 is before intv2, and there is no period between 
them. 

• equal (intv1, intv2). intv1 and intv2 are the same interval. 
 
There is also a large set of axioms that define the semantics of the relationships 
(Allen 1984). It can be proved, for instance, that the overlapping intervals have a 
common sub-interval and the temporal relationships are transitive. In addition, 
there are a large variety of functions on the time points and the time intervals 
(e.g. Year_of, Hour_of, Starting_point, Co_Start, etc.). We are not able to 
consider them here in more detail.  
 
 
4.5 Inter-Domain  Relationships  
 
 
Until now we have defined only those contextual relationships which associate 
concepts in the same contextual domain. There is, however, a large set of 
contextual relationships that relate concepts in different domains. For example, 
an actor carries out an action, an object is an input to an action, and a facility is 
situated in a location. We call them the inter-domain relationships.  

Figure 43 presents an overview of the inter-domain relationships. The 
space is divided into seven areas corresponding to seven contextual domains, 
with the action domain being in the centre. In each sub-areas we present the 
concerned generic concepts to be related with the inter-domain relationships.  
In the following we define the inter-domain relationships, starting from those 
that involve the concepts of the purpose domain, and then continue, domain-
by-domain, with defining the relationships that concern concepts within the 
other domains. 

 
A. Purpose 
 
expressedBy(Actor,Purpose)  
The relationship means that an actor has expressed a goal, a requirement, a 
problem, or the like concerning the context as a whole or some of its part (e.g. 
actions, objects, locations), in the same or different context.  
 
motivatedBy(HumanActor,Purpose) 
When associated with a human actor, a purpose means a subjective or inter-
subjective motive or an inner drive that makes a person or a group to do 
something or behave as he/she/it does. A purpose may be a far-reaching or 
near-reaching goal, idealistic or realistic, nevertheless it is something for which 
a human actor is ready and willing to struggle. Individuals may have their own 
“selfish” goals, for instance, to advance their personal career, which differ from 
the goals of the organizational unit they are working for.  
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FIGURE 43  Overview of inter-domain relationships 
 
strivesFor(Action,Purpose) 
When associated with an action, a purpose means a goal for which an action 
strives. A goal can be strategic, policy-level, or highly operative and concrete.  
Unlike for the objects, here a purpose through the strivesFor relationship 
particularly means a goal for a process, not for its outcome.   
 
intendedFor(Object,Purpose) 
When associated with an object, a purpose means a goal or a reason for which 
an object has been made, is made, or is to be made. For instance, an IS should be 
used to support invoicing, and customer data should be correct and timely 
enough to serve the customer relationship management.   
 
intendedFor(Facility,Purpose) 
When associated with a facility, a purpose means a goals or reason for which a 
facility has been made/acquired, is made/acquired, or is to be made/acquired. 
Commonly used purposes of a facility are: to make an action more efficient and 
easier, to make a service more available, etc.  
 
intendedFor(Location,Purpose) 
When associated with a location, a purpose means a goal or reason for which a 
location has been made/acquired, is made/acquired, or is to be made/ 
acquired.  
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existsAt(Purpose,Time) 
The relationship defines time for the existence of a purpose.  
 
B. Actor 
 
carryOut(Actor,Action)   
The relationship means that an actor carries out an action. The relationship is 
considered general enough to cover all kinds of functioning and behavior in 
various temporal and modal forms. Actor is here used as a generic concept 
meaning a human actor or a position occupied by a human actor.  
 
responsibleFor(Org.Role,Action) 
The relationship defines the functional contents of an organizational role. 
Depending on a level of detail on which an action is expressed, the role 
specification can include a general outline of responsibilities for an action, or a 
composition of operations in the form of decomposition, control or temporal 
structures. There are a large variety of principles and rules guiding and 
constraining the composition of actions to make organizational roles and the 
composition of organizational roles to establish positions.  A position should, 
for instance, facilitate some job autonomy, variety and rotation of work among 
a set of positions. Positions should also constitute natural units of work, and be 
clearly defined and organized (Mumford et al. 1979; Hedberg 1980; Steenis 
1990). 
 
ownedBy(Object,Actor) 
The relationship defines that an actor is an “owner” of an object, and therefore, 
he/she has some responsibilities for and authority over an object. Depending 
on organizational agreements and policies, an actor takes care of an object, can 
utilize an object, or can grant privileges to some other actors for using or 
modifying an object (e.g. granting permissions to access to data), etc.  
 
viewedBy(Object,Actor) 
The relationship defines that an object presents views, insights, opinions, etc. of 
a certain actor.  If associated with a person or a group of persons, an object 
represents a subjective or inter-subjective view, whereas if associated with a 
position, an object reflects an organizational view or a so-called ‘official’ view. 
Through this relationship it is possible to present differences between and 
conflicts among the views (see views in data bases (e.g. Motschnig-Pitrik 2000), 
in the socio-technical theory (Mumford et al.  1979), in the Softsystems theory 
(Checkland 1981), and in the political theories (e.g. Robey 1984; Ciborra 1998)).  
 
useAbility(Actor,Facility) 
The relationship defines that it is possible for an actor to use a facility. If a 
facility is a tool, this means that he/she has the required skills and rights for its 
use. If a facility is a resource, the relationship means that he/she is authorized 
to use or make decisions on the acquirement and use of the resource. 
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situatedIn(HumanActor,Location) 
The relationship defines that a human actor (a person or a group) is situated in 
a location. 
 
existsAt(Actor,Time) 
The relationship defines the time for the existence of an actor. Through this 
relationship the lifespan of an actor (i.e. a person, a group, a position, or an 
organizational unit) is established. 
 
C. Action 
 
The inter-domain relationships between the actions and the objects may be 
highly complex. In the literature, two major approaches have been applied in 
modeling action structures connected to the objects. In the implicit approach, 
the input and output relationships are used as such (e.g. Ramackers 1994; Sowa 
et al. 1992) or the particular concept of a flow is used (e.g. Olle et al. 1988a; 
Harmsen 1997). In the explicit approach, a special construct is defined for the 
action structure. This construct can be a whole (e.g. Communication in 
Falkenberg et al. (1998), Transaction in Verrijn-Stuart et al. (1992, 486), Business 
exchange in Sowa et al. (1992)), or an objectified relationship (e.g. 
Organizational channel in Iivari (1989a)). Heym and Österle (1992a,  233) define 
input usage and output usage constructs to enable the expression of the 
purpose (output create, output modify) for which the usage occurs. In this 
study we contend ourselves with a simple approach, which is based on defining 
the separate input and output relationships between the actions and the objects. 
 
input(Object,Action) 
The relationship defines that an object is used as an input to an action. An object 
is called an input object, and the corresponding action is called a consumer or a 
destination. 
 
output(Action,Object) 
The relationship defines that an action produces an object as its output. An 
action is called a provider or a source, and an object is called an output object.  
 
involvedBy(UoD-construct,Action) 
The relationship defines that a UoD construct is involved by an action through 
informational objects that signify a UoD construct. Involving may mean 
creating, modifying, utilizing, or deleting informational objects.   
 
performs(Tool,Action) 
The relationship defines that an action is performed by a tool.   
 
uses(Action,Resource) 
The relationship defines that an action uses certain resources. The level of detail 
in which resources are referred to may vary a lot.   
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occursAt(Action,Time) 
The relationship defines when an action is done, has been done or will be done.  
 
D.  Object 
 
usedToMake(Facility,Object) 
The relationship defines that a certain facility, a tool or a resource, is used to 
produce an object. The relationship could be specialized according to a kind of 
facility, a nature of the use, amount (of certain resources) used, etc.   
 
situatedIn(Object,Location) 
The relationship defines that an object is situated in a certain location.  
 
existsAt(Object,Time)  
The relationship defines when an object exists or has existed.  
 
E. Facility 
 
situatedIn(Facility,Location) 
The relationship defines that a facility is situated in a given location. 
 
existsAt(Facility,Time) 
The relationship defines when a facility exists or has existed. 
 
F. Location 
 
existsAt(Location,Time)  
The relationship defines when a location exists or has existed. 
 
To have an overall picture of the intra-domain relationships and the inter-
domain relationships defined above, we present the relationships in Table 14. 
The intra-domain relationships, containing all but the generalization (isA) and 
composition (partOf) relationships, are presented in the diagonal, and the inter-
domain relationships are located in the cells below the diagonal.  The 
abbreviations used in the expressions are assumed to be self-describing. 
 
 
4.6 Implicit Relationships 
 
 
Based on the intra-domain and inter-domain relationships defined above, a 
large set of implicit contextual relationships can be derived. In this section, we first 
give examples of these relationships and then illustrate the implicit inter-
context relationships with examples. The implicit relationships are not 
included, on the individual level, in the context ontology. 
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The organizational role has been previously defined as a collection of 
responsibilities and authorities. Based on the relationships that a role has to an 
action (responsibleFor), an action has to a purpose (strivesFor), and an action 
has to an object (input, output) and to time (occursAt), we can derive (implicit) 
dependencies between the roles. An intentional dependency between the roles 
reflects the fact that the achievement of a goal that one role brings about is 
dependent on the achievement of a goal of another role (Kavakli et al. 1999, 
193). A coordination dependency expresses the need for one role to wait for 
completion of another role’s responsibilities before it can complete its own 
(Loucopoulos et al. 1998, 19-20; Kavakli et al. 1999, 193). A resource dependency 
illustrates the need for one role to use a resource that can be provided by 
another role. For instance, a construction service requires material that is under 
the supervision of warehousing services (Loucopoulos et al. 1998, 19; Yu et al. 
1995). 

Further, an actor is a tool user, if he/she carries out an action, which is 
partly performed by a tool. An information provider is an actor who carries out 
actions that produce informational objects that are used as input to actions 
carried out by another actor. A facility provider is an actor who carries out 
actions to produce an object that is used as a tool by a tool user. A schedule for 
the actions can be derived from a set of the occursAt relationships. 

Implicit relationships can also associate the contexts. For instance, there is 
a managing relationship between two contexts if the actions of the 
management-execution structure are divided in such a way that the 
management  actions belong  to one context and  the execution  actions belong 
to the other. A context is a provider if its actions produce objects for the use of 
another context. For instance, an information system is a provider context for a 
business context. We can also distinguish between a signifying context and a 
signified context. The former context produces and/or uses informational 
objects that signify some things in the latter context. Further, the temporal 
relationships between two contexts follow from the temporal relationships 
between the corresponding actions, and the topological relationships between 
two contexts follow from the topological relationships between the locations. 

Abstraction among the parts of the contexts also results in abstraction 
relationships between the contexts, as the following examples show. By 
classification individual contexts are abstracted into a context type. By the 
inverse process, a context is instantiated.  Consider the following example:  
 
[Context: Cxt || [Actor: Secretary ], [Action: Stores ], 
[Object: Document ] ] 
 
By instantiating any of the three contextual concepts (Secretary, Stores, 
Document), a more concrete context is achieved:  
 
[Context: Cxt1 || [Actor: Mary ], [Action: Stores ], [Object: 
Document ] ]  
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[Context: Cxt2 || [Actor: Secretary ], [Action: Stores ], 
[Object: Document#123] ] 
 
Hence, we have derived the implicit inter-context relationships instanceOf 
(Cxt1, Cxt) and instanceOf (Cxt2,Cxt). 

Let us next consider generalization. Assume the contexts Cxt3 and Cxt4 
below: 
 
[Context: Cxt3 || [Actor: Secretary ], [Action: Stores ], 
[Object: Document ] ] 
[Context: Cxt4 || [Actor: Secretary ], [Action: Stores ], 
[Object: DesignDocument ] ] 
 
Generalizing any of the three contextual concepts in the contexts Cxt3 and Cxt4 
results in a more generalized context as follows:  
 
[Context:  Cxt || [Actor: Person], [Action: Stores ], 
[Object: Document ] ] 
 
Hence, we have derived the implicit relationships isA (Cxt3,Cxt) and isA 
(Cxt4,Cxt). 

Abstraction among the contextual concepts does not always imply the 
corresponding abstraction among the contexts.  Consider the following example 
about grouping:  
 
[Context:  Cxt5 || [Actor: Committee], [Action: Makes] 
[Object: Decision]] 
 
Let us assume that there is the relationship memberOf (Representative, 
Committee). From this it does not necessarily follow that  
 
[Context: Cxt6 || [Actor: Representative], [Action: Makes] 
[Object: Decision]], 
 
because decisions are made by the committee as a collective unit, not by 
individual representatives. There are, however, cases, in which grouping 
among the contextual concepts indeed implies a grouping relationship among 
the contexts. For example, if 
 
[Context: Cxt7 || [Actor: Committee], [Action: TravelsTo] 
[Location: London]], 
 
then it is quite possible to derive a context in which an individual 
representative travels to London. Note, however, that this does not necessarily 
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hold for instantiated contexts, because it is not certain that every representative 
of the committee visits London.  
 
 
4.7 Summary and Discussions 
 
 
The purpose of this chapter was to present the context ontology, as the first 
component among the so-called contextual ontologies. The context ontology 
provides the concepts and constructs to conceive, understand, structure and 
represent things in reality as contexts and/or within contexts. For engineering 
the ontology, we first specified a particular approach, called the contextual 
approach. We characterized the application domain at which this approach was 
aimed, defined the objectives, searched for theories underlying the approach, 
and crafted the notion of a context. A context and the contextual approach are 
vital, not only to the context ontology, but also to the whole ontological 
framework. Therefore, we made a serious attempt to construct a solid 
theoretical and conceptual basis for that.  

The contextual approach is a conception-oriented approach, which helps 
us understand and specify purposes, meanings, and effects of things, through 
considering them as parts of a context. It is a kind of abstraction mechanism by 
which we can reveal what is relevant for what we aim to explain and exclude 
all other that does not offer the requested explaining power (Sharfstein 1989). 
The notion of a context is widely used in e.g. formal logic, pragmatics, 
computational linguistics, sociological linguistics, organizational theory, 
cognitive psychology, and information systems. We were particularly interested 
in context-related theories that are situated on the three topmost levels of the 
semiotic ladder (Stamper 1973; Stamper 1996). They are semantics, pragmatics 
and theories of human and social world. Each of these theories was considered 
and several approaches based on them were described and evaluated for 
applicability. In addition, we reviewed a large variety of studies that use the 
notion of a context, although without any explicitly defined context-related 
theories. These studies are related to data bases, enterprise modeling, workflow 
management, user modeling, process modeling, and information systems 
architecture.  

Building on this theoretic basis, we defined a context to be a complex 
construct that is composed of concepts from seven contextual domains. The 
domains are: purpose, actor, action, object, facility, location, and time. Although 
there is no universally fixed aggregate of domains, which should always be 
included in the context, we recognized domains that commonly form the so-
called “nucleus” of the context. Depending on a selected point of view, these 
domains are the action domain, the object domain, and the actor domain.  

The context ontology is composed of concepts and constructs that are 
related with one another through a number of intra-domain, inter-domain and 
inter-context relationships. For each contextual domain, we defined the 
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concepts and relationships and presented them in meta models. We also made 
plenty of references to the relevant literature and compared existing 
suggestions with ours. In addition, we defined a large set of inter-domain 
relationships and considered what kinds of implicit relationships between the 
domains and between the contexts can be inferred and how.  

The context ontology provides a means to substantially detail the view of 
reality that was formed with the core ontology in Chapter 3. Things that were 
seen in the core ontology to be elementary and “instrumental” get now 
particular contextual meanings. The context ontology has been derived, in a 
transparent fashion, from the core ontology by specializing and elaborating its 
concepts and constructs.  

As the context ontology has a focal role in OntoFrame, we next consider 
the ontology with the quality criteria given in Section 1.3. The contextual 
approach and the context ontology are rooted on universal theories, thus 
contributing to naturalness and comprehensiveness. Most of the terms we use 
are common and self-evident without wordy definitions. The context ontology 
is comprehensive, assessed in terms of the coverage of the contextual domains 
and the features derived from the theories for. The comprehensiveness can also 
be argued with comparisons to the corresponding artifacts in the literature (e.g. 
Olive 1983; Zachman 1987; Iivari 1989a; Sowa et al. 1992; Olle et al. 1988a; van 
Swede et al. 1993; Freeman et al. 1994; Harmsen 1997). This kind of comparison 
will be presented in Section 5.6.  

The context ontology can be easily extended specializing existing concepts 
and constructs. Due to the large size of the ontology we have been obliged to 
exclude several specific areas that can be, if necessary, equipped with new 
concepts and constructs and integrate into the context ontology. Such areas may 
concern, for instance, tools (e.g. computer architecture, communication 
network) and organizations (e.g. group working dynamics, informal 
organizational forms).  

The context ontology is applicable to comparative analyses, as will be 
demonstrated in Section 5.6 (cf. the analytical intention of use). The ontology is 
also of vital importance in engineering more specific component ontologies of 
OntoFrame in the next chapters (cf. the constructive intention of use). The 
notion of a context with its seven contextual domains becomes clearly visible in 
all the lower-level component ontologies.  
 



 

 

 
 
 
 
 
 
 
 
 
 
 
5 LAYER ONTOLOGY 
 
 
In the previous chapter we defined the context ontology, which provides a 
comprehensive set of concepts and constructs to conceive, understand, 
structure, and represent the structure and behavior of the contexts in general. 
Applying the context ontology we can make sense of the meanings of the things 
by considering them to be a context or part of a context. In this chapter we will 
focus on more specialized contexts, namely on contexts the purpose of which is 
solely information processing. We define the layer ontology, which provides 
concepts and constructs to conceive, understand, structure and represent static 
and dynamic features of information processing at four layers. The ontology is 
derived from the context ontology by specialization (Figure 44).  
 

Core ontology

Level ontologyLayer ontology

Perspective ontology

Context ontology

 
 
FIGURE 44  Focus of Chapter 5 
 
The layer ontology is composed of two parts. The first part provides concepts 
and constructs related to information processing in general. The second part of 
the ontology shows how information processing is structured and related onto 
four layers according to a predefined system of layers.  
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The chapter is organized into four sections. In Section 5.1 we define the 
basic concepts pertaining to information and information processing. We also 
distinguish between the information system, the object system, the utilizing 
system, and the controlled system, define them and discuss relationships 
between them. In Section 5.2 we recognize the primary actions and the 
development actions in information processing. Deriving from this dichotomy 
we define the system of four processing layers. The layers are: information 
system, information system development, method engineering, and research 
work. Each layer is characterized from the teleological, functional and structural 
viewpoints. We also discuss the contents of, and the relationships between, the 
contexts positioned at these layers. In Section 5.3 we specialize the notions of 
utilizing system and object system to concern each of the processing layers. The 
chapter concludes with a summary. 
 
 
5.1 Information Processing  
 
 
To enable the considerations of information and information processing in 
various forms and on various layers we need special concepts and constructs. 
We start this section by defining the notions of knowledge, data, information, 
and information processing. Then we distinguish between four contexts, which 
are related to information processing. Because it is commonplace in the IS field 
to regard those contexts as systems, we call them the information system (IS), 
the object system (OS), the utilizing system (US) and the controlled system (CS).  
After defining them and discussing the relationships between them, we make a 
comparative analysis of the relevant literature. Figure 45 presents the meta 
model of the concepts and relationships that will be defined in this section. It 
also shows how the concepts are related to the generic concepts defined in the 
context ontology. This meta model is the first part of the layer ontology.  
 
5.1.1 Basic Concepts  
 
Human and social actions are based on expertise and its accumulation mainly 
through communication. Expertise is knowledge, which is a relative stable and 
sufficiently consistent set of (conceptual) informational objects owned by single 
human actors (cf. Falkenberg et al. 1998, 66). There are two kinds of knowledge: 
explicit knowledge and tacit knowledge (Nonaka et al. 1995). Explicit knowledge 
can be articulated in a natural or formal language, which makes it ‘easy’ to 
transmit knowledge between people (cf ‘shared knowledge’ in Falkenberg et al. 
1998, 71). Tacit knowledge is a body of knowledge that is embedded in personal 
experience and therefore cannot be (easily) represented externally. It shows up 
only in the actions of the person having that knowledge. 
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FIGURE 45  Meta model of information processing related concepts and relationships  
 
Knowledge represented in a language is called data (Falkenberg et al. 1998, 66). 
Information is the knowledge increment brought about by receiving data, by 
observing reality, or by inner thought processes by which a person organizes, 
compares, assesses his/her knowledge (cf. Falkenberg et al. 1998, 68)103. Besides 
that, information is an increment into the body of knowledge, it is commonly 
assumed (hoped) to be usable and profitable (cf. correct, timely, etc.). Notice 
that also knowledge that increases the reliability of some conception, already 
possessed by a human being, is regarded as an increment, and thus as a piece of 
information. 

Information processing means action(s) by which informational objects are 
collected, stored, processed, disseminated and interpreted. The informational 
objects can be in the linguistic or conceptual form (cf. Section 4.4.4). The generic 
                                                 
103  Our definition of information extends the one given in Falkenberg et al. (1998). 

Among the IS researchers conceptions about information differ greatly. For instance, 
Stamper (1992b; 1999) regards norms and attitudes as essential parts to information. 
Hirschheim et al. (1995, 14) contrast information with a speech act conveying 
intentions and argue that “items of information are meanings that are intended to 
influence people in some way”. 
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notions used above to enumerate information processing actions can be further 
specialized into a large variety of more specific actions, such as discovering, 
procuring, interviewing, recording, maintaining, editing, transforming, 
translating, converting, modeling, ordering, eliminating, decomposing, 
integrating, deriving, abstracting, concretizing, reviewing, verifying, validating, 
etc. We will return to some of these in the next chapters when defining more 
specific ontologies. 

We can distinguish between four kinds of contexts which are closely 
related to information processing: (a) those, which information is about, (b) 
those collecting, storing, processing and disseminating information, (c) those 
utilizing information, and (d) those, which are controlled and possibly changed 
on the basis of the disseminated and utilized information. In the IS field, these 
contexts are commonly discussed in terms of systems (e.g. Langefors et al. 1975; 
Welke 1977; van Griethuysen 1982; Essink 1988; Hirschheim et al. 1995). 
Therefore, we next define the generic notion of a system and then discuss these 
contexts as systems. 

‘System’ comes from the Greek term ’Syn histanai’ which means ’to put 
together’. A system, as conceived in the general system theory (cf. Klir 1969; 
Ackoff 1971; von Bertalanffy 1974), is defined as “a set of elements in 
interrelations among themselves and with the environment” (von Bertalanffy 
1974, 17). The definition highlights the three most essential concepts in the 
systems theory: element, relation, and environment. An element itself can be a 
system, and so can an environment as well. A relation between elements stands 
for any structural, functional or behavioral relationship. Besides the elements, a 
system is characterized by so-called emergent predicates (or “systemic 
properties”, Falkenberg et al. 1998,  60) that concern a system as a whole. 

In our terminology, a system is defined to mean a conceptual construct 
through which phenomena in reality can be conceived as a whole (system), 
contained in the environment, characterized by emergent predicates, and 
composed of parts (elements). A system is a kind of system-theoretic 
abstraction from a context. It does not help reveal roles or functions the 
elements have in a system, unlike the notion of context does. In the following, 
we use the term ‘system’ in situations where it is commonplace. To emphasize 
the contextual nature of the UoD, we still signify it via the term ‘context’.  

Based on the above definitions, we can now use the following terms  about 
the four kinds of contexts related to information processing: (a) the object 
system (OS), (b) the information system (IS), (c) the utilizing system (US), and 
(d) the controlled system (CS) (see Figure 45).  In the following sub-sections, we 
discuss and define these notions. Moreover, we consider complicated 
relationships between the systems and the role that the controlled system plays 
in relation to the other systems. We also compare our notions to those presented 
in the literature.  
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5.1.2 Information System 
 
Information system has remained a vague and controversial notion in the IS 
literature (cf. Avison et al. 1995b; Carvalho 1999; El-Sayed 1999). Traditionally, 
the information system has been regarded as a computer-based system, 
composed of hardware and software, storing, processing and transmitting 
formal data (e.g. Hicks 1993; Falkenberg et al. 1992a; Ein-Dor et al. 1993).  Those 
favoring opposite conceptions emphasize the organizational and social nature 
of the information system embracing human information processing (e.g. 
Ahituv et al. 1990; Jayaratna 1994; Hirschheim et al. 1995; Stamper 1996; 
Franckson 1994; Falkenberg et al. 1998; Korpela et al. 2000, 198). Verrijn-Stuart 
(1989) and Verrijn-Stuart et al. (1992) distinguish between the notions of 
information system narrow and information system broad. The information 
system narrow (ISN) corresponds to the traditional conception covering “all the 
aspects of a computerized system […] allowing storage, updating, manipulation 
and retrieval of data” (ibid p.481). The system standing for the latter conception 
is known as the information system broad (ISB). It covers “all informational 
aspects of the organisational system, irrespectively of the availability of 
computerized support as such” (Verrijn-Stuart et al. 1992, 481).  

Stamper (1996) extends the aforementioned dichotomy by presenting the 
“organizational onion” composed of three layers of information systems one 
within each other. At the outer layer there is the informal information system, 
in which most of the organized behavior is informal. People generate and 
interpret messages without conscious effort. They know what other people 
mean and what they intend without having to apply any explicit method of 
analysis. The next layer stands for the formal information system, which means 
organisational behavior that takes place according to formalised or structured 
rules. This kind of information processing is appropriate when tasks are 
performed repetitively and the workload is heavy. The inmost layer stands for 
the technical information system, in which all actions are automated and 
performed by a computer system. A prerequisite for automation is that the 
rules for behaviour can be completely formalized.   

For our study it is enough to distinguish between two kinds of 
information systems that are the computerized information system and the 
human information system. The computerized information system (CIS) is a 
system in which all information processing is automated, that is to say, 
performed by one computer system or by several of them. The human 
information system (HIS) is a system, in which human actors play the only role in 
the accomplishment of actions to process information in a structured way. For 
the HIS, a CIS is just one tool among others used to enable human information 
processing, or make it more efficient and effective. When there is no need to 
make a clear distinction between the CIS and the HIS, we use the generic term 
‘information system’ (IS), which stands for the HIS and/or the CIS.  
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The notion of the information system is commonly defined in terms of 
functions or attributes (Ein-Dor et al. 1978; Ein-Dor et al. 1993; Hirschheim et al. 
1995, 11). In the former case a definition expresses what the system does. In the 
latter case the view of a definition is focused on the components the information 
system comprises. These ways of defining correspond to the functional view 
and the structural viewpoint, respectively. There is still another viewpoint, the 
teleological viewpoint (von Wright 1971), which addresses the purpose for 
which the system exists.  In the following, we first give definitions of the IS 
from the structural, functional and teleological viewpoints104, with references to 
those advocating the viewpoints concerned. After that we present the general 
definition integrating the viewpoints. 
 
• Structural viewpoint. The IS consists of actors, actions, information/data, 

facilities (incl. software and hardware), and locations, constituting a 
cohesive information processing system, which serves organizational 
purposes or functions (cf. Davis et al. 1985; Kroenke et al. 1987; Hirschheim 
et al. 1995).   

• Functional viewpoint. The IS is a functional unity, which collects, stores, 
processes, and disseminates information/data on the state of affairs in 
reality (cf. Buckingham et al. 1987, 18; Hirschheim et al. 1995, 11; Alter 
1996,  2).  

• Teleological viewpoint. The IS exists for providing high-quality information 
that is correct, relevant, timely, etc., in order to satisfy the needs of the 
users at a variety of organizational levels and the requirements of business 
actions they are engaged in. (cf. Aktas 1987; Olle et al. 1988a, 229; Parker 
1989, 10; Iivari 1991, 250).  

 
Hence, whereas the structural viewpoint reveals the elements the system is 
composed of, the functional viewpoint considers the actions of information 
processing and their outcomes. The teleological viewpoint emphasizes that the 
information system is not an end itself but that the reason for its existence is a 
set of services it provides for the utilizing system (cf. Nilsson 2000, 280). 

Integrating the three viewpoints, we arrive at the following holistic 
definition of the information system: The information system is a system, 
composed of actors, information/data, facilities and locations, which collects, 
stores, processes and distributes information about the relevant parts of reality, 
called the object system, in order to enable and/or improve actions in the other 
context, called the utilizing system.  

Information systems appear in practice with different functions, 
capabilities, performance and social consequences. They also differ in their 
components, inputs, outputs, and the support they can provide for the users. 
Ein-Dor and Segev (1993) identify seventeen major types of information 
                                                 
104  These three viewpoints correspond, on a coarse level, to the main points of view in 

Kerola and Järvinen (1975, 15-18), known as the pragmatic point of view, the 
semantic point of view, and the constructive point of view.  
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systems and define them by vectors of their attributes and functions. Mentzas  
(1994) presents a functional taxonomy for classifying computer-based IS (CBIS) 
along three dimensions indicating the extent to which the systems support 
information processes, decision processes, and communication processes. 
Barron et al. (1999) present an analytical framework based on semiotics to help 
understand, classify and compare information systems of various generations. 
The framework consists of ten features that can be used to characterize the 
relationships between the IS and its users, and to represent and organize the 
system’s contents. The features are: application domain, action complexity, 
social consequence, acquisition complexity, acquisition scope, input usability, 
output usability, justification, real world relationship, and representation.  

Classifications reviewed above distinguish a large variety of information 
systems: e.g. management information systems, decision support systems, 
office information systems, executive information systems, expert systems, 
electronic meeting systems, group support systems, strategic information 
systems, computer aided manufacturing, etc. Classifications with their notions 
and terms are, however, “children of their time”. Information system types 
evolve especially by accretion of technologies (Ein-dor et al. 1993, 185-6). The 
point at which a set of technologies is considered distinct and requires a new 
name is somewhat arbitrary, and largely a matter a convenience. Therefore, we 
argue that it is more beneficial to base a classification of IS’s on the contextual 
domains.  This can be done in two ways. On a general level, it is possible to 
attach an information system type to the domain that is the strongest 
determinant for the type (e.g. for a voice processing system it is the object 
domain). For more wide-ranging types of information systems it is possible to 
make an analysis to reveal their features with contextual concepts of more 
domains.  

As we are not able here to have a comprehensive discussion on the issue, 
we content ourselves with outlining contextual IS classifications (the first way). 
In Table 15 information system types are attached to contextual domains, the 
special features of which are the major determinants for the types.  For instance, 
integral to the sub-division into personal, groupware and organizational IS’s is 
a number of users and a kind of their relationships in interactions. The action 
domain gives the basis to classify the IS’s according to the actions that are the 
most essential in the IS’s:  processing (transaction processing system, process 
control system), querying (information retrieval system), analyzing (data 
mining system), etc. On the basis of objects processed by IS’s, we can 
distinguish between document management systems (documents), multimedia 
IS (multimedia objects), relational database system (relations), object database 
system (objects), voice processing system (voices), geographical IS (spatial 
objects), etc.  

 
5.1.3 Utilizing System 
 
We define the utilizing system (US) to mean a system, which exploits 
information   services,  provided  by  the  information  system,   in  its   decision 
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TABLE 15  Contextual IS classifications 
 

Domain Types of information systems 
Purpose Strategic, tactic vs. operational IS 

 
Actor Personal, groupware vs. organizational IS 

 
Action Transaction processing system, data mining system, information 

retrieval system, communication system, etc. 
Object Document management system, multimedia IS, relational database 

system, object database system, voice processing system, geographical 
IS, etc. 

Facility Manual, computer-aided vs. computerized IS 
One-tier, two-tier, three-tier vs. n-tier IS 

Location Centralized vs. distributed IS 
Mobile vs. locational IS  

Time Real-time vs. batch processing system  
Historical, recovery vs.  temporal database system 

 
making or operational actions, in order to make plans and execute changes (i.e. 
state transitions) in the controlled system. The controlled system is a system, 
which the utilizing system has control over. Actors in the US are users of the IS. 
Information service is a service that is composed of informational objects. A user 
of the IS is an actor who potentially increases his/her knowledge about some 
phenomena in the object system with the help of the IS (cf. Krogstie et al. 1996, 
286). This also amends his/her abilities to fulfil the goals concerning the 
controlled system. We can distinguish between two kinds of users (cf. Krogstie 
et al. 1996)105. End-users increase their knowledge by interacting directly with 
the CIS. Indirect users increase their knowledge by getting results from the CIS 
through other users of the information system (cf. Krogstie et al. 1996, 286). 

In the IS literature, various terms with different meanings are given to the 
US. Welke et al. (1982, 42), for instance, define a user system to mean “one or 
more individuals cooperating on the accomplishment of one or more functions 
in an organization”. Olle et al. (1988a,  229) state that the ”IS supports a business 
activity (or group of them) by providing the information it needs or by 
automating some or all of it”. In Iivari (1989a, 327) the host organization “means 
the organizational context of an IS”.  Kaasboll et al. (1996, 113) define the notion 
of the application domain (of a computer system) to be composed of the users, 
the organisational context, and the work in which the computer system is used. 
Elements of the application domain include employees, the coordination of 
work, communication, power structures, ad-hoc organized work, interruptions 
in work, etc. One of the four worlds distinguished by the NATURE Team (1996) 
is the usage world, which “describes how systems are used to achieve work, 
including stakeholders who are system owners, indirect or direct users, and 

                                                 
105  Cotterman et al. (1989, 1315) distinguish between the consumers and the 

producers/consumers. 
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their organizational context” (ibid p. 517).  This world is regarded as the major 
source of user-defined goals and requirements. 

The utilizing systems also can be classified according to various criteria. 
The US can be situated on the strategic, tactical or operational level. 
Correspondingly, the actors in it can be in the roles of executives, middle 
management or grass-root level workers. The primary products of the US 
actions may be material (e.g. automobiles) or informational (e.g. insurances). 
The US may function in local or global markets.  
 
5.1.4 Object System 
 
The object system (OS) means a system about which the IS, due to the interests of 
the US, collects, stores, processes and disseminates information (services) for 
the US. As implied from the definition, the boundary of the object system is 
totally determined by the interests of the US.  

In the literature different terms are used to signify the object system. Iivari 
(1989a) defines the universe of discourse to mean something, which the 
information types of an IS refer to or imply to (ibid p. 327, 335). The NATURE 
project (NATURE Team 1996) uses the term ‘subject world’ to mean something 
that “contains knowledge of the real-world domain that the information system 
is intended to maintain information about” (ibid p. 517). Brinkkemper (1990,  
23) see a universe of discourse to be “a system of concrete entities, which were, 
are or will be relevant with respect to a given objective”.  

About the object system there are also divergent conceptions. The object 
system is seen, for example, as the target of the ISD (i.e. the target system). This 
implies that the object system is part of the reality that is aimed to be changed 
through the ISD. Hirschheim et al. (1995) state that the ISD is “a change process 
taken with respect to object systems in a set of environments” (ibid p. 15)106. 
According to van Slooten et al. (1993) “the object system, or universe of 
discourse, is the part of reality considered as problem area for the development 
of an information system” (ibid p. 169). In these cases the object system is not 
considered from the viewpoint of the IS, as we do here, but from the 
perspective of the ISD. We shall return to these conceptions in Section 5.3 when 
discussing the notions of US and OS at different processing layers.   
 
5.1.5 Relationships between the OS, IS, US and CS 
 
The information system, the object system, the utilizing system, and the 
controlled system are inter-related in the way that is shown in Figure 45.  Let us 
first consider the relationship between the information system and utilizing 
system. As stated above, the information system provides information services 
to its utilizing system. IS services can be supplied in two modes, which we call 

                                                 
106  ISD as “a change process occurring over time with respect to an object system ...” 

was first defined by Welke (1982) and later by Lyytinen (1986, 74). Here we refer to 
Hirschheim et al. (1995) because it is more available than the two others.  
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the descriptive mode and the prescriptive mode (cf. representational and 
normative roles in Wieringa (1989, 33)). The information services in the 
descriptive mode means descriptions that are, to a large extent,  “input data” 
that the information system collects, processes (‘enriches’) and finally supplies 
to the utilizing system. The information describes the states of affairs or events 
in the object system, and the users in the US can do with it as they like (e.g. an 
inventory system supplies information about quantity-on-hands, suppliers, 
prices, etc. of the products in the inventories).  Another kind of information 
service supplied by the information system is in the mode of prescriptions.  In 
recent years more and more business rules are included in the CIS to support 
the utilizing system. In the process industry, such as in a paper mill, the process 
is, to a high degree, under the control of a computerized system. Information 
about exceptions and malfunctions as well as “pre-programmed” rules of 
handling them are considered prescriptions for personnel in charge. Another 
example concerns an inventory system, which, triggered by pre-specified alarm 
limits, requires end-users to send supply orders to the concerned suppliers. In a 
small-scale, linear menu structures in user interfaces, often accompanied by 
wizards, guide and prescribe end-users to accomplish their work with the CIS 
in a step-by-step fashion. 

 Where does the line go between the IS and the US? An answer to the 
question depends on the adopted viewpoint, but it is also affected by the nature 
of the systems. We can distinguish between the following cases. If the US 
mainly works with material objects, making the difference between the US and 
the IS is easy. Second, if the actions of the US are mainly managerial and the IS 
is operative by its nature, the systems can be well separated. This kind of 
arrangement is described in Carvalho (1999) with three autonomous sub-
systems: managerial sub-system (cf. US), informational sub-system (cf. IS), and 
operational sub-system (cf. OS & CS).  An example of this kind is strategic 
decision making based on the information that is provided by an operational 
information system. The third case concerns a situation where the US is mainly 
an information-intensive context, such as an insurance company, a software 
house, or an architecture design office. In this case, it may be difficult to draw 
the line between the IS and the US. There may be the same persons conducting 
actions of the US and the IS. Some (informational) objects are dealt with both in 
the US and the IS, and actors conduct their actions in the same locations in both 
of the systems. The crucial issue to separating the systems is their purposes. The 
US aims at fulfilling its “business” goals and that is the only reason for 
inquiring and utilizing information from the IS.  In case the IS is a CIS and there 
is no HIS actors neither HIS actions mediating information to the US actors, the 
IS and the US can be clearly separated on the basis of what a computer does and 
a human being does. 

Next, we consider how the OS is related to the other systems. The most 
fundamental relationship is the signifies relationship between the IS and the 
OS, meaning that objects of the information system signify things in the OS.  
Also informational US objects signify things in the OS. The relationships 
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between the OS and the other systems depend on whether the systems are 
overlapping or disjoint. We can distinguish between four different cases with 
regard to an extent to which the OS share parts of the other systems. In the first 
case, the OS is totally disjoint with the other systems. That means, for instance, 
that information is gathered from completely different things compared to 
those affected by the US. This is, of course, a very rare situation107. In the second 
case, the OS overlaps with the controlled system. For example, an inventory is a 
source of information that is used to control it. In the third case, the OS overlaps 
with the US.  In this case the information system is used, for instance, to plan, 
control or develop work in the US (cf. project management system). Finally, the 
OS can overlap with the IS. For example, a web-based order system may 
contain a part, which records information about successful and failed issuing. In 
this case, the dividing line between the OS and the IS depends on how the IS is 
conceived: Is it regarded as a whole system, containing also the recording part, 
or a constellation of sub-systems, one of which is the (separate) recording sub-
system? 
 
5.1.6 Comparative Review 
 
The notions of OS, IS, US, and CS are of vital importance to the understanding 
of information processing as an action and as a context. They are also key 
concepts in the IS field. Because there are quite divergent conceptions of the 
notions in the IS literature, we make a short comparative review of them in this 
section.  We have collected a large set of references, ranging over three decades, 
and compared their basic concepts to our notions. A summary of the review is 
represented (in the temporal order) in Table 16. ‘X’ means that there is a 
considerable match with our notion. In the ‘IS’ column we show if the notion in 
the literature corresponds to CIS.  

We start with Langefors and Sundgren (1975). They first outlined the 
notion of an object system as “a system we wish to inform about” (ibid p. 8). 
Later, they elaborated a characterization providing a narrow conception and a 
broad conception of an object system (ibid p. 209-210). An object system in a 
more restrictive sense, called the object system proper, consists of two parts: the 
observed object system and the controlled object system. The observed object 
system is a part of reality to which a database refers.  The controlled object 
system means a slice of reality that is consciously affected by the decisions, 
taken by the users  and  based   on the information   objects of the database. An 
object system in a broader sense means the part of reality that has significance 
for the existence and functioning of the database (Langefors et al. 1975, 209). 
This notion embraces, besides the two parts already mentioned, also the 
database itself, data base administration, database designers and so one.  We 
ignore this as being too large a conception.  

 
                                                 
107  For a weather forecast, information is collected from the object system (i.e. 

atmosphere), which is not affected, at least directly, by the utilizing system. 



 

 

216 

TABLE 16  Summary of the comparative review 
 

Concepts OS IS US CS 
Langefors et al. (1975) 
- observed object system 
- controlled object system 
- information system  

 
 X 

 
 
 
  X 

  
 
  X 

Welke (1977) 
- data processing system 
- information system 
- user sub-system 

  
CIS 
  IS 

 
 
 
 X 

 

van Griethuysen (1982) 
- UoD: abstraction system 
- UoD: object system 
- information system  

 
  X 
  X 

 
 
 
CIS 

  

Olive (1983) 
- object system 
- information system 

 
  X 

 
 
  X 

 
   X 

 
  X 
 

Essink (1986, 1988) 
- object system 
- information system 

 
  X 

 
 
  X 

 
  X 

 

Iivari (1989a)  
- universe of discourse 
- information system 
- host organization 

 
  X 

 
 
 CIS 

 
 
 
  X 

 

Hirschheim et al. (1995) 
- object system 
- information system 

 
  X 

 
  X 
  X 

 
  X 

 
  X 
 

Kaasboll et al. (1996)  
- problem domain 
- application domain 
- computer system 

 
  X 

 
 
 
 CIS 

 
 
  X 

 
  X 

NATURE team (1996) 
- subject world 
- system world 
- usage world 

 
  X 

 
 
 CIS 

 
 
 
  X 

 

Carvalho (1999) 
- operational sub-system 
- informational sub-system 
- managerial sub-system 

 
  X 

 
 
  X 

 
 
 
  X 

 
 X 
 

 
Welke (1977, 149) argues that a system is a view of something (real or abstract) 
and that “something” is called an object system. There are two kinds of 
perceivers. The first class of perceivers is associated with the production of 
information. Their object system is called the data processing system (DPS). The 
second class of perceivers is associated with the use of the data (information). 
Their object system is some subset of organization and/or organizational 
environment, and is called the user-subsystem (USS). The information system, 
as an object system, is the intersection of the DPS with the USS.  
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According to van Griethuysen (1982), the universe of discourse (UoD) is 
that portion of the real world or postulated world that is being modeled. An 
abstraction system is that portion of the universe of discourse which includes 
the classes, rules, etc, of the UoD relevant from the viewpoint of the information 
base, and which changes relatively slowly. An object system is that part of the 
UoD not contained in the abstraction system (ibid p. 5). This means that an 
object system and an abstraction system correspond to our instance-level and 
type-level OS, respectively. 

Olive (1983) argues that “an IS is always designed to give service to or 
exercise control over another: its object system” (ibid p. 66). When an IS is 
implemented it is embedded in the OS.  That implies that the object system is 
actually regarded as the controlled system and the utilizing system whose 
functions should be defined to determine “what information the IS should 
provide”.  

Essink provides slightly inconsistent conceptions about the object system 
in his two articles (Essink 1986; Essink 1988). On one hand, the meaning of the 
object system is said to be threefold (Essink 1986, 58): (a) it depicts the desired 
contribution of the IS to the organizational processes, (b) it answers the question 
with regard to what phenomena in the real world information is needed, and 
(c) it defines the desired contribution of the goals of the organization and the 
demands the proposed IS lays upon the organization. On the other hand, the 
object system is said to be part of the organization that is considered to be the 
problem area for which a new system is desired. This part of reality is studied 
to acquire knowledge about the dynamic and static characteristics: about goal 
structures, environmental interaction, business processes, etc. (Essink 1988,  
356).  

Iivari (1989a,  237-238) presents three levels of abstraction: the host 
organization, the UoD, and the abstract technology of the IS. The host 
organization defines the organizational context of the IS. The UoD expresses the 
propositional/conceptual meaning of information processed by the IS. For the 
IS no explicit definition is given, but we here assume it to correspond to our 
notion of the CIS. 

Based on Welke et al. (1982), Hirschheim et al. (1995, 15) define the notion 
of an object system from a broad viewpoint. An object system consists of any 
phenomena ‘perceived’ by members of an ISD development group. This implies 
that ‘object’ in this case is the target of the ISD, as can be seen from the 
definition given for an ISD: “a change process taken with respect to object 
systems in a set of environments…” (p. 15). Thus, the object system stands for 
the OS, the IS, the US and the CS in our terminology 

Mathiassen et al. (2000,  6) argue that the system’s context can be viewed 
from two complementary perspectives: the system models something (the 
problem domain) and it is operated by the users (the application domain). A 
problem domain means that part of a context that is administrated, monitored 
and controlled by a system. An application domain means the organization that 
administrates, monitors and controls a problem domain. Kaasboll et al. (1996,  
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113) extend the dichotomy in Mathiassen et al. (2000) by defining a computer 
system to include its application program, data/object base, user interface 
module, and communication modules.  

Based on the suggestion originally presented in Mylopoulos et al. (1990,  
340-342), the NATURE approach (NATURE Team 1996, 517) organizes the 
domain context (of what kinds of requirements exists) according to four worlds. 
Each of the worlds holds a family of related models with a different perspective 
on the ISD.  The subject world “contains knowledge of the real-world domain 
that the information system is intended to maintain information about” (ibid p. 
517). The usage world “describes how the systems are used to achieve work, 
including stakeholders who are system owners, indirect and direct users, and 
their organizational context” (ibid p. 517). The system world “contains 
descriptions of the technical entities, events, processes, etc. representing the 
system world in the required system” (ibid p. 517). The fourth world is the 
development world, which stands for the ISD. 

Carvalho (1999) uses an arrangement of three sub-systems to classify 
information systems. The sub-systems are: operational, managerial and 
informational. The operational sub-system includes those activities that 
perform actions directly related to the system’s purpose or mission. The 
managerial sub-system includes the activities that manage (organize, plan, 
control, coordinate etc.) the operational activities. The informational sub-system 
establishes communication among the other two sub-systems. 

To conclude from the review, we can state that an object system is the 
most controversial concept (of those considered here) in the literature. On one 
hand, the term ‘object system’ means different things. In Olive (1983), for 
example, the OS stands for the US and the CS, and in Hirschheim et al. (1995) 
the OS means any slice of reality perceived by ISD stakeholders. On the other 
hand, the concept of the object system is signified with different terms. For 
instance, it is called the abstraction system & the object system (van 
Griethuysen 1982), the universe of discourse (Iivari 1989a) and the subject 
world (Mylopoulos et al. 1990, NATURE Team 1996). We argue that the notion 
of the object system is worthy of a special term and regardless of ambiguity 
related to the term ‘object system’ we prefer to use it here. 

Most of the presentations deploy the general notion of the IS, but there are 
also those that use the more confined notion of the CIS. The utilizing system has 
been signified by various terms such as the user-subsystem (Welke 1977), the 
object system (Olive 1983; Essink 1986; Essink 1988), the host organization 
(Iivari 1989a), the application domain (Kaasbol et al. 1996), and the managerial 
sub-system (Carvalho 1999). We argue that the term ‘utilizing system’ expresses 
the most essential nature of the system, namely utilizing information services 
supplied by the information system. Only Langefors et al. (1975) provide a 
special term for the controlled system (controlled object system). Some others 
include the CS in larger contexts (e.g. Olive 1983, Hirschheim et al. 1995, 
Carvalho 1999). In our opinion, it is important to recognize the notion with a 
special term, although the CS shares parts of the IS and/or the US.  
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5.2 Information Processing Layers 
 
 
Up till now we have considered information processing at a general level, on 
one hand, and in association with the notion of the IS, on the other hand. 
Besides being related to the IS, information processing is essential to many 
other kinds of efforts. In this section we distinguish between various processing 
layers. For each layer, the concepts defined in Section 5.1 apply, although 
adapted with layer-specific features. The overall structure of the layer ontology 
is presented in Figure 46. In what follows, we will discuss and define the 
concepts in the meta model. In Section 5.2.1 we distinguish between the 
primary actions and the development actions in information processing. In 
Section 5.2.2 we define, deriving from this dichotomy, the system of four 
processing layers. The layers are: information system, information system 
development, method engineering, and research work. Each layer is 
characterized from the teleological, functional and structural viewpoints. We 
also discuss the contents of and relationships between the contexts positioned at 
these layers. 
 

Context

RWMEISDIS

A. at the higher layer

System of layersLayer

1..*

1..*
Action

Macro-level

Primary action Development action

Mid-levelMicro-level

4

1

A. at the lower layer

Informational object

1
positionedAt

1

1output

1..*

prescribes

1..*

1..*

1..* 1..*positionedAt

 
 
FIGURE 46  Meta model of layer-related concepts and relationships 
 
5.2.1 Primary and Development Actions 
 
Above we have considered information processing to be part of an IS context, 
which aims to provide the users in the US with high-quality information. Some 
part of information processing is carried out with random and opportunistic 
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processes, and in unique and idiographic forms. But there are situations in 
which this way of working is not efficient, or even acceptable. For example, if 
the same kinds of situations recur, or processing requires considerable amount 
of resources, or there are strict demands on delivery times and quality of 
information, it is better to structure, at least some part of information 
processing, into a manageable and controllable process guided by predefined 
prescriptions. Prescriptions, as operational instructions or general guidelines, 
dictate who will do what, why, for which, when and/or where.  

For practical work the prescriptions are never all-inclusive and complete, 
for several reasons. First, it is impossible to produce prescriptions that would 
apply to all the situations. Reality is just too multifarious to be “pre-
programmed”. The prescriptions have to be adapted in a contextual fashion. 
Second, reality changes and evolves all the time. The states of affairs having 
existed at time when the prescriptions were produced no longer exist when 
applying them. Organizations, persons, technologies, markets, etc. may have 
changed. The more there is task uncertainty, the more probable it is that 
exceptions to and deviations from the prescriptions are needed (Galbraith 
1973). Hence, customization and re-specification of prescriptions occur 
frequently and in parallel to routine information processing.  We call the 
routine-like information processing carried out according to the prescriptions 
the primary actions (cf. Gasser 1986). Respectively, making changes in routines of 
the primary actions is called the development actions.  

Figure 47 illustrates the division of information processing into the 
primary actions and the development actions. The primary actions proceed in 
the form of daily routines. Every now and then, there is a need to deviate from 
the customary ways, or it is found out that there exist no guidelines for the 
situation at hand. It is also possible that guidelines and rules are on such a 
general level that they cannot be followed as such but are presumed to be 
specialized and/or instantiated. This situation corresponds to what Carroll 
(2004) calls “completing design in use”. Due to this, before carrying out primary 
actions, it is necessary to decide on how to carry them out, that is to say, to 
develop a plan of action for them. In the figure the vertical dimension stands for 
the comprehensiveness of these development actions. The comprehensiveness 
can be expressed in terms of (a) duration of carrying out a development action, 
(b) resources (money, manpower, energy, etc.) needed for the work, (c) a 
number and quality of personnel involved in the work, and (d) the scope with 
which a development action affects the primary action(s).  

For simplicity, we categorize the occurrences of development actions into 
three classes according to their comprehensiveness. First, there are small-scale 
tasks that are normally carried out in conjunction with daily routines by 
individuals themselves. These are called the micro-level development. Second, 
discussion groups or working groups of two or three persons are established, 
informally or formally, to consider how to deal with deviating or problematic 
situations. Solutions serve as new or renewed prescriptions for the primary 
action(s) from that point forward. These kinds of actions are called the mid-level  
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Comprehensiveness 
  
  Development actions 
 
 
 
 
 
 
 
 
 
 Primary actions      

Time 
 
FIGURE 47  Information processing as primary and development actions 
 
development. In some cases, it is seen necessary to deliberate more carefully, not 
only over ways of working, but also how to organize working, how to obtain 
benefits from applying new technology, how to better compete in the markets, 
etc. This calls for a pre-planned, controlled and coordinated development 
endeavor that involves several individuals with various skills, takes weeks or 
months, sometimes years, and may cost a lot of money. This kind of work is 
called the macro-level development. Due to its wide scope and complexity, 
development actions at the macro-level are commonly organized as a project 
work with pre-specified goals, organization, resources, and schedule. 

The borderlines between the classes of the development actions are not 
clear-cut. For instance, informal projects can be established to carry out some 
development work in a couple of weeks with resources that may be decided on 
during the work. The agile approaches, for example, blur a dividing line 
between an ad’hoc –like action and project-like development (e.g. Agile 
Alliance 2002; Cockburn 2001; Astels et al. 2002). The approaches of evolving 
information systems (e.g. Falkenberg et al. 1992a; Jarke et al. 1992; Oei et al. 1994; 
Nguyen et al. 1996), in turn, enable to make “on-fly” changes in a current 
information processing. There are, however, certain factors, which add needs 
for a project-like working: (a) The scope of problems encountered in existing 
information processing is large; (b) The variety and profoundness of changes 
that will be caused by new technology adoption in an organization are 
estimated to be substantial; (c) Due to the specificity of problems, application 
area, applied technology etc., a large number of people with special skills are 
needed; (d) Acquirement (of hardware, software and “peopleware”) required 
by planned changes are significant; (e) There is a definite need to reach the 
goals in time and with given resources. In the following we mainly consider the 
development action(s) that are accomplished in an organized project. That 
means those development actions that are placed above the broken line in 
Figure 47.  

The division of information processing into two or three types of work is 
common in the IS literature. Checkland (1981) identifies two domains of inquiry 
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in ISD: the problem system and the problem solving system. Iivari (1989a) 
distinguishes between conversion functions, corresponding to our notion of the 
primary action, and development and rearrangement functions. The latter 
involve “changes in the prescribed organizations, for instance reorganization 
concerning the authority relationships, reallocation of organization functions to 
organizational positions, etc” (ibid p. 333). Gasser (1986) distinguishes between 
the primary work addressing agendas of the work situation and the articulation 
work, which “serves to establish, maintain, or break the coordinated 
intersection of task chains in the primary work (ibid p. 211)108. Conradi et al. 
(1993) distinguish between software production processes and software meta-
processes. The former carry out software production activities, and the latter 
improve and evolve the whole software process. The software meta-processes 
are in charge of several activities (e.g. process requirements analysis, process 
design, and process assessment). Nonaka (1994, 1995) presents an 
organizational model, the hypertext organization, for the organizational 
knowledge creation process. The hypertext organization supports 
organizational knowledge creation in all its stages and contexts. The model 
consists of three layers: business-system layer, project-system layer, and 
knowledge–based layer. The business-layer is the bureaucratic structure, which 
is responsible for performing the routine work. The project-system layer is the 
layer where project groups concentrate on knowledge creation and sharing 
through dialogues. The results of this layer are internalized and used in routine 
work. At the knowledge-base layer the knowledge created in the two layers is 
stored.  
 
5.2.2 Processing Layers 
 
In the previous section we considered the division of information processing 
into the primary actions and the development actions in conjunction with the 
IS. In that context the macro-level development is called information systems 
development (ISD). The dichotomy of the primary action and the development 
action can be recognized within the ISD, too (cf. Iivari 1989a,  333). 
Consequently, some part of ISD proceeds as routine-like actions109. That part 
forms the primary action of ISD.  Every now and then there is a need to deviate 
from routines, resulting in that prescriptions given for ISD need to be 
customized and new ways of modeling, working, organizing, etc. have to be 
created. This ‘development of IS development’ appears as work at three 
                                                 
108  The notion of articulation work in Gasser (1986) is based on the work of Strauss 

(1978).  
109  With this we do not want to argue that the ISD is routine work by its very nature. 

Usually it is far from it. However, from the perspective of the last four decades, we 
can say that one of the strongest trends has been the aim to collect and engineer a set 
of conventions, as some kind of the “best practices”, to be disseminated to and 
shared in forthcoming ISD efforts. These conventions, in the form of a method, has 
been accepted as “norms” according to which the accomplishment of ISD has been 
tried to make more structured, efficient and effective.  
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different levels exactly like in the IS. Thus, at the micro-level, IS analysts and IS 
designers have daily to consider what is a practical and beneficial way of doing 
things. This corresponds to what Ciborra (1999) calls improvisation in which 
planned action is overlooked. Second, each phase in an ISD project begins with 
planning what tasks, models, and techniques of the selected method will be 
applied and in which way. This planning corresponds to the development 
action at the mid-level. Finally, before launching an ISD project it is necessary to 
select and customize, and if not available, construct prescriptions for the ISD 
work. These prescriptions are composed into a method, and this work to 
construct a method belongs to method engineering (ME).  In some cases, 
method engineering is organized as a separate project with defined goals, given 
resources and schedule.   

Method engineering, in turn, can be considered as the primary action 
prescribed by instructions, guidelines, etc. And as above, in parallel to this 
“routine work”, special development actions are accomplished to revise, 
customize and construct prescriptions for ways of modeling, working, 
organizing, etc. in the ME. These development actions appear, also here, at 
three levels (i.e. the micro-level, the mid-level, and the macro-level) with the 
same kinds of meanings as in the ISD.  At the macro-level, the development 
action means engineering of an ME method. This work is, to a large extent, 
based on conventions and “rules” of IS research, which, when taken broadly, is 
considered to be an investigation into the development, operation, use, 
evolution and impacts of information systems in organizations and society 
(Iivari 1991,  250).  

We could still proceed upwards by considering the research work (RW) as 
the primary action and distinguishing special actions to revise, customize and 
construct prescriptions for the research work. This goes, however, beyond our 
scope in this study. 

To summarize, by applying the dichotomy of primary action and 
development action repeatedly to information processing, we can distinguish 
systems at four layers:  information system (IS), information system 
development (ISD), method engineering (ME) and research work (RW). Next, 
we define the concepts of a layer and a system of layers.  

A processing layer is composed of those information processing actions, 
which share similar goals and the same target of action. A system of layers is a 
system that is composed of processing layers, which constitute a hierarchical 
structure, in which actions at a higher layer produce informational objects to be 
used as prescriptions in the actions at the next lower layer. Prescriptions can be 
expressed in various forms: as goals, guidelines, rules, commands, etc. Via the 
actions, also the contexts containing those actions can be positioned onto the 
processing layers. Positioning the contexts onto the layers is, however, much 
more complicated, as we show below.   

Information processing actions of different layers engage in several kinds 
of interplay with one another. We can distinguish between the following main 
types of interplay (Figure 48): 
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                                                                                             (e)         (f) 
 
 
               (c)              (d) 
 
 
  (a)  (b) 
 
 
 
FIGURE 48  Interplay between IS actions, ISD actions, ME actions, and RW actions 
 
(a) Development during information processing in an IS  
 During daily routines in an IS there appear frequently needs to deviate 

from the normal course of action to handle exceptional cases or other 
unexpected cases. This results in customization of prescriptions or 
negotiation about new ways of working in the areas that are not covered 
by the current prescriptions.    

(b) ISD by experimentation 
 During ISD several kinds of experimentations are done to further the 

understanding of what it is all about and to test the functionality and 
acceptability of human and technical aspects of the designed system. That 
requires that some implementations are done and deployed during the 
development work. Implementations can involve only a small part of the 
information system (cf. prototypes), or cover major portion of the system 
(cf. pilot testing). For example, in the evolutionary approach an initial 
version of the system is delivered to intended users and it continues to be 
improved until it becomes the final system.  

(c) Method adaptation during ISD 
 Information system development is most commonly carried out according 

to some ISD method. ISD contexts are, however, too unique for any 
method to provide a complete match with the needs.  That is why, during 
the development of an information system some actions of method 
adaptation are constantly carried out. Changed practices may become a 
part of a renewed method if externalized and made available to other 
actors (cf. the evolutionary or incremental ME approach (Tolvanen 1998,  
196). 

(d) Method engineering by experimentation 
 A method is quite an abstract thing. In order to “prove” its applicability 

before the delivery, it is necessary to test it with some real cases, or in 
some pilot projects.  Experience got from the usages can be deployed to 
better the method. Compared to the previous case, in which an ISD 

RW 

ME 

ISD 

IS 
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method is “evolutionarily” changed in an ISD context, here ME actions 
pursue radical changes in ISD. 

(e)  Method adaptation during method engineering 
 Method engineering should also follow some ME method. Because ME 

contexts, much more than ISD contexts, are unique, no method can be 
employed as such without adaptations. Changed practices may become a 
part of a renewed ME method if externalized and made available to other 
actors. 

(f)  Research work by experimentation 

 Also during the research work, aiming at engineering an ME method, it is 
necessary to test the ME method under construction before its delivery.  

 
In Figure 48 six types of interplay are labeled (from a to f) and depicted as 
circles starting from and ending to those layers, which correspond to the major 
aims and actions of the concerned efforts. Concluded from the above, we can 
say that in working at a certain layer there is always a need of accomplishing 
actions at the next lower layer as well as at the next higher layer. Hence, 
situations are far from what Orlikowski (1996) calls time-space disjuncture. 
Consequently, it is beneficial, and even necessary, to obtain experience from 
using the outcomes under construction in circumstances that to a sufficient 
degree correspond to real usage situations. Through these experimentations 
evidences of the applicability are collected for a basis for further work. On the 
other hand, there is always a need to improve ways of working at each layer, 
and this is accomplished by carrying out actions of the next higher layer. In 
conclusion, actions on a certain layer are contained in up to three kinds of 
contexts, and vice versa, contexts at a certain layer can contain three kinds of 
actions. Whether a context is regarded as an ISD context, or an ME context, for 
instance, depends on its main purpose. For instance, among the six types 
defined above there are two ISD contexts (b and c) aiming to develop an IS, and 
two ME contexts (d and e) aiming to engineer an ISD method. Figure 49 
illustrates how the contexts and the actions at the information processing layers  
 

RW context

ME context

ISD  context

IS context

RW actions

ME actions

ISD actions

IS actions

 
 
FIGURE 49  Actions and contexts at the processing layers 
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are related. The rectangles and the areas between the lines correspond to the 
contexts and the processing layers, respectively. 

At the end of this section we characterize the contexts at the four 
processing layers from the teleological, functional and structural viewpoints 
(Table 17). As the characterizations show, the contexts are quite similar as to 
their purposes, functions, and contextual structures.  We use this finding as a 
justification for treating the contexts as analogous to one another when defining 
the concepts and constructs for the corresponding ontologies (see Chapters 8 
and 10).   
 
 
5.3 US and OS at the Processing Layers 
 
 
We defined the utilizing system (US) to mean a system that exploits 
information services, provided by the IS, in decision making or operational 
actions. The object system was defined to be part of reality about which the IS, 
due to the interests of the US, collects, stores, processes, and disseminates 
information to the US. The information can be in the form of descriptions or 
prescriptions. Although the definitions are aimed to be suitable as such for the 
systems at the bottom layer, they also suit a more general use. That is to say, we 
can assume that the ISD layer, instead of the IS layer, is the root layer and 
consider it to be a kind of IS context. Or alternatively, the root layer may be 
considered to be the ME layer. In this way, we can derive the definitions for the 
US and OS at each processing layer, with special features of course. To denote 
more clearly the layer from the viewpoint of which the US and the OS are 
considered, we use subscripts: e.g. USISD means the utilizing context of the ISD 
context. We start with discussing the US and then proceed to consider the OS at 
each layer. 

At the bottom layer, the US is a business system for which the IS provides 
information about the OS. At the ISD layer, the ISD produces prescriptions for 
the next lower layer to facilitate the IS to satisfy the needs of the USIS. At the ME 
layer, the ME produces prescriptions for the next lower layer to facilitate an ISD 
context to efficiently and effectively produce prescriptions for an IS so that it 
could satisfy the needs of the USIS. Finally at the RW layer, the RW produces 
prescriptions for the next lower layer to facilitate an ME context to efficiently 
and effectively produce prescriptions for an ISD. The primary actions at each 
layer are guided by needs and constraints determined by the “utilizers”, and 
the higher the layer is at which the primary actions are accomplished, the more 
layers the needs and constraints of the “utilizers” come from. Likewise, the 
higher the layer is, the broader the area is on which the effects of the primary 
actions focus. This multi-layer structure of the US’s is illustrated in Figure 50. 
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FIGURE 50  US’s at four processing layers 
 
In Figure 50 we can see that the utilizing system at the ISD layer (USISD) consists 
of the IS and the USIS, and the utilizing system at the ME layer (USME) consists 
of an ISD, an IS and a USIS. At the highest layer, the utilizing system (USRW) 
comprises an ME, an ISD, an IS and its utilizing system (USIS). For all the 
processing layers, the generic relationship ‘provides information services to’ 
holds. There are, however, differences in how direct the affects of exploiting 
services are in each case. For instance, an ME method resulted from the RW 
context affects indirectly on a USIS through the following “chain”: using an ME 
method, better ISD methods can be (hopefully) constructed, and by a better ISD 
method information systems can be developed that can support (hopefully) 
better the users in the USIS. Due to this multi-layered nature of the US, for an 
ME context, for instance, requirements and needs should be collected from the 
concerned stakeholders at every layer.  

Let us next consider the notion of OS at each layer. We defined the 
signifies relationship to stand for the relationship between the informational 
objects in the IS and the UoD constructs in the OS (cf. Section 4.4.4). At the IS 
layer, the OS is composed of all those things that are seen relevant to be 
informed about for the users in the business system (USIS). At the ISD layer, 
informational objects signify the existing IS and a new IS, as well as their US’s 
and OS’s (i.e. USIS and OSIS). At the ME layer, informational objects signify the 
prior ISD contexts and the current ISD, as well as their US’s and OS’s (i.e. USISD 
and OSISD). Prior ISD contexts means that those ISD contexts in which the ISD 
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method under consideration in the ME context have been deployed. Finally, at 
the RW layer, informational objects are created, processed, and disseminated 
which have signifies relationships with UoD constructs of the prior ME contexts 
and the current ME, as well as of their US’s and OS’s (i.e. USME and OSME). Prior 
ME contexts mean those ME contexts that have contributed to the creation and 
engineering of the method under engineering. This complex structure of the 
OS’s is illustrated in Figure 51.  
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FIGURE 51  OS’s at four processing layers 

 
Due to the multi-layer structure of the OS, there is a large variety of the signifies 
relationships between the informational objects and the UoD constructs. At the 
bottom layer, the informational objects are concrete signifying e.g. individual 
actors, actions, and objects in the IS. At the higher layers, the informational 
objects also signify actors, actions, and objects in the IS but with a greater 
number of abstract concepts, that is to say, through meta concepts and/or meta 
meta concepts. Actually, during an ME effort and all the less during an RW 
effort it is not, perhaps, even known in which real ISD contexts the ISD method 
under construction will be deployed, not to speak of which instances of the IS 
will be developed on the basis of the ISD method. It is not until the ME method 
(and the ISD method) is instantiated, when more concrete concepts are parts of 
the informational objects. 

The settlement in Figure 51 enables us to consider divergent conceptions 
of the object system presented in the IS literature. Most commonly the object 
system (or the corresponding term) means the OSIS  (e.g. Langefors et al. 1975; 
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van Griethuysen 1982; Iivari 1989a; NATURE Team 1996). In some 
presentations (e.g. Hirschheim et al. 1995; van Slooten et al. 1993) the object 
system is seen  from  the viewpoint of the ISD, meaning the OSISD. For instance, 
Hirschheim et al. (1995) state that the ISD is “a change process taken with 
respect to object systems in a set of environments” (ibid p. 15). According to van 
Slooten et al. (1993) “the object system, or universe of discourse, is the part of 
reality considered as problem area for the development of an information 
system” (ibid p. 169). 
 
 
5.4 Summary  
 
 
In this chapter we presented the layer ontology that has been specialized from 
the concepts and constructs of the context ontology defined in Chapter 4. The 
purpose of the layer ontology is to provide concepts and constructs to conceive, 
understand, structure, and represent static and dynamic features of information 
processing at four layers. The ontology is composed of two parts. The first part 
addresses information processing in general. It comprises concepts such as 
knowledge, data, information, information processing, information system, 
object system, utilizing system, and controlled system. The second part of the 
layer ontology provides concepts and constructs to establish a hierarchical 
system of processing layers. Four layers, called information system, information 
system development, method engineering, and research work, are 
distinguished and related. We defined the layers, discussed the contents of and 
relationships between the contexts on the layers, and considered how the 
notions of utilizing system and object system are understood on each of the 
layers.  

The layer ontology is an important component in OntoFrame for two 
reasons. First, through the ontology, it is possible, for the first time in this study, 
to address issues of information processing that is a focal area in our research 
domain. Second, the ontology forms the foundation for vertical “structuration” 
of things in the UoD, distinguishing between actions (and contexts) in relation 
to IS, ISD, ME, and RW. The system of processing layers is one of the key 
dimensions in OntoFrame.  

  
 



 

 

 
 
 
 
 
 
 
 
 
 
 
6   PERSPECTIVE ONTOLOGY AND IS PERSPECTIVES 
 
 
Typical for a human being is his/her ability to “extract” just those features from 
reality that are most essential to the situation or problem at hand. With this 
capability, based on the use of viewpoints, he/she is able to conceive, handle 
and manage extremely complex and comprehensive situations. In everyday life 
viewpoints are established and applied in an intuitive and ad hoc fashion. In 
professional work, like in information system development and method 
engineering, there is a need for a more strict approach to establishing and 
applying viewpoints.  

The purpose of this chapter is to first define the perspective ontology, 
which provides concepts and constructs for conceiving, understanding, 
structuring and representing things in reality from a set of pre-defined 
perspectives.  The ontology is particularly aimed for organizational contexts, in 
which information processing plays a major role. The perspective ontology has 
been derived from the layer ontology and the context ontology (see Figure 52). 
The layer ontology provides the essential concepts and constructs for 
understanding and structuring information processing, in particular through 
the notions of information system, object system and utilizing system. It also 
serves as the conceptual foundation for structuring information processing at 
four layers (information system, information system development, method 
engineering, and research work). The context ontology contains detailed 
concepts and constructs of seven contextual domains and inter-domain 
relationships.  

The second aim of this chapter is to present the IS perspectives. We define 
concepts and constructs with which the IS can be conceived from five different 
perspectives specialized from the perspective ontology. This part is included in 
this chapter for two reasons. First, we do not have a separate chapter for 
presenting the IS ontology, of which the IS perspectives constitute the major 
part. Second, defining the IS perspectives here gives a concrete example of how 
to utilize the perspective ontology by specialization.  
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FIGURE 52  Focus of Chapter 6 
 
The chapter is organized as follows. In Section 6.1 we define the perspective 
ontology, which establishes the system of perspectives along particular 
dimensions and specifies the contents of five perspectives. The perspectives are: 
systelogical, infological, conceptual, datalogical, and physical. In Section 6.2 we 
consider how these perspectives can be applied at the four processing layers. In 
Section 6.3 we define the IS perspectives, meaning that concepts and constructs 
of the IS from five perspectives are provided. We also specify the relationships 
between the IS perspectives. In Section 6.4 we present a comparative analysis of 
IS perspectives suggested in the IS/ISD literature. For the analysis we have 
selected eleven frameworks containing clearly defined perspectives. The 
analysis is composed of three parts, covering an overview, conceptual contents, 
and detailed concepts of the perspectives. Section 6.5 contains a summary and 
discussions. 
 
 
6.1 Perspective Ontology 
 
 
In this section we first define the general notions of a perspective and a system 
of perspectives. Second, we define five perspectives based on three particular 
dimensions.  
 
6.1.1 System of Perspectives 
 
Reality contains a myriad of details so that it goes fully beyond the capacity of 
any human being to recognize and conceive them all simultaneously. For this 
reason, it is typical for a human being to focus one’s attention upon some 
specific things. The focus depends on the adopted point of view. In everyday 
life, a point of view can be situational and intuitive, established in an ad hoc 
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fashion. But for recurrent situations it is necessary to have structured and 
predefined viewpoints. This holds especially for situations, like ISD and ME, 
where abstract thinking is commonplace and which involve a large number of 
people in cooperation. To differentiate the intuitive points of view from the 
predefined points of view we define the notion of a perspective as follows: a 
perspective is a strictly defined point of view110.  

Conceiving reality in a systematic way necessitates that there are more 
than one perspective available and the relationships between the perspectives 
are specified. A system of perspectives means a (static) system, which is composed 
of related perspectives. A system of perspective is the focal notion in the 
perspective ontology (see Figure 53). The perspective ontology provides concepts 
and constructs for conceiving, understanding, structuring and representing 
things in information processing contexts through a system of pre-defined 
perspectives.  
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FIGURE 53  Perspective ontology 
 
A system of perspectives is a strictly defined framework (cf. the notion of a 
framework in the generic ontology in Section 3.3). The relationships between 
the perspectives in the system can be based on one or more dimensions or 
criteria. An example of the systems of perspectives, which is based on one 
criterion, is levels of abstraction. Based on the systems theory, Mustonen (1978, 

                                                 
110  There are different meanings for perspectives in the literature. Mathiassen (1982), for 

instance, defines a perspective to be a conceptual abstraction of a view or specific 
phenomena. In Webster (1989) a perspective is defined to be “the faculty of seeing all 
the relevant data in a meaningful relationship”, “the state of one’s ideas, the facts 
known to one, etc., in having a meaningful interrelationship”, and “ a mental view or 
prospect”.  
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53) defines the levels of abstraction, or the levels of stratification, on the basis of 
the semantic characteristics of the concept structures and imposes four 
characteristics for it: (a) The hierarchical relationship is linear. (b) The levels 
describe different predicates of the same system. (c) The relationship between 
the levels fulfills the condition: the upper level includes in some sense more 
abstract or holistic description of the system than the lower level. (d) The 
concept structure includes the definition of the relationships between levels (cf. 
Iivari 1989a,  325).  

We set up the following goals for a system of perspectives needed in this 
work: (a) The perspectives have to support the structured consideration of 
multifaceted features of IS, ISD and ME. (b) Each perspective should be defined 
in a way that enables decisions on what aspects are relevant from that 
perspective and what should be ignored. (c) There should be well-defined 
relationships between the perspectives. Having these goals in mind, we can 
easily find out that a system of perspective based only on one criterion or one 
dimension is not suitable for our purpose. The reason for this is that it is not 
possible to find a single theory or principle that would cover all the desired 
features and provide the necessary concepts and constructs. For instance, 
systems theory or semiotics alone is too limited in its descriptive power. 

We define a system of perspectives that is composed of three dimensions. 
The dimensions are: (a) decomposition dimension, (b) linguistic – conceptual 
dimension, and (c) realization independence – dependence dimension. The 
decomposition dimension is based, as suggested by its name, on the 
decomposition principle (see Section 3.9.2.3). Applied to the IS, this means that 
the IS can be viewed as part of the environment, in particular in relation to the 
US, or decomposed into information sub-systems and further into informational 
objects, IS actions, etc. This dimension is commonly applied in systems theories 
to make an imperceivable system more perceivable (Langefors 1971, 67)111.  

The second dimension in the system of perspectives is based on the 
semiotics (Peirce 1955). The dimension is ‘dichotomic’, having two ends, 
linguistic and conceptual. In the context of information systems this means that 
the IS can be viewed as a complicated whole of linguistic expressions and their 
transformations, or as conceptual constructs which the expressions signify. The 
third dimension is based on the predicate abstraction with the criterion of 
realization independence (see Section 3.9.3). It enables the partitioning of the 
features of the IS into predefined sets. At one end of this dimension the IS is 
viewed as being completely independent from any aspects of realization, while 
at the other end of the dimension one particularly concentrates on physical 
things in the realization, e.g. on physical actors, detailed procedures, concrete 
data files and documents in certain spatiotemporal space.  

Figure 54 presents the perspectives in relation to US, IS, and OS, along the 
three dimensions. The dimensions are orthogonal to one another. In the 

                                                 
111  An imperceivable system is “a system such that the number of its parts and their 

interrelations is so high that all its structure cannot be safely perceived or observed at 
one and the same time” (Langefors 1971, 67). 



 

 

235

following section we define the perspectives and then return to comment on 
this figure.  
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FIGURE 54  Dimensions and perspectives 
 
6.1.2 Definitions of the Perspectives 
 
The system of perspectives is composed of five perspectives. These are the 
systelogical perspective, the infological perspective, the conceptual perspective, 
the datalogical perspective, and the physical perspective. In the following we 
define them. Because defining the perspectives without connections to any 
target system would yield characterizations that are too generic, we have 
formulated the definitions that apply to the IS. The definitions are, however, 
also applicable to the other processing layers. We demonstrate that in Section 
6.2 in discussing the perspectives of the other processing layers.  

According to the systelogical perspective the IS is considered in relation to its 
utilizing system (US). The IS has no value or purpose by itself. It becomes 
desired and necessary through the support it provides to its utilizing system. 
Hence, the IS's organizational, social, economic and informational impacts on 
the utilizing system form the essence which the systelogical perspective is 
interested in. The generic question to be answered from this perspective is 
“Why”. To put it more precisely, applying the systelogical perspective means 
considering the following issues:  
• Why does the IS exist? For which utilizing system? 
• What kind of utilizing system does it have? What are its objectives, actors, 

actions, events, rules and objects on a general level? 
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• What information services should the IS provide, for whom and for which 
actions in the US? 

According to the infological perspective the IS is seen as a functional structure of 
information processing actions and informational objects, independent from 
any representational and implementational features. The IS is regarded as a 
context, in which the given mission is pursued by actions and information flows 
between them. The generic question to be answered is “What”. This means in 
more detail: 
• What information is processed in the IS and why? 
• What are the actions and rules of processing?  
According to the conceptual perspective the IS is considered through the semantic 
contents of information it processes. This means that whereas the infological 
perspective is based on linguistic terms, the conceptual perspective concentrates 
on the understanding of the meaning of those things in the object system which 
linguistic terms signify. The question to be answered is “What does it mean?” 
To put it more precisely, the conceptual perspective is interested in the 
following issues: 
• What is the meaning of the information processed in the IS?  
• What does the information signify? 
• What kinds of structural and dynamic constraints are valid in the object 

system? 
From the datalogical perspective the IS is viewed, through representation-specific 
concepts, as a context, in which IS actors work with IS facilities to process data. 
This implies that the perspective makes a separation between two parts: a 
human information system (HIS) and a computerized information system (CIS). 
Considerations cover all those contextual non-physical phenomena that are 
relevant to executing actions of data processing within and between those parts 
(cf. user interface). The datalogical perspective is interested in “How” questions 
such as:  
• How is information represented in data in the IS? 
• How are the rules of information processing derived from US rules and 

formulated into concrete work procedures and algorithms? 
• How do the IS users and the CIS communicate with each other? 
The physical perspective ties the datalogical concepts and constructs to a 
particular organizational and technical environment, showing how the IS looks 
like and behaves when it is implemented. It answers the following questions: 
• Who are those actors carrying out actions of the HIS, how and when they 

act, and where are they located? 
• Where and how are the data stored? 
• How are the facilities used and by whom? 
• What hardware and software are used, and how are they related? 
 
After having defined the perspectives we will next discuss the selected terms 
and their counterparts in the literature, as well as the relationships between the 
perspectives and the dimensions.  
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The term ‘systelogical’ was introduced in Welke (1977), although in a 
slightly different meaning, to stand for the perspective of how “the changes to 
the existing information system alter/facilitate changes in the affected object 
systems (i.e. user-subsystem and data processing system)” (ibid p. 150). The 
terms ‘infological’ and ‘datalogical’ were first coined in Sungren (1975) and 
Langefors et al. (1975)112 in the same meanings as we use them here. On the 
basis of the so-called infological approach by Langefors (1971) the system from 
the datalogical perspective should be called a data system. Despite the 
importance of making the difference between ‘data’ and ‘information’, we here 
follow a more common approach to deploy only one term ‘information 
system’113. 

We can make the following remarks on the relationships between the 
perspectives and the dimensions (see Figure 54). The systelogical perspective 
provides the point of departure for considerations about the IS. The main focus 
of the perspective is on the US, and the IS is viewed as something which 
provides support for its US. Changing the perspective from systelogical to 
infological means a shift along the decomposition dimension: the IS seen as a 
“black box” is now conceived as a system that is composed of IS purposes, IS 
actions and IS objects. Compared to the infological perspective, the datalogical 
perspective and the physical perspective mean shifts along two dimensions, 
along the decomposition dimension on one hand and along the realization 
independence – dependence dimension on the other hand. The IS purposes, the 
IS actions, and the IS objects are, in the first stage, decomposed into smaller 
“pieces”. In addition, IS actors and IS facilities are, on a general level, 
recognized. In the second stage, the process of decomposing continues and 
more and more realization-related aspects of the IS and its components are 
observed.  The three perspectives (i.e. the infological, datalogical, and physical 
perspectives) constitute a “hierarchical system of stratified levels” as defined by 
Mustonen (1978).  The conceptual perspective is based on the use of the 
semiotic dimension. While all other perspectives consider linguistic objects, the 
conceptual perspective focuses on their conceptual contents. This actually 
means that the focus shifts from the IS to its OS.  
 
 
 
 
 
 

                                                 
112  Langefors and Sundgren (1975, 3) mention a synonym for ‘infological’ that is 

‘informatological’. 
113  In some literature, the use of the terms ‘information system’ and ‘data system’ does 

not depend on the perspective. Krogstie (1995, 479), for example, defines an 
information system as “a system for the dissemination of data between persons”, and 
a data system as “a system to preserve, transform, and transport data”. From this 
viewpoint, a data system is seen as a sub-subsystem of an information system.  
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6.2 Perspectives at the Processing Layers 
 
 
Although the perspectives were defined above, for reasons of concreteness, in 
relation to the IS, they are aimed to apply to any processing layer. To show 
what the position of the perspective ontology in the overall arrangement of 
other ontologies is we present Figure 55. The figure portrays six ontologies 
related to one another. The IS ontology, the ISD ontology and the ME ontology 
consist of two parts: a domain part and a perspective part. The baseline for 
deriving (by specialization) the domain parts is provided by the context 
ontology. The perspective ontology serves as the foundation for deriving the 
perspective parts (by specialization) on each of the three processing layers, 
structured by the layer ontology. It should be noticed that we have not 
provided explicit definitions for the IS domains (in the IS ontology), because the 
concepts and relationships in the IS domains can be derived, in quite a 
straightforward manner, from the corresponding domains of the context 
ontology. For instance, an IS actor in the IS ontology is an actor in the context 
ontology   with   some   specific   features.  In  contrast,   we   do  specify   the  IS 
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FIGURE 55  Perspective ontology in the overall settlement 
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perspectives (see Section 6.3). The perspectives for ISD and ME will be 
elaborated in Chapters 8 and 10, respectively.   

Next, we give short characterizations of the perspectives on four 
processing layers. The RW layer is included in the considerations although we 
are not going to define the RW ontology. The RW perspectives are needed in 
specifying the methodical skeleton (MEMES) in Chapter 11. To denote which 
layers the perspectives concern we use the abbreviations of the names of the 
layers as prefix (e.g. the ISD infological perspective). The summary of the 
characterizations is presented in Table 18.  

From the systelogical perspective the perceived system is considered in 
relation to its utilization system. On the ISD layer, this means that the 
perspective addresses the support ISD provides to the IS and USIS. Relevant 
questions to be answered are, e.g.: what kind of IS is it for which the ISD project 
is or was launched, what kind of USIS is it that should be supported with 
information services, what kinds of services should the ISD provide to USISD, 
and what are the goals and constraints for the approaches and principles of the 
ISD context? Implied from the above, we can state that the stakeholders 
applying the ISD systelogical perspective are the USIS actors and the IS actors. 
Different ISD approaches can be distinguished based on whose role in ISD is 
emphasized - the US actors (cf. the client-led approach (Stowell 1991)) or the IS 
actors (cf. the participatory approach (Mumford 1981; Mumford 1983)). 

The ME systelogical perspective reveals the support ME provides for its 
utilizing system (USME) comprising the ISD and the USISD. The perspective 
focuses one’s attention to, e.g. what are the ISD contexts for which an ISD 
method should be engineered like, what are the IS contexts for which ISD 
projects are to be launched like, what are the USIS which the IS’s should support 
with services like, what are the “services” the ME should provide for USME, and 
what are the goals and constraints for the approaches and principles of the ME 
context? Compared to the ISD layer, here the set of real and potential 
stakeholders is much larger, including the US actors and the IS actors of several 
IS’s, as well as the ISD actors of perhaps several ISD contexts. It depends on a 
situation and on how the views of each stakeholder group are taken into 
account.  

From the RW systelogical perspective one considers the support RW 
provides for its utilizing system (USRW) comprising contexts from the ME layer 
down to the IS layer. Due to the multi-layer structure of the utilization system 
(see Figure 51), the perspective concerns a large number of issues, e.g. what 
kinds of ME contexts are there for which an ME method should be engineered, 
what kinds of ISD contexts exist for which method engineering should be 
accomplished, what kinds of IS’s can be found for which ISD projects are to be 
launched, what kinds of USIS are there which the IS’s should support with 
services, what kinds of “services” the ME should provide to USME, and what are  
the goals and constraints for the approaches and principles of the RW context? 
In addition to the actors mentioned above, the RW systelogical perspective 
involves ME actors as well. It should, however, be noted that the  sayings of  the  
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USIS actors and the IS actors have a marginal effect on the views and decisions 
made from the RW systelogical perspective. 

From the infological perspective the perceived system is considered to be 
a functional structure of information processing purposes, actions and objects, 
independent from any representational and implementation features.  Because 
only the perceived system (i.e. IS, ISD, ME, or RW) is relevant in considerations, 
the interpretation of the perspective is quite straightforward. The following 
issues are relevant in our considerations: what information is processed and 
why in the ISD context / in the ME context / in the RW context, and what 
actions and rules, on a general level, are needed for processing in the perceived 
context? 

The conceptual perspective considers the perceived system through the 
semantic contents of informational objects, meaning that the perspective 
addresses the OS of the context at a layer. As shown in the previous section, the 
OS is very large and multifaceted at the higher processing layers. In the 
following we provide an overview of the OS’s at each layer. A more detailed 
picture is built up in Chapter 7, where the model levels are integrated into the 
discussion.  At the ISD layer the informational objects114 refer to the (possibly) 
existing IS, the new IS as well as their USIS and OSIS. At the ME layer, the 
informational objects signify, besides those signified at the lower layer, also the 
prior ISD contexts and the current or planned ISD context(s). At the RW layer, 
the informational objects signify, besides those referred to at the lower layers, 
also the prior ME contexts and the current or planned ME context(s).  In all 
those cases it is considered what the meaning of the information processed is, 
what information signifies, and what kinds of structural and dynamic 
constraints are valid in the OS. 

From the datalogical perspective the perceived system is considered 
through representation-specific concepts, involving, besides the purposes, the 
actions and the objects, also the IS actors and the IS facilities, on a general level. 
Because also here the central focus is on the IS only, applying the perspective at 
each layer is straightforward. The following issues are relevant: How 
information is represented in data in the ISD context / in the ME context / in 
the RW context? What are the rules of information processing derived from the 
US rules, and how are they formulated into work procedures and algorithms in 
the ISD context / in the ME context / in the RW context? How do the actors and 
the computer-aided tools (CASE / CAME / CARW) communicate with each 
other in the ISD context / in the ME context / in the RW context? 

From the physical perspective the perceived system is tied together with a 
concrete organizational and technical context. Examples of the issues covered 
by the perspective are: Who are the actors carrying out the actions, how do they 
act, and where are they located in the ISD context / in the ME context / in the 
RW context? Where and how are the data stored in the ISD context / in the ME 

                                                 
114  Here and also at the higher layers we only consider those informational objects that 

result from the execution actions, not from the management actions.  
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context / in the RW context? What hardware and software are used and how 
are they related in the ISD context / in the ME context / in the RW context? 
 
 
6.3 IS perspectives 
 
 
In this section we define concepts and constructs with which the IS can be 
perceived from the IS systelogical, the IS infological, the IS conceptual, the IS 
datalogical, and the IS physical perspectives, the emphasis being on first three 
perspectives. The IS perspectives are defined in this chapter for two reasons. 
First, we have no separate chapter for presenting the IS ontology, in which the 
IS perspectives could also be discussed, as it is done for ISD (Chapter 8) and for 
ME (Chapter 10). Second, defining the IS perspectives here gives a concrete 
example of how to specialize the perspective ontology (see Figure 55).  
 
6.3.1 IS Systelogical Perspective 
 
From the IS systelogical perspective the IS is seen in relation to its utilizing system 
(USIS). The utilizing system is a business system, such as a manufacturing 
department producing machines ordered by customers, or a library 
accumulating and lending copies of publications to registered customers.   

There are several approaches to viewing the utilizing system. It can be 
seen as an enterprise (e.g. Loucopoulos et al. 1998; Kavakli et al. 1999), a 
business process (e.g. Phalp 1998; Melao et al. 2000; Mentzas et al. 2001), or as a 
communicating organization (e.g. Dietz 2003). Each approach applies different 
concepts and constructs to conceive and structure things in the utilizing system. 
Dietz (2003), for instance, states that “an organization consists of people who, 
while communicating, enter into and comply with commitments (social 
interaction) about the things they bring about in reality” (ibid p. 148). This so-
called PSI approach (Performance in Social Interaction) differs, to a substantial 
degree, from another approach, called the IPO (Input-Process-Output) 
approach, which is commonly applied in enterprise modeling, business process 
modeling and workflow modeling. Besides these approaches, there are different 
views specified on more detailed levels. Melao et al. (2000), for instance, identify 
four perspectives on business processes: business processes as deterministic 
machines, as complex dynamic systems, as interacting feedback loops, and as 
social constructs. In addition, there are presentations in which some specific 
issues are emphasized. Koubarakis et al. (2002), for instance, present a business 
goal oriented framework and Herbst (1995) suggests a business rule oriented 
framework. In this work it is not possible to cover all the approaches and views. 
Our approach of viewing the utilizing system integrates the IPO approach with 
the main concepts of the purpose domain and the actor domain.  

Depending on the nature of the IS, we have two somewhat different 
viewpoints on the USIS. If the IS is a CIS, the IS is seen as a tool used in the USIS.  
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If the IS contains a HIS as well, the IS is seen as a related context providing 
information services to the USIS.  In the following we first present a meta model 
of the IS systelogical perspective from the tool viewpoint and then from the 
service viewpoint. In both cases, we exploit the concepts and constructs defined 
in the context ontology (Chapter 4). 

Figure 56 presents the meta model of the IS systelogical perspective from 
the tool viewpoint. A US organization is an organization (i.e. enterprise, a 
department or some other administrative arrangement), which utilizes, or is 
going to utilize, an IS. It consists of US organizational units, which in turn are 
composed of US positions. A US position is a post of employment occupied by 
one or more US human actors. US positions are composed of US roles with 
responsibilities and authorities to conduct certain US actions. One of the US 
roles is a user. A US action is an action, which strives for one or more utilization 
purposes. Some US roles are related to the use of a CIS (cf. users in Section 
5.1.3). US actions are governed by US rules. The rules are composed of three or 
four parts (cf. ECAA structure): US event, US condition, thenUSAction and 
elseUSAction. Conducting US actions may raise new US events that may trigger 
other US actions.  
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FIGURE 56  Meta model of the IS systelogical perspective (the tool viewpoint) 
 
The US purposes mean goals for business processes and/or reasons for setting 
up those goals. The US actions use US objects as their inputs and may produce 
US objects as their outputs. The US objects can be material (e.g. machines, 
components, bridges, china, etc.) or informational (e.g. insurance contract, 
payment, reorder, etc.). The US actions are partly performed by US tools (e.g. 
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lathe, circular saw, nailer). Some of the US tools can be computerized 
information systems (CIS) supporting US actions. A US actor conducting US 
actions with the support of a CIS is called a user. The US actions consume US 
resources, like money, energy, goods, manpower, etc.  

Figure 57 presents, on a rough level, the meta model of the IS systelogical 
perspective from the service viewpoint (cf. Figure 45 in Chapter 5).  According 
to it the IS provides IS services to be exploited by the USIS. The relationship 
between the USIS and the IS can be elaborated in many ways: (a) by 
decomposing the IS services into informational objects we can state more clearly 
which kinds of services are provided, (b) by recognizing US purposes, US 
actions and US actors in the USIS we can state more explicitly, who needs/uses, 
in which actions and for what purposes services from the IS, (c) by recognizing 
IS purposes, IS actions and IS objects in the IS we can reveal in which way 
various parts of IS services are produced in the IS. This process of 
decomposition and recognition leads to the arrangements of two interacting 
contexts, between which there are a multitude of relationships, not only 
between the actions, but also between the purposes, the actors, the objects, the 
facilities and the locations. This goes, however, far beyond the scope of the IS 
systelogical perspective, which should, by definition, treat the IS as a kind of 
“black box” in an organizational context.  
 

US ISIS Service
1..*

1..*exploits 1..*

1..*

provides
 

 
FIGURE 57  A rough meta model of the IS systelogical perspective (the service viewpoint) 
 
6.3.2 IS Infological Perspective 
 
In the IS infological perspective the focus is on the IS, which is seen as a functional 
structure of information processing and informational objects115. No attention is 
paid to how the objects are represented or implemented. This means that the 
“black box” conceived from the IS systelogical perspective is “opened” to reveal 
the aspects of the IS within three contextual domains: purpose, action, and 
object. The concepts in the purpose domain are used to specify why information 
is processed. The concepts in the action domain are used to conceive functional 
structures needed to produce informational objects.  Correspondingly, the 
informational objects are decomposed, classified, and structured with the 
concepts and relationships in the object domain. The meta model of the IS 
infological perspective is presented in Figure 58. Next, we define the concepts 
and the relationships in the meta model. 

                                                 
115  There are two main approaches to IS modelling, the structured approach (e.g. 

Yourdon 1989) and the object-oriented approach (e.g. Booch et al. 1999). Our 
approach mainly follows the structured approach that views information processing 
as information flows between the processes.  
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FIGURE 58  Meta model of the IS infological perspective 
 
IS purposes mean IS goals for information processing and/or reasons for setting 
up those goals. An IS goal is a desired state of affairs in the IS. IS reasons can be 
functional or non-functional requirements for information processing, problems 
in prevailing information processing, strengths and weaknesses in, 
opportunities for and threats against existing or planned information 
processing. Between the IS goals there are complex influence relationships and 
refinement relationships.  

In striving for the IS purposes, the IS actions use informational objects, 
called IS objects, as inputs and produce IS objects as outputs. The range of 
various types of IS actions is huge. An IS action can mean e.g. collecting, 
storing, processing, transmitting, coding, encoding, arranging, locating, 
discovering, interpreting, integrating, reviewing, testing, approving, editing, 
etc. 

From the action structures defined in Section 4.4.3 relevant structures from 
the IS infological perspective are the decomposition structure and the control 
structure. The decomposition structure splits IS actions into IS functions, IS 
activities, IS tasks, and IS operations. Because the terms with which the IS 
actions in the decomposition structure are referred to are varying, we do not 
include them in the meta model in Figure 58. The control structure allows to 
present sequence, selection and iteration relationships between the IS actions.  

The IS actions are governed by IS rules. An IS rule is composed of IS 
events, IS conditions, thenISActions and elseISActions. The IS rules can be 
classified in many ways. First, there are dynamic and static rules. The dynamic 
IS rules restrict or guide IS actions and IS events. The static IS rules restrict IS 
objects. Examples of the IS rules are: back-ups of the files should be run once a 
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week; a social security number of a person cannot be changed; a salary of an 
hourly paid employee is derived by the rule ‘Salary := number of hours x 
hourly fee’. The first example is a business rule. The second rule is called an 
integrity constraint (Elmasri et al. 2000). The last rule is called a derivation rule 
(cf. Iivari 1989a). 

An IS object is an informational object in the form that is free from any 
representational and implementational aspects. An IS object can be transient or 
permanent. A transient IS object lasts only a short time (e.g. a reply to a routine 
request). A permanent IS object is valuable enough to “live” longer (e.g. 
personnel information, vehicle information).  

The IS objects are interrelated in many ways. They are composed of other 
IS objects. Producing them is supported by other IS objects (cf. derivation of the 
monthly salary from hourly fee and number of hours). An IS object can also be a 
version of, a copy of, or an (predicate) abstraction from, another IS object.  
 
6.3.3 IS Conceptual Perspective 
 
The IS conceptual perspective aims to reveal the semantic contents of the IS 
objects. This means that of those things in the OSIS that are signified by the IS 
objects, the structure and behavior are brought out.  The IS conceptual 
perspective addresses the so-called deep structure of the IS (Wand et al. 1995b).  

The OS is here seen as being composed of related things having states and 
affected by state transitions (cf. Section 3.7). The structural view concerns the 
states, and the dynamic view addresses the state transitions. In OS modelling 
there are several approaches. Some of them are structural, such as the ER 
approach (Chen 1976) and ORM approach (Halpin 1988; 2001), some other 
cover both views, such as the object-oriented approach (Booch et al. 1999). We 
prefer the ER approach to the ORM approach and other attribute-free 
approaches, because we consider it important to separate between entities and 
attributes. We want also to make a clear distinction between the static features 
and the dynamic features of the OS, unlike in the object-oriented approach. The 
meta model of the IS conceptual perspective based on the ER approach (the 
structural view) and the state machine (the dynamic view) is presented in 
Figure 59. 

In the core ontology, thing was defined as a generic notion to mean any 
phenomenon in reality. Likewise, the notion of a relationship means anything 
that relates two or more things together. To emphasise the specificity of the IS 
conceptual perspective and the OS, we introduce here another elementary 
concept, called entity. An entity means any perceivable thing in the object 
system with an independent existence (cf. Elmasri et al. 2000, 45). Only those 
things that are relevant and “independent” enough to be signified by the IS 
objects are regarded as entities. Examples of entities are John and Mary. 

It would be better to introduce, instead of the generic notion of a 
relationship included in the core ontology, a separate concept for relating the 
entities. However, because in the ER approach (Chen 1976) it is customary to 
use  the  term  ‘relationship’  in  this   meaning,  we  do  not  want  to  make  any  
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FIGURE 59  Meta model of the IS conceptual perspective 
 
deviation in this case. However, to avoid possible confusions, we use the special 
term ‘OS relationship’ to differentiate it from the core notion of a relationship. 
Hence, an OS relationship between two or more entities means any relevant 
connection, association or like (i.e. a relationship) between the entities. A 
marriage between John and Mary is a relationship. All the abstraction 
relationships (classification, generalization, composition, grouping) defined in 
the abstraction ontology apply, of course, to the entities as well. 

An attribute is a relevant predicate used to characterize an entity or an OS 
relationship. A particular entity or OS relationship has one or more attribute 
values for each of its attributes. For instance, 25 and 26 are ages of John and 
Mary, respectively. In some cases, a particular entity or OS relationship may not 
have an applicable value for an attribute. In such situations, a special value, 
called null, is used.  

An OSIS construct means a conceptual construct composed of specific 
entities related to one another through OS relationships and characterized by 
specific attribute values. An OSIS construct is a UoD construct defined in Section 
4.4.4, here conceived from a more specific viewpoint. The notion allows us to 
refer to complex structures in the OS with one term. The OSIS constructs are 
here considered at the instance level.   

An OSIS state means a state of the object system or its parts, composed of 
OSIS constructs. An OSIS transition means a transition from one OSIS state, called 
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the pre-state, to another OSIS state, called the post-state. An OSIS transition can 
involve entities (e.g. the “birth” of an entity), OS relationships (e.g. the divorce) 
and/or attribute values (e.g. the quantity available). The transitions constitute 
the potential OSIS behavior (cf. Section 3.8). OSIS transitions can be composed to 
establish OSIS transition structures like those defined in the state transition 
ontology (Section 3.7). An OSIS event means an event which may trigger an OSIS 
transition from the pre-state to the post-state and which may be caused by 
another OSIS state transition116. 
 
6.3.4 IS Datalogical Perspective 
 
From the IS datalogical perspective the IS is viewed, through representation-
specific concepts, as a context, in which IS actors work with IS facilities to 
process data. Thus, the IS objects, seen as informational objects from the IS 
infological perspective, are here considered to be data objects presented in some 
non-formal, semi-formal or formal language(s). There are also special IS actions 
which transform data objects from one form to another. No reference is made to 
data carriers or other physical features of the IS context. The IS datalogical 
perspective enables, however, to distinguish between human data processing 
and computerized data processing. Due to these two related parts (i.e. HIS and 
CIS), there is also a need to consider how the parts communicate and cooperate, 
i.e. what is the user interface of a CIS.  

The meta model of the IS datalogical perspective is presented in Figure 60. 
The concepts and relationships of the HIS have been specialized from the 
context ontology (Chapter 4). The CIS is conceptually very large. In this study it 
is possible to introduce only a small number of its concepts. For the UI part, 
both structural and behavioral aspects on a logical level are covered. Next we 
define the concepts and relationships of the IS datalogical perspective, first for 
the HIS, then for the UI and finally for the CIS.  

 
A.  Human Information System 
 
The human information system (HIS) means a system in which human 
beings have the only role in the accomplishment of the IS actions. From the IS 
datalogical perspective, the HIS is seen as a context, in which HIS actions 
process data objects, governed by HIS rules, to attain HIS purposes. Because the 
HIS is a context, all the generic contextual concepts and constructs within the 
aforementioned domains defined in Chapter 4 apply to it. For that reason, we 
are not going to define all the concepts and relationships here but concentrate 
on the most essential ones. 

                                                 
116  Note that some researchers (e.g. Iivari 1989a; Freeman et al. 1994) include also the 

notion of an action in the OS. Because we want to make a clear separation between 
the OS and the IS, all behavioral aspects of the OS are modeled through state 
transitions.  



 

 

249

HIS rule

HIS action

Dialog

nonDigital

CIS action

UI transition

UI state

UI data UI action comp.UI data comp.

UI component

Window

IS role

CIS rule

Transaction

Algorithm

Data object

Digital

1..*
responsibleFor

*
governs

*

*
input

*

*
output

1..*contains1..*

* **

1
resultsIn

1
precedes

UI event

*
causedBy

*
triggers

1..*

governs

*

governs

1..* 1..*

1..* 1..*

IS action

*

output

*

input

* *

1..*

*

operatesWith

HIS purpose

*

strivesFor

*

*

*

navigation

*

*

1..*

implements

1..*

1..*

1..*

presents

IS position

IS org.unit

IS organization

1..*

*

1..*

*

1..*

1

1

*

supervision

1..*

1..*

**

**

* *

 
 
FIGURE 60  Meta model of the IS datalogical perspective 
 
A HIS action is an IS action carried out by a human IS actor. A HIS purpose is an 
IS purpose, which concerns the HIS as a whole, or parts thereof. An IS role is a 
collection of responsibilities, stipulated in terms of HIS actions. One IS role is a 
user of the CIS. An IS position is a post of employment specified in terms of IS 
roles. Between two IS positions, a supervisor and a subordinate, there is the 
supervision relationship. An IS organization is an organization whose main 
responsibility is to develop, manage and/or execute information processing in a 
business organization. It is composed of one or more IS organizational units.  

The HIS actions are governed by HIS rules with the ECAA structure. The 
HIS actions are related to one another with generic action structures (i.e. 
decomposition, control structures, and temporal structures), the problem 
solving structure, and management-execution structure (see Section 4.4.3).  

A data object is an IS object represented in some language.  It can be in a 
digital or non-digital form. Non-digital data means an IS object that is presented 
in a language that can be interpreted by a human being. The HIS actions mainly 
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handle non-digital data. Digital data is in a digital form and can be read by a 
computer.  
 
B.  User Interface 
 
The support of the CIS to the users appears as services that a user requests and 
receives from the system. Receiving services requires communication or 
interaction between a user and the system. A user interface (UI) is a part of the 
CIS which facilitates the interaction between the users and the CIS. From the IS 
datalogical perspective, interaction means “what a user is able to do and what 
the system does in response to the user’s stimuli” (cf. the logical level in de 
Rosis et al. (1998, 101)). In the following we define the main concepts that are 
used in the UI design at the datalogical level.  

A dialog means an interaction between a user and the CIS, occurring 
through windows. A window117 is a logical whole composed of UI components. 
Windows are related with the navigation relationships. A navigation relationship 
means a possibility for a user to move control from one window to another 
window. A UI component can be a UI data component or a UI action component. 
A UI data component is intended to display data to a user or to accept data from 
a user (cf. a feedback tool in Jaaksi (1995, 1212). This data is called UI data. 
Depending on whether UI data is handled by a CIS or a human being, it is 
digital or non-digital data. A UI data component can be a title, a text, a data 
field, a table, a picture, a graph, etc. A UI action component is intended to the 
manipulation of the window and the control of the dialog (cf. a manipulation 
tool in Jaaksi (1995, 1212).  It can be a button, a menu, a slider, etc. The UI action 
components are used to realize navigation among the windows. An UI action 
component is implemented by performing one or more CIS actions governed by 
CIS rules.  A UI component can contain both UI data components and UI action 
components. The HIS operates with UI components through HIS actions. 

Interaction between the HIS and the CIS proceeds from one UI state to 
another. A UI state is composed of those UI data, UI data components and UI 
action components that are present at the certain time. A UI transition from one 
UI state to another can be triggered by the HIS (i.e. an HIS action) or by the CIS 
(i.e. a CIS action). UI events correspond to all those happenings that can trigger 
UI transitions.  For example, a UI pre-state can concern a window, which 
contains the search condition ‘John Doe’ in a text field and Search, Cancel and 
Clear buttons. After the Search button is pressed, the CIS searches for the data 
concerning John Doe and displays it in the next window (the post-UI state). 
 
C.  Computerized Information System 
 
A computerized information system (CIS) a system in which all data processing is 
automated, that is to say, performed by one or more computer systems. Also 

                                                 
117  In a web-based application a web page corresponds to a window. 
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here the IS datalogical perspective reveals only those features that are not 
related to the physical technology.  

A CIS action means an IS action that is performed in the CIS. A CIS action 
records, searches for, orders, merges, updates and/or deletes, i.e., processes 
digital data. Some of this data is displayed as UI data through a UI data 
component. Logically related CIS actions are assembled to form transactions. A 
CIS action and a transaction are governed by CIS rules. Transactions, 
represented in a formal language, are called algorithms.  
 
6.3.5 IS Physical Perspective 
 
The IS physical perspective considers the IS with all its physical aspects. It ties the 
IS datalogical concepts and constructs to a particular organizational and 
technical environment, showing how the IS looks like and behaves when it is 
implemented. The IS contains one or three major parts, namely the HIS, and 
possibly the CIS and the UI. For all the parts, highly detailed and realization-
dependent view is enabled. It is quite impossible for us here to address all those 
details. Instead, we content ourselves with presenting an outline of the IS from 
the IS physical perspective. After that we present the meta model of the CIS 
(Figure 61) and define the concepts contained in it. 

The IS roles are combined to form IS positions with organization-specific 
responsibilities and authorities. For each position one or more IS human actors 
are assigned. IS positions are structured to establish IS organizational units. The 
HIS actions are organized according to the organization-specific management – 
execution structures. They are also decomposed into detailed tasks and 
operations, governed by specific HIS rules that are realized to suit the 
organizational culture and practice. To non-digital data objects (e.g. reports, 
forms and tables) suitable data carriers are attached and layouts fixed. 
Resources are assigned to IS organizational units and allocated into parts 
thereof.  

The UI is composed of physical windows built up from physical UI 
components; e.g. a command button, a radio button, a spin button, a check box, 
a list box, a drop-down list box, a pop-up menu, and a tool bar. UI components 
as well as transactions are realized through software components programmed 
in one or more programming languages. For software a proper architecture is 
specified and implemented. Digital data is structured and stored in data 
storages. For data communication through data messages, communication lines 
between nodes with compatible interfaces are established. Finally, all the 
human actors, data and facilities are situated into specific locations.  

The skeleton of the implemented CIS is composed of a hardware (HW) 
architecture and a software (SW) architecture. A hardware architecture consists of 
interoperable hardware. Hardware means physical equipment used in data 
processing (e.g. workstations, servers printers, mass data storages) (cf. IEEE 
1990). A software architecture is composed of compatible software (e.g. operating 
systems,  database   management   systems,  application   software).  There   are 
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FIGURE 61  Meta model of the IS physical perspective covering a part of the CIS 
 
several SW architecture types and styles (Buschmann et al. 1996, Bass et al. 1998) 
that can be applied. On the basis of a layered architecture, an application software 
is composed of SW components that are layered according to some basic 
architecture model. Layers are related to one another with the black box strategy 
or the while box strategy. In the former case, a component on a higher layer 
only knows the interface of the called component on the next lower layer. In the 
latter case, the component on a higher layer also sees the inner structure of the 
called component. A SW component means an executable unit of code that 
provides a physical black-box encapsulation of related services. Its services can 
only be accessed through a consistent, published interface (Allen et al. 1998, 4). 
Examples of SW components (of a database system) are stored procedures, 
functions, data base triggers, UI components, etc 

Hardware is organized into nodes according to the selected HW 
architecture. A node is composed of e.g. memory devices, processors, printers 
and displays. A software component is allocated into one or more nodes. Each 
node is situated in some physical location. Communication from one node to 
another takes place through data messages sent along communication lines. 
During the communication, encoding and decoding of messages is performed 
based on specified protocols. A protocol means a set of conventions or rules that 
govern the interactions of processes or software components through 
communication lines in a CIS or between CIS’s (e.g. TCP/IP, HTTP) (cf. IEEE 
1990). 
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A data storage stands for all kinds of structured digital data (e.g. data file 
and database). A database is structured according to some database model (e.g. a 
hierarchical model, a relational model, an object-relational model, an object 
model, a document model, XML-native model). Data files are decomposed into 
records and further data fields. A data storage is allocated into some memory 
device(s).  
 
6.3.6 Relationships between the IS Perspectives 
 
In the previous sections we defined the contextual concepts and relationships 
within each IS perspective. Here, our purpose is to relate the IS perspectives, 
first on a general level and then in more detail, through the contextual domains 
involved by the IS perspectives.  

The perspectives have been established along three dimensions. Based on 
the dimensions and the related discussions in Section 6.1, we can sketch the 
relationships between the IS perspectives on a general level as shown in Figure 
62118.  The common denominator between the IS systelogical perspective and 
the IS infological perspective is the IS: moving from the former perspective to 
the latter means that the IS, first seen as a black box, is opened in order to 
expose IS purposes, IS actions, IS objects and relationships between them. In 
this process, the principles of decomposition and specialization (by 
contextualization) are mainly applied. Boxes inside the IS systelogical, IS 
infological, IS datalogical and IS physical perspectives stand for informational 
objects which signify conceptual constructs in the object system. 

The IS infological, IS datalogical and IS physical perspectives are parts of a 
hierarchical system of perspectives within which the relationships are based on 
the same criterion of realization independence. Applying the criterion of 
realization independence means carrying out the process of predicate 
abstraction (cf. Section 3.9.3). And vice versa, moving downwards in the 
hierarchy, conceptions about the IS first become representation-specific (cf. the 
IS datalogical perspective) and then implementation-specific (cf. the IS physical 
perspective). In parallel to realizing, concretizing by decomposition and 
specialization is applied. In the last “stage” also instantiation is carried out. 

Each of the aforementioned IS perspectives recognizes informational 
objects. In the IS systelogical perspective they are called (informational) US 
objects. According to the IS infological perspective, the information system 
contains IS objects. Based on the IS datalogical perspective they are digital or 
non-digital data objects. Data files, data records and data fields represent the 
conceptions of IS objects from the IS physical perspective. In all those cases, 
there are signifies relationships between informational objects and things 
conceived as OSIS construct from the IS conceptual perspective. Through these 
relationships it is possible to make sense of the semantic meanings of the 
informational objects. 
                                                 
118  Note that because Figure 62 does not present a meta model we use arrows to show, 

in a more illustrative way, the directions of the relationships. 
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FIGURE 62  A general view of the relationships between the IS perspectives 
 
Still one type of a generic relationship can be found between IS perspectives. If 
the OS overlaps with the US or the IS, there is abstractedFrom relationships 
between the OSIS and the USIS, on one hand, and between the OSIS and the ISIS, 
on the other hand. By this abstraction, most of the contextual aspects of the USIS 
/ ISIS are ignored in order to establish OSIS constructs composed of entities, OS 
relationships and attribute values. Let us consider two examples of the 
abstractedFrom relationship between the OSIS and the USIS. If considered 
relevant, US actors, US objects, US facilities and/or US locations can be 
conceived as entities that are related via OS relationships corresponding to the 
relationships in the USIS (viz. responsibleFor, occupiedBy, supports, performs 
etc.). In the same way, OS transitions can be abstracted from the US actions. For 
example, hiring and firing an employee affect on the OS state of a particular 
employee.   

Next, we consider the relationships between the IS perspectives more 
closely through the contextual domains involved with the IS perspectives. An 
elaborated view embracing the concerned contextual domains is presented in 
Figure 63. Applying the IS systelogical perspective (the tool view) all the 
contextual  domains  of  the  US  context   are   recognized.  The   IS   infological  
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FIGURE 63  A detailed view of the relationships between the IS perspectives 
 
perspective involves only the purpose, action and object domains of the IS 
context. The IS conceptual perspective is  on  the  most general level. It does not 
divide the aspects of the OSIS into contextual domains at all. Instead, it 
considers the OSIS constructs as states (i.e. structural features) and transitions 
between the states (i.e. dynamic features). Compared to the IS infological 
perspective, the IS datalogical perspective brings forward two new contextual 
domains, the actor domain and the facility domain. Both of them are considered 
on a general level. The most detailed view of the IS in all the contextual 
domains is naturally got when looked at from the IS physical perspective.  

In Figure 63 the relationships between the IS perspectives are depicted 
with arrows (a) between the domains, (b) between a domain and a perspective, 
and (c) between the perspectives. In the first case, the relationships are defined 
on the basis of individual domains. In the second case, a thing in some domain 
is argued to have a relationship with a system, either the USIS or the IS, seen as 
a whole from a certain perspective. The arrows between the systems indicate a 
more general connection between the concerned perspectives. To avoid 
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excessive complexity in the figure, some of the decomposition and 
specialization relationships are omitted in Figure 63. Next, we make some 
remarks on the relationships. 

To start with, the concepts and the relationships within the domains of the 
IS infological perspectives are derived from the ones within the corresponding 
domains of the IS systelogical perspectives. A particularly important role in this 
derivation is played by the informational US objects used in decision making or 
operational actions in the US, because the US objects are exactly what the IS 
should provide as information services. Following the infological approach 
(Langefors et al. 1975; Lundeberg 1982) the informational US objects are 
regarded as final outcomes of the IS from which IS actions and their inputs are 
derived in a step-by-step manner. Contextual information for this derivation is 
obtained from the knowledge about those US actions which utilize the US 
objects and on the purposes for which the US objects are used. In parallel to the 
derivation, IS purposes, IS actions and IS objects are decomposed into more 
elementary parts. In this process, also more elementary concepts in the 
hierarchical structures in the domains (cf. goal/means hierarchy, action 
decomposition structures, object decomposition structure) are applied. 
Furthermore, the business rules stated within the USIS can be applied to specify 
IS rules. More grounds for the considerations from the IS infological 
perspectives can be got from the aspects (e.g. requirements) related to the CIS as 
a US tool. It should also be noticed that implications of the IS systelogical 
perspective to the IS infological perspective also appear at a more general level. 
The whole purpose of the IS is affected by the purpose of the USIS. For instance, 
if the goal of an enterprise is to deliver the goods within two days to customers 
living not further off than 100 miles, it implies that the IS should support nearly 
on-line responses to the issued orders.  

Second, the informational objects in the IS systelogical, IS infological, 
datalogical and IS physical perspectives give a scope and basis for viewing the 
OSIS from the IS conceptual perspective. If the OSIS overlaps with the USIS 
and/or the IS, the overviews from the related perspectives can help unveil 
static and dynamic features of the corresponding parts of the OSIS. Thus, the 
relationship between the IS conceptual perspective and the other IS 
perspectives is twofold: (a) informational objects signify OSIS constructs, and (b) 
the IS conceptual perspective abstracts from the relevant parts of the USIS 
and/or the IS.  

Third, because the IS infological, IS datalogical and IS physical 
perspectives are parts of the hierarchical system of perspectives based on the 
realization-dependence criterion, for each domain type more concrete concepts 
and relationships are deployed at lower levels of predicate abstraction. 
Consequently, data objects are derived from information objects, IS actions are 
divided into HIS actions and CIS actions, and temporal specifications of the IS 
datalogical perspective are realized into more concrete specifications of the IS 
physical perspective. Derivation is, of course, a very complicated process, 
which follows strategies, approaches, principles, and techniques selected in an 
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ISD endeavor. As an example of these normative guidelines, we refer to Bailey 
(1989, 189), who distinguishes between five strategies of allocation of IS actions 
into an HIS or a CIS (Kueng et al. 1996, 104-105):  
• Comparison allocation. Each IS action is analyzed and then compared with 

established human and machine performance criteria. 
• Leftover allocation. As many IS actions as possible are allocated to a 

machine and the activities left over are done by humans.  
• Economic strategy. The decision, man versus machine, is based completely 

on financial assessment. 
• Humanized task approach. The main goal of this strategy is to design 

meaningful human jobs / roles  (cf. socio-technical approach in Mumford 
et al. (1979) and Mumford (1981)). 

• Flexible allocation. Humans allocate activities in the HIS or in the CIS based 
on their values, needs, and interests.  

 
Proceeding into lower levels of predicate abstraction also brings forward new 
domains. In the IS datalogical perspective some of the IS actions sketched in the 
IS infological perspective are elaborated and combined to establish IS roles, IS 
positions and IS organizational units in the actor domain. For the HIS the CIS is 
seen as a tool, which belongs to the facility domain. In the IS physical 
perspective, the concepts of the location domain are used to situate all the 
structural things of the IS in their proper locations.   

Progress from the IS infological perspective through the IS datalogical 
perspective to the IS physical perspective is not just the application of the 
principle of realization. The view of the USIS, formed by the IS systelogical 
perspective, has a significant effect on design decisions on all the levels of 
predicate abstraction. For example, decisions on the division of IS actions into 
HIS actions and CIS actions, on assembling HIS actions into IS roles and IS 
positions, and on forming HIS action structures, on a detailed level, are based 
on contextual knowledge about the US. The effect of the IS systelogical 
perspective becomes particularly important when moving to the IS physical 
perspective, which ties the IS designs to concrete organizational and 
technological settings.  
 
 
6.4 Comparative Analysis of IS Perspectives  
 
 
The IS/ISD literature provides a large variety of IS architectures (e.g. Zachman 
1987; Sowa et al. 1992), IS frameworks (e.g. Olive 1983; Olle et al. 1988a; Iivari 
1989a; van Swede et al. 1993), reference models (e.g. ISO 1996) and IS meta 
models (e.g. Freeman et al. 1994) that contain, in one form or another, views, 
perspectives and viewpoints to structure descriptions of the IS. Starting from 
the early days, the ANSI/SPARC Study Group (ANSI/X3 SPARC 1975), for 
instance, introduced the so-called ANSI/SPARC architecture for data bases, 
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composed of three schemas: an internal schema describing the physical storage 
structure of the data base, a conceptual schema presenting the structure of the 
whole database at a conceptual level, and an external schema describing a part 
of the database that a particular user group is interested in. Langefors and 
Sundgren (1975) distinguished between the infological viewpoint and the 
datalogical viewpoint. Kerola and Järvinen (1975) specified the so-called PSC 
model which is based on three main points of view: the pragmatic point of 
view, the semantic point of view, and the constructive point of view. Welke 
(1977) distinguished between the systelogical perspective, the infological 
perspective, and the datalogical perspective. Iivari (1978) and Mustonen (1978) 
elaborated the points of view in the PSC model further and defined the 
pragmatic (P), input output (I/O), constructive (C), and operation (O) 
viewpoints, which Iivari (1983) later combined into the so-called PIOCO model. 
Gane et al. (1979) recognized the physical view, representing the current work 
practice, and the logical view, representing technology-independent solutions. 
Since those days, a substantial number of presentations have been published in 
which the usefulness of perspectives has frequently been emphasized.  

The purpose of this section is to make a short review and a comparative 
analysis of the IS perspectives defined in frameworks, reference models, 
architectures and the like in the IS/ISD literature. For simplicity we call those 
presentations that specify perspectives, one way or another, the frameworks. 
First, we specify the criteria for the selection of frameworks. Second, we set up 
the objectives for our analysis. Third, we describe and analyze the IS 
perspectives included in the frameworks from multiple viewpoints.  

Overviews of the most prominent frameworks have already been given in 
Chapter 1. For the analysis, we select those frameworks (a) which have been 
developed for a comprehensive analysis and/or comparison of the concepts in 
the fields of IS and/or ISD and (b) in which systems of perspectives have been 
clearly specified. Some of the frameworks are detailed providing also concepts 
within the perspectives, while the others only generally characterize the 
conceptual domains addressed by the perspectives. The criteria set up above 
are fulfilled in eleven frameworks. These are: Welke (1977), Olive (1983), Essink 
(1986, 1988), Olle et al. (1988a), Iivari (1989a), Sol (1992), Sowa et al. (1992), van 
Swede et al. (1993), Freeman et al. (1994), Avison et al. (1996)119 and ISO (1996).  

Many of the frameworks presented in the literature were left out. We 
ignored, for instance, frameworks, which are predecessors of some frameworks 
already included in the analysis (e.g. Kerola et al. 1982), or alternatively, which 
are significantly based on some framework included in the analysis (e.g. Punter 
et al. (1996) is based on Essink (1986, 1988), and Evernden (1996) is based on 
Sowa et al. (1992)). Some of the frameworks are too technical (e.g. ANSI/X3 

                                                 
119  Multiview by Avison et al. (1996) is actually a methodology, but because it does not 

aim to provide a particular way of working neither a single set of techniques but 
rather a contingency framework according to which the selections and 
customizations of techniques are to be carried out for a project (cf. Watson et al. 1995; 
Vidgen 2002), we regard it here as a framework. 
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SPARC 1975; Booch et al. 1999, 31) or domain-specific (e.g. Frank’s framework 
(Frank 2002) is based on enterprise modeling and Tardieu’s framework (1992) is 
aimed at process modeling) to be included in the analysis.  

Our aim is to make (a) an overview of the perspectives in the frameworks 
and of the dimension(s) with the criteria used to establish them, (b) a rough 
comparative analysis of the conceptual contents of the perspectives, and (c) a 
more detailed analysis of the concepts within the perspectives. For the third 
part of the analysis we select only the most detailed frameworks. The first two 
parts address the systems of perspectives generally (cf. the perspective ontology 
in Section 6.1). In the third part we want to find out how the IS perspectives 
defined in Section 6.3 compare to the perspectives in the frameworks in the 
literature. This part of the analysis has importance also more generally, because 
we did not make any comparative analysis for the context ontology. Hence, this 
analysis also reveals how our context ontology, from which the IS perspectives 
have been derived, compete with the frameworks in the literature.  
 
6.4.1 Overview of the Perspectives  
 
In Table 19 we present an overview of the perspectives of the selected 
frameworks. The overview covers the dimension(s), the criteria by which the 
perspectives have been derived and are interrelated, and the perspectives. In 
the following we comment on the table with some remarks. The frameworks 
will be outlined and their perspectives will be defined in the next part of the 
analysis. Here, our discussion is based on the information in the table only. 

The dimensions, along which the perspectives in the frameworks have 
been established, are called “levels of abstraction” (Olive 1983; Essink 1988; 
Iivari 1989a; Freeman et al. 1994), “design levels” (Sowa et al. 1992),  “aspects” 
(Olle et al. 1988a)," views" (Avison et al. 1996), "viewpoints" (ISO 1996), or "sub-
problems" (Sol 1992). van Swede et al. (1993) and Welke (1977) call them 
”perspectives”, as we do. 

The frameworks use different criteria to distinguish between and relating 
the perspectives. Sowa et al. (1992) and van Swede et al. (1993) have based their 
design levels / perspectives on views of stakeholders. With an analogy to the 
construction of a building, Sowa et al. (1992) recognize five stakeholders. van 
Swede et al. (1993) have reduced the number of stakeholders to three: those 
concerned with the way the system supports the business, those concerned with 
the use of the system, and those concerned with design matters irrelevant to 
users.  The view of the first role is further divided into two abstraction levels.  
As a refinement of the  well-known  dichotomy  of logical IS model and internal 
IS specification, Essink (1986, 1988) has devised his levels of abstraction by 
“grouping the design decisions according to their functional cohesion” (Essink 
1986,  57).  

Iivari (1989a,  327) has derived his levels of abstraction from abstractions 
of the host  organization,  universe of  discourse, and  technology. The host 
system constitutes the organisational context of the IS. The UoD gives the 
propositional/ conceptual meaning of information in the infological model. The 
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TABLE 19  Overview of the frameworks and their perspectives 
 

Framework Dimension(s) Criteria Perspectives 
Welke (1977) Perspectives Changes in IS and/or its user-

subsystem should be 
addressed from several 
perspectives (ibid p. 150) 

Systelogical  
    perspective 
Infological perspective 
Datalogical perspective

Olive (1983) Levels of 
abstraction 

“The model at the highest 
level is the most general and 
those at the lower level are 
more detailed” (ibid p. 63) 

External level 
Conceptual level 
Logical level 
Architectural level 
Physical level 

Essink (1986, 
1988) 

Levels of 
abstraction 

“..are classes of problems that 
are relevant from a specific 
view on IS’s” (Essink 1988,  
356)” 

Object system model 
Conceptual IS model 
Data system model 
Implementation model 

Olle et al. 
(1988a) 

Aspects Not clearly specified Business analysis stage 
System design stage 
Construction design 
      stage 

Iivari (1989a Levels of 
abstraction 

Derived from abstractions of 
the host system, the UoD and 
technology 

Organizational level 
Conceptual/infological 
      level 
Datalogical/technical 
      level 

Avison et al. 
(1996) 

Views “..necessary to form a system 
which is complete in both 
technical and human terms” 

Human-activity view 
Information view 
Socio-technical view 
Human-computer  
   interface view 
Technical view 

Sol (1992) 
 
 

Sub-problems Not clearly specified Systelogical problems 
Infological problems 
Datalogical problems 
Technological  
    problems 

Sowa et al. 
(1992) 

Design levels Levels correspond to views of 
specific stakeholders 

Scope 
Enterprise or business  
      model 
System model 
Technology model 
Components 

van Swede  et 
al. (1993) 

Perspectives Perspectives correspond to 
views of specific groups of 
people 

Business perspective 
Information  
     perspective 
Functionality  
      perspective 
Implementation  
      perspective 

     (continues) 
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TABLE 19  (continues) 
 

Framework Dimension(s) Criteria Perspectives 
Freeman et al. 
(1994) 

Levels of abstraction “..loosely corresponds 
to the phases of 
software development” 
(ibid 287) 

World level 
Conceptual level 
Design level 
Implementation level 

ISO (1996) Viewpoints  
 

“..to focus on particular 
concerns within a 
system” (ibid 3.2.7) 

Enterprise viewpoint 
Information viewpoint 
Computational 
  viewpoint 
Engineering viewpoint
Technology viewpoint 

 
abstract technology describes the allocation of the functional components of the 
datalogical model to the abstract technical resources. Welke (1977) has based his 
perspectives on consequences that changes to the existing IS result in the object 
system, the use of information, and the data processing sequences. Avison et al. 
(1996) argue that their five views are needed to answer the vital questions of 
users. The corresponding stages move from general to specific, from conceptual 
to hard facts, and from issues to tasks. Freeman et al. (1994) compare their levels 
of abstraction with the phases of software development. Sol (1992) has made his 
division on the basis of the kinds of problems that must be solved during ISD.  

Some frameworks give no explanation for the perspectives, nor apply any 
explicit criteria. Olive (1983), for example, says that the analysis of ISD methods 
has resulted in five levels of abstraction. The model at the highest level is the 
most general and those at the lower level are more detailed (ibid p. 63). ISO 
(1996) has aimed at “covering all the domains of architectural design” and 
derived the viewpoints “from current distributed processing development”.  
 
6.4.2 Detailed Analysis of the Perspectives 
 
In this section we describe and analyse the perspectives of the frameworks in 
more detail.  Our aim is to compare the conceptual contents of the perspectives 
in the frameworks. For this purpose, we use our system of perspectives as the 
basis for the analysis. In Table 20 “strong” correspondences between our 
perspectives and those in the other frameworks are marked with 'X' and 
“weak” correspondences are indicated by 'x'. 

Welke (1977) states that changes in the IS and/or its user-subsystem (i.e. 
the US in our terminology) should be addressed from the following 
perspectives: (a) systelogical perspective (How will changes to the existing IS 
alter / facilitate   changes   in    the   affected     object   system?),   (b)  infological 
perspective (How will changes to the existing IS alter/facilitate changes in the 
use of information by individuals?), (c) datalogical perspective (How will 
changes  to  the  IS alter/facilitate  changes  in  the  data  processing  sequences 
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TABLE 20  Comparative analysis of the perspectives 
 

Frameworks Syste- 
logical 

Info- 
logical 

Concept- 
ual 

Data- 
logical 

Physi- 
cal 

Welke (1977)  
- Systelogical perspective 
- Infological perspective 
- Datalogical perspective 

 
    X 

 
    x 
    X 

 
     x 

 
   
    x 
    X 

 
 
    x 
    x 

Olive (1983) 
- External level 
- Conceptual level 
- Logical level 
- Architectural level 
- Physical level 

 
   X 

 
    x 
 
    X 

 
 
    X 

 
 
 
 
    X 
 

 
 
 
 
 
    X 

Essink (1986, 1988) 
- Object system modelling 
- Conceptual information system 
   modelling 
- Data system modelling 
- Implementation modelling 

    
    x 
 
 

 
 
 
     X 

 
     X 

 
 
 
     x 
     X 

 
 
 
 
 
     X 

Olle et al. (1988a) 
- Business analysis stage 
- System design stage 
- Construction design stage 

 
   X 

 
     
 

 
    X 

 
 
    X 

 
 
 
    X 

Iivari (1989a) 
- Organizational level 
- Conceptual/infological level 
- Datalogical/technical level 

 
   X 

 
 
    X 

 
 
    X 

 
 
     x 
     X 

 
 
 
    X 

Avison et al. (1996) 
-Human-activity view 
-Information view 
-Socio-technical view 
-Human-computer interface view 
-Technical view 

 
   X 
 

 
 
    X 

 
 
   X 

 
 
 
   X 
   X 

 
 
 
    X 
    X 
    X 

Sol (1992) 
- Systelogical problems 
- Infological problems 
- Datalogical problems 
- Technological problems 

 
   X 

 
 
    X 

 
 
    x 

 
 
 
    X 
 

 
 
 
 
    X 

Sowa et al. (1992) 
- Scope level 
- Enterprise model level 
- System model level 
- Technology model level 
- Components level 

 
    X 
    x 

 
 
 
    X 

 
 
    x 
    x 

 
 
 
    X 
     
 

 
 
 
 
    X 
    X 

van Swede et al. (1993) 
- Business perspective 
- Information perspective 
- Functionality perspective 
- Implementation  perspective 

 
   X 
   X 

 
 
    x 
    x 
 

  
 
 
    x 
    X 

 
 
 
 
    X 

     (continues) 
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TABLE 20  (continues) 
 

Frameworks Syste- 
logical 

Info- 
logical 

Concept- 
ual 

Data- 
logical 

Physi- 
cal 

Freeman et al. (1994) 
- World level 
- Conceptual level 
- Design level 
- Implementation level 

 
    X 

 
 
    X 

 
 
     X 

 
 
 
    X 
 

 
 
 
 
    X 

ISO (1996) 
- Enterprise viewpoint 
- Information viewpoint 
- Computational viewpoint 
- Engineering viewpoint 
- Technology viewpoint 

 
   X 

 
 
    X 

 
 
    X 

 
 
 
     X 

 
 
 
    X 
    X 
    X 

 
associated?).  The  perspectives  are  not  clearly  defined. As  far as we interpret 
them right, they differ considerably from our perspectives120. The systelogical 
perspective  in  Welke (1977)  addresses  much  larger part of reality than in our 
case (cf. ‘object system’ in Welke (1977) means “a view of something (real or 
abstract)” (ibid p. 149). The infological perspective in Welke (1977) covers also 
“personalization of the new solutions to the individual (e.g. type of channel, 
method of interaction, display more and format)” (ibid p. 156), that is to say, 
representational and individual-specific aspects, which are included in the IS 
datalogical and IS physical perspectives in our system of perspectives.  The 
datalogical perspective in Welke (1977) corresponds to our IS datalogical and IS 
physical perspectives, though physical aspects are only vaguely visible in the 
definition of the physical perspective in Welke (1977). The conceptual issues are 
not explicitly discussed in the perspectives of Welke (1977).  

Olive (1983) suggests a framework for the analysis of ISD methods, which 
is based on five levels of abstraction. The levels are: (a) external level (What 
information should the IS provide to the object system and what are the 
functions and input/output flows between them?), (b) conceptual level (What 
are the states of the object system, i.e. what to record into the data base?), (c) 
logical level (What are the operational requirements of the IS?), (d) architectural 
level (What is the overall architecture of the IS?), (e) physical level (What is the 
physical structure of the data base and the detailed structure of each process?). 
The external level covers the IS systelogical perspective and, to some extent,  
considers issues of the IS infological perspective. The conceptual level 
corresponds to our IS conceptual perspective. The logical level, architectural 
level and physical level correspond to our three “lower” perspectives, 
respectively. 

                                                 
120  Welke (1977, 162) mentions that the terms ‘infological’ and ‘datalogical’ have been 

borrowed from Langefors et al. (1975). He argues that their meanings are only 
slightly different from those of Langefors et al. (1975). On the bases of the definitions, 
we would like to disagree with him.  
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Essink (1986, 1988) presents the MADIS (A Modelling Approach for 
Designing Information Systems) framework, which is based on levels of 
abstraction and a set of aspects. The characterizations of the framework differ, 
to some extent, depending on a reference, so what follows is our synthesis of 
the presentations in Essink (1986) and Essink (1988). The framework consists of 
five levels of abstraction: (a) object system modeling (the IS is seen from the 
point of view of the organization, which is called the object system, but also “it 
answers the questions with regard to what phenomena in the real world 
information is needed”, Essink 1986, 58), (b) conceptual information system 
modeling (the IS is seen as a set of functional components with which the 
information requirements should be fulfilled), (c) data system modeling (the IS 
is considered as a data processing system), (d) implementation modeling (the IS 
is viewed as a concrete system). Essink, who does not see any difference 
between the USIS and the OSIS, uses the conceptual IS modelling level to mean 
the IS infological perspective, including in it also aspects of user interface and 
user groups. Object system modelling stands for some aspects within the IS 
systelogical perspective and the IS conceptual perspective. The data system 
modelling level and the implementation modelling level are counterparts of our 
IS datalogical perspective and IS physical perspective, respectively. 

Olle et al. (1988a) present a comprehensive framework for understanding 
information systems planning, business analysis and design121. The framework 
classifies design products and steps of the design process. It does not suggest 
any explicit levels of abstraction. However, it provides meta models on three 
levels corresponding to the stages in an IS life cycle: IS planning, business 
analysis and IS design. For each stage, data oriented, process oriented and 
behavior oriented perspectives are applied. Here, we examine how the two 
lower stages as well as construction design correspond to our perspectives. IS 
planning is omitted because it precedes the launching of an ISD project. 
Business analysis means the study of the existing state of affairs in a given 
business with the concepts such as organizational units, business activities, 
business events, flows of information / material set, and semantics of the 
information sets. System design means preparing a prescriptive statement 
about an IS. This includes e.g. tasks carrying out business activities triggered by 
menu selections and performed according to algorithms, constructs of the 
relational model, and reports and screen forms used as an interface. 
Construction design associates the designs with hardware and software 
environment. The business analysis stage corresponds to our IS systelogical and 
IS conceptual perspectives. The system design stage and the construction 
design stage stand for the IS datalogical perspective and the IS physical 
perspective, respectively. Interesting in the framework of Olle et al. (1988a) is 
that it addresses the infological aspects of the IS with only a few concepts 
(information/material set, flow) and also these concepts are used to exhibit 

                                                 
121  Construction design is also mentioned but not elaborated in the same way as the 

other parts of the framework. 
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what material/information are used in business activities, not in information 
processing.  

Iivari (1989a) presents a conceptual framework for a “systematic 
recognition, comparison and synthesis of different perspectives on the concept 
of an information system”. The framework is based on the following levels of 
abstractions: (a) organizational level defines the organisational role and context 
of the IS. It contains two parts: the designed organisational context and the 
application concept. (b) conceptual/infological level defines the 
“implementation independent” specifications of the IS. It embraces three parts: 
the universe of discourse (“part of reality of which the IS is concerned”), IS 
specifications, and user interface. (c) datalogical/technical level defines 
technical implementation for the IS. The organizational level is clearly the 
counterpart of our IS systelogical perspective. The conceptual / infological level 
corresponds to the IS conceptual and IS infological pespectives, except that 
Iivari (1989a) addresses issues of user interface on this level. To our view, 
considering user interface requires some decisions on allocations of IS actions 
into either a HIS part or a CIS part. These decisions should not be done until the 
IS datalogical perspective is applied. It should, however, be noted that for Iivari 
(1989a) the IS is the CIS (see Table 16). The datalogical /technical level 
corresponds to our IS datalogical perspective and IS physical perspective, but 
only for the CIS. 

In their Multiview approach Avison et al. (1996) distinguish between five 
views on the IS. The views are: (a) human activity view (How is the IS 
supposed to further the aims of the organization using it?), (b) information view 
(What information processing function is the system to perform?), (c) socio-
technical view (How can the IS be fitted into the working lives of people in the 
organization using it?), (d) human-computer interface (How can the individuals 
concerned best relate to the computer in terms of operating it and using the 
output from it?), and (e) technical view (What is the technical specification of 
the system that will come close enough to meeting the identified 
requirements?).  The human activity view corresponds to the IS systelogical 
perspective. The information view addresses issues relevant to the IS infological 
and IS conceptual perspectives. The socio-technical view and the human-
computer interface view focus on human roles, positions, actions and 
interaction with the CIS, meaning that they extend the IS datalogical and IS 
physical perspectives. 

Sol (1992) considers the ISD from the viewpoint of problem solving. He 
distinguishes between four sub-problems related to way of thinking: (a) 
systelogical problems that are concerned with the modeling of an object system 
from an organizational approach, (b) infological problems that are concerned 
with the data structures and processing required to produce the data, (c) 
datalogical problems that concern the way and the form in which the data 
processing system is realized, and (d) technological problems that concern the 
technical resources used. The categorization of Sol (1992) comes closest to our 
system of perspectives. However, Sol sees no difference between the IS 
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conceptual perspective and the IS infological perspective. Second, he considers 
datalogical and technological problems in relation to the CIS only.   

Sowa et al. (1992) refine the information systems architecture, originally 
proposed by Zachman (1987), into the ISA framework with six columns and 
five rows. The rows correspond to views of different stakeholders (i.e. planner, 
owner, designer, builder, and subcontrantor). With an analogy to the 
construction of a building, Sowa et al. (1992) distinguish the following design 
levels: (a) scope (executives' view of the IS), (b) enterprise or business model 
(i.e. the IS from an operational view, as it would appear to the people who work 
with it in daily business routines), (c) system model (i.e. implementation-
independent view of the IS that reveals data elements and functions that 
represent business entities and processes), (d) technology model (i.e. the view of 
a builder which shows how to implement the IS in some programming 
language or the like), and (e) components (i.e. detailed specifications of the IS 
for the programmer who codes individual modules). In the ISA framework, for 
each cell a set of concepts and relationships are also provided. Based on the 
characterizations of the levels and the concepts attached to them we can make 
the following observations. On the level of scope, aspects of the IS are 
considered from the IS systelogical perspective. The enterprise model level 
addresses aspects from the IS systelogical and IS conceptual perspectives. On 
the system model level the IS is viewed from the IS infological and IS 
conceptual perspectives. The two lowest levels correspond to the IS physical 
perspective.  

van Swede et al. (1993, 535) present a framework for contingent 
information systems modelling. The framework consists of four perspectives 
and nine aspects. The perspectives correspond roughly to views of specific 
interest groups. The perspectives are: (a) business perspective (How is the 
business done?), (b) information perspective (What information supply is 
necessary to support the business?), (c) functionality perspective (What is the 
external behavior of the IS?), (d) implementation perspective (What is the 
internal functioning of the IS?). In the framework of van Swede et al. (1993) the 
organizational issues are especially emphasized. The business perspective and a 
major part of the functional perspective address issues that belong to the scope 
of our IS systelogical perspective. The functionality perspective covers issues of 
our IS infological and IS datalogical perspectives. Actually, van Swede et al. 
(1993) include also some implementational aspects (cf. “If users decide that 
implementation must be on a specific type of computer, such will be part of the 
functionality specified” (ibid p. 539)). The framework does not provide any 
perspective for conceptual aspects. The implementation perspective stands for 
our IS datalogical and IS physical perspectives. 

Freeman et al. (1994) present a meta-model, called the Global System 
Model, of information systems to support reverse engineering. It is based on 
four levels of abstraction: (a) world level (represents a real-world view of the IS 
and functional areas of an organization), (b) conceptual level (represents an 
implementation-independent, abstract view of the IS), (c) design level 
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(represents a functional decomposition of the computer-based information 
system, including user interface aspects), (d) implementation level (represents a 
physical view of the implemented software system). The world level with the 
concepts, such as user goal, resource, activity and agent, correspond to the IS 
systelogical perspective. The conceptual level addresses issues of the IS 
infological perspective (cf. process and data structure) and the IS conceptual 
perspective (entity, relationship, attribute). The design and implementation 
levels stand for the IS datalogical and IS physical perspectives, covering the CIS 
and user interface. 

A joint standardization effort of the ISO and ITU-T (International 
Telecommunication Union) has resulted in the Reference Model for Object 
Distributed Processing (RM-ODB) (ISO 1996) that comprises a framework for 
specifying architectures for distribution, interoperability and portability of 
applications based on the object-oriented technology. The reference model 
divides the application specification into five parts, corresponding to five 
different, but related and consistent viewpoints. The viewpoints are:  (a) 
enterprise (e.g. business, roles and policies), (b) information (What does the 
system deal with?), (c) computational (What does the system do?), (d) 
engineering (How is the system distributed?), and (e) technology (How is the 
system implemented?).  In the reference model, the technical aspects of the CIS 
are emphasised. The enterprise viewpoint is focused on the issues relevant in 
the IS systelogical perspective. The information viewpoint contains elements of 
the IS infological and IS conceptual perspectives. The three lower viewpoints 
consider computational objects, sequences of their distributed interaction and 
the choice of technology to implement that interaction. Their counterpart in our 
system of perspectives is primarily the IS physical perspective.  

We can draw the following conclusions from the above analysis. The 
frameworks provide 3 – 5 levels, views, viewpoints, sub-problems, or 
perspectives for the categorization of the aspects of the IS. For simplicity, we 
call them the levels in the following. In the frameworks the upper levels are 
more US-related and the lower levels are more technology related.  The levels 
between the extreme ends are defined using expressions with “independence” 
from something (e.g. from “the object system” in Olive (1983), and from the 
technology in Iivari (1989a)). There are some differences in the emphases and 
focuses of the frameworks. In the frameworks of Welke (1977), van Swede et al. 
(1993) and Olle et al. (1988a) the emphasis is clearly on the upper levels. They 
use fine-grained levels for perceiving business issues and only one or no level to 
address technological issues. The levels are supposed to be mainly applied in 
the top-down order, although no explicit statements are given for that, except in 
van Swede et al. (1993)122. IS requirements are commonly (e.g. Iivari 1989a; 
Essink 1986; Essink 1988; Olive 1983) included in the topmost level, except in 
van Swede et al. (1993) which provides a specific perspective, called Information 

                                                 
122  Welke (1977, 150) considers the top-down “approach” to be a natural ordering but 

does not exclude any other order, provided that all the perspectives are applied.  
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perspective, for that purpose. Olle et al. (1988a) provides hardly any concepts 
for describing infological aspects of the IS. 

Conceptual issues are included in the topmost levels (as in Essink 1988, 
and partly in Olle et al. 1988a) or as is the case more commonly, in the next 
lower level. The framework of Olive (1983) is the only one, which provides a 
special level for perceiving the conceptual aspects of the IS. van Swede et al. 
(1993) seems not to consider IS conceptual issues at all.  Iivari (1989a), Avison et 
al. (1996), Freeman et al. (1994), Sowa et al. (1992) and Olle et al. (1988a) pay 
special attention to user interface. Essink (1988) mentions it only incidentally, 
and the frameworks of Welke (1977) and Sol (1992) are too general to recognize 
it.  

The frameworks, which contain a small number of levels, such as Iivari 
(1989a), combine different aspects into single levels, with the result that the 
criteria for the levels are not clear-cut. In some frameworks, the linguistic – 
conceptual dimension is not fully recognized. In van Swede et al. (1993) it is 
totally ignored. There are also differences in the numbers of perspectives 
covering the realization dependence - independence dimension.  

In our view, it is important to have separate perspectives for each set of 
different aspects of the information system. Therefore, the IS systelogical 
perspective is needed to consider the IS in relation to the US. The IS conceptual 
perspective is necessary to address the conceptual contents of the IS objects. 
Unlike Avison et al. (1996), Sowa et al. (1992), Sol (1992), Freeman et al. (1994) 
and ISO (1996), we see it vital to clearly differentiate between the infological 
perspective that represents the “linguistic world”, and the IS conceptual 
perspective which stands for the “conceptual world”. On the realization-
independence dimension, at least three related perspectives can be clearly 
distinguished. The first one (infological) is independent from representational 
and realization-dependent aspects. The second one (datalogical) is independent 
from realization-dependent aspects. The third one (physical) recognizes all the 
concrete issues related to a specific realization. This last perspective, namely the 
IS physical perspective, can be further divided, if necessary, into more specific 
perspectives (cf. the OSI reference model by ISO (1984) and the RM-ODP 
framework (ISO 1996)). That we have not thought necessary in this work. 
 
6.4.3 In-Depth Analysis of the Concepts in the Perspectives 
 
In this section we examine how the frameworks define and present the concepts 
and their relationships contained by the perspectives. First, we divide the 
selected frameworks into three classes:  
• Class 1. Frameworks that provide comprehensive sets of defined concepts 

and relationships, organized into levels and represented in meta models. 
• Class 2. Frameworks that provide large sets of concepts and possibly 

relationships that are defined, or at least characterized, and organized into 
levels. 
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• Class 3. Frameworks that provide the definitions of the levels but for the 
levels they provide only some concepts, possibly with no definitions.  

 
From the eleven analyzed frameworks, four belong to the first class (Iivari 
1989a; Olle et al. 1988a; Sowa et al. 1992; Freeman et al. 1994). Iivari (1989a) and 
Olle et al. (1988a) provide the most comprehensive sets of concepts and 
relationships, organized according to the levels / the stages and represented in 
meta models. The concepts are clearly defined, and in Olle et al. (1988a) they are 
also illustrated by examples. Two other frameworks in this class, Sowa et al. 
(1992) and Freeman et al. (1994), also present meta models of the concepts and 
relationships within and between the levels but the sets of the concepts are not 
as large and the definitions of the concepts not as clear and explicit as in the 
other frameworks in this class.  

 The frameworks of Essink (1986, 1988), van Swede et al. (1993) and ISO 
(1996) belong to the second class. Essink (1986, 1988) provides a large set of 
concepts but in a rather unstructured manner. Only essential concepts are 
defined. No explicit treatment of relationships and no meta model are 
provided. The set of the concepts in van Swede et al. (1993) is somewhat 
smaller, but as to the other aspects the framework is comparable to Essink 
(1986, 1988). ISO (1996) gives strict definitions for most of its concepts but 
makes only a superficial examination of the relationships.  

Three of the analyzed frameworks, namely Welke (1977), Olive (1983) and 
Sol (1992), belong to the third class, meaning that they provide the definitions of 
the perspectives but do not do more than mention some of the essential 
concepts. We have also included Avison et al. (1996) in this third class, because 
though the number of the concepts is large they are not treated as a framework 
that would make them comparable to the others. 

To get a yet more detailed view on the frameworks, we make an in-depth 
analysis of the four frameworks included in the Class 1. In Table 21 the concepts 
of the frameworks are presented for comparison both with one another and 
with our concepts.  The concepts are classified into five categories according to 
our  perspectives.  The   numbers  1-4   attached   to   the   concepts   in  the  four 

 
Legend in Table 21. 
 
Olle et al. (1988a):  Iivari (1989a):         
1.  Business analysis stage   1.  Organizational level 
2.  System design stage   2.  Infological / conceptual  level         
   3.  Datalogical / technical level  
 
Sowa et al. (1992):  Freeman et al. (1994): 
1.  Business model   1.  World level 
2.  Information systems model 2.  Conceptual level  
3.  Technology model  3.  Design level 
4.  Implementation level 
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frameworks indicate the stages (Olle et al. 1988a) or the levels (Iivari 1989a; 
Sowa et al. 1992; Freeman et al. 1994) to which the concepts belong in the 
original frameworks (see the legend below).  In the following, we first make 
some general remarks on the criteria used and decisions made in selecting and 
classifying the concepts. After that we bring out our findings and conclusions 
from this in-depth analysis. 

We have selected all those concepts in the frameworks which are essential, 
are treated as “entities with independence”, and are metamodeled in the 
frameworks. This implies that we have ignored concepts that appear only in the 
texts or are relationships in the meta models. The reason for this policy is our 
aim to keep the lists of concepts short enough to enable their comparison in a 
reasonable space. From the framework of Olle et al. (1988a) we have included 
the concepts of only two stages (business analysis, systems design), because the 
concepts of the construction design stage are not metamodeled. In the 
framework of Sowa et al. (1992) the detailed meta model covers only three 
columns and three rows (levels), originally introduced in the information 
system architecture by Zachman (1987). Although we could have tried to divide 
the concepts of three original rows into five levels of the extended framework 
(Sowa et al. 1992), we decided, in order to avoid difficulties and risks in 
subjective interpretations, to use the concepts of the three rows of the original 
framework, extending the structure with some concepts suggested informally 
by Sowa et al. (1992) for the three new columns (Motivation, People and Time). 
From our perspective ontology, we have only included concepts of the CIS in 
the IS physical perspective, to follow the view adopted also in the other 
frameworks. We want, however, remind that the IS physical perspective 
equally covers the concrete concepts of the HIS.  

Olle et al. (1988a) and Iivari (1989a) divide the concepts on each stage / 
level into three categories: in Olle et al. (1988a) according to data, process and 
behavior perspectives, and in Iivari (1989a) according to structure, function and 
behavior abstractions. In Sowa et al. (1992) the concepts are categorized into six 
context-based aspects. These kinds of sub-categorizations can be expected to 
have positive impact on their coverage in terms of contextual domains, as 
compared to the framework of Freeman et al. (1994), which does not contain any 
categorization. In contrast to the others, Iivari (1989a) also provides specific 
instance-level concepts (e.g. Org. act, Action/Operation, IS process), in addition 
to the type level concepts, within the behavior abstraction. We have included 
these concepts in the table, although they are not comparable to the others.  

After the general remarks on the frameworks we present findings and 
conclusions from the analysis (in the order of the IS perspectives). The scope of 
the IS systelogical perspective is addressed in various degrees in the 
frameworks. In Olle et al. (1988a) only three contextual US domains are 
addressed, namely the US actor, US action and US object domains. The 
framework clearly applies the information/material flow approach to modeling 
functional features of the utilizing system. Iivari’s (1989a) framework contains 
the concepts of the US actor, US action, US object, and US facility domains. US 
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objects are considered on a general level and from the IS point of view (cf. IS 
services). In addition to those presented in the table, Iivari (1989a) defines the 
notions of organizational channel, situation and input/output flow. Sowa et al. 
(1992) provide the largest set of concepts from the IS systelogical perspective, 
covering all the US domains (the time domain is implicitly covered). In the 
framework the US objects are addressed in two ways, first through the notions 
of business resource and business product/service, and second through the 
linguistic and conceptual notions (e.g. business fact, business subject area, 
business entity). The latter notions belong to the IS conceptual perspective. 
Freeman et al. (1994) suggest a framework which contains only eight concepts 
but cover four US domains. The notion of resource is not defined, actually not 
even mentioned in the text although included in the meta model, but 
concluding from its relationships with other concepts in the Global System 
Model the notion corresponds to US objects and US resources in our 
terminology. The framework also introduces the notion of external institute that 
has no counterpart in OntoFrame. The US tool-specific concepts are not 
included in any framework, except in Iivari (1989a) and in OntoFrame.  

The IS infological perspective is not covered at all in Olle et al. (1988a)123. 
Iivari (1989a) applies the information flow approach to exhibit the functional 
nature of the IS and the state-transition approach to describe the IS behavior. In 
addition he introduces the instance-level notion of IS process, but no concepts 
for the IS purpose domain. Sowa et al. (1992) provides notions for the IS 
purpose domain (system plan, system objective, information requirement), the 
IS action domain (system process) and the IS object domain (user view). The 
framework of Freeman et al. (1994) contains only four notions addressing the IS 
action domain and the IS object domain.   

For the IS conceptual perspective, all four frameworks in the literature 
provide the structural notions of entity (type), relationship (type) and 
attribute/property. In Sowa et al. (1992), these concepts are defined and applied 
at two levels: at the general level (business model) the framework operates with 
business entities, relationships and properties, and at a more detailed level 
(information system model) with the notions of e.g. data entity, data entity 
relationship and data attribute. Dynamic features of the object system are only 
addressed in Iivari (1989a), Sowa et al. (1992) and OntoFrame. It should be 
noted that in OntoFrame the concepts are at the instance level whereas in the 
other frameworks they are at the type level.  

For the IS datalogical perspective, Iivari (1989a) provides the most 
comprehensive set of concepts. Due to the fact that the IS is seen as a CIS in the 
framework, the concepts are technology oriented. Human part is assumed to be 
included in the host system (cf. the IS systelogical perspective). Also in Olle et 
al. (1988a) the HIS is not addressed. Sowa et al. (1992) do not distinguish 

                                                 
123  In Olle et al. (1988a) the only concepts referring to infological aspects of the IS are 

Information/Material set and Flow, but they are used to exhibit what 
information/material the business processes use, not to describe what information 
the IS processes.  
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between the IS infological and IS datalogical aspects of the IS. Therefore we 
here include the concepts contained by the IS infological perspective as well as 
the concepts related to the network and agent aspects (as they are known in the 
information system architecture). Freeman et al. (1994) present only some 
concepts that belong to the IS datalogical perspective, and none of them refer to 
the CIS. All the frameworks provide concepts related to the user interface.  

The concepts of the IS physical perspective are totally missing in the 
framework of Olle et al. (1988a), resulting from the fact that the construction 
design is not included in this analysis. Iivari (1989a) and Freeman et al. (1994) 
provide only two specific concepts for this perspective. The technology model 
in Sowa et al. (1992) contains a large set of concepts related to most of the 
contextual domains within the IS physical perspective. 

To summarize, Olle et al. (1988a) provide the least concepts, and the 
concepts from the IS infological and IS physical perspective are totally missing 
from this framework. Freeman et al. (1994) define a slightly greater number of 
concepts, covering several IS perspectives and IS domains. In the framework of 
Iivari (1989a) all other IS perspectives, except the IS physical perspective, are 
well addressed. Sowa et al. (1992) provide most concepts, covering all the IS 
perspectives and most of the IS domains.  

How does OntoFrame compete with the others in the light of the 
comparative analysis?  Due to its dimensional structure, OntoFrame applies, for 
each IS perspective, the predefined contextual domains, thus guaranteeing that 
the largest possible coverage of relevant issues is reached and the perspective-
specific structures of the concepts can be easily interrelated. This becomes 
evident when comparing the nature and number of concepts within each 
perspective in Table 21. The clearly defined perspectives serve as a definitional 
skeleton allowing to decide on which IS perspective each concept belongs to. 
With the uniform contextual structure underlying the concepts it is possible to 
relate the concepts of different IS perspectives to one another in a consistent 
way. This helps moving from one IS perspective to another during the ISD. We 
have derived the conceptual contents of the IS perspectives from the contextual 
domains of the context ontology. To avoid the unnecessary redundancy with 
Chapter 4, we have included in the IS perspectives only the most essential 
concepts. From the five perspectives we have here concentrated on the IS 
systelogical perspective, the IS infological perspective and the IS conceptual 
perspective. For the other IS perspectives we have mainly provided only some 
examples of the essential concepts.  Despite these limitations our IS perspectives 
were found to reflect more contextual features of the IS than most of the 
analyzed frameworks. 
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6.5 Summary and Discussions 
 
 
In this chapter we first defined the perspective ontology. It is a domain-specific 
ontology, which provides concepts and constructs for conceiving, 
understanding, structuring and representing things in information processing 
contexts from pre-defined perspectives. According to the ontology, perspectives 
constitute a system with strictly defined relationships along one or more 
dimensions. Our ontology comprises five specific perspectives (i.e. the 
systelogical perspective, the infological perspective, the conceptual perspective, 
the datalogical perspective, and the physical perspective) that are established 
along three orthogonal dimensions (i.e. the decomposition dimension, the 
semiotic dimension, and the realization independence-dependence dimension). 
The systelogical perspective views the IS in relation to its utilizing system. 
Applying the infological perspective the IS is seen as a functional structure of 
information processing actions and informational objects. The conceptual 
perspective reveals the semantic contents of the IS objects. The datalogical and 
physical perspectives provides concepts and constructs for viewing 
representation-specific and implementation-specific features of the IS, 
respectively.  

Second, we specialized the perspective ontology onto four processing 
layers and characterized the corresponding contexts on each layer from all five 
perspectives. In addition, we elaborated the characterizations of the IS 
perspectives by defining a large set of IS concepts from each of the perspectives. 
The same will be done for the ISD perspectives and the ME perspectives in 
Chapters 8 and 10, respectively. While the IS domains, i.e. the first part of the IS 
ontology, are assumed to be implicitly derived from the contextual domains (cf. 
Chapter 4), the IS perspectives defined here constitute the second part of the IS 
ontology. 

Third, we conducted a comparative analysis of IS perspectives suggested 
in the IS/ISD literature. For the analysis we selected eleven frameworks 
containing clearly defined perspectives. The analysis was carried out in three 
parts. In the first part we made an overview of the frameworks, their 
perspectives and criteria used in establishing perspectives. The overview 
showed that the sets of perspectives are quite divergent and the criteria, if 
explicated at all, are more or less ambiguous. In the second part we compared 
the sets of perspectives in eleven frameworks with one another and with the 
perspectives in our ontology. In conclusion, we stated that there are several 
differences in the emphases and focuses of the frameworks. The frameworks of 
Welke (1977), van Swede et al. (1993) and Olle et al. (1988a), for instance, clearly 
emphasize the “upper” perspectives. They use fine-grained perspectives for 
conceiving business issues and only one or no perspective to address 
technological issues. The perspectives are commonly supposed to be mainly 
applied in the “top-down” order. IS requirements are mostly (e.g. Iivari 1989a; 
Essink 1986; Essink 1988; Olive 1983) included in the topmost perspective. Olle 
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et al. (1988a) provide hardly any concepts for describing infological aspects of 
the IS. Conceptual issues are either included in the topmost perspective (as in 
Essink 1988), in the next lower perspective (as in Avison et al. (1990) and 
Freeman et al. (1994)), or ignored (as in van Swede et al. (1993)). The numbers of 
perspectives vary between 3 and 5. Those suggesting three perspectives (e.g. 
Iivari 1989a) combine different aspects of the IS into single perspectives, 
resulting in that dimensions and criteria are not clear-cut anymore.  

For the third part of the analysis we selected those comprehensive 
frameworks in which the concepts are explicitly defined and modeled in meta 
models. The frameworks are: Iivari (1989a), Olle et al. (1988a), Sowa et al. (1992) 
and Freeman et al. (1994). The aim of this in-depth analysis was to investigate 
what contextual concepts each of the perspectives of the frameworks contains. 
We used the IS perspectives and the contextual domains of OntoFrame as the 
baseline for the analysis. The analysis clarified and detailed the views obtained 
from the other parts of the analysis. 

In this work we have pursued an ontology, which is general enough to 
cover the most common principles to establish and apply viewpoints for 
conceiving information processing contexts on four processing layers. To 
demonstrate its applicability in viewing the IS, we specified the IS perspectives 
that comprise dozens of IS concepts and IS constructs. The number and scope of 
the concepts of the perspectives are much larger than in any framework 
analyzed, especially when taking into account that besides those presented in 
the meta models in this chapter a lot more concepts can be easily derived from 
the context ontology. More important than the number of the concepts is the 
degree to which our ontology is able to reflect contextual features of the IS. In 
this respect, the context ontology was found more coverable than the other 
frameworks. We have put an emphasis on the IS systelogical, IS ontological and 
IS conceptual perspectives. More work is needed to specify additional concepts 
for the other IS perspectives. Likewise, the relationships between the IS 
perspectives could be specified on a more detailed level with an intensive use of 
the intra-domain and inter-domain relationships defined in Chapter 4.  

The perspective ontology is useful in many respects. Besides being 
specialized at the IS layer in this chapter, it can be specialized at the ISD layers 
and at ME layers, as we will show in Chapters 8 and 10. The resulting ISD 
perspectives will be used to categorize and relate the aspects of ISD to better 
manage the complexity related to ISD. The ISD perspectives also provide the 
conceptual basis for specifying the contents and structure of an ISD method. At 
the ME layer, the specialized perspectives organize an ME effort into an array of 
logically related stages, thus enabling the planning and execution of a process 
of method engineering in a well-structured manner.  



 

 

 
 
 
 
 
 
 
 
 
 
 
7 MODEL LEVEL ONTOLOGY 
 
 
In any context encompassing complex problem solving, a human being tends to 
activate and incorporate epistemological and analytical constructs that can help 
him/her conceive, analyze, design and implement a solution to the problem at 
hand. If one expects the same kind of context to appear repeatedly, a conceptual 
machinery is set up to refine and integrate those concepts and constructs that 
are experienced helpful in those contexts. These machineries are models. 

The purpose of this chapter is to define the model level ontology that is 
the fourth one among the contextual ontologies. The model level ontology 
provides concepts and constructs for conceiving, understanding, structuring, 
and presenting things in reality in terms of models within a system of model 
levels. The concepts and constructs have been derived from the context 
ontology, the layer ontology and the perspective ontology (see Figure 64). The 
model level ontology is an essential ingredient of OntoFrame, which is aimed to 
support the analysis, design and implementation of the ISD methods.   
 

Core ontology

Model level ontologyLayer ontology

Perspective ontology

Context ontology

 
 
FIGURE 64  Focus of Chapter 7 
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The chapter is structured into four sections. First, we define the notions of 
model and modeling, and present the main classifications of models. Second, 
we extend our consideration to concern models at different levels. We also 
derive classifications of models and meta models based on the contextual 
domains and the perspectives. Third, we present a comparative analysis of 
conceptions about systems of levels suggested in the ISD literature. Fourth, we 
examine how the contextual ontologies are related to one another. We can do 
this here because all the contextual ontologies have now been specified. The 
chapter ends up with a summary and discussions.  
 
 
7.1 Model and Modeling 
 
 
Models serve as means to gain knowledge about relevant things. This is what 
researchers, not only in the ISD field but also in nearly every branch of science, 
agree on. Instead, conceptions about the nature, basis and form of a model 
greatly diverge from one another. In this section, we first give some examples of 
conceptions presented in the literature to bring out features that are seen 
important in the notion of a model. Second, we present our definitions of basic 
concepts related to a model and modeling. Third, we elaborate more specialized 
concepts based on the ontologies defined in the previous chapters.  
 
7.1.1 Basic Concepts 
 
The notion of a model applies to many kinds of phenomena, e.g. things, styles 
or even persons (cf. Webster 1989). A model can be a small copy of a ship or a 
building, or it can be a preliminary representation of something, serving as the 
plan from which the final object is to be constructed. It can be a piece of 
sculpture in wax from which a finished work in bronze is to be made. Further, it 
can be a style or design of a particular product (cf. a car model), or a person 
who poses for an artist or who is employed to display clothes by wearing them. 
Finally, it can be a generalized, hypothetical description used to analyze or to 
explain something. The terms like 'example', 'pattern', 'architype' and 'standard' 
are often used as synonyms for a model in a common language. 

When considering various definitions given for a model in the literature, 
we can recognize three issues on the basis of which their meaning can be 
analyzed and compared. The first issue concerns the purpose of a model. 
Minsky (1965) observes that a model is a thing, which can answer certain 
questions about some other thing for a certain questioner. In the Frisco Report 
(Falkenberg et al. 1998,  55) a model is defined as “a purposely abstracted, clear, 
precise and unambiguous conception”. According to Rosemann et al. (2002,  78) 
a model is …”created for the purpose(s) of a subject”. The second issue 
concerns the relationship between a model and modeled phenomena. For 
instance, van Gigch (1991, 91) argues that a model “stands at one level of 
abstraction higher than the systems from which the properties and attributes 
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are obtained”. According to Wijers (1991, 6), a model “is a simplified, stylised 
representation of a system, abstracting the essence of the system’s problem 
studied”. Yourdon (1989), Avison et al. (1990, 452) and Firesmith et al. (1999,  31) 
also refer to abstraction in stating that a model is used to ‘highlight’ or 
emphasize certain critical features of a system, while simultaneously de-
emphasizing other aspects of the system. The third issue concerns the nature of 
a model. Some researchers regard a model as a conceptual thing. Jayaratna 
(1994, 242), for instance, concludes that a model “is a complete and coherent set 
of concepts, which can underpin our understanding and actions”. Some others 
argue that a model is a linguistic thing. Krogstie (1995, 476), for instance, 
defines a model to mean “an abstraction externalized in a language”. Rosemann 
et al. (2002) define a model to be ”a representation of a relevant part of the real 
world”.  

The issues discussed above reflect three viewpoints to the notion of a 
model. The viewpoints are teleological, semantic and semiotic. We argue that a 
definition of a model should always highlight aspects from these three 
viewpoints. What we do next is present a general definition for the notion and 
then specify it further from the viewpoints. Generally speaking, a model is a 
thing that is used to help or to enable the understanding, communication, 
analysis, design, and/or implementation of some other thing to which the 
model refers. To specify it further, we first say that a model is always produced 
for some specific purpose (Teleological viewpoint). Its value comes about from 
the benefits it brings to its users. It may help the users better understand reality, 
design options for changes, foresee consequences of changes, reason on 
information and knowledge carried by the model, etc. (cf. Kangassalo 2002,  VI). 
Second, a model can be seen as a perception and an abstraction of certain things 
in reality (Semantic viewpoint). Perception and abstraction are enacted and 
guided by the intended purposes and the applied point of view (cf. the UoD in 
Section 3.8). Third, a model can appear in one of three forms, namely as a 
conceptual construct, as a linguistic expression, or as a physical construct 
(Semiotic viewpoint).  

Implied from the semiotic viewpoint, we distinguish between a concept 
model, a model denotation and a physical model124 (see Figure 65). A concept 
model is composed of concepts and conceptual constructs referring to certain 
things in reality. To enable the communication about a concept model, it has to 
be represented in some language. A precise and unambiguous representation of 
a concept model in some language is called a model denotation (cf. Falkenberg et 
al. 1998, 55). A physical model consists of physical parts, which, as an organized 
whole, resemble some other thing(s) (e.g. small copies of airplanes or ships). 
The physical models are also called the empirical models or the analog models. 
To differentiate the physical models from the others, we call the other models 
the linguistic models. In this study we consider only the linguistic models. 

                                                 
124  This arrangement is revised from the taxonomy originally suggested by Bertels et al. 

(1969) and Dietz (1987). 
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When it is not necessary to make the distinction between a concept model and a 
model denotation, we use the generic term ‘model’.  
 

Concept model

Model denotation Physical model/
thing

transforming

conceptualizingrepresenting

constructingtranslating

implementing

 
 
FIGURE 65  Main types of models and modeling actions 
 
Figure 65 also presents the main actions of producing models of three kinds (cf. 
Dietz 1987; Brinkkemper 1990). The physical models are constructed from the 
physical things by moulding, building or engineering. The concept models can 
be produced in two ways: (a) by perceiving and conceptualizing the relevant 
features of the physical thing(s), or (b) by transforming from some other concept 
model(s). The model denotations are produced (a) by representing concept 
model(s) by signs of some language, or (b) by translating them from some other 
model denotation. A model denotation can be implemented as a physical model. 
An example of the implementation of a model is a CASE tool. The whole 
process of yielding an externalized model denotation for a certain purpose is 
called modeling. 
 
7.1.2 Classifications of Models 
 
The models are classified in numerous ways in the literature. Shubik (1979), for 
instance, distinguishes between verbal, analytic or mathematical, iconic, 
pictorial or schematic, and simulation models. Gigch (1991, 125) divides the 
models into explanatory, hypothetical, experimental, predictive, innovative, 
and epistemological models. Our intention is to produce much more 
comprehensive and structured classifications. We distinguish between three 
contexts that are related to a model. The contexts are: (a) the modeling context, 
(b) the modeled context, and (c) the model utilizing context125. For instance, a 
model of an electric system for a building (the modeled context) is designed by 
an engineering company (the modeling context) to support the construction 
                                                 
125  This division into three kinds of contexts corresponds to the categorization into the 

epistemological, ontological, and social context questions related to the paradigmatic 
assumptions of data modeling in Hirschheim et al. (1995, 156-157). 
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work of the electric system (the model utilizing context). In the above case, the 
contexts are mainly separate. In information system development (the modeling 
context), a model is built about an information system (the modeled context) 
with the aim to guide information processing in the information system (the 
model utilizing system). In this case, the contexts are more coupled with one 
another. In the following we consider the contexts one by one in order to 
recognize and define more refined concepts related to a model (see Figure 66). 

Modeling context
Model utilizing context

                                                    Modeled context

FormalSemi-formalInformal

Objective modelInter-subjective modelSubjective model

Model

Structural model

Dynamic model

Instance model

Type model

Meta model

Meta meta model

Prescriptive model

Descriptive model

Technique

Description technique Processing technique

 
 
FIGURE 66  Classifications of the models within three contexts 
 
The modeling context means a context the purpose of which is to produce a 
model for a model utilizing context. We already recognized three types of 
models and six types of processes of modeling. On the basis of the language 
used to represent a model, we categorize the models into informal models, 
semi-formal models, and formal models (cf. the categorization of the languages 
in Section 3.6). Informal models, also known as free models (Wijers 1991, 15), are 
restricted in their structure only by the modeler’s imagination. Typical 
examples are verbal and pictorial models (e.g. rich pictures in Checkland 1981). 
Informal models are less accurate but more flexible and subtle than the other 
models. Semi-formal models, like diagrams, tables, matrices and structured texts, 
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are constrained by the syntax of the language(s).  Formal models are represented 
in a formal language, such as a programming language, or by logical and 
mathematical constructs with rigorously defined syntax and semantics. 
Independently of the level of formality, the models can be classified by their 
presentation style into graphical, matrix, textual, tabular, or form based models. 
The more formal the models are, the larger the portion is for which the 
computerized tools can serve as support in manipulation and reasoning from 
them. 

On the basis of actors involved in modeling, we can distinguish between 
subjective models, inter-subjective models, and objective models. As a single 
actor conceives reality in an individual manner, it is natural that the outcome of 
modeling process reflects the modeler’s subjective conception about the subject 
matter. Depending on an abstraction level and a language used in modeling, 
subjective models about the same things in reality can substantially diverge from 
one another. Modeling through sharing the conceptions within a community 
and negotiating on them yields an inter-subjective model. In some very rare 
situations, we can consider a model to be objective in the sense that there is no 
room for differing interpretations (e.g. a formal model of the Euclidean space). 

The modeled context is a context which a model is about. The models can be 
categorized here according to which kinds of concepts they are composed of. 
First, the models are categorized into structural models and dynamic models. 
Structural models are composed of concepts that refer to static phenomena in the 
modeled context. The structure may concern information (e.g. ER model (Chen 
1976)), a social organization  (e.g. organisational chart (Ouchi 1981)), software 
system (e.g. application architecture (Booch et al. 1999)), hardware, or any other 
part of the organizational infrastructure. Dynamic models are composed of 
concepts that refer to the behavior in, or the evolution of, the modeled context 
(e.g. DFD model (Yourdon et al. 1979); action diagram (Jackson 1983); activity 
diagram (Booch et al. 1999)). The concepts widely used in the dynamic models 
are activity, process, event, trigger, and state transition (cf. Sol et al. 1992).  

Second, we can apply abstraction by classification to divide the models 
into instance models and type models126. An instance model is a model, which is 
mainly composed of concepts that are instances of the concepts of the other 
model, the type model. For example, an ER model contains concepts like Entity 
type, Relationship type and Attribute. The corresponding instance concepts, 
included in an instance model (called an ER schema), may be Person, Marriage, 
and Age. There are also models that consist of concepts that are types of the 
concepts in a type model. We will consider them in Section 7.2. 

Modeling is guided by the knowledge on the intended utilization of the 
resulting model. Thus, the model utilization context is of vital importance to 
modeling. Modeling may aim, for instance, to help us understand complex 
phenomena in reality, to design changes in reality, to foresee consequences of 
those changes, etc. Modeling may also aim, through mathematical, statistical, 
                                                 
126  The Frisco Report (Falkenberg et al. 1998, 57) uses the terms ‘extensional’ and 

‘intensional’ models, correspondingly. 
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axiomatical, etc. machineries used in the models, to facilitate translatability, 
interpretability, verifiability, optimizability, traceability, etc. of the models.  

Based on the primary purpose of the utilization, models can be divided 
into descriptive models and prescriptive models (cf. McChesney 1995; Pohl 
1996; Ramesh et al. 2001; Rossi et al. 2003)127. Descriptive models, like traceability 
models, are used to portray or predict the relevant features of the modeled 
context to support the analysis of the existing reality or the design of the future 
reality. Prescriptive models are conceived to be sets of normative statements, 
which specify what is permitted, forbidden or obliged in certain situations. The 
prescriptive models can comprise plans, rules and/or commands (cf. Section 
4.6.4). There is an important ontological difference between the descriptive 
models and the prescriptive models. The descriptive model should match, at a 
given level of abstraction, the modeled context. If it fails to do so, the model is 
false. In contrast, if the matching between the prescriptive model and the 
modeled context fails, corrective actions are required to get the modeled context 
to fit the prescriptive model. The descriptive models can be further divided into 
explanatory, hypothetical, experimental, predictive, innovative, or 
epistemological model in the dimension of knowledge inquiry and acquisition 
(Gigch 1991, 125). 

A prescriptive model aimed to guide the behavior in the modeled context 
is called a technique. It is a precise programme of action leading to a desired 
result (cf. Checkland 1981). There are two kinds of techniques: description 
techniques and processing techniques. A description technique is a technique to 
create a model and represent it as a model denotation (e.g. diagramming 
technique (Martin et al. 1985)). A processing technique is a technique to create, 
transform, translate, analyze, validate and/or verify one or more models. 
Examples of processing techniques are the normalization technique (Codd 1972) 
and the affinity analysis technique (Martin 1982). A technique may be 
composed of procedures and guidelines. A procedure is an explicitly specified 
manner of proceeding in an action or process (cf. Webster 1989). A guideline is 
any advice or guide to reach a goal (cf. Webster 1989). There are many 
categorizations for guidelines: e.g. minor guidelines, template guidelines, and 
style guidelines (Anda et al. 2001). 

Let us illustrate the difference between the descriptive model and the 
technique with the ER model (Chen 1976). The model is composed of concepts 
and constructs for abstracting and structuring the modeled context. It does not 
provide the modeling context with instructions concerning actions, actors, or 
facilities of modeling. There are special conceptual modeling (CM) techniques 
(like the one in Benyon 1990) that prescribe how to apply the ER model to 
produce an ER schema. The concepts in the ER model refer to the modeled 
context, whereas a CM technique comprises concepts and rules that refer to the 
modeling context.  

                                                 
127  Lonchamp (1993) distinguishes still another type of models, the proscriptive models 

(descriptions), which state what is not allowed. 
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Information system development needs several models and techniques. To 
facilitate their integrated use, they are composed to form a whole called a 
method. A method also is a model, prescriptive on one part and descriptive on 
the other part. Guided by a method, ISD proceeds, step-by-step, in sketching, 
specifying, elaborating, transforming, validating and verifying IS models on 
several levels of abstraction. It ends up with the implementation of those 
organisational and technical changes that have been described by the models 
and seen beneficial. In Chapter 9 we elaborate further the notion of a method 
from what has been said above.   

To summarize, the notion of a model is always associated with three 
contexts, the modeling context, the modeled context and the model utilizing 
context. This basic division becomes visible in the definitions and classifications 
of the models. This same division is also vital to the quality criteria defined for 
the models (cf. Krogstie 1995). In the next section we will discuss models that 
are composed of meta concepts, meta meta concepts, etc.  All that has been said 
about the models in this section holds for those models as well.  
 
 
7.2 Levels 
 
 
In Section 3.4 we defined the semiotic ontology distinguishing between three 
kinds of things: concepts, signs and referents. In Section 3.5 (the 
intension/extension ontology) the notions of an instance concept and a type 
concept were defined. Grounding on these ontologies we will here first define 
the notions of a meta concept and a meta level and from them derive the 
notions of a meta model and a model level ontology. At the end of this section, 
we will also present classifications for the meta models based on the 
classifications of  models,  contextual domains and  perspectives.  

Let us first consider the arrangement of three levels in Figure 67.  On the 
lowest level, known as the instance level, the sign ’John’ signifies the concept 
John, which in turn refers to the referent ”John”. John is assumed to be a 
concrete instance concept.  On the next level, called the type level, the sign 
‘Person’ signifies the concept Person that refers to all the possible persons 
(“Persons”). Person is a concrete type concept. Its extension contains the 
referred persons. There is the instanceOf relationship between the concepts 
John and Person.  

Now suppose that in another context Person is considered an instance 
concept for some type concept, e.g. for Entity type. In this case we can 
distinguish the third level, on which the sign ‘Entity type’ (or the rectangular in 
a graphic notation) signifies Entity type that refers to the referent things, called 
Entities. Person is an instance of Entity type, which is called a meta concept for  
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FIGURE 67  Concept levels 
 
John. To put it more precisely, a meta128 concept is a concept an instance of  
which is a type concept for some other instance concepts. The meta concept tells 
something about the concepts (Bergheim et al. 1989, 272). Correspondingly, the 
level of meta concepts is called the meta level.  

Let us have a closer look at the relationships between the concepts at the 
type level and the concepts at the meta level. According to its intensional 
definition, Entity type defines “a set of entities that have the common 
attributes” (Elmasri et al. 2000, 49). Entity means a thing in reality, having an 
independent existence. Person is a proper instance of Entity type. Other 
possible instances of Entity type are Copy, Book, Loan, Reservation etc.  Let us 
look at the concept of extension at each of the levels. At the lowest level, the 
extension of John is ”John”. At the type level, the extension of Person is a set of 
all possible persons, including “John”.  Entity type is an abstract concept with 
no concrete referents. Therefore at the meta level there is no (real) extension. 
However, we can say that Entity type has the conceptual extension (see the 
definition of the conceptual extension in Section 3.5) that means all those type 
concepts that apply to the intensional definition of the meta concept Entity 

                                                 
128  Meta is a Greek prefix meaning ’after’, ‘along with’, ‘beyond’, ‘behind’ (Webster, 

1989). 
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type129. Implied from the above, we can state that there is the memberOf 
relationship between Person and the conceptual extension of Entity type. This 
view brings out the manifestation of the vertical shift of the semiotic framework 
(see the horizontal shift in Section 3.4), meaning that a thing that is seen as a 
concept in one context can be seen as a referent in another context (cf. Sowa 
2000, 194).  

In Figure 67 the three concept levels are distinguished. A concept level is 
composed of concepts between which there are no instanceOf relationships. In 
fact, there may be still more levels. Above the meta level, there can be the meta 
meta level, above which there may be the meta meta meta level, and so on. At 
the lowest level, called the root level, the concepts are usually concrete and 
individual. At the type level, the concepts are generic, often concrete. At the 
meta level and at the levels higher than that, the concepts are always abstract 
with no real extension. Concept levels constitute a hierarchy, which we call a 
system of concept levels.  

In the previous section, we defined an instance model and a type model. 
Now we can define a meta model. A meta model is a model that is composed of 
meta concepts. A meta model is always an intensional model (Falkenberg et al. 
1998, 58). Like the concepts, also the models with the instanceOf relationships 
between one another constitute a hierarchy of levels, which we call a system of 
model levels. A model level is composed of models that comprise concepts on the 
same concept level. We distinguish between the following model levels: the 
instance level, the type level, the meta level, and the meta meta level. Besides 
the instanceOf relationships, the levels are also related in another way: a model 
on a higher level describes / prescribes models on the next lower level. 

Now we are in the position to define the notion of a model level ontology. 
The model level ontology provides concepts and constructs for conceiving, 
understanding, structuring, and presenting things in models within a system of 
model levels. Figure 68 presents the main part of the model level ontology. The 
ontology also contains those specialized concepts that are included in the 
classifications in Figure 65 and Figure 66.  

To have a more concrete conception about the model levels, let us consider 
the following example. At the root level, there is a database that is an 
extensional model of the relevant features of the object system. At the next 
level, the type model level, there is an ER schema, which describes / prescribes 
the allowed structure and contents of the data base. The concepts in the data 
base are instances of the type concepts in an ER schema. At the highest level, 
the meta model level, there is the ER model, which in turn describes / 
prescribes the allowed structures and contents of the ER schemas.  

 

                                                 
129  The term ’conceptual extension’ in exactly this meaning is used in the IS/ISD 

literature. Hautamäki (1986, 37) defines the notion to be ”the set of concepts to which 
a given concept is a characteristic. Bergheim et al. (1989) come close to our concept 
with their definition: If ”X” is an expression whose intension is a meta-concept, then 
the concept is a member of the extension of ”X” (ibid p. 293). 
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FIGURE 68  Main part of the model level ontology 

 
The selection of the root level determines what the model levels contain. Instead 
of the data base, we could regard an ER schema to be at the root level. In that 
case, the meta model would be a model which describes/prescribes the 
concepts and constructs of the ER model. In the previously considered system 
of model levels, this model would be called a meta meta model. 

In the literature there are three different approaches to define a system of 
meta levels: (a) the model-based approach, (b) the language-based approach, 
and (c) the technique-based or the method-based approach. In the model-based 
approach the levels in the system are derived from the instanceOf relationships 
between the concepts within the models at two adjacent levels in the hierarchy. 
This kind of approach is applied by e.g. Bergheim et al. (1989,  272), Jarke (1992), 
and OMG (2002). Also we have applied the model-based approach as seen 
above. In the language-based approach the system of meta levels is established for 
the languages such that a language used to present another language is called a 
meta language. A meta language, in turn, is represented in a meta meta 
language, and so on. The meta level hierarchy continues upward until, at some 
level, a self-descriptive language is used, i.e. a language is reached that is 
sufficiently expressive to be used to formulate its own rules (Falkenberg et al. 
1998, 58). The third approach to define the meta levels is called the technique-
based approach or the method-based approach. The domain in the approach is 
ISD work or part of it (e.g. IS modeling like in Wijers (1991) and use of a 
technique in Brinkkemper (1990)). Brinkkemper (1990,  29), for instance, defines 
a meta model to be a model of a modeling technique. The purpose of this 
approach is commonly to produce a structural framework for an information 
base of method knowledge (e.g. Harmsen 1997) or project knowledge (e.g. 
ConceptBase in Jarke (1992)).  
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Next, we show how the views of the model-based approach and the 
language-based approach are related to one another. The key issue in relating 
the views is the fact that each language used for representing a model has a 
conceptual foundation consisting of a set of basic concepts and a set of rules, in 
other words, an abstract syntax (see Section 3.6). This conceptual foundation 
may also be viewed as a model, called a meta model (Falkenberg et al. 1998, 58). 
To illustrate this we present the levels of models and the levels of languages in 
the same figure (see Figure 69)130.    
 

L 0 IS process IS data

ISD process IS model
denotationIS model

Meta model Language Language denotation

Abstract syntax Concrete syntax Semantics

instanceOf

instanceOf

Meta meta model Meta language Meta language denotation

Abstract syntax Concrete syntax Semantics

Meta model denotation

representedAsrepresentedAs

representedIn

representedAs

Meta meta model denotation

instanceOf

representedIn

representedAsrepresentedAs

descr / prescr

descr / prescr

descr / prescr
representedIn

  L1

L2

L3

equals

equals

 
FIGURE 69  Levels of models and languages 
 
Figure 69 contains four levels. Two lowest levels correspond to IS data (L0) and 
ISD data (L1). ISD data means here IS models and IS model denotations. The 
next higher level (L2) contains meta models describing / prescribing the IS 

                                                 
130 To keep the figure simple enough, the multiplicities are not included in it. 
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models (e.g. an ER schema) produced by ISD, and languages used to represent 
the IS models as the IS model denotations. The highest level (L3) comprises 
meta meta models describing / prescribing the meta models, as well as meta 
languages used to represent the meta models and the languages, both at the 
next lower level. The figure shows how the hierarchy of model levels is 
anchored onto the IS data and established via IS models, meta models, and 
meta meta models. It also shows how the hierarchy of language levels 
comprises languages and meta languages. The connection between these 
hierarchies is formed by the fact that a meta model is an abstract syntax of the 
language (Oei 1995, 113) used to represent a model as the model denotation. 
The elements in both of the hierarchies are conceptual, and become visible only 
through their denotations. A meta language denotation is expressed by using 
the language itself. In the hierarchy of model levels the concepts at the lower 
levels are instances of the concepts at the next higher levels. On the other hand, 
we can say that the models at the higher levels describe / prescribe models at 
the next lower levels. In our study we mainly consider the meta levels from the 
conceptual viewpoint, meaning that for us the models, the meta models, and 
the meta meta models are more important than the languages and the meta 
languages. 

 As a meta model is a model, most of the characteristics and classifications 
presented for the models in Section 6.1 apply to the meta models, too. Due to 
the fact that a meta model is an intensional model, there are, however, some 
exceptions to this strict “inheritance of the predicates”. In the following, we 
consider the meta models with the predicates of the models.  

A meta model is a thing that is used to help or enable the understanding, 
communication, analysis, design and / or implementation of models. A meta 
model is an abstract model in the sense that that it is composed of abstract 
concepts. An action by which a meta model is produced is called metamodeling. 
It takes place on one level of abstraction (by classification) higher than 
modeling. It comprises several sub-actions: (a) abstracting from existing 
models, (b) transforming from other meta models, (c) translating from other 
meta model denotations, (d) revising an existing meta model, and (e) 
integrating two or more other meta models or parts thereof. Sub-actions of 
metamodeling will be considered in more detail in Section 10.3.3. A meta model 
is a formal or semi-formal model reflecting objective (cf. the objective model) or 
inter-subjective (cf. the inter-subjective model) views. It is also worth of 
noticing, that a meta model is always needed when interpreting, analyzing, 
designing, or implementing corresponding (type) models.  

The meta models are structural models. Depending on the nature of 
corresponding (type) models, the meta models can be classified in various 
ways. Applying the contextual domains and the perspectives, we classify the 
meta models into two sets of categories, that are the contextual (meta) models 
and the perspective meta models (see Figure 70). One of the contextual meta 
models is a meta purpose model, which is composed of concepts and 
relationships defined within the purpose domain (see Section 4.4.1). An 
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example of the perspective meta models is an infological meta model, which 
consists of concepts and relationships defined within the IS infological 
perspective (see Section 6.3.2). 
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FIGURE 70  Categorizations of models and meta models based on the contextual domains 

and the perspectives (IP = inter-perspective, ID = inter-domain) 
 
As said in Section 6.1, informational objects in the contexts can be conceived as 
linguistic objects or through their conceptual contents (see also Section 4.4.4). To  
bring out the view applied in modeling, we distinguish between deliverable 
models and data models. A deliverable model describes / prescribes the structure 
and presentation of informational objects (e.g. a relational scheme with data 
types). A data model describes/ prescribes the conceptual contents of 
informational objects (e.g. an ER schema). Correspondingly, we have a meta 
deliverable model (e.g. the relational model, Codd 1970, 1979) and a meta data 
model (e.g. the ER model, Chen 1976).  

Second, besides the “pure” models and meta models, which are 
exclusively based on the concepts of one perspective or one domain, there are 
also inter-domain (ID) and inter-perspective (IP) models and meta models. 
Examples of the inter-domain meta models are a meta activity model (e.g. 
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Brinkkemper 1990) and a meta process model (or a process metamodel in 
Henderson-Sellers (1999) and Firesmith et al. (1999)), which are composed of 
concepts and relationships, not only within the IS action domain but also within 
the IS object domain and the IS time domain.   
 
 
7.3 Comparative Analysis of Systems of Levels 
 
 
In this section we shortly describe, analyse and compare presentations given in 
the ISD literature for systems of levels. The systems of levels concern either the 
concepts or the models. The results of the comparative analysis are summarized 
into Table 22. In the table for each presentation, the object system (OS) at the 
root level as well as the names of levels are brought forward.  

We have selected twelve well-known presentations for the analysis. Some 
of them consider the information system (Bergheim et al. 1989; Brinkkemper 
1990; Falkenberg et al. 1998) or CIS data (ISO 1990; OMG 2002) to be the object 
system. Some others anchor their system of levels on ISD work (Heym et al. 
1992a; Jarke 1992; Saeki et al. 1993; Harmsen 1997; ter Hofstede et al. 1997), or on 
part of it (IS modeling (Wijers 1991)). In the latter ones, the aim is to specify and 
structure ISD method knowledge into a method base. Gigch (1991) advocates a 
different approach applying a general view of problem solving in the IS, ISD or 
any other human action. Next, we first describe the system of levels in each of 
the presentations and consider which of the approaches (i.e. the model-based, 
language-based, technique-based or method-based approach) defined in 
Section 7.2 is applied in them. 

Bergheim et al. (1989) present a taxonomy of concepts of the science of 
information systems to distinguish between four meta-levels:  ω-level, α-level, 
β-level, and γ –level. The lowest level, the operational level, concerns the 
changes of states in the application. The next meta-level, also known as the 
application level, contains descriptions about a specific application (e.g. a data 
flow diagram or a Pascal program). The β-level is about how to make instances 
at the α-level (e.g. a DFD model or the language Pascal itself). The highest level 
is about how to make instances at the β-level, that is, about the ways to make 
different formalisms. For each level, a universe, constructs, a theory, an 
interpretation, valuations, a model, a description, and a method are considered. 
The discussion in Bergheim et al. (1989) about the levels is comprehensive, and 
considering when it was published, it was in advance of one's time. It is a pure 
representative of the model-based approach to establishing the system of the 
levels.  

ISO (1990) launched the Information Resource Dictionary Standard 
(IRDS), which is composed of four levels: application data, IRD level, IRD 
Definition level, and IRD Definition Schema level. The first level includes data 
and  program  execution.  The  next  level  stands  for  a data   base  schema  and  
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application programs. The IRD Definition level specifies the models and 
languages by which schemata and programs are described.  The IRD Definition 
Schema level specifies a meta meta model, according to which things at the ISD 
Definition level are associated and described. The IRDS is an  outcome of the 
model-based approach, although a language as a means of description is 
recognized. Brinkkemper (1990, 28) distinguishes between three levels: system 
to be modeled, modeling technique, and meta-modeling technique. In the 
hierarchy of levels, “the system of concepts of a modeling technique is 
considered as a concrete system on an abstraction level higher than the 
application of modeling in the development of an IS” (ibid p. 28). The approach 
is clearly technique-based. Brinkkemper (1990, 28) provides a figure describing 
the relationships between the aforementioned concepts and between the 
notions of modeling notation and meta-modeling notation. The figure is 
obscure for several reasons: e.g. relationships denoted with unnamed arrows 
are ambiguous, and actions and outcomes are missing. 

 Gigch (1991, 17) differentiates knowledge needed to solve a problem into 
three levels of inquiry. The level of implementation or intervention contains e.g. 
citizens, clients and practitioners participating in activities involving real world 
problems. At the modeling level understanding and solving problems requires 
formulation of models. At the meta level or metamodeling level, people are 
involved in the design of the methods and approaches to be used at the other 
levels of inquiry. A meta model is considered a model of the modeling process 
(ibid p. 255-256). Although the approach in Gigch (1991) is mainly model-based, 
its scope also comprises modeling processes.  

Wijers (1991, 31) divides the knowledge needed in modeling into three 
levels: application level, meta level, and theory level. At the application level 
actual ISD processes and products (ISD models) are dealt with. Modeling 
knowledge concerning the ways of working and of modeling, as well as 
acquisition of modeling knowledge are included at the meta level. The theory 
level is concerned with a theory applicable at the meta level. A meta-model is 
defined to encompass a concept structure (for a way of modeling) and a task 
structure (for a way of working) as well as constructs interrelating those two. A 
meta-language is a language used at the meta level (ibid p. 426). Wijers (1991) 
clearly apply the model-based approach but the scope also contains the process 
of modeling, which should not be situated at the same meta levels as models. 
Wijers also considers the integration of the process-oriented and product-
oriented views.   

Heym et al. (1992a) suggest a methodology reference model that is based 
on three levels of abstraction in which each level applies the notation or 
specification model from the next higher level. This means that an object type 
on the higher level is instantiated on the next lower level. The levels are: 
methodology level, method level and project level. The methodology level 
describes a methodology reference model, which contains all object types as 
well as their relationships necessary to describe information systems 
development methods, e.g. activities, phases, deliverables, or actors. The 
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method level specifies an ISD method by a number of description objects of 
object types defined at the higher level. The project level describes a particular 
project to which a certain method is applied, by creating instances of special 
method description objects from the method level. The scope in Heym et al. 
(1992a) is very broad, covering the whole ISD knowledge. The levels of 
abstraction are not pure model levels, because at the method level, for instance, 
part of knowledge concerns ISD process and therefore it is not at the meta level.  

Jarke (1992, 57) uses Telos’ metaclass hierarchy (Mylopoulos et al. 1990)  in 
ConceptBase (DAIDA’s metadata management and reasoning system) to 
document data of projects at three levels: instance level, class level, and 
metaclass level. The instance level consists of concrete development projects 
within the environment. The metaclass level describes the development 
environment at hand. The class level defines the basic structure for 
development processes. The metaclass hierarchy applies the model-based 
approach. The object system in the hierarchy is an ISD project, not an IS.  

Saeki et al. (1993, 150) defines a meta model as a data model or scheme for 
representing design methods, expressing a concept structure common to 
various methods. To specify the structural relationships among a meta model, 
formal representations of design methods (called object models), and actual 
specification processes, Saeki et al. (1993, 151) distinguish between three levels: 
instance level, object level and meta level. The instance level corresponds to 
actual products and design activities. The object level stands for the formal 
representations of a design method. The meta level contains a model for the 
representations at one level lower as well as the relationships between the 
representations of design methods.  The considerations of the hierarchy of 
levels remain on a general level. Nevertheless, in our opinion, the meta levels 
contain knowledge of processes that are located at the wrong level. Saeki et al. 
(1993) clearly apply the method-based approach.  

Harmsen (1997) considers the allocation of methodological knowledge 
onto three levels: method engineering level (ME), IS engineering methods level 
(ISEM), and IS engineering level. The ME level describes classes of ISEM 
concepts, that is to say, concepts of any ISD method. The IS engineering 
methods level describes instances of concepts at the method engineering level. 
The IS engineering level addresses the actual models, reports, steps, tools etc. 
used in a ISD project. There are the type/instance relationships between the 
levels. Meta-modeling is located at the ISEM level, and meta-meta models at the 
method engineering level. Harmsen (1997) also applies the method-based 
approach, and, as is typical for the adherents of this approach, he leaves the 
specification of the hierarchy on too general a level.  

ter Hofstede et al. (1997, 404) distinguish between three levels of 
abstraction at which method knowledge can be viewed. The levels are: method 
level, application level, and operational level.  The method level is concerned 
with knowledge which enables to control the ways how information modeling 
process may be performed and to define which products may result from those 
processes. The application level is concerned with information which results 
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from projects for specific organizations and applications. It is an instantiation of 
the method level. The operational level is an instantiation of the application 
level and as such it consists of concrete entities, relationships, process traces, 
etc.  Most of what is said about the systems of levels by Saeki et al. (1993) and 
Harmsen (1997) also applies here. The method-based approach of ter Hofstede 
et al. (1997) is applied with too general a view of e.g. the elements at and the 
relationships between the levels.  

In the Frisco Report (Falkenberg et al. 1998, 57-58) three meta-levels are 
distinguished: meta-level 0, meta-level 1, and meta-level 2. At each meta-level, a 
model and a model denotation are specified. The models are: a base model 
(meta-level 0), a language (meta-level 1) used to represent the base model, and a 
meta-language (meta-level 2) used to represent the language. A base model 
may be a particular model consisting of states and transitions. The 
corresponding base model denotation is a graphical representation of this 
model (i.e. a state-transition diagram). The language in this case is like the one 
in Booch et al. (1999). The meta-language can be the MOF (OMG 2002). The 
representing relationships establish the relations between the meta-levels. 
Frisco applies a mixed approach considering both the relationships between the 
languages and the relationships between the models, although the latter 
relationships become only implicitly specified.   

OMG (2002, Kleppe et al. (2003, 85-87); Frankel (2003, 105-107)) uses a four-
layered architecture for its standards. In the OMG terminology these layers are 
known as M0, M1, M2, and M3. At the M0 layer there is the running system in 
which the actual instances exist. The M1 layer contains models of a CIS (e.g. a 
UML class diagram of a software system). The M2 layer contains meta models 
(e.g. the UML meta model and the CWM (Common Warehouse Meta model)). 
At the highest layer, called M3, there are meta meta models (e.g. MOF (Meta 
Object Factory)) that are used to define meta models. Every meta model is an 
instance of some meta meta model, and every model must be an instance of 
some meta model. The object system of the four-layered architecture of OMG is 
a CIS and especially its data. The architecture has been fully built according to 
the model-based approach.  

As the descriptions above concretely show, there are large varieties in 
terms and meanings with which models and languages at different levels are 
specified. The presentations consider the systems of levels from different 
viewpoints: e.g. from the viewpoint of the science of information systems 
(Bergheim et al. 1989), of metamodeling (Brinkkemper 1990; Wijers 1991; 
Falkenberg et al. 1998), of method engineering (Heym et al. 1992a; Saeki et al. 
1993; Harmsen 1997; ter Hofstede et al. 1997), of problem solving modeling 
(Gigch 1991), of metadata management system (Jarke 1992), and of 
standardization of development environments (ISO 1990; OMG 2002). This 
partly explains the varieties perceived in terms and meanings. But there still 
remain many particularities that should require an in-dept analysis to be 
revealed, explained and compared. Unfortunately, such an analysis goes 
beyond this study. As a general finding we can, however, say that presentations 
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that apply the model-based approach seem to be more precise in defining the 
levels and the relationships between them. In contrast, in those presentations 
applying the technique-based or method-based approach the levels are defined 
more generally and the processing layers and the model levels are commonly 
confused. In the next chapter, we show in a concrete fashion how models at the 
same model level can situate at different processing layers and a processing 
layer can contain models from different model levels.   
 
 
7.4 Models at the Processing Layers 
 
 
Up till now we have considered the contextual ontologies one by one without 
paying too much attention to the relationships between them. Because the 
model level ontology is the last contextual ontology in the order we have 
introduced them in this study, it is time to examine in more detail how these 
ontologies are related to one another. The examination will be carried out in 
two parts. In the first part we use the arrangement, presented at the beginning 
of each concerned chapter to show its focus (see Figures 44, 52, and 64), to 
depict the key concepts of the ontologies.  In the second part we present a still 
more detailed view of the ontologies and relationships between them with the 
figure, which exhibits models about different contextual domains, at different 
layers, and at different levels.  

Figure 71 presents the context ontology, the layer ontology, the 
perspective ontology and the model level ontology in terms of their key 
concepts and constructs. The figure also reveals how the ontologies are related 
to one another. We can distinguish between the following relationships: (a) a 
model describes / prescribes a context, (b) a model is produced at a processing 
layer, (c) a model views from a perspective, (d) a context is located on a 
processing layer, (e) a context is perceived from a perspective, and (f) a 
perspective is applied at a processing layer. Some of the relationships can be 
inferred from the others, e.g. if a context is perceived from a certain perspective, 
then a model of the context is made from that perspective. In addition to those 
mentioned, there are other relationships that can also be inferred from others. 
For instance, if a context is perceived from a certain perspective and is located 
at a certain processing layer, then the processing layer is also perceived from 
that perspective.  

Although the view presented in Figure 71 is quite complicated, it is still on 
a general level. In Figure 72 we portray all the models, which are distinguished 
at the processing layers, describing/prescribing any of the domains, and being 
at any of the model levels. Due to the scarcity of space, the names of the models 
are written without the term ‘models’. In the figure we can see four processing 
layers (IS, ISD, ME and RW). At each layer there are eight “boxes” standing for 
the domains (purpose, actor, action, object, facility, location, time, ID = inter-
domain)  of  a context.  The models  are  objects  or  deliverables  resulting from  
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FIGURE 71  Essence of and relationships between the contextual ontologies 
 
actions in the contexts at each processing layer. The arrows denote the 
instanceOf relationships between the models and the corresponding instance-
level phenomena. To illustrate concretely arrays of models, the “boxes” 
corresponding to the object domains are extended at the ISD, ME and RW 
layers. Let us next consider the models in more detail. 

At the ISD layer, the ISD deliverables comprise nine kinds of models, 
namely the IS purpose models, the IS actor models, the IS action models, the IS 
deliverable models, the IS data models, the IS facility models, the IS location 
models, the IS time models, and the IS ID models. At the ME layer, the ME 
deliverables also comprise nine kinds of models, in this case the ISD models. 
The ISD data models mean the IS meta models, which describe / prescribe the 
set of possible IS models of the concerned types. The IS meta purpose model, 
for instance, may be the goal graph model (Loucopoulos et al. 1998), which is to 
be used during ISD work to represent IS goals / means hierarchies. An example  
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FIGURE 72  An integrated view of the contextual models at three processing layers and 

on three model levels 
 
of the IS meta data model is the ER model (Chen 1976), which is used to present 
an ER schema. 

The RW deliverables at the RW layer comprise, besides models and meta 
models, also meta meta models. The models, called the ME models, describe / 
prescribe the structure and behavior of the current ME context or the desired 
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ME context, covering all its contextual domains. The meta models, also known 
as the ISD meta models, specify the concepts and constructs of the ISD models 
at the lower model level. The meta meta models are the IS meta meta models, of 
which the IS meta models are instances. An IS meta meta model contains the 
abstract syntax of those meta languages that are used to represent the IS meta 
models (cf. Section 7.2). In this study we use a sub-set of UML as the meta meta 
model.  

Three remarks should still be made on the figure. Working at some 
processing layer always involves models at three model levels, namely the 
resulting model, the concerned meta model and its meta model. For instance, in 
designing an object database, a class diagram is produced according to the 
object class model. To fully understand and deploy the concepts and notation of 
the object class model, it is necessary to know the semi-formal language in 
which it is presented, in other words the meta meta model. In addition, it is 
necessary to some extent to understand phenomena at the next lower level to be 
able to present abstractions of them in the form of a class diagram.  

Second, Figure 72 concretely manifests how analogous the processing 
layers in terms of models and meta models really are. The same kinds of models 
can be recognized at the ISD, ME and RW layers, and also the meta models at 
the ME and RW layers can be quite equal. Of course there are some differences 
in details and emphasis of certain contextual phenomena at the layers, but there 
is no need, in principle, to construct and deploy a large variety of meta models 
and meta meta models for the layers. 

Third, we have not included the “perspective dimension” in the figure. 
Having done this would have made the figure perhaps too complicated. At 
each processing layer, it would have been possible to show that there are six 
kinds of models, meta models and meta meta models, depending on the 
applied perspective. 

The integrated view of the models, processing layers and model levels in 
Figure 72 serves as a useful foundation to position and relate the issues that will 
be discussed in the next chapters. In Chapter 8 we aim to define the ISD 
ontology, which addresses the contextual domains and the perspectives at the 
ISD layer. The purpose of Chapter 9 is to define the ISD method ontology. We 
have already generally defined a method to be a model that describes / 
prescribes an ISD context. Now we can see that it decomposes to several 
contextual ISD models, including the IS meta models. In that chapter we will 
elaborate this view to specify the contents and structure of an ISD method. In 
Chapter 10 we will define the ME ontology and the ME method ontology that 
are positioned at the ME layer and the RW layer, respectively. In both of the 
chapters the approaches, views, models, concepts and constructs will be further 
refined from what we have presented here.  
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7.5 Summary and Discussions 
 
 
In this chapter we defined the model level ontology. The ontology provides 
concepts and constructs to conceive, understand, structure and present 
phenomena in reality in terms of models within a system of model levels. 
Generally, a model is a thing that is used to help or enable the understanding, 
communication, analysis, design, and/or implementation of some other thing 
to which the model refers. The notion of a model can be specialized according 
to the aspects of the modeling context, the modeled context, and the model 
utilizing context. To facilitate communication about a model, it is presented in 
some language. A language is composed of a concrete syntax, an abstract 
syntax, and semantics. Essential to the model level ontology is the recognition 
of hierarchical meta levels of concepts and models. A meta model is a type 
model, which describes / prescribes another type model that is at the next 
lower model level. In the hierarchical system of model levels, there are 
instanceOf relationships between the models at one level and the models at the 
next lower level.  

Second, we described and compared systems of levels presented in the 
ISD literature. Concluding from the analysis we can say that there exist large 
varieties in terms and meanings with which the levels are called and specified. 
The presentations have been established for several purposes, e.g. for specifying 
the conceptual contents of the science of information systems, meta modeling, 
method engineering, metadata management systems, and standardization of 
development environments. The root level in these presentations varies from 
the IS layer to ISD layers (CIS data, IS modeling, ISD). There are also different 
approaches to defining the systems of levels. In particular in the method-based 
approaches and the technique-based approaches there are confusions in 
distinguishing the model levels and the processing layers. This confusion can be 
avoided with the use of a unified conceptual foundation, such as OntoFrame. 

Third, we provided an integrated view of four contextual ontologies, 
including the context ontology, the layer ontology, the perspective ontology, the 
model level ontology. The ontologies were integrated via the focal concepts of 
context, layer, perspective and model. We also exhibited and related a large 
variety of models, which concern four processing layers, seven contextual 
domains and three model levels. 

 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
8 ISD ONTOLOGY 
 
 
Information system development (ISD) means the accomplishment of 
organizational and technical changes in an IS context. It aims at improving an 
IS, that is to say, to make it more effective, efficient, reliable, easy-to-work, user-
friendly, etc. Small-scale changes and improvements in an IS are carried out 
with daily work. But accumulation of problems, becoming conscious of new 
technological potentials, or decisions on new business strategies and policies 
may trigger a special effort to design and implement more profound changes in 
an IS. This is a kind of ISD we consider it here.   

The purpose of this chapter is to present the ISD ontology that provides 
fundamental concepts and constructs for conceiving, understanding, 
structuring, and representing essential phenomena in ISD. The ontology is 
specialized from the underlying ontologies, in particular from the context 
ontology and the perspective ontology (see Figure 73).  The context ontology 
provides a basis for a theory-based classification of the concepts of ISD into 
seven contextual domains. With the perspective ontology it is possible to 
manage the complexity of the target system by viewing its phenomena from 
well-defined perspectives. Applying the perspectives to ISD helps us 
understand how conceptions about the ISD can develop step by step in method 
engineering. Resulting from the underlying ontologies the ISD ontology has 
been constructed from two main parts: ISD domains and ISD perspectives.  

The chapter is organized as follows. First, we discuss and classify ISD 
paradigms and ISD approaches that affect views of and conceptions about what 
ISD really is. Second, we give a comprehensive definition for the notion of ISD. 
Third, we present the first main part of the ISD ontology. It is composed of meta 
models and concept definitions within four ISD domains. The domains 
considered are: the ISD purpose domain, the ISD actor domain, the ISD action 
domain, and the ISD object domain. Also an overview of the inter-domain 
relationships is given. Fourth, we present the second main part of the ISD 
ontology, which is composed of four ISD perspectives. The perspectives are: the 
ISD systelogical perspective, the ISD infological perspective, the ISD conceptual 
perspective,   and  the   ISD   datalogical    perspective.    Also   inter-perspective  
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FIGURE 73 Basis and structure of the ISD ontology 
 
relationships are discussed. Sixth, we make a comparative analysis of artifacts 
(i.e. frameworks, meta models and the like) presented in the literature. The 
purpose of the analysis is to obtain an overview of the artifacts, to find out how 
they differ from one another, and compare them with the ISD ontology in terms 
of comprehensiveness and focus. The chapter ends with a summary and 
conclusions.  
 
 
8.1 ISD Paradigms and ISD Approaches 
 
 
In the ISD literature, there are highly divergent conceptions about the nature, 
purpose, structure, and behavior of ISD. Conceptions can be, on a general level, 
categorized, analyzed and compared through ISD paradigms and ISD 
approaches underlying them. Basic assumptions, views and principles of ISD 
paradigms and ISD approaches formulate our views of information systems 
development and thus affect through which concepts and constructs we 
conceive, understand, structure and represent phenomena in ISD. To get a firm 
foothold for defining the notion of ISD and later for establishing the ISD 
ontology, we briefly discuss and classify the ISD paradigms and the ISD 
approaches in the following sub-sections.  
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8.1.1 ISD Paradigms 
 
The notion of paradigm has been a controversial concept ever since Kuhn (1970) 
introduced it (Iivari et al. 1998a). Kuhn defined a paradigm to mean 
“universally recognized scientific achievements that for a time provide model 
problems and solutions to a community of practitioners”. Burrell and Morgan 
(1979) state that paradigms are “meta-theoretical assumptions about the nature 
of the subject of study”. In the ISD field, a paradigm is defined as e.g. "a specific 
way of thinking about problems, encompassing a set of achievements that are 
acknowledged as the foundations of further practice” (Avison et al. 1995a, 447). 
We share the conception presented by Hirschheim et al. (1992b)131 according to 
which a paradigm means “the most fundamental set of assumptions adopted by 
a professional community which allow it to share similar perceptions and 
engage in commonly shared practices” (ibid p. 305).  

Burrell and Morgan (1979) distinguish between four types of assumptions: 
ontological assumptions (assumptions about the world), epistemological 
assumptions (i.e. assumptions about the knowledge), methodological 
assumptions (i.e. assumptions about the appropriate mechanisms for acquiring 
knowledge), and human nature issues. On the bases of the types of 
assumptions, Burrell and Morgan (1979) establish two dimensions: the order-
conflict dimension and the subjectivist-objectivist dimension. They also identify 
four paradigms of sociology and organizational research: functionalism, 
interpretivism, radical structuralism, and radical humanism.  Hirschheim et al. 
(1989) extend the notion of paradigm further and show that the four paradigms 
of organizational research also exist in the literature of ISD. They refer to the 
paradigms with the following terms: functionalism, social relativism 
(interpretivism), radical structuralism, and neohumanism (radical humanism). 

Iivari (1991, 255) refines the paradigmatic framework and introduces 
ethics of research as the fourth constituent of the framework. Ethics concerns 
the responsibility of a scientist for the consequences of his research and its 
results. Iivari (1991) and later Iivari et al. (1998a) applied the framework to 
analyze the schools of IS development. Hirschheim et al. (1992a) and 
Hirschheim et al. (1995) used the framework to make a paradigmatic analysis of 
ISD approaches.  

Besides those mentioned above, there are also other authors who have 
contributed to the discussion about the paradigmatic categories in the IS/ISD 
fields (e.g. Floyd 1987; Nurminen 1988; Orlikowski et al. 1991; Dahlbom et al. 
1993; Stamper 1992b; Jayaratna 1994). It goes beyond our aims to consider them 
here more closely. We merely state that we apply the paradigmatic framework 
of Hirschheim et al. (1989) and Hirschheim et al. (1992a), because it is firmly 
established on the philosophical traditions and widely applied in the ISD 
literature. In the following we present short characterizations of the four 
paradigms with words of Hirschheim et al. (1989, 1203-1210) and Hirschheim et 
                                                 
131  This definition is also adopted in Hirschheim et al. (1989, 1201), Hirschheim et al. 

(1992a,  305) and Iivari et al. (2001). 
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al. (1992a,  308-309). For each paradigm the nature of the IS and the roles of, and 
relationships between, various stakeholders of the IS are outlined. 

The functionalist paradigm is concerned with providing explanations of the 
status quo, social order, social integration, consensus, need satisfaction and 
rational choice. ISD goals are dictated by a “technological imperative”. ISD 
work proceeds by applying formal concepts through planned intervention with 
rationalistic tools and methods. Managers are responsible for providing the 
systems goals. The system developer is the expert who takes the goals and turns 
them into a constructed product. Users operate or interact with a system to 
achieve organizational goals.  

The social relativist paradigm seeks explanation within the realm of 
individual consciousness and subjectivity. Any goals or values that are 
consistent with social acceptance are legitimate. ISD work proceeds by 
improving subjective understanding and cultural sensitivity through adapting 
to internal forces of evolutionary social change. Users are the organizational 
agents who interpret and make sense of their surroundings. The systems 
developer is the change agent who helps users make sense of the new system 
and its environment.  

The radical structuralist paradigm has a view of society and organizations 
that emphasizes the need to overthrow or transcend the limitations placed on 
existing social and organizational arrangements. All goals other than those that 
further the class interests of the workers are considered illegitimate and 
reactionary. ISD work proceeds by raising ideological conscience and 
consciousness through organized political action and adaptation of tools and 
methods to different class interests. The two antagonistic classes, the owners of 
the productive resources and labor, are engaged in a classic struggle. The 
owners become the beneficiaries of IS’s while labor becomes the victim of 
system rationalization. The management acts as the agent of the owners. The 
systems developer chooses between being an agent for the management or 
member of the labor force.  

The neohumanism paradigm seeks radical change, emancipation and 
potentiality and stresses the role that different social and organizational forces 
play in understanding change. Only goals that survive from maximal criticism 
and thus are shown to serve generalizeable human interests are legitimate. ISD 
work proceeds by improving human understanding and the rationality of 
human action through emancipation of suppressed interests and liberation 
from unwarranted natural and social constraints. The stakeholders, comprising 
customers, management, labor and owners of the productive resources, exist 
within an intertwined set of social relationships and interactions. They take part 
in communicative action. The systems developer acts as a social therapist in an 
attempt to draw together the various stakeholders. 
 
8.1.2 ISD Approaches 
 
In the ISD literature hundreds of ISD approaches have been suggested with 
varying contents and motives. One reason for the flavor of the term ‘approach’ 
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is its vagueness:  it can be used to mean almost anything, at any level of detail. 
For instance, at the initial stage of a research effort when no concrete method, 
model or technique can yet be presented, ideas can be packaged and 
“marketed” with a named approach. Sometimes, an approach is not even 
defined, but used as a kind of label attached to obscure ideas.  

Another reason for the favor of the term is that it can be used to emphasize 
and highlight specific features (e.g. goal and scenario based approach (Liu et al. 
2002), context-based approach (Kashyap et al. 1996), process-oriented approach 
(Mylopoulos et al. 1992)), or certain underlying theory or discipline (e.g. speech-
act-based approach (Auramäki et al. 1988), contingency approach (e.g. Zhu 
2002), activity theory approach (e.g. Boer et al. 2002), semiotic approach (e.g. 
Calway 1995), genre-based approach (e.g. Päivärinta 2002)). Further, with the 
use of approach one can inform that one’s suggestion is related to a certain 
model (e.g. UML-based approach (Briand et al. 2002), ER-approach (Batini et al. 
1992), conceptual graph approach (Moulin et al. 1992)) or a certain technique 
(e.g. conceptual modeling approach (Motik et al. 2002), meta-modeling 
approach (Chiu et al. 1999), meta model transformation approach (Oei 1995)).  
Finally, there are approaches that reflect specific ways of carrying out some 
actions (e.g. top-down approach (Peristeras et al. 2000), unified approach (Potter 
et al. 1988), and formal approach (Hong et al. 1993)).  

To manage fuzziness that troubles the understanding and use of the 
notion of ISD approach, we first present a general definition of an ISD approach 
and then subdivide the ISD approaches into three categories. An ISD approach is 
defined to mean a generic way of conceiving certain aspects of ISD, or a generic 
way of working in ISD. The first category in our classification is composed of 
those ISD approaches that are some kinds of “schools of thought”. The second 
category comprises approaches that take a specific view on ISD. The third 
category is composed of ISD approaches that are suggested to emphasize 
certain features related to specific ISD domains. In the following we first discuss 
the ISD approaches as the categories A, B and C. After that we briefly consider 
relationships between the approaches of these categories.  
 
ISD Approaches in Category A  
 
The category A contains ISD approaches that are kinds of ”schools of thought”. 
Iivari (1991) states that schools of thought have identifiable founders and 
scientific community to enable their institutionalization. Accordingly, an ISD 
approach here means “a set of goals, guiding principles, fundamental concepts, 
and principles for the ISD process that drive interpretations and actions in the 
ISD” (Iivari et al. 1998a, 166). The goal specifies “the general purpose of the 
approach”. Guiding principles form “the common ‘philosophy’ of the 
approach”. The fundamental concepts define “the nature of an IS and the focus 
and unit of analysis and design in ISD”. The principles of the ISD process 
express essential aspects of the ISD process in the approach (Iivari et al. 1998a, 
166).  
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According to Iivari et al. (2001) the group A comprises the following 
approaches (a reference to a representative of each approach is given in 
parenthesis):  structured approach (e.g. Yourdon 1989), information modeling 
approach (e.g. Martin 1989), decision support systems approach (e.g. Keen et al. 
1978), socio-technical approach (e.g. Mumford 1983), object-oriented approach 
(e.g. Henderson-Sellers et al. 1995), infological approach (e.g. Lundeberg et al. 
1981), interactionist approach (e.g. Kling 1987), speech act –based approach (e.g. 
Auramäki et al. 1988), Soft-Systems Methodology approach  (e.g. Checkland 
1981), trade unionist approach (e.g. Bjerknes et al. 1987), and professional work 
practice approach (e.g. Andersen et al. 1990).  

 There are also other classifications of ISD approaches that can be seen, at 
least partly, to belong to this category, though they are not referred to as 
schools of thought by the authors. Wood-Harper and Fitzgerald (1982) 
distinguish between the general systems theory, the human activity, the 
systems approach, the participative approach, the traditional approach, the data 
analysis approach, and the structured approach. Benyon and Skidmore (1987) 
recognize the software systems approach, the structured systems analysis and 
design, the traditional approach, the data-centered approach, and the 
participative approach. Also some of the approaches recognized in the 
taxonomies of Lyytinen (1986) and Hirschheim et al. (1995) belong to this 
category.  
 
ISD Approaches in Category B 
 
The category B contains ISD approaches that adopt a specific view of ISD as a 
context. An adopted view determines concepts and constructs through which 
ISD is perceived and structured. We distinguish between six approaches: the 
transformation approach, the decision making approach, the problem solving 
approach, the learning approach, the political approach, and the knowledge 
work approach. Next, we characterize and give examples of these view-based 
approaches.   

According to the transformation approach, ISD is seen as sequential steps of 
transforming ISD deliverables on one level of abstraction into ISD deliverables 
on the next lower level of abstraction (e.g. Lundeberg et al. 1981; Lehman 1984; 
Fickas 1985; Turski et al. 1987; Wand 1988a; Moynihan 1993; Tracz et al. 1993; 
Jacobson et al. 1999, 24). Abstraction is commonly performed according to the 
principles of predicate abstraction based on the realization criterion (cf. Section 
3.8.3). This means that during the ISD process requirements specifications are 
transformed through analysis and design deliverables into implementational 
deliverables.  

According to the decision making approach, ISD is seen as a decision making 
process in which knowledge is acquired, options are specified, and the “best” 
options are selected (e.g. Iivari 1983; Iivari et al. 1987; Jarke et al. 1990; Wild et al. 
1991; Jarke et al. 1992; Grosz et al. 1997). An example of realization of the 
decision making approach is suggested in the NATURE approach to 
requirements engineering (Jarke et al. 1993; NATURE Team 1996), according to 
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which a requirements engineer is in a situation that he/she considers with some 
specific intention. His/her decision depends on the context he/she is placed in. 
The NATURE approach, slightly evolved, has been later applied in e.g. Rolland 
et al. (1996), Pohl et al. (1997), Pohl et al. (1999) and Rolland et al. (2000). The ISD 
process involves also claims on and arguments for decisions (Conklin et al. 1988; 
Ramesh et al. 1994).   

According to the problem solving approach, ISD is seen as a problem solving 
process in which problems at several levels of details are identified and solved 
(Bodart et al. 1983; Dasgupta 1989; Sol 1992; Blum 1994; Jayaratna 1994). 
Problem solving can be viewed as utilizing available means to reach desired 
ends while satisfying “laws” existing in the environment (Hevner et al. 2004). 
Bodart et al. (1983), for instance, suggest an analysis framework of the ISD 
process, which is based on distinguishing between three classes of problems: 
abstraction problems, decision problems, and control problems. Sol (1992) 
suggests that ISD problems can be approached through viewing them from a 
certain point of view. Based on the views he subdivides the problems into 
systelogical, infological, datalogical, and technological problems.  

According to the learning approach, ISD is seen as a learning process by 
which knowledge on application domain, technology and ISD work is acquired, 
elaborated and disseminated (e.g. Iivari 1982; Ramesh et al. 1994,  296).  ISD is 
enabling and is enabled by personal and organizational learning. Systems 
development aims at achieving growing cognitive and interpersonal skills 
coupled with better self-awareness among all the participants. Organizations 
can view themselves as learning organizations, able to learn from their 
experience and to effect changes in their own actions (Lyytinen et al. 1999). 
Some approaches, such as prototyping (Floyd 1984; Bai 1998), facilitate learning 
better than others.  

According to the political approach, ISD is seen as a cooperative process 
composed of negotiations, bargaining, power and social interactions (Newman 
et al. 1990). Interactions are based on political machinations and result in 
manifestations of power (Avison 1996). Markus (1983) considers the 
implementation of IS and its impact on power shift in the organization in the 
light of the political variant of the interaction theory. Keen (1981) analyzes the 
political games in ISD. Chang et al. (2002) identify 41 kinds of political games in 
the analyzed ISD projects based on thematic interviews. They also discuss the 
relationships between political games and stages of ISD as well as 
organizational factors affecting political games. 

According to the last approach in this category, ISD is viewed as knowledge 
work (Iivari et al. 2001,  205). For knowledge work there are certain 
characteristics (Iivari et al. 1999): (a) there must be a clearly identified body of 
knowledge, (b) work must be concerned with creating or manipulating 
representations rather than the physical objects of work, (c) it must require a 
deep understanding of the objects of work, and (d) it must result in products 
that entail knowledge as their essential ingredient.  Iivari et al. (2001, 206) 
distinguish between three components that make up the body of knowledge for 
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ISD: knowledge of information technology, application domain knowledge, and 
system development (process) knowledge. 
 
ISD Approaches in Category C  
 
The category C contains ISD approaches that have particular views of some 
specific contextual domain(s) of ISD. They are more skeletal than the ones in the 
other categories. A variety of the ISD approaches in this category is so large that 
we only give some examples of the approaches. References primarily point to 
pioneers in establishing and applying the approaches. 

First, there are ISD approaches that differ from one another on how they 
perceive and emphasize the features of the IS to be developed. We can 
recognize four specific approaches (cf. Bracchi et al. 1984; Barbic et al. 1985,  150; 
Vessey et al. 1994): the IS data-oriented approach, the IS process-oriented 
approach, the IS user-oriented approach, and the object-oriented approach. The 
IS data-oriented approach regards data as the fundamental part of the IS. It is 
claimed that identifying and classifying the conceptual entities in the OSIS, or 
the set of data elements in the IS, one can establish the core nature of the IS. It is 
assumed that the fundamental structure of data remains, to a high degree, the 
same although the IS may face many kinds of changes in the environment, or at 
least it will change much less likely than the actions applied to it (cf. Wood-
Harper et al. 1982, 13). All other constituents of the IS are subordinated to the 
data. For example, actions are seen as a series of operations on data (Bracchi et 
al. 1984, 163).  

The IS process-oriented approach considers information processing actions or 
processes to be the most essential parts of the IS. Processes are viewed as 
concrete and easy to understand. IS analysis and design are carried out in a top-
down, structured, and modular manner. The other parts of the IS are perceived 
through their relationships with actions.  The IS actions are modeled with data 
flow diagrams, action decomposition models, Petri nets, etc. (cf. Gane et al. 
1979; Yourdon 1989; Zisman 1977). The IS user-oriented approach, or the use-
centered approach, puts the major emphasis on human beings, their needs, 
views and interactions in the IS and in the US. This is seen as a prerequisite for 
the proper recognition and establishment of the structure, behavior and 
evolution of the IS. A conception about the ‘objective’ data, shared and agreed 
by the stakeholders (i.e. consensus or standard data), collapses. The meaning of 
data is firmly attached into a subject, and the existence and justification of 
different views are acknowledged. Roles and positions are built up from the 
premises of meaningful jobs, which provide more challenges and less routine, 
potential to self-control, and a sense of personal achievements (e.g. Mumford 
1981, 1983).  

The object-oriented approach, with roots in SIMULA (Dahl et al. 1968; 
Nygaard et al. 1978) and in abstract data types (Parnas 1972; Morris 1973; Liskov 
et al. 1974; Guttag 1977), also belongs to this category of ISD approaches. 
Instead of focusing on phenomena in one contextual domain, the object-oriented 
approach considers data and processes as encapsulated compositions, known as 
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objects. In ISD data and processes are designed and elaborated in parallel 
(Booch 1991; Henderson-Sellers 1992; Jacobson et al. 1992). In its latest variant, 
called the agent-oriented approach, objects are seen as agents with autonomy, 
social ability, reactivity, and pro-activeness (Wooldridge et al. 1995). 

Second, there are ISD approaches that differ from one another in how they 
structure the ISD process. We can distinguish between the life cycle approach, 
the prototyping approach, the incremental approach and the evolutionary 
approach. The approaches differ from each other in three essential aspects (cf. 
Vlasblom et al. 1995, 598):  (1) whether ISD actions are carried out iteratively or 
in linear fashion, (2) whether the delivery is monolithic or incremental, and (3) 
the degree to which the systems functionality is defined beforehand.  In the life 
cycle approach, the ISD work is decomposed into discrete phases to be 
accomplished in an order that is comparable to sequential waterfalls. Each 
phase should be satisfactorily completed before the next one begins (Royce 
1970). This implies, for instance, that user requirements must be frozen in the 
early phase. In the prototyping approach requirements are engineered in parallel 
with their implementation (Gomaa et al. 1981). The purpose is to increase, 
through prototypes, the understanding of those issues on which there exists 
some uncertainty, and thus to decrease risks related to the ISD process or its 
outcome (Floyd 1984).  The target of prototyping can be information 
requirements, user-interface, technical architecture, or the like (Bai 1998). There 
are several variants of the prototyping approach (Iivari 1982; Budde et al. 1984; 
Boehm 1988; Iivari 1990b).   

The incremental approach means the process of constructing a partial 
implementation of the total system and slowly adding increased functionality 
or performance (Graham 1989; Vonk 1990). The approach reduces the costs 
incurred before an initial capability is achieved. Also of the incremental 
approach there are several variants (Iivari 1982; Graham 1989). The evolutionary 
approach means that the information system is an incremental outgrowth of 
evolution and learning and it continues to evolve over time owing to new 
learning experiences (Lucas 1978; Lyytinen 1986). It is assumed that 
requirements will constantly change and, therefore, the iterative process never 
ends. The initial version of the system as a prototype is delivered to the 
intended users and it continues to be improved until it becomes the system.  
 
Synthesis 
 
The ISD approaches are often defined in an insufficient manner in the literature, 
which makes it difficult to fully understand them and to construct a clear-cut 
categorization for them. Our sub-division of the ISD approaches into three 
categories is an attempt to bring some structure among the approaches. There 
are many kinds of relationships between the approaches in the same category 
and in the different categories. Contrary to Benyon et al. (1987) who use the 
‘map’ metaphore (cf. national maps vs. major routes vs. street plans) in sub-
dividing the ISD approaches into hierarchical categories, we do not claim that 
the approaches within the three categories constitute a strictly hierarchical 
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structure. However, for most of the approaches it holds that an approach in the 
“upper” category is realized by applying views and principles of some 
approach(es) in the “lower” category (cf. Iivari et al. 2001). In the following we 
give some examples of this kind of relationship.   

First, the information modeling approach (e.g. Martin 1989) and the 
structured approach (e.g. Yourdon 1989) belonging to the category A, clearly 
apply views and principles of the data-oriented approach and the process-
oriented approach, respectively. To the interactionist approach (e.g. Kling 1987) 
and the trade-unionist approach (e.g. Bjerknes et al. 1987), in turn, the principles 
and ways of working contained in the political approach are particularly 
important. 

Second, the transformational approach in the category B mainly applies 
views of the data-oriented approach and / or the process-oriented approach. In 
the former case, information requirements are first transformed into a 
conceptual schema, then changed into a relational schema and further 
implemented into physical files. In the latter case, based on information 
requirements a context diagram is produced, from which data flow diagrams 
are derived and further decomposed into more detailed process descriptions. 
The prototyping approach and the evolutionary approach, in turn, are the most 
essential means of implementing the learning approach to ISD. 
 
 
8.2 Definition of ISD and ISD ontology 
 
 
It is surprising how seldom the notion of information system development is 
defined in the ISD literature. Either it is just “taken as granted” or only 
characterized with general outlines.  Where definitions are provided, 
conceptions about the nature, structure and behavior of ISD vary, partly due to 
commitments to different paradigmatic assumptions or ISD approaches. Quite 
naturally, whether seeing ISD, for example, as a transformation process, as a 
decision making process, or as a learning process becomes more or less visible 
in a way specific concepts and views are adopted, emphasized and organized in 
the definitions. The purpose of this section is first to briefly review definitions 
presented in the literature for ISD and to bring out our definition for the notion. 
Second, we define the ISD ontology and describe its overall structure. 

ISD is regarded as a “systematic” (Baskerville 1996, 9), ”collective” 
(Korpela et al. 2000, 198), “consistent and effective” (Harmsen 1997,  314) action. 
It is seen as a change process (Welke 1982; Lyytinen 1986; Mathiassen 1998; 
Tolvanen 1998) that is composed of actions, such as ”identifying, analyzing, 
designing and implementing” (Jayaratna 1994,  214), or ”analysis, design, 
technical implementation, organizational implementation and [..] evolution” 
(Iivari 1991,  250). Heym et al. (1992a) recognize, not only the main ISD stages, 
but also supportive actions in their definition:  “….covers all aspects such as 
systems specification, project management, quality assurance or risk 
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management from strategic planning, analysis, design, construction, and 
installation to maintenance of an information system” (ibid p. 215).   

One of the most comprehensive definitions is presented in Welke (1981). 
The definition has been further elaborated e.g. in Lyytinen (1986), Mathiassen 
(1998) and Tolvanen (1998). In its most commonly used form, the definition 
resembles that of Lyytinen (1986): ISD “is a change process taken with respect 
to object systems (target) in a set of environments by a development group to 
achieve and/or maintain some objectives” (ibid p. 74). Although this definition 
addresses many important aspects of ISD, it is still limited. 

In this work we pursue a definition that is comprehensive and neutral. 
Comprehensiveness means that the definition should address all the contextual 
aspects of ISD. Neutrality means that the definition should not exclude the use 
of any paradigm or ISD approach. This is an important property because the 
definition should serve as a foundation for engineering the ISD ontology that 
can be used equally, regardless of the selected ISD paradigm or ISD approach. 
That does not, however, mean that the definition must address views of all the 
paradigms and approaches. The definition goes as follows: 
 

Information system development is a context in which ISD actors carry out ISD 
actions, ranging from requirements engineering to implementation and 
evaluation of an IS, to produce ISD deliverables that contribute to a renewed or a 
new IS, by means of ISD facilities in a certain organizational and spatio-temporal 
context, in order to satisfy ISD goals set by ISD stakeholders.   

 
The definition above provides a versatile view on the contextual aspects of a 
situation in which an information system is developed. Consequently, ISD is 
much more than a composition of ISD actions132. ISD work is guided by ISD 
requirements and goals that, through elicitations and negotiations, become 
more and more complete, shared and formal (Pohl 1993, 279). ISD work is 
carried out by ISD actors with different motives, skills and expertise, acting in 
different roles in situationally established organizational units. ISD work is 
composed of various ISD actions, structured in concordance with the selected 
ISD approaches and ISD method, and following conventions of the 
organization. The views and principles of the ISD approach are realized with 
different structures of ISD actions. The application of the transformational 
approach, for instance, results in sequential IS modeling actions. The use of the 
decision making approach or the problem solving approach becomes visible in 
recursive structures of ISD actions that correspond to intelligence, design, and 
choice (Simon 1960). The learning approach causes frequent iterations of ISD 
actions. The political approach manifests itself through ISD actions that 
highlight stages of collaboration and negotiation concerning IS requirements 
and design options.  

                                                 
132  We use the term ‘ISD context’ when we want to emphasize the contextual nature of 

information system development. Otherwise, we refer to it with ‘ISD’.  
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The final outcome of ISD is a new or improved information system, 
composed of interacting social and technical components (cf. Chapter 5). In 
addition, ISD yields a wide range of plans, memos, decisions, diagrams, testing 
reports, etc. as intermediate and supportive material. ISD work consumes 
resources (money and time) and is supported by computer-aided tools (e.g. 
CASE tools). ISD actors, ISD deliverables and ISD facilities are situated in 
certain locations (e.g. in work sites, rooms, buildings or geographical sites), and 
are present in certain times.   

Based on the definition of ISD above as well as on the underlying 
ontologies presented in the preceding chapters, we can now define the ISD 
ontology as follows: the ISD ontology provides concepts and constructs for 
conceiving, understanding, structuring and representing contextual phenomena 
in ISD.  

To give an overview of the basis and structure of the ISD ontology, we 
present the meta model of the ISD ontology in Figure 74. In the figure we can 
see that the most focal concept of the ISD ontology is an ISD context. It is a 
specialization of the generic notion of a context (cf. Chapter 4). An ISD context 
is a highly complicated conceptual construct, which is composed of concepts of 
seven contextual ISD domains. Conceptions about an ISD context are influenced 
by paradigmatic assumptions adopted, as well as by ISD approaches applied. 
ISD paradigms and ISD approaches, in turn, are specializations of the generic 
notion of a point of view (cf. Chapter 3). Conceptions are also affected by ISD 
perspectives based on some system of perspectives (cf. Chapter 6). The 
paradigmatic framework and the system of ISD perspectives are kinds of rigid 
frameworks.  

In the following sections we elaborate the view of the ISD ontology given 
above. First, we will define the concepts and constructs within four ISD 
domains and the most essential inter-domain relationships (Section 8.3). 
Second, we will specify ISD perspectives and main inter-perspective 
relationships (Section 8.4).  
 
 
8.3 ISD Domains 
 
 
The purpose of this section is to present the ISD ontology through the meta 
models of the ISD domains and define the concepts and constructs included in 
the meta models. Due to the scarcity of space, we focus here only on four ISD 
domains: the ISD purpose domain, the ISD actor domain, the ISD action 
domain, and the ISD object domain. In addition, we present an overview of ISD 
intra-domain relationships. The meta models and the definitions have been 
derived from those presented in the context ontology in Chapter 4. Concepts 
that are adapted as such from the underlying ontologies, will not be explicitly 
repeated here. 
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FIGURE 74  Overview of the structure of the ISD ontology 
 
8.3.1 ISD Purpose Domain 
 
The ISD purpose domain embraces all those concepts and constructs that refer to 
goals, motives, or intentions of someone or something in the ISD context. The 
concepts may show a direction toward which to proceed, a state to be attained 
or avoided, and reasons for them. Reasons can be expressed in terms of 
requirements, problems, etc. The ISD purpose  domain is  highly important 
because only through its concepts it is possible to demonstrate “Why” an ISD 
effort is necessary to be accomplished. Correspondingly, reasons can be used to 
express why certain goals have been set up (from the historical point of view). 
In the following, we define the main concepts of the ISD purpose domain 
presented in the meta model (Figure 75).  
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FIGURE 75  Meta model of the ISD purpose domain 
 
An ISD goal expresses a desired state or event with qualities and quantities, 
related to an ISD context as a whole, or to some parts thereof. Hard ISD goals 
have pre-specified criteria for the assessment of the fulfillment of ISD goals, 
while soft ISD goals have not (Mylopoulos et al. 2001; Lin et al. 1999). An ISD 
requirement is some quality or performance demanded in and for an ISD 
context. It is a statement about the future (NATURE Team 1996). According to 
Pohl (1993), ISD requirements can be classified along three orthogonal 
dimensions: specification, representation, and agreement. In the specification 
dimension the requirements range from opaque to complete. The representation 
dimension categorizes requirements into informal, semi-formal and formal 
requirements. The agreement dimension reflects the fact that ISD requirements 
initially are personal views, which are negotiated and agreed on to achieve a 
common view. ISD requirements become goals in an ISD context after having 
been agreed on. All the requirements cannot be accepted to be goals, since their 
fulfillment may, for instance, go beyond the resources available. An ISD problem 
is the distance or mismatch between the prevailing ISD state and the state 
reflected by the ISD goals. ISD problems can be structured, semi-structured or 
non-structured.  

Some of the ISD purposes concern an IS. They are called the IS purposes 
(cf. Section 6.3.2) and are further sub-divided into IS goals and IS reasons, and 
furthermore into IS requirements, IS opportunities/threats, and IS strengths/IS 
weaknesses. IS goals are defined to guide the ISD actors in selecting and 
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implementing IS requirements. For the evaluation and comparison of IS 
designs, implementation and use, a large variety of IS criteria can be used. An 
IS criterion is a standard of judgment presented as an established rule or 
principle for evaluating some feature(s) of an IS in terms of IS purposes.  

Next, we consider the IS requirements more closely. An IS requirement 
means a condition or capability of the IS needed by an IS client or an IS worker 
to solve a problem or achieve a goal (cf. IEEE 1990, 62).  IS requirements are 
divided into functional requirements and non-functional requirements. 
Functional IS requirements specify what the IS should do and for whom (cf. Pohl 
1993,  280). An example of a functional requirement is: “A user must be able to 
check his account balance with the help of the CIS”. A non-functional IS 
requirement constraints or sets some quality attributes upon the services or 
functions offered by the IS (Pohl 1994,  247, Cysneiros et al. 2001, 97). A non-
functional requirement specifies how the IS should function. It can be expressed 
in terms of performance, safety, quality, maintainability, portability, usability, 
reliability, confidentiality, security, accuracy, etc. (see Chung et al. (2000) and 
Cysneiros et al. (2001, 100) for more comprehensive lists of non-functional 
requirements).  

There are also other classifications for IS requirements. Sage and Palmer 
(1990) distinguish between technical requirements and managerial 
requirements (i.e. costs, time constraints as well as quality factors). IEEE (1990) 
recognizes functional requirements, performance requirements, interface 
requirements, design requirements, implementation requirements, and physical 
requirements. The NATURE Team (1996, 516-517) divides the IS requirements 
into two subtypes: user-defined and domain-imposed requirements. User-
defined requirements arise from clients’ requests, whereas domain-imposed 
requirements are facts of nature and form the connection between the real 
world and the system to be built. These requirements include e.g. social, 
organisational and technical contexts. The IS requirements can also be classified 
on the basis of the rationale, i.e. reasons for which they are presented and 
considered important. These reasons associate the ISD context with other 
contexts.  Sutcliffe (1996) distinguishes between policy-driven requirements, 
problem-initiated requirements, requirements by example, and the 
requirements imposed by the external environment.  

In this work we apply the IS perspectives to categorize the IS purposes 
into IS systelogical, IS infological, IS conceptual, IS datalogical, and IS physical 
purposes. Next, we present the perspective-based definitions for the IS 
requirements. The IS systelogical requirements concern (e.g. the benefits and costs 
of) information services the IS should provide to its utilizing system133. These 
requirements are specified by senior management (e.g. financial constraints in 

                                                 
133  ISD is here seen a context which primarily aims to acquire or improve an information 

system. Often in parallel to ISD there is an effort going on, which pursues to change 
the utilization system (cf. business process re-engineering). The IS systelogical 
requirements may reflect needs for improvements in an existing IS as well as in the 
utilization system. 
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terms of budget) and IS clients (e.g. required functionalities). The IS infological 
requirements express demands on the type and quality of information needed as 
well as actions with which the information is to be processed. The IS conceptual 
requirements pertain to the contents of information to be processed in the IS. The 
IS infological and IS conceptual requirements are specified by IS clients. The IS 
datalogical requirements concern e.g. how to present information, how to divide 
information processing between persons and computers, and how to organize 
responsibilities for information processing into IS roles and IS positions. These 
requirements are affected by the IS workers’ views. The IS physical requirements 
are detailed demands on physical structures and behavior of the HIS and the 
CIS. These are derived and further refined from non-functional requirements 
expressed in terms of job satisfaction, response time, memory use, security 
level, etc.  

The ISD goals, as well as the ISD requirements, are related to one another 
through refinement relationships and influence relationships. A refinement 
relationship means that an ISD goal can be reached when certain ISD goals, also 
known as satisfying or argumentation goals (Cysneiros et al. 2001, 102), below it 
in the ISD goal hierarchy are fulfilled (Rolland et al. 1998, 1056).  An influence 
relationship means that an ISD goal has impacts on the achievement of another 
ISD goal (Loucopoulos et al. 1998, Kavakli et al. 1999, 192). The influence can be 
positive or negative. The ISD goals with negative interrelationships are referred 
to as conflicting requirements (Chung et al. 2000, Lee et al. 2001).  A causalTo 
relationship between two ISD problems means that the appearance of one ISD 
problem (e.g. lack of human resources) is at least a partial reason for the 
occurrence of  another ISD problem (e.g. delays in ISD deliveries).   

The ISD requirements and the ISD goals exist with different status (cf. the 
agreement dimension in Pohl (1993)). ‘Proposed’ means that an ISD 
requirement or an ISD goal is brought out by an individual or a group. ‘Signed 
off’ means that an ISD requirement, or an ISD goal, is agreed on. ‘Frozen’ means 
that no changes are accepted in an ISD requirement or an ISD goal without new 
negotiations and agreements. 

 In the ISD / SE literature, a large variety of requirements for requirements 
specifications are presented. Sommerville (1998), for instance, states that the 
requirements should fulfill the requirements of validity, consistency, 
completeness, realism, verifiability, comprehensibility, traceability, and 
adaptability. According to Lang et al. (2001, 162), the requirements should be 
concise, design-independent, feasible, precise, complete, consistent, and 
verifiable. IEEE (1991) states that requirements specifications should be 
unambiguous, complete, verifiable, consistent, modifiable, traceable and usable 
during operations and maintenance (see also Krogstie (2002), Firesmith (2003a), 
and Firesmith (2003b)). 

 
8.3.2 ISD Actor Domain 
 
The ISD actor domain consists of all those concepts and constructs that refer to 
human and active part of an ISD context. Actors own, communicate, transform, 
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design, interpret, code, etc. objects in an ISD context. They are responsible for or 
responsive to trigger and cause changes in the states of objects. They are also 
aware of their intentions and capable, at least to some degree, of reacting to 
fulfill their goals. Next, we define the most essential concepts and relationships 
in the ISD actor domain presented in the meta model in Figure 76. 
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FIGURE 76  Meta model of the ISD actor domain 
 
An ISD actor is an ISD human actor or an administrative actor that is, one way 
or another, involved in an ISD context. An ISD human actor means an individual 
person or a group of persons contributing to ISD work. An ISD administrative 
actor is an ISD position or a composition of ISD positions. The ISD position is a 
post of employment occupied by a human ISD actor in an ISD context. It is 
identified with a title, composed of the defined ISD roles, and equipped with a 
set of skill or capability characterizations (i.e. expertise profile).   

A capability means a skill or attribute of the personal behavior, according 
to which action-oriented behavior can be logically classified (Acuna et al. 2004,  
678). An ISD role is a collection of ISD responsibilities and authorities, stipulated 
in terms of ISD actions. An ISD position can be hold by several persons. There 
may exist ISD roles that are not included in any ISD position but are anyhow 
played by one or more persons. A person may play in several ISD roles.   

In the ISD literature, the ISD roles are categorized in various ways. The 
suggested categorizations can be divided into two groups depending on 
whether they are based on so-called social roles or technical roles (Constantine 
1991). In the following, we first give some examples about the categorizations in 
the literature and then define the set of ISD roles used in this work. 
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Divisions into the social ISD roles result from ways of viewing ISD as a 
problem solving process, a change process, a political process, or a learning 
process. If ISD is seen as a problem solving process, the major ISD roles are a 
problem owner and a problem solver (e.g. Vessey et al. 1994). If ISD is regarded 
as a change process, it involves a change facilitator (or a change agent or a 
shepherd) and a change implementator (Welke et al. 1982; Rettig et al. 1993, 49). 
According to the political models, ISD involves self-interest agents employed to 
perform some services on behalf of the principals (Robey 1984; Markus et al. 
1987). If ISD is seen as a learning process, it involves a mentor and a student or 
an apprentice. Further, applying organizational metaphors on ISD (Kendall et 
al. 1993), we can distinguish between the following social roles (the 
corresponding metaphor is mentioned in parentheses): a player (game), a part 
or an interchangeable cog (machine), a captain and his crew (journey), a head 
and members (family), a leader with his troops and an enemy (war). 

Hirschheim et al. (1989, 1203-) distinguish between four roles of an IS 
analyst based on paradigmatic assumptions. The IS analyst can be seen as a 
systems expert, a facilitator, a labor partisan, or an emancipator. An expert 
takes the objectives and turns them into a system. A facilitator helps users to 
make sense of the new system and its environment. For a labor partisan there 
are two antagonistic classes, the owners of the productive resources and labor, 
and he/she has to choose between being an agent for the former or the latter. 
An emancipator acts as a social therapist in attempting to draw together the 
various stakeholders in the ISD. 

The divisions into the technical ISD roles result from applying the 
stakeholder view, the software business view, or the organizational view. In the 
first case (e.g. Macauley 1993), the roles are based on the division of 
stakeholders into (1) those with financial interest in, and responsibility for, the 
systems sale or purchase, (2) those who have an interest in the use of the 
system, and (3) those who are responsible for the development, introduction, 
and maintenance of the system. From the viewpoint of the software business, 
we can distinguish between two partner roles: a customer and a supplier 
(Franckson 1994). The organization-based ISD roles derive from which system 
they are representatives of: (1) representatives of the business system, (2) 
representatives of the information system, or (3) representatives of the object 
system. The latter role stands for those about whom information is stored and 
processed in the information system.  

In this work, we base our categorization of ISD roles on the works of 
Checkland (1988), Baskerville (1989, 246), Sabherwal et al. (1995, 312) and 
Mathiassen (1998,  82). We distinguish between five major ISD roles that unify 
social and technical natures in ISD work. The roles are: an IS owner, an IS client, 
an IS worker, an IS developer, an ISD project manager, and a 
vendor/consultant.  

An IS owner in his/her role has a financial interest in the IS and, thereby, 
the responsibility for, and the authority of, making decisions on the IS as 
though it were his/her property. In some cases, e.g., in small software houses, 
he/she may be the real owner.  More commonly, an IS owner might in many 
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cases behave as if he/she possessed the IS, e.g. while, at a general level, were 
just making the final decisions on goal settings for, and acceptance on, the 
deliverables. In these cases, he/she acts like a commissioning agent 
(Brinkkemper 1990, 15). This implies that he/she also has a major power to 
decide when the current IS should be abandoned and replaced by a new one 
(Graham et al. 1997, 85). An IS owner does not directly intervene in ISD project 
work, unless the project is so large and important that it has a major impact on 
the organization. 

An IS client is the ISD role player for whom the IS is to be developed. 
He/she is a beneficiary or a ‘victim’ of the IS (Graham et al. 1997, 85). Therefore, 
he/she is expected to be active in specifying information requirements for the 
IS in terms of contents, form, time, and media. An IS client also acts as an 
informant for inquires on business processes, and as an acceptor of the designs 
of ISD deliverables (cf. the so-called client tests) and plans of re-engineering 
business processes and work contents (Brinkkemper 1990, 15-16). IS clients 
usually come from inside the organisation for which the ISD project has been 
launched. Sometimes, they are stakeholders from the environment, e.g. 
representatives of the bank needing the salary data in an electronic form.  

An IS worker works with the current IS and/or is going to work with the 
new IS. He/she collects, records, stores, transmits, and processes data with or 
without the help of the computerized information system, in order to produce 
information needed by IS clients. During an ISD effort, IS workers are expected 
to express their experience from and requirements for the functionalities, user 
interface, and information contents of the CIS, as well as to give their opinions 
about re-arrangements among IS roles and positions designed for a new human 
information system (HIS). They also actively participate in user tests. 

An IS developer attempts to meet the needs and requirements put forward 
by ISD actors in the other roles. For that purpose, he/she analyses IS 
requirements and IS goals expressed and refines them into more realization-
dependent specifications, searches for social and technical solutions and 
implements those selected. He/she also strives for ensuring that the 
specifications, designs and implementations are technically acceptable (cf. 
developer's tests)134.  

An ISD project manager makes plans on how to organize an ISD effort. This 
includes making plans on ISD phases, schedules, milestones, base lines, 
resource allocations, etc. He/She also participates in making decisions on the 
execution of the plans. Moreover, he/she is responsible for motivating and 
inspiring IS workers and IS developers, resolving disagreements, developing 
standards of performance and methods for the assessments, and establishing 
reporting and monitoring systems. 

A vendor / consultant role is played by a person from outside the 
organization. With the role more expertise on some specific organizational or 
technical issues are imported to an ISD project. Expertise may be related to 
                                                 
134  IS developers are referred to as workers and actors in the frameworks of Jacobson et 

al. (1999) and Graham et al. (1997,  85), respectively. 
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technologies (e.g. J2EE platforms, web services), methods (e.g. agile methods), 
techniques (e.g. TQM) or the like, that is something new to the organization. 

The IS clients and the IS workers are users of the IS. Each role can be 
further specialized. For instance, an IS developer can be specialized e.g. into a 
business analyst, an IS analyst, an IS designer, and an IS constructor (cf. Olle et 
al. 1988a)135. We call the ISD actors who are potentially affected by the IS or ISD 
and therefore are invited to act in some of the aforementioned ISD roles the ISD 
stakeholders.  

The ISD work is mostly organized in the form of a project. An ISD project 
is a temporary effort with the well-defined objectives and constraints, the 
established organization, the budget and the schedule, launched for the 
accomplishment of ISD. An ISD project organization is a composition of ISD 
positions, ISD roles and ISD teams wherein the responsibility, authority and 
communication relationships are defined (cf. Fife 1987).  

A large project organization is composed of several organisational units. 
An ISD organizational unit is a composition of ISD positions with a coherent set 
of organizational goals, authorities and responsibilities. The most common 
units in ISD are a steering committee, also known as a guidance team (Rettig et 
al. 1993, 46), and a project team. A steering committee carries the responsibility 
for the overall management of the ISD project. The day-to-day management is 
delegated to the project manager, who directs and controls the actions of 
specialists in various disciplines. A project team is collected for the execution of 
an ISD effort. If a project is large, there may be a need for several teams 
acknowledging their share in the common responsibility for developing the IS. 
The division into teams may follow the sub-systems structure, the phase 
structure and/or expertise collections (e.g. the technical team, the quality 
assurance team, etc.).  Managerial accountability and responsibilities inside and 
between the teams may vary depending on the organizational pattern selected. 
Within each team, the position of a leader is devoted to the management of the 
team and to ensure proper communication between the members, as well as 
between the team and the other teams. Another essential position in a team is 
that of a secretary.  

Some of the positions and roles in an ISD project are full-time vacancies 
due to the amount of responsibilities and time they require. This is commonly 
the case for the ISD project manager in a large project. Some other positions and 
roles do not require full-time commitment. For instance, IT experts can 
participate in more than one ISD project, and IS clients can participate in 
projects while they carry out, at least partly, their daily work included in their 
positions in the business system, in the information system, or in another 
organization.  

For each ISD position the most suitable person is sought. For being 
suitable the person's skill and experience profile has to match with the expertise 
profile stated for the ISD position (cf. Acuna et al. 2004).  Sometimes, no person 
with the required qualifications can be found from inside the organization, and 
                                                 
135  See Kruchten (2000, 263) for 28 different sub-roles of an IS developer. 
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thus an expert (e.g. a consultant) from another organisation is hired. According 
to their expertise, the persons involved in ISD can be categorized into IT 
experts, business experts and work experts. IT experts are persons whose 
education, skills, experience, as well as their former positions, are related to 
information technology and/or ISD methods. Business experts are 
knowledgeable in business strategies, policies, markets, competition, trends, 
legislation, etc., in other words, in matters relating to how to make business, in 
general or in the organization. Work experts master daily routines, e.g. in making 
orders, invoicing, production planning, inventory control, goods deliveries, etc. 
The work experts can be further categorized according to whether their 
expertise concerns the USIS, IS, or OSIS.  

Participation of IS clients and IS workers in an ISD context can take a 
number of various forms. Traditionally three main forms are distinguished: 
consultative, representative and consensus (Mumford 1981). With the 
consultative development, a project team consults with IS clients and IS 
workers, particularly about their information requirements and job satisfaction 
needs. The primary actions of analysis, design and implementation are, 
however, carried out by IT experts. With the representative development, a 
project team is formed of representatives of the IS clients and the IS workers. 
The aim of these representatives is to actively participate in the development of 
a new system. The consensus development attempts to involve, not only the 
representatives, but all the IS clients and IS workers into the active ISD work.  
More refined types of participation are presented by Cotterman et al. (1989) 
based a cube with three dimensions (operation, development, control) and 
Heller (1991) based on different ways of sharing power and influence (see also 
Krogstie et al. 1996, 286). More recently, Markus and Mao (2004) propose 
theoretical foundations to recognize different roles in which IS clients and IS 
workers may participate in ISD.  
 
8.3.3 ISD Action Domain 
 
The ISD action domain comprises all those concepts and constructs that refer to 
deeds or events in an ISD context. ISD actions, also known as ISD functions, ISD 
activities, ISD tasks, and ISD operations, are carried out to manage and execute 
a part of an ISD effort. They customize, incorporate, and implement given 
procedures, rules and policies to produce desirable ISD deliverables. The ISD 
actions may involve e.g. knowledge acquisition on problems encountered in the 
existing IS, generation of design options and selections among them, creation 
and representation of IS models at various levels of abstraction, verification and 
validation of their consistency, implementation of models into concrete 
software and hardware architectures, etc. To manage this extensive variety of 
ISD actions, we apply a set of views to establish a fundamental categorization of 
ISD action structures. Each view guides one to conceive the ISD action domain 
from a particular perspective. In the following, we make a short review of the 
categorizations presented in the ISD literature. Then we introduce our 
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categorization and define the concepts and constructs for each ISD action 
structure based on this categorization.  

Several categorizations of ISD actions and ISD processes have been 
presented in the literature. One of the most well-known is the perspective-based 
categorization of software process models by Curtis et al. (1992,  77). The 
perspectives are: functional, behavioral, organizational, and informational. The 
functional perspective represents what process elements are being performed, 
and what flows of informational entities (e.g. data, artifacts, products) are 
relevant to these processes. The behavioral perspective reveals when process 
elements are performed (e.g. sequencing), as well as aspects of how they are 
performed through feed-back loops and iterations. The organizational 
perspective represents where and by whom (agents) in the organization process 
elements are performed, physical communication mechanisms used for transfer 
of entities, and the physical media and locations used for storing entities. The 
informational perspective represents the informational entities produced or 
manipulated by a process, their structure and the relationships among them. As 
we can see, the categorization of Curtis et al. (1992) involves, not only the ISD 
actions, but also various phenomena (e.g. ISD actors, ISD deliverables, ISD 
locations etc.) related to the ISD actions. This way of categorization is 
unsuitable for our purposes here. 

Dowson (1987) presents a categorisation of process models that is more 
focused on the ISD action domain.  He distinguishes between three kinds of 
process models: the activity-oriented models, the product-oriented models, and 
the decision-oriented models. The activity-oriented models derive from an 
analogy with problem-solving-in-large in which finding and executing a plan of 
actions leads to the solution (cf. Schmitt 1993,  233). The most common 
approach in the activity-oriented models is the transformation approach 
according to which ISD is seen as a sequence of transformation steps from an 
initial representation of the required real world, through a sequence of 
intermediate representations, culminating in the delivered system (cf. 
Moynihan 1993; Tracz et al. 1993). Transformation can also be interpreted from 
the viewpoint of feedback control systems (Weide et al. 1993). Examples of this 
kinds of models are the waterfall model (Royce 1970), the spiral model (Boehm 
1988), the hierarchical spiral model (Iivari 1990b) and the fountain model 
(Henderson-Sellers et al. 1993).  In the product-oriented models, outcomes of 
ISD are used to define an IS as being in a particular state of evolution (Glasson 
1989; Tomiyama et al. 1989). According to the decision-oriented models, ISD is 
seen as a complicated design decision composed of many smaller ones. 
Execution of these small sub-decisions creates dependencies among them 
corresponding to input and output components (cf. White 1982; Iivari et al. 
1987; Potts 1989; Wild et al. 1991; Jarke et al. 1990). 

More specific categorizations of actions are specified on the bases of group 
behavior (Hutching et al. 1993), dialog (Finkelstein et al. 1988), and cooperation 
(Jarke et al. 1993). Building on group behavior Hutching et al. (1993) distinguish 
between five phases of group development: forming, storming, norming, 
performing, and adjourning. Finkelstein et al. (1988) propose a formal 
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framework for understanding program development as cooperative work. The 
framework is based on a dialogue paradigm with three essential constructs: 
acts, events, and commitments. Acts are used to reflect assertions, denials, 
questions, withdrawals, challenges, and resolution demands occurring in the 
conversations. Jarke and Pohl (1993) see ISD as cooperation between agents. 
Their model organizes this cooperation to conversation structures, leading to 
decisions that define and select actions.136 

All these views help decomposing the ISD work into action structures but 
in quite different ways. It is difficult or even impossible to integrate them into a 
unified view on the ISD action domain. We recognize five fundamental ISD 
action structures that together are comprehensive enough to cover all the 
essential aspects of the ISD action domain, and deploy them as orthogonal to 
one another. The ISD action structures are: the ISD management – execution 
structure, the ISD workflow structure, the ISD phase structure, the ISD problem 
solving structure, and the IS modelling structure. In addition to these, the 
generic action structures (i.e. the decomposition structure, the control structure, 
and the temporal structure) defined in Section 4.4.3 are “inherited” by the ISD 
action domain. The aforementioned ISD action structures give a natural basis 
for specializing and decomposing ISD work into more specific ISD actions. Each 
ISD action is governed by one or more ISD rules with the ECAA structure 
composed of ISD events, ISD conditions and ISD actions (cf. Section 4.4.3). An 
instance of an ISD action is called an ISD process.  

Next, we will define the ISD action structures and the concepts contained 
in them. After that we form an integrative view by considering how the ISD 
action structures are intertwined with one another. In each part we refer to the 
literature to show how the ISD structures are recognized, named and 
decomposed there. An overall view of the ISD action structures and concepts is 
presented in Figure 77 in the form of the meta model of the ISD action domain.  
 
A.  ISD Management–Execution Structure 
 
From the viewpoint of the ISD management–execution structure ISD is seen as a 
functional and behavioral unity, composed of two kinds of actions, ISD 
management actions and ISD execution actions. ISD management actions aim to 
organize, staff, direct, implement and control ISD work. These actions comprise, 
for instance, making a project plan (i.e. a work breakdown, a schedule, resource 
allocation, etc.), determining its adequacy, consistency and feasibility, 
establishing a quality control mechanism, and re-organizing the plan in cases in 
which it does not match the reality. ISD management actions also involve 
planning, acquiring and allocating the resources for an ISD project.  

ISD execution actions aim to produce the required ISD deliverables under 
the guidance and control of ISD management. These actions include, for 
instance,   knowledge    acquisition     about     the   existing   IS   and    problems  
                                                 
136  See more categorizations in e.g. Barros (1991, 539) and Rubenstein-Montano et al. 

(2001). 
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FIGURE 77  Meta model of the ISD action domain 
 
encountered there, requirements specification for a new IS, and design and 
implementation of specifications into a working system. Besides the actions 
directly contributing to the deliverables, ISD execution actions comprise 
supporting actions, for instance training and guidance of users, installation of 
computer-aided development environments, etc. 

The ISD management actions and the ISD execution actions constitute a 
highly complicated structure in which they appear recursively within one 
another on multiple levels. These management or control levels are identified 
with different names. Essink (1988, 361), for instance, distinguishes between 
two control levels, which he calls the process of IS planning and managerial 
control, and the process of approach selection. The former corresponds to daily 



 

 

326 

activities of project management, and the latter to the decision making on 
approaches to project management, modelling, and validation. The SYDPIM 
model (System DYnamics Project-management Integrated Model) Rodrigues et 
al. (1997, 56) distinguishes two levels of management processes that are the 
operational level and the strategic level. At the operational level ISD work 
processes are monitored and new or revised plans with estimations and risk 
analysis are produced for engineering processes. At the strategic level strategic 
decisions and risk analysis are made.  

The ISD management actions can be further specialized into ISD planning, 
ISD organizing, ISD staffing, ISD directing, and ISD controlling (see Section 
4.4.3).  ISD planning refers to all those ISD management actions that specify the 
goals of an ISD project and the strategies, policies, programs and procedures for 
achieving them (cf. Thayer 1987, 21). These involve partitioning managerial and 
technical requirements into measurable actions and tasks, determining 
milestones, priorities and schedules, estimating necessary resources and 
figuring them as a budget.  

ISD organizing refers to all those ISD management actions that are needed 
to design a formal structure of ISD execution actions and authority 
relationships between them. These comprise aggregating actions into ISD roles 
and ISD positions, establishing an organisational structure, and specifying 
titles, scope, duties, qualifications and relationships of ISD positions. 

ISD staffing refers to all those ISD management actions that are needed to 
fill the ISD positions of the ISD project organization and to keep them filled. 
These comprise recruiting qualified people, orientating them into technical and 
social environment, educating them in required methods, skills and equipment, 
evaluating personnel, determining salary scale, promotion policy etc. 

ISD directing refers to all those ISD management actions that are needed 
for clarifying the assignments of ISD personnel, assigning actions to 
organisational units, teams and individuals, motivating and inspiring 
personnel, resolving disagreements between personnel and between the ISD 
project and outer stakeholders. 

ISD controlling refers to all those ISD management actions that are needed 
for ensuring that actual actions are executed according to the plans. These 
develop standards of performance and methods for the assessments, establish 
reporting and monitoring systems, measure and audit progress and status of a 
project as well as quality and quantity of deliverables, and initiate corrective 
actions. 

In the literature, the ISD management–execution structure is commonly 
recognized but with different views and concepts. Van Slooten and 
Brinkkemper (1993, 179) divide the ISD processes into three categories: primary 
processes that transform inputs to output, regulative processes, like policy 
making, planning and control, and maintenance processes that obtain and 
maintain the means of the organizations. For structuring the system 
development, Wijers (1991, 14) presents a framework for categorizing the types 
of activities for the solutions of ISD problems. In the framework he 
distinguishes between ‘way of working’ and ‘way of controlling’. The former 
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deals with the identification of the relevant tasks in the development process 
and determining their feasible order. The latter includes planning for the ISD 
project and plan evaluation. Rodrigues et al. (1997, 56) distinguish between the 
engineering process and the management process. Mathiassen et al. (1988, 9) 
and Mathiassen (1998), in the basic activity model of software development, 
divide the systems development into two categories of activities: performance 
and management. The performance activities are oriented towards software 
products and services, whereas the management activities are oriented towards 
the process of producing them.  Cronholm et al. (1999,  222) distinguish between 
the target domain and the project domain. The former corresponds to the 
execution part of ISD, and the latter stands for project management. 
 
B.  ISD Workflow Structure 
 
According to the ISD workflow structure ISD is composed of various ISD 
workflows. An ISD workflow is a coherent composition of ISD actions, which are 
organised to accomplish some ISD process, which share the same target of 
action, and which produce valuable results for stakeholders137. A part of an ISD 
workflow is called an ISD task. ISD workflows can be identified among the ISD 
management actions as well as among the ISD execution actions. In the 
following, we will consider them in the context of the ISD execution actions. We 
distinguish between five core ISD workflows: IS requirements engineering, IS 
analysis, IS design, IS implementation, and IS evaluation138. 

IS requirements engineering means an ISD workflow, which aims at the 
identification and elicitation of IS clients’ and IS workers’ requirements on the 
IS, as well as establishing and maintaining, at least to some extent, agreement 
on what the information system should do and why. This necessitates that the 
ISD actors have general understanding of the problem area and the scope of the 
IS (cf. Kruchten 2000, 155). The IS requirements engineering is commonly 
decomposed into feasibility study, requirements analysis, requirements 
definition, and requirements specification (Sommerville 1998,  67).  

IS analysis means an ISD workflow, which models the problem domain. 
The focus of this workflow is to represent the business system in a manner that 
is natural and concise enough, and to achieve an overall description of the 
information system that is easy to maintain. The IS analysis aims to ensure that 
the information system’s functional requirements are covered. In this sense, 
analysis starts with looking at the system from outside (Mathiassen et al. 2000, 
13).  

                                                 
137  Note that the term ‘workflow’ is here used in a different meaning from the one used 

in the UML process model (Jacobson et al. 1999) or in the workflow management 
literature (cf. Workflow Management Coalition 1999; Mentzas et al. 2001).   

138  In some frameworks (e.g. Iivari 1991,  250) there are also workflows for maintenance 
or evolution of an IS. We regard them as being composed of ISD actions of the core 
ISD workflows and ignore them here 
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IS design means an ISD workflow, which models the solution domain. It 
involves elicitation, innovation and evaluation of design options in the form of 
IS models on various levels of abstraction. Thus, the IS design looks at the 
system from inside. A decision is made on which part of the system will be 
automated (cf. CIS) and which part is to be implemented as a manual system 
(cf. HIS). The workflow aims to acquire an in-depth understanding of issues 
regarding non-functional requirements and constraints related to components 
reuse, software architectures, hardware platforms, user-interface technologies, 
etc. Good designs are not deduced, they are invented. Thus, a creative and 
intellectual element is most essential for design (Fairley 1985; Lanzara 1983).  

IS implementation means an ISD workflow, which fleshes out the 
architecture and the system as a whole, by carrying IS design models into effect. 
There are two kinds of implementation actions. Technical implementation, 
known as construction in Iivari (1991,  250), involves all those actions that are 
necessary to construct/acquire and carry into effect technical components of the 
CIS. These generate and code software procedures, acquire and assemble 
hardware components into computer and communication systems, specify and 
load files and databases, etc. Organizational implementation, referred to as 
institutionalisation in Iivari (1991, 250), means all those actions that are 
necessary to create and change social norms, conventions, procedures and 
structures to be embedded in the HIS.  

IS evaluation means an ISD workflow, which aims at the assessment of an 
existing system, as well as of all the specifications, designs and implementations 
made for the future system. Evaluation is based on quality criteria derived from 
the functional and non-functional requirements. Evaluation comprises 
verification and validation. Verification is a process of determining whether or 
not the ISD deliverables, produced by ISD work, fulfill the established 
requirements. Validation is a process of evaluating the IS at the end of the ISD 
work to ensure compliance with the requirements (cf. Boehm 1984).  

Besides the core workflows defined above, there are supporting 
workflows, like configuration and change management (cf. Kruchten 2000). 
These are not discussed here.   

As can be seen from the definitions above, there are no clear-cut 
borderlines between the workflows. In the ISD literature, analysis and design 
are the most commonly referred parts of the ISD work. To illustrate differences 
in their meanings and deviations in the conceptions about how they are related, 
we present a short review of the literature. We can distinguish between five 
views on which the dichotomy of analysis and design is defined in the 
literature. According to the first view, analysis continues until a decision can be 
made on whether design is necessary or profitable. This means that analysis 
also yields at least informal requirements for the IS (e.g. Brodie et al. 1982) or 
even narratives of required functions and building blocks of the system (e.g. 
Maddison et al. 1984; Colter 1984).  According to the second view, analysis 
means finding out "Why" and "What" the system is supposed to do, and design 
means "How" this should be happened (Alabiso 1988; Wand 1988a,  203; 
Zultner 1993; Vidgen 2002, 249). The third view makes a difference between 
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analysis and design on the basis of the object system of the actions: analysis 
involves an existing system, and design focuses on a new system (cf. Olle et al. 
1988a; Mathiassen et al. 1988,  7; Jayaratna 1994, 244). The fourth view considers 
analysis to be something which takes apart and describes things, whereas 
synthesis is a constructive action by which the known parts are put together in 
a new way (cf. Mathiassen et al. 2000,  14; Harmsen 1997,  138). The fifth view 
emphasizes the seamlessness of analysis and design, meaning that analyzing a 
problem leads automatically to thoughts of a like solution (cf. Graham et al. 
1997,  41-42). 

The first view is based on the phase-oriented perspective, whereas in the 
third view a distinction is made based on the target of the action (an existing 
system vs. a new system). These kinds of conceptions are common in 
conjunction with the waterfall model (Royce 1970). In recent years, the concepts 
of workflow and phase have been clearly separated (cf. Jacobson et al. 1999). 
This is best enabled by the second view. According to this view, the analysis 
workflow as well as the design workflow contains analytical and synthetic 
actions, yet from different perspectives. This is the view we advocate here. 
 
C.  ISD Phase Structure 
 
According to the ISD phase structure, the ISD is seen as being composed of 
sequential phases. An ISD phase means an ISD action, executed between two 
milestones, by which a well-defined set of goals is met, ISD deliverables are 
completed, and decisions are made on to move or not to move into the next 
phase (cf. Kruchten 2000, 276). Milestones are synchronization points where ISD 
management makes important business decisions and ISD deliverables have to 
be at a certain level of completion (Heym et al. 1992a,   230). Major milestones 
are used to establish baselines (see Section 8.3.4 for the definition of a baseline). 

 In ISD methods, a large variety of phases with different names are 
presented. Without wanting to commit to any of them, we have selected the set 
of phases, suggested by Jacobson et al. (1999) and Kruchten (2000), as an 
example of the ISD phase structure139. It comprises four phases: IS inception, IS 
elaboration, IS construction, and IS transition. 

In the IS inception phase the focus is on understanding the overall 
requirements and determining the scope of the development endeavor. The 
scope is needed to understand what the architecture has to cover, what the 
critical risks are, and to provide the boundaries for costs and schedule, as well 
as the return-on-investment estimates. All in all, the IS inception phase 
determines the feasibility of the proposed system development. 

                                                 
139  We are fully aware of a large variety of process models (e.g. life cycle model, spiral 

model, fountain model) and approaches (e.g. prototyping approach, evolutionary 
approach, incremental approach, agile approach), as well as of the fact that in each of 
them different phase structures are applied. Although the phase structure of 
Kruchten (2000) is not conceptually the best, we are here satisfied with that. 
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In the IS elaboration phase the focus is on detailed requirements 
engineering, but some systems design and implementation actions aimed at 
prototyping can also be done. Prototyping is deployed to better understand IS 
requirements, to test the established architecture, thus mitigating certain 
technical risks, and/or to learn how to use certain tools and techniques. The 
phase ends with the baseline for the next phase. 

The IS construction phase focuses on design and implementation of the 
system. During this phase a software product is produced, which is ready for 
the initial operational release that fulfills the given requirements. Also plans for 
organizational changes are “operationalized” for realization. 

The IS transition phase is entered when at least some part of an ISD baseline 
is mature enough to be deployed. The phase comprises beta testing, fixing bugs, 
adjusting features, parallel operations with the legacy system, conversion of 
operational databases, training of users and maintainers, etc. At the end of the 
phase the final product (CIS) has been delivered and the new organizational 
arrangements (HIS) are fully in operation. 

The ISD phases comprise, besides ISD actions described above, also some 
method engineering actions. Especially in the first phase but also at the 
beginning of the other phases it is common to customize the selected method to 
make it better fit the ISD context at hand (Nuseibeh et al. 1996; Mathiassen 1998; 
Tolvanen 1998). These ME actions are discussed in Chapter 10. In some ISD 
approaches an ISD phase structure is established to include some IS actions as 
well. In the prototyping approach (Budde et al. 1984) and especially in the 
evolutionary approach (Iivari 1982; Falkenberg et al. 1992a) ISD actions and IS 
actions are highly intertwined. We do not discuss this issue any further here. 
 
D.  ISD Problem Solving Structure 
 
The ISD problem solving structure is the result of seeing the ISD as a series of 
interrelated decisions, which involve the identification and articulation of 
problems, alternative solutions, decisions and justifications (cf. Wild et al. 1991, 
18). There are approaches which lay more emphasis on problems (e.g. Bodart et 
al. 1983; Sol 1992; Blum 1994; Jayaratna 1994), and approaches for which the 
decision is the focal element (e.g. Jarke et al. 1990; Wild et al. 1991; the NATURE 
Team 1996).  With the ISD problem solving structure we aim to cover both of 
these approaches140. 

According to Simon (1960), problem solving is composed of three kinds of 
stages: intelligence, design, and choice. Intelligence means actions that search the 
environment for conditions calling for a decision. In the ISD context, this means 
the recognition of problems and the acquisition and analysis of knowledge 
relevant to resolution of the problems. Design consists of the actions of 
inventing, shaping and specifying alternatives for possible courses of action in 

                                                 
140  Considering each choice in the problem solving structure to be a decision establishes 

a structure of decisions, which are associated with one another with relationships 
that are derived from the corresponding relationships of the problems. 
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ISD work. If the available information is found to be insufficient, the problem 
solver (e.g. an IS analyst) may choose to go back to the intelligence stage before 
making any further move. Choice means the evaluation and comparison of each 
alternative design option and the selection among them. If needed, more 
information is collected, more options are specified and/or specifications are 
further refined or revised. Hence, the stages constitute an iterative rather than 
sequential process. 

Simon's framework can be recursively applied within each of the three 
stages (cf. Cooper et al. 1979). This enables us to distinguish between the first-
order problems and the second-order problems (cf. Eloranta 1974). To solve the 
original problem, known as the first-order problem, it is first necessary to find 
an answer to how to solve it. Intelligence within intelligence, for instance, 
means the collection of information about possible approaches, objectives and 
procedures to collect and analyse the information. Correspondingly, design and 
choice within intelligence means the generation and assessment of alternative 
means to collect and analyse the information, and the selection of the best one 
to be applied. In the ISD work, both the IS problems (i.e. the first-order 
problems) and the ISD problems (i.e. the second-order problems) have to be 
tackled.  

The ISD problem solving structure is seen as being embedded in the ISD at 
several levels of detail in the literature. Jayaratna (1994,  37), for instance, 
considers an ISD method as a problem-solving mechanism that shows how to 
perform problem solving in ISD through three phases: a problem formulation 
phase, a solution design phase, and a design implementation phase. Wild et al. 
(1991) consider software development as a series of interrelated decisions which 
involve the identification and articulation of problems, alternatives, solutions 
and justifications. The design process is characterized by a search by decision 
dependency directed backtracking. In the NATURE approach (NATURE Team 
1996) the requirement engineering process is structured as contexts in which 
requirement engineers with certain intentions have several options to select 
from when making decisions on actions.   
 
E.  IS Modeling Structures 
 
Modeling has incontrovertibly a focal role in the whole range of the ISD actions. 
It is a necessary and frequently used means equally in the ISD management 
actions (cf. organization charts, time tables, etc.) and in the ISD execution work. 
Here, we focus on modeling in the latter case, and refer to it as IS modeling. The 
target of IS modeling can be an existing IS or a new IS, seen from different IS 
perspectives. The significance of modeling to ISD appears the most evident in 
those ISD approaches that regard ISD work as a transformation process by 
which IS models are transformed into more realization-dependent models (e.g. 
Wand 1988a; Tracz et al. 1993; Moynihan 1993; Jacobson et al. 1999). Although 
modeling does not exert influence on the macro structures of the ISD actions, it 
is intrinsically present at all lower levels of ISD work. We refer to the structures 
of actions targeted at the IS models as the IS modeling structures.  
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There are three kinds of IS modeling structures: the elementary modeling 
structure, the single-model action structure, and the multi-model action 
structure. The elementary modeling structure comprises IS modeling actions that 
are always present in IS modeling. These actions are conceptualizing and 
representing (cf. Chapter 7). By conceptualizing, relevant perceptions of the 
existing reality and conceptions of the imagined reality are interpreted, 
abstracted and structured according to some conceptual model (cf. Falkenberg 
et al. 1988, 47). Representing is an ISD action by which conceptions are made 
"visible" and proper to communicate about them. Representing yields a model 
denotation from a concept model.  

The single-model action structure comprises IS modeling actions that involve 
a single model at a time. These actions are creating, refining and testing. 
Creating is an ISD action by which an IS model is conceptualized and 
represented for some specific use. It is an initializing action which starts 
without any previous version of the model. After making the first version of the 
model, some corrections, modifications and enlargements are often required. 
Also, actions of abstraction and concretization may be needed. These IS 
modeling actions are called the model refining. Testing is an ISD action by which 
a concept model or a model denotation is checked against the given quality 
criteria (cf. Krogstie 1995). Testing comprises validation and verification. 
Validation means checking that the proper fit between the model and the 
existing or imagined (conceptions of) reality exists. Verification means checking 
whether there are any inconsistencies within the model (or among the models).  

The multi-model action structure comprises IS modeling actions that 
involve, some way or another, two or more IS models at the same time. These 
actions are transforming, translating, relating, and integrating. Transforming is 
an ISD action by which conceptions structured according to one IS model are 
transformed into conceptions structured according to another IS model. For 
instance, conceptions about data flows structured by the concepts of the DFD 
model (e.g. Gane et al. 1979) can be transformed to conceptions structured by 
the concepts of the ISAC activity model (Lundeberg 1982). Transforming can 
also be done through derivation, by strict rules or some heuristics, from one or 
more IS models to another IS model. For instance, an ER schema is transformed 
into a relational schema by following a set of simple transformation rules (cf. 
Elmasri et al. 2000). Translating is an ISD action by which conceptions 
represented in some language are translated into another language. For 
instance, a description of the goal /means relationships can be translated from a 
graph form to a matrix form. In translating, the semantic contents of the IS 
model (i.e. the concept model) are supposed to remain the same, while only the 
presentation (i.e. the model denotation) is changed. This of course is not, strictly 
speaking, true.  

Two or more IS models are related, or mapped, to one another by finding 
common concepts within the models or defining some “bridging” relationships 
between the concepts of the models. Relating can be total or partial. It does not 
create any new model. Integrating means an ISD action by which a new model is 
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made by assembling together concepts and constructs of two or more other IS 
models. Integration requires that conflicts in naming (e.g. synonyms, 
homonyms) and structures are resolved.  

Each of the IS modeling actions defined above can be further decomposed 
and/or specialized. For instance, creating is composed of the following steps: 
delimitation, identification, defining, characterization, relating, decomposition, 
specialization, etc. (Goldkuhl et al. 1993). 

In Figure 78 ISD actions of the IS modeling action structure are illustrated in the 
setting of two dimensions (cf. Goldkuhl et al. 1993, 8). The vertical dimension 
stands for the perspectives, and the horizontal dimension is established along 
the IS domains. Transforming concerns two IS models which represent the 
same or different perspectives. For instance, the transformation of a relational 
schema from an ER schema means a shift of the view from the IS conceptual 
perspective to the IS datalogical  perspective. Relating and integrating IS 
models yields a more comprehensive view on the IS context. They can involve 
models from the same or different contextual domains (e.g. integration of a 
goal/activity model (Kueng et al. 1996) and a data flow model (Yourdon 1989)). 
In some cases the IS model to be related and integrated can be made from 
different IS perspectives as well. The other IS modeling actions concern the 
models of the same IS perspective and the same IS domain.  
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FIGURE 78  IS modeling actions in the vertical (perspective) and horizontal (contextual 

domain) dimensions 
 

F.  Synthesis 
 
The ISD action structures are highly inter-twined with one another. In an ISD 
project, ISD work may be structured, for instance, into five ISD phases each of 
which is decomposed into several sub-phases and numerous steps. These 
phases contain ISD actions from several ISD workflows. Each workflow in turn 
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comprises different IS modeling actions. Because in ISD it is basically a question 
about decision making, in all ISD phases, ISD workflows, and IS modeling 
actions we can recognize parts of solving primary and secondary IS/ ISD 
problems. Also, among ISD actions there appear a multitude of branches and 
iterations. Besides being succeeded by one another, ISD actions can overlap or 
be executed in parallel. Keeping this in mind, we can imagine the difficulties 
encountered in modeling and managing this complexity in ISD, as well as in 
ISD methods. 

In the ISD literature, only one or two of the ISD action structures defined 
above are usually identified. There are, however, some exceptions. Next, we 
review two of them. Iivari (1990b) distinguishes between three main categories 
of IS/SW design structures in the hierarchical spiral model for information 
system and software development. The categories are: decision making 
dynamics concerning IS/SW products, learning dynamics, and IS/SW design 
acts. The first structures are further divided into evolution dynamics and main 
phase dynamics. Evolution dynamics consists of successive life cycles of the 
operational IS/SW product at the levels of modeling (i.e. perspectives in our 
terminology). Main phase dynamics corresponds to our ISD phase structure. 
Learning dynamics takes into account the fact that the IS/SW design process 
normally involves continuous learning that presumes making iterations 
explicit. The category of IS/SW design acts corresponds to lower-level acts, 
which are completely or partially ordered in time.  

Mathiassen et al. (1988) present a basic model of software development in 
terms of seven intrinsic relations: management and performance, reflection and 
action, analysis and design, knowledge and practice, quality and resource, 
formal and natural, and actors and bystanders. Four of these are related to the 
ISD actions. The division into management and performance is based on the 
process-oriented and product-oriented views on software engineering, 
respectively. The dichotomy of reflection and action highlights the necessity of 
effective learning in the cycle of design and realization. Distinguishing analysis 
and design means that the actions directed at the present reality are separated 
from those concerning the future possibilities. Knowledge and practice 
correspond to technical rationality and reflection-in-action (Schön 1983).  

 
8.3.4 ISD Object Domain 
 
The ISD object domain comprises all those concepts and constructs that refer to 
something to which ISD actions are directed. In ISD frameworks these are 
commonly called deliverables (Glasson 1989; Heym et al. 1992a; Cimitile et al. 
1994), artifacts (Song 1997; Hruby 2000b,  23; Jacobson et al. 1999,  21), decisions 
(Rose et al. 1990; Wild et al. 1991), products (Aoyama 1993; Saeki et al. 1993; 
Hazeyama et al. 1993), work products (Hidding 1997,  105; Firesmith et al. 1999; 
Henderson-Sellers et al. 1999c  40), design products (Olle et al. 1988a,   2), and 
increments (Graham 1989).  To emphasise the linguistic nature of the ISD 
objects and our orientation to ISD objects in the execution part of the ISD, we 
use the generic term ISD deliverable.  
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An ISD deliverable inherits all the predicates of an informational object 
specified in Section 4.4.4.  This means, for instance, that an ISD deliverable can 
be, on the elementary level, an assertion, a prediction, a plan, a rule, or a 
command, concerning the ISD itself, the existing information system, the new 
information system, the OSIS or the USIS (cf. Chapter 5). We use the term ‘OSISD 
construct’ to denote all these parts in the object systems of ISD. The signifies 
relationship expresses a relationship between an ISD deliverable and an OSISD 
construct.  

In the following, we first define the essential classifications of the ISD 
deliverables and then specify the most substantial relationships between the 
ISD deliverables. Figure 79 gives an overview of the concepts and relationships 
within the ISD object domain in the form of the meta model.  

The ISD management actions aim to plan, organize, staff, direct, and 
control ISD work. They produce plans for, decisions on, directives for, and 
assessments of goals, positions, actions, deliverables, locations, etc. in an ISD 
context. We refer to these objects as the ISD management deliverables. Examples 
of the ISD management deliverables in the form of documents are: Definition 
study action plan and schedule, Statement of work for detailed system design, 
Conversion and installation plan, and Subsystem detailed design report. The 
ISD management deliverables are intended for the ISD actors, who are in 
charge of carrying out the corresponding ISD execution actions. Some of the 
deliverables (e.g. budgets and assessment reports) are for persons on the 
strategic or tactical level in the US organization. Besides the deliverables 
disseminated by formal documents, persons in charge of the ISD management 
guide, motivate, inspire and support their subordinates and colleagues 
informally through discussions, advice and messages.  

The ISD execution actions aim to implement plans and prescriptions got 
from the ISD management. These actions result in a large variety of descriptions 
and prescriptions about why, what, and how information processing is carried 
out or is to be carried out in the current IS context or in a new IS context, 
respectively. We call these ISD deliverables the ISD execution deliverables. The 
ISD execution deliverables comprise informal drafts and scenarios, as well as 
more formal presentations. The former include instructions and guidelines, 
produced   for  IS   actors  in   the   form  of  training materials,  handbooks,  and 
manuals. The latter are presented in IS models (e.g. ER schemes, DFD’s, program 
structure charts) or they are IS implementations of those models (e.g. software 
modules, prototypes, files, data bases). 

Some of the ISD execution deliverables are specified to be parts of the ISD 
baselines with milestones in a project plan. An ISD baseline is a set of reviewed 
and approved ISD  deliverables  that (1)  represents an agreed basis for further 
evolution and development, and (2) can be changed only through a formal 
procedure such as configuration and change management (Jacobson et al. 1999, 
443).  Because a variety of ISD deliverables is too large to be dealt with here, we 
will concentrate on the IS models. 
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FIGURE 79  Meta model of the ISD object domain 
 
On the basis of the perspective ontology (see Chapters 6 and 7), we distinguish 
between systelogical, infological, conceptual, datalogical, physical, and inter-
perspective (IP) IS models. Furthermore, in accordance with the context 
ontology (cf. Chapters 4 and 7), we classify the IS models into IS purpose 
models, IS actor models, IS action models, IS deliverable models, IS data 
models, IS facility models, IS location models, IS time models, and IS inter-
domain (ID) models.  

As the ISD deliverables are informational objects, they can be perceived 
from different semiotic viewpoints. An ISD deliverable can be a conceptual, 
linguistic, or physical object. Above, we have considered the ISD deliverables 
mainly to be conceptual with the aim of revealing their conceptual contents. 
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The ISD deliverables are presented in some language(s). Presentations may be 
informal, semi-formal, or formal, including texts, lists, matrices, program codes, 
diagrams, charts, maps, pictures, voices, videos, etc.  

Implied from the meta model of the object domain (Section 4.4.4), the ISD 
deliverables are related to one another with five kinds of relationships. First, an 
ISD deliverable can be composed of other ISD deliverables. Second, an ISD 
deliverable can be used as an input to, or as a prescription for, another ISD 
deliverable (i.e. the supports relationship). For instance, an ER schema is a 
major input to a relational schema.  Third, an ISD deliverable can be the next 
version of another ISD deliverable (i.e. the versionOf relationship). Fourth, an 
ISD deliverable may be a copy of another ISD deliverable. Fifth, an ISD 
deliverable can be more abstract than another ISD deliverable in terms of 
predicate abstraction (i.e. the predAbstract relationship). 

In the literature, there are only few presentations in which the ISD 
deliverables are addressed in a comprehensive manner. Most commonly the 
ISD deliverables are classified according to ISD actions, or alternatively in a 
more or less non-systematic way. Examples of the latter case are classifications 
in Harmsen (1997, 141) (i.e. requirements statements, specifications, operational 
items, plans, reports) and in Heym et al. (1992a,   227) (system specifications, 
planning documents, reports or documentation, and decisions). From the 
relationships between the ISD deliverables the partOf relationship (e.g. 
‘contains’ in Glasson (1989) and Song (1997), ‘is_part_of’ in Song et al. (1992), 
‘has’ in Prakash (1997, 1999), ‘composed of’ in Schmitt (1993)) and the supports 
relationship (e.g. ‘depends_on’ in Glasson (1989), ‘output usage’ / ‘input usage’ 
in Heym et al. (1992a)) are most commonly distinguished.  
 
8.3.5 ISD Inter-Domain Relationships 
 
In the sections above the ISD concepts and constructs have been discussed from 
the viewpoint of one ISD domain at a time. The ISD domains are, however, 
inter-related in many ways. Figure 80 presents the general-level meta model, 
which illustrates the most essential inter-domain relationships. In the meta 
model one or few essential concepts from each of the ISD domains are depicted 
and related to concepts of the other domains. We omit the cardinality 
constraints associated to the relationships in the figure to keep it simple. The 
meta model has been derived from the one in Figure 43 in Section 4.5. It is 
neither possible here to discuss all the inter-domain relationships in Figure 80, 
nor to give explicit definitions for them. Instead, we refer to the definitions 
given in Section 4.5. There are, however, two ISD inter-domain relationships, 
which we consider here in more detail. These are the viewedBy relationship 
and the strivesFor relationship. With  these  relationships  we can highlight ISD 
as an organizational context in which ISD stakeholders have different views 
and opinions and ISD actions are guided by certain design rationale. 
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FIGURE 80  Meta model of ISD inter-domain relationships 
 
The viewedBy relationship between an ISD deliverable and an ISD actor means 
that an ISD deliverable represents views, insights, opinions, etc. of a specific 
ISD actor.  If associated with a person or a group of persons, an ISD deliverable 
represents subjective or inter-subjective views, whereas if it is associated with 
an ISD position, an ISD deliverable reflects an organizational view or a so-called 
‘official’ view. According to Stamper (1992b) there is no knowledge without an 
agent. With this relationship an ISD deliverable can be tied to the person or 
organization concerned. Through this relationship it is also possible to present 
differences between, and conflicts among, the views141.  The significance of this 
relationship is acknowledged especially in the requirements engineering 
literature. Lang et al. (2001, 166) identify the ’proposes’ relationship between 
’Stakeholder’ and ’User requirement’ in the meta model for RM-tool 
(Requirements Management Tool). Lee et al. (2001) argue that the requirements 
should be incorporated to the stakeholders who have presented those 
requirements. This is important because of traceability, conflict resolving, 
prioritisation, etc. Nuseibeh et al. (1996) outline the ViewPoints framework, 
which acknowledges the existence of ISD actors “who hold multiple views on a 
system and its domain” (ibid p. 267). The multiple views can be specified and 
managed by the use of the ViewPoint pattern (Finkelstein et al. 1992), which is 

                                                 
141  See more in Baldwin (1993) and Motschnig-Pitrik (1999).  



 

 

339

related to the ViewPoint owner. The owner acts as the domain knowledge 
provider.  

The strivesFor relationship between an ISD action and an ISD purpose 
means that an ISD action is to be conducted, is conducted, or was conducted for 
satisfying a certain goal. A goal may be inferred from encountered problems, 
specified requirements, observed opportunities, or perceived threats. From the 
historical viewpoint, the strivesFor relationship, together with the input and 
output relationships between the ISD actions and the ISD deliverables, can be 
used to express design rationale (Goldkuhl 1991; Ramesh et al. 2001). Design 
rationale means a “record of reasons behind the decision taken, thus providing 
a kind of design/project memory and a common medium of communication 
among different people” (Louridas et al. 1996, 1). Design rationale “furnishes a 
way of capitalizing on past experience and thereby aiding design decisions” 
(ibid p. 1). There are several design rationale methods (e.g. IBIS (Conklin et al. 
1988), REMAP (Ramesh et al. 1992), QOC (MacLean et al. 1991), PDR (Carroll et 
al. 1991), which enable the modeling of and reasoning from the knowledge on 
produced ISD deliverables, conducted ISD actions, stated ISD goals, and 
reasons for them (i.e. arguments and justifications). With this knowledge it is 
possible to trace reasons for the made decisions and actions, which is especially 
beneficial in requirements engineering (e.g. Pohl et al. 1997; Nguyen et al. 2003).  
 
8.3.6 Summary 
 
In this section we established the first part of the ISD ontology. We defined the 
essential concepts and relationships with which the structural, functional and 
behavioral aspects of the ISD contexts can be conceived, understood, structured 
and presented.  In building the ontology we have derived its concepts and 
constructs from the underlying ontologies, especially from the context ontology. 
Moreover, we have searched for, selected, customized and integrated concepts 
and constructs from the ISD literature in those cases where they fitted our 
views and approaches. For each ISD domain, plenty of references and 
comparisons to the literature were given.  

Due to the large extent of the domain area, we were forced to make some 
limitations in our considerations. From the seven ISD contextual domains, we 
focused only on the most essential ones that are the ISD purpose domain, the 
ISD actor domain, the ISD action domain, and the ISD object domain. For the 
other ISD domains, the concepts and constructs can be more or less directly 
derived from the corresponding contextual domains (Chapter 4). We only 
provided an overview of the ISD intra-domain relationships. For each intra-
domain relationship it is easy to formulate a definition on the bases of those 
given in Section 4.5. Regardless of the aforementioned limitations, this part of 
the ISD ontology is quite comprehensive comprising dozens of ISD concepts 
and constructs. To assess the ISD ontology, we will compare it with some 
frameworks, meta models and the like presented in the ISD literature in Section 
8.5. 
 



 

 

340 

8.4 ISD Perspectives 
 
 
Having defined the concepts and constructs within and between the ISD 
domains in Section 8.3, it is now possible to introduce the second main part of 
the ISD ontology, namely the ISD perspectives. The ISD perspectives are 
important to managing the complexity of ISD and, for instance, understanding 
how conceptions about the ISD context gradually develop when engineering an 
ISD method. We focus here on four ISD perspectives: the ISD systelogical 
perspective, the ISD infological perspective, the ISD conceptual perspective, 
and the ISD datalogical perspective. After defining them we consider the ISD 
inter-perspective relationships.  
 
8.4.1 ISD Systelogical Perspective  
 
Based on the definitions in Chapter 6 we state that the ISD systelogical perspective 
reveals the support that ISD provides to its utilizing system (USISD). The 
utilization system is composed of the IS and the USIS. Implied from the 
definition we can say that the following questions are relevant from the ISD 
systelogical perspective: 
• What kind of IS is it for which the ISD project is launched? 
• What kind of USIS is it that the IS should support with information 

services? 
• What kinds of services should the ISD provide to the USIS? 
• Derived from the answers to the above questions, what are the goals at 

and constraints for, approaches, organizations, actions, deliverables, etc. of 
the ISD context? 

 
From the characterizations of the ISD perspective given above we can now 
derive the meta model of the ISD systelogical perspective in Figure 81. The ISD 
systelogical perspective concerns three contexts: the ISD context, the IS context 
and the USIS context. The ISD context provides ISD services to the IS context, 
which in turn provides IS services to the USIS context. An ISD service means all 
those material or immaterial ISD deliverables that are produced in the ISD 
context and delivered to be exploited in the intended IS context. From the 
systelogical perspective the ISD context is seen as a black box, meaning that 
only the ISD purpose domain, in addition to the aforementioned ISD services, is 
recognized in the perspective. The IS context, in turn, is considered through the 
concepts and constructs of the IS purpose domain, the IS action domain, and the 
IS object domain. The IS purpose domain is needed to reveal goals and reasons 
for  which  information  processing  is  carried out.  The  other IS  domains  help 
characterize the kind of the IS and the circumstances for which the ISD context 
should provide IS services. Note that through the concepts of the IS purpose 
also other IS domains, yet on a more general level, are under the consideration. 
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FIGURE 81  Meta model of the ISD systelogical perspective 
 
It is the USIS context, which ultimately benefits from that information 
processing that is hopefully improved by better ISD services provided by the 
ISD context. Therefore it is necessary to include the essential features of the USIS 
context in the ISD systelogical perspective. The features relevant to the 
perspective are related to the USIS purpose domain, the USIS action domain, the 
USIS object domain, and the USIS facility domain. The last one is included to 
uncover a position which the new IS is to have in the USIS context, that is to say, 
which USIS actions are mainly to benefit from a new IS, or a new tool, in the 
USIS context.  

There are some implicit relationships between the domains of the three 
contexts that should be taken into account e.g. when engineering an ISD 
method. For instance, approaches and main principles selected for the ISD 
should suit the goals of and ways of working in those IS which are intended to 
exploit the ISD services. For instance, developing an information system for IS 
clients, who need and use expertise and knowledge of some specific area, 
makes it necessary to apply ISD approaches that give adequate emphasis on 
human beings, their needs and views (i.e. the user oriented approach), on one 
hand, and strongly involve IS clients into the ISD work (i.e. the participative 
approach, Mumford 1981), on the other hand.  
 
8.4.2 ISD Infological Perspective  
 
From the ISD infological perspective the ISD context is seen as a functional 
structure of information processing actions and informational objects. In this 
perspective, no attention is given to the features related to how the information 
objects are presented, neither to how they are implemented. Within this ISD 
perspective, the following questions are answered: 
• What information is processed in the ISD context and why? 
• What are the ISD actions, ISD rules, and input and output deliverables in 

the ISD context? 
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The relevant ISD domains from the ISD infological perspective are: the ISD 
purpose domain, the ISD action domain, and the ISD object domain. The 
concepts of the ISD purpose domain are used to specify conceptions about why 
ISD is needed, and what the goals of the ISD are. The concepts of the ISD action 
domain are used to express what is done in the ISD context, and the concepts of 
the ISD object domain pertain to ISD deliverables of the ISD context. In the 
following we consider more closely the concepts and constructs within the ISD 
infological perspective. The meta model of the perspective is presented in 
Figure 82. Note that all relevant sub-concepts and relationships are not depicted 
in the figure in order to save the space. 
 

ISD goal

Decomposition str.

ISD workflow str.

Generic action str.

ISD exec deliver.

ISD workflow

ISD action str. ISD action

ISD purpose

Control str.

ISD prob.solv.str.IS modeling str.

0..*

1..*

strivesFor

*

*

dueTo

1..*

ISD reason

0..*

output

0..*

input

ISD deliverable

ISD rule
*

*

governs

*versionOf

*
copyOf

*
*

supports

*
predAbstract *

0..1

0..1

0..1

1..*1..*

 
 
FIGURE 82  Meta model of the ISD infological perspective 
 
The ISD reasons and the ISD goals (e.g. in problem matrices and goal/means 
graphs) provide answers to questions like: What are the problems, strengths, 
weaknesses, threats, and opportunities in the current IS and its environment? 
What are the requirements for a new IS, and which of the requirements are 
agreed on being goals for the ISD effort? The influence, refinement, dueTo, and 
causalTo relationships are specified to show how the ISD goals, the ISD 
requirements, and the ISD problems are related to one another.  

Also the ISD actions are, on a general level, identified and organized 
according to the generic action structures (i.e. the decomposition and control 
structures), the ISD problem solving structure, the IS modeling structure, and 
the IS workflow structure. The rest of the ISD action structures (i.e. the ISD 
management–execution structure and the ISD phase structure) are applied later. 
ISD rules for ISD actions are specified on a general level. 
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The ISD deliverables from the ISD infological perspective only cover the 
ISD execution deliverables. They are further divided into categories according 
to the IS perspectives, resulting in specifications of ISD deliverables such as 
Requirements Specification (IS systelogical perspective), Function Specification 
in data flow diagrams (IS infological perspective), Database Schema in ER 
diagrams (IS conceptual perspective), Relational Schema (IS datalogical 
perspective), and Hardware Architecture (IS physical perspective). The partOf, 
versionOf, copyOf, supports and predAbstract relationships are recognized 
among the ISD deliverables. 
 
8.4.3 ISD Conceptual Perspective  
 
Applying the conceptual perspective generally means that the conceptual 
contents of the informational objects processed in a context are revealed. In the 
case of ISD context, the ISD conceptual perspective designates the things the ISD 
deliverables signify. Here we consider the ISD conceptual perspective only in 
relation to the ISD execution deliverables. As implied from Section 5.3, the 
object system of the ISD covers the IS, the OSIS and the USIS. Hence, the 
following questions are relevant: 
• What are the meanings of the ISD deliverables? 
• What do the ISD deliverables signify? 
• What kinds of static and dynamic constraints are valid in the OSISD? 
 
For the considerations from the conceptual perspective we have used the data 
model in this work. The IS data model (e.g. an ER schema) uncovers the 
conceptual contents of the information processed in the IS context and specifies 
the allowed conceptual structures. At the next higher layer, the ISD data model 
(e.g. the ER model) uncovers the conceptual contents of the information (i.e. ISD 
deliverables) processed in the ISD context. Because this information is already 
at the type level, the corresponding ISD data model contains meta models that 
are called the IS meta models. The meta models are always structural models 
(cf. Chapter 7). Because it is not possible here to describe all the meta models, 
we contend ourselves to illustrate the ISD conceptual perspective with the IS 
meta data model, which specifies the concepts and allowed conceptual 
constructs in the IS data models. Assuming that the IS data model is based on 
the ER model (Chen 1976) extended with concepts related to state transitions 
and constraints, the meta model resembles the one in Figure 83.  

An entity type is a generic concept corresponding to the intensional 
specification of all those features that are shared by the entities that are 
regarded as instances of the entity type (Elmasri et al. 2000). An example of the 
entity type is Person. An OS relationship between two or more entities means 
any relevant connection, association or like between the entities. An OS relation- 
ship type is a generic concept corresponding to the intensional specification of all 
those features that are shared by the OS relationships that are conceived as 
instances of the OS relationship type.  Each  entity  type  that is connected by an 
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FIGURE 83  Meta model of the IS data model from the ISD conceptual perspective 
 
OS relationship type plays a particular role in that relationship. We call this role 
the entity role to differentiate it from a role in the generic ontology (Chapter 3) 
and from an organizational role defined in the context ontology (Chapter 4). For 
example, Person may be in the entity role of Husband or Wife in the Marriage 
relationship type.   

An attribute is a relevant predicate used to characterize an entity (e.g. Age) 
or an OS relationship (e.g. WeddingDay). A particular entity or OS relationship 
has one or more values for each of its attributes. A single-valued attribute has a 
single value for a particular entity or OS relationship, whereas multi-valued 
attributes may have many values. A composite attribute can be divided into 
smaller parts that still have independent meanings  (e.g. Address is composed 
of StreetAddress, City, State, and Zip). An atomic attribute is not divisible. A 
value of a derived attribute can be calculated from the values of other attributes 
(e.g. Age from CurrentDate and BirthDate) or derived in some other way from 
the existing entities and/or OS relationships (e.g. NumberOfEmloyees).   

An OSIS construct type in OSIS means here a conceptual construct 
composed of specific entity types related to one another through OS 
relationship types and characterized by attributes. For instance, Marriage 
[Husband: Person; Wife: Person] (WeddingDay: Value) is an example of an OSIS 
construct type. OSIS constructs defined in Section 6.3.3 are instances of OSIS 
construct types. An OSIS state type means a state type of the object system or its 
part, composed of OSIS construct types. An OSIS transition type is a generic 
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concept corresponding to the specification of all those features that are shared 
by OSIS transitions. An OSIS state type may involve entity types, OS relationship 
types and/or attributes. An example of an OSIS transition type is Divorce, which 
causes the change of the Marital status of Persons in the Marriage. The OSIS 
transition types can be composed to establish OSIS transition structures like 
those defined in the state transition ontology. An OSIS event type means a 
generic concept corresponding to the specification of all those features that are 
shared by OSIS events, which may trigger an OSIS transition and which may be 
caused by another OSIS transition.  

To get a richer picture of the OSISD, it is necessary to know the rules 
governing the state types and the transition types in the OSIS. Those rules are 
called the OSIS constraints. An OSIS constraint is static or dynamic. A static OSIS 
constraint means a specification of allowed state or states. Static constraints may 
be population constraints, uniqueness constraints, referential constraints, 
cardinality constraints, attribute constraints, etc. A dynamic OSIS constraint 
means a specification of allowed OSIS transition(s) and/or allowed OSIS events. 
A complex OSIS constraint may comprise constraints of both of the types.  
 
8.4.4 ISD Datalogical Perspective 
 
From the ISD datalogical perspective the ISD context is considered through 
representation-specific concepts, involving, besides ISD purposes, ISD actions 
and ISD deliverables, on a general level ISD actors and ISD facilities as well. 
That means that ISD is seen as a context in which for some purposes data 
objects represented in some language are processed by actions of ISD actors 
with the support of some computer-aided tools. No reference is made to data 
carriers or other physical things of the ISD context. Since the number of the 
concepts needed to describe all the datalogical features of ISD is huge, we 
consider in the following only some of these essential concepts and constructs. 
In Section 6.3.4 we defined the IS datalogical perspective in terms of concepts 
and constructs concerning three parts of the IS: HIS, UI and CIS (cf. Figure 60). 
In the ISD context human information processing is in a much more dominating 
role, compared to the IS context, although ISD work is supported by 
computerized ISD tools. Therefore, we are here more interested in ISD as a 
context in which CASE environments, debuggers, and other technical things are 
only in a position of supporting tools. The meta model of the ISD datalogical 
perspective is presented from this viewpoint in Figure 84. All the details are not 
included in the meta model.  

The ISD datalogical perspective elaborates conceptions about the ISD 
domains, resulted from applying the ISD infological perspective. Thus, 
conceptions of ISD problems, ISD requirements and ISD goals are now made 
more detailed and concrete. In the ISD action domain, the generic action 
structures, the ISD workflow structure, the ISD  problem solving structure, and 
the IS modeling structures are refined from those considered within the ISD 
infological  perspective.  In addition, the  ISD  management–execution structure 
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FIGURE 84  Meta model of the ISD datalogical perspective 
 
and the ISD phase structure are taken into use. These structures are used to 
specify principles and ways of control and coordination of an ISD project. The 
ISD phase structure is composed of ISD phases, ISD sub-phases and ISD steps. 
The relationships between the phases and the sub-phases are grounded on the 
control structures, not on the temporal structures of ISD actions. For some ISD 
actions, general-level ISD rules are specified and aggregated to form ISD 
procedures.  

Within the ISD object domain more refined decompositions and 
specializations of ISD deliverables are made. Also intra-domain relationships 
are detailed and refined. As a consequence of establishing the ISD 
management–execution structure and the ISD phase structure, the ISD 
management deliverables are distinguished and some of the ISD execution 
deliverables are collected to form baselines for ISD phases.  
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The ISD datalogical perspective also addresses the ISD actor domain and 
the ISD facility domain, yet on a general level. The ISD actions are composed 
through the responsibleFor relationships to constitute ISD roles. The ISD roles 
are further aggregated to form ISD positions, such as an IS analyzer, a database 
designer, and a programmer. The ISD roles with skill requirements may be 
parts of several ISD positions. The ISD positions are preliminarily related to one 
another through the supervision relationships. The ISD project organization 
with main organizational units is roughly established.  

The basic concepts and constructs of the ISD facility domain are 
considered within the ISD datalogical perspective, though all physical aspects 
are still ignored. In Figure 84 the ISD facility domain is abstracted into the 
notion of an ISD tool, indicating that some of routine ISD actions can be 
allocated to be performed by a computerized information system (CIS). It might 
be possible to take a more tool-centered view exhibiting main logical 
components of the CIS and interaction with human information processing 
(HIS) through dialogs (see Section 6.3.4). We are forced to ignore this view here. 
 
8.4.5 ISD Inter-Perspective Relationships 
 
In this section we discuss how five ISD perspectives are related to one another. 
The discussion is based on the definitions given in Section 6.3.6.  

Figure 85 illustrates the contents of, and the relationships between, the ISD 
perspectives in terms of concerned contexts and domains142. To distinguish 
between the contexts concerned, we depict them with bold line rectangles in the 
case there are  more than one context involved  by an ISD perspective. As stated 
above, the ISD systelogical perspective involves three kinds of contexts: the ISD 
context, the IS contexts, and the USIS contexts. The corresponding ISD domains 
are shown in the figure. The ISD infological perspective concerns the ISD 
context only. The concepts and constructs of the ISD infological perspective are 
derived from the concepts and constructs established in the ISD purpose 
domain through the ISD systelogical perspective. The view got from the ISD 
infological perspective is further realized, first with the ISD datalogical 
perspective and then with the ISD physical perspective. The ISD physical 
perspective also instantiates concepts and constructs.  

The ISD conceptual perspective designates, on a general level, things that 
ISD deliverables signify. ISD deliverables can signify things in the ISD context 
(e.g. time schedule for an ISD project)143, in the IS context (e.g. a sequence 
diagram of invoicing), in the USIS context (e.g. a business process diagram) and 
in the OSIS context (e.g. an ER schema). About the things both structural 
features (i.e. states) and dynamic features (i.e. state transitions) are identified, 
except about the  OSIS  about which  meta-level  information  is  only  processed  

                                                 
142  To simplify the figure we do not present the abstractedFrom relationships between 

the informational objects and the ISD conceptual perspective (cf. Figure 63).  
143  Note that here we consider also the OSIS constructs that are signified by ISD 

management deliverables. 
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FIGURE 85  ISD inter-perspective relationships 
 
and, as we know, meta information is always structural. ISD deliverables are 
recognized and conceptually elaborated within three perspectives. In each of 
these cases, the contents of the deliverables can be specified and analyzed 
through the conceptual foundation provided by the ISD conceptual perspective.  
 
 
8.5 Comparative Analysis  
 
 
In this section we present a comparative analysis of artifacts (i.e. frameworks, 
meta models or the like) that can be used as a means of understanding, 
structuring and presenting phenomena in information systems development. 
The analysis has been made for two reasons. First, we want to investigate what 
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kinds of artifacts there are in the literature and how they compare with our ISD 
ontology. Second, we want to test how well the ISD ontology serves as an 
analytical framework. We will present the analysis in two parts. The first part 
(Section 8.5.2) aims to give an overview of the artifacts and their general 
properties. In the second part we make a deeper analysis of the concepts and 
constructs provided in the artifacts. This analysis reveals, among others, how 
comprehensive the artifacts are and what issues and domains they cover and 
emphasize. The analysis will be carried out for four ISD domains separately 
(Sections 8.5.3-8.5.6). The ISD domains are: ISD purpose domain, ISD actor 
domain, ISD action domain, and ISD object domain. The analysis ends with 
conclusions (Section 8.5.7). But before we report on the results of the analysis, 
we will make a short review of relevant works and select some of them for the 
analysis.  
 
8.5.1 Relevant Work 
 
In the ISD literature there is a plethora of frameworks, meta models, reference 
models, and ontologies that concern information system development. Here we 
refer to them with the common term ‘artifact’. The artifacts can be categorized 
into two main groups: those which describe and structure ISD, and those which 
have been developed to describe, analyze, compare and/or engineer ISD 
methods. In the following we make a short review of artifacts in both of the 
groups and consider their relevancy to our comparative analysis. 

Artifacts in the first group apply in most cases a rather general view of 
ISD; either they characterize ISD in terms of ISD paradigms (e.g. Hirschheim et 
al. 1989; Iivari et al. 1998a), of ISD approaches (e.g. Wood-Harper et al. 1982; 
Hirschheim et al. 1995; Iivari et al. 2001), or of processes (e.g. Boehm 1988; Iivari 
1990a; Iivari 1990b; Sabherwal et al. 1995).  Most artifacts in this group have too 
narrow a scope of and/or too general a view of ISD to be interesting for us. 
There are, however, same exceptions. Iivari (1990a, 1990b), for instance, 
presents the hierarchical spiral model, which provides an abstract explanatory 
model for IS/SW design process. The model contains strictly defined concepts 
and constructs in a large variety.  

Another set of artifacts, included in the first group, consists of meta 
models or ontologies that have been mainly built for structuring specific 
phenomena of ISD. This set is very small. Ontologies such as the Frisco 
framework (Falkenberg et al. 1998) and the Bunge-Wand-Weber model (e.g. 
Wand 1988a; Wand et al. 1989; Wand et al. 1990a; Wand et al. 1990b) cover quite 
well the elementary phenomena in the UoD, as shown in Section 3.10, and 
provide some concepts for the IS layer as well. But they do not extend to the 
ISD layer. There are some ontologies that concern specific parts of software 
engineering (Kitchenham et al. 1999; Ruiz et al. 2004; Kishore et al. 2004). 
Kitchenham et al. (1999), for instance, suggest an ontology of software 
maintenance. The ontology covers maintenance activities, maintenance 
procedure, maintenance organization procedure, and so-called peopleware. 
Ruiz et al. (2004) build upon the work of Kitchenham et al. (1999) and suggest an 
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ontology for the management of software projects. The ontology is composed of 
three main parts: maintenance ontology (products sub-ontology, process sub-
ontology, activities sub-ontology, and agents sub-ontology), workflow 
ontology, and measurement ontology. These kinds of presentations are, 
however, too domain-specific to serve as a generic and comprehensive basis for 
the understanding of ISD. 

Artifacts in the second group have been constructed for the analysis, 
comparison, and engineering of ISD methods. This group can be sub-divided in 
many ways. First, there is a very large array of literature providing artifacts for 
evaluation and comparison of methods. Artifacts are (a) idealized methods 
through which methods are to be assessed, (b) feature lists, (c) meta models, or 
(d) contingency frameworks (cf. Sol 1983,  4). In the early 1980’s and ever since 
then, dozens of feature lists have been suggested for analysis and comparison of 
methods, or parts thereof (e.g. Rzevski 1983; Brodie 1983; Falkenberg et al. 1983; 
Bodart et al. 1983; Maddison et al. 1984; Ang 1993; Karam et al. 1993; Flynn et al. 
1993; Kelly et al. 1992). More structured forms of artifacts are taxonomies of (e.g. 
Brandt 1983; Blum 1994), hierarchies of (e.g. Law 1988) and frameworks of (e.g. 
Iivari et al. 1983; Essink 1986; Iivari 1994; Jayaratna 1994) features. Although 
these artifacts are rooted upon with concepts referring to specific aspects of ISD, 
the concepts are not explicitly defined, nor are they properly structured (except 
Iivari (1994) that is based on Iivari (1989a, 1990a, 1990b). The same holds for 
contingency frameworks (e.g. Davis 1982; van Swede et al. 1993; van Slooten et 
al. 1993; Punter et al. 1996; Kettinger et al. 1997; Roberts et al. 1998; Lin et al. 
1999). The use of meta models has brought necessary aid to the specification of 
ISD methods in a more precise and condensed fashion. ISD methods are 
specified in terms of notation and media, on one hand, and of conceptual 
contents, on the other hand. Here we are interested in the latter kinds of 
specifications because the conceptual contents of the ISD methods are defined 
with fundamental concepts of ISD contexts.  

In conclusion, from a very large set of artifacts suggested for the 
description, analysis, comparison and engineering of the ISD methods in the 
ISD literature, we are here particularly interested in those which specify the 
conceptual contents of the ISD methods through (graphical) meta models. 
Applying these criteria, we select the following artifacts for the analysis: the 
framework and the reference model of Heym et al. (1992a), the process meta-
model of the NATURE Approach (NATURE Team 1996; Grosz et al. 1997), the 
meta model of Saeki et al. (1993) and Saeki (1998), and the framework of Song et 
al. (1992) and Song (1997). In addition, we accept two more artifacts although 
they are not presented in a graphical form. These are the ontology of Harmsen 
(1997) and the hierarchical spiral model of Iivari (1990a, 1990b). Both of these 
artifacts are presented with preciseness that corresponds to the graphical form.   

There are many other presentations (e.g. Olle et al. 1988a; Mi et al. 1996; 
Nuseibeh et al. 1996; Gupta et al. 2001) that are excluded from this analysis, due 
to their limited scope.  
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8.5.2 Overall Analysis 
 
The purpose of this sub-section is to present an overall picture of the six 
artifacts selected. For each artifact we give a short description. In addition, we 
expose the purposes, theoretical bases, ISD approaches applied, representation 
forms, and acts of validation of the artifacts. ISD approaches are expressed in 
terms of ISD approaches defined in Section 8.1. Acts of validation mean efforts 
that have been made to show the applicability of the artifact. The results of the 
analysis are summarized in alphabetical order in Table 23. To ease the 
comparison of the artifacts to our framework, the ISD ontology of OntoFrame is 
presented on the first row in the table. 

Harmsen (1997) proposes a framework, a language and a procedure to 
assemble a situational method from building blocks called method fragments. 
Method fragments are sub-divided into product fragments and process 
fragments. A product fragment describes a product of the IS engineering 
process. A process fragment describes the activities of that process. For defining 
the method fragments, an ontology, called the Methodology Data Model 
(MDM), and a process classification system are proposed. The ontology consists 
of basic concepts of ISD products. The process classification system consists of 
definitions of basic steps, product types and state types. To characterize the 
method fragments, a large set of property types, including e.g. fragment aspects 
and scenario aspects, are defined. In this section we mainly consider the 
concepts and constructs contained in the ontology. They are defined in English 
and, to a large extent, also with the first order predicate calculus.  

The work of Harmsen (1997) has been built on an extensive analysis of 
existing ISD literature (ibid p. 16-17) and on the systems theoretical view of an 
information system. No specific ISD approach can be recognized. Some 
experience from the applicability of the artifact has been gained from the 
implementation of a  prototype of the  Method  Base  System and from its use in 
some empirical studies (van Slooten 1995; van Slooten et al. 1996). Heuristics for 
the selection of method fragments has been applied in the Situational Project 
Definition project (Klooster 1996).   

Heym et al. (1992a) present a framework and a reference model for 
describing, understanding, and comparing ISD methods. The framework 
categorizes the aspects of ISD methods into three perspectives: application type, 
life cycle, and model focus. In the reference model, the methodology knowledge 
is decomposed and structured with five meta models. In each meta model the 
essential concepts and relationships of ISD and ISD methods are depicted in a 
graphical notation. In addition, the concepts are defined in English. No 
theoretical basis is mentioned. The reference model is based on “experience 
from description and comparison of different software engineering methods” 
(ibid p. 234).  The reference model forms the data model of the MERET tool, 
which has been used in several organizations to describe, understand and 
compare ISD methods. 
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Iivari (1990a, 1990b) presents the hierarchical spiral model for information 
system and software development, based on the sociocybernetic metamodel 
and information economics (Iivari 1983). The socio-cybernetic metamodel is an 
abstract explanatory model for the IS/SW design process. It emphasizes the 
design process as an iterative inquiry process that supports decisions about the 
IS/SW product and the IS/SW design process. Moreover, it supports the 
transformation view on the design process. The hierarchical spiral model has 
been built upon the conceptual framework for IS/SW product (Iivari et al. 1987; 
Iivari 1989a). Due to the  large  scope of the model, many concepts are not 
explicitly defined. Nothing is mentioned about the use of the model in practice, 
neither about its validation.   

The NATURE project (NATURE Team 1996; Grosz et al. 1997) developed 
the process meta-model based on the NATURE (Novel Approaches to Theories 
Underlying Requirements Engineering) approach. The purpose of the approach 
is to address the problem of providing guidance and system support in poorly 
understood, largely human-driven creative processes. It applies the decision-
oriented approach to requirements engineering. Also the notion of a context is 
essential to the approach. A context is “a meaningful association of a situation 
and an intention with guidance advice” (NATURE Team 1996, 527). 
Requirements engineering is modeled as a set of related contexts in which a 
decision is made on how to process product parts and in which order.  The 
approach is partly based on the theory of plans (Wilesky 1983). The approach 
has been widely used in research projects. Also a prototype to support the use 
of the process meta-model has been implemented.  

Saeki et al. (1993) present a meta model for representing software 
specification and design methods. The purpose of the meta model is to cover 
so-called atomic concepts that are common to all the methods. To model a 
particular method, this core part is to be enhanced by introducing new concepts 
in a method-specific part. The meta model is presented in two parts: the 
product part and the procedural part. The product part applies a conceptual 
view on the software design products. In the procedural part the software 
design process is seen as transformations by procedures that are connected to 
one another by the input/output relationships.  The meta model has been used 
to develop formal presentations of several ISD methods. Also a prototype of the 
method base system has been implemented. Later, Saeki (1998) uses the meta 
model to demonstrate method integration.  

Song et al. (1992) present the so-called base framework for the 
identification of method components that are comparable in different methods. 
The framework has been developed through an iterative process of abstracting 
from existing methods and applying the framework to model methods. It is 
composed of two parts: the type framework and the function framework. The 
type framework aggregates the components’ internal characteristics. The 
function framework aggregates the design issues that components address. The 
model of design life-cycle clearly indicates the application of the transformation 
view. Partly based on the framework in Song et al. (1992), Song (1997) presents a 
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framework for the integration of software methods. The framework contains a 
method composition model that distinguishes between the high-level 
components and the low-level components. The composition model is based on 
the analysis of eight structured methods and object-oriented methods. Both of 
these frameworks (Song et al. 1992; Song 1997) contain parts that are related to 
method components. We ignore those aspects here and return to consider them 
in Section 9.7.6.  

We can draw the following conclusions from the above overall analysis. 
First, from the six artifacts only two have been built on explicated theoretical 
bases. The hierarchical spiral model (Iivari 1990b) has been rooted on socio-
cybernetics, and the process meta-model by NATURE Team (1996) has been 
partly based on the theory of plans. Other artifacts have been derived mainly 
analyzing the existing literature of ISD methods. For some artifacts no grounds 
are mentioned. We have built our ISD ontology by following the contextual 
approach, which has been established on several underlying theories, including 
semiotics, pragmatics, theories of human and social action, and systems theory 
(cf. Chapter 4). In addition, we have reviewed a large collection of ISD literature 
on ISD theories and ISD methods, which has influenced our ISD ontology. 

Second, from the ISD approaches defined in Section 8.1.2 the 
transformation approach is most commonly applied. It is intrinsic to the meta 
model of Saeki et al. (1993) and Saeki (1998) as well as to the framework of Song 
et al. (1992) and Song (1997). In addition, it is included in the hierarchical spiral 
model of Iivari (1990b), which also reflects the view of the learning process 
approach. The NATURE approach has been, in an interesting fashion, built 
upon the decision-oriented approach applying the notion of a context. The 
conception of a context is, however, very limited, as compared to the 
corresponding notion in OntoFrame. The contextual approach in our study is 
aimed to enable conceiving, structuring and representing phenomena of ISD 
from multiple viewpoints. This aim has been realized by including in the ISD 
ontology concepts and constructs that are applicable as such, or they can be 
specialized, if necessary, to meet views of more special approaches.   

Most of the artifacts have been “validated” by using them in the intended 
purposes (e.g. for describing and/or integrating methods) and/or as a basis for 
prototypes of computer-aided method engineering systems (CAMES). The ISD 
ontology has been validated by using it as a basis of comparative analyses and 
in the construction of the methodical skeleton for method engineering.  

Next, we analyze the artifacts in more detail in order to find out what 
concepts and relationships they provide for the four ISD domains, i.e., the ISD 
purpose domain, the ISD actor domain, the ISD action domain, and the ISD 
object domain.  
 
8.5.3 ISD Purpose Domain 
 
The ISD purpose domain means all those concepts and constructs through 
which we can conceive, understand, structure and represent problems, 
requirements, goals, etc. of ISD, or parts thereof. From the six analyzed artifacts 
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only two provide concepts and relationships that belong to the ISD purpose 
domain. The artifacts are the ontology of Harmsen (1997) and the meta process 
model of the NATURE approach (NATURE Team 1996; Grosz et al. 1997). The 
concepts and relationships of these two artifacts and of our ISD ontology are 
presented in Table 24.  From the relationships we have included in Table 24 the 
intra-domain relationships and those inter-domain relationships that relate 
some concept of the ISD purpose domain and concepts of some of the three ISD 
domains. 

As seen in Table 24, Harmsen (1997) defines a large set of concepts for the 
ISD purpose domain. A goal stands for the purpose towards which a system is 
directed (i.e. IS goal). Also the other concepts are associated to an IS. Besides 
those included in our ontology, the ontology provides the notions of a benefit 
and a critical success factor. It specifies explicit relationships between most of 
the sub-concepts, while in our ISD ontology the relationships between a goal 
and other concepts are organized through the concept of a reason. It is 
noteworthy that Harmsen (1997) defines differently the relationship between a 
goal and a requirement; i.e. a goal imposes a requirement. 

Harmsen (1997) associates the concepts of the ISD purpose domain to 
concepts of other domains with several relationships. ‘Solution’ means a final 
outcome of the ISD (i.e. an information system). With the base relationship he 
connects ‘solution’ to ‘strength’ and to ‘weakness’. He also uses the term 
‘system’, and relates it to ‘problem’ with the choice relationship.  To reveal an 
informant, the MDM defines the expression relationship between ‘group’ and 
‘problem’, and between ‘group’ and ‘goal’. ‘Effect’ is an influence of one 
concept instance upon another. 

In the process meta-model of the NATURE Approach (NATURE Team 
1996; Grosz et al. 1997) the notion of an intention is a part of a  decision made in 
the requirements engineering process. An intention expresses what a 
requirements engineer wants to achieve144. It is thus a kind of goal. An intention 
can be global or local.  This is all that is included in the meta model from the 
ISD purpose domain.  

Our ISD ontology provides one generic concept, namely ISD purpose, that 
is specialized in several ways: into goals of two kinds (hard and soft), into 
reasons of six kinds (requirements, problems, opportunities, threats, strengths 
and weaknesses), as well as into IS purposes. The IS purpose can be of any of 
the aforementioned kinds. Furthermore, the IS purposes are classified according 
to five IS perspectives. We argue that with our ISD ontology the issues of ISD 
contexts related to purposes, goals, objectives, intentions, desires, problems, etc.  

                                                 
144  In contrast to how the notion of an intention is defined in the approach, an intention 

is not associated to a requirements engineer in the graphical representation of the 
process meta-model.  
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can be addressed in a much more comprehensive and detailed fashion than in 
the other artifacts. In addition, the conceptual structure in the ISD ontology has 
been built to be inherently flexible to ease adaptations in the ontology. The ISD 
ontology also provides a large collection of relationships with which the 
concepts are related to the other concepts in the ISD purpose domain (i.e. intra-
domain relationships) as well as to the concepts in three other ISD domains. 
 
8.5.4 ISD Actor Domain 
 
The ISD actor domain means all those concepts and constructs that are used to 
conceive, understand, structure and present human or social phenomena in the 
ISD context. Those phenomena involve persons and groups, or administrative 
units. From the analyzed artifacts only two provide concepts and constructs 
that belong to this ISD domain. They are the ontology of Harmsen (1997) and 
the reference model of Heym et al. (1992a). In addition, Iivari (1990a, 1990b) 
mentions users of the information produced by an IS/SW act as the usage 
characteristics of the IS/SW act but he does not discuss them further.  The 
concepts and relationships of the two artifacts and of the ISD ontology are 
presented in Table 25. 

Harmsen (1997) uses the term ‘actor’ in two contexts, in relation to an 
information system and to IS engineering. In the latter context an actor is 
defined to be “a function involved in an IS engineering project” (ibid p. 57). 
This means that the notion is much more “action-specific” than our notion, thus 
corresponding somewhat to our notion of an ISD role. An actor role is defined 
to be “the type of function an actor has with respect to manipulating and 
receiving product fragment instances” (ibid p. 57). Possible roles are reviewing, 
creating, and analyzing. The supervision relationship reflects the functional 
hierarchy of actors. The responsibility relationship indicates which actor is 
responsible for which method fragment. The execution relationship is used to 
specify which actor is executing which process, in which role. Correspondingly, 
the skill relationship reflects the capability of an actor to execute a process 
fragment in a certain role. The destination relationship indicates to which actor 
and in which role a product fragment is addressed.  

Heym et al. (1992a) define an actor to be “any person, group of persons, or 
organizational unit which is involved in an activity or is responsible for a 
process or a milestone” (ibid p. 230). An actor may consist of other actors (e.g. 
an organizational unit consists of persons). An actor is related to an activity 
with the ‘is involved in’ relationship, and to a process and a milestone with the 
‘is responsible for’ relationships.  

Comparing to our ISD ontology, we can clearly see that the ontology of 
Harmsen (1997) only superficially addresses the ISD actor domain. Heym et al. 
(1992a) provide one generic concept and three sub-concepts. Our ontology 
contains nine sub-concepts, embracing human beings in different constellations, 
as well as in administrative units. In our view, these both sides are important to 
understanding ISD as a social and organizational endeavor. In addition, we 
specialize the persons  according  to  the  kind  of their expertness and ISD roles  
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TABLE 25  Summary of the concepts and relationships of the ISD actor domain 
 

Reference/ 
Concepts 

ISD ontology Harmsen (1997) Heym et al. 
(1992a) 

Generic 
concept 

ISD actor Actor Actor 

Sub-concepts 
 

ISD human actor 
ISD position 
ISD role 
ISD organizational unit 
ISD project organization 
Project team 
Steering committee 
Person  
Group 

Actor role Person  
Group 
Organizational  
  unit 

Intra-domain 
relationships 
 

occupiedBy(ISD human 
  actor, ISD position) 
memberOf (Person,  
  Group) 
plays (Person, ISD role) 
supervision(ISD position,  
  ISD position) 
controls(Steering 
  committee, Project team) 

supervision(Actor,  
  Actor) 

consists_of 

Inter-domain 
relationships 

carriedOut(ISD action,  
  ISD actor) 
responsibleFor(ISD role, 
  ISD action) 
ownedBy(ISD deliverable, 
  ISD actor) 
viewedBy(ISD  
  deliverable, ISD actor) 

responsibility(Actor,  
  Method fragment) 
execution(Actor,  
  Actor role, Process 
  fragment) 
skill(Actor, Actor role, 
  Process fragment) 
destination(Actor,  
  Actor  role, Product  
  fragment) 

is involved in 
  (Person,  
  Activity) 
is responsible 
  for (Actor,  
  Process) 
is responsible 
  for (Actor,  
  Milestone) 

 
into six ISD specific roles. Resulting from the large number of concepts, the ISD  
ontology also provides a variety of inter-domain and intra-domain 
relationships that is much larger than in the other two artifacts. 
 
8.5.5 ISD Action Domain 
 
The ISD action domain contains all those concepts and constructs that are used 
to conceive, understand, structure and present how ISD functions. Due to its 
centrality to the ISD context, it is natural that all the analyzed artifacts provide 
large sets of concepts and relationships for it. To ease the analysis and 
comparison, we categorize the action-related concepts in the artifacts according 
to the ISD action structures (i.e. the ISD management-execution structure, the 
ISD workflow structure, the ISD phase structure, the ISD problem solving 
structure, the IS modeling structure, the control structure, and the abstraction 
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structure) of our ISD ontology. The summary of the analysis and comparison of 
eight artifacts, including our ISD ontology, is presented in Table 26. 

Harmsen (1997) uses the notion of a process fragment to mean any activity 
to be carried out within a method. A process role represents the respect in 
which a process fragment manipulates a product fragment. Examples of roles 
are ‘production’, ‘update’ and ‘usage’. There are three intra-domain 
relationships in the ISD domain. A contents relationship means that a process 
fragment consists of another process fragment. A precedence relationship 
reflects the fact that a process fragment precedes another process fragment. A 
choice relationship between the process fragments means that one process 
fragment conditionally precedes the other process fragment. Hence, the two last 
relationships establish control structures between the ISD actions. In addition, 
there are two inter-domain relationships. A prerequisite relationship expresses 
the fact that a process fragment instance requires a product fragment instance 
for its execution. A manipulation relationship indicates that a process fragment 
manipulates a product fragment in a certain role (e.g. updates). Harmsen (1997) 
has also constructed a process classification system. The system is based on the 
notion of a basic action meaning “a class of actions in IS engineering in which 
each action have the same effect” (ibid p. 137). According to the classification 
system, actions are sub-divided into six types: planning, analysis, synthesis, 
evaluation, implementing, and evolution. These types belong to our ISD 
workflow structure. For each type of actions he also provides a set of sub-
actions. These types of actions are not, however, integrated into the ontology. 

Heym et al. (1992a) define a process to “be either a phase or an activity” 
(ibid p. 228). A phase consists of phases, or of activities. An activity is an 
elementary process that cannot be divided into sub-activities. Activities are 
classified into six types: decision, planning and control, abstraction, checking, 
review activities, and form conversion. As seen from the above list, the 
classification is quite heterogeneous: decision, planning and control belong to 
the ISD management–execution structure, while abstraction, checking, review 
and form conversion are parts of the IS modeling structure. A process can be an 
iteration process or a non-iteration process. An iteration activity or phase is 
executed more than once in a sequence. In the framework of Heym et al. (1992a) 
the life cycle is divided into seven stages (Olle et al. 1988a): information system 
planning, analysis, design, construction design, construction, test and 
installation, and maintenance. It should, however, be noticed that this 
classification is not included in the reference model presented in meta models. 

Some relationships between the processes are described with the notion of 
a dependency. A process dependency can hold between activities or phases. A 
dependency can exist also between a milestone and a phase, and between a 
milestone and an activity. A dependency has one of four different semantics: 
sequence, refinement jump, branching path, and unifying path. Hence, it is a  
conceptual mechanism for establishing control structures between the ISD 
actions (in our terminology). A process is  related to deliverables  through input  
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and output usage relationships. A type of the usage can be essential or 
referential. For instance, an essential input usage is an input deliverable whose 
contents are primarily used or converted into an output deliverable. 

The hierarchical spiral model of Iivari (1990b) expresses dynamics of a 
design process in three forms: evolution dynamics, main-phase dynamics, and 
learning dynamics. The first one concerns the relationships between the design 
products (cf. increments, versions, and releases). That is not considered here. 
The main-phase dynamics is established on the basis of the levels of modeling 
for an IS/SW product. Iivari (1990b) distinguishes between three main phases: 
the organizational design phase, the conceptual /infological design phase, and 
the datalogical/technical design phase. These main phases stand for our ISD 
phases. The learning dynamics imply that each main phase consists of 
successive subphases after which the IS/SW design process is replanned. The 
IS/SW design process is conceptualized in terms of IS/SW acts. The acts are 
categorized in two ways: (a) diagnosis/design and verification/validation, and 
(b) observation/analysis and manipulation/ refinement. These categories are 
considered in the ISD ontology to be parts of the IS modeling structures. 
Although Iivari (1990b) does not propose any ISD workflow structure in the 
sense of the one in the ISD ontology, he presents a categorization of diagnosis, 
design, and verification and validation activities on three modeling levels (ibid 
p. 455) 

In the meta process model of the NATURE Approach (NATURE Team 
1996; Grosz et al. 1997), an action means something which is performed to 
change a product of the process. A decision is a choice between sub-contexts 
during the requirements engineering. A decision is composed of an intention 
and an approach145. Based on the kind of actions performed in a context, the 
contexts are classified into executable contexts, choice contexts, and plan 
contexts. An executable context leads directly to the execution of an action. At 
the most detailed level, the execution can be seen as a set of transformations 
performed on the product. A choice context is used when there is more than 
one alternative to select as regards the direction to proceed. A plan context is a 
mechanism by which a context viewed as a complex issue can be decomposed 
into a number of sub-issues. This stands for a planning action in our 
terminology. The meta process model provides several relationships, which we 
here consider intra-domain relationships of the ISD action domain. The 
precedence link holds between contexts, thus concerning actions as well. 
Alternative contexts imply that there are alternative ways of working, selected 
by choice criteria. There is also one inter-domain relationship:  an action 
‘changes’ a product. 

In the meta model of Saeki et al. (1993) the procedural part consists of an 
procedure concept (not defined in the article) and four relationships. The has 
relationship indicates “what sub-procedures belong to a procedure and also 
represents their hierarchy” (ibid p. 153). The precede relationship shows the 
                                                 
145  The composition of an intention and an approach is modeled as an “objectified 

relationship”. 
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execution order of the procedures. The input and output relationships indicate 
which constituents in the product part are inputs to and outputs from the 
procedure, respectively.  

In the type framework by Song et al. (1992) an action means one or more 
physical and/or mental processing steps used in design. An action may create 
or modify a design artifact. An action can be a part of another action, and a 
specialization of another action. Some artifacts are inputs to actions and outputs 
from actions. There are also the relationships called ‘affect’ and ‘influence’ 
between the artifacts and the actions, and between the representations and the 
actions, respectively, but they are not defined.   

Song (1997) distinguishes between two domain areas: software design and 
design method.  The former stands for design practice, while the latter means 
the components in a design method. Software design is presented with two 
concepts, a design activity and an artifact, meaning that a design activity makes, 
uses, or evaluates artifacts. Actions and artifact models as the components in a 
design method are regarded as classes of activities and artifacts, respectively. 
Components are sub-divided into high-level components and low-level 
components. On the high level, processes are “sets of steps in which designers 
use particular artifact models in developing software” (ibid p. 109). On the low-
level, processes are decomposed into actions, either physical (such as typing) or 
mental (such as decision making). An action may create, modify, use or 
evaluate model components.  

To summarize from the analysis above, Heym et al. (1992a) and Iivari 
(1990b) define most concepts for the ISD action domain among the analyzed 
artifacts. Heym et al. (1992a) provide concepts for the IS modeling structure, 
through the reference model, and for the ISD workflow structure through the 
framework. Iivari (1990b) defines concepts for the ISD phase structure and the 
IS modeling structure. Harmsen’s (1997) process classification system contains 
concepts belonging to the ISD workflow structure but they are not integrated 
with the MDM ontology. The other artifacts provide only few single concepts, 
mostly for the IS modeling structure. From the intra-domain relationships the 
artifacts cover best, yet not completely, the control structures and the 
abstraction structures. From the inter-domain relationships the most commonly 
specified ones are the input and output relationships.  

In our ISD ontology, the ISD action domain is seen as a complex construct 
of various ISD action structures. The action structures are categorized into three 
levels: the generic action structures, the contextual action structures, and the 
ISD-specific action structures. The first category contains the action 
decomposition structure, the control structures and the temporal structures. 
The second category comprises the ISD management-execution structure and 
the ISD problem solving structure. These action structures have been defined in 
the context ontology (Chapter 4), and they are just specialized for the ISD 
context. The third category is composed of those ISD action structures that have 
been defined particularly for the ISD contexts. These are the ISD phase 
structure, the ISD workflow structure and the IS modeling structure. We argue 
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that this array of ISD action structures is comprehensive enough to address the 
most common action structures faced with in practical ISD and ISD methods. 
Further, we claim that the array of the ISD action structures at three levels is 
flexible enough to enable the definition of more specific structures if needed by 
some particular ISD approach or view.  
 
8.5.6 ISD Object Domain 
 
The ISD object domain contains all those concepts and constructs that refer to 
things to which the ISD actions are targeted. From the analyzed artifacts, only 
four consider the ISD object domain properly. They are: Harmsen (1997), Heym 
et al. (1992a), Iivari (1990a, 1990b), and Song et al. (1992). In contrast, the meta 
model of Saeki et al. (1993) and Saeki (1998) considers the ISD deliverables from 
the conceptual perspectives only. Song (1997) focuses on method components 
and the only notion in the ISD object domain he recognizes is an artifact. In the 
meta process model of the NATURE Approach (NATURE Team 1996; Grosz et 
al. 1997) outcomes of actions are called product parts, but they are not 
specialized into sub-concepts, neither associated with one another. The 
summary of the analysis of the four artifacts, together with the ISD ontology, is 
presented in Table 27. 

Harmsen (1997) defines a product fragment to mean “a specification of a 
product delivered and/or required within a method” (ibid p. 52). He uses the 
result type classification based on Euromethod’s Deliverable Model (Franckson 
1994) to classify the result types into project domain deliverables, target domain 
deliverables, and delivery plans. Project domain deliverables are partitioned 
into plans and reports. Target domain deliverables are sub-divided into 
requirements statements, specifications, and operational items. The division 
corresponds, to some degree, to our IS perspectives. The conceptual contents, 
representation and abstraction levels (logical, technical) of the product fragment 
are not contained in the ontology, but expressed as product property types of 
method fragments (i.e. root, representation, and abstraction level). That is why 
they are not included in the table. The contents relationship between the 
product fragments means that one product fragment consists of another 
product fragment. The precedence relationship expresses ordering with respect 
to different product versions.  

Heym et al. (1992a) define a deliverable to be any result from a process or 
an activity (e.g. document, CASE tool graphic, program code). The deliverables 
are classified into four disjoint types: planning deliverables, decisions, system 
specifications, and reports or documentation.  The first two can be regarded as 
ISD management deliverables in our ontology, while the others are ISD 
execution deliverables. A deliverable may consist of other deliverables. A 
deliverable as a representational object is related to a conceptual  construct  via 
the covers relationship. Between the deliverables there are deliverable flows, 
meaning that some deliverables are used inputs to another deliverables 
(corresponding to our supports relationship).  
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In his hierarchical spiral model Iivari (1990b) refers to the ISD deliverables as 
the IS/SW products. The products are categorized according to the levels of 
modeling into products of the organizational level, the conceptual/infological 
level, and the datalogical/technical level. The levels correspond to our IS 
perspectives. 

Song et al. (1992) define an artifact to mean “a description of some sort of 
entity involved in a design process” (ibid p. 46).  An artifact can be a part of 
another artifact.  The artifacts can be specialized, for instance, according to the 
domains, which are: problem domain, problem-model domain, solution-model 
domain, and design-document domain.  

Interestingly, in only four artifacts among those selected for the analysis, 
the ISD object domain is addressed at least in a reasonable fashion. This is a 
surprise because the ISD deliverables are undoubtedly important to making 
sense of what the ISD produces in each of its parts and phases. Also in those 
four there are deficiencies. The ontology of Harmsen (1997) is most extensive 
addressing the ISD management deliverables and the execution deliverables, as 
well as giving a simple categorization of deliverables that is loosely based on 
the IS perspectives. The reference model of Heym et al. (1992a) and the 
hierarchical spiral model of Iivari (1990a, 1990b) provide specializations of ISD 
deliverables in a way which corresponds to our IS perspectives. The four 
artifacts provide most of the abstraction relationships between the ISD 
deliverables but only a few intra-domain relationships. 

Our ISD ontology applies three major criteria in the specialization of ISD 
deliverables: the dichotomy of management – execution, the IS perspectives, 
and the ISD domains. This has yielded a comprehensive set of concepts and 
constructs for the ISD object domain. We have not wanted to introduce any 
specific deliverable concepts, such as Analysis report or Systems specification, 
in order to keep the ISD ontology general enough. More specific concepts can 
be easily specialized from those defined in the ontology. We have, however, 
seen it important to define intra-domain relationships, such as supports, 
versionOf, copyOf, and signifies, which inherently reflect ISD practice, and 
which therefore should be included in every ISD artifact.  
 
8.5.7 Conclusions from the Analysis 
 
The comparative analysis of the existing ISD artifacts was done for two reasons, 
first to investigate what kinds of artifacts there exist in the literature and how 
they compare with our ISD ontology, and second, to test how well the ISD 
ontology serves as an analytical framework. Conclusions in this section aim to 
answer to both of these questions.  

We selected six artifacts (i.e. models, frameworks, and meta models) for 
the analysis with the purposes of (a) producing an overview of them and (b) 
finding out how comprehensive they are and how they are focused in terms of 
ISD domains. The ISD domains serve as a suitable basis for the analysis because 
they have been derived from the contextual approach. Most of the artifacts have 
been developed for the description, analysis, comparison and/or engineering of 
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ISD/SW methods. Hence, it was reasonable to expect that they would also 
reflect the essential aspects of ISD contexts. The analysis was made in two parts.  

In the overall analysis we found that only two of the artifacts (i.e. Iivari 
1990b; NATURE Team 1996) are established on some theoretical grounds. Most 
of the artifacts have been abstracted from existing ISD methods. This situation 
is unsatisfactory for two reasons. First, only with a sound theoretical 
background we can be sure that phenomena of ISD become properly conceived, 
understood and structured. Second, abstracting from existing methods in a way 
replicates properties of the methods and does not help recognize phenomena of 
ISD not addressed by the methods. Our ISD ontology is based on the contextual 
approach built on several underlying theories. Those theories help guarantee 
that the view applied in building the ISD ontology is broad and multifaceted 
enough.  

Concluding from the in-depth analysis based on the four ISD domains, we 
can make several statements. First, all of the analyzed artifacts put an emphasis 
on the ISD action domain. Second, most of the artifacts address, at least to some 
degree, the ISD object domain. In contrast, there are just few artifacts that 
provide concepts and constructs for the ISD purpose domain (i.e. Harmsen 
1997; NATURE Team 1996) or the ISD actor domain (i.e. Harmsen 1997; Heym 
et al. 1992a). This is surprising when taking into account that the selected 
artifacts have been constructed for describing, analyzing, and comparing the 
ISD methods in particular. How to analyze methods if some of the essential 
features are not addressed in an artifact?  Our ISD ontology has been 
established on seven ISD domains enabling the perception of ISD as a context 
with a large set of contextual features. We have also built our ISD ontology to 
be structured and flexible, meaning that its adaptation and specialization are 
easy to accomplish. 

From the six artifacts, the ontology of Harmsen (1997) appeared to be the 
most comprehensive. It has, however, some shortcomings in its coverage of the 
ISD actor domain (e.g. lack of ISD role, ISD position, ISD organizational unit) 
and the ISD action domain (e.g. lack of the management–execution structure, 
the ISD phase structure, and the IS modeling structure). The artifact can also be 
criticized for its incoherence and unstructuredness. The MDM ontology 
contains concepts and constructs that correspond to our IS ontology and partly 
to the ISD ontology, making no separation between these parts. Harmsen (1997) 
presents - as separate from the MDM ontology - the process classification 
system, which comprises concepts that clearly belong to the ISD ontology (cf. 
contents, representation and abstraction level of the product fragments). 
Although our ISD ontology is larger than the ontology of Harmsen (1997), it is 
more clearly structured, first according to the processing layers, second 
according to the contextual domains, and third, within each domain, according 
to the strictly defined generic structures. That makes it easier to understand and 
use. 

Next in terms of comprehensiveness comes the reference model of Heym 
et al. (1992a). It lacks the concepts of the ISD purpose domain but provides a 
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basic set of concepts and relationships in all three other ISD domains. The 
variety of concepts and relationships supported by it is particularly large in the 
ISD action domain. The meta models of Saeki et al. (1993) and Saeki (1998) and 
the frameworks of Song et al. (1992) and Song (1997) were found to be 
insufficient in all the ISD domains although they are aimed to provide a 
comprehensive basis for the description, analysis and comparison of ISD 
methods. They do not address the ISD purpose domain, nor the ISD actor 
domain. Also the other ISD domains are inadequately covered.  

The artifacts of Iivari (1990a, 1990b) and the NATURE Team (1996) cannot 
be evaluated with the same measures and scales as the others, because they are 
different by their nature. The hierarchical spiral model of Iivari (1990b) is 
actually a process model, although addressing processes-in-broad. The process 
meta-model of the NATURE Team (1996), although presented in the form of a 
meta model of an ISD method, also addresses ISD process.  Both of these 
artifacts provide a large variety of concepts and relationships for the ISD action 
domain, as expected. The hierarchical spiral model of Iivari (1990a, 1990b) 
applies diversified structures (cf. the transformation approach, learning process 
approach, and decision-oriented approach) to view ISD as being composed of 
intertwined ISD actions and ISD deliverables. In contrast, the process meta-
model of the NATURE approach (NATURE Team 1996; Grosz et al. 1997) 
applies the decision-oriented approach according to which ISD actions are 
strongly related to the ISD purposes (cf. intentions).  

To summarize the experience got from the use of the ISD ontology as an 
analytical framework in the comparative analysis, we can state the following. 
First, the ISD ontology clearly provided a comprehensive basis for 
understanding, structuring and comparing the existing artifacts. Theories 
underlying it increase our confidence that most of the essential aspects of the 
ISD context are included in the ISD ontology. This justifies its use as a 
“yardstick” in the analysis.  Second, the ISD ontology appeared to be easy to 
apply, mostly due to its naturalness and structured form. For instance, the 
artifacts propose miscellaneous sets of concepts and constructs for the ISD 
actions domain. The seven ISD action structures at three levels defined in the 
ISD ontology considerably helped us in interpreting, classifying, and 
comparing the artifacts at the level of concepts. Although these conceptions are, 
to some degree, subjective we believe that we have managed to demonstrate 
and justify the applicability of the ISD ontology with the analysis above.  
 
 
8.6 Summary and Discussions 
 
 
The goal of this chapter was to present the ISD ontology. We approached this 
goal first considering the ISD paradigms and the ISD approaches. We applied 
the classification of Hirschheim et al. (1989) and Hirschheim et al. (1992a) to 
characterize four basic ISD paradigms. Next, we sub-divided the ISD 
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approaches into three categories, defined the most essential ISD approaches in 
each category and discussed relationships between the ISD approaches. The 
discussion of the ISD paradigms and ISD approaches concretely showed how 
wide a variety among the conceptions about ISD really is. With the aim to 
encompass basic views of the ISD paradigms and ISD approaches, we 
formulated a generic but comprehensive definition of ISD, according to which 
ISD is seen as a context with aspects from seven contextual domains.  

Rooted on the definition of ISD we engineered the ISD ontology. The ISD 
ontology is composed of two main parts: the ISD domains and the ISD 
perspectives. For the first main part, we defined the concepts and relationships 
in four ISD domains and supported the presentations with meta models. In 
addition, we brought out plenty of references to the literature where similar or 
differing conceptions are suggested about the discussed issues. For the second 
main part we defined four ISD perspectives (systelogical, infological, 
conceptual, and datalogical). The inter-perspective relationships were also 
specified. The ISD perspectives are important to managing the conceptual 
complexity of ISD and to understanding how conceptions about the ISD context 
develop stepwise when engineering an ISD method.  

Finally, we made a comparative analysis of six artifacts (i.e. models, meta 
models, frameworks) selected from the literature for two reasons. First, we 
wanted to investigate which kinds of artifacts there exist in the literature and 
how they compare with our ISD ontology in terms of comprehensiveness and 
coverage. Second, our intention was to test how well the ISD ontology suited as 
an analytical framework. The analysis was made in two parts. In conclusion, 
most of the artifacts turned out to be totally lacking of theoretical basis and to 
be insufficient in coverage of essential aspects of ISD. The ISD ontology 
appeared to be the only artifact built firmly on sound theoretical bases. Only 
some of the artifacts provide any concepts for the ISD purpose domain and the 
ISD actor domain. While the ISD action domain is, at lest to some degree, 
addressed in the artifacts, there are large gaps in the coverage of the ISD object 
domain. The ISD ontology was shown to be the most comprehensive, covering 
four ISD domains with a large number of concepts and relationships, organized 
into flexible and easy-to-adapt structures.  

 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
9 ISD METHOD ONTOLOGY 
 
 
The ISD method is a highly complex and multi-faceted notion of which there 
are multiple views and conceptions in the literature. It is regarded as a 
discipline, an approach, a body of skill, a procedure, a way of accomplishing 
something, etc. The ISD method is also said to be a collection or system of 
various ingredients, such as concepts, models, techniques, rules, procedures, 
tools, beliefs, and values. The purpose of this chapter is to clarify and elaborate 
conceptions of the ISD method. This will be done specifying the ISD method 
ontology. The ISD method ontology aims to provide concepts and constructs for 
conceiving, understanding, structuring and representing contextual aspects of 
ISD methods. The ontology is composed of several parts. One of those parts is 
the conceptual content of the ISD method, which provides the “glasses” 
through which we can conceive phenomena in ISD. That part, known as the ISD 
ontology, was presented in Chapter 8.  The other parts view the ISD method as 
a representational and physical thing, consisting of different components and 
having certain basic assumptions, intentions and historical backgrounds. The 
method ontology has been derived from the underlying contextual ontologies 
(see Figure 86).  

This chapter is organized as follows. We start with considering why the 
ISD methods are actually needed and used in practice, by reviewing empirical 
studies that report on benefits from the use of the ISD methods. Second, we 
discuss the difference between the terms ‘methodology’ and ‘method’. Third, 
we delineate the concept of an ISD method as a ‘carrier’ of ISD knowledge and 
specify basic classifications of the ISD methods. Fourth, we define seven 
fundamental views through which the ISD method can be perceived, and 
present an integrative definition of the ISD method that highlights the essential 
features of the method from all these viewpoints. Fifth, we establish the ISD 
ontology composed of parts corresponding to the seven views. Sixth, we apply 
the ISD method ontology to consider, from a broader perspective, a range of 
methodical artifacts. We also discuss criteria for acknowledging a methodical 
artifact  to  be  an  ISD  method.   Seventh, we make  a comparative  analysis   of  
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FIGURE 86  Basis and structure of the ISD method ontology 
 
frameworks and categorizations of ISD methods proposed in the literature. 
Eighth, we consider the notion of a method component in more detail. We 
define the notion, present a classification scheme and specify a contextual 
interface of a method component. We also discuss the integration of method 
components, illustrate the discussion with examples, and make a comparative 
analysis of conceptions of a method component in the literature. The chapter 
ends with a summary.   
 
 
9.1 Why to Use an ISD Method? 
 
 
The first software systems were scientific applications in which algorithms and 
technical problems were the most critical issues. Later “administrative” 
information systems, more oriented towards basic operational functions of 
organizations, were built. At that time the only conceivable design task was 
programming and specifying computer room operations (Somogyi et al. 1987). 
To accomplish these tasks systems developers often followed a variety of 
systematic practices. New practices were invented as needed, and those, which 
seemed to work in previous projects, were subsequently mobilized again. They 
formed the developer’s ‘rules-of-thumb’ and, in a sense, his/her ‘method’ 
(Episkopou 1987). They were passed on to other developers, often by word of 
mouth. These practices were typically not codified and sometimes not even 
written down (Hirschheim et al. 1995). 
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This pre-method area ended roughly in the mid-1960s (Hirschheim et al. 
1995), when a need for more comprehensive and concise work instructions 
became urgent. This was boosted by several trends:  information systems 
became more complicated, a number and variety of ISD endeavors increased, 
and requirements on the productivity of projects and the quality of outcomes 
became more demanding (Fitzgerald 1997). This led first to the emergence of 
life-cycle methods and structured approaches with process-based description 
models, procedural techniques and strict phase structures. Later, new 
approaches and methods were developed to address more comprehensively the 
whole ISD life cycle, to cover a larger variety of application areas, to 
acknowledge the importance of human and social aspects to ISD, and to cope 
with more advanced technologies (Hirschheim et al. 1995; Avison et al. 1995a; 
Truex et al. 2000; Avison et al. 2003).  

As a result from the proliferation of different applications and expansion 
of ICT technology into novel areas, thousands, or even tens of thousands of ISD 
methods have been developed during the last four decades. But are they really 
needed?  Why to use these ISD methods anyway? What are the real benefits 
from using them in practical ISD? To these questions we try to shed some light 
by making a short review of empirical research on experience of method use in 
practice. In this section we focus only on the reported benefits. We are fully 
aware that there are also a lot of evidence about negative impacts of the method 
use in ISD work, either due to defects in the ISD methods or from reasons that 
are more related to human and organizational issues. We return to reported 
problems in and negative impacts of the ISD methods in Chapter 10.  

Based on the review of empirical studies on the use of ISD methods, we 
sub-divide reported benefits into five groups. Group (a) facilitates the 
acquisition, accumulation, use and dissemination of ISD knowledge, group (b) 
helps the management of ISD projects, group (c) reduces the need of money, 
labour and time in the ISD process, group (d) improves the quality of ISD 
deliverables, and group (e) provides a political support to ISD. Next, we discuss 
the benefits in this order. 

Schönström et al. (2003) conclude from two case studies that ISD methods 
play an important role as knowledge enabler in large software projects. These 
methods stimulate individual knowledge development and facilitate the 
sharing of individual knowledge and its transformation to organizational 
knowledge.  The methods create a common platform for communication and 
understanding by defining a communicative framework consisting of a 
common terminology, workflows and best practices. Also Rahim et al. (1998), 
Middleton (1999) and Hardy et al. (1995) noticed better communication and 
increased user involvement in the ISD as a consequence of the method use. The 
developers benefit from the methods in different ways. Fitzgerald (1996a) 
concludes that the relationship between the developer experience and the 
method use resembles a U-shaped curve, which shows that the more necessary 
and explicit support the method provides for novices, and the more 
experienced the developers become, the more ‘invisible’ their method use turns 
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out to be. Hidding (1997) call this the process of ‘internalization’ through which 
the method use becomes subconscious. The ISD knowledge becomes re-
considered when a new method is implemented in an organization. According 
to Backlund et al. (2003) the public knowledge contained in a commercial 
method, such as RUP (Rational Unified Process (Kruchten 2000)), is made 
organization-specific through the customization process. By this process the 
generic knowledge, conveyed by the method, is assimilated with the existing 
organizational knowledge. 

The use of ISD methods has been noticed to help the planning and control 
of ISD projects. Fitzgerald (1998a), for instance, found in his field study that 
methods facilitate project control and increase visibility into the development 
process. Chatzoglou (1997) reports that the method use resulted in fewer 
iterations in requirements capture and analysis. The study of Hidding (1997) 
indicated that the methods were promoted by management in order to attain 
more sophisticated or better project control. And the larger the projects, the 
more important it becomes to control them.  

The method use has also been found to reduce the need for money, labor 
and time in the ISD process. Concluding from a case study, Jones et al. (1988) 
report on significant reduction in estimated project budgets, below-budget 
project completions, and significant productivity improvements in 
maintenance.  Chatzoglou (1997) reports that on an average not using an ISD 
method results in the involvement of more people, a need for more time and 
effort and higher costs compared to when a method is used. The survey (Rahim 
et al. 1998) conducted within Bruneian organizations indicates improved 
productivity resulting from the method use. Also Hardy et al. (1995) found that 
in some cases methods improved productivity and enabled better timescale 
estimates. 

The method use may also improve the quality of ISD deliverables. 
Chatzoglou (1997) found out that managers were more confident about the 
quality of requirements gathered when a method was used. Also Rahim et al. 
(1998) report on better fulfillment of user requirements. In addition they found 
that the adoption of a method produced quality documents. The survey of 
Hardy et al. (1995) indicates that the method use means fewer errors in design, 
specifications match the requirements and the system matches the specification. 
There are also some studies on formal methods indicating positive effects on 
deliverables. According to Pfleeger et al. (1997) formal methods, combined with 
other techniques, yielded highly reliable code. Snook et al. (2001) report on a 
higher level of reliability, reduction in post-delivery failures, higher efficiency 
of the product code, and benefits in aiding traceability between the specification 
and the code. 

While the aforementioned findings are related to so-called rational roles 
behind the use of methods, there is also a set of political roles that ISD methods 
can play in ISD (Keen 1981; Newman et al. 1990; Chang et al. 2002; Fitzgerald et 
al. 2002). Chang et al. (2002) sorted out 192 examples of political games from 56 
cases and categorized them into 41 kinds of games. Middleton (1999) concludes 
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that the developers generally found a method a source of political protection 
should things go wrong. Using a method they could show that they had tried to 
adhere to the approved procedures for ISD (cf. ‘social defence’  (Wastell 1996)). 
The developers also felt it increased their professionalism (cf. Fitzgerald et al. 
2002). According to Nandhakumar et al. (1999) methods can be valuable in ISD 
projects as a necessary fiction to present an image of control or to provide a 
symbolic status. 

In addition to the findings in the empirical studies reviewed above, there 
are a lot of issues in which the method use is believed to contribute to the ISD 
contexts. The methods are said, for instance, to allow skill specialization and 
division of labor (Fitzgerald 1998a), to further the standardization of the 
development process (Avison et al. 1995a; Pijl et al. 1997; Roberts et al. 1998), and 
to help in the selection of more suitable techniques (Fitzgerald 1998a).  

In conclusion, numerous methods have been developed for ISD during the 
past few decades. Despite various problems in methods and their usage, ISD 
methods have appeared to be beneficial in many ways. They are considered to 
be artifacts that convey the best practices on ISD for helping achieve better 
outcomes through a more efficient, effective, and manageable ISD process.  But 
what is, actually, this artifact? What kind of knowledge does the ISD method 
help us accumulate, convey and share? What types of methods are there? What 
kinds of parts is the ISD method composed of? What is it that is required from 
these component parts to make them suitable for integration into a proper 
method. These questions will be addressed in the next sections where we will 
define the concepts and constructs of the ISD ontology.  
 
 
9.2 Methodology vs. Method  
 
 
In the ISD literature the terms ‘methodology’ and ‘method’ are used in various 
meanings. Sometimes they are seen to be separate, sometimes they are used 
interchangeably.  

Originally, ‘methodology’ is a Greek term meaning the study of methods. 
Webster´s Dictionary (Webster 1989) defines the concept as “the study of the 
principles underlying the organization of the various sciences and the conduct 
of scientific inquiry”. In accordance with this, Oliga (1988) defines a 
methodology “as a method of methods that examines systematically and 
logically the aptness of all research tools, varying from basic assumptions to 
special research techniques” (ibid p. 90). Stamper (1988) also reserves the term 
‘methodology’ for a comparative and critical study of methods in general. 
Checkland (1981) states that “a methodology will lack the precision of a 
technique but will be a firmer guide to action than a philosophy”. Heym et al. 
(1992a,   215) use the term ‘methodology’ to refer to a class of methods, e.g. the 
description or representation of different methods. Brinkkemper (1996) argues 
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that “a methodology is the systematic description, explanation and evaluation 
of all aspects of methodical information systems development” (ibid p. 276).  

On the other hand, ‘methodology’ is used to refer to a more concrete 
prescription, implying that the term is regarded as a synonym for ‘method’ (e.g. 
Oliga 1988; Jayaratna 1994; Avison et al. 1995a; Hirschheim et al. 1995; Russo et 
al. 1996; Hidding 1997; Iivari et al. 1998a).  For instance, Hidding (1997) states 
that a methodology “represents a body of skills and knowledge that becomes an 
organization’s standards, based on a common language among practitioners” 
(ibid p. 105). Iivari et al. (1998a) define the methodology as “an organized 
collection of concepts, methods, beliefs, values and normative principles 
supported by material resources” (ibid p. 165). There are also those who 
propose that ‘method’ is more comprehensive, and includes ‘methodology’ 
(Davis 1982; Hackathorn et al. 1988). 

Some differences in the literature can be explained by different naming 
conventions in Europe and North America. In Europe ‘method’ is preferred to 
prescribe a more systematic way of conducting ISD, and ‘methodology’ is 
reserved for the use with the original meaning. In North America,  
‘methodology’ is commonly used as Europeans use the term ‘method’ (cf. Iivari 
et al. 2001,  207).  

In this study, we prefer the European naming convention. Thus, ‘method’ 
means a prescription for some specific actions in ISD, and ‘methodology’ is 
reserved for a comparative and critical study of methods in general.  
 
 
9.3 ISD Method as a ‘Carrier of ISD Knowledge’ 
 
 
The ISD method is commonly considered to contain collective knowledge and 
experience that are made ‘visible’ to enable their exploitation and advancement 
in succeeding ISD projects (Tolvanen 1998; Fitzgerald et al. 2002; Schönström et 
al. 2003; Backlund et al. 2003).  We also start our work of specifying the notion of 
the ISD method by considering it as a ‘carrier of ISD knowledge’.  

To enable the understanding of, and the comparison between, various 
conceptions of the ISD method and to make our view clear, we construct a 
general framework that helps us highlight the essential aspects of the method. 
The framework is presented in the form of a cube that depicts the body of ISD 
knowledge needed in a particular ISD context (Figure 87). The framework is 
composed of three dimensions: the contents of ISD knowledge, the 
representation of ISD knowledge, and the type of the ISD method. Next, we 
discuss these dimensions in more detail.  

The contents of ISD knowledge can be subdivided in many ways. 
Extending the categorizations by Freeman (1987) and Iivari et al. (2001,  206) we 
state that the body of ISD knowledge is composed of four components: 
knowledge of ISD process, knowledge of application  domain,  knowledge of IC  
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FIGURE 87  Framework for classifying ISD methods 
 
technology,  and   knowledge   of  human   and   social  issues146.  The  knowledge 
of  ISD process means all the knowledge that concerns how to accomplish an ISD 
work. Examples of the questions it aims to answer are: What are the approaches 
and main principles to be applied in the ISD context? What are the ISD actions 
to be carried out and by whom? What are the deliverables that the ISD actions 
should produce? How ISD actions should be decomposed, related and 
managed? This body of knowledge also contains information about how to 
improve the ISD process. The knowledge of application domain means all the 
knowledge that concerns the information system to be designed, its utilization 
system and its object system. Each application domain has specificities of its 
own that are necessary to know for accomplishing the ISD. The knowledge of IC 
technology means all the knowledge that concerns the search, acquirement, 
installation, and deployment of hardware and software for the IS, as well as for 
the ISD. The knowledge of human and social issues, also known as ‘humanware’ 
and ‘orgware’, means all the knowledge that concerns human characteristics 
and behavior as well as social and organizational aspects that should be taken 

                                                 
146  Iivari et al. (2004, 319) propose five knowledge areas in the information systems body 

of knowledge: technical knowledge, application domain knowledge, organizational 
knowledge, IS application knowledge, and ISD process knowledge. These are 
included in our components of ISD knowledge. 
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into account in building the IS and in organizing the ISD work. This body of 
knowledge is a counterbalance to the knowledge of IC technology. On a general 
level, this means the knowledge related to humans and organizations in 
general, and on an instance level, it is related to particular persons, teams and 
organizations.  

The second dimension of our framework is the representation of the ISD 
knowledge. Next, we first discuss, based on the works of Schön (1983), Nonaka 
et al. (1995), Mathiassen et al. (1988), and Mathiassen (1998), to what extent it is 
possible at all to present the ISD knowledge. After that we distinguish between 
three different presentation forms of the ISD knowledge. 

Schön (1983) differentiates between two perspectives of looking at 
professional practice: technical rationality and reflection-in-action. From the 
technical rationality viewpoint, professional practice is seen as instrumental 
problem solving. In this view, situations can be scientifically categorized, and 
professional practice applies scientifically–based theories and techniques. In 
contrast, from the perspective of reflection-in-action, situations of professional 
practice are unique, complex, uncertain and even conflicting. Nonaka et al. 
(1995) recognize two types of knowledge: explicit knowledge and tacit 
knowledge. Explicit knowledge can be articulated in a natural or formal 
language, which enables the transfer of the knowledge through documents. 
Tacit knowledge has to do with personal knowledge that is embedded in 
personal experience. It is not easy to explicate, not to speak of formalizing.  

Based on the categorizations of Schön (1983) and Nonaka et al. (1995) we 
state that the ISD knowledge can take different forms. Part of it remains local, 
individual, and even tacit. Other parts of the ISD knowledge can be explicated 
and made publicly available. The ISD method is a means to capture and convey 
that knowledge. The ISD method provides explicit knowledge from technical 
rationality viewpoint in the form of principles, procedures, guidelines, etc. But 
because knowledge and action are intrinsically related (Mathiassen et al. 1988), 
the method should not restrict intuitive and ad hoc -like actions necessary in the 
ISD practice but rather encourage the use of tacit knowledge and creative 
thinking. Ciborra (1999) calls this intuitive part of ISD “work improvisation”. 

There are varying conceptions on a degree to which the ISD method as a 
“knowledge base” can convey and provide knowledge to ISD developers 
(Wastell 1996; Wordsworth 1999; Truex et al. 2000). Most optimistic think that 
all the ISD knowledge can be thought to reside outside the ISD practice – in 
books and in learned institutions. This view follows the scientific reductionism 
that is, to some degree, the underlying paradigm behind many ISD methods 
(Baskerville et al. 1992). The belief to the pervasiveness of the method is 
sometimes so firm that it is believed it is mainly the method that does the work 
(Wastell 1996).  This, of course, is not the case.  

But what is the relation between the knowledge, conveyed by the ISD 
method, and the knowledge used and accumulated in a particular ISD context? 
Fitzgerald et al. (2002,  13) calls the ISD practice using a method the method-in-
action. Derived from the distinction made by Argyris et al. (1974) between an 
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‘espoused theory’ and a ‘theory-in-use’, we can say that knowledge within the 
method is never used exactly as originally intended. Different developers do 
not interpret and apply the same method in the same way. And the same 
developer applies the same method in different ways in different ISD contexts 
(Fitzgerald et al. 2002). This deviation of method-in-action from the method is 
made visible in two ways in Figure 87. That part of the ISD knowledge within 
the method that is totally ignored in a particular ISD context is represented with 
the white area in the upper part of the figure. The part of the ISD knowledge 
within the method that is customized for a particular ISD context and during it 
is represented with the grey area in the figure. Both of these areas are always 
present in an actual ISD context. Their sizes just vary. If these areas become 
very large, it is a reason to question whether the method is applied at all in the 
context. The other two areas in Figure 87 are: the ISD knowledge conveyed by 
the ISD method and used more or less as such in a particular ISD context 
(presented with the black area), and the ISD knowledge totally residing outside 
the ISD method (presented with the lowest area). The latter stands for all that 
ISD knowledge that is accumulated and applied in an ISD effort in an intuitive 
and improvising fashion (cf. Orlikowski 1996; Ciborra 1999).  

The ISD knowledge can be presented in several forms in the method. We 
distinguish between three forms: non-structured, structured and formal. A non-
structured form means that views, conceptions, principles, guidelines, rules, etc. 
are expressed in a natural language. A structured presentation of ISD 
knowledge contains also diagrammatic descriptions of ISD deliverables, ISD 
processes, and organizations. Part of these descriptions can be given in the form 
of meta models.  

The notion of a formal presentation, or a formal method, is a more tricky 
one. According to the Oxford Advanced Learner’s Dictionary of Current 
English, the term ‘formal’ means “in accordance with rules, customs, and 
conventions”. Fitzgerald et al. (2002) use the term ‘formalized methods’ to mean 
“formally documented in-house and commercially available methods (e.g. 
SSADM, SSM)” (ibid p. 13). Wordsworth (1999) defines a formal method as “a 
process for developing software that exploits the power of mathematical 
notation and mathematical proofs” (ibid p. 1027). Pfleeger et al. (1997) state that 
a “formal technique involves the use of mathematically precise specification 
and design notations, and is based on refinement and proof of correctness at 
each stage in the life cycle” (ibid p. 34). Finally, Mathiassen et al. (1986,  146) 
recognize formality in the methods in two forms: formal models and formalized 
behavior. In the former case, the method provides description tools and related 
techniques that presume the use of formal expressions. For example, the B 
method (Wordsworth 1996) uses the Z notation.  In the latter case, at least part 
of a way of working is also formalized (e.g. the Vienna Development Method 
(VDM) (Jones 1986)).  We share the view of Mathiassen et al. (1986).  

In our view, all three forms are needed to present the ISD knowledge in 
the methods. To give an overview of ISD, a non-structured form is the most 
suitable. To provide more exact knowledge on e.g. concepts and notations, 
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structured forms including meta models,  can be used.  Formalization can also 
be of practical value (Pfleeger et al. 1997; Wordsworth 1999; Snook et al. 2001). It 
helps avoid ambiguity and perform inferences and verifications. A formalized 
presentation is also a prerequisite for embedding ISD knowledge into a 
computer-aided tool (i.e. CASE tool), which can support not only making 
models but also enacting ISD processes (Rolland et al. 1999; Koskinen 2000).  

Next, we move to discuss the third dimension of our framework, which 
concerns generality vs. specificity of the ISD knowledge (see Figure 87). We 
distinguish between four types of ISD methods depending on how generic or 
specific ISD knowledge they convey. The method types are: generic ISD 
methods, domain-specific ISD methods, organization-specific ISD methods, and 
project-specific ISD methods. Generic ISD methods provide general support, such 
as general approaches, principles, models and guidelines, to conduct an ISD 
effort in a wide range of ISD contexts. These kinds of methods are called ”off-
the-shelf” methods (e.g. SSADM, IE, and RUP), which must always be 
configured (Karlsson et al. 2001). Domain-specific ISD methods provide more 
domain-specific support to conduct an ISD effort in a specific application 
domain. The application domain may concern a geographic information 
system, a web information system, a mobile information systems or the like. 
Organization-specific ISD methods provide customized support to conduct an ISD 
effort in a specific organization. The properties of the organization-specific ISD 
method have to match the culture, conventions and infrastructure of the 
organization. Project-specific ISD methods provide configured and instantiated 
support to conduct an ISD effort in a specific project in an instantiated fashion. 
The properties of the project-specific ISD method have to match the needs and 
profile of the specific project. The division of the methods into different types is 
denoted with vertical lines in Figure 87. To have a more compact drawing we 
have grouped the ISD methods into three groups: generic methods & domain-
specific ISD methods, organization-specific ISD methods, and project-specific 
ISD methods. As seen in the figure, proportions of different kinds of ISD 
knowledge vary depending on the type of the ISD method.  

 Let us consider in more detail how the method types differ from one 
another, based on Figure 88. The arrows in the figure denote the direction of 
configuration, customization, and instantiation of one method to another. In 
moving from the generic ISD methods, through the domain-specific and 
organization-specific ISD methods, to the project specific ISD methods the ISD 
knowledge, conveyed by the methods, becomes more complete, detailed and 
concrete. The generic ISD method provides ‘universal’ prescriptions/ 
descriptions of an ISD process, as well as of the environment in which an ISD 
process should be accomplished. It also outlines ISD roles and ISD positions in 
terms of responsibilities, authorities and skill requirements. Some general 
classifications of and suggestions for IC technology may also be incorporated to 
the later stages of an ISD process. In the domain-specific method the application 
domain, especially the part concerning an IS, is described in much more detail. 
As a consequence, also the knowledge of an ISD process related to the specific 
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features of the application domain is elaborated respectively. This means that 
the ISD conceptual perspective (cf. Section 8.4.3) is more explicitly defined, as 
compared to the generic ISD methods. To customize the generic ISD method 
into an organization-specific ISD method, descriptions of organizational 
structures and ways of working, “inherent” to the particular organization, are 
included in the method. Also the ISD knowledge of IC technology is 
customized to match the technical infrastructure existing in the organization. 
Policies and principles concerning e.g. user participation and approval 
procedures are taken into account in the method. This all means that the ISD 
datalogical perspective is applied in the organization-specific ISD method (cf. 
Section 8.4.4).  Finally, the project-specific ISD method prescribes/describes, in 
the most detailed form, contextual structures and behavior of the project, which 
is to accomplish a particular ISD effort.  
 

Generic ISD method

Organization-specific
ISD method

Domain-specific ISD
method

Project-specific ISD
method  

 
FIGURE 88  Relationships between the types of the ISD methods 
 
Next, we compare our categorization of the ISD methods with those few 
categorizations suggested in the ISD literature. Vlasblom et al. (1995,  600) 
introduce the terms ‘open’ and ‘closed’ methods, but with only generic 
characterizations. The open methods provide more freedom on the general 
level, whereas the closed methods completely restrain choices. Between the two 
extremes, Vlasblom et al. (1995) identify ‘half-closed’ methods, in which a 
number of choices have already been made.  This situation resembles the one 
that is recognized in problem-solving field, where a difference is made between 
weak methods and strong methods (Howard et al. 1999, 178). The weak 
methods are general. They can accommodate a large variety of problems, but 
give no assurance that the solution thus derived will be ‘optimal’. The strong 
methods are only useful for certain specialized problems, but the solutions are 
more likely to near ‘optimum’. Baskerville (1996) suggests the use of the term 
‘contingency methods’ to mean the organization-specific ISD methods, as they 
are situation specific for certain types of bounded organizational settings. 
Harmsen (1997) uses the term ‘situational method’ to mean a method tailored 
and tuned to a particular situation. A situation means “the combination of 
circumstances at a given moment, possibly in a given organization” (ibid p. 25), 
embracing an organization, a project, and an application domain.  
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Though not associating to the notion of a method, Backlund et al. (2003) 
identify three levels of ISD knowledge: industry level (public knowledge), 
organizational level, and project level. The topmost level corresponds, to give 
an example, to a commercial method like RUP (Rational Unified Method 
(Kruchten 2000)). Also Fitzgerald et al. (2003) identify the industry level, the 
organizational level, and the project level in discussing components (e.g. 
standards, prescriptions, conventions, etc.) affecting the software development 
process. 

We argue that it is highly important to differentiate between various types 
of ISD methods. The type of the method affects, for instance, the process and 
technology of engineering the method, the way of presenting and manifesting 
the method, and the view of how to best use the method. We have above first 
categorized the ISD methods according to the knowledge they convey. Another 
categorization has been made on the basis of the form used to represent the ISD 
knowledge in the method. Our second argument in this section is that though 
the ISD method may contain massive amount of ISD knowledge, it can, 
however, cover only a small portion of that knowledge that is accumulated and 
used in an actual ISD context. 
 
 
9.4 Definition of the ISD Method 
 
 
In the ISD literature, the notion of a method has been given quite different 
meanings147. To illustrate the variety of meanings we have collected exemplars 
of the definitions into two tables. Table 28 contains parts of the definitions 
characterizing the nature of the ISD method. The ISD method is seen as an 
approach (e.g. Brinkkemper 1996; Truex et al. 2000; Russo et al. 1996), a body of 
skills and knowledge (Hidding 1997), a way of accomplishing something 
(Kruchten 2000), a description of a technique (Hirschheim et al. 1995), a 
procedure (Kitchenham et al. 1999), and a system (Jones et al. 1988). Table 29 
comprises parts of the definitions, which describe the ISD method from the 
structural viewpoint. The ISD method is seen as a collection (e.g. Nuseibeh et al. 
1996; Tolvanen 1998; Avison et al. 1995a), a mixed bag (Rumbaugh 1995), and a 
system (Veryard 1987; Krogstie 1995) of various ingredients.  

Method is an essential subject in the ISD research in general, and the most 
important concept in our study. Therefore, we take seriously the need of 
defining the notion as thoroughly as possible. We proceed as follows. We first 
define seven main views from which the method must be considered. Based on 
these views, we construct a general-level definition of the method. Taking the 
views and the definition as a departure point, we then establish the detailed ISD 
method ontology in the next section. 
                                                 
147  The term ‘method’ originates from a Greek term ‘méthodos’, meaning a systematic 

course. In Webster’s Encyclopedic Unabridged Dictionary (1989) the method is 
defined as “a way of doing something, especially in accordance with a definite plan”. 
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TABLE 28  Nature of the ISD method as seen in the ISD literature 
 

Reference The method is… 
Benjamin et al. (1994) ”...a discipline or practice for accomplishing some set of 

tasks” (ibid p. 169). 
Brinkkemper (1996) “an approach to perform a system development project” 

(ibid. p. 275). 
“the systematic description, explanation and evaluation of 
all aspects of methodical ISD” (ibid p. 276). 

Green et al. (2000) ”an approach to system planning, analysis, design, and 
construction”  (ibid. p. 73). 

Heym et al. (1992a) ”..an approach to information systems development” (ibid p. 
215). 

Hidding (1997) “a body of skills and knowledge” (ibid p. 105). 
Hirschheim et al. (1995) ”...a description of a technique” (ibid p. 11). 
Jayaratna (1994) “… an explicit way of structuring one’s thinking and 

actions” (ibid p. 242). 
Jones et al. (1988)  ”a system which provides the information required to build 

information systems” (ibid p. 264). 
Kitchenham et al. (1999) ”...a procedure defining steps and heuristics to permit the 

accomplishment of one or more activities” (ibid p. 376). 
Kruchten (2000) “way of accomplishing something” (ibid p. 276). 
Russo et al. (1996) ”... an approach to conducting at least one complete phase 

[…] of computer information system development” (ibid p. 
387). 

Truex et al. (2000) “… an approach to information systems development “ (ibid 
p. 54). 

 
Method is a very multifaceted concept. As concluded in Section 9.3, it is a kind 
of knowledge base or an organizational memory that is accumulated and 
shared across organizational boundaries and time  dimension (Schönström et al. 
2003; Backlund et al. 2003). It should also carry justifications for its creation and 
modifications (Kaipala 1997; Rossi et al. 2004). It is a linguistic artifact written, 
edited, read and interpreted by ISD actors in different ISD roles, in different 
contexts (Jayaratna 1994; Hidding 1997). In addition, it can be considered an 
aggregate of various constituents which may have different appearances.  

To cope with the most essential facets, we define and apply seven views of 
the notion of an ISD method. To distinguish these views from the other views 
defined in this work, we call them the methodical views. The methodical views 
are (Figure 89): (a) The historical view: What kind of historical background does 
the method have? (b) The application view: Where and how is the method to be 
applied? (c) The contents view: To what kinds of phenomena do the knowledge 
within the method refer? (d) The presentation view: In what ways is the 
knowledge within the method presented? (e) The physical view: How is the ISD 
method materialized? (f) The structural view: What is the structure of the 
method? 

The methodical views roughly correspond to the layers of the semantic 
ladder  (Stamper 1973;  Stamper 1996). The historical  view  and  the application  
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TABLE 29  Notion of the ISD method seen from the structural viewpoint in the ISD 
literature 

 
Reference The method .. 
Avison et al. 
(1995a) 

“is a collection of procedures, techniques, tools, and 
documentation aids which will help the systems developers in 
their efforts to implement a new information system” (ibid p. 10). 

Iivari et al. (1998a)  is “an organized collection of concepts, methods, beliefs, values 
and normative principles supported by material resources” (ibid 
p. 165). 

Karlsson et al. 
(2001) 

“consists of three interrelated parts: a process, some sort of 
notation and a set of concepts used to describe the problem 
domain and the method itself.” (ibid p. 2). 

Krogstie (1995) “is a system of rules, techniques, and tools to aid development 
and/or maintenance of application systems.” (ibid p. 13). 

Nuseibeh et al. 
(1996) 

“is a collection of procedures and heuristics for…” (ibid p. 269). 

Rumbaugh (1995) “is a mixed bag of guidelines and rules, including the following 
components: a set of fundamental modeling concepts, a set of 
views and notations for presenting the underlying modeling 
information, a step-by-step process for constructing models and 
implementations of them, a collection of hints and rules of thumb 
for performing development.” (ibid p. 10). 

Tolvanen (1998) “is a collection of techniques and a set of rules which state by 
whom, in what order, and in what way the techniques are used, 
to achieve or maintain some objectives.” (ibid p. 33). 

Veryard (1987) “is a system of tasks and techniques, supported by automated 
tools and/or directed experience, for carrying out some or all of 
the following IS activities…” (ibid p. 469). 

 

Context of the ISD method

Historical view Application view

ISD method

Generic view

Contents view Presentation view

Structural view Physical view

 
 
FIGURE 89  Methodical views  
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view “contextualize” the method into the past contexts in which the method has 
been engineered and applied, as well as into the future contexts, in which the 
method is  to  be  engineered  and  applied. By  these views only, the real nature 
and meaning of the method can be understood. These views reflect aspects of 
social world and pragmatics (cf. Section 4.3). The generic view provides an 
overview and general understanding of the method. The contents view reveals 
the object system (OSISD), that is to say, the semantics of the method (cf. the 
layer of semantics). This view was applied in Chapter 8 to establish the ISD 
ontology. The presentation view, corresponding to the syntactic layer, is used to 
consider the method as a set of expressions presented in some language. The 
physical view considers the method as a materialized thing. Finally, from the 
structural view the method is seen as a modular structure composed of various 
descriptive and prescriptive parts. 

Based on the methodical views we can now present an integrated 
definition of the ISD method for the use of this work: 
  

The ISD method is an artifact anchored on certain historical, intentional and 
functional backgrounds and aimed to be applied and deployed as a prescription 
in the intended kinds of ISD contexts, in order to make organizational and 
technical changes in IS’s possible or more productive. The ISD method, presented 
and materialized in certain forms, contains four kinds of knowledge148 bringing 
out how ISD actors carry out ISD actions to produce ISD deliverables, by means 
of ISD facilities, in an organizational and spatiotemporal context, in order to 
satisfy ISD goals set by ISD stakeholders. The ISD method is composed of 
descriptive and prescriptive parts with a large variety.  

 
In the next section we apply these methodical views, except the contents view, 
to establish the ISD method ontology. As said above, the contents view was 
already applied in Chapter 8 in engineering the ISD ontology. 
 
 
9.5 Definition of the ISD Method Ontology 
 
 
Generally speaking, an ontology is “consensual knowledge represented in a 
generic and formal way to be used and shared across applications...” (Corcho et 
al. 2003, 44). An ontology is also seen as an artifact engineered with the purpose 
of expressing the intended meaning of a shared vocabulary (cf. Uschold et al. 
1996). Recalling that there is a wide variety of conceptions about the ISD 
method in the literature, we need a systematic and detailed way to define the 
nature, contents and structure of the notion. We do this through the ISD 
method ontology.  

                                                 
148  Recall the division of ISD knowledge into four components: knowledge of ISD 

process, knowledge of application domain, knowledge of IC technology, and 
knowledge of human and social issues (see Section 9.3). 
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The ISD method ontology is composed of concepts and constructs, with 
which contextual aspects of the ISD methods can be conceived, understood, 
structured, and represented. Due to the complexity of the ISD method ontology, 
we decompose it into seven parts based on the seven methodical views defined 
in Section 9.4. An overall picture of the ISD method ontology is presented in 
Figure 90. Next, we define the views and the concepts comprised by the views.  
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FIGURE 90  An overall picture of the ISD method ontology 
 
A.  Historical View  
 
The historical view enlightens the backgrounds of and experience from the 
engineering and use of the ISD method. It involves both prior ME contexts and 
prior ISD contexts. Prior ME contexts mean those contexts that have contributed 
to the creation and engineering of the ISD method. Prior ISD contexts mean 
those contexts in which the ISD method has been deployed. Resulting from the 
former, the ISD method has to include knowledge of the intentions, approaches 
and principles by which the ISD method has been engineered, of ME actors 
who have been responsible for the engineering, and of ME actions by which the 
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ISD method has been engineered, etc. This knowledge is known as the method 
engineering rationale. It establishes a systematic and organized trace of method 
evolution (cf. method construction rationale in Rossi et al. 2004). Resulting from 
the latter, the method has to include knowledge about e.g. applications 
developed, ISD actors involved, and successes/failures encountered in prior 
ISD contexts in which some version of the ISD method has been deployed. This 
knowledge is known as method use rationale (Rossi et al. 2004) or “specification 
development status history and rationale” (Nuseibeh et al. 1996). It is a kind of  
“experience base” which can be used to help making and justifying the 
decisions on whether to use and how to use the ISD method. Both of these 
bodies of knowledge from history are important to considering the relevance 
and applicability of the method to the ISD context at hand.  A detailed 
description of an ME context can be established with concepts and constructs 
given in the ME ontology in Chapter 10. The corresponding concepts and 
constructs for the description of an ISD context are contained in the ISD 
ontology in Chapter 8.  
 
B.  Application View 
 
The application view outlines where and how the ISD method can be applied. 
Consequently, the ISD method contains descriptions of those ISD contexts, 
called target ISD contexts, for which the ISD method is intended, as well as 
descriptions of those ME contexts, called target ME contexts, in which the ISD 
method is to be customized and instantiated for the use of a particular 
organization or project. A target ISD context means an application area, that is 
to say, some part of the real world that is seen to be problematic and worthy of 
investigation (Checkland 1981). In the ISD method the arguments for the 
applicability to certain kinds of ISD contexts should be justified with 
appropriate evidence. Evidence can be based on logical argumentation derived 
from the perceived match between the ISD method and the suggested 
application areas, or on empirical experience got from the prior usages (cf. 
method rationale in Rossi et al. 2004). For the target ME contexts, it is necessary 
to include in the method outlines of factors to be considered and guidelines to 
be followed in the customization.   
 
C.  Generic View 
 
The generic view provides the general understanding of the nature of the ISD 
method. It highlights: (a) the philosophic assumptions and values, on which the 
ISD method has been built (cf. ISD paradigms), (b) the ISD approaches to be 
applied in the target ISD contexts, and (c) the main ISD principles to be 
followed in the target ISD contexts.  

The ISD paradigm means here a set of fundamental paradigmatic and 
philosophical assumptions underlying the ISD method. The paradigmatic 
assumptions are divided into four categories (see Section 8.1.1): (1) assumptions 
about the nature of the IS and the ISD (ontology), (2) assumptions about what 
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human knowledge is and how it can be acquired in the IS and the ISD 
(epistemology), (3) research methodology, and (4) ethics (Iivari 1991; Iivari et al. 
1998a).  

The ISD approach means a generic way of conceiving certain aspects of ISD 
and/or a generic way of working in ISD (cf. Section 8.1.2). Among a large 
variety of ISD approaches we distinguish between the approaches that are 
based on (a) different schools of thought, (b) different views of ISD, and (c) 
different focuses on the contextual ISD domains. The ISD approaches are highly 
interrelated.  

The main ISD principle expresses essential aspects of a way in which the 
ISD context is to be structured, accomplished, and/or managed. Examples of 
the main ISD principles are:  iterative design, end-user participation, problem-
orientation, and contingency-based application of the ISD method. Hidding 
(1997, 107) call this “the first principle” and defines it as a “way of thinking” 
that is embedded in a particular method.  

The ISD paradigms, the ISD approaches and the main ISD principles are 
inter-related to one another. The relationships include the “inheritance” 
relationship (cf. Iivari et al. 2001, 188). Several ISD approaches may be needed to 
confirm a particular paradigmatic assumption. An ISD approach in turn can be 
based on one or more paradigms.  An ISD approach can lead to the application 
of one or more main ISD principles, and a particular principle may be followed 
to implement one or more ISD approaches.  
 
D.  Contents View 
 
The contents view reveals the conceptual contents of the ISD method. According 
to this view, the ISD method is composed of concepts and conceptual constructs 
referring to the ISD context, as well as to some parts of the ME context(s). The 
former correspond to the prior and target ISD contexts. The conceptual contents 
of the ISD context have been established in the form of the ISD ontology in 
Chapter 8. The latter mean the prior and target ME contexts. The conceptual 
contents of the ME context will be presented in the form of the ME ontology in 
Chapter 10.   
 
E.  Presentation View 
 
From the presentation view the ISD method is seen as a set of expressions 
presented in some language(s). Expressions signify conceptual constructs 
constituting the contents of the ISD method. A language is defined by an 
abstract syntax, a concrete syntax (or notation) and semantics. An abstract 
syntax states the allowed conceptual constructs composed of concepts (ter 
Hofstede et al. 1998). A concrete syntax gives the notational elements, including 
labels, of a language and rules for connecting them with one another and with 
the concepts.  Semantics specifies the meaning of notational elements. 
 
 



 

 

391

F.  Physical View 
 
The physical view reveals the appearance(s) of the ISD method, that is to say, the 
media on which the ISD method is made visible or “functioning”. The ISD 
method may appear in a paper form (e.g. text books, manuals, pro forma 
documents), or in an electronic form (e.g. CD-rom, Word Wide Web). It can be 
in a form of a lecture with e.g. Power Point slices and implemented with CASE 
tools. CASE tools support the creation and editing of IS models and their 
implementation (e.g. Rational Rose, ParadigmPlus, Objecteering), ISD process 
management (e.g. Ernst & Young’s Navigator), James Martin & Co.’s 
Architecture and SHL/Transform), and ISD process enactment (Koskinen 2000).   
 
G.  Structural View 
 
From the structural view the ISD method is seen as a modular structure of 
various parts. This structure embraces e.g. paradigmatic assumptions, ISD 
approaches, ISD principles, background and application knowledge, concepts, 
notations, ISD models, ISD techniques, ISD rules, and ISD guidelines (see 
Figure 90). Some of these parts are considered method components. An ISD 
method component is a well-defined part of the ISD method that can be integrated 
to other ISD components to form a coherent and consistent ISD method. In 
Figure 90 we recognize two kinds of ISD method components, ISD models and 
ISD techniques. In Section 9.7 we discuss more about the notion of a method 
component and identify several kinds of method components.  

An ISD model is a model that describes/prescribes structural and/or 
behavioral features of the ISD context(s). An ISD technique is a technique, which 
guides the accomplishment of specific actions in the ISD context(s). The 
technique can be presented as a set of precisely described procedures that help 
the achievement of certain outcomes if executed correctly (cf. Kettinger et al. 
1997, 58; Iivari et al. 2001, 186). ISD techniques may also be presented in 
heuristics, in guidelines or as rules of thumb. An ISD technique can involve one 
or more ISD models, and an ISD model can be involved by one or more 
techniques.   

ISD models are further specialized into ISD contextual models and ISD 
perspective models (cf. Section 7.2). ISD contextual models refer to ISD models 
that are classified into eight categories according to the contextual domains they 
address. The categories are (cf. Figure 72 in Section 7.4): ISD purpose models, 
ISD actor models, ISD action models, ISD deliverable models, ISD data models, 
ISD facility models, ISD location models, ISD time models and ISD inter-
domain models (ISD ID models). The models have the following functions (see 
Figure 91): 
• The ISD purpose model prescribes/describes problems in, requirements for, 

and/or goals of, the intended149 ISD context, or some part(s) thereof. 

                                                 
149  The intended ISD context refers to a prior ISD context or a target ISD context. 
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FIGURE 91  ISD contextual models 
 
• The ISD actor model prescribes/describes ISD roles, ISD positions, ISD 

organization units, persons and/or groups participating one way or 
another in the intended ISD context.  

• The ISD action model prescribes/describes ISD actions and their 
relationships  in the  intended  ISD  context.  Each action model brings out  
various ISD action structures (e.g. generic action structures, IS modeling 
structures, ISD phase structures, ISD management–execution structures, 
and ISD workflow structures) as detailed in Section 8.3.3.  

• The ISD deliverable model prescribes/describes the structure and 
presentation of ISD deliverables and how they are related in the intended 
ISD context. 

• The ISD data model prescribes/describes the conceptual contents of the ISD 
deliverables in the intended ISD context.  

• The ISD facility model prescribes/describes resources and tools available 
and used in the intended ISD context. The resources include e.g. 
manpower and money, and the tools cover manual, computer-aided and 
automated tools.  

• The ISD location model prescribes/describes the nature, structure and 
features of locations, whether physical or logical, involved in the intended 
ISD context.   

• The ISD time model prescribes/describes the time system used in the 
intended ISD context. 

• The ISD ID model prescribes/describes inter-domain features of the 
intended ISD context. Questions relating to the inter-domain features 
include: Who is responsible for certain ISD actions?  What are the inputs to 
and outputs from certain ISD actions? What tools are to be used in 
producing certain ISD deliverables? 
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The ISD perspective models refer to ISD models that can be classified into six 
categories according to which ISD perspective they address. The categories are 
(Figure 92): ISD systelogical models, ISD infological models, ISD conceptual 
models, ISD datalogical models, ISD physical models, and ISD inter-perspective 
(shortly ISD IP) models. These ISD perspective models have the following 
functions: 
• The ISD systelogical model describes/prescribes the support the intended 

ISD should provide for its utilizing system (USISD), as well as the 
assumptions on the target IS’s and their USIS. 

• The ISD infological model describes/prescribes the purposes, actions and 
deliverables of the intended ISD context. 

• The ISD conceptual model describes/prescribes the conceptual contents of 
the deliverables of the intended ISD context.  

• The ISD datalogical model describes/prescribes the purposes, actions, 
deliverables, actors, and tools of the intended ISD context, last two on a 
general level.  

• The ISD physical model describes/prescribes, besides the features 
mentioned above, yet on a more concrete level, also spatial and temporal 
features of the intended ISD context, instantiated into a particular ISD 
context.  

• The ISD IP model describes/prescribes features of the intended ISD context 
from more than one ISD perspective.  

 

ISD perspective model

ISD systelogical model ISD infological model ISD physical model

ISD conceptual model

ISD IP model

ISD datalogical model

 
 
FIGURE 92  ISD perspective models 
 
Some of the ISD data models concern the contents of the IS data. These models 
are called the IS meta data models150.  The ISD data models can be specialized 
into the IS contextual meta models and the IS perspective meta models (Figure 

                                                 
150  Kumar et al. (1992, 264) calls this part of the method “the representation frame” in 

contrast to “the process frame” which concerns e.g. the definition of and sequence of 
development workflows, actions, and tasks and the definition of ISD actors and their 
roles in the ISD process. 
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91). The IS contextual meta  models, in turn,  can be  classified  into  eight meta 
models according to the IS contextual domains. The categories are (Figure 93): 
IS meta purpose models, IS meta actor models, IS meta action models, IS meta 
deliverable models, IS meta data models, IS meta facility models, IS meta 
location models, and IS meta time models. Further, we can recognize IS meta 
inter-domain (ID) models.  The IS meta models provide concepts (i.e. the 
abstract syntax) and/or notations (i.e. the concrete syntax) of the language(s) in 
which the corresponding IS models are, or are to be, expressed151.  
 

IS contextual meta model

IS meta ID model

IS meta deliv. m.

IS meta location m.

IS meta facility m.

IS meta data m.

IS meta actor m.

IS meta action m.IS meta purpose m.

IS meta time m.

 
FIGURE 93  IS contextual meta models 
 
The ISD method ontology presented above has been derived from, and 
structured according to, the underlying ontologies. This becomes obvious in 
looking at the overall picture of the ontology (Figure 90). The division into the 
presentation view, the contents view, and the physical view is a specialization 
of the semiotic ontology. The internal structure of the presentation view results 
from the language ontology. The historical view and the application view, 
defined in terms of the prior and target ISD and ME contexts, is an application 
of the context ontology. The conceptions of ISD contexts and ME contexts can 
be further elaborated by the concepts and constructs provided in the ISD 
ontology and the ME ontology. The structural view decomposes the ISD 
method into parts, which are recognized in the model level ontology.  
 
 
 
 
 
 

                                                 
151  Sections 4.4.-4.6 and Section 6.3 provide concepts and constructs for the IS models in 

the form of meta models. 
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9.6 Methodical Support 
 
 
Up till now we have considered methodical support from the viewpoint of ISD 
methods only. Actually, ISD can be methodically supported with many kinds of 
descriptions/ prescriptions on various levels of detail and concreteness. In this 
section we will first present a range of artifacts that methodically support ISD, 
compare them with one another, and consider one artifact type, an ISD 
methodical skeleton in particular. Second, we will discuss whether there are 
explicit criteria for deciding if an artifact can be regarded as an ISD method or 
not. The considerations and discussions in this section are based on the ISD 
method ontology. 
 
9.6.1 Range of Artifacts  
 
Knowledge about ISD process, application domain, IC technology, and human, 
social and organizational issues are accumulated, presented and shared in 
various forms and details. One of the most low-level and fuzziest fashion to 
present and share guide-lines for ISD is to serve them with a set of tips or hints. 
These “best practices” are commonly written by consultants in commercial 
magazines (Makmuri 1998). Alternatively, ISD knowledge can be packaged into 
the form of ISD approaches and generic principles (see Bracchi et al. 1984; 
Vessey et al. 1994; Iivari et al. 2001). We have sub-divided ISD approaches into 
three categories (i.e. Categories A, B and C) in Section 8.1.2, based on the scale 
of their scopes. Common to all of them is that the support that they provide 
remains on a very general level in order to satisfy practical needs of ISD 
contexts. The ISD literature also proposes a large array of ISD techniques (e.g. 
normalization technique (Codd 1972), transformation technique (Batini et al. 
1992), and conceptual modeling technique (Gemino et al. 2002)) and IS models 
(e.g. ER model (Chen 1976), role activity model (Kueng et al. 1996), data class / 
process matrix (IBM 1984) and responsibility matrix (van Slooten et al. 1993)) to 
guide the accomplishment of certain ISD actions and to present their outcomes. 
ISD techniques are described in terms of generic principles, such as in Codd 
(1972), or with detailed steps, such as in Batini et al. (1992).  

The aforementioned artifacts provide ISD knowledge that is either too 
vague (e.g. hints and tips), on too a general level (e.g. ISD approaches and 
generic principles), or too narrow-scoped (e.g. single IS models and ISD 
techniques) to satisfy needs for the guidance in ISD contexts. In the following 
we extend the range of artifacts to embrace those that have a more 
comprehensive scope. They are: an ISD methodical framework and an ISD 
methodical skeleton.  

An ISD methodical framework consists of meta models. In a simple form, an 
ISD methodical framework is composed of IS meta models that are used to 
semi-formally specify IS models. The IS meta models provide the concepts and 
constructs used in an ISD effort but only in those parts which concern 
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phenomena in the IS domains. In a more comprehensive form, an ISD 
methodical framework also includes ISD meta models describing generally ISD 
processes.  

An ISD methodical framework is descriptive and contains no normative 
ingredients. An ISD methodical skeleton provides all that is contained in an ISD 
methodical framework and in addition prescriptive constructs for a skeleton-
like structure of the ISD context. This structure integrates and gives normative 
meanings for the IS meta models, as well as instantiates and specializes the ISD 
meta models. To put it more precisely, an ISD methodical skeleton is a normative 
prescription for the ISD context, structuring and guiding the ISD process on a 
general level. An ISD methodical skeleton is not a complete ISD method. In 
contrast, an ISD method can be engineered elaborating and refining an ISD 
methodical skeleton.  

The notion of a methodical skeleton is important in our work, because we 
aim to develop a methodical skeleton for ME (see Chapter 11). Therefore, we 
elaborate the nature and contents of this artifact, in relation to ISD in this 
section, with the ISD method ontology. Figure 94 presents an ISD methodical 
skeleton and its intended use in ISD, as well as the overall structure of the ISD 
method ontology. Included in the ISD method ontology there are the 
methodical views, the ISD ontology, and the IS ontology. The ISD ontology and 
the IS ontology are composed of the domains and the perspectives. The arrows 
denote how the ontologies are deployed to engineer an ISD methodical 
skeleton. We can see that the structure of an ISD methodical skeleton is 
adapted, in quite a straightforward way, from the ISD method ontology. The 
main parts of an ISD methodical skeleton are methodical views, ISD models, 
ISD meta models, and IS meta models. The ISD models are specialized and 
instantiated from the corresponding ISD meta models. The ISD models, the ISD 
meta models and the IS meta models in the skeleton address only some of the 
ISD domains and the IS domains, on a general level, and from the limited 
viewpoints.  

In Section 9.3 we distinguished between four types of ISD methods: a 
generic ISD method, a domain-specific ISD method, an organization-specific 
ISD method, and a project-specific ISD method. To compare an ISD methodical 
framework and an ISD methodical skeleton with one another and with the 
types of ISD methods, we next position them in the space established by the 
model levels and the ISD perspectives (see Figure 95). We use ellipses to depict 
the scopes covered by the artifacts. An ISD methodical framework provides 
meta models, mostly for the ISD systelogical perspective, the ISD infological 
perspective, and/or the ISD conceptual perspective (cf. the IS meta models). An 
ISD methodical skeleton covers the same ISD perspectives as above but extends 
in part to the type model level as well. A generic ISD method embraces all what 
has been said above and extends more clearly to concepts, models, and 
guidelines for the ISD datalogical perspective. A domain-specific ISD method 
differentiates from a generic ISD method only in the level of specialization into 
which concepts  in  IS  meta models  are extended. Therefore, we do not present  
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FIGURE 94  Basis and contents of an ISD methodical skeleton 
 
separately the scope of this type of ISD method in Figure 95. An organization- 
specific ISD method provides general issues also from the ISD physical 
perspective and, in some cases, present ISD knowledge also on the instance 
model level. A project-specific ISD method provides ISD knowledge with the 
most extensive scope, covering all five ISD perspectives and all three model 
levels. 

There is still one type of artifact that can be used to support ISD. We call it 
a methodical tool kit (cf. Benyon et al. 1987). A methodical tool kit, or a method 
base, is a collection of more or less unrelated methodical parts, which do not, as 
such, constitute any coherent and concrete method. In contrast, the idea is to 
select suitable parts from a methodical tool kit and integrate (or assembly) them 
to engineer an ISD method (e.g. Kronlöf 1993; Song 1997; Harmsen 1997; Saeki 
1998; Wieringa et al. 1998). These parts may be on various levels of specificity 
and detail. Most commonly they are IS meta models and generic ISD models. 
Due to the variety of these parts, a methodical tool kit is not included in the 
comparison in Figure 95. 
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FIGURE 95  Scopes of the artifacts supporting ISD 
 
Next, we compare our range of methodical artifacts to ISD artifacts presented in 
the ISD literature. In the ISD field the two best known generic methodical 
artifacts are the Unified Process (Jacobson et al. 1999) and the OPEN framework 
(Graham et al. 1997). In the Unified Process (Jacobson et al. 1999) the notion of a 
process refers “to a concept that works as a template that can be reused by 
creating instances of it” (ibid p. 24). It is compared to a class form, which  can  
be  used  to  create  instances. Hence, the Unified  Process  is  to  be instantiated 
to make a project-specific process, called a process instance or a project. The key 
concepts in the Unified Process are an artifact, a model, a worker, and  a  
workflow. OPEN is “a framework for third-generation OO software 
development methods” (Graham et al. 1997, 4). A software engineering process 
(SEP) is “a time-sequenced set of activities and provides a tested and well-
defined approach to the development of OO software systems” (ibid p. 6). 
According to Henderson-Sellers and Mellor (1999c 40) OPEN is a 
“methodological framework” or a “process metamodel” which can be 
instantiated to have specific methodological processes, such as SOMA (Graham 
1995) and RUP (Kruchten 2000). A process has three dimensions: methodology, 
people and organizational influences, and technology. Generalizing the SEP’s, 
the underlying architecture, known as the software engineering process 
architecture (SEPA), may be distinguished. SEPA constitutes the core of the 
OPEN framework. The key concepts in the OPEN framework are an activity, a 
task, a technique, and a deliverable.  

In the Unified Process (Jacobson et al. 1999) and the OPEN framework 
(Graham et al. 1997) ISD actions and ISD deliverables are specified on a rather 
detailed level. The Unified Process introduces the ISD workflow structure and 
the ISD phase structure. The OPEN framework defines activities and for each 
activity a set of ISD tasks. In both of the artifacts ISD deliverables are specified 
and illustrated with examples. ISD actions and ISD deliverables are associated 
to the corresponding IS meta models (i.e. UML in Jacobson et al. (1999) and 
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OML in Graham et al. (1997)). In the Unified Process ISD, roles, known as 
workers, are introduced and associated to ISD actions. In the OPEN framework 
a large set of ISD techniques is given.  

Based on what has been said above, we can state that both the United 
Process (Jacobson et al. 1999) and the OPEN framework (Graham et al. 1997) are 
methodical skeletons, as understood in our work. They don’t aim to provide an 
ISD method, but something more “abstract” from which an ISD method can be 
instantiated. Instantiation in these cases embraces more than the application of 
the instantiation principle (cf. Section 3.9.2.1). For some aspects of ISD contexts, 
the artifacts specify quite detailed and concrete prescriptions, e.g. steps for the 
accomplishment of tasks. The Unified Process also recognizes a large set of ISD 
roles, meaning that it partly applies the ISD datalogical perspective.    

In addition to the Unified Process and the OPEN framework, there are 
other presentations that are comparable to the artifacts in our range. Hruby 
(2000b) presents a ‘methodological framework’, which regards the ‘software 
development artifacts’ as the most essential constructs. The artifacts are viewed 
as conceptual, not as representational entities (ibid p. 23). In engineering an ISD 
method, artifacts are first selected. Artifacts (artifact types) have two kinds of 
“methods”152 that guide how to create, interrelate and check the artifacts 
(instances). For instance, the “methods” specify preconditions requiring that 
certain artifact (instance) must exist before another artifact (instance) can be 
created. Thus, preconditions indirectly impact on an order in which the ISD 
actions creating the artifacts should be performed. For instance, to create a class 
life cycle, the artifact ‘class’ must be first created (ibid p. 29). When selecting 
and including artifact (types) to the body of an ISD method, the “methods” 
attached to the artifacts also indicate which kinds of ISD actions there should be 
in an ISD method. Hruby (2000b) calls his framework a “product-focused” 
framework, compared to the OPEN framework (Graham et al. 1997), which he 
calls the “process-focused” framework. Concluded from the above, the 
methodological framework of Hruby (2000b) is not an ISD method, not even an 
ISD methodical skeleton. It corresponds to our notion of a methodical 
framework, containing, as suggested by Hruby (2000b), ISD meta deliverable 
models from which basic ISD action structures (i.e. ISD models) can be derived 
when instantiating the framework for a particular ISD effort.  

Vlasblom et al. (1995, 601) propose a three-level description of an ISD 
method. The levels are: the generic level, the model level, and the specific level. 
The generic level is composed of building blocks for various elements of an ISD 
method (i.e. products, activities, development strategies, techniques, tools etc). 
The model level contains development models for specific application domains. 
The lowest level corresponds to project-specific development methods, called 
project scenarios. The generic level corresponds to our notion of a methodical 
tool kit. Vlasblom et al. (1995) present a seven-point protocol for establishing a 
development method by selecting specific building blocks.  
                                                 
152  A method here corresponds to the notion of a method in the object-oriented 

paradigm. To separate it from our term, we present it here in quotation marks. 
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9.6.2 Requirements for an ISD Method 
 
As illustrated in Section 9.4, the ISD literature reflects quite divergent 
conceptions about the contents and structure of an ISD method. But what 
should be required from an artifact in order to acknowledge it as an ISD 
method? Is a set of IS meta models, for instance, enough, or should an ISD 
method also offer procedures, rules and guidelines? What about the necessity of 
support for project management? Is a set of separate techniques enough for an 
ISD method, or should there be a kind of frame to integrate them into a whole? 
How mandatory part in an ISD method is a computer-aided tool supporting the 
method use? To these questions we find only a few answers in the literature. 
One of the most challenging lists of requirements is given by Graham et al. 
(1997) who state that an ISD method should provide “at least a full life cycle 
process, a comprehensive set of concepts and models, a full set of techniques, a 
fully delineated set of deliverables, a modeling language, a set of metrics, 
quality assurance, standards, reuse advice, and guidelines for project 
management” (ibid p. 2). One may ask whether there is any ISD artifact that 
fulfills these requirements.  In our view, although no clear-cut limits can be 
specified, there are, however, some requirements that an ISD method should 
fulfill. In the following, we bring out our conception based on the ISD method 
ontology.  

In Figure 90 we presented the overall structure of the ISD method 
ontology reflecting seven methodical views. Following this structure we bring 
out the following requirements for an ISD method. First, any artifact to be 
acknowledged as an ISD method should contain the part that provides 
knowledge of how it has been engineered and with what experience it has been 
used earlier (cf. the historical view). Without this knowledge, there is a risk that 
unwritten intentions, approaches and principles considered important in the 
engineering of the artifact appear to be unsuitable to the situation at hand. 
Another risk is that problems and failures experienced in prior efforts will 
reoccur if they are not learned. Hence, it is required that every ISD method 
must contain method engineering rationale and method use rationale (cf. Rossi 
et al. 2004). Second, it is necessary that an ISD method provides a description of 
where and how it can be applied (cf. the application view). This implies that the 
target ISD contexts as well as the target ME contexts should be outlined. Only in 
this way it is possible to figure out whether an artifact is initially even intended 
for the situation at hand. Third, every artifact to be regarded as an ISD method 
must provide at least two kinds of languages for the presentation of ISD 
deliverables (cf. the presentation view). One of these languages is a natural 
language that helps ISD stakeholders communicate with one another through 
ISD deliverables. Other language(s) should be semi-formal (e.g. a graphical 
language), or formal, to enable IS developers present and reason from complex 
structures and behavior of an IS in a concise and strict fashion. Fourth, an 
artifact should carry some information about its underlying paradigmatic 
assumptions (cf. the generic view), in order to avoid problems in customizing 
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and/or configuring it into a situation, which is based on different values and 
beliefs.  

Also the scope an artifact covers has an influence upon our conception 
about whether an artifact is an ISD method or not. In what follows, we consider 
the coverage of an artifact in terms of (a) ISD domains, (b) ISD perspectives, (c) 
model levels, and (d) ISD management vs. ISD execution. 

ISD methods differ from one another in the emphasis they put on ISD 
deliverables, on one hand, and ISD actions, on the other hand (Wijers 1991; 
Vlasblom et al. 1995,  597). We argue that to be acknowledged as an ISD 
method, an artifact must address both ISD deliverables and ISD actions. For 
instance, UML in Booch et al. (1999) is not an ISD method but a language 
providing the syntax and part of the semantics to present the ISD deliverables. 
Likewise, an artifact only providing procedures and rules for ISD actions and 
no language(s) to present results with it not an ISD method. ISD purposes, 
either related to ISD actions and ISD deliverables or characterizing an ISD 
context as a whole, should also be addressed in an ISD method. In contrast, it is 
not necessitated that an artifact should describe/prescribe how to compose ISD 
actions into ISD roles and ISD positions.  

Russo et al. (1996, 387) define an ISD method to be “a systematic approach 
conducting at least one complete phase” of the ISD. In our view, the support to 
only one phase or workflow is not enough to regard an artifact as an ISD 
method. An artifact may be an analysis method or a design method, but not an 
ISD method. We require that an artifact covers an essential portion of ISD 
workflows or ISD phases to be seen as an ISD method.  That portion is 
definitely more than one phase or one workflow. To put this more generally, we 
state that an ISD method must provide support for ISD within three ISD 
perspectives: the ISD systelogical perspective, the ISD infological perspective 
and the ISD conceptual perspective.  

An artifact merely consisting of work instructions and examples of 
descriptions about outcomes is lacking essential components, namely the 
coherent and consistent concepts with which an ISD context as well as an IS 
context can be conceived, understood, structured and presented. Hence, it is not 
enough that an ISD method provides descriptions / prescriptions on the type 
model level, and possibly at the instance model level. It is necessary that an ISD 
method also provide descriptions on the meta model level, and preferably on 
the meta meta model level.  

Project management is mentioned in only few definitions of the ISD 
method (e.g. Avison et al. (1995a, 418); Graham et al. (1997,  2)). One reason for 
this is that many ISD methods avoid presenting rules and guidelines for 
management of an ISD effort, and instead rely on the support of some existing 
generic methodological framework of project management. In our view, this is 
quite possible. However, exploiting two different methodical sources, perhaps 
established with divergent assumptions and concepts, may result in problems 
in the integration of execution actions and management actions. 
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In conclusion, we argue that to be regarded as an ISD method, an artifact 
has to provide knowledge about its history, domains and ways of applying it, 
as well as about fundamental assumptions underlying it. It must offer informal 
and semi-formal languages for communication, presentation and reasoning. Its 
conceptual foundation should cover at least three ISD domains (i.e. the ISD 
purpose domain, the ISD actor domain, and the ISD actions domain), three ISD 
perspectives (i.e. the ISD systelogical perspective, the ISD infological 
perspective, and the ISD conceptual perspective) and two model levels (i.e. the 
meta model level and the type model level).  
 

9.7 Comparative Analysis of ISD Artifacts 
 
 
In this section we present a comparative analysis of those ISD artifacts in the 
literature that are comparable with our ISD method ontology in terms of aims 
and comprehensiveness. Our purpose here is to discover what kinds of 
principles the artifacts use to structure the ISD methods, what main parts the 
ISD methods are seen to contain, and what kinds of atomic elements the ISD 
methods are seen to be composed of.  

There is a huge amount of literature on ISD methods. Surprisingly, there 
are only a few presentations that are named as method ontologies or 
methodology ontologies (e.g. Chandrasekaran et al. 1998; Lin et al. 1999; Fensel 
et al. 2003). These appear, however, to be very far, in terms of aims and 
domains, from what we are interested in here. Therefore we have excluded 
them from this analysis. We recognized two groups of artifacts to be relevant 
for our analysis. The first group comprises frameworks for comparing and 
evaluating ISD methods.  We are interested in these frameworks because it is 
reasonable to expect that the frameworks established for the comparison of the 
ISD methods are comprehensive. To this first group we have selected the socio-
cybernetic framework for “the feature analysis of the ISD methods” by Iivari et 
al. (1983), the framework “for comparing methods” by Avison et al. (1995a) and 
the “cataloguing” framework for software development methods by Karam et 
al. (1993).  All these frameworks are quite comprehensive. The second group is 
composed of frameworks which aim at categorizing method knowledge. To this 
group we have selected the “anatomy” of the method by Lyytinen (1986), the 
reference model for information systems development by Heym et al. (1992a), 
the “architecture” of the method by Vlasblom et al. (1995), and the shell model 
of method knowledge by Tolvanen (1998).  

There are, of course, many other artifacts (e.g. Wijers 1991; Saeki et al. 1993; 
Vasconcelos et al. 1998; Gupta et al. 2001; Tun et al. 2003) that provide structural 
descriptions of methods. They are not, however, comprehensive, and so we 
have to ignore them here. Next, we will give short descriptions of the selected 
artifacts and then compare them with our ISD method ontology. The summary 
of the results from our analysis is presented in Table 30. 
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Iivari et al. (1983) divide the features of ISD methods into three parts: those 
concerning the information system153, those related to ISD dynamics, and those 
related to ISD actions. The first category contains semantic and syntactic 
features (i.e. conceptual structures of IS models and notations used to present 
the models), as well as implicit and explicit substantive assumptions 
andrecommendations concerning the application area of the method. The 
second  category  comprises  features  related to decision-making (i.e. life-cycles 
and main phases) and learning dynamics of ISD assumed by the method. The 
third category features ISD actions from the viewpoints of decomposition and 
control structures and addresses some specific ISD actions (e.g. group analysis, 
goal analysis, situation analysis) and ISD perspectives. Iivari et al. (1983) 
distinguish between three ISD perspectives, namely P (pragmatics), I/O 
(input/output) and C/O (construction/operation) perspectives.  

Avison et al. (1995a) propose a framework for comparing ISD methods, 
based on the earlier works of Wood-Harper et al. (1982) and Fitzgerald et al. 
(1985). The framework contains seven basic elements: philosophy, models, 
techniques and tools, scope, outputs, practice, and product. The philosophy 
element contains a paradigm, objectives, a domain and a target (applicability). 
The domain means situations that the method addresses. The target is seen as 
the applicability of the method to e.g. particular types of problems, 
environments, or organizations. The scope means the stages the method covers, 
and the outputs stand for the deliverables from those stages.  The practice 
element is composed of the method background, the prior and existing users of 
the method, the participant roles in the method and the skill levels required for 
them, the experiences from the method use, and the degrees to which the 
method has been customized in prior projects. The last element of the 
framework, referred to as the product, means the forms in which the method 
appears and, if commercial, what purchasers actually get for their money.  

Karam et al. (1993) present a cataloguing framework for software 
development methods. The framework lists 21 properties grouped into three 
categories: the technical properties, the managerial properties, and the usage 
properties.  The technical properties concern e.g. a life cycle model (e.g. ISD 
approach, phase structure), the governing philosophy (e.g. structural), work 
products and notations, procedures, guidelines, criteria and measures, 
verification, degree of formality, and method specialization. The managerial 
properties are related to the software development organization, and ease of 
integration. The usage properties address the type of the application area, the 
size of the information system, the availability of software tools, the ease of 
instructions, as well as the extent and variety of the method’s user base. 

Lyytinen (1986) presents an “anatomy” of the method that is composed of 
three main components: the paradigm component, the normative component, 
and the resource component. The paradigm component suggests something 
about the purpose, environments and contents of change and the basic ways of 
carrying out the change. It contains six sub-components: ontology, 
                                                 
153  Iivari et al. (1983) use the term ‘data system’.  
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epistemology, rationality, metarules, theories, and exemplars. The normative 
component comprises organizing prescriptions and working norms. The 
working norms can be choice directives, sequencing directives, change norms 
consisting of grammar of a developer’s language and procedural directives, and 
performance prescriptions. The resource component helps identify resources 
(people, money, tools, computer systems, physical locations, physical 
communication media etc.) and keep track of their consumption.  

Heym et al. (1992a) present a methodology154 reference model for 
information systems development as some kind of semantic data model. 
According to this model, the methodology (knowledge) is composed of two 
kinds of objects: methodology objects and guideline objects. The methodology 
objects are methods and techniques (as the components of the methodologies), 
deliverable model objects, representation components, perspectives/views, 
dependencies, deliverable flows, deliverable usages, and process model objects. 
Because the method cannot be taken off the shelf and used as such in a project, 
it is necessary to preserve the development knowledge of organizations as 
guidelines. The guideline objects are either experience objects or integrity 
objects. Through the guidelines that can be connected to any methodology 
objects, the systems developer can store or search for experiences about certain 
activities or deliverables, collected in other projects and by other people. The 
guideline objects are presented in rules, notices, conditions, and/or conclusions.  

Vlasblom et al. (1995) propose a three-level description of a method. The 
highest level, the generic level, is composed of building blocks for the various 
elements of the method. The building blocks form a kind of architecture of the 
method. The building blocks are ISD activities, ISD products, a development 
strategy (i.e. philosophy relating to the manner in which the activities and the 
products are arranged in time), techniques (representation and working 
practices), tools, and disciplines (particular areas of expertise). The disciplines 
mean those who play a role in the ISD activities and those who will use the 
products of the ISD.   

Tolvanen (1998, 35-37) presents a categorization of the types of method 
knowledge in the form of a shell model in which each type of knowledge 
complements the others and all are required to yield a “complete” method. The 
core of the shell stands for the concepts and constructs used in modeling 
techniques. The next level contains the notations that are used to present 
models. Processes on the next upper level are based on the concepts and they 
prescribe how models are created and manipulated. Three outer levels stand for 
participation and roles, development objectives and decisions, and values and 
assumptions, respectively.  

Next, we compare the artifacts to one another and to our ISD method 
ontology, first on a general level and then individually for each methodical 
view (see Table 30). Principles used to structure the parts of the method vary 
greatly. Iivari et al. (1983) make the main division between features of the IS and 
                                                 
154  Note that a methodology here means the description or representation of different 

methods (Heym et al. 1992a, 215). 
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the ISD, and Karam et al. (1993) distinguish between the ISD execution, the ISD 
management, and the usage. Heym et al. (1992a) categorize the knowledge 
objects into two parts depending on whether the knowledge is related to the 
methodology or its use (cf. experience objects).  Tolvanen (1998) divides the 
method knowledge on the basis of how close to the “core knowledge” of ISD 
they are. In our ISD method ontology, the main structure is based on the 
methodical views that guide to recognize generic features, history, application, 
conceptual contents, languages, physical appearance and main components of 
the method. We argue that this way of categorization results in more sound, 
orthogonal and distinguishable structures of parts than in the reviewed 
artifacts. This argument is supported by the fact that the methodical views, 
underlying the ISD method ontology, are largely based on the theoretical 
framework of the semantic ladder (Stamper 1973; Stamper 1996). 

The historical view brings out features of and experience from the prior 
ME contexts and the prior ISD contexts. No analyzed artifact addresses the 
prior ME contexts.  The prior ISD contexts are considered in Iivari et al. (1983) 
(‘empirical support to e.g. languages’), Avison et al. (1995a) (‘practice’), Karam 
et al. (1993) (‘user base’), and Heym et al. (1992a) (‘experience objects’). The 
application view concerns the target ISD contexts and the target ME contexts. 
The target ISD context, in the sense of application area, is considered in Avison 
et al. (1995a) (‘domain’), Karam et al. (1993) (’application area’), and Heym et al. 
(1992a) (‘application type perspective’). But nothing is said about the target ME 
contexts in any artifact.  

The generic view addresses the paradigms, ISD approaches, and main ISD 
principles underlying the method. Paradigms are recognized in Avison et al. 
(1995a), Lyytinen (1986) and Tolvanen (1998). ISD approaches are included in 
the frameworks by Iivari et al. (1983), Karam et al. (1993) and Vlasblom et al. 
(1995). The representation view is addressed in Iivari et al. (1983) and Vlasblom 
et al. (1995) on a general level, and in Karam et al. (1993), Lyytinen (1986), Heym 
et al. (1992a) and Tolvanen (1998) on a more detailed level. The method as a 
physical entity is recognized in Avison et al. (1995a) (cf. ’product’) and partly in 
Karam et al. (1993) (cf. ‘software tools, instructions’) and Vlasblom et al. (1995) 
(cf. ‘tools’).  

The ISD models and ISD techniques are included in all the analyzed 
artifacts, except in Lyytinen (1986) and Tolvanen (1998). The ISD perspectives 
are only addressed in Iivari et al. (1983), but on a very general level only.The 
partition into the ISD contextual models is most clearly visible in the shell 
model of Tolvanen (1998) (cf. levels of process, participation and roles, and 
objectives). In the other artifacts, only the ISD deliverables (products) and the 
ISD processes are typically distinguished. Some of the artifacts (Iivari et al. 1983; 
Vlasblom et al. 1995; Lyytinen 1986) consider relationships between the ISD 
actions. There are also some artifacts that recognize, although in a not-so-
explicit way, issues in the ISD purpose domain (Avison et al. 1995a; Iivari et al. 
1983) and in the ISD actor domain (Iivari et al. 1983; Avison et al. 1995a; 
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Lyytinen 1986). The framework of Iivari et al. (1983) addresses the IS meta 
models indirectly through the consideration of concepts and languages.   

In conclusion, an ISD method ontology has to be comprehensive and well-
structured to suit the evaluation, comparison, and engineering of ISD methods. 
We have strived for a reasonable level of comprehensiveness by applying the 
well-grounded and well-defined methodical views. The comparative analysis of 
the existing artifacts shows that our ontology is more comprehensive than any 
of them. Comprehensiveness in this case does not mean the number of the 
concepts but the degree to which the artifact covers the features that are 
significant to distinguishing the meanings of things in the ISD and the ISD 
method. Our way of structuring the parts and features of the ISD method also 
makes the ISD method ontology more explicit and easier to apply.  
 
 
9.8 ISD Method Component  
 
 
In this section we continue the discussion about the method components. The 
ISD models and the ISD techniques are method components, as we found in 
Section 9.5, but actually there are many parts in the ISD method that can be 
considered to be method components. Here, we first define the notion of an ISD 
method component and present some classifications. Second, we define the 
granularity levels of the components, and consider the interface of the method 
component. Third, we give examples of the method components and discuss 
their integration on a general level. Fourth, we make a comparative analysis of 
conceptions of the method components presented in the literature. The section 
ends with a summary.  
 
9.8.1 Definition of the ISD Method Component 
 
Reuse is an essential objective towards which software engineering has strived 
for several decades. The most effective means to achieve this objective has been 
considered to be the construction of compatible components or modules that 
are general enough for reuse. Originally, these compatible components were 
code components. This reuse view is best reflected by the definition by 
Kruchten (2000): “A component is a nontrivial, nearly independent, and 
replaceable part of a system that fulfils a clear function in the context of a well-
defined architecture. A component conforms to and provides the physical 
realization of a set of interfaces” (ibid p. 274) 

In recent years the component-based paradigm has been extended to 
cover the construction and reuse of design components as well. Examples of the 
design components are domain models (e.g. Arango et al. 1991; Arango 1994), 
design patterns (Gamma et al. 1995) and application frameworks (Fayad et al. 
1997; Carey et al. 2002).  In the domain models the ontological descriptions 
specific to certain domains, such as insurance, transportation, banking etc., can 
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be used as the fundamentals on which the applications can be designed and 
implemented. The design patterns provide structured descriptions of proved 
solutions to commonly appearing problems. The application frameworks 
provide platforms for integrating reusable components. The framework itself is 
a large component that can be extended and configured, resulting in a 
functioning application in a given problem domain.   

The component-based paradigm has also been proposed as a means of 
constructing ISD methods. A reusable part of the method is called a method 
component (e.g. Kumar et al. 1992155; Song et al. 1992; Gupta et al. 2001; Zhang et 
al. 2001), a method fragment (e.g. Harmsen 1997; Nuseibeh et al. 1996)), a 
building block (Vlasblom et al. 1995), and a task package (Hidding et al. 1993).  
To be faithful, also literarily, to the component-based paradigm, we prefer the 
term ‘ISD method component’ and define it as follows. An ISD method 
component means a well-defined part of the ISD method that can be integrated 
to other ISD method components to form a meaningful, coherent and consistent 
ISD method. The ISD method component is reusable if it is specifically 
developed for reuse (cf. Zhang et al. 2001,  117).  
 
9.8.2 Classifications of Method Components 
 
Based on four contextual ontologies (i.e. the context ontology, the layer 
ontology, the model level ontology, and the perspective ontology) and the 
principle of decomposition we establish a five-dimensional scheme by which 
the method components can be classified (see Figure 96). We argue that a 
component can be placed in any position along these five (nearly orthogonal) 
dimensions. Next, we define the dimensions and illustrate the use of them with 
examples.   
 
               Processing layer 
 
 
 
       Perspective         Contextual domain 
 
 
 
   
           Decomposition  Model level 
 
FIGURE 96  Classification scheme for the components 
 
Contextual domains  
The classification is here based on those contextual concepts that the component 
contains. We distinguish between purpose components, actor components, 
                                                 
155  Strictly speaking Kumar et al. (1992, 262) use the term ‘methodology component’. 
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action components, and so on. For instance, a certain kind of organizational 
structure (e.g. matrix-like structure), a step-by-step procedure for a specific ISD 
action (e.g. normalization procedure), and a genre-based classification of ISD 
deliverables are method components belonging to the ISD actor domain, the 
ISD action domain, and the ISD object domain, respectively.  
 
Processing layer 
The classification of method components is here based on the processing layer, 
on which the component is to be reused. Components fabricated and reused in 
software engineering (e.g. code components, domain models, and application 
frameworks) reside at the ISD layer. They are referred to as IS components. 
Method components (e.g. data flow diagram, normalization technique) are 
engineered and reused at the ME layer. Further, at the RW (research work) 
layer components are reused to engineer methods for method engineering. 
Some of the components are general-purpose in a sense that they can be reused 
at several processing layers. For instance, a component specifying the goal / 
means structure can be reused as the basis of the IS goal meta model, the ISD 
goal meta model, and the ME goal meta model. Typical examples of general-
purpose components are abstraction structures defined in Section 3.9. 
 
Model level 
The components are here considered models that are classified according to 
which model level they belong to. A code component, for instance, is on the 
type model level, and so is the normalization technique as well. The ER model 
specifying the allowed concepts and constructs for ER schemas is on the meta 
level. Some components may contain parts on more than one level. A data flow 
diagramming technique, for instance, is a component that comprises a part that 
prescribes ISD actions and ISD deliverables (i.e. the type model level), and 
another part that specifies the concepts and constructs allowed in the data flow 
diagram (i.e. the meta model level).  
 
Perspective 
The classification is here based on the perspective, through which method 
components view the context(s) concerned. Consequently, we can have 
systelogical, infological, conceptual, datalogical and physical components. The 
meaning and contents of the component depend on what layer the component 
is situated. At the ISD layer, for instance, a technique of conceptual modeling 
presented in a data flow diagram is an IS infological component, because it is 
described through concepts of ISD actions and ISD deliverables. Conceptual 
components, like the domain models (Arango et al. 1991; Arango 1994), provide 
ontological constructs for structuring the contents of the ISD deliverables. A 
method integration technique presented in a data flow diagram, in turn, is an 
example of the infological component at the ME layer. 
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Decomposition 
Components can be situated on various granularity levels. At one extreme of 
this dimension is a method as a whole. At the opposite extreme we could see an 
individual concept. A detailed discussion about the proper granularity levels of 
method components at the ISD layer is given in the next section. 
 
9.8.3 Granularity Levels of Method Components 
 
Any part of the method at any level of detail could be, in principle, considered a 
method component. In practice, however, this is not the case. According to the 
definition of the method component given above, it is required that it should be 
integratable to another method component. In addition, it is required that a 
totality constructed by integration constitutes something consistent, coherent, 
and meaningful to ISD contexts. To further the fulfillment of these 
requirements, we define three granularity levels for the method components. 
The levels are: the level of contextual ISD components, the level of domain-
based ISD components, and the level of construct components. In what follows, 
we define these with examples.  

A contextual ISD method component is a method component that contains 
descriptions/prescriptions of features of the ISD within several contextual 
domains. An example of a contextual ISD method component is the use case 
technique (Jacobson et al. 1999) that is aimed at guiding IS developers, in a step-
by-step manner, in their specifying services the IS clients expect from the IS. 
The specification of the component requires the use of concepts of at least four 
ISD domains, i.e. the purpose domain, the actor domain, the action domain, and 
the object domain. At the extreme case, a contextual method component is an 
ISD method itself.  

A domain-based ISD method component is a method component that contains 
descriptions/prescriptions of features of the ISD within one or at most two 
contextual domains. We can distinguish between several domain-based ISD 
method components. Ontological components are method components which 
provide concepts and constructs for conceptual modeling. Meta models (e.g. the 
meta data model of the ER model (Chen 1976)) are typical examples of this kind 
of components. Notational components are method components which provide 
sets of symbols (without any predefined semantics). For instance, the graphical 
notation of the ER model is a notational component. 

While ontological components and notational components merely concern 
the conceptual contents and representation of ISD deliverables, respectively, 
action-based components mainly concern ISD actions. These are also known as 
process fragments (Harmsen 1997). An example of an action-based component 
is that part of the ER technique (Batini et al. 1992), which provides stepwise 
instructions for e.g. identifying entity types, relationship types, and attributes. 
The ER technique prescribes the predefined order (not necessarily a temporal 
order) for actions and input/output relationships between ISD actions and ISD 
deliverables. Another example of an action-based component is a 
transformation technique by which an ER schema can be transformed into a 



 

 

411

relational schema. This is called a ‘transformational method’ in the terminology 
of Prakash (1997, 1999). 

Furthermore, we can distinguish between actor-based components and 
tool-based components. Actor-based components are method components which 
contain concepts and constructs to specify, for instance, an organisational 
structure. Tool-based components are method components which offer concepts 
and constructs to describe elements and architecture of a computerized 
information system. These components correspond to technical fragments in 
Harmsen (1997). 

The third granularity level is the level of construct components. A 
construct component is a method component which cannot be decomposed into 
smaller parts without loosing some of its meaningfulness and integratability. In 
many studies (e.g. Harmsen 1997) individual concepts are regarded as atomic 
parts. In our opinion, individual concepts cannot be real method components 
for the same reason as no individual row of code can be regarded as a 
component.  

The integratability of method components depends on the kinds of 
interfaces the components have. In the next section we discuss the notion of an 
interface in general and define the notion of a contextual interface.  
 
9.8.4 Interface of the Method Component  
 
In software engineering a reusable component must have a well-defined 
interface156. An interface shows the services the component provides for the 
other components and the services it demands from the other components. In 
the object-oriented paradigm the services are specified through operation 
signatures with parameters. Converting this directly into the contextual 
viewpoint would mean that an interface is specified by concepts of the action 
domain (cf. operation call) and the object domain (cf. parameters). When the 
component-based paradigm has been applied at the ME layer, this kind of 
conception has survived (cf. Ralyte et al. 2003). Consequently, it is common to 
think that two method components can be integrated if one component receives 
a specific piece of data from the other component and conducts the next action 
for the data in the pre-defined order (cf. Kinnunen et al. 1996). This view is 
illustrated in Figure 97 below. The method components A and B can be 
integrated, if the outgoing interface of the component A and the incoming 
interface of the component B match. The interfaces in this case consist of two 
parts: action part (unbroken line) and object part (dotted line). Although this 
kind of  conception is adequate  at  the  ISD layer  and for  technical  artifacts, in  

                                                 
156  D’Souza and Wills (1999), for instance, state that a code component is “ a coherent 

package of software implementation that (a) can be independently developed and 
delivered, (b) has explicit and well-defined interfaces for the services it provides, (c) 
has explicit and well-specified interfaces for services it expects from others, and (d) 
can be composed with other components, perhaps customizing some of their 
properties, without modifying the component themselves” (ibid p. 387). 



 

 

412 

  
 
 
FIGURE 97  Simple interfaces of two method components 
 
method engineering the method components are much more multifaceted 
requiring a more elaborated notion of an interface.  

According to the contextual approach there are seven domains. We argue 
that each of them may be of importance to revealing the real nature and 
meaning of the interface of the method component. Therefore, we define: a 
contextual interface of a method component is a white-box like description of 
those contextual relationships through which a method component can be 
integrated into other method components. The contextual relationships are 
inter-domain relationships and/or intra-domain relationships (see Chapters 4 
and 8). Figure 98 below illustrates the contextual interface of a method 
component. The component C has an interface that is composed of seven 
’threads’. Each of them specifies an important contextual relationship by which 
concepts of the component should be connected to concepts of another method 
component.  
 
                  Ar   An 
              
 
     P      O 
 
 
 
     
        F       L      T 
 
FIGURE 98  Contextual interface of the method component (P = purpose, Ar = Actor, An 

= Action, O = Object, F = Facility, L = Location, T = Time) 
 
To aid the comparison of method components and the identification of the most 
suitable component for the integration at hand, it is possible to define attributes 
for components. There are two approaches for this. In the first approach 
(Castano et al. 1993; Ralyte et al. 2001) measures are defined to enable the 
measurement of the similarity or closeness of the concepts and constructs in the 
method components. For example, Ralyte et al. (2001) define semantic and 
structural measures for elements of the product models (i.e. IS meta models), 
and semantic affinity of intentions for the process models (i.e. ISD action 
models). We argue that similar measures can be defined for all the contextual 
parts of the interface of the method components. 

Another approach is to define contingency factors or properties for 
method components (van Slooten et al. 1993; Vlasblom et al. 1995; Harmsen 
1997). Harmsen (1997), for instance, defines a large set of property types of 

Component A Component B 

    Component C
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method fragments. Property types are categorized into fragment aspects and 
scenario aspects. Fragment aspects are partitioned into several groups: e.g. 
general properties (e.g. granularity level, goal, focus, maturity level), property 
types of process fragments (process type, capability maturity level), and 
property types of product fragments (e.g. level of detail, temporal state, 
abstraction level, representation). Scenario aspects are subdivided into general 
IS modeling aspects, aspects related to the user of the IS, aspects related to 
engineering strategies, and aspects related to IS engineering management. 
Examples of the scenario aspects are modeling aspect, modeling scope, project 
goal, approach orientation, validation type, degree of participation, degree of 
user responsibility, and iteration type.  

The contextual view on the interface can help the specification and use of 
properties of method components in many ways. As seen from the short 
abstract of Harmsen (1997), a set of relevant properties of a method component 
can be very large. Some of the properties concern the ISD context as a whole 
(e.g. project goal, approach orientation) while others address characteristics of 
specifics in one or two contextual domains (e.g. process type, goal, level of 
detail, representation). Structuring the contingencies and properties of method 
components according to the contextual view of the interface helps in their 
definition and use in method integration. We will illustrate this with examples 
in the next section. 
 
9.8.5 Examples of ISD Method Components 
 
In this section we present examples of ISD method components. Our aim is to 
illustrate the notions of method component and component interface and to 
show the importance of the contextual approach to the integration of method 
components. We consider three examples, two of which are modeling 
techniques and one that is a description model. The modelling techniques are 
the use case technique and the sequence diagramming technique (Jacobson et al. 
1999). The description model is the goal model (cf. Lee et al. 2001)157. These ISD 
method components are selected because they are commonly known and 
suitable to integration. Next, we first model the ISD method components and 
define their concepts. After that, we discuss the nature and properties of the ISD 
method components according to our classifications. Finally, we consider the 
issues to be faced when trying to integrate the ISD method components. 

The use case technique is “a systematic and intuitive way to capture the 
functional requirements with particular focus on the value added to each 
individual user or to each external system” (Jacobson et al. 1999, 131). Because 
the technique contains the specification of the description model and 
prescriptions for how to make an instance of the model, the model of the 
technique consists of ISD models at two levels (see Figure 99). The upper ISD 
model prescribes the context in which the IS model is to be produced. It is 
                                                 
157  We apply the most basic concepts of the model by Lee et al. (2001) and call them the 

goal model.  
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presented in a data flow diagram extended with ISD actors. The other ISD 
models, called the IS meta data models, describe the concepts and constructs 
with which the use case model is created and presented in UML. In Figure 99 
the IS meta data model on the left side specifies the conceptual contents of a use 
case diagram. The IS meta data model on the right side specifies the conceptual 
contents of structured descriptions of use cases.  
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FIGURE 99  ISD models of the use case technique 
 
Requirements capture with the use case technique produces two kinds of ISD 
deliverables: the glossary and the use case model. A glossary defines common 
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terms used to describe a system. A use-case model is a “model of a system 
containing actors and use cases and their relationships”(Jacobson et al. 1999, 
133). The model is composed of two parts: a use case diagram and use case 
descriptions. Next, we define the concepts and constructs used in the use case 
diagram.  

An actor is “a type of user (of the system) or an external system, device etc. 
associated to the system. Actors represent parties outside the system that 
collaborate with the system” (Jacobson et al. 1999, 134). An actor plays one role 
for each use case with which it collaborates. Actors may have generalization 
relationships with one another indicating that a child actor can play the same 
role(s) as the parent actor. A use case specifies a sequence of actions (i.e. IS 
actions), including alternatives to the sequence that the system can perform 
when interacting with actors of the system. The system may include one or more 
use cases. A use case may be related to other use cases by generalization, 
include and extend relationships. The generalization relationship between two use 
cases means that the child use case inherits the behavior and features of the 
parent use case and may add new features. The include relationship signifies that 
the base use case contains the behavior of the addition use case. The extend 
relationship implies that the extension use case extends the behavior described in 
the base use case under certain conditions.  

For each use case depicted in the use case diagram, a description in 
structured English is given. This description reveals, in more detail, goals (i.e. IS 
purpose) for which the system functions, as well as information services (i.e. IS 
objects) the system processes and provides for actors. Some of the IS objects 
may be temporary while the others are permanent. The description may also 
distinguish between the actions that are performed by the system (i.e. the CIS 
actions) and the actions that are carried out by human actors (i.e. the HIS 
actions).  

The use case modeling is decomposed into five activities (Jacobson et al. 
1999): find actors and use cases, prioritize use cases, detail a use case, structure 
the use case model, and prototype user-interface. Activities and deliverables as 
well as control and information flows between them are illustrated in the upper 
part of Figure 99. In the figure the ISD actors (workers in Jacobson et al. (1999)) 
responsible for the activities are also presented.  

A sequence diagram describes interaction between the system and its actors, 
as well as interaction between the parts of the system. An (human) actor 
interacts with the system by manipulating and/or reading interface objects. 
Interaction between the parts of the system occurs through sending and 
receiving messages. A sequence diagram emphasizes logical or temporal 
ordering of messages (Booch et al. 1999). Graphically, a sequence diagram is like 
a table: it shows objects arranged along the X axis and messages, ordered in 
increasing time, along the Y axis. Next, we define the most essential concepts of 
the sequence diagram (Figure 100).  
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FIGURE 100  ISD models of the sequence diagramming technique 
 
The parts of the system are called objects. An object158 is “an entity with a well-
defined boundary and identity that encapsulates state and behavior” (Booch et 
al. 1999,  464). A state is a composition of values of the attributes of the object. 
An attribute is “a named property [..] that describes a range of values that 
instances of the property may hold” (Booch et al. 1999,  458). Behavior results 
from the execution of operations of the object. An operation is “the 
implementation of a service that can be requested from an object of the class in 
order to affect behavior” (Booch et al. 1999,  464). Compared to our terminology, 
an object is a manifestation of both IS object(s) (cf. attribute) and IS action(s) (cf. 
operation). A message is “a specification of an interaction between objects that 

                                                 
158  Note that ‘object’ in the object-oriented paradigm is totally different from  ‘object’ in 

our terminology. 
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conveys information with the expectation that activity will ensue” (Booch et al. 
1999,  463). A message carries information in the form of action(s) requested and 
data transmitted from the sender to the receiver. If the message is stereotyped 
as ‘create’, the receiving object is created. That means the beginning of the life 
line of the object. The life line ends with the object receiving the message 
stereotyped as ‘destroy’. The focus of control shows the period of time in the life 
line during which the object is performing the action. The focus of control 
begins when the object receives the message and ends when it sends the return 
message. There can be several focuses of control within the life line of the object.  

The sequence diagramming proceeds, on a general level, with the 
following steps (see the upper part in Figure 100). First, identify and present the 
most essential objects and actors. Then, consider what kinds of interaction there 
exist between the actors and the objects, as well as between the objects. 
Recognize messages and their sending orders. The names of the messages 
reveal actions (signatures of operations) and parameters. For each object, 
identify focuses of control within the life line. Check the coverage and 
consistency of the diagram.  

The goal model is a description model for conceiving, structuring, 
classifying and representing goals and relationships between them (cf. Lee et al. 
2001) (Figure 101). A goal is a required or desired state of affairs (Koubarakis et 
al. 2000, 144)159. The goals are classified into rigid goals and soft goals, as well as 
into functional goals and non-functional goals (Lee et al. 2001, 124-125). A rigid 
goal expresses “a minimum requirement for a target system, which is required 
to be satisfied utterly”. A soft goal describes “a desirable property for a target 
system, and can be satisfied to a degree”. A functional goal “can be achieved by 
performing a sequence of operations”. A non-functional goal “is defined as 
constraints to qualify its related functional goal”. The goals are interrelated 
through the refinement relationships. Refinement relationship establish a goal 
hierarchy, meaning that a goal can be achieved when the goals below it in the 
hierarchy are reached.  
 

Goal

Non-functional

Functional

Soft

Rigid
* *
refinement

 
 
FIGURE 101  Meta model of the goal model 
 
Of the three ISD method components described above, the first two are ISD 
techniques and the last one is a construct-based component. The ISD techniques 

                                                 
159  A goal is defined as in Koubarakis et al. (2000), because Lee et al. (2001) do not 

provide any definition for this generic notion.  
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are multi-level components because they contain concepts for prescribing ISD 
actions and ISD deliverables (i.e. the type model level), as well as specify the 
concepts and constructs (cf. the IS meta data model) allowed in the use case 
model and in the sequence diagram, respectively. The goal model is a general-
purpose construct that can be associated to the method body at any layer. It is 
also a purpose-based component. The use case technique, as described above, is 
an ISD datalogical component, because it recognizes, although only at a general 
level, actors responsible for ISD actions. The sequence diagramming technique 
is described as an ISD infological component. The goal model can be applied 
with any ISD perspective.  

Now let us assume that there is a need to integrate the three ISD method 
components in the following way: (a) sequence diagrams are used to define 
more precisely use cases, and (b) goal models are used to present, more 
explicitly, goals toward which each use case in the use case diagram aims. How 
would the process of integration proceed and how do the interfaces of the 
components affect the integration considerations? To answer the questions we 
first discuss the integration of two ISD techniques and then consider the 
integration of the goal model into this method body. 

To integrate the ISD method components one should first examine how 
the purposes of the ISD deliverables involved in the ISD method components 
match. The use case technique aims to produce general descriptions of actions 
that the system performs when interacting with actors. The sequence diagrams, 
in turn, can be used to make detailed descriptions of the internal behavior of the 
system. Hence, at least from the viewpoint of purposes the integration is 
reasonable and justified.  Second, it is important to consider how the 
deliverables of the ISD method components match in terms of their 
presentations. The use cases are presented in easy-to-read diagrams supported 
by descriptions in structured English. These presentation forms enable the 
understanding of the deliverables also for the non-IT-experts. The sequence 
diagrams are presented in a semi-formal form. They are constructed and used 
by IS analysts and IS designers. The variety of presentation forms used in the 
ISD method components and their match with the skills and profiles of 
intended ISD actors strengthen the view that the components are suitable for 
integration.  

Third, it should be investigated how the contents of the deliverables can 
be related. This investigation is conducted by considering the corresponding IS 
meta data models. In Figures 99 and 100 we can find counterparts in several IS 
domains: (a) an actor in the use case model corresponds to an actor in the 
sequence diagram; (b) a system in the use case technique is decomposed into 
objects in the sequence diagram; (c) an IS action, or more specifically a CIS 
action, in the use case technique is realized by actions requested by messages in 
the sequence diagrams; (d) a CIS action is composed of operations of one or 
more object; (e) an HIS action in the use case technique can be seen as a pro-
action or reaction of an (human) actor in the sequence diagram; (f) an IS object 
in the use case technique is embedded into attributes of objects (cf. permanent 
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IS objects) or transmitted by messages (cf. temporary IS objects). Thus, we can 
conclude that the two ISD method components are highly related to one 
another also through concepts of several IS contextual domains.  

Fourth, it is important to consider how the ISD actions can be integrated. 
There are many ways to structure and associate the actions of constructing use 
case models and sequence diagrams. Most commonly the processes are 
performed partly in parallel. For each use case it is considered whether it is 
useful to make one or more sequence diagrams. Especially in situations where 
textual descriptions are written about complex use cases, it is beneficial to 
sketch in parallel sequence diagrams to find out an order in which events and 
actions occur in the use case. The identification of objects and actors for 
sequence diagrams is based on the use case descriptions (see Figure 100). 
Checking the coverage and consistency of sequence diagrams is carried out by 
comparing them to the corresponding use case description(s). Working with the 
sequence diagrams increases the understanding of the textual descriptions of 
the use cases and may, in turn, cause changes in them.  

Fifth, one should consider how ISD actors, with their responsibilities, in 
the method components should be related. The ISD actors are clearly defined in 
the use case technique (see Figure 99). In contrast, the sequence diagramming 
technique does not provide exact specifications of ISD actors. We can, however, 
assume that those ISD actors are IS analysts and IS designers. Integration of the 
techniques for the part of ISD actors can now be done, either (a) by including 
the responsibility of making sequence diagrams in the role of the use-case 
specifier, or (b) maintaining the roles of IS analyst and IS designer and 
including the responsibilities of the use case specifier into the role of IS analyst.  

The goal model can be easily integrated into the use case technique by 
enhancing the meta model of the use case diagram (see Figure 99) with the 
concepts and constructs in the meta model of the goal model (see Figure 101). 
With relating the concept of a goal, and its sub-concepts and relationship, to the 
concepts of a use case, the purposes of the use cases are made more explicit. It is 
possible to further refine the use case diagram by defining one more 
specialization of the goals, yielding actor-specific goals and system-specific 
goals. Actor-specific goals are objectives of an actor, and system-specific goals 
are requirements on services that the system provides. Relating the actor-
specific goals to the actors enables to explicitly specify the goals of the actors of 
the system. 

The result of the integration of the three ISD method components is 
presented in Figure 102. The original boundaries of the meta data models are 
presented with bold lines. Integration has been done via shared concepts (i.e. an 
actor) or by defining contextual relationships between the concepts of two meta 
models. The bold lines represent the interfaces of the method components. The 
more relationships cross the boundary, the more complicated the way is in 
which the interface is utilized in the integration. The use case technique and the 
sequence diagramming technique are integrated through four relationships: 
partOf   ( Object ,  System),    partOf  ( CIS action ,   Operation),   isA  ( Message ,  
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FIGURE 102  Meta data model of the integrated method components 
 
Temporary), and isA (Attribute:value, Permanent).  The goal model and the use 
case technique are integrated through four relationships: strivesFor (System, 
System-specific), strivesFor (Use case,Goal), strivesFor (Actor, Actor-specific), 
and partOf (IS purpose, Goal). Hence, the inter-related concepts represent five 
different contextual domains. 

In conclusion of the above consideration of ISD method components and 
integration we can state the following:  The ISD method components can appear 
in various types, sizes and forms. Small components, like the goal model, can be 
specified through a simple interface. But the integration of larger ISD method 
components must be based on the explicit specification and consideration of 
contextual interfaces. For instance, the ISD techniques considered above extend 
to two model levels (i.e. type model level and meta model level) and to eight 
contextual domains (i.e. ISD actor domain, ISD action domain, ISD object 
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domain, IS purpose domain, IS action domain, IS actor domain, IS object 
domain, and IS facility domain). The common approach in the ISD/ME 
literature (e.g. Vlasblom et al. 1995; Harmsen 1997) to attaching attributes as 
some kinds of “contextual properties” to the method components does not 
provide specifications that would be detailed and structured enough to be 
matched with one another in the integration process. Our way of specifying 
contextual interfaces provides a natural and well-defined means to structure 
and realize those “attributes” and thus furthers the right interpretation of the 
nature, contents and use of the method components. 
 
9.8.6 Comparative Analysis of Conceptions of ISD Method Component 
 
A view of the method as an assembly of components is not a new one. More 
than ten years ago Kumar and Welke (1992) presented an idea of  “combining 
and structuring selected methodology components (i.e. representation frames 
and process frames) into an integrated or ‘seamless’ methodology” (ibid p. 264). 
Since then the so-called integration approach to method engineering has gained 
a large popularity in the ME literature (e.g. Kronlöf 1993; van Slooten et al. 1993; 
Vlasblom et al. 1995; Ramackers 1994; Ryan et al. 1996; Kinnunen et al. 1996; 
Nuseibeh et al. 1996; Song 1997; Harmsen 1997; Saeki 1998; Wieringa et al. 1998; 
Paige 1999; van Hillegersberg et al. 1999; Leppänen 2000; Zhang et al. 2001; 
Karlsson et al. 2001).  The purpose of this section is to shortly describe and 
compare conceptions of an ISD method component presented in the ME 
literature. We do this in two parts. First, we analyze presentations using our 
classification scheme with five dimensions. The purpose of this part is to find 
out what kinds of ISD method components have been recognized. For this 
analysis we have selected presentations which apply multiple views on the 
method component. The presentations are: Harmsen (1997), Zhang et al. (2001), 
Song et al. (1992), Gupta et al. (2001) and Song (1997). The results from this part 
are presented in Table 31. Second, we briefly discuss presentations that, though 
not contributing to the variety of ISD method components, suggest interesting 
ideas that complete the picture of ISD method components and their 
integration. This discussion concerns the works of Hidding et al. (1993), 
Nuseibeh et al. (1996), and Vlasblom et al. (1995). 

Harmsen (1997) defines a method fragment to be “a description of an IS 
engineering method, or any coherent part thereof” (ibid p. 26). A method 
fragment is coherent if and only if it can be represented by a connected sub-
graph of products or processes. He distinguishes between conceptual fragments 
and technical fragments. A conceptual fragment is “a non-executable fragment, 
which is described as complete as possible, without taking into account the 
actor or actor type that will possibly use it” (ibid p. 51). A technical fragment is 
“a fragment implemented as an IS engineering tool or part thereof“(ibid p. 51).  
Compared to our scheme, the technical fragments are built on the specifications 
of the physical view, while the conceptual fragments follow the IS infological, IS 
conceptual or IS datalogical perspective. Furthermore, Harmsen (1997) 
distinguishes between process fragments and product fragments. A process  
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fragment is “a description of an activity to be carried out within a method” (ibid 
p. 52). A product fragment is “a specification of a product delivered and/or 
required within a method” (ibid p. 52). This division is based on the dimension 
of contextual domains in our classification scheme. Harmsen (1997) defines five 
granularity layers160: (a) method, (b) stage, (c) model, (d) diagram, and (e) 
concept. The first layer corresponds to the whole method. A stage “addresses 
an abstraction level”, which stands for an ISD workflow in our ontology. 
Harmsen (1997) applies the set of stages defined in Olle et al. (1988a) (e.g. 
information systems planning, business analysis, system design, construction 
design). A model corresponds to a perspective in Olle et al. (1988a) (i.e. data 
oriented, process oriented, behavior oriented), which is loosely comparable to 
the IS domains in our terminology. A diagram (e.g. class diagram) corresponds 
to the representation of an aspect of the abstraction level. A concept addresses a 
concept or an association of the method fragment on the diagram layer, or 
manipulation defined on it.  

Zhang et al. (2001) define a design component to mean “any reusable 
design artifact” (ibid p. 117), and present a classification framework with three 
dimensions: levels of abstraction, information type levels, and granularity 
levels. The levels of abstraction correspond to stages in the development 
process, i.e. analysis, design and implementation. The information type levels 
are derived from the data levels of the Information Resource Dictionary System 
(IRDS) framework (ISO 1990). This dimension corresponds to the model levels 
in our scheme. The granularity levels contain a component unit, a graph, and a 
project. A component unit is composed of the non-property primary data types 
of GOPRR (Kelly et al. 1996). A graph is a collection of objects, relationships, 
roles and properties, commonly specifying a technique. A project forms a 
complete design product, or a plan to produce it. On the model level this means 
a system development project. On the meta model level, a project establishes a 
method. Due to its focus on the data at each information type level, the 
framework of Zhang et al. (2001) addresses only the structural features of the 
method, not the whole method.   

Song et al. (1992) present the so-called base framework for the 
identification of method components that are comparable in different methods. 
The framework is composed of the type framework and the function 
framework. None of the frameworks is based on explicitly defined dimensions. 
The type framework presents the method-component type hierarchy, which 
comprises four top-level types: concept, artifact, representation, and action. A 
concept corresponds to our generic view on the ISD method. It is “an idea that 
influences the design of a method” (ibid p. 46) (e.g. problems of software design 
and application, principles for coping with these problems, guidelines 
(principles) for designing software and coping with these problems). An artifact 
means a description of some sort of entity involved in a design process (i.e. 
programs, diagrams, etc.). A representation stands for a means for describing or 
specifying design artifacts. An action refers to one or more physical and/or 
                                                 
160  This categorization is also used in Brinkkemper et al. (1999) and Karlsson et al. (2001). 
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mental processing steps used in design. Artifacts and actions correspond to ISD 
deliverables and ISD actions, respectively. Concepts and representations can be 
interpreted as applying the systelogical and datalogical perspectives, 
respectively. The function framework contains all those design issues that 
components address. The framework is based on a life-cycle model, which 
describes the transformation from the problem-domain to the problem-model 
domain, and further to the solution-model domain and the design-document 
domain. These domains correspond to the perspectives in our scheme.   

Gupta et al. (2001) propose a representation system for a method 
requirements specification (MRS) as an analogy to a software requirements 
specification at the ISD layer. A MRS describes what a method meeting the MRS 
has to offer. It is implementation-independent and based on an abstract meta 
model. The approach applied uses the three-view architecture of methods (see 
Prakash 1997; Prakash 1999). The views are: the generic view of a method, the 
method view, and the “construction view”161. These views loosely correspond 
to our perspectives, but it should be noted that they are applied at the RW 
(research work) layer!  

The generic view is used to produce MRS’s.  It is divided into two parts, 
the static part and the dynamic part. According to the static view a method is 
composed of method blocks. A method block is a pair formed of objective and 
approach. An objective tells what the block tries to achieve. An approach 
describes the technique that can be used to achieve the objective. An objective is 
presented with a pair formed of product type and process type. The dynamic 
part of the method is composed of generic work procedures containing work 
elements. Each work element is an objectified relationship between possibility 
and selection. Possibility identifies the set of procedure elements that can be 
performed in the work procedure. Selection is a particular choice of the 
procedure element selected in the work procedure. The method view is 
presented by the so-called decisional metamodel that is an instantiation of the 
static part of the generic view. This implies that decision is an instance of 
method block, purpose is an instance of objective, and p-approach is an instance 
of approach. The method is seen as a pair formed of purpose and p-approach.  

During the method assembly, method components, defined in terms of 
things, is_composed_of and is_mapped_to relationships, are integrated. 
Method components are considered as constructs composed of things. There are 
simple and complex components. Simple components are atomic, whereas 
complex components can be broken up.   

Song (1997) presents a framework for the integration of software 
engineering methods. The framework contains a method composition model 
that distinguishes between high-level components and low-level components. 
High-level components are: artifact models, properties (i.e. desired 
characteristics of the design artifacts), principles, representations, and processes 
(i.e. sets of steps used in developing software). Low-level components are: 
model components (i.e. components of the artifact model), criteria (i.e. rules), 
                                                 
161  This view is not explicitly named in the architecture of Gupta et al. (2001). 
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guidelines (i.e. concrete statements, heuristics, or techniques advocated), 
measures, notations, and actions (i.e. processing steps). Compared to our 
scheme, the artifact model and the processes/actions correspond to two 
contextual domains, the ISD object domain and the ISD action domain. Other 
components concern non-contextual features. The framework defines structural 
relationships between the components. 

To summarize, all five presentations regard the method as being 
composed of method components (called the method fragments in Harmsen 
1997). The most comprehensive categorizations of the method components are 
suggested in Harmsen (1997) (with the dimensions of perspective, abstraction, 
and granularity level) and Zhang et al. (2001) (with the dimensions of level of 
abstraction, granularity level, and information type level). Gupta et al. (2001) 
recognize three views of method architecture, while Song et al. (1992) and Song 
(1997) consider partly only two of our dimensions.    

From the processing layers, Harmsen (1997), Song et al. (1992) and Song 
(1997) recognize method components on the ME layer.  The framework of 
Zhang et al. (2001) enables the consideration of components at three information 
type level. Gupta et al. (2001) is the only one to discuss the method components 
at the RW layer.  

The domain-based classification is most closely followed in Harmsen 
(1997), which subdivides method fragments into product fragments and process 
fragments. Zhang et al. (2001) focus on data aspects only.  Song et al. (1992), 
Song (1997) and Gupta et al. (2001) recognize some domain-specific components 
but also components which are independent from the contextual domains.   

Harmsen (1997) distinguishes between conceptual and technical 
abstractions, of which the latter corresponds to our physical perspective. Zhang 
et al. (2001) use three levels of abstraction based on the ISD/ME stages. Song et 
al. (1992) deploy the classification of problem/solution domains, and Gupta et 
al. (2001) apply the view-based division of perspectives. Harmsen (1997) 
recognizes five granularity levels, Zhang et al. (2001) suggest three levels, and 
Song (1997) and Gupta et al. (2001) two levels. Song (1997) presents no criteria 
for the sub-division into levels.  

In conclusion, the comparative analysis of the five presentations of 
method components showed that our classification scheme is the most 
comprehensive, distinguishing five different dimensions. The scheme with the 
well-defined structure also appeared to be profitable in the analysis and 
comparison of other presentations. We consider it important that the method 
components can be specified and deployed in a uniform and consistent fashion. 
This necessitates that the contextual domains, the perspectives, the processing 
layers, the model levels, and the granularity levels are uniformly defined and 
utilized.   

At the end of this section, we want to complete the picture of how an ISD 
method component is seen in the ME literature by discussing the presentations 
of Hidding et al. (1993), Nuseibeh et al. (1996) and Vlasblom et al. (1995). We are 
particularly interested in how they see the nature and structure of an ISD 
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method component. These presentations were not included in the above 
analysis because they don’t contribute to the variety of method components.  

Hidding et al. (1993) define ‘task package’ to mean a building block to be 
used for configuring large method processes. A task package is a set of activities 
that generate one or more deliverables that are of value to a client. A task 
package is characterized by sixteen key attributes. The attributes include e.g.  
(a) schematic, which reveals sub-processes of the task package; (b) inputs, 
which lists the prerequisite products for the task package; (c) deliverables, 
which specify the output products; (d) techniques, which describe generic 
approaches that can be or must be used; (e) business needs, which consider the 
major business requirements addressed; (f) competence and experience, which 
summarize skills and type of knowledge of the people who will execute the 
process; (g) objectives; and (h) tools. From the above we can conclude that a 
task package is actually a highly ‘contextual’ concept. Its core is composed of 
ISD actions and ISD deliverables. Its interface is determined by input and 
output deliverables, objectives, human aspects, and tools. We argue that the 
attributes specified for the task package are important but more clarity and 
coherence could be attained by explicitly applying the contextual approach in 
the organization of these attributes.  

Nuseibeh et al. (1996) examine the engineering of a method from method 
fragments in the context of multi-perspective software engineering. They define 
the concept of ViewPoint to mean “loosely coupled, locally managed, 
distributable objects that encapsulate representation knowledge, development 
process knowledge and specification knowledge about a system and its 
domain” (ibid p. 268). Strictly speaking, a ViewPoint is divided into five ‘slots’: 
(a) style that contains a definition of the representation scheme deployed by the 
ViewPoint, (b) work plan that contains a description or model of the 
development process, (c) specification that contains a partial specification 
described in the notation defined in the style slot, and developed by following 
the process described in the work plan slot, (d) domain that identifies the area 
of concern of the ViewPoint, and (e) work record that contains the specification 
development status, history and rationale. Each method fragment describes 
how to develop a single ViewPoint. Because several ViewPoints may deploy the 
same notation and development process, Nuseibeh et al. (1996) define a 
ViewPoint template that is composed of the first two slots (i.e. style and work 
plan). A ViewPoint template is considered to be a single technique, and a 
method is regarded as a configuration or structured collection of ViewPoint 
templates. To conclude from the approach of Nuseibeh et al. (1996), we can say 
that also here the concept of a method component (cf. ViewPoint template) is 
established on fundamental constructs which clearly have the “contextual 
background”. They involve primarily ISD deliverables (concepts and notation) 
and ISD actions.  

Vlasblom et al. (1995) propose the three-level description of a method. The 
highest level, called the generic level, is composed of building blocks of a 
method. The building blocks are the ISD activities, the ISD products, the 
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development strategy, the techniques, the tools, and the disciplines (i.e. 
particular areas of expertise). For establishing a development method that is 
optimally tailored to a particular project, a proper set of building blocks are 
selected and, if necessary, customized and then integrated. The subdivision into 
the building blocks follows, to some degree, the boundaries between contextual 
domains (i.e. the ISD activities and the ISD products). The techniques 
encompass representation and working practices. The selection of a 
development strategy puts a time-sequence to the activities. Disciplines concern 
ISD actors whose expertise is needed in techniques. Thus, also here several 
contextual domains are involved through the notion of a building block, but in 
a way that makes the setting rather messy and difficult to manage in enhancing 
and integrating methods.  
 
9.8.7 Summary of Method Components 
 
Parts of existing methods can be and should be reused as ISD method 
components. But not any part of the methods suits a reusable component. In 
this section, we defined the notion of an ISD method component with the aim of 
ensuring that the integration of ISD method components produces coherent and 
consistent ISD methods. An essential means for fulfilling this goal is the use of 
contextual interfaces of method components. We also defined multi-
dimensional classification scheme for recognizing and relating method 
components on five dimensions. ISD method components and their integration 
through contextual interfaces were illustrated with examples. Finally, we made 
the comparative analysis of method components, which indicated that our view 
of a method component is much more comprehensive and better structured 
than those suggested in the ME literature.  
 
 
9.9 Summary and Discussions 
 
 
In this chapter our main purpose was to present the ISD method ontology. We 
started with a short review of the empirical research into the method use in 
order to answer the question ‘Why’ the method is needed altogether.  The 
review indicated that in spite of severe problems with ISD methods and method 
use, organizations have clearly benefited from using ISD methods. They are 
considered artifacts, which convey the “best” practices on ISD and help achieve 
better outcomes through more efficient, effective and manageable ISD 
processes.  

Second, we discussed the method as a ‘carrier’ of ISD knowledge and 
derived two classifications of ISD methods. The first classification is based on 
the kind of knowledge the methods convey, and includes generic ISD methods, 
domain-specific ISD methods, organization-specific ISD methods, and project-
specific ISD methods.  The other classification is based on the form in which the 
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methods are presented. With these classifications we can better recognize and 
understand a large variety of ISD methods. They also help us figure out how to 
structure and support the engineering of methods of different types.  

Third, we recognized seven basic views on the ISD method, called the 
methodical views. These views, anchored on the semantic ladder (Stamper 
1973, Stamper 1996), are the historical view, the application view, the generic 
view, the contents view, the presentation view, the physical view, and the 
structural view. Building on these views we gave an integrative definition of 
the ISD method that comprehensively reflects multiple aspects of the method.  

Fourth, we established, grounding on the defined views, the ISD method 
ontology in seven parts. One of the parts, related to the conceptual contents of 
the ISD method, has already been established as the ISD ontology in Chapter 8. 
For the rest of the parts, the concepts and constructs were defined and 
presented in meta models.  

Fifth, we applied the ISD method ontology to consider, from a broader 
perspective, a range of methodical support and recognized three types of 
artifacts that are not acknowledged to be methods although they provide some 
methodical support. These artifacts are the ISD methodical framework, the ISD 
methodical skeleton, and the ISD methodical tool kit. We defined the notions 
and compared them to one another, to four types of ISD methods, and to 
artifacts presented in the literature. The methodical skeleton is important to this 
work, because MEMES (Method Engineering MEthodical Skeleton) presented 
in Chapter 11 is a specialization of it. Finally, we discussed the criteria for 
acknowledging an artifact as the ISD method. Although it is not possible to set 
the definite criteria, we brought out a set of requirements, structured according 
to the ISD method ontology. We stated, for instance, that an artifact has to 
provide knowledge about its history, domains and ways of applying it, as well 
as fundamental assumptions underlying it. Its conceptual foundation should 
cover at least three ISD domains (i.e. ISD purpose domain, ISD actor domain, 
and ISD actions domain), three ISD perspectives (i.e. ISD systelogical 
perspective, ISD infological perspective, and ISD conceptual perspective) and 
two model levels (i.e. meta model level and type model level). 

Sixth, we made a comparative analysis of seven well-known frameworks 
and models that are aimed at either the comparison and evaluation of the ISD 
methods, or categorizing method knowledge. The analysis showed that the ISD 
method ontology, better than the others, covers the contextual features of the 
ISD and the ISD method. In addition, our way of structuring the parts and 
features of the method makes the ontology more explicit and easier to apply.  

Seventh, we defined the notion of an ISD method component with the 
contextual interface. We also presented a multi-dimensional classification of 
method components based on the contextual ontologies. We illustrated the 
notions with examples of ISD method components and method integration. 
Finally, we made a comparative analysis of the conceptions of method 
components in the literature. The analysis showed that our view of a method 
component is more comprehensive and multifaceted, and it enables better than 
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the others to deal with the semantic and pragmatic nature of method 
components.  

The ISD method ontology has been derived from, and structured 
according to, the underlying ontologies. This becomes quite obvious in looking 
at the overall picture of the ontology (Figure 90). The division into the 
presentation view, the contents view, and the physical view is a specialization 
of the semiotic ontology. The internal structure of the presentation view results 
from the language ontology. The historical view and the application view, 
defined in terms of prior and target ISD contexts and ME contexts, is an 
application of the context ontology. The conceptions of ISD contexts and ME 
contexts can be further elaborated by the concepts and constructs provided in 
the ISD ontology and the ME ontology. The structural view decomposes the 
method into parts, which are recognized in the model level ontology. This 
alignment of the ISD method ontology with the underlying ontologies is a clear 
indication of the coherence of OntoFrame. 

The ISD ontology is a vital component of OntoFrame as it defines the 
nature, contents, structure and use of an artifact, which is the focal target of 
method engineering. The theory-based and well-structured ISD method 
ontology furthers our work of defining concepts and constructs to conceive, 
understand, structure and present the essential aspects of the ME context. This 
is what we will do in the next chapter.  



 

 

 
 
 
 
 
 
 
 
 
 
 
10 ME ONTOLOGY AND ME METHOD ONTOLOGY 
 
 
Hitherto we have constructed a multi-layered structure of ontologies for 
conceiving, understanding, structuring and presenting contextual features of 
information processing in information systems and information systems 
development. We have also defined concepts and constructs with which an ISD 
method can be conceived from several viewpoints and structured in a 
comprehensive manner. In this section we continue the construction of 
OntoFrame by building the remaining two of its components, the ME ontology 
and the ME method ontology. The ME ontology provides concepts and 
constructs to conceive, understand, structure, and represent contextual features 
of method engineering. It comprises two parts: ME domains and ME 
perspectives. The ME method ontology is composed of concepts and constructs, 
with which various aspects of the ME method can be conceived, understood, 
structured, and represented. Its structure is based on the seven methodical 
views defined in Section 9.5. The contents view of the ME method corresponds 
to the ME ontology. Both of the ontologies have been derived specializing from 
the underlying ontologies, in particular from the ISD method ontology (see 
Figure 103).  

The chapter proceeds as follows. First, we describe needs for method 
engineering and reasons behind them. Second, based on a short literature 
survey we present basic classifications of ME strategies and ME processes, and 
derive a fundamental categorization of ME contexts. Here we also provide the 
definition of the ME context that integrates contextual aspects of method 
engineering. Third, we present the first main part of the ME ontology 
addressing four ME domains. For each ME domain, the concepts and constructs 
are defined and described in ME meta models. Fourth, we provide the second 
main part of the ME ontology including four ME perspectives. Fifth, we define 
the notion of an ME method and derive the ME method ontology from the ISD 
method ontology established in Chapter 9. The chapter ends with a summary.  
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FIGURE 103  Bases and structures of the ME ontology and the ME method ontology 
 
 
10.1 Motivations for Method Engineering 
 
 
The purpose of this section is to bring out reasons and motives for why method 
engineering is needed. We start with making a survey of the ISD literature to 
find out how ISD methods and method use are seen in practice. In Section 8.1 
we already described benefits reported in practice. Here, we are interested in 
problems perceived in methods and method use. One of our claims is that 
problems resulting from deficiencies in the methods should be tried to 
overcome by investments to method engineering. Second, we consider those 
needs for method engineering which emerge from continuous changes and 
evolution in business, application areas, and approaches and technologies of 
development environments.  
 
10.1.1 Problems in Methods and Method Use 
 
ISD methods are believed to further ISD work in many ways. It is believed that 
methods facilitate the acquisition, accumulation, use and dissemination of ISD 
knowledge (e.g. Hardy et al. 1995; Hidding 1997; Rahim et al. 1998; Middleton 
1999; Schönström et al. 2003), help the management of ISD projects (e.g. 
Chatzoglou 1997; Fitzgerald 1998a), reduce needs for money, labor and time in 
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the ISD process (e.g. Jones et al. 1988; Hardy et al. 1995; Chatzoglou 1997), and 
improve the quality of ISD deliverables (e.g. Hardy et al. 1995; Chatzoglou 1997; 
Rahim et al. 1998) (see more Section 9.1). In some situations these beliefs have 
turned out to be justified. But there are numerous situations in which the use of 
methods has been experienced to be problematic. Here, we first make a 
literature survey to find out how common method use is in practice. Second, we 
describe, in a structured way, problems in ISD methods and method use, as 
reported in empirical studies.  

There are plenty of studies reporting that method use is not so frequent as 
believed. This was the case in the 80’s (e.g. Jenkins et al. 1984; Sumner et al. 1986; 
Necco et al. 1987; Chikovsky 1988; Carey et al. 1988; Danzinger et al. 1989; 
Smolander et al. 1990) and this seems to be the case in the recent years as well. 
For instance, Hardy et al. (1995) found that only 44 % of respondent 
organizations reported using a recognized structured method or using formal 
specifications. 18 % of the cases used no method at all.  In the study of over 100 
organizations by Russo et al. (1996), only 49 % reported that a method was used 
consistently although 84 % of the organizations reported having a method. 
According to the study of Chatzoglou (1997), nearly half of 72 projects in UK 
used no method. Fitzgerald (1998a) concludes that only 40 % of 162 
organizations used some formalized method, of which 14 % used a commercial 
method and the rest (28%) some in-house method. In the study of Rahim et al. 
(1998) one third of 36 organizations in Brunei and in the study of Iivari and 
Maansaari (1998) 23 % of the organizations did not use any method. Holt (1997) 
reports that nearly one-third of UK organizations did not embrace any 
structured methods.   

To interpret the numbers right it is important to notice that method use is 
an ambiguous notion in many ways. First, as Hidding (1997) points out, even if 
practitioners tell researchers not having used a method, they produce 
deliverables demonstrating they do indeed use it. Practitioners have 
internalized the method through training and repeated on-the-job use. They no 
longer “interpret” the method, as they have “compiled” it (Hidding 1997,  105). 
Second, the purpose and form of usage depends on the role a person plays in 
ISD. Hidding (1997) distinguishes between sellers, planners, doers, and 
managers. Sellers market projects. A planner in his/her role is responsible for 
project planning and control. A doer is responsible of executing actions. 
Depending on the role in and objectives of utilizing the method, practitioners 
have different needs for the method. Third, the significance of the method 
varies with knowledge a practitioner has about the method. Novices follow 
strictly the method as such, while practitioners with several years experience 
take freedom to deviate from instructions of the method when reasonable.  
Hence, when asking whether the method is used or not, it is necessary to make 
at least the following questions: Who is using the method? What is the part of it 
used? For what purposes is it used?   

A large variety of explanations are given for problems in method use in 
the literature. We start describing them by considering issues related to the 
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implementation of the method into the organization. Veryard (1987,  470) lists 
three possible failure scenarios. First, the method may have been poorly chosen 
for the organization. Second, the method may be appropriate for the 
organization but insufficient start-up resources have been allocated to it. Third, 
the implementation may be badly managed, that is to say, there are failures in 
planning and/or controlling. Roberts et al. (2001, 635) suggest that one possible 
answer to failures at implementing and adopting the ISD method is the lack of 
in-house expertise and difficulties in transferring technical ‘know-how’ that 
allows one to use the method efficiently and effectively. 

Next, we consider problems and explanations that are more related to 
characteristics of ISD methods. Systems development is not actually an orderly 
rational process, even though most ISD methods treat it as such (Wastell et al. 
1993). Curtis et al. (1988) found that ISD methods influence the mental model 
that ISD actors have about how ISD should occur, and they were frustrated that 
conditions surrounding their project prohibited them from following this 
model. This was also noticed in Nandhakumar et al. (1999). The method can be 
applied in a ritualistic way, which inhibits creative thinking (Stolterman 1992; 
Kautz et al. 1994; Wastell 1996).  ISD actors often proceed in slavish and blind 
adherence to methods and lose sight of the fact that development of an actual 
system is the real objective (Fitzgerald 1994, 371-380; Wastell 1996; 
Nandhakumar et al. 1999). Complex, highly detailed and norm-based 
descriptions of development routines do not fit the needs of ISD actors, nor 
support their work (Fitzgerald 1996a; Russo et al. 1996; Middleton 1999). 

Methods are often perceived as prescriptive, burdensome and difficult to 
apply (Thomson 1990; Middleton 1994). Rahim et al. (1998,  957) found out that 
the difficulty in learning the method was the most pressing problem. Hidding 
(1997) reports that methods are often too massive and complex to be easily 
adopted and adapted to a specific situation.  This is also the conclusion in 
Fitzgerald (1996a) and Kautz et al. (1994). Many studies also report on the 
inability of methods to cover the whole life cycle of software projects 
(Fitzgerald 1996a; Russo et al. 1996; Rahim et al. 1998).  

Instead of helping to reduce project completion time, some projects built 
with a recognized method actually increased scheduled project time (Rahim et 
al. 1998). A study of Saarinen (1990) concludes that success of projects was not 
affected by the use of any method.  The same kinds of results have been 
reported by Orr (1993) and Masters et al. (1992). Avison et al. (2003) noticed 
disappointments in productivity. There can be several reasons for this; e.g. 
learning may require extra time (Rahim et al. 1998), method use may induce 
unnecessary documentation (Kautz et al. 1994; Wastell 1996), or too much 
attention is given to notations (Wastell 1996).  

Sometimes the methods are seen to be too detailed to efficiently support 
the planning of a project (Hidding 1997). Many methods are documented only 
on paper, making their use awkward and their customization difficult. Tools 
advocated by method proponents can be costly and they may require highly 
technical skills. 
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Methods are often regarded as monolithic (Hidding 1997) or one-
dimensional (Avison et al. 2003, 81), advocating a single path or approach, 
which is often perceived as one-size-fit-all.  They are not contingent on the type 
or size of a project, nor upon the technology environment and organizational 
context (Avison et al. 2003). Adaptation of a rigid method to project-specific 
circumstances is difficult (Middleton 1999; Henderson-Sellers 2003).  

Part of the problems in method use can be traced back to human, 
organizational or technical settings. For example, without proper training the 
method can be totally ignored or only partly utilized. Incompatibility of a 
method approach with the culture and traditions of an organization may also 
cause unsolvable problems. Nevertheless, there are many problems that result 
from the nature, contents and structure of methods. To improve this, method 
engineering is needed.  
 
10.1.2 Other Factors Propelling Method Engineering 
 
Besides for improving existing methods, method engineering is needed for 
many other reasons. Here, we consider these in terms of changes and evolution 
in (a) business and its environment, (b) application areas, and (c) approaches 
and technologies of development environments.  

Business processes are changing on various dimensions (e.g. flexibility, 
interconnectivity, coordination style, autonomy) due to market conditions, 
organizational models, and usage scenarios of information systems. They are 
required to act more effectively in shorter time-frames (Fitzgerald et al. 2002). At 
the same time, business processes are getting more complex and difficult to 
manage. Businesses are increasingly moving to extensive automation of their 
private and public processes. Increasing domestic and global competition and 
changing economics are creating pressures to deliver information systems 
“yesterday” to exploit business opportunities (Wynekoop et al. 1997).  

Resulting from evolution in business and its environment as well as from 
advancements in IT, novel application areas have emerged and are emerging. 
Examples of the new areas are: e-commerce, m-commerce, web-information 
systems, multimedia information systems, trustworthy systems, and ubiquitous 
systems with time-aware, location-aware, device-aware and personalized 
services. Typical for new areas is that they amalgamate organizational, 
conceptual and technical issues from several research fields. For these areas 
new approaches and concepts are needed.  

Rapid progress of technology has resulted in new architectural 
frameworks and platforms for information systems, e.g. J2EE, Visual Studio 
.NET, XML-based technology, service-oriented architectures, peer-to-peer 
technology (P2P), model-driven architecture (MDA), and grid computing 
technology. This has led to the birth and diffusion of new computing and 
development approaches and paradigms, e.g. agent-based approach, fuzzy 
approach, anywhere/any time/any means paradigm, generative programming 
approach, aspect-oriented approach, ontology & service oriented (OSO) 
programming approach, soft computing approach, peer-to-peer computing 
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paradigm, etc. Especially, the component-based approach with reusable 
components has established a firm foothold in ISD. Companies rely far less on 
in-house development of systems, but are pursuing to buy software packages, 
or outsourcing ISD. This might be referred to as the industrialization of ISD.  

Some of the systems are less likely to require large-scale, long-term 
development projects, and more likely to be smaller, short term, incremental 
projects (Baskerville et al. 1992; Fitzgerald et al. 2002). With the emergence of 
light web-based applications, new birth of  ”quick and dirty” approaches, 
currently called agile approaches or short cycle time systems development, are 
getting popular (Agile Alliance 2002; Cockburn 2001; Astels et al. 2002; 
Baskerville et al. 2004). They emphasize e.g. individuals and interactions over 
processes and tools, working software over comprehensive documentation, and 
customer collaboration over contract negotiation. Also emergent organizations 
require new practices for ISD, like continuous analysis of IS applications, 
dynamic requirements negotiations, and continuous redevelopment (Truex et 
al. 1999).  
 
10.1.3 Summary  
 
Although the ISD methods have mostly appeared to be useful both to the ISD 
process and its outcomes, severe problems have been perceived in the 
implementation and deployment of the methods. Some of the problems clearly 
result from drawbacks and deficiencies in existing methods. For this reason 
there is a need for ME efforts to overcome these problems. ISD is in constant 
change and present trends suggest that this dynamic nature of practice will 
persist. Regardless of thousands of methods already engineered and deployed 
in organizations, still more methods with novel features and functionalities are 
desired. Engineering of new methods is propelled by everlasting changes in 
organisational and technological environments of ISD. Demands and 
expectations on both the process and the outcome of ISD have become harder 
and harder (Roberts et al. 2001). Phenomena, such as Software Process 
Improvement or the Capability Maturity Model (CMM) (Paulk et al. 1993) and 
ISO 9000-3 set of quality standards (ISO 1991), require disciplined use of 
systematic practices. The rise of such phenomena stimulates the use of methods 
much more than before. Finally, a conception about “one method suiting any 
situation” has been buried a long time ago. To have a method applicable to a 
particular organization or project requires special ME actions for customizing 
and configuring existing methods. 
 
 
10.2   ME Context  
 
 
Method engineering (ME) and ME context are ambiguous and multifaceted 
notions about which there are quite different conceptions in the ME literature. 
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The purpose of this section is first to make a short review of the conceptions 
and terminologies. Second, we define main ME strategies and ME processes, 
and present a fundamental categorization of ME contexts. Third, we give a 
generic definition of the ME context and discuss how the ME context is 
functionally and temporally linked to other contexts.  
 
10.2.1 About the Notion of Method Engineering  
 
Kumar and Welke (1992) are regarded as “godfathers” of method engineering. 
They used the term ‘methodology engineering’ to mean "a meta-methodology 
for designing and implementing information systems development 
methodologies” (ibid p. 257). Since then ME has been referred to with different 
meanings. On one hand, method engineering is regarded as a discipline to 
“build project-specific methods” (Brinkkemper et al. 1999, 209) or to “design, 
construct and adapt methods...” (ter Hofstede et al. 1997, 401). On the other 
hand, method engineering is seen as “an approach to configure project specific 
methods for the development of information systems” (van Slooten et al. 1993,  
167) or as “the systematic analysis, comparison, and construction of information 
systems engineering methods” (Harmsen 1997, 25). Tolvanen (1998) defines ME 
to mean “a change process taken with respect of an ISD object system in a set of 
ISD environments by a method engineering group using a meta method and 
supporting tools to achieve or maintain methods for ISD” (ibid p. 66). ME is 
defined to address only the methods (Brinkkemper et al. 1999, Harmsen 1997) or 
also techniques and tools (ter Hofstede et al. 1997; Tolvanen et al. 1996; Tolvanen 
1998; Brinkkemper 1996).  

In many studies ME is seen to be analogous to ISD (Olle et al. 1983; Kumar 
et al. 1992,  262; Tolvanen et al. 1996; Tolvanen 1998). As early as in 1983 it was 
stated:  

“Designing of methodologies and of application systems are very comparable 
exercises in human endeavour. In both cases one has to decide what data is 
needed and what processes are to be supported. This recursivity (if that is the 
right word) means that one should be able to specify a design methodology in 
itself – an assertion that was made in earlier days about programming 
languages” (Olle et al. 1983,  vii). 
 

According to this view, ISD yields an IS model and its implementation, whereas 
ME yields an ISD method and its implementation. On a general level, we can 
agree on this. But there are several intrinsic differences between ISD and ME. 
First, the targets of actions are somewhat different. An IS model and its 
implementation are commonly more concrete and better defined than an ISD 
method.  Second, resulting from the above fact, the process with which the 
outcomes are produced in ISD is more perceivable and structured than in ME. 
Third, a variety of contexts, functionally, organizationally and temporally, is 
much larger in ME than in ISD.  

Besides ‘method engineering’ several other terms are used in the ME 
literature. Some of these terms used are customization (e.g. Cronholm et al. 
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1994; Hardy et al. 1995; Hruby 2000b), tailoring (e.g. Basili et al. 1987; Mayer et 
al. 1995; Henderson-Sellers et al. 1999c; Kruchten 2000; Demirors et al. 2000; 
Fitzgerald et al. 2003), configuration (e.g. Brinkkemper et al. 1995; Kruchten 
2000; Karlsson et al. 2001; Karlsson 2002), adaptation (e.g. Tolvanen et al. 1993; 
Russo et al. 1995; ter Hofstede et al. 1997; Backlund et al. 2003; Carroll 2003), 
modification (e.g. Kruchten 2000), implementation (e.g. Veryard 1987; Roberts et 
al. 1998; Roberts et al. 2001; Yadav et al. 2001; Backlund et al. 2003), and 
integration (e.g. Short 1991; Nuseibeh et al. 1992; van Slooten et al. 1993; Kronlöf 
1993; Ryan et al. 1996; Song 1997; Goldkuhl et al. 1998; Saeki 1998; Wieringa et al. 
1998).  

Various prefixes are used to highlight specific aspects of method 
engineering: e.g. situation specific methodology construction (Kumar et al. 
1992), situational method engineering (e.g. Harmsen et al. 1994; van Slooten 
1995; Harmsen 1997; ter Hofstede et al. 1997; Brinkkemper et al. 1999; Ralyte 
2002), incremental method engineering (Kelly et al. 1994, Tolvanen 1998), 
context-specific method engineering (Rolland et al. 1996), simulation-based 
method engineering (Peters et al. 1996), ontology-based method engineering 
(Rosemann et al. 2002), and assembly-based method engineering (Ralyte et al. 
2003).   

Depending on, or regardless of, the used terms, quite different things are 
designated with those terms. The method under construction may be quite 
general (e.g. Unified Process (Jacobson et al. 1999)), at one extreme, or highly 
specific, intended to the use of a particular project, at the other extreme. Actions 
in ME may be scheduled for execution primarily before the starting of an ISD 
effort, or it is emphasized that ME is an organic part of an ISD project and thus 
it should be timed in parallel to the ISD actions (cf. blueprint ME vs. 
evolutionary ME in Rossi et al. 2004). There are also different approaches to 
organizing an ME effort and to deploying computer-aided tools in ME 
(Tolvanen et al. 1996))  

To summarize, there is a large variety of terms and conceptions with 
which diversified features of method engineering are conceived, understood, 
structured and presented in the ME literature. There is clearly a need to define a 
unified vocabulary with which the vague domain of ME can be perceived in a 
more consistent and structured manner. For this reason, we next define 
categorizations of ME strategies and ME processes and derive a fundamental 
categorization of ME contexts from them. After that we are ready to give our 
integrating definition for the ME context. 
 
10.2.2 Categorization of ME Contexts 
 
ME contexts can be categorized according to ME strategies, ME approaches, ME 
actors, ME actions, ME deliverables, etc. Here, we use ME deliverables, ME 
strategies and ME processes to derive a fundamental categorization of ME 
contexts.  

In Section 9.3 we classified the ISD methods into generic methods, 
domain-specific methods, organization-specific methods, and project-specific 
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methods. Because the generic ISD methods and the domain-specific ISD 
method mostly differ from one another only in the specificity of concepts and 
constructs with which they refer to special features of application domains, we 
treat them here together under the name ‘generic methods’.  

We define a generic way of accomplishing an ME effort to mean an ME 
strategy. We distinguish between three ME strategies. They are creation, 
integration, and adaptation. Creation means the “greenfield” or “from scratch” 
strategy of engineering the ISD method in a situation where no ISD existing 
method is available to be used as a basis for ME. Although this strategy is never 
literally applied as an overall strategy in practice, it is important recognize it for 
the cases where some part of the method has to be engineered without the 
support of existing methods. Integration means an ME strategy according to 
which the ISD method is engineered by assembling components of existing 
methods. The more reusable components the ISD methods are composed of, the 
easier the process of integration is. Adaptation means an ME strategy according 
to which the ISD method is engineered by dropping off or modifying some 
part(s) of an existing ISD method, or extending an existing ISD method with 
some new part(s). 

The three ME strategies correspond to three ISD strategies distinguished 
in the ISD literature. The creation strategy means a traditional way of building 
an IS from  “hand-designed” and “hand-coded” parts in ISD (Yourdon 1989). 
The integration strategy in ME corresponds to the COTS (components-of-the-
shelf) strategy (Bertolazzi et al. 2001; Morisio et al. 2002; Dogru 2003; Olarnsakul 
et al. 2003) in ISD. Finally, the adaptation strategy can be seen as a counterpart 
of “software package” strategy (Kirchmer 1999), according to which a software 
package is acquired and implemented by tailoring it. Tailoring involves the 
selection of optional modules, the specification of parameters, and the like (cf. 
ERP packages) (Parr et al. 2000).   

Based on the classifications of the method types and the ME strategies we 
can construct an overall framework, which brings out and relates different 
kinds of ME processes (Figure 104). In the framework the ISD methods under 
engineering are presented in the central “column”. There are three kinds of 
methods under engineering (i.e. generic method, organization-specific method, 
and project-specific method) and the method in use. The last one stands for 
actual performance in ISD, also known as an action world (Jayaratna 1994, 228-
229), project performance (Harmsen 1997, 39), method-in-action (Fitzgerald et 
al. 2002) and ‘doing and practice’ (Vidgen 2002, 259). Because method_in_use 
does not appear in the representational form like the others, it is depicted in the 
dotted line in the figure. The two other “columns” represent existing methods 
to be either integrated or adapted.  Next, we define the ME processes.  

Because the classification of ISD methods follows the principles of 
predicate abstraction based on the criterion of realization independence (cf. 
Section 3.9.3), we regard the methods as belonging to four abstraction levels. 
Between the levels we can identify three kinds of ME processes, which derive 
an ISD method from another ISD  method  on  the next  higher  level,  and  three  
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FIGURE 104  Framework of the ME strategies and ME processes 
 
kinds of ME processes, which derive an ISD method from another ISD method 
on the next lower level. We refer to these processes with the common term 
‘adjusting’. First, we consider the ME processes by which an ISD method is 
adjusted from the next higher level.  

Customization means an ME process by which an organization-specific ISD 
method is derived from some generic method (or domain-specific method) by 
adjusting it with organizational features that fit the traditions, culture, 
infrastructure, management policies, etc. of the target organization. In the 
customization, constructs within the ISD actor domain and the ISD facility 
domain are particularly specified and specialized.  Configuration162 means an 
ME process by which a project-specific ISD method is derived from an 
organization-specific ISD method. In this work, concrete concepts and 
constructs are used to prescribe e.g. who should do what, where and when. A 
project-specific ISD method in the most concrete form becomes very close to 
what we usually call a project plan.  Realization means an ME process by which 
a project-specific ISD method is put into action. Method-in-use means concrete 

                                                 
162  The term ’configuration’ is preferred here because in the ISD field the same term is 

used to mean the adjustment of a software package into a particular circumstance 
(e.g. Kirschmer 1999; Bertolazzi et al. 2001).    
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work that is done in ISD. As we know, ISD work in practice frequently deviates 
from the corresponding project-specific method.  Recognizing this is important 
especially to empirical research of the method use.  

Respectively, we can distinguish between three ME processes, by which a 
method is adjusted from another method on the next lower level. These 
processes are decustomization, deconfiguration, and abstraction. 
Decustomization is an ME process by which a generic ISD method is engineered 
by clearing an organization-specific ISD method from the knowledge specific to 
the certain organization. Deconfiguration means an ME process by which an 
organization-specific ISD method is engineered by abstracting project-specific 
knowledge from an existing method. For example, in order to harmonize ways 
of working inside a large organization, project-specific ISD methods followed in 
accomplished projects are deconfigured to achieve a common organization-
specific ISD method. That method will act as a shared knowledge base on how 
an ISD should be, on a general level, performed in the organization.  Finally, by 
observing, participating in, and interviewing about, ISD work in practice, one 
can extract “best practices” and abstract them into a project-specific ISD method 
to be adapted and utilized in forthcoming projects.   

The ME strategies can be applied in quite a similar way regardless of a 
level on which the target method is. However, the lower the level is, the greater 
the number of specific concepts and constructs are and the more concrete the 
issues in the considerations are. On the lowest level the creation of a method 
without any underlying method corresponds to a situation which was typical in 
the so-called pre-methodological era (Hirschheim et al. 1995) where for each ISD 
action working procedures were “designed” in an ad hoc manner. 

Besides engineering a method through either “vertical” processes or 
“horizontal” processes, there are situations in which the both kinds of processes 
are needed. We can recognize, for instance, the following three cases. In the first 
case, a new generic method is engineered integrating and adapting suitable 
components of existing methods, as well as decustomizing features of a certain 
organization-specific method. In the second case, an organization-specific 
method is engineered via three processes: (a) adapting an existing organization-
specific method, (b) re-customizing parts of the generic method that has served 
as the basis for the current organization-specific method, and (c) deconfiguring 
some parts of project-specific methods applied in the organization. In the third 
case, a project-specific method is engineered through configuring the 
organization-specific method and adapting some parts of existing project-
specific methods. The latter process transmits the experience from the finished 
or on-going projects into the use of the current project.   

Depending on what the target of ME is, we can now distinguish between 
three main types of ME contexts: method development, method customization, 
and method configuration. Method development context aims to engineer a 
generic ISD method, or a domain-specific ISD method. Many EU projects (e.g. 
OSSAD (Conrath et al. 1989), Euromethod (Franckson 1994), EKD (Loucopoulos 
et al. 1998)) and work done for the UML (e.g. Booch et al. 1999, Jacobson et al. 
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1999; Kruchten 2000) are examples of method development. Also method 
engineering done in universities and research laboratories often belongs to this 
type of ME contexts (cf. Mathiassen et al. 1996; Mathiassen et al. 2000). Method 
customization context aims to attain an organization-specific ISD method. A 
typical example of this type is a case where a software house is “modernizing” 
its current method by customizing one or more novel generic methods. The 
generic ISD method is typically a commercial one (e.g. Rational Unified Process, 
Kruchten 2000). Customization is accomplished as an ME work, internally to 
the organization and possibly supported by consultants. This work is also 
known as organization-based ME (Tolvanen 1998, 21). Fitzgerald et al. (2003) 
describe one customization context which aimed to customize a software 
development process at Motorola. Method configuration context aims to engineer 
a project-specific ISD method. At the best case the basis for engineering is 
obtained from the organization-specific ISD method, but it is quite common 
that the ISD method for the project has to be engineered from some generic ISD 
method.  

Next, we compare conceptions presented in the ME literature to our 
framework, first regarding ME strategies and then ME processes. Ralyte (2002,  
129) identifies between four main ME strategies. The first strategy is ‘From 
scratch’ with the self-evident meaning. The second strategy, called 
‘completeness driven assembly’, means enhancing the process part in the 
existing method by one or more new ways of working. The ‘extension driven 
assembly’ strategy is for situations where the project at hand implies adding a 
new functionality to the existing method, which is relevant in its other aspects. 
The fourth strategy, called ‘restriction driven strategy’, is used to select the 
functionalities that are significant in the project and to eliminate the others. 
Ralyte’s (2002) first strategy corresponds to the creation strategy in our 
framework. The other strategies contain parts of our adaptation and integration 
strategies. Ralyte (2002) defines many other strategies (e.g. verification strategy, 
aggregation discover strategy, and state-based modeling strategy), but they are 
on too a detailed level to be discussed here. Ralyte et al. (2003) suggest a slightly 
different set of ME strategies categorized for setting ME goals (i.e. the ‘from 
scratch’ strategy, the ‘method-based’ strategy) and for constructing a method 
(i.e. the ‘assembly-based’ strategy, the ‘extension-based’ strategy, the 
‘paradigm-based’ strategy). The ‘assembly-based’ strategy corresponds to our 
integration strategy, the ‘extension-based’ strategy is a part of our adaptation 
strategy, and the ‘paradigm’-based’ strategy is, to a degree, a counterpart of our 
creation strategy.  

Kruchten (2000, 258) uses the term ‘configuration’ on two levels. In 
organization-wide configuration the method is modified, improved or tailored 
in a way which takes into consideration issues such as the domain of the 
application, reuse practices, and core technologies mastered by the company. 
Project-specific configuration, in turn, refines the method for a given project, 
taking into consideration the size of the project, the reuse of company assets, 
and the applied ISD approach. The outcome of this process is called 
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development case (ibid p. 259). Firesmith (2002, 95) employs the term 
‘endeavor-specific’ to characterize the development process for a project, a 
program of related projects, or an entire enterprise. He does not see any 
difference between an organization-specific method and a project-specific 
method.  Tolvanen (1998, 21) distinguishes between the ‘organization-based’ 
method engineering and the ‘project-based’ method engineering.  

Veryard (1987) uses the term ‘method implementation’ to refer to the 
process of taking a method into use in an organization. Karlsson et al. (2001,  
XIV-1) define method configuration to mean the adaptation of the particular 
method to various situated factors. Backlund et al. (2003) specify, on the basis of 
Nonaka et al. (1995), a generic process to adapt and implement the method into 
organizations and illustrate the use of the process with two case studies. Hruby 
(2000b,   22) describes the process of customization with which a certain subset 
of the best practices is identified and adopted within the organization. 
Vlasblom et al. (1995, 602-603) present a procedure for the construction of a 
development model (i.e. a kind of domain-specific method) through 
investigating completed projects and formalizing experiences into a structure 
form. This process corresponds to abstraction, deconfiguration and 
decustomization in our framework. Henderson-Sellers and Mellor (1999c) 
discuss the tailorability of methods created through differing ways of 
instantiating the OPEN framework (Graham et al. 1997).  

From these examples taken from the ME literature we can clearly see that 
the ME field is very far from having a unified and shared terminology. There 
are discrepancies between conceptions about ME strategies, ME processes and 
ME contexts. We proposed the framework, which in a simple and unambiguous 
way distinguishes between three ME strategies, six ME processes and three ME 
contexts. We believe that our categorizations will substantially clarify the 
meanings of the concepts and differences between the conceptions presented in 
the literature.  Based on these categorizations, we will next define the notion of 
the ME context.  
 
10.2.3 Definitions of ME and ME Context 
 
It is challenging to try to construct a single definition for a notion like ME, 
which has so many facets and aspects as demonstrated above. Here, we first 
give a general definition of ME and then elaborate a more detailed definition of 
an ME context. Method engineering means all those actions by which an ISD 
method is developed, and later possibly customized and configured to fit the 
needs of an organization and/or an ISD project. By applying the contextual 
approach, deriving from the ISD ontology, and rooting on the categorizations 
above we have elaborated the following integrating definition of an ME context: 
 

A method engineering context is a context in which ME actors carry out ME actions 
of (de)customization, (de)configuration, realization, and/or abstraction to 
produce a new or improved ISD method, with ME facilities, in a certain 
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organizational and spatiotemporal context, in order to satisfy ME goals set by ME 
stakeholders.  

 
The definition above addresses all seven contextual domains. First, ME means 
intentional work guided by goals of ME stakeholders, partly predefined but 
mostly negotiated and agreed upon along the ME work.  The ME stakeholders 
mean all thosee persons who have some interest in the ME process and/or 
deliverables, e.g. method experts, work experts, business experts, IT experts, 
etc. The ME work is carried out by ME actors with various expertise and 
backgrounds, in different ME roles, and in different organizational units. 
Expertise may concern research methodologies, ISD process, tools, application 
domains, human, social and organizational issues, etc.  

Depending on the ME strategy applied (i.e. creation, integration, 
adaptation) and the nature of the ME context, ME actions are composed of 
different ME tasks and ME steps, and constitute various ME action structures. 
Common to all the ME approaches is the fact that the ME work starts with some 
requirements engineering and goal setting. After that come analysis and design 
of an ISD method, succeeded perhaps by implementation. During all the 
aforementioned ME workflows ME deliverables are evaluated with criteria 
derived from the ME goals. Depending on the nature of the ME context, the ISD 
method under engineering is either a generic method, a domain-specific 
method, an organization-specific method, or a project-specific method. 

ME work may be supported by ME tools, comprising MetaCase tools and 
CAME tools. With MetaCase tools it is possible to customize CASE 
environments to support new ISD methods. CAME tools at best guide the 
process of ME and support, with basic access operations and mechanisms, its 
accomplishment through integrated method base and procedures for automatic 
derivation and verification. Examples of MetaCase tools are RAMATIC 
(Bergsten et al. 1989), Maestro II (Merbeth 1991), ConceptBase (Jarke 1992), and 
MetaEdit+ (Kelly et al. 1996). Examples of CAME’s are MERET (Heym et al. 
1992a), Decamerone (Harmsen 1997) and MERU (Gupta et al. 2001).   

The ME context is bound to certain place and time. It is also 
organizationally, functionally and temporally linked to several other contexts. 
These links are illustrated in Figure 105. The ME context at hand is in the 
middle of the figure. It is connected to the prior contexts, on one hand, and to 
the so-called target contexts, on the other hand. The connections can be direct or 
indirect. The connected contexts comprise ME contexts and ISD contexts. 
Depending on the nature of the ME context at hand, the connected ME contexts 
mean development, customization and/or configuration.  

Prior ME contexts mean contexts, which have contributed to the ISD 
method that is under consideration/engineering in the ME context at hand. The 
method can be a generic ISD method, a domain-specific ISD method, an 
organization-specific ISD method, or a project-specific ISD method. The prior 
ME context have created the ISD method, or adjusted it. Knowledge about the 
prior ME context(s) is important  to  understanding the ‘hidden’ assumptions of 
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FIGURE 105  Relationships between the ME context and other contexts 
 
the ISD method (cf. the context of creation, Jayaratna 1994) and making 
decisions on its suitability to the ME effort.  

Target ME contexts mean contexts in which the ISD method under 
engineering is later to be customized, configured and/or realized into the use of 
certain ISD contexts. Especially, if the ISD method is a generic method, it is 
important to take into consideration how future customization and 
configuration contexts are provided with the sufficient knowledge of the 
original intentions of, the ME actors involved in, and the ME approaches 
applied in the ME context at hand.  

The ME context is also related to ISD contexts. Prior ISD contexts mean 
contexts in which the ISD method(s) interested by the ME context have been 
applied. Experience from the applications is valuable to decisions about which 
ISD methods would serve as a suitable basis for the ME work and about with 
which improvements they would serve as such. Target ISD contexts mean 
contexts for which the ME effort at hand has been launched. Depending on the 
type of the ME context, the target ISD contexts are known or not. The target ISD 
context is exactly known if the purpose of the ME context is to engineer a 
project-specific ISD method. In this case, the ME context at hand and the target 
ISD context are scheduled at least partly in parallel to one another (Hruby 
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2000b).  If the ME context is a customization context, target ISD contexts are 
seen as a family of ISD projects that share common features of the cultural, 
organizational and technical environment. For an ME context engineering a 
generic ISD method, the picture of the target ISD contexts is much more 
abstract.  

Actually the ME context at hand has indirect connections to prior and 
target contexts on the IS layer as well. Prior IS contexts mean those IS contexts 
which have been developed in prior ISD contexts. Target IS contexts mean those 
application areas for which target ISD projects applying the engineered method 
are to be launched. Target IS contexts can be viewed from various perspectives. 
The IS systelogical perspective, for instance, reveals the types of business 
systems and intended support by IS’s. Connections between the ME context 
and the contexts at the IS layer are, however, so thin that we do not take them 
into account in Figure 105. 
 
10.2.4 Summary 
 
Method engineering is, partly due to the short life time of the discipline, an 
ambiguous and obscure notion. In this section we have presented basic 
categorizations for ME strategies, ME processes and ME contexts. We have also 
proposed a framework which integrates all these categorizations and enables us 
to specify and analyze a large variety of ME contexts. We have applied the 
contextual approach to construct an integrating definition for the ME context.  
According to it, ME is viewed as a context, which possesses features of seven 
contextual domains, and is connected to contexts of different types, on different 
layers. We argue that this view provides a solid basis for engineering the ME 
ontology presented in the next sections.  
 
 
10.3  ME Domains 
 
 
The ME ontology provides concepts and constructs to conceive, understand, 
structure, and represent contextual features of method engineering. It is 
composed of two main parts, the ME domains and the ME perspectives. The 
purpose of this section is to present the first part. Here we focus on the ME 
purpose domain, the ME actor domain, the ME action domain and the ME 
object domain. The other three domains contain concepts that are related to the 
ME datalogical perspective and the ME physical perspective, which we are not 
interested in at the ME layer. In addition, we present an overview of ME inter-
domain relationships. 

For ME there are no unified presentations in the literature that would 
provide comprehensive frameworks, frames of references or the like, as is the 
case for ISD. In contrast, there are only a large variety of specific ME artifacts, 
including IS meta data models (e.g. ER (Chen 1976), NIAM (Nijssen et al. 1989), 
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ASDM (Heym et al. 1992a), GOPRR (Kelly et al. 1996)), ISD meta process models 
(e.g. Bandinelli et al. 1993; Deiters et al. 1994, Kaiser et al. 1993), ME strategies 
(e.g. Kumar et al. 1992, Ralyte 2002; Ralyte et al. 2003), ME approaches (e.g. 
Harmsen 1997; Tolvanen 1998), ME techniques (e.g. Kinnunen et al. 1996; van 
Slooten et al. 1993; Grundy et al. 1996; Saeki 1998; Leppänen 2000), and ME 
procedures (e.g. Vlasblom et al. 1995; Harmsen 1997; Tolvanen 1998). The 
conceptual basis they provide are, however, quite thin and scattered. For this 
reason we have not been able to apply the integration strategy in engineering 
the body of the ME ontology. Instead, we have established the ME ontology 
mostly by deriving from the context ontology and the ISD ontology. Into that 
body we have then merged individual concepts and constructs found in the ME 
literature. 
 
10.3.1 ME Purpose Domain 
 
The ME purpose domain embraces all those concepts and constructs that refer to 
goals, motives, or intentions of someone or something in the ME context. The 
concepts may show a direction toward which it is due to proceed in the ME, a 
state to be attained or avoided, or reasons for them. Reasons can be expressed 
as requirements, problems, etc. The ME purpose domain is highly important 
because only through its concepts it is possible to express “Why” it is necessary 
to engineer an ISD method. In the following we define the main concepts of the 
ME purpose domain and present them in the meta model in Figure 106.  

An ME goal expresses a desired state or event with qualities and quantities 
related to an ME context as a whole, or to some part of it. If related to the whole 
ME context, an ME goal may be expressed in terms of duration (ME process), 
money (ME resources), cooperativeness (i.e. ME organization), acceptability (i.e. 
ME deliverables), etc. Hard ME goals have pre-specified criteria for the 
assessment of the fulfillment of the ME goals, while soft ME goals have not.  An 
example of the hard ME goals is “the ME effort should not exceed the stated 
budget”. An ME requirement is some quality or performance demanded from an 
ME context or some part of it. An ME problem is a perceived deviation from a 
desired state or way of doing, which may lead to specifying one or more ME 
requirements and set up one or more ME goals.   

ME goals, as well as ME requirements, are related to one another through 
the refinement and influence relationships. The causalTo relationship between 
two ME problems means that the appearance of one ME problem is at least a 
partial reason for the occurrence of another ME problem. 

Some of the ME purposes are directly related to the ISD method (ISDM) 
under engineering. We use the term ‘ISDM purpose’ to refer to the ME goals and 
the ME reasons pertaining the ISD method. For the evaluation and comparison 
of ISD methods a large variety of criteria are presented in the literature163. In the  

                                                 
163  Criteria can be connected to any ME purpose. Here we are in particular interested in 

the criteria used to evaluate ISD methods. Therefore a criterion is related to an ISDM 
purpose.  
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FIGURE 106  Meta model of the ME purpose domain 
 
simplest form, criteria are given as a feature list (e.g. Rzevski 1983; Brodie 1983; 
Ang 1993; Karam et al. 1993) or as a taxonomy (e.g. Brandt 1983; Blum 1994). In 
a more advanced form, criteria are organized to constitute a framework (e.g. 
Iivari et al. 1983; Floyd 1986; Wand et al. 1989; Jayaratna 1994; Louridas et al. 
1996; Weber et al. 1996; Opdahl et al. 2002). 

Some sets of criteria are aimed at addressing the ISD method as a whole 
(e.g. Brandt 1983; Henderson-Sellers et al. 2001; Jayaratna 1994; Kabeli et al. 
2002) while some sets of criteria only concern certain parts or features of ISD 
methods. The latter criteria may address paradigms or ISD approaches (e.g. 
Iivari et al. 1998a; Iivari 1991; Fitzgerald et al. 1998), ISD phases or ISD 
workflows (e.g. Castano et al. 1994; Bielkowicz et al. 2001; Bielkowics et al. 2002), 
or description models (e.g. Krogstie 1995; Krogstie et al. 1995; Chaves et al. 1996; 
Godwin et al. 1989a; Godwin et al. 1989b; Hommes et al. 2000; Moody 2003b; 
Shoval 1996; Weber et al. 1996; Kaasboll et al. 1996). Some sets of criteria are 
suggested for the evaluation of specific ISD methods; e.g. office analysis 
methods (e.g. Ang 1993; Auramäki et al. 1992b), object-oriented methods (e.g. 
Arnold et al. 1991; Hong et al. 1993; Iivari 1994; Liang 2000), component-based 
development methods (e.g. Forsell et al. 2000; Boertien et al. 2001) and agent-
oriented methods (Shehory et al. 2001; Dam et al. 2004; Sturm et al. 2004).  

Here, it is not possible to go into details of ISDM goals/requirements, nor 
to the related criteria. Instead, we apply the perspectives defined in Chapter 5 
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and in Chapter 8 to derive the classification of ISDM purposes into ISD 
systelogical, ISD infological, ISD conceptual, ISD datalogical, and ISD physical 
purposes. In the following we define them in relation to the ISDM 
requirements164. ISDM requirements from the ISD systelogical perspective concern 
information services, which ISD should provide, through the ISD method, to its 
utilizing system (USISD). Examples of issues addressed by the ISD systelogical 
perspective are: types of applications and ISD processes supported by the ISD 
method, ease of learning and use of the ISD method, and effectiveness of the 
ISD method. The ISDM requirements from the ISD infological perspective concern 
the support the ISD method provides for ISD actions and ISD deliverables. The 
support is expressed in terms of ISD workflows, ISD process models, and 
description models. The ISD conceptual perspective guides the focusing on ISDM 
requirements that concern the conceptual contents of the ISD deliverables. The 
requirements pertain, among others, semantic richness and complexity of the IS 
meta data models and abstraction structures supported by the ISD method. The 
ISD datalogical perspective addresses the support of the ISD method to establish 
ISD roles, ISD positions, ISD organization units, and ISD phase structure, as 
well as to consider in which situations CASE tools are used in ISD work. 
Finally, ISDM requirements from the ISD physical perspective involve the 
support the ISD method provides in detailed and concrete terms of ISD actors, 
ISD actions, ISD deliverables, ISD facilities, and ISD locations.   

In the ME literature, there are only a few presentations which address the 
ME purposes in an explicit way. Rolland et al. (1999), Ralyte (2002) and Ralyte et 
al. (2003, 95) suggest an interesting way to describe intentions in method 
engineering. They introduce the ME process model, called MEMP, which is 
based on ”the strategic process meta-model”, known as the map (Rolland et al. 
1999). The map contains two fundamental concepts: intention and strategy. An 
intention is “a goal that can be achieved by the performance of the process” 
(Ralyte 2002, 130). It refers to a task (activity) that is a part of the process and is 
expressed on the intentional level. A strategy represents the manner in which 
the intention can be achieved. The model is presented in a graph showing 
desired states (intentions) and possible transitions (strategies). Compared to our 
contextual approach, in the MEMP ME goals are expressed indirectly in terms 
of ME actions that actually refer to ME deliverables resulting from the ME 
actions. For example, ‘Construct structural view’ is an intention with which it is 
expressed that the ISD method should support the named ISD activity. In our 
view, it is much more natural and easier to explicitly express ME purposes 
(problems, goals, requirements) in separate terms, although related to other 
parts of the ME context.  

In addition there are some suggestions for approaches to derive 
requirements for ISD methods. Tolvanen (1998) distinguishes between the 
problem-driven approach, the contingency-based approach, and the stake-
holder value-based approach. Ralyte (2002, 131) define two requirements 
                                                 
164  The ISD perspectives could be, correspondingly, defined in relation to ISDM goals, 

ISDM problems, etc. 
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eliciting strategies in their method engineering process model. The intention 
driven strategy is based on the analysis of the existing method and the detection 
of those development actions which must be included into the method or 
eliminated from it. The process driven strategy is based on the identification of 
those ISD actions which must be supported by the new method. The 
aforementioned presentations are, however, quite general. In conclusion, we 
can say that the ME purpose domain is in most of the presentations totally 
ignored, and also in those addressing the domain it is only generally 
considered.  
 
10.3.2 ME Actor Domain 
 
The ME actor domain consists of all those concepts and constructs that refer to 
human and active parts of the ME context. An ME actor is a human thing or an 
administrative thing that is, one way or another, involved in the ME context. A 
human ME actor means an individual person or a group of persons contributing 
to the ME work. An ME administrative actor is an ME position, or a 
composition of ME positions. An ME position is a post of employment occupied 
by a human actor in the ME context. It is identified with a title, composed of the 
defined ME roles, and equipped with a set of skill or capability 
characterizations. An ME role is a collection of ME responsibilities and ME 
authorities (see Figure 107). 

In the ME literature several terms are used to denote ME roles and ME 
positions. Kumar and Welke (1992, 266) were the first to recognize the need for 
a specific organizational position for method resource management and 
engineering. They coined the term “methodology engineer/administrator”. 
According to Kumar et al. (1992) a methodology engineer is a highly trained 
analyst who has a high-level view of systems development and systems 
development methodologies. He/She is responsible for the administration of a 
method  base,  which is  called a  component base. That means e.g.  establishing 
equivalence mappings among the components and classifying the newly 
acquired components so that they can be indexed for retrieval. In addition, a 
methodology engineer monitors and evaluates the use of method components 
and stores reports of successful or unsuccessful experiences in the component 
base for future use (Kumar et al. 1992,  266).  

Since Kumar et al. (1992), several suggestions for the role of method 
engineer have been presented (Harmsen et al. 1994, 175; Nuseibeh et al. 1996,  
267; Odell 1996,  4; Tolvanen 1998, 67; Gupta et al. 2001, 156). Some of them 
distinguish between ‘method administrator’ and ‘method engineer’ to emphasis 
the significance of a method base (e.g. Odell 1996,  4; Harmsen et al. 1994,  175; 
Harmsen 1997, 115). In addition to the terms mentioned above, ‘method 
architecture’ (Iivari et al. 2001), ‘process engineer’ (Kruchten 2000, 259; 
Firesmith 2002, 95) and ‘methodologist’ (Falkenberg et al. 1998, 1; Firesmith 
2002, 95) have been deployed.   
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FIGURE 107  Meta model of the ME actor domain 
 
In this study we distinguish between eight ME roles (see Figure 107). Six of 
them have already been defined in the ISD ontology in Chapter 8, namely the IS 
owner, the IS client, the IS worker, the IS developer, the ISD project manager, 
and the vendor/consultant. If the ME concerns method customization for an 
organization or method configuration for a specific ISD project, IS owners, IS 
clients, IS workers, IS developers and ISD project managers can provide 
experience about prior ISD projects and opinions about the quality of the IS’s 
designed and implemented in those projects. They can also bring out 
requirements on a way of modeling of, a way of working in, and a way of 
organizing, the target ISD projects. Vendors and consultants may be needed if 
the organization has not enough expertise in the concerned method or in the 
ME process (Roberts et al. 2001, 635). These “mediating institutions” can be 
external consulting firms or universities. The seventh ME role is a method 
engineer, a change agent (Mathiassen 1998,  82) who has the main responsibility 
for ME actions in the ME effort. IS developers and ISD project managers, and to 
some extent IS owners, IS clients and IS workers, can be regarded as method 
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engineers’ customers (cf. Nuseibeh et al. 1996, 270)165. The eighth ME role is that 
of an ME project manager who makes plans of and decisions on how to organize 
the ME effort. This includes making decisions on ME phases, schedules, 
milestones, baselines, resource allocation, etc. We call the ME actors who play 
in any of the aforementioned ME roles the ME stakeholders. 

An ME effort involves various persons with different backgrounds and 
expertise. According to their expertise, the persons can be categorized into IT 
experts, business experts, work experts, method experts, tool experts, and 
theory experts. The three of these have already been introduced in Section 8.3. 
A method expert is a person who has deep understanding of methods generally, 
and of some specific method(s) in particular. A tool expert is a person, who has 
familiarized oneself with tools used in method engineering (i.e. CAME tools 
and/or MetaCase tools) and in ISD (i.e. CASE tools). A theory expert is a person, 
who has special knowledge on theoretical and methodological issues of method 
engineering. Depending on the needs of expertise in the ME context and the 
availability of skilled persons, a person may act in one or more ME roles.   

Method engineering can be a part time or full time activity for a person. In 
a large software company, for example, it is common that one or more ME 
positions with full time responsibilities are established for ME. There may even 
be a special group or unit for method engineering. Persons in such positions 
participate in the development of the organization-specific method, in its 
configuration for projects as well as in method training and consultancy. Also 
in multi-national projects, which aim to develop a new method (cf. the OSSAD 
method (Conrath et al. 1989), Euromethod (Franckson 1994; Euromethod 
1996166), the ELEKTRA approach (ELEKTRA 1998)), full-time ME positions are 
established.  In small companies responsibilities of method engineering are 
included in ISD positions. In this way, the expertise on daily IS development 
can be utilized in the customization and configuration of the ISD method.  

An ME organization is a composition of ME positions with a coherent set of 
organizational goals, authorities and responsibilities. A way in which an ME 
effort is organized depends on the type of the ME context. In a method 
development context, an ME organization is composed of persons with the 
profound understanding of existing methods (method experts), CAME/CASE 
tools (tool experts), and theoretical and methodological issues of method 
engineering (theory experts).  A customization context needs a method expert 
with in-depth knowledge about some generic method(s) and principles of 
customization. This person can come from the host organization or he/she can 
be a representative of a consultancy firm. In the situations like this, 
representatives of IS developers are also needed to bring forward knowledge of 

                                                 
165  Mathiassen et al. (1996) consider that the primary customers of method engineering 

are those studying methods to learn new ISD practices. Those who actually work 
with the methods (i.e. IS developers) are thought of in a secondary role. We disagree 
on this.  

166  Euromethod is now marketed under the name ISPL (Information Services 
Procurement Library) (http://projekte.fast.de/Euromethod/) 
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the current culture, principles and ways of working in the ISD organization. In 
a configuration context an ME organization can comprise a method expert, an 
ME project manager, ISD project managers, IS developers and representatives 
of stakeholders with work and business expertise.  
 
10.3.3 ME Action Domain 
 
The ME action domain comprises all those concepts and constructs that refer to 
deeds or events in the ME context. ME actions are carried out to manage and 
execute an ME effort. They are performed to construct, integrate, customize, 
configure, and/or implement principles, models, techniques, guidelines, etc. of 
the ISD method. ME actions involve, for instance, the knowledge acquisition on 
problems encountered in prior ISD efforts, the specification of requirements for, 
designing improvements to, and making evaluations of the ISD method. 

ME is commonly considered to be analogous to an ISD effort (Olle et al. 
1983; Kumar et al. 1992; Tolvanen 1998). On this basis we argue that all the 
action structures defined in the ISD ontology (Section 8.3) hold, on a general 
level, also for the ME ontology. This means that the generic action structures 
(i.e. the decomposition structure, the control structures, and the temporal 
structures) are intrinsic to the ME actions as well. Likewise, the management-
execution structure and the problem solving structure are typical to the ME 
actions. Because these action structures have already been defined in Section 
4.4.3 and Section 8.3, they are not considered here. In the ISD ontology, the ISD 
phase structure is specialized, based on the Unified Process Model (Jacobson et 
al. 1999), into four phases: IS inception, IS elaboration, IS construction, and IS 
transition. This structure would also be applicable to the ME context following 
the creation strategy. But to enable the phase structure to apply to other kinds 
of ME contexts as well, we refrain from suggesting any specialized ME phase 
structure. Instead, we define the generic ME phase structure being composed of 
two or more unspecified ME phases. Phases may include several ME sub-
phases, which in turn are composed of ME steps. 

In this section we consider two ME action structures in more detail. They 
are the ISDM modeling structure and the ME workflow structure (see Figure 
108). We discuss also how the ME action structures are intertwined. But before 
doing this, we make a short survey of the ME literature to find out which kinds 
of concepts and structures of the ME action domain are deployed.   

In the literature ME actions are structured through steps (e.g. Vlasblom et 
al. 1995; Nuseibeh et al. 1996; Harmsen 1997; Song 1997; Tolvanen 1998), phases 
(e.g. Gupta et al. 2001), activities (e.g. Mi et al. 1996), or strategies (Ralyte et al. 
2003). Vlasblom et al. (1995) present steps for the construction of a development 
model based on the existing approaches / projects, and steps for deploying 
development models in specific situations. Nuseibeh et al. (1996) decompose the 
ME process of method design and construction into six steps. Harmsen (1997) 
suggests steps to characterize the ME situation, to select method fragments and 
to integrate them into the ISD method. Song (1997) outline steps for function-
driven and quality-driven method integration. 
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FIGURE 108  Meta model of the ME action domain 
 
Tolvanen (1998) sub-divides the process of incremental method engineering 
into two kinds of steps: a priori steps and a posteriori steps. The former steps 
are executed before the use of a method, while the latter steps are carried out 
during or after the method use. In Gupta et al. (2001) method engineering is 
decomposed into three main phases: method requirements engineering, method 
design, and method construction and implementation. Mi et al. (1996) list a 
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heterogeneous set of activities of construction and manipulation process of 
software development models. The list contains activities such as meta-
modeling, model definition, analysis, prototyping, administration, integration, 
and evolution. Ralyte et al. (2003) describe the ME process in terms of intentions 
and strategies. Intentions are goals that can be achieved by the performance of 
the processes. Strategies represent manners in which the intentions can be 
achieved. In addition, Ralyte et al. (2003) suggest a classification of operators, 
such as unification, transformation, abstraction/instantiation, specialization/ 
generalization, aggregation/decomposition, addition, and cancellation. 

To summarize, we can state that propositions for the functional division of 
ME efforts are quite heterogeneous in the ME literature. We cannot avoid 
concluding that actions structures, both conceptually and terminologically, lack 
careful considerations and specifications. What we aim to do next, is to define 
the ISD modeling structure and the ME workflow structure, anchored on the 
underlying ontologies, and inter-relate them with more elementary ME action 
structures.  
 
A.  ISD Modeling Structure 
 
Modeling plays a focal role also in ME. The main outcome of ME is the ISD 
method, which typically consists of various models (cf. Section 9.5).  ISD models 
describe/prescribe ISD goals (ISD purpose models), ISD actors (ISD actor 
models), ISD actions (ISD action models), ISD deliverables (ISD deliverable 
models and ISD data models) and the like. IS meta models, in turn, provide the 
concepts and constructs from which IS models are instantiated during ISD 
efforts. Thus, ME involves modeling on two levels, on the type model level and 
on the meta model level. We call the structures that are composed of ME actions 
modeling ISD on these two levels the ISD modeling structures.  

Modeling the structure and behavior of ISD does not essentially deviate 
from modeling the structure and behavior of the IS considered in Section 8.3.3. 
That implies that all the modeling actions and structures defined for IS 
modeling are relevant to ISD modeling too. These action structures comprise 
the elementary modeling structure (conceptualizing, representing), the single 
model action structure (creating, refining, and testing), and the multi-model 
action structures (transforming, translating, relating, and integrating). These are 
taken as granted here. 

The process by which a meta model is produced is called metamodeling. 
Metamodeling is a modeling process, which takes place on one level of 
abstraction and logic higher than the standard modelling process (Tolvanen et 
al. 1996). Since the meta models also are models, they “inherit” the generic 
properties of the models, including the structures of modeling actions that 
involve the models. Thus, a meta model can be transformed or translated from 
another meta model, and two meta models can be related to one another and 
integrated to make a new meta model. There are, however, some modeling 
actions that are specific to metamodeling. These actions are targeted to models 
at two model levels. These actions are classification and instantiation (cf. 
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Section 3.9.2.1). Because these actions are so elementary to metamodeling, we 
include them in the actions of conceptualizing (cf. elementary action structure). 
This is justifiable because the process of classifying instance concepts and 
constructs of IS models into meta concepts and meta constructs actually means 
conceptualizing. The same is true when instantiating the meta concepts and 
constructs of the IS meta model.  
 
B.  ME Workflow Structure 
 
According to the ME workflow structure, ME is composed of various ME 
workflows. An ME workflow is a coherent composition of ME actions, (a) which 
are organized to accomplish some ME process, (b) which share the same target 
of action, and (c) which produce results valuable for ME stakeholders. A part of 
an ISD workflow is called an ME task. We distinguish between five ME 
workflows: ISD method requirements engineering, ISD method analysis, ISD 
method design, ISD method implementation, and ISD method evaluation. In 
the following we use the abbreviation ‘ISDM’ to stand for ‘ISD method’ in the 
names of the ME workflows.  

The ISDM requirements engineering means an ME workflow, which aims to 
identify and elicit ME stakeholders’ requirements concerning the nature, 
contents and structure of the ISD method. It also seeks to establish and 
maintain, at least to some extent, an agreement on the essential aspects of the 
ISD method, and to express them as part of the ME goals. The ISDM 
requirements can be brought out in nearly every phase of the ME effort.  

The ISDM analysis denotes an ME workflow, which aims to produce high-
level descriptions of the ISD method, meaning that the ISD method is 
considered from the ISD infological perspective and the ISD conceptual 
perspective. Consequently, in this ME workflow concepts and constructs of the 
ISD purpose domain, the ISD action domain and the ISD object domain are 
used to make descriptions and prescriptions of what is to be done, for which, 
and why in the target ISD context.   

The ISDM design refers to an ME workflow, which aims to produce more 
elaborated descriptions of the ISD method. Here, the ISD method is considered 
from the ISD datalogical perspective, uncovering “How” an ISD effort is to be 
accomplished. This means that the following kinds of questions are answered: 
What kinds of ISD roles and ISD positions are established? How the ISD actions 
are decomposed at a detailed level? Which part of the ISD work is to be 
supported by computer-based tools? 

The ISDM implementation means an ME workflow, which aims to produce 
concrete descriptions/prescriptions of the ISD context from the ISD physical 
perspective. That means that the descriptions/prescriptions made earlier are 
realized and instantiated into an ISD project plan that dictates who does what, 
why, how, for what, when and where. 

The ISDM evaluation means an ME workflow, which aims to produce 
assessments of one or more ISD methods according to the defined criteria. An 
ISD method can be evaluated at any point of its life cycle. It can be just a 
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roughly outlined artifact, like that resulting from the ISDM analysis workflow, 
or it can be a complete ISD method already used in an ISD project. The criteria 
used vary from logical to technical and from general to detailed, depending on 
the nature of the ISD method and the ISD perspective applied. 

In the ME literature, it is very uncommon to recognize ME action 
structures that correspond to our ME workflow structure. In their conceptual 
framework for evolving software processes, Conradi et al. (1993) distinguish 
between software production processes and software meta-processes. The 
former carry out software production activities, and the latter improve and 
evolve the whole software process. The software meta-processes are in charge 
of e.g. process requirements analysis, process design, and process assessment. 
Gupta et al. (2001) distinguish between three “ME phases”: method 
requirements engineering, method design, and method construction and 
implementation.  
 
C.  Synthesis 
 
The ME action structures are highly intertwined with one another. A manner in 
which ME actions appear and are interrelated to one another depends on the 
type of the ME context (cf. development, customization, configuration) and the 
ME strategy applied (cf. creation, integration, adaptation). To illustrate 
interrelations of ME action structures, we consider one example of the ME 
context. The ME context is a development context, which aims to engineer a 
domain-specific method, mainly with the integration strategy. The ME work 
covers the ISDM requirements engineering workflow, the ISDM analysis 
workflow, the ISDM evaluation workflow, and perhaps part of the ISDM 
design workflow. The ME work may start with the goal to have a proper 
method for a novel field, such as agent-oriented information systems or 
ubiquitous information systems. In the first phase, conceptions of the novel 
domain are concretized by IS modeling from the IS conceptual perspective. 
Derived from those, requirements for IS meta models, concerning special 
concepts and constructs, are specified. Further, requirements are expressed for 
such ISD approaches, ISD principles and ISD processes that support the 
production of ISD deliverables, based on those IS meta models. Taking these 
requirements as a point of departure, existing ISD methods are analyzed to find 
out parts that could be accepted and integrated into the body of a new method. 
The last step in this first ME phase is to set up goals and refine a time schedule 
with milestones and baselines for the ME context. 

The ME work continues with refining requirements, modeling an ISD 
context from the ISD infological perspective, and modeling the contents of ISD 
deliverables from the ISD conceptual perspective. ISD modeling can be first 
targeted on the most essential part of the ISD process (e.g. IS analysis workflow) 
or on some major ISD deliverables (e.g. extended class diagram). The ISD 
models produced so far are tested with some case material and further refined 
based on the experience from testing.  



 

 

457

In the next ME phases, the ISD context is considered from the ISD 
datalogical perspective in order to compose ISD actions into ISD roles and ISD 
positions. Also some suggestions are given for a generic ISD phase structure. 
Quality of the engineered ISD method, or parts thereof, can be evaluated 
conceptually and/or through pilot testing.  

The ME context described above with a scenario comprises several ME 
phases, ME workflows, ME problem solving actions, and ISD modeling actions, 
as well as many kinds of generic action structures. ME actions in the ME action 
structures are highly inter-related to one another. With the well-defined action 
structures in the ME ontology it is possible to focus on one or two structures at 
a time, and thus decrease the complexity related to the ME context.  
 
10.3.4 ME Object Domain 
 
The ME object domain comprises all those concepts and constructs that refer to 
something to which ME actions are targeted. We call them ME deliverables. 
Based on the ME management-execution action structure we can distinguish 
between ME management deliverables and ME execution deliverables. Here, we 
confine ourselves to consider only the latter. In the following we shortly call 
them the ME deliverables, when there is no risk of misunderstanding, and   
define the concepts and relationships related to them (Figure 109).   
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FIGURE 109  Meta model of the ME object domain 
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ME deliverables inherit all the features and relationships of the generic notion 
of an informational object specified in Section 4.4.4. This means, for instance, 
that an ME deliverable can be an assertion, a prediction, a plan, a rule, or a 
command. An ME deliverable signifies certain phenomena in OSME. The OSME is 
very large and heterogeneous, comprising prior ME contexts, prior ISD 
contexts,  the  ME  context  at  hand,  target  ME  contexts,  target  ISD  contexts, 
existing ISD methods, the ISD method under construction, etc.  We use the term 
‘OSME construct’ to denote any part of the object system of ME. The signifies 
relationship expresses the relationship between an ME deliverable and an OSME 
construct. 

ME deliverables can be informal (e.g. the ISD systelogical requirements of 
the ISD method), semiformal or formal (e.g. the IS meta data model).  Some of 
the ME deliverables are specified as parts of ME baselines. An ME baseline is a 
set of reviewed and approved ME deliverables. The main deliverable of ME is 
the ISD method, which can be a generic method, a domain-specific method, an 
organization-specific method, or a project-specific method. We have presented 
a comprehensive decomposition of the ISD method based on seven methodical 
views in Section 9.5. Accordingly, the ISD method, realizing a set of ISD 
paradigms, ISD approaches and ISD principles (the generic view), can be seen 
as descriptions/prescriptions, presented in one or more languages (the 
presentation view) and materialized in some physical form(s) (the physical 
view), refer to the prior contexts (the historical view) and the target contexts 
(the application view) with the concepts and constructs (the contents view) that 
constitute the conceptual foundation of the method and its components (the 
structural view). Because we do not want to repeat considerations already 
presented in Section 9.5, the only concepts we have included in the meta model 
in Figure 109 from the ISD method ontology (Section 9.5) are an ISD method 
and a method component. A method component means a well-defined part of 
the ISD method that can be integrated to other method components to form a 
coherent and consistent method.  

ME deliverables are related to one another with five kinds of relationships. 
An ME deliverable can be composed of other ME deliverables. An ME 
deliverable can be used as an input to, or as a prescription for, another ME 
deliverable (i.e. the supports relationship). For example, the selected 
contingency framework can provide a structure for the characterization of the 
target ISD context. An ME deliverable can be a version of another ME 
deliverable (i.e. the versionOf relationship). An ME deliverable can be a copy of 
another ME deliverable (i.e. the copyOf relationship). Finally, an ME 
deliverable can be more abstract than another ME deliverable in terms of 
predicate abstraction (i.e. the predAbstract relationship). This kind of 
relationship exists, for instance, between an infological description of and a 
datalogical description of the ISD method. 

In the ME literature there are no generic concept corresponding the notion 
of an ME deliverable. Instead, the notions of a method and a method 
component (or some of their counterparts, see Section 9.8) are used to refer to 
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the target of ME efforts. The comparative analyses made in Section 8.5.4 (the 
ISD ontology), in Section 9.7 (the general structure of the ISD method) and in 
Section 9.8.6 (the component structure of the ISD method) showed that 
frameworks, meta-models and the like presented in the ME literature adopt 
rather limited views of the contents and structure of the ISD method. Without 
repeating here the details reported from the analyses, we state that the ME 
object domain in our ME ontology is much more comprehensive and better 
structured than in any other ME artifacts in the literature.  
 
10.3.5 ME Inter-Domain Relationships 
 
In the sections above the ME concepts and the ME constructs have been defined 
separately for each of the four ME domains. The ME domains are, however, 
inter-related in many ways. Figure 110 presents the general-level meta model, 
which illustrates the most essential ME inter-domain relationships. It has been 
derived from the meta models presented in Section 4.5 and Section 8.3.5. We 
assume that the meanings of the relationships are self-evident on the basis of 
the definitions given in the aforementioned sections. Here we only consider one 
relationship in more detail.  That is the strivesFor relationship. 
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FIGURE 110  Meta model of ME inter-domain relationships 
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The strivesFor relationship between an ME action and an ME purpose means 
that an ME action is to be conducted, is conducted, or was conducted for 
satisfying certain goal(s). The goal(s) may be inferred from encountered ME 
problems, specified ME requirements, observed opportunities, or perceived 
threats. From the historical viewpoint, the strivesFor relationship, together with 
the input and output relationships between the ME actions and the ME 
deliverables, can be used to express method engineering rationale (cf. method 
construction rationale in Rossi et al. 2004). Method engineering rationale 
“garners a history of method knowledge evolution as part of the method 
engineering process”, which develops, customizes and configures the method 
(cf. Rossi et al. 2004). With particular methods (e.g. IBIS (Conklin et al. 1988), 
REMAP (Ramesh et al. 1992), QOC (MacLean et al. 1991), PDR (Carroll et al. 
1991) it is possible to model and reason from the knowledge on produced ME 
deliverables, conducted ME actions, stated ME goals, and reasons for them (i.e. 
arguments and justifications). This knowledge enables to trace reasons for the 
made decisions and actions, which is especially important in ISDM 
requirements engineering. 
 
10.3.6 Summary  
 
In this section we have defined the first main part of the ME ontology. This part 
is composed of concepts and relationships within and between four ME 
domains: the ME purpose domain, the ME actor domain, the ME action 
domain, and the ME object domain. For each domain, a meta model and 
definitions of concepts and constructs have been provided. Despite a large 
array of ME literature, there appeared to be no generic representation that 
would have helped us apply the integration strategy in ontology engineering. 
In contrast, engineering the ME domain part of the ME ontology had to be 
founded on the context ontology and the ISD ontology. Into that body we have 
then merged individual concepts and constructs found in the ME literature. 
Due to the lack of coherent representations in the literature, we were not able to 
make a comparative analysis. 
 
 
10.4  ME Perspectives 
 
 
In this section we define the second main part of the ME ontology that concerns 
the ME perspectives. These perspectives are important to managing the 
complexity related to the structure, function and behavior of the ME context. 
They also help us structure the process of engineering the ME method. The ME 
perspectives are derived from those defined on the ISD layer (see Section 8.4). 
Here we consider only the ME systelogical, ME infological, ME conceptual and 
ME datalogical perspectives. After discussing the perspectives, we describe the 
ME inter-perspective relationships. 
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10.4.1 ME Systelogical Perspective  
 
The ME systelogical perspective reveals the support that method engineering 
provides to its utilizing system (USME). The utilizing system includes the target 
ISD contexts and the USISD. The definition implies that the following questions 
are relevant from the ME systelogical perspective: 
• What kind is/are the target ISD context(s) for which the ME is to produce 

the ISD method? 
• What kinds are the IS’s for which the aforementioned ISD projects are to 

be launched? 
• What kinds are the USIS contexts which the IS’s should provide with 

information services? 
• What kinds are the services the ME should provide to the USME? 
• Derived from the answers to the above questions, what are the goals and 

constraints for ME approaches, ME organizations, ME actions, ME 
deliverables, etc. in the ME context? 

 
From the characterizations above we can infer the meta model of the ME 
systelogical perspective and present it in Figure 111. We see that the ME 
systelogical perspective concerns, one way or another, four kinds of contexts: 
the ME context, ISD contexts, IS contexts and USIS contexts. The last three 
contexts are included in the USME (see Section 5.3). The ME context provides 
ME services to the ISD contexts, called the target ISD contexts. ME services 
means all those material and immaterial ME deliverables that are produced in 
the ME context and delivered to be utilized in the target ISD contexts. The main 
part of the ME services is, of course, the ISD method. From the ME systelogical 
perspective the ME context is seen as a black box, meaning that only the ME 
purpose domain, in addition to the aforementioned ME services, is addressed in 
the perspective. ME purposes are related to desired ME approaches, ME 
principles, ME actors, ME actions and ME deliverables, but they are expressed 
in a way that does not detail the concepts of the other ME domains.  
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FIGURE 111  Meta model of the ME systelogical perspective 
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Resulting from the ME systelogical perspective, the target ISD contexts, in turn, 
are perceived from the ISD systelogical perspective. Depending somewhat on 
the kind of the ME context, features related to ISD purposes, ISD actions, and 
ISD deliverables of the target ISD contexts are concerned.  

A variety of ISD methods under engineering is quite large. At one extreme 
end there are ISD methods, which focus, in particular, on the alignment of the 
IS with the business system. At the other extreme end, there are ISD methods, 
which provide special support, for instance, for technical improvements in the 
CIS. An example of this kind of ISD method is an architecture design method. 
Instead of establishing an extensive classification of ISD methods, we content 
ourselves with categorizing ISD methods according to those IS perspectives 
which are seen important in the concerned ISD methods. Thus, we have 
systelogical methods, infological methods, conceptual methods, datalogical 
methods, and physical methods. Next we characterize these methods as regards 
their IS perspectives. Systelogical methods provide IS meta models to analyze 
and design the support the IS should provide to its utilizing system. Infological 
methods address especially the functional structure of information processing 
and informational objects in the IS. Conceptual methods support ISD work with 
specific means to conceptualize the contents of informational objects of the IS. 
Datalogical and physical methods help the analysis and design of 
organizational structures of the HIS and/or technical structures of the CIS. 
Depending on the kind of the ISD method, there are differences in which IS 
domains are considered from the ME systelogical perspective in the ME. 
Assuming that the ISD method under engineering addresses especially the IS 
systelogical and IS infological aspects of the IS, the target IS contexts are 
perceived through concepts of the IS purpose domain, the IS actions domain, 
and the IS object domain (see Figure 111).  

The ultimate goal of the ME is to benefit USIS contexts with improved 
information and information processing through better information systems 
that, in turn, result from improvements in the ISD’s deploying the improved 
ISD method. Therefore, it is necessary to include also the essential features of 
the USIS contexts in the systelogical perspective of the ME context.  

The ME systelogical perspective is not specified, not even deployed, in its 
entirety in any ME artifact in the literature. There are, however, artifacts that, to 
some extent, address some aspects related to this perspective. van Slooten et al. 
(1996), for instance, define a number of contingency factors to be used in 
characterizing ISD projects to help in the selection of ISD methods.  The 
contingency factors are related to the USIS context (e.g. impact = to which extent 
the information system will change business operations after implementation), 
the IS context (e.g. complexity = to what extent the functional components of 
the information system are complex), and the ISD context (e.g. management 
commitment, time pressure, knowledge and experience). Harmsen (1997, 215-
221) presents a procedure for method fragments selection and assembly. The 
first two steps in the procedure, namely determination of the project goal and 
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determination of the preliminary scenario, address aspects that clearly belong 
to the scope of the ME systelogical perspective.   
 
10.4.2 ME Infological Perspective  
 
From the ME infological perspective the ME context is seen as a functional 
structure of information processing and informational objects. The perspective 
ignores the features related to how the informational objects are presented and 
implemented. The relevant ME domains are: the ME purpose domain, the ME 
action domain, and the ME object domain. The concepts of the ME purpose 
domain are used to elaborate the conceptions, already drafted with the ME 
systelogical perspective, about why method engineering is carried out or is to 
be carried out. The concepts of the ME action domain are used to establish 
decomposition hierarchies of ME actions and to define control structures 
among the ME actions. The concepts within the ME object domain are used to 
express what kinds of ME deliverables are produced in the ME context. In the 
following, we consider more closely the ME infological perspective on the basis 
of the meta model presented in Figure 112. 
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FIGURE 112  Meta model of the ME infological perspective 
 
The ME reasons and the ME goals are used to express problems in the prior and 
current ISD projects, requirements for the new ISD method, and goals for the 
ME effort at hand. The influence, refinement, and causalTo relationships show 
how the concepts of the ME purpose domain are related to one another.  

The ME actions are organized according to the generic action structures 
(i.e. the decomposition structure, the control strucutres), the ME problem 
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solving structure, the ISD modeling structure, and the ME workflow structure. 
The ME management–execution structure as well as the ME management 
deliverables are not considered here. ME rules for ME actions are specified on a 
general level. The ISD method and method components on various granularity 
levels are, of course, the most essential ME execution deliverables. The partOf, 
versionOf, copyOf, supports and predAbstract relationships are recognized 
among the ME deliverables.  

The ME infological perspective is most commonly applied in describing 
ME processes in the literature. Harmsen (1997), for instance, describes the 
process of situational method engineering composed of five steps. ME actions 
of, and ME deliverables resulting from, the steps are outlined.  Harmsen (1997) 
also specifies the MEL language (Harmsen 1997), which provides constructs to 
administrate, query and manipulate method fragments. Tolvanen (1998) 
decomposes the process of incremental method engineering into six steps, 
which are described on a general level. Gupta et al. (2001) decompose ME into 
three phases and for each of the phases tasks and outcomes are outlined. 
 
10.4.3 ME Conceptual Perspective  
 
The ME conceptual perspective addresses the conceptual contents of the ME 
deliverables. Here, we consider the perspective only in relation to the ME 
execution deliverables. The conceptual contents of the ME deliverables contain 
constructs on multiple processing layers and on multiple model levels. To 
clarify this we first consider the perspective with Figure 113.   

In Figure 113 the columns and the rows stand for the model levels and the 
processing layers, respectively. On each layer, the ‘producer’ context and the 
‘target’ context are mentioned.  For instance, on the ME layer, the producer (of 
deliverables) is the ME context and the target (to which the ME deliverables 
refer) is the ISD context. In the cells, examples of conceptual models are 
presented in a graphical form. Let us first consider examples at the type model 
level. The ISD data model (the second row and the leftmost column) is an ME 
deliverable expressing the conceptual contents of ISD deliverables, showing in 
this case that “a Conceptual schema is owned by a Database designer”. The IS 
data model on the third row is a part of the conceptual schema of the IS 
database, expressing that “a Customer issues an Invoice”. At the meta model 
level (the column in the middle) there are meta data models specifying concepts 
and constructs that are allowed in data models at the type model level.  For 
instance, on the second row the IS meta data model contains the concepts 
EntityType and RelationshipType, of which Customer and Invoice on the third 
row are instances.  

The topmost row corresponds to the conceptual contents of the 
deliverables that the RW context produces. One of the RW deliverables is the IS 
meta meta data model specifying the concepts and constructs allowable on the 
next lower level.  The  IS meta  meta  data  model  contains  the  concepts Class, 
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FIGURE 113  Processing layers and meta levels with some examples 
 
ClassRole167 and Association, according to the MOF model (OMG 2002). To help 
us distinguish between the (type) models, the meta models, and the meta meta 
models we have applied different graphical notations. The data models on the 
type level are presented in the ER notation (Chen 1976). The concepts and 
constructs of the ER model and the IS data meta meta model are denoted by the 
UML notation (Booch et al. 1999).  

Based on the perspective ontology (Chapter 6), we can say that the ME 
conceptual perspective concerns the second row in the setting above. The 
perspective recognizes the concepts and constructs to be used at the type model 
level, as well as at the meta model level. At the type model level, there are a 
large number of ISD models. In Figure 113 we have used the ISD data model as 
an example of these models. Other possible ISD models are a data flow diagram 

                                                 
167  We use the term ‘ClassRole’ to differentiate it from ‘Role’ in the generic ontology 

(Section 3.3) and ‘EntityRole’ in the ISD ontology (Section 8.4.3).  



 

 

466 

(Yourdon 1989) expressing ISD workflows and ISD deliverables, an 
organization chart showing the organizational structure of an ISD project, a 
deployment diagram (Booch et al. 1999) describing software and hardware 
architecture, etc. At the meta model level, there is the IS meta data model in 
Figure 113. Correspondingly, there could be several other IS meta models, such 
as the IS meta action model, the IS meta actor model, and the IS meta 
architecture model. It is impossible for us here to describe the ME conceptual 
perspective in a way that would cover all the ISD models and IS meta models. 
Therefore, we have selected only those models presented in Figure 113. To give 
a more detailed picture of the ME conceptual perspective, we present the meta 
models of the ISD data model and of the IS meta data model in Figure 114 (cf. 
the topmost row in Figure 113). 

Figure 114 (a) presents some of those concepts and constructs with which 
the conceptual contents of the ISD deliverables (OSISD) can be specified (cf. the 
ISD data model). Because we apply the same meta data model as at the next 
lower level (see Section 8.4.3), the basic concepts (i.e. Entity type, Entity role, OS 
relationship type, Attribute) are applicable also here. We do not consider them 
any more here. An OSISD construct type in OSISD means a conceptual construct 
composed of specific entity types related to one another with OS relationship 
types and characterized by attributes. An example of the OSISD construct type is  
“a Conceptual schema is owned by a Database designer”. An OSISD state type 
means a state type of the object system or its parts, composed of OSISD construct 
types. An OSISD transition type is a generic concept corresponding to the 
specification of all those features that are shared by OSISD transitions. An OSISD 
state type may involve entity types, OS relationship types and/or attributes. 
The OSISD transition types can be composed to establish OSISD transition 
structures like those defined in the state transition ontology. An OSISD event type 
means a generic concept corresponding to the specification of all those features 
that are shared by OSISD events, which may trigger an OSISD transition and 
which may be caused by another OSISD transition. An OSISD constraint specifies 
allowed OSISD states (static OSISD constraint) and/or allowed OSISD transitions 
(dynamic OSISD constraint) between the OSISD states.  

Figure 114 (b) presents some of those concepts and constructs with which 
the conceptual contents of the IS meta data model can be specified. Because we 
apply the MOF model (OMG 2002) as the meta meta model in this work, the 
figure contains concepts such as Class, Class role, Association, and Attribute. 
We do not consider them here in more detail (see Appendix 2). We have also 
included  one more concept in the IS meta meta model. That is an OSis construct 
meta type. An OSis construct meta type in OSME is composed of classes related 
through associations and class roles to one another. It is a type specification of 
those construct types defined in the meta model of the IS data model from the 
conceptual perspective in Figure 83.  

From various portions of the ME conceptual perspective the IS meta meta 
models are most commonly considered in the ME literature. Several candidates 
for the  IS  meta   meta  models   have   been   suggested  (e.g.  ER  model  (Chen  
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FIGURE 114  Meta models of the ME conceptual perspective concerning (a) the ISD data 

model and (b) the IS meta data model 
 
1976, NIAM (Nijssen et al. 1989), ASDM (Heym et al. 1992a), GOPRR (Kelly et 
al.1996) and MEL/MDM (Harmsen 1997). There are also some presentations 
that specify ISD meta models, in particular those that provide concepts and 
constructs of the ISD action domain and the ISD deliverable domains (e.g. 
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Bandinelli et al. 1993; Deiters et al. 1994; Christie 1993; Shepard et al. 1992; 
Dutton 1993; Kaiser et al. 1993).  
 
10.4.4 ME Datalogical Perspective 
 
From the ME datalogical perspective ME is seen as the context in which ME 
deliverables, represented in some language, are processed for certain purposes 
by ME actors with some computer-aided ME tools. The ME datalogical 
perspective makes no reference to data carriers, nor to other physical things in 
the ME context. The perspective elaborates conceptions about the ME domains 
already recognized from the ME infological perspective. In addition, it 
addresses two other ME domains, namely, the ME actor domain and the ME 
facility domain. Since the number of the concepts needed to describe all the 
datalogical features of the ME context is huge, we discuss in the following only 
the most essential concepts and constructs, and from them only those which 
have not been addressed in the preceding sub-sections. The meta model of the 
ME datalogical perspective is presented in Figure 115.  

ME actions are aggregated to constitute ME roles, which are further 
composed to form ME positions. An ME role equipped with skill requirements 
can be a part of several ME positions. An ME organization consists of ME 
positions that are related to one another through the supervision relationships.   

In the ME action domain, the generic action structures, the ME workflow 
structure, the ME problem solving structure, and the ISD modeling structure 
are refined from those considered within the ME infological perspective. In 
addition, the ME management–execution structure as well as the ME phase 
structure are established to enable the understanding, structuring and 
representing of the management and coordination of the ME project. The ME 
phase structure is decomposed into ME sub-phases and ME steps. The 
relationships between phases and between sub-phases are based on the control 
structures, yet not on the temporal structures.  

In the ME object domain, still more refined decompositions and 
specializations of ME deliverables, including the ME management deliverables, 
are recognized. Some ME execution deliverables are specified to be parts of the 
baselines of the phases.  

In Figure 115 the concepts and constructs of the ME facility domain are 
abstracted into the notion of an ME tool (cf. CAME tools). It would be possible 
to present a more tool-centered view showing essential components of the tools, 
as well as the interaction, through dialogs, between the human actors and the 
tools (see Section 6.3.5). We have to exclude this view from our consideration 
here. 
 
10.4.5 Inter-Perspective Relationships  
 
The ME perspectives are inter-related to one another. Figure 116 illustrates 
the contents of the ME perspectives in terms of contexts and domains 
concerned,  as well  as   the  relationships   between   the  ME  perspectives.  To  
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FIGURE 115  Meta model of the ME datalogical perspective 
 
distinguish between the concerned contexts, we depict them with rectangles in 
bold whenever there are more than one context involved by the ME 
perspective. As said above, the ME systelogical perspective involves four kinds 
of contexts, the ME context, the ISD contexts, the IS contexts, and the USIS 
contexts. The corresponding domains are shown in the figure. The ME 
infological perspective, the ME datalogical perspective, and the ME physical 
perspective concern the ME context only. The ME conceptual perspective 
designates, on a general level, things to which the ME deliverables, including 
the ME management deliverables, refer. For each relevant thing both the 
structural and dynamic features are identified. The ME deliverables are 
recognized and conceptually elaborated within four perspectives. In each of 
them, the contents of the deliverables can be specified and analyzed through 
the conceptual foundation provided by the ME conceptual perspective. 
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FIGURE 116  ME inter-perspective relationships 
 
10.4.6 Summary 
 
In this section we defined four ME perspectives (i.e. the ME systelogical 
perspective, the ME infological perspective, the ME conceptual perspective, and 
the ME data perspective) to help us cope with the complexity related to the 
structure, function and behavior of the ME context. For each perspective we 
provided the concepts and constructs and described them in meta models. In 
addition, we referred to the ME literature to show how issues pertaining to the 
ME perspectives are addressed. At the end of the section, we outlined the ME 
inter-perspective relationships.  
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10.5  ME Method Ontology 
 
 
The purpose of this section is to characterize and define the notion of an ME 
method as well as to present the ME method ontology. We had a 
comprehensive discussion about the notion of an ISD method in Chapter 10. 
Because the ME method inherits the generic features from the ISD method, we 
consider these issues here only shortly.  
 
10.5.1 Definition of the ME Method 
 
The method contains collective knowledge and experience that are made 
‘visible’ to enable their exploitation and advancement (Tolvanen 1998; 
Fitzgerald et al. 2002; Schönström et al. 2003; Backlund et al. 2003). In the context 
of ME this knowledge concerns ME process, application domain, IC technology, 
and human and social issues (cf. Freeman 1987; Iivari et al. 2001). The 
knowledge of ME process means all that information that pertain to how to 
accomplish ME work. The knowledge of application domain means all the 
information that concerns ISD efforts to be accomplished according to the ME 
method (i.e. the target ISD contexts), as well as information systems and 
contexts for which the IS’s are to be developed. The knowledge of IC 
technology means all that information that concerns the search, acquirement, 
installation, and deployment of hardware and software for IS’s, ISD’s and ME. 
Finally, the knowledge of human and social issues concerns human 
characteristics and behavior as well as social and organizational aspects that 
should be taken into account in prescribing the ME.  

Following the categorization of the ISD methods defined in Section 9.3, we 
distinguish between generic ME methods, domain-specific ME methods, 
organization-specific ME methods, and project-specific ME methods. A generic 
ME method provides general approaches, principles, models and guidelines to 
conduct ME efforts in a wide range of ME contexts. A domain-specific ME method 
provides more domain-specific support to conduct ME efforts in a specific 
application domain. An organization-specific ME method provides customized 
support to conduct ME efforts in a specific organization. A project-specific ME 
method provides configured and instantiated support to accomplish a particular 
ME effort.  

In Section 9.4 we defined seven methodical views from which the notion 
of an ISD method can be conceived and understood. The views are the 
historical view, the application view, the generic view, the contents view, the 
representation view, the physical view, and the structural view. Each view 
sheds light on different aspects of the method. Here we apply the views to 
clarify the notion of the ME method in two ways. First, we present a holistic 
definition of the ME method, and then we define the ME method ontology.  

As far as we know, no definition of the ME method is provided in the ME 
literature. That is quite surprising given that ME has been seen important for 
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years. Actually, although a large collection of various ME strategies, ME 
approaches, ME principles and ME procedures have been suggested, there 
exists no complete ME method either, as we will conclude in the comparative 
analysis in Chapter 12. We define the notion of the ME method, based on the 
methodical views and the definition of the ISD method (see Section 9.4), as 
follows:  

 
An ME method is an artifact anchored on historical, intentional and functional 
backgrounds and aimed to be applied and deployed as a prescription in the 
intended kinds of ME contexts, in order to make organizational and technical 
changes in ISD contexts possible or more productive. The ME method, presented 
and materialized in several forms, contains knowledge bringing out how ME 
actors carry out ME actions to produce ME deliverables, by means of ME 
facilities, in an organizational and spatiotemporal context, in order to satisfy ME 
goals set by ME stakeholders. The ME method is composed of descriptive and 
prescriptive parts in a large variety. 

 
In the next section we elaborate this definition by showing which concepts and 
constructs are embodied by each of the methodical views in the context of ME. 
 
10.5.2 ME Method Ontology 
 
The ME method ontology provides concepts and constructs for conceiving, 
understanding, structuring and representing contextual aspects of the ME 
methods. It is decomposed into seven parts based on the seven methodical 
views. The overall structure of the ME method ontology is presented in Figure 
117. Next, we describe the views and define concepts involved by them.  
The historical view considers the backgrounds of and experience from the 
engineering and use of the ME method. It involves prior RW contexts, prior ME 
contexts and prior ISD contexts. Prior RW contexts168 mean those contexts that 
have contributed to the creation and engineering of the ME method. Prior ME 
contexts mean contexts in which the ME method has been deployed. Implied 
from the former, the ME method has to include knowledge of the intentions, 
approaches and principles by which the ME method has been constructed, of 
the RW actors who have been responsible for the construction, and of the RW 
actions by which the ME method has been constructed, etc. This knowledge is 
called method engineering rationale (Rossi et al. 2004). The descriptions of the 
prior ME contexts constitute an “experience base” which helps make and justify 
decisions on whether to use the ME method and how. This knowledge is 
known as method use rationale (Rossi et al. 2004). Included in the background is 
also knowledge about ISD contexts, called prior ISD contexts, where ISD 
methods engineered with the ME method have been applied. This knowledge is  
                                                 
168  We call these contexts the RW (Research Work) contexts to distinguish them from 

those contexts where the ME methods are deployed. Another way to differentiate the 
two notions would be to use the terms ME2 context and ME1 context, 
correspondingly.   
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FIGURE 117  An overall structure of the ME method ontology 
 
important because the quality of the ME method is an aggregation of the 
qualities of ME processes and ME deliverables (i.e. ISD methods), and the 
quality of ISD methods, in turn, can be empirically assessed only by analyzing 
experience obtained from their deployment in some ISD effort(s).   

The application view outlines where and how the ME method can be or is 
to be applied. The target contexts can be recognized on three layers in the ME 
method ontology. Target RW contexts mean those contexts in which the ME 
method is to be elaborated, customized, configured and/or instantiated for the 
use of a particular organization or project. Target ME contexts mean those 
contexts for the use of which the ME method is originally intended. Target ISD 
contexts mean those contexts which are to deploy the ISD method that will be 
engineered in the target ME context. The arguments for the applicability to 
certain kinds of RW contexts, ME contexts and ISD contexts should be justified 
with appropriate evidence. Evidence can be based on logical arguments derived 
from the perceived match between the ME method and the suggested 
application areas, or on empirical experience got from the prior usages.  
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The generic view provides the general understanding of the nature of the 
method. In this case it reflects ME strategies, ME approaches, and main ME 
principles to be followed in the target ME contexts. An ME strategy means a 
generic way of accomplishing an ME effort or a part thereof. Examples of ME 
strategies are creation (i.e. “from scratch”), integration, and adaptation (cf. 
Section 10.2). An ME approach means a generic way of perceiving certain aspects 
of ME and/or a way of working in ME.  Examples of the ME approaches are: 
problem-driven approach, functional approach, and conceptual approach (see 
Chapter 11). A main ME principle expresses essential aspects of a specific way to 
structure, accomplish and/or manage the ME process. Examples of the main 
ME principles are iterative engineering and contingency-based engineering. The 
ME strategies, ME approaches and main ME principles are inter-related to one 
another.  

The contents view reveals the conceptual contents of the ME method. 
According to the view, the ME method is composed of concepts and conceptual 
constructs referring to the ME contexts, as well as to parts of the RW context(s). 
The former contexts correspond to the prior and target ME contexts. The 
conceptual contents of the ME context have already been established in the 
form of the ME ontology in the preceding sections. The latter contexts mean the 
prior and target RW contexts. The conceptual contents of the RW context is, to a 
large extent, similar to that defined in the ME ontology, in particular for the 
part we are here interested in. That is why we do not provide any separate 
ontology for the RW context.  

From the presentation view the ME method is seen as a set of expressions 
presented in some language(s). Expressions signify conceptual constructs 
constituting the contents of the ME method. Each language is defined by the 
abstract syntax, concrete syntax (or notation) and semantics. Abstract syntax 
states allowed conceptual constructs composed of concepts (ter Hofstede et al. 
1998). Concrete syntax gives notational elements, including labels, of the 
language and rules for connecting them with one another and with the 
concepts.  Semantics specifies meaning of notational elements. 

The physical view reveals the appearance of the ME method, that is to say, 
the media on which the ME method is made visible or “functioning”. The ME 
method can appear in a paper form (e.g. text books, manuals, pro forma 
documents), or in an electronic form (e.g. CD-rom, Word-Wide Web). It can be 
presented with e.g. Power Point slices and implemented in CAME tools. The 
CAME tools may support the creation and editing of ME models, their 
implementation, ME process management, and ME process enactment.   

From the structural view the ME method is seen as a modular structure of 
parts with a large variety. Some of the parts are considered ME method 
components. An ME method component is a well-defined part of the ME method 
that can be integrated to other ME method components to form a coherent and 
consistent ME method. In Figure 117 we recognize two kinds of ME method 
components: ME models and ME techniques. Because the discussion about the 
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notions of method component and interface in Section 9.8 also applies to the 
ME method, we do not consider them any further here. 

An ME model is a model that describes/prescribes structural, functional 
and/or behavioral features of the ME context. An ME technique is a technique, 
which guides the accomplishment of specific actions in the ME context. The 
technique can be presented as a set of precisely described procedures that help 
the achievement of certain outcomes if executed correctly (cf. Kettinger et al. 
1997, 58; Iivari et al. 2001, 186). ME techniques may also be presented in 
heuristics, guidelines or rules of thumb. An ME technique may involve one or 
more ME models (e.g. a technique to integrate ISD models, e.g. O/A matrix 
technique in Kinnunen et al. (1996)), and an ME model can be involved by one 
or more ME techniques.   

ME models are further specialized into ME contextual models and ME 
perspective models. ME contextual models mean ME models that can be 
classified into eight categories according to which ME domain(s) they address. 
The categories are: ME purpose models, ME actor models, ME action models, 
ME deliverable models, ME data models, ME facility models, ME location 
models, ME time models, and ME inter-domain (ID) models. The nature and 
contents of the ME contextual models can be, in a straightforward manner, 
derived from those presented for the ISD contextual models (see Section 9.5). 

ME perspective models mean ME models that can be classified into five 
categories according to the ME perspective(s) they address. The categories are: 
ME systelogical models, ME infological models, ME conceptual models, ME 
datalogical models, ME physical models, and ME inter-perspective (IP) models. 
The nature and contents of the ME perspective models can be derived from 
those presented for the ISD perspective models (see Section 9.5).  
 
 
10.6  Summary  
 
 
The purpose of this chapter was to establish the conceptual foundation of the 
method engineering and the ME method. This foundation is vital to the analysis 
of ME efforts in practice, to the analysis and comparisons of empirical and 
conceptual studies on ME, as well as to the construction of methodical support 
to ME.   

In the chapter we first brought out the reasons and motives for why 
method engineering is needed. We made a survey of the ISD literature 
reporting on problems in ISD methods and method use and discussed how the 
evolution and changes in business, application areas, and approaches and 
technologies of ISD environments influence ISD. We concluded that severe 
problems have been perceived in the implementation and deployment of the 
ISD methods, and some of those problems result from drawbacks and 
deficiencies in existing methods. Resulted from changes in business processes, 
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application areas and technology, needs for new kinds of methods have also 
emerged. These together set high demands on method engineering.  

Second, we demonstrated, through a short survey of the ME literature, 
that there is a large variety of conceptions about ME, and quite different terms 
are used in the community. The need to clarify the conceptual bases and 
terminology of ME became clear. To satisfy this need we defined fundamental 
classifications of ME strategies, ME processes and ME contexts. We also 
presented a framework which integrates these classifications and enables the 
specification and analysis of a large array of ME contexts. In addition, we 
applied the contextual approach to construct the holistic definition of the ME 
context. According to it, ME is seen as a context which possesses features of 
seven contextual domains, and is connected to different types of contexts on 
several layers.  

Third, we defined the first part of the ME ontology that is composed of 
four ME domains (i.e. the ME purpose domain, the ME actor domain, the ME 
action domain, and the ME object domain). For each domain the meta model 
and definitions of concepts and constructs were presented. In addition, the ME 
literature was frequently referred to and compared to our concepts and 
constructs.   

Fourth, we provided the second part of the ME ontology comprising four 
ME perspectives (i.e. the ME systelogical perspective, the ME infological 
perspective, the ME conceptual perspective, and the ME datalogical 
perspective). The ME perspectives help us cope with the complexity related to 
the structure, function and behavior of the ME context. For each perspective the 
concepts and constructs were defined. In addition, references to the ME 
literature were made to show how issues pertaining to the ME perspectives are 
addressed there. At the end of the section, the ME inter-perspective 
relationships were outlined.  

Fifth, we characterized and defined the notion of an ME method and 
presented the ME method ontology. Both the definition and the ontology were 
derived applying seven methodical views established in Section 9.4. The use of 
the views ensures that no important aspects of the ME context and of the ME 
method are excluded from the considerations.  

The ME ontology and the ME method ontology are the lowest-level 
components in OntoFrame. Discussions and definitions given in this chapter 
completed the construction of the multidimensional framework that is aimed as 
a conceptual foundation for the analysis, comparison, and engineering of ISD 
methods. We did not make any unified comparative analysis of the ME 
literature in this chapter, because there is no comparable presentation available 
for these ontologies. Instead, we provided a number of references to the ME 
literature on individual issues and compared conceptions and terminology with 
ours. To have a more comprehensive picture about existing normative ME 
artifacts, we will analyze and compare them with MEMES in Section 12.4.  

OntoFrame has been built in a layer-by-layer fashion, anchoring each 
ontology firmly on underlying ontologies and applying comprehensively 
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fundamental approaches, particularly the contextual approach. In this way we 
have wanted to assure the coherence, consistence and modularity of the 
framework. OntoFrame has been constructed by concepts and constructs that 
reflect common conceptions shared by various communities. This enables its 
use for divergent purposes. To demonstrate the applicability of OntoFrame in 
the construction of artifacts, we will deploy it in the engineering of a methodical 
skeleton for ME (MEMES) in the next chapter. In this work we will extensively 
utilize the concepts and constructs defined in the ME ontology and the ME 
method ontology.  

 



 

 

 
 
 
 
 
 
 
 
 
 
 
11 MEMES - METHODICAL SKELETON FOR ME 
 
 
In the previous chapters we have built, piece-by-piece, OntoFrame to cover 
contextual features of reality from multiple perspectives, on multiple layers and 
on multiple model levels. The lowest parts in this ontology framework are the 
ISD ontology, the ISD method ontology, the ME ontology, and the ME method 
ontology. The purpose of these parts is to offer concepts and constructs for the 
analysis and construction of artifacts on the ISD and ME layers. In this chapter 
we will use these parts to construct a methodical skeleton to support the 
accomplishment of the process of ME. The methodical skeleton, called MEMES, 
is firmly grounded on the ontological framework. This becomes evident in the 
suggested approaches, principles, concepts and constructs.  

The chapter is organized into ten sections. First, we justify the need for 
methodical support for ME. Second, we define MEMES in terms of its intention, 
basis and contents. Also relations between MEMES and OntoFrame are, in a 
concrete fashion, demonstrated. Third, we highlight the background of MEMES 
describing those contexts on the ME and ISD layers which have affected the 
construction of MEMES. Fourth, we specify the application area for MEMES. 
Fifth, we state the goals of MEMES. Sixth, we present the overall structure of 
MEMES in terms of ME workflows. In the next three sections we describe three 
of those ME workflows (i.e. the ISD method requirements engineering, the ISD 
method analysis, and the ISD method evaluation). Descriptions of the first two 
workflows are more detailed including approaches and steps of engineering an 
ISD method. The chapter ends with a summary.  
 
 
11.1  Need for Methodical Support to ME 
 
 
Method engineering has become more and more vital in practice, as concluded 
in Chapter 10. At the same time, most of the ME efforts in practice are 
accomplished in an ad-hoc manner. So, we have not progressed very far from 
the stage that is known as the pre-methodological era in the ISD field (cf. 
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Hirschheim et al. 1995). The ME literature does provide a large variety of 
artifacts for ME. There are, for instance, numerous meta models and 
metamodeling languages that can be used to model methods, or parts thereof. 
Meta data models (e.g. ER (Chen 1976), NIAM (Nijssen et al. 1989), OPRR 
(Smolander 1991), ASDM (Heym et al. 1992a, Heym et al. 1992b), CoCoA 
(Venable 1993), GOPRR (Kelly et al. 1996), Telos (Jarke et al. 1995) and 
MEL/MDM (Harmsen 1997)) are suggested to model the conceptual contents 
and notations of data models, and meta process models (e.g. Bandinelli et al. 
1993; Deiters et al. 1994; Christie 1993; Shepard et al. 1992; Dutton 1993; Kaiser et 
al. 1993) are provided to model process models. There are also proposals for ME 
strategies (e.g. Ralyte 2002; Ralyte et al. 2003), ME approaches (e.g. Kumar et al. 
1992; Oei 1995; Harmsen 1997), and ME techniques (e.g. van Slooten et al. 1993; 
Kinnunen et al. 1996; Leppänen 2000; Saeki 2003). Further, the ME literature 
contains ME artifacts that provide an overall structure of ME processes, or 
alternatively simplified procedures for the accomplishment of some parts of ME 
work (e.g. Vlasblom et al. 1995; Nuseibeh et al. 1996; Song 1997; Harmsen 1997; 
Tolvanen 1998; Gupta et al. 2001; Ralyte et al. 2003). Finally, there are 
presentations that describe actual processes of engineering a method (e.g. Song 
et al. 1992; Mayer et al. 1995; Vidgen 2002; Polo et al. 2002; Fitzgerald et al. 2003; 
Serour et al. 2002; Backlund et al. 2003, Bajec et al. 2004).  

Regardless of the large variety of the ME artifacts proposed, there is no 
single artifact that could be seen to come even close to an ME method as the 
notion is generally understood, and as it has been defined in this work. Either 
the artifacts are on too a general level, or they cover only a small part of the ME 
life cycle. To justify this claim, a comprehensive literature analysis was carried 
out (see Section 12.4). Due to the significance of ME to ISD practice and the 
scarcity of methodical support to it, our aim is to provide a methodical support 
that is more comprehensive and conceptually more uniform than any other 
artifact in the ME literature. This support has been “packaged” and served in 
the form of a methodical skeleton. 
 
 
11.2  Definition of the ME Methodical Skeleton 
 
 
In this section we define the notion of the ME methodical skeleton and describe 
its intention, basis and contents.  

The method engineering methodical skeleton, called MEMES, is a normative 
prescription of the ME context that structures and guidelines the 
accomplishment of ME work. According to Webster’s Dictionary, a skeleton is 
something that “is reduced to the essential parts”. The purpose of the ME 
methodical skeleton is to provide the essential parts of prescribing the ME 
context. MEMES is an abbreviation from the phrase ‘Method Engineering 
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MEthodical Skeleton’. Interestingly, in Memetics memes169 mean the basic 
building blocks of our minds and culture, in the same way, as the genes are the 
basic building blocks of biological life. Memes are ideas, habits, skills, stories or 
any kind of behavior or information that is copied from person to person by 
imitation (Blackmore 2000). A well-known behavioral meme is, for instance, 
“how to make a fire”. Once the meme was out there, it spread like wildfire. 
Individual slogans, catch-phrases, melodies, icons, inventions, and fashions are 
typical memes (Dawkins 1976). An idea is not a meme until it causes someone 
to replicate it, to repeat it to someone else. This is what we hope our MEMES 
will do: to bring out memes of method engineering that can be adopted and 
effectively deployed in practical ME work.  

MEMES is firmly grounded on the ontological framework defined in 
Chapters 3 - 10. Its intention, basis and contents can be illustrated in relation to 
this framework. In Figure 118 the left side describes MEMES in its intentional 
and functional environment (cf. Figure 94). Research work, here referred to as 
the RW context, has produced MEMES, which is to be applied in an ME context 
for the engineering of an ISD method. The ISD method, in turn, is to be applied 
in an ISD context to develop an IS. The right side in the figure describes the 
structure of OntoFrame from the viewpoint of the ME method ontology. 
Included in the ME method ontology there are the methodical views (i.e. the 
historical view, the application view, the generic view, the presentation view, 
and the physical view) of the ME method, the ME ontology, the ISD method 
ontology, the ISD ontology, and the IS ontology. The ME ontology, the ISD 
ontology and the IS ontology are composed of seven contextual domains and 
five perspectives.  

The arrows denote how OntoFrame has been deployed in the engineering 
of the components of MEMES, ISD methods, and IS models. The structure of 
MEMES has been adapted from the ME method ontology. The main 
components of MEMES are the methodical views, ME models, ISD meta 
models, and IS meta models. The historical view, the application view and the 
generic view have been given specific contents. The ME models have been 
specialized and instantiated from the ME meta models corresponding to the ME 
domains and the ME perspectives. The ME models describe / prescribe what is 
done, for which and why in the ME context. The concepts and constructs of the 
ISD meta models have been selected and adapted from those belonging to the 
ISD ontology. Likewise, the concepts and constructs of the IS meta models have 
been chosen and adapted from those belonging to the IS ontology. This process 
of  instantiation,  specialization, and  adaptation  can  be  accomplished  in  any  

                                                 
169  Oxford zoologist Richard Dawkins is credited with the first publication of the 

concept of a meme in his 1976 book The Selfish Gene (Dawkins 1976). Currently the 
research field concerning memes is called Memetics. There are a large variety of 
definitions of Memetics (cf. Brodie 1996). Generally speaking, Memetics is the science 
that studies the replication, spread and evolution of memes (http://pespmc1. 
vub.ac.be/MEMES.html). 
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FIGURE 118  Intention, basis and contents of MEMES 
 
situation which aims to engineer ME methods, or a part thereof, with the help 
of OntoFrame.  

Figure 118 also shows, on a general level, how to engineer the ISD method 
in the ME context. The structure of the ISD method is adapted from the ISD 
method ontology in the following fashion. The ISD models are specialized and 
instantiated from the ISD meta models concerning the ISD domains and the ISD 
perspectives. The concepts and constructs of the IS meta models are selected 
and adapted from those belonging to the IS ontology. Finally, IS models are 
specialized and instantiated from the IS meta models.  
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Consequently, MEMES provides descriptions / prescriptions covering the 
methodical views, a set of ME models in the form of prescriptions, and a 
collection of ISD meta models and IS meta models, all in a well-structured and 
integrated body. MEMES integrates and gives normative meanings for the ISD 
meta models as well as instantiates and specializes the ME meta models. 
MEMES is not, however, an ME method. To elaborate the scope and contents of 
MEMES we apply the perspective ontology on two processing layers. Table 32 
presents three ME perspectives (rows) and three ISD perspectives (columns). 
The cells in the table express questions reflecting the issues which are addressed 
in the ME context. Next, we consider those issues in the order of ME 
perspectives. 

 
TABLE 32  Issues addressed in the ME context, structured through ME perspectives and 

ISD perspectives (Syst = systelogical, Info = infological, Conc = conceptual) 
 

ISD perspectives/  
ME perspectives 

Systelogical 
Why is ISD 
accomplished 
and for whom? 

Infological 
What are the ISD 
actions undertaken, 
and what ISD 
deliverables are 
produced? 

Conceptual  
What is it that the 
ISD information 
refers to? 

S 
y 
s 
t 

Why is ME 
accomplished and 
for whom? 

What are the ISD 
purposes that 
ME is 
accomplished for 
and why? 

What are the ISD 
actions and the ISD 
deliverables that ME 
is accomplished for 
and why 

What are the IS 
domains that ME is 
accomplished for 
and why? 

I 
n 
f 
o 

What ME actions 
are done and what 
ME deliverables 
are produced? 

What is done in 
ME to specify 
ISD purposes? 

What is done in ME 
to specify ISD 
actions and ISD 
deliverables? 

What is done in ME 
to specify IS 
domains (i.e. IS 
ontology) 

C 
o 
n 
c 
 

What is it that the 
ME information 
refers to? 

What are the 
concepts that are 
used to refer to 
ISD purposes? 

What are the 
concepts that are 
used to refer to ISD 
actions and ISD 
deliverables? 

What are the 
concepts that are 
used to refer to 
phenomena in the 
ISD contexts? 

 
In applying the ME systelogical perspective one tries to find out the kinds of 
ISD contexts that MEMES is targeted to. The ISD contexts can be characterized 
in terms of ISD purposes (ISD systelogical perspective), ISD actions and ISD 
deliverables (ISD infological perspective), and conceptual contents of the ISD 
deliverables (ISD conceptual perspective). The ME infological perspective 
pertains to the ME actions and the ME deliverables needed to yield and present 
descriptions / prescriptions from the ISD systelogical, ISD infological, and ISD 
conceptual perspectives (cf. Section 8.4). For example, to yield descriptions from 
the ISD infological perspective it is necessary to elaborate ISD purposes and to 
specify main ISD actions and ISD deliverables. The ME conceptual perspective 
is related to the ontologies needed to perceive the ISD context from each of the 
five ISD perspectives. For example, it is decided what concepts and constructs 
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are needed for understanding, structuring and presenting of ISD actions and 
ISD deliverables.  

On the basis of Table 32 we can now specify the scope of MEMES and the 
level of detail in which we describe MEMES. First, MEMES is mainly described 
from the ME systelogical, ME infological and ME conceptual perspectives. The 
ME systelogical perspective covers the historical view, the application view, 
and the generic view. In addition, it addresses, on a general level, the 
presentation view and the physical view. The ME infological perspective covers 
those ME models that describe/prescribe ME purposes, ME actions and ME 
deliverables, as well as inter-domain relationships between them. The ME 
conceptual perspective exposes the ME ontology, the ISD ontology, and the IS 
ontology. Second, MEMES adresses only those parts of the ISD ontology that 
are related to the ISD systelogical, ISD infological and ISD conceptual 
perspectives. Together these two statements imply that we describe in which 
ME situations, under which kinds of requirements and goals, certain kinds of 
ME actions are carried out to yield ME deliverables that refer to ISD purposes, 
ISD actions and ISD deliverables.  We do not discuss who should do what in 
ME, in which temporal order and where. Neither we take into account what 
tools and resources are needed in ME work. The IS meta models are not 
explicitly presented in this chapter, because they are assumed to be available in 
the underlying ontological framework (OntoFrame). In practice, there is a large 
variety of ME contexts. MEMES has not been customized to fit any particular 
type of ME context. The concepts and constructs are organized in a way that 
enables us to make easy adaptations into MEMES in order to get it follow any of 
the main ME strategies (i.e. creation, integration, adaptation). 

The description of MEMES is structured into sections according to the 
three ME perspectives in the following way. First, we will describe the 
background of MEMES (cf. the historical view, Section 11.3). Second we will 
introduce the application area as well as the basic assumptions and approaches 
(cf. the application view and the generic view, Section 11.4). Third, we will 
formulate more precisely the goals of MEMES (Section 11.5). Fourth, we will 
present the overall structure of the ME workflows in MEMES (Section 11.6). 
Fifth, we will describe the ME actions and ME deliverables in the first, second 
and third ME workflow. These workflows are called, respectively, the ISDM 
requirement engineering (Section 11.7), the ISDM analysis (Section 11.8), and 
the ISDM evaluation (Section 11.9). The chapter ends with a summary. 
 
 
11.3  Background of MEMES 
 
 
According to the method ontology each method has to contain knowledge of 
the background of, and the experience from, the engineering, as well as on the 
use of that method (cf. the historical view in Section 9.5). Although MEMES is 
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not a complete ME method, we describe the intentions of, work for, and 
evolution of MEMES in this section.  

A short description of the cyclic process to engineer MEMES was already 
given in Section 1.4.  The process was characterized as highly iterative crossing 
four subfields: ME practice, evaluation, ME method engineering, and ontology 
engineering. ME practice stands for all those efforts in which the researcher has 
been involved to engineer an ISD method. Evaluation comprises two kinds of 
RW actions: (1) reflecting and analyzing experience from ME practice, and (2) 
making comparative analyses of definitions, classifications, models, 
frameworks, and methods presented in the literature. ME method engineering 
and ontology engineering here mean theoretical work aimed to construct 
conceptual artifacts, either descriptive (cf. ontologies) or prescriptive (cf. models 
and techniques), that suit as parts for MEMES. The process reflects a learning 
cycle (Checkland 1981, 254), in which each RW deliverable (i.e. an ontology, a 
ME technique, and a methodical skeleton) is created, applied, learned from and 
further refined.  

The historical view of MEMES involves prior contexts at three processing 
layers, namely prior RW contexts, prior ME contexts, and prior ISD contexts (cf. 
Section 9.5).  Prior RW contexts mean contexts that have contributed to the 
creation and engineering of MEMES. Prior ME contexts mean contexts in which 
MEMES or its parts, in some of its versions, have been deployed or from which 
experience have been used in the RW context. Prior ISD contexts mean contexts 
in which an ISD method, engineered in some of the prior ME contexts, have 
been used to develop an IS. In the following we shortly describe the prior 
contexts of MEMES (Figure 119).   

The first modest effort in method engineering was carried out in 1980-1984 
to develop a language and a “design model” for conceptual schema design, 
called CSDM (Conceptual Schema Design Model), based on a linguistic 
approach (Leppänen 1984a). The design model was composed of generic 
constructs including the workflow structure, the system decomposition 
structure, abstraction structures, and the problem solving structure. The model 
was built on two layers: the “frame layer” consisting of generic concepts and 
constructs, and the “core layer” standing for instantiated concepts and 
constructs. The idea was that at the beginning of a design effort the core layer is 
empty, and in engineering a method for conceptual schema design, the generic 
concepts and constructs at the frame layer are instantiated based on the 
knowledge of the project at hand. The main emphasis in this work was, 
however, on the development of the language, not a method, and therefore this 
context is only of minor importance as a prior ME context.   

The second ME effort aimed to engineer a method170 for office support 
systems analysis and design (Conrath et al. 1989). This effort was accomplished 
in the large Esprit project, called the OSSAD project, into which a research 
group (Vesa Savolainen, Mauri Leppänen) from the University of Jyväskylä was  
                                                 
170  Actually the artifact was called a methodology in the OSSAD project (Conrath et al. 

1989). 
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FIGURE 119  Prior contexts related to MEMES 
 
accepted in 1986. Other partners came from France (D. Conrath CETME Aix-en-
Provence, P. Dumas CETMA Toulon, G. Charbonnel CETMA Toulon), Italy (V. 
de Antonellis University of Milan, C. Simone University of Milan, G. de Petra 
IPACRI Rome, C. de Santis IPACRI, Rome), and Germany (S. Sorg IOT 
Munchen, E. Beslmuller IOT, Munchen). This author’s role in the project was to 
comment on, ideate, and contribute to the conceptual foundation of the method, 
to make constructions for some specific parts of the method, as well as to field 
test the method in a Finnish case organization (Leppänen et al. 1989a, Leppänen 
et al. 1989b). The OSSAD method was also field tested in France, German and 
Italy (Baron et al. 1989). Highlights and lessons from the field tests were 
analyzed and documented (Baron et al. 1989). The project engineered the 
comprehensive method that was published in the manual (Conrath et al. 1989), 
and in numerous articles (e.g. Conrath et al. 1988; Charbonnel et al. 1991; 
Conrath et al. 1992; Vincent et al. 1992; Conrath et al. 1999; Savolainen 1999).   

The third attempt dates back to 1988/1989 when this author participated 
in the large consultancy project, which planned the information technology and 
service strategy for the City of Jyväskylä. For the project, the method called 
SPITS (Strategic Planning of Information Technology and Services) (Leppänen 
et al. 1991) was engineered. In the method the process of strategic planning is 
decomposed into three parts: analyzing the service strategy, planning the IS 
strategy, and planning the implementation of the IS strategy. For each part 
several design techniques were selected from the existing methods and 
customized to fit the needs of the project. Researchers acted as teachers and 
mentors and partly also as planners in the project. Experiences from the project 
were collected via interviews, although they were not reported in public. 
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The fourth attempt in ME practice concerned engineering a method for the 
database application design, here referred to as DBAD, for the purposes of 
teaching. The first version of the method was constructed during 1985-1993 
(Leppänen 1993). This method was based on a view of the centralized data base 
architecture in the environment of the Ingres database management system. 
The second version was engineered for web-based database application design 
with Oracle 8i (Leppänen 2001). Both methods were constructed through 
selecting and customizing models and techniques from existing data base 
design methods. The methods were deployed by students in their designing 
and implementing small-scale database applications in the projects of 2 – 4 
members. The course has been lectured seven times so far, and about 100 
student projects have been accomplished following the method. 

Summing up experiences from the prior ME contexts we can say that in 
too many cases method engineering was started with obscure ideas of a new or 
improved method and accomplished in a way that is best described by the 
phrase ‘engineering-by-trials’. This does not mean that ME efforts would have 
failed. What it does mean is that the methods were not exactly what was 
pursued and, in particular, the processes by which they were engineered were 
neither efficient nor effective. The more people an ME effort involves, the more 
structured and pre-planned the process should be. A way of working in 
engineering and a form of presenting outcomes vary depending on numerous 
situational factors related to e.g. the application domain, availability of existing 
methods, resources (time, personnel, tools) of engineering work, and skills of 
method users (cf. developers, consultants, end users, students).  

Regardless of differences between the prior ME contexts, we had a strong 
feeling that there are clearly approaches, principles, and ways of working that 
are common to all kinds of ME efforts. With those common “ingredients” it 
should be possible to recognize fundamentals of ME contexts, as well as to 
organize and to accomplish ME work in a “rational” and efficient manner. 
Some of these ME “ingredients” were already recognized and outlined during 
the ME efforts but it was not until in 2001 when the systematic work to engineer 
MEMES was actually started. In this work we utilized the conceptual 
foundation, which we had earlier constructed (cf. ontology engineering).  

Based on a comprehensive analysis of ME literature (see Chapter 12) we 
found that there is no complete method for ME, only some ME strategies, ME 
approaches, meta models, ME procedures, and ME techniques. Consequently, 
we set up the objective to engineer more comprehensive methodical support for 
ME. We named it the methodical skeleton to acknowledge that the artifact is not 
aimed to be a complete ME method.  

Engineering the methodical skeleton for ME is actually an instance of ME 
effort as well. This engineering process should thus apply the same 
fundamental structural and dynamic “ingredients” as those in the 
aforementioned prior ME contexts and those that are to be included in the 
skeleton itself. This observation made us to decide to systematically apply 
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MEMES during the incremental and cyclic process. Instant feedbacks 
substantially contributed to the theoretical part of method engineering. 

It is not possible here to extensively discuss the experiences, ideas, and 
contributions related to all the prior ME contexts. What we will do in Chapter 
12 is to give some examples of considerations in and outcomes from two ME 
efforts, the OSSAD project and the MEMES effort, to illustrate the deployment 
of MEMES. We will also present reflections, in the sense of retrospective 
analysis, on those prior ME contexts to learn from these experiences.  
 
 
11.4  Application Area  
 
 
In this section we describe the intended application area of MEMES deploying 
the application view defined in Sections 9.5 and 10.5. The application view 
addresses where and how the method can be applied. The view is expressed in 
terms of target contexts on two layers. In this case the target contexts are on the 
ME layer and the RW layer. Target ME contexts mean contexts in which 
MEMES is to be deployed. Target RW contexts mean contexts in which MEMES 
is to be elaborated, customized and/or configured, in order to make it suitable 
for the use in the target ME context(s). According to the ME method ontology, 
the ME method should also provide backing arguments for the applicability of 
the method in the contexts and justify them with appropriate evidence. MEMES 
is a method skeleton and it does not include descriptions/ prescriptions to 
identify the target RW contexts, nor to carry out actions there. Neither does 
MEMES provide any empirical evidence on the applicability in ME contexts. 
Instead, we justify its applicability by using it with analytical and constructive 
intentions. Next, we describe the application area of MEMES in terms of target 
ME contexts.   

The ME contexts are much more varied than the ISD contexts. Therefore, it 
is not possible – or not even reasonable – to specify the application area for an 
ME method with such a specificity as for an ISD method. We specify the 
application area of MEMES in terms of ME context types and ME strategies 
distinguished in Section 10.2.  

There are three main ME context types: method development, method 
customization, and method configuration. Method development aims to 
engineer a generic method or a domain-specific method. Method customization 
and method configuration strive for engineering an organization-specific 
method and a project-specific method, respectively.  MEMES supports 
engineering of ISD methods, viewing the ME from the ME systelogical, ME 
infological and ME conceptual perspectives. This means that MEMES mainly 
provides methodical support to method development. We have, however, 
engineered the ME ontology that also includes the ME datalogical perspective. 
With the concepts and constructs of the ME ontology and the overall structure 
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of MEMES, it is rather easy to elaborate MEMES toward an artifact that 
supports method customization and method configuration as well.  

We have distinguished between three ME strategies: creation, integration, 
and adaptation (see Section 10.2). Creation means the “greenfield” or “from 
scratch” strategy to engineer an ISD method in the situation where no current 
ISD method exists to be used as the basis for ME. Integration means an ME 
strategy according to which an ISD method is engineered by assembling parts 
of current methods. Adaptation means an ME strategy according to which an 
ISD method is engineered by changing, one way or another, the current ISD 
method. As mentioned in Section 10.2, none of the aforementioned ME 
strategies is applied as such in practice. In contrast, strategies appear to be 
mixed. Figure 120 gives examples of mixed ME strategies. In the first case (1), it 
is seen necessary to make adaptations into the method components before 
integrating them into the body of a new ISD method. In the second case (2), a 
new ISD method is primarily constructed as a “green field” product, yet 
utilizing some existing components. In the third case (3), an ME effort starts as 
an adaptation process but due to the lack of some functionalities in the current 
methods, the ISD method is enhanced with the creation strategy. In the fourth 
case (4), an ISD method is engineered applying all three strategies.  
 

          (1) 
          Integration                                 Adaptation 
 
                 (4) 
 
                           (2)      (3) 
 
 
           Creation 
 
FIGURE 120  Mixed ME strategies 
 
MEMES has not been engineered to support any specific ME strategy. As a 
method skeleton it aims to provide generic support for all the ME strategies. To 
offer the support as structured and utilizable as possible, MEMES has been built 
up deploying the most fundamental structures of contextual ME domains. With 
these structures it is easy to elaborate MEMES to suit more specifically some 
particular strategy needed in the certain ME project.  

To summarize, we specify the application area of MEMES as follows: 
MEMES is aimed to offer methodical support for ME contexts, the purpose of which is 
to engineer a generic ISD method or a domain-specific ISD method with any ME 
strategy. MEMES has to be elaborated, customized and configured to make it fit the 
needs of a particular ME organization or project. This process is not supported by 
MEMES.  

Concluding from the prior ME contexts involved by this research work we 
can make the following reflections. The OSSAD project clearly aimed at the 
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development of a domain-specific method with special features of office 
support systems. It followed the ME strategy close to the type (2), as its purpose 
was to create something specific for office support systems, yet utilizing 
components of current methods for those parts of the method which could be 
found from the existing methods. Some adaptations of those parts were 
naturally needed during the ME process. The SPITS project actually aimed to 
engineer ´the project-specific method, but because there was neither the 
appropriate organization-specific method, nor a generic method, the project 
applied a mixed strategy of the type (1) in order to first develop a generic 
method, mainly by integration, and then to configure it into a project-specific 
method. Some adaptations had to be made to get the pieces fit together. The 
DBAD method was engineered for teaching purposes. The purpose was to 
provide students with a coherent set of DB design techniques for the whole 
range of design life cycle, from requirements engineering to implementation. 
The main body of the engineered method was generic, but it was instantiated to 
be applied, in a straightforward way, by groups of students in the course 
context. Hence, the final outcome can be regarded as a “project-specific” 
method. The main body of the method was engineered by integrating 
components from the existing methods with minor adaptations (cf. the type (1)). 

We were not able to find any existing ME method that could be accepted 
as the basis for engineering MEMES. Instead, we found a large number of ME 
strategies, ME approaches, ME techniques, and ME procedures which could be 
utilized as components of MEMES, either as such or somewhat adapted. In 
many cases we had also to develop new constructs. For instance, the overall 
structure of MEMES was established without any support from existing 
artifacts. Consequently, this RW effort followed the mixed strategy of type (4).  
 
 
11.5 Goals of MEMES  
 
 
In this section we define the goals of MEMES, structured according to the ME 
method ontology (see Section 10.5). Hence, we define the goals from the 
contents view, the structural view, and the application view. In addition, we 
shortly characterize MEMES from the presentation view and the physical view.  
 
The goals of MEMES are:  
1.    MEMES should be based on a solid and sound view of the relevant sub-domains. 

MEMES should be built upon a conceptual foundation composed of 
information processing contexts on four layers and on three model levels. 
To satisfy this goal we anchor MEMES on OntoFrame.  

2.    MEMES should be modular and flexible. 
MEMES should be composed of structural and functional components that 
facilitate the elaboration, customization and configuration of the skeleton 
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toward a specific ME method. Despite the modular structure, MEMES 
should still maintain its uniformity, consistence and coherence. 

3.   MEMES should be applicable.  
MEMES should be applicable for framing, constructive and analytical 
intentions. The framing intension means that MEMES should provide 
concepts and constructs to help make sense of and structure phenomena 
in the actual ME. The constructive intention means that MEMES should 
support the engineering of an ISD method, or parts thereof. The analytical 
intention means that MEMES should provide main concepts and 
constructs for the analysis and comparison of existing ME artifacts. ME 
artifacts here mean ME strategies, ME approaches, ISD meta models, ME 
techniques, and ME procedures.  

 
MEMES is presented in natural language, supported with diagrams illustrating 
structural and functional features of the skeleton (cf. the presentation view). It 
appears in paper form (cf. the physical view). If elaborated and formalized, 
MEMES can be embedded in a CAME environment.  
 
 
11.6  ME Workflows 
 
 
The purpose of this section is to present the overall structure of ME work in 
terms of ME workflows. The ME workflows are described from the ME 
infological perspective, meaning that ME purposes, ME actions and ME 
deliverables are recognized. At the end we show which of the ME workflows 
are included in MEMES. 

We distinguish between five ME workflows (cf. Section 10.3.3): ISD 
method (ISDM) requirements engineering, ISDM analysis, ISDM design, ISDM 
implementation, and ISDM evaluation (Figure 121). They can be classified into 
two categories. The first category comprises the ME workflows that contribute 
directly to the construction of a new method or an improved method. These 
workflows are ISDM analysis, ISDM design and ISDM implementation. These 
differ from one another in their independence of realization issues (cf. Section 
6.1). The second category comprises the ME workflows that specify 
requirements and goals for the ISD method or alternatively evaluate whether 
the ISD method satisfies the specified requirements and goals. These workflows 
are ISDM requirements engineering and ISDM evaluation. They cover the 
whole range of aspects, extending from realization independent to realization 
dependent ones. In the following, we first give short characterizations of the 
ME workflows and then consider how they manifest themselves in different 
kinds of ME contexts.  
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FIGURE 121  ME workflows 
 
ISDM requirements engineering (ISDM RE) means an ME workflow which 
aims to identify and elicit ME stakeholders’ requirements concerning the 
nature, contents and structure of the ISD method. Requirements can be 
classified according to the ISD perspectives into ISD systelogical requirements, 
ISD infological requirements, ISD conceptual requirements, ISD datalogical 
requirements, and ISD physical requirements. ISDM RE workflow extends from 
the very beginning to the last steps of the ME effort. In this study we consider 
only the first tasks of this ME workflow in more detail.  

ISDM analysis denotes an ME workflow which aims to produce high-level 
descriptions of the ISD method. Descriptions are produced from the ISD 
infological perspective and the ISD conceptual perspective, revealing what ISD 
actions are performed, for what purposes, and what ISD deliverables are 
produced. In addition, intra-domain and inter-domain relationships in and 
between the three ISD domains are, on a general level, specified. 

ISDM design refers to an ME workflow which aims to produce more 
elaborated descriptions of the ISD method. Here the method is considered from 
the ISD datalogical perspective, uncovering “How” the ISD is to be 
accomplished. This means that the following kinds of questions are answered: 
What kinds of ISD roles and ISD positions are established? How ISD actions are 
decomposed at a detailed level? Which part of ISD work is to be supported by 
computer-aided tools? 

ISDM implementation means an ME workflow which aims to produce 
concrete descriptions/prescriptions of the ISD method from the ISD physical 
perspective. That means that the descriptions/prescriptions made earlier are 
realized and instantiated into a project plan that dictates who does what, why, 
how, for what, when and where.  

ISDM evaluation denotes an ME workflow which aims to produce 
assessments of one or more ISD methods according to the defined criteria. The 
criteria are derived from the ISDM requirements specified in the ISDM RE 
workflow. The ISD method to be evaluated can be at any point of its life cycle. It 
can be just a roughly outlined artifact, like the one resulting from the ISDM 
analysis workflow, or it can be a complete ISD method already used in the ISD. 
The applied criteria may vary from logical to technical and from general to 
detailed, depending on the applied perspective(s) and the nature of the method. 
Evaluation is tightly associated to the other ME workflows. For instance, the 
evaluation of existing methods is done before deciding on ME goals in the 
ISDM RE workflow.  
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Figure 122 illustrates the ME workflows (rectangles) and their main 
deliverables (ellipsis) on a general level. Arrows between the ME workflows 
stand for the sequence relationships. The ME process is highly iterative in the 
sense of re-doing, refinement and repeating (cf. Section 4.4.3). Re-doing means 
that with improved knowledge some tentative aspects of the ISD method are 
later changed. Refinement means that generic aspects of the ISD method are 
elaborated from those sketched during the preceding iteration cycle. Repeating 
implies that ME actions are accomplished iteratively, each time for different ME 
deliverables, for instance, due to a lack of ME resources. In the figure the area 
embraced with the bold line shows the scope of MEMES. Thus, the ISDM 
design and ISDM implementation workflows are excluded from MEMES. 
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FIGURE 122  ME workflows and their main deliverables 
 
The ways in which the ME workflows are executed differ from one another 
depending on the ME contexts. Figure 123 describes the scopes and emphases 
of three ME workflows in three types of ME contexts. The development of a 
generic ISD method or a domain-specific ISD method mainly includes actions of 
ISDM analysis workflow, which consider the ISD method from the ISD 
systelogical perspective, the ISD infological perspective and the ISD conceptual 
perspective. The development context may also contain some ISDM design 
actions if the method is to support, for instance, the establishment of ISD roles 
and ISD positions. In the customization context the actions of the ISDM design 
workflow dominate. In addition, some actions of the ISD analysis workflow 
may be carried out. For instance, to decide on dropping some ISD actions from 
a generic ISD method  under  customization, it may  be  necessary first to check,  
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FIGURE 123  ME workflows in the development, customization and configuration contexts 
 
what consequences this deletion may have to the other ISD actions and to carry 
out necessary re-customization actions of the ISDM design workflow. Likewise, 
in engineering an organization-specific method the need may arise to describe 
an organizational structure including individual units and persons in charge of 
specific ISD actions. Consequently, the customization context also includes 
some actions of the ISDM implementation workflow.  The configuration context 
primarily contains actions of the ISDM implementation workflow through 
which an ISD project organization with specific responsibilities and authorities 
is established, the schedule with baselines is decided, and the like. In this 
context some needs may also emerge to reconsider ISD datalogical aspects of 
the organization-specific method.  

As shown in Figure 122, MEMES contains three ME workflows. In the next 
sections we will describe them in more detail, including the underlying 
approaches and steps.  
 
 
11.7  ISDM Requirements Engineering  
 
 
ISDM requirements engineering (ISDM RE) means an ME workflow which aims 
to identify and elicit ME stakeholders’ requirements on the nature, contents and 
structure of the ISD method. ISDM requirements can be brought out nearly at 
any stage of an ME effort. In the first stages ISDM requirements concern 
features related to the use and contents of the ISD method, later ISDM 
requirements pertain to e.g. the presentation and technical support of the ISD 
method. Because MEMES does not cover the whole range of actions of the 
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workflow, we concentrate on describing ME actions at the first stages of the 
ISDM requirements engineering.  

Figure 124 describes the ME tasks of the ISDM RE workflow concerned 
here. The arrows between the ME tasks present the sequence relationships. The 
ME tasks are: (a) decide on the feasibility of a contingency framework, (b) 
analyze the ME context at hand, (c) characterize the target contexts, (d) analyze 
prior contexts, (e) specify ISDM requirements, and (f) determine ME goals. The 
purpose of the first task is to consider whether it is possible and feasible to use 
some contingency framework to elicit and structure descriptions of ISD 
methods and concerned contexts. The second task aims to find out what kind of 
context the ME context at hand is. In the third task the target ISD contexts and 
the target IS contexts are characterized171. In the fourth task the prior contexts at 
the ME layer, the ISD layer and the IS layer are analyzed to learn from the 
gained experience. The purpose of the fifth task is to derive requirements for a 
new ISD method, or for an improved ISD method. The last task in the ISDM RE 
workflow is to determine goals for the ME context at hand. The seventh task in 
Figure 124 is called ‘Analyze the current method(s)’. This task is actually a part 
of the ISDM evaluation workflow but it is included in the figure to show how it 
relates to the ISDM requirements engineering. It is presented by dotted line in 
Figure 124.  
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FIGURE 124  Tasks of the ISDM RE workflow 
 
The tasks of the ISDM RE workflow are connected to one another by the 
sequence relationships in the figure. It should, however, be noted that the tasks 
are highly iterative and also the order in which tasks are carried out can vary a 

                                                 
171  Note that we ignore the characterization of the target ME contexts.  
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lot depending on the ME context. In the following we describe each task in 
more detail.  
 
11.7.1 Decide on the Feasibility of a Contingency Framework 
 
The purpose of this ME task is to consider whether it is possible and feasible to 
use some contingency framework to elicit and structure descriptions of ISD 
methods and the concerned contexts. The concerned contexts mean here the ME 
context at hand, the prior contexts and the target contexts. If the answer is ‘yes’, 
a contingency framework is selected from those available and adapted, if 
necessary.   

A contingency framework can help to focus on and elicit those features 
that are the most essential to the concerned things. Contingency frameworks are 
commonly applied in the selection and construction of methods, techniques, 
models or tools for the needs of particular ISD contexts. For instance, in 
selecting the ISD method it is examined how well characterizations of the ISD 
method and of the target ISD context, structured according to a contingency 
framework, match with one another. There are a large number of studies on 
contingency approaches (e.g. Naumann et al. 1980; Davis 1982; Burns et al. 1985; 
Iivari 1989b; Saarinen 1990; Louadi et al. 1991; Cockburn 2000; Iivari et al. 2001; 
Kettinger et al. 1997; Roberts et al. 1998; van Swede et al. 1993; Odell 1996; van 
Slooten et al. 1994; van Slooten et al. 1996; Lin et al. 1999; Zhu 2002).  Based on 
the relevant literature, we propose the meta model of a contingency framework 
in Figure 125 and define the concepts in the framework. 
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FIGURE 125  Meta model of a contingency framework 
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A contingency framework is composed of one or more contingency factors. A 
contingency factor stands for a certain type of feature in the concerned thing that 
is considered essential. An example of the contingency framework is the two-
dimensional framework by Louadi et al.  (1991) for the selection of a method for 
an ISD project. This contingency framework is composed of two factors: 
uncertainty and complexity. Each contingency factor can be concretized by one 
or more criteria. For example, complexity of the ISD context can be considered 
in terms of project size, number of users, volume of new information, and 
complexity of new information production (cf. Davis 1982; Davis et al. 1985). 
Each criterion can be measured through one or more variables, whether single-
valued or multi-valued. Project size, for instance, can be measured in terms of 
man-hours, money, months etc. 

A contingency framework can be used in making characterizations of ME 
contexts, ISD contexts, or IS contexts. Characterizations of a (information 
processing) context, whether past, existing or designed, may also concern its 
object system (OS) and utilization system (US). A contingency framework can 
also be applied to characterize methods, or a part thereof, expressing whether a 
method or its component is feasible or not feasible in certain kinds of contexts. 
Characterizations are built up from values of variables.  

In the ISD field many kinds of contingency frameworks and approaches 
have been suggested. These contingency frameworks are based on a large 
variety of categorizations of contingency factors (e.g. Davis 1982; van Swede et 
al. 1993; van Slooten et al. 1993; van Slooten et al. 1996; Harmsen 1997; Punter et 
al. 1996; Kettinger et al. 1997; Roberts et al. 1998; Lin et al. 1999; Kraiem et al. 
2000). Zhu (2002) distinguishes between three contingency approaches for the 
method selection: contingency at the outset, contingency with a fixed pattern, 
and contingency along development dynamics. The first approach aims to 
select a single method or a fixed combination of methods for the whole lifecycle 
of an ISD project. According to the second approach, suitable parts of the 
method should be selected at each individual stage of a project. The third 
contingency approach states that various issues that shape ISD should be 
appreciated and tackled at each unique development moment. This 
corresponds to We are not able here to consider the contingency approaches, 
nor the contingency frameworks, in more detail. Instead, we bring out a need 
for a meta-contingency framework, which helps us select a contingency framework 
that is the most suitable to the situation at hand. One of the variables of such a 
meta contingency framework is rigor (cf. Zhu 2002, 353). 

In the literature there are also techniques for the use of contingency 
frameworks in method engineering. Punter et al. (1996) present a multi-
dimensional model, called the spider’s web portfolio, to organize basic 
modeling strategies according to the contingency factors based on the notions of 
complexity and uncertainty. They also propose a process of determining an 
appropriate modeling strategy using the spider’s web portfolio. Harmsen et al. 
(1995) and Harmsen (1997) suggest the so-called 3 S’s model (success, situation, 
and scenario) and steps to use the model in the selection of method fragments 
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for a certain situation. For a situation a large set of situation factors are defined 
with associations to performance indicators. For example, low “management 
commitment” contributes negatively to performance indicators such as 
“organizational management” and “system acceptance” (Harmsen 1997, 204). 
For each method fragment, a large set of scenario aspects is made available to 
characterize method fragments. To each scenario aspect a set of performance 
indicators is associated. Hence, having knowledge of situational factors of a 
given project it is, at least in principle, possible to select a method fragment that 
compensates the expected negative effects of the situational factors with 
positive effects of the scenario aspects of the selected method fragments.  

Many kinds of critics against the contingency approach have been brought 
out (e.g. Kumar et al. 1992; Avison 1996; Tolvanen 1998; Zhu 2002). For instance, 
the use of the contingency approach may be costly, and its effective use may 
appear to be difficult. Nevertheless, we suggest that in the ME context it is 
reasonable to consider the feasibility of a contingency framework. This can be 
carried out with the following steps: 
• Consider on which level of detail it is necessary to characterize the ME context at 

hand.  
• Consider on which level of detail it is necessary to characterize prior ME, ISD and 

IS contexts. 
• Consider on which level of detail it is possible to characterize target ME, ISD and 

IS contexts. 
• Consider on which level of detail it is necessary to characterize ISD methods, or 

parts thereof.  
• Consider by which features it is feasible to express characterizations of each of the 

aforementioned things. 
• Consider whether there are contingency frameworks that are suitable to the needs 

above. If not, make the necessary modifications and enhancements in the 
framework that comes closest. 

• Make a detailed description of the contingency framework selected/produced.  
 
There are three remarks worth making. First, the steps above have been 
organized with the principle according to which some conceptions about the 
relevant ME / ISD contexts are first obtained and after that the search for a 
suitable contingency framework begins. It depends on the situation at hand 
how detailed information about the contexts is gathered in this “pre-phase”. 
Second, it goes beyond our scope to give guidelines of how to engineer a 
contextual framework that suit the situation at hand. Third, after having 
engineered the framework it can be applied in MEMES according to any of 
three approaches distinguished by Zhu (2002). In this process some of the 
techniques suggested in the ME literature (e.g. Harmsen et al. 1995; Punter et al. 
1996; Harmsen 1997) can also be deployed. 
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11.7.2 Analyze the ME Context at hand 
 
The purpose of this ME task is to analyze the ME context at hand in order to 
decide which of the following ME tasks should be accomplished, in which way 
and in which order. The ME context can be characterized in many ways. On a 
general level, the ME context can be merely classified to be a development 
context, a customization context, or a configuration context. Also ME strategies 
can be used to generally describe the nature of the ME context. On a more 
detailed level one pays attention, for instance, to the following issues: What is 
the level of knowledge of, experience from, and skills in method engineering in 
the organization? Is there any support available for ME in the environment? 
What kinds of technology are available for the ME effort?  How clear and 
steady are the conceptions about what it is really that is wanted from the ME 
context?  How is the ME context connected to other efforts? Is there any 
customary way of working in these kinds of situations in the organization? 
What is the level of management commitment to the ME effort?  

The ME context can be described with numerous aspects based, for 
instance, on seven contextual domains. Let the following be a simple example 
of considerations needed when more multifaceted factors are used in ME. Here 
we use one factor that is especially significant to the way in which ME work is 
carried out in the ISDM RE workflow. This factor is the initiating condition, the 
main reason for why the ME effort is initially launched. We distinguish 
between two types of reasons, problem-driven and policy-driven, and specify 
two ISDM RE approaches based on them. In the specification of the approaches 
we utilize the work by Sutcliffe (1996) who proposes four tentative models of 
the IS requirements engineering process for possible pathways. The models are 
called policy-driven requirements, problem-initiated requirements, 
requirements by example, and requirements imposed by the external 
environment. Our ISDM RE approaches correspond to the first two in the above 
list. Next, we define the approaches and clarify how the ME process proceeds in 
each of the cases. 

The problem-driven approach is applied when problems in prior ISD 
contexts are experienced to be severe, thus calling for changes in the current 
ISD method. Problems manifest themselves as inefficiency in ISD processes, 
difficulties in project planning and control (e.g. uncontrolled process iteration), 
problems in cooperation and communication (cf. Tollow 1996), or inflexibility in 
the customization of the ISD method. Problems may also come out as errors in 
designs and implementations, difficulties in the maintenance of IS’s, and the 
dissatisfaction in, or even the resistance to, the use of the method.  In all these 
cases it is necessary to first collect and carefully analyze experience from the 
prior ISD contexts, and then decide how to proceed.  

The analysis may lead to the conclusion that the main reasons for the 
problems are not deficiencies in the method, but shortages, for instance, in 
technical skills of designers, in cooperation between the ISD stakeholders, or in 
incompetence in the use of software tools. In these cases, ME would not bring 
any solution. In contrast, if problems are traced to deficiencies in the ISD 
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method, the decision should be made on whether the problems are so severe 
and the desire to solve them so unanimous that the ME work should continue. 
The decision is also needed on whether the existing method, in spite of its 
deficiencies, can serve as a basis for engineering an improved method. If the 
answers are yes, the scope of engineering requirements on the ISD method is 
determined and the ME process goes on.  

The use of the problem-driven approach to ME is widely applied in 
practice (e.g. Jaaksi 1997; Tollow 1996). It is more focused and concrete than the 
other ME approaches. On the other hand, starting from the problems may limit 
the considerations too much to contemporary issues and ignore potentials of 
larger improvements (Tolvanen 1998).  

The policy-driven approach means an effort that is triggered by the need to 
deploy a novel technology, to build for a new application area, and/or to apply 
a new approach to ISD. For instance, to develop a ubiquitous information 
system based on the microchip technology may require such a novel approach 
that it is seen reasonable to develop a new method, or at least a set of new 
techniques. Examples of other new approaches are client-led approach, agent-
based approach, agile approach, generative programming approach, aspect-
oriented approach, and soft computing approach. In this kind of situation, first 
steps in the ISDM RE workflow are, instead of considering problems in the 
prior ISD contexts, to collect and analyze the expectations of stakeholders and 
to derive requirements from them. Also new technological and organizational 
solutions should be considered. High-level statements are decomposed and 
refined to obtain more concrete visions of the ISD and requirements for the ISD 
method.  In this work, contingency frameworks (e.g. van Slooten et al. 1996; 
Harmsen et al. 1994; Punter et al. 1996) may be found feasible.  

The categorization of ME approaches into the problem-driven approach 
and the policy driven approach is not complete. There are many other reasons, 
although not so common, for initiating an ME effort. One of these reasons is the 
need to make the ISD process more disciplined. The motivation for this may be 
a desire to acquire the ISO certification for the organization (van der Pijl 1997). 
That requires not only documenting the followed conventions in a rigorous 
manner, but also careful reconsiderations of routines.  

Contextual features of the ME have substantial influence upon which 
tasks, and in which order, are carried out in the ISDM RE workflow. Therefore, 
in each ME effort it is important to analyze which kind the ME context at hand 
is and to plan the next courses of action accordingly. Below we present steps 
with which the analysis of the ME context can be done:  
• Collect the data already available about the ME context at hand. 

The purpose is to find out, among else, who suggested the initiation of the 
ME effort and what reasons were used to justify it. In addition, memos of 
negotiations and even e-mails concerning the ME effort can be valuable to 
make the picture of the situation more clear. 
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• Characterize and analyze the ME context to find out the essentials of the context. 
Make a structured description of the ME context at hand which highlights 
the most essential features of the context. Some contingency framework 
can be utilized to elicit, structure and inter-relate the features.  

• Decide on the next actions.  
Based on the above analysis, decide which ME tasks, with which emphasis 
and in which order should be carried out in the following. 

 
11.7.3 Characterize the Target Contexts 
 
The purpose of this ME task is to characterize contexts where the concerned 
method is to be engineered and deployed. These contexts comprise target ME 
contexts, target ISD contexts and target IS contexts. The target ME contexts 
should be characterized because it is necessary to know the degree to which it 
should be possible or desirable to make refinements, customizations, and/or 
configurations in the ISD method before and/or during the method 
deployment. This is affected by the kind of the ISD method under engineering 
(cf. generic, domain-specific, organization-specific vs. project-specific method). 
The target ISD context means a context for which the method is to be 
engineered. The more specific the context is, the more detailed its 
characterization should be. Closely related to the target ISD context is the 
application and the IS contexts in which the application is to be run.  IS contexts 
can be viewed from various perspectives. The IS systelogical perspective 
recognizes the business system as a utilization system.  For instance, the ISD 
method could be intended for the use in ISD contexts which develop 
transaction processing systems, office information systems or inter-
organizational systems.  

The level of detail applied in the characterizations of the target contexts 
depends on the type of the ME context. In the method development one is 
interested in ISD approaches, application areas, ISD process models, IS 
architectures, etc. In the ME context aiming to engineer an organization-specific 
method, characterizations refer to the organizational culture, politics and 
conventions, as well as to preferred ISD approaches and principles expressed in 
more detail. In the ME context aiming to engineer a project-specific method the 
target ISD context and the target IS contexts are characterized on the most 
detailed level. If the method is not intended to be applied as such, it should be 
mentioned in which kinds of situations the method is assumed to be elaborated, 
customized and/or configured. 

Inputs to the task are more or less vague conceptions of the ISD method 
and of the target contexts drafted in the preceding task. The purpose here is to 
elaborate these conceptions. Contingency frameworks can play a vital role in 
the task. In Table 33 we present examples of contingency factors related to the 
IS context and the application, on one hand, and to the ISD context, on the other 
hand (van Slooten et al. (1996, 32-33); Harmsen (1997, 206-208); Kruchten (2000, 
50-51); Firesmith 2004).  
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TABLE 33  Examples of contingency factors 
 

IS context  & Application ISD context 
Business criticality 
Organizational impact 
Formality of information and  
   business processes 
Size and complexity 
Stability of information and  
   business processes 
User knowledge and experience 
 

Management commitment  
Stakeholder involvement  
Size of the project 
Knowledge, experience and skills 
Corporate culture  
Degree of resistance and conflict potential 
Time pressure 
Availability of human resources 
Availability of facilities 
Process breadth 
Clarity and stability of requirements and 
   goals 
Novelty of technology and methods  
   (e.g. tool compatibility) 
Contractual issues (e.g. subcontracting) 
Legal and regulatory issues  
   (e.g. standards and certificates) 
Degree of geographical distribution of the  
   project  
Dependency of other projects 

 
Characterizing the target contexts can be seldom carried out in a 
straightforward manner. Below we present a preliminary set of steps to 
structure the process:  
• Characterize the most essential features of the target ISD context and the IS 

contexts. 
Figure out what is the most essential to the method under construction: 
e.g. What workflows should it cover?  What are the most typical features 
of applications and target IS contexts? Are there any preferences or 
requirements for specific ISD paradigms, ISD approaches, and ISD 
principles? 

• Characterize the target ME context. 
Draft circumstances in which it should be possible or necessary to 
elaborate, customize and/or configure the method to make it suitable for 
the needs of the target ISD contexts.  

• Complete characterizations of the target ISD contexts and the target IS contexts. 
Elaborate the characterizations of the ISD target contexts and the IS 
contexts in more detail, possibly with contingency frameworks, in order to 
cover all important aspects of the situations in which the method is to be 
deployed.  

 
 
 
 



 

 

502 

11.7.4 Analyze Prior Contexts 
 
The purpose of this ME task is to describe and analyze the contexts in which the 
concerned ISD method(s) have been engineered and/or used, in order to learn 
from experience. The concerned method means the method that is considered 
suitable to provide a basis for integration and/or adaptation in the ME context 
at hand. The analysis involves contexts on the ME layer, ISD layer, and IS layer. 
Knowledge about contexts on the ME layer is relevant to forming a solid view 
of the background and nature of the method (cf. the context of creation in 
Jayaratna 1994, 228). The ISD method represents organizational knowledge 
about ISD, externalized as an artifact. To ensure that the ISD method represents 
the “best” practices in the ISD, it is necessary to assess how the ISD efforts 
accomplished with the support of the method have succeeded. This necessitates 
the analysis of the prior ISD contexts. Because success or failure ultimately 
comes to light in IS practice, the IS contexts concerned should also be involved 
in the analysis. It should, however, be noticed that it is not always possible to 
show cause – effect relationships between IS problems and courses of action in 
ISD work.  

A need for, and a possibility to, the analysis of the prior contexts depends 
on the type of the ME context at hand. If the ME context aims to develop a 
generic method primarily “from scratch”, there are usually no prior contexts to 
be analyzed. If a generic method is to be engineered by adaptation or 
integration from the existing methods, prior ME contexts exist. Also if a generic 
method is to be engineered by decustomization and/or deconfiguration, there 
may be prior ISD contexts that should be analyzed.  The prior IS contexts are 
left unconsidered in all the aforementioned cases. 

The more concrete the ISD method to be engineered is, the more necessary 
it is to consider the prior contexts. Customizing an organization-specific 
method is grounded on the needs and features of the specific organization. In 
this case, the contexts relevant to the analysis embrace ME contexts in the near 
past, as well as related ISD efforts. Also those IS’s that are “run” according to 
the prescriptions and with the support of software developed in the concerned 
ISD contexts can be included in the analysis. The analysis is especially 
important if the problem-driven ME approach is applied.  

Instantiating a project-specific method is highly dependent on the features 
of that particular project. For this reason, the emphasis in the analysis moves 
from the ME contexts to contexts on the lower layers. If the instantiation is 
based on a generic method, the analysis resembles that which is applied in the 
customization. Although ME is mainly focused on the needs of a particular 
project, it is reasonable also to take into account previous conventions and 
future visions of the organization. If the instantiation is based on an 
organization-specific method, the purpose of the analysis is to find out what 
kinds of project-specific methods have been used in the organization, and with 
which kinds of steps and results. It is also necessary to consider how successful 
the developed IS’s have been and why.   
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The analysis of the prior contexts proceeds with the following steps:  
• Consider needs to analyze prior contexts. 
• Identify prior ME contexts, prior ISD contexts and prior IS contexts to be 

analyzed.  
• Define the level of detail for the analysis of each context.  
• Collect the data that has already been produced about the prior contexts.  

The organization may have a policy to document problems encountered 
and innovations made in the ISD projects. Also some IS’s have computer-
based systems (e.g. Help Desk systems) that record and disseminate 
information about problems encountered in IS practice, as well as about 
change requests. This data is collected for further consideration. If no data 
is available or if it is inadequate, more data is acquired by studying 
documentation about ISD and ME efforts, interviewing stakeholders 
involved in the contexts, etc.  

• Make a general description of each relevant prior context.  
Descriptions should be presented as scenarios (Harmsen 1997, 202, 
Vlasblom et al. 1995, 602) that characterize the contexts in a concise and 
condensed manner.  One way of structuring the descriptions is to apply 
contingency frameworks.  

• Carry out the analysis. 
The aim of the analysis is to find out failures and successes, as well as 
reasons behind them in the prior contexts. 

 
11.7.5 Specify ISDM Requirements  
 
The purpose of this ME task is to derive requirements for a new ISD method, or 
an improved ISD method, from the characterizations of the target contexts and 
from the analysis of the prior contexts. If the ME context follows the problem-
driven approach, the problems collected and analyzed from the prior contexts 
provide a baseline for requirements specification. If the ME context applies the 
policy-driven approach, the focus is on deriving requirements from the 
characterizations of the target contexts.  

Deriving requirements is not an easy task for many reasons. First, as 
mentioned above, problems encountered in prior ISD contexts may not be due 
to deficiencies in the applied method but result from some human, 
organizational or technological reasons.  Second, although the problems would 
be consequences of the method use, it is difficult to conclude how differently 
one should have behaved to be more successful, and how this behavior should 
be expressed in the method. Third, it is important to figure out how 
requirements should be expressed so that it is possible, based on them, to start 
engineering a new, or improved method. Also when following the policy-
driven approach it is difficult to name features that are essential to the target 
context.  

Regardless of how ISDM requirements are derived they have to be 
associated to those stakeholder(s) who have presented and/or agreed on the 
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requirements (cf. the expressedBy relationship in the ME ontology, Section 
10.3.5). Requirements should also be classified according to how necessary they 
are deemed (e.g. obligatory, favourable, optional). In this task the use of a 
proper contingency framework may help. 

In conclusion, the steps to specify requirements for an ISD method are: 
• Decide on what issues are taken into account in specifying requirements for the ISD 

method (cf. problem-driven approach vs. policy-driven approach). 
• Specify requirements for the ISD method and present them in a structured form. 
• Identify stakeholders and attach the requirements to them with priorities.  
 
11.7.6 Analyze Existing Method(s) 
 
The purpose of this ME task is to find out whether there already exists one or 
more ISD methods that satisfy, at least to some extent, the specified 
requirements. This task actually belongs to the ISDM evaluation workflow, but 
we discuss it here to provide a proper context for the understanding of its 
intention and content when used in this stage. We have applied the generic 
principles and steps, presented for the task in Section 11.9, to tailor the 
description of the task below. 

A way of carrying out this task depends on the type of the method the ME 
context is aiming at. In engineering a generic method, or a domain-specific 
method, the analysis is mainly targeted at those generic/domain-specific 
methods that seem to contain desirable features. In some cases, it may also be 
worth of looking for organization-specific methods that could be suitable for 
decustomization. In the customization context the analysis is targeted at the 
current method of the organization, and if not available or if the method is too 
far from the specified requirements, it is focused on more promising 
generic/domain-specific methods. Also successfully deployed project-specific 
methods in the organization could be considered. In the configuration context 
other project-specific methods as well as the organization-specific method(s), if 
available, are analyzed. Sometimes the analysis is extended, also in this case, to 
address generic methods in order to obtain fresh ideas of ways of modeling, 
working and controlling in the ISD.   

The task of analyzing ISD methods proceeds with the following steps: 
• Specify the criteria for the analysis. 
 Specification of the criteria is based on the ISDM requirements specified in 

the preceding task. It can also utilize evaluation criteria presented in the 
ISD literature (e.g. Olle et al. 1983; Olle et al. 1986; Law et al. 1984; Law 
1988; Karam et al. 1993; Flynn et al. 1993; Jayaratna 1994; Iivari 1994; 
Kitchenham 1996a; Tran et al. 2003; Dam et al. 2004). 

• Select ISD methods for the analysis.  
 Selection is based on the availability of methods, preconceptions about 

their match with the requirements, and resources available for the 
analysis.   
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• For each selected method, carry out an analysis according to the specified criteria.  
 If the set of the methods is large, the analysis is divided into two parts. In 

the first part an investigation is conducted according to the most 
important features in order to decrease the number of the analyzed 
methods. In the second part an in-depth analysis is carried out only for the 
most potential methods.  

• Make a summary of, and conclusions from, the analysis.  
 The purpose of this step is to find out what method(s) or method 

component(s), if any, can serve as a basis for the next tasks. One possible 
conclusion from the analysis could be that there already exists a method 
that satisfies, to a reasonable extent, the specified ISDM requirements and 
therefore no need for further ME tasks prevails. 

 
11.7.7 Determine ME Goals 
 
The purpose of this task is to decide on goals for the ME context at hand. ME 
goals concern the ME context as a whole, as well as each of its constituents. ME 
goals concerning ME deliverables are primarily related to the goals of the ISD 
method. ME goals are determined on the basis of the specified ISDM 
requirements and knowledge obtained from the analysis of existing ISD 
methods. Also resources available for the ME context are taken into account in 
determining ME goals. The last issue is highly important in practice. As Jaaksi 
(1997) points out, ME efforts frequently take place under financial pressure, and 
in exchange of the resources used in ME, significantly better solutions from ISD 
are expected.  The goal can never be to find the best method, but a satisfactory 
method instead.  

Determining goals is a value-based function:  what the ME stakeholders 
consider ”better” or ”desirable”, and how much they want to invest on 
achieving that “better” (Kumar 1984, Kumar et al. 1992, 264). For eliciting 
stakeholder value profiles, a survey instrument called ISD-PVQ (information 
Systems Development – Personal Value Questionnaire) (Kumar 1984) can be 
used.  

To structure the ME goals, a proper contingency framework can be used. 
Here, we apply the contextual framework to show how ME goals can be 
structured according to the target contexts with seven contextual domains and 
on two layers. First, we can distinguish the goals that concern the target ME 
context as a whole or some of its contextual parts, e.g. an ME organization, ME 
actions, ME deliverables, ME resources, ME tools, etc. The main ME deliverable 
is the ISD method that is seen at the ME layer as a representational and physical 
artifact. Second, through the contents of the ISD method the ME goals involve 
the target ISD contexts. Actually it would also be possible, through the contents 
of ISD deliverables (i.e. IS models), to state goals that are related to the target IS 
context (e.g. a goal to engineer an ISD method for geographic information 
systems). We do not go into such detail here. In the following we give examples 
of pertinent issues for which the ME goals can be stated, on two layers. 
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Examples of issues in the ME context for which the ME goals can be stated 
are: 
• Purpose. What are the general objectives of the ME (e.g. high quality, 

minimizing resources)? What are the ME strategies and the ME 
approaches to be applied?  

• Actor. Who should take part in the ME and in which role?   
• Action & Time. What workflows should the ME cover and in which phase 

structure?  What are the time limits/schedule for the ME? 
• Object. In which form and physical appearance should the method be 

presented (e.g. in a manual, in the web, in a CAME tool)?  
• Facility. What are the resources available for the ME and which ME tools 

are to be used?   
• Location. Where should the ME be accomplished? 
 
The ME goals concerning the contents of the ISD method can be categorized 
according to the ISD perspectives. ISD systelogical goals concern ISD 
application areas, ISD paradigms, ISD approaches, and ISD principles (cf. the 
application view and the generic view in the ISD method ontology) (cf. route 
maps in van Slooten et al. (1996)). An example of the ISD systelogical goal is: “to 
engineer a method for developing data-intensive web-based applications with 
the object-oriented approach and active customer involvement”. Applying the 
ISD infological, ISD data logical and ISD physical perspectives means that ME 
goals are expressed in more detail, commonly structured according to the ISD 
contextual domains.  Examples of issues pertaining to the domains of the ISD 
context for which the ME goals can be stated are:  
• Purpose. What are the most important issues the ISD method should 

support in the ISD effort (e.g. high quality of user requirements, easy 
maintenance of the system, minimum costs of development)? 

• Actor.  Who should participate in the ISD and in which role (e.g. the client-
led approach)?  

• Action. What workflows should the ISD cover and with which phase 
structure (e.g. analysis and design)?   

• Object. What are the most typical aspects of the IS’s to be developed with 
the support of the ISD method (e.g. data-intensive, web-based)? 

• Facility. What kinds of tools are supposed to be used in the ISD (e.g. CASE 
tools)? 

• Location.  Where is the ISD to be accomplished (e.g. in a software house, in 
an industrial organization)?  

 
The ME goals should be attached to ME stakeholders who have expressed/ 
agreed on them (cf. Nuseibeh et al. 1996, 171), as well as to reasons due to which 
the goals are seen to be important. As specified in the ME ontology (see Section 
10.3.1), reasons can be brought out in terms of requirements, problems, 
opportunities/threats, and strengths/weaknesses. The ME goals are inter-
related with one another in many ways. Before making final decisions on ME 
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goals one should make a goal analysis rooted on the established goal 
hierarchies (cf. the refinement relationship) and consider the costs of and 
benefits from various alternatives. Decisions on ME goals are made, not only at 
the beginning of the ME, but across all the ME phases. Goals, stated first on a 
general level, are later refined and made more concrete to cover specific issues. 

To summarize the discussion above and to structure a way of working in 
this task, we present a set of steps for determining ME goals: 
• Select issues on which it is necessary to make goal statements.  
• Collect requirements specified for the ISD method. 
• Collect constraints concerning the ME. 
• Formulate alternative ME goals based on the requirements and constraints. 
• Evaluate alternatives based on the predefined set of criteria (incl. costs and 

benefits). 
• Make decisions on alternative ME goals. 
 
 
11.8  ISDM Analysis  
 
 
ISDM analysis workflow comprises ME actions, which aim to produce high-level 
descriptions of the ISD method. The ISD method is considered from the ISD 
infological perspective and the ISD conceptual perspective. Consequently, in 
this ME workflow the concepts and constructs of the ISD purpose domain, the 
ISD action domain, and the ISD object domain are used to produce 
prescriptions of what is to be done, for which, and why in the target ISD 
context. Also the conceptual contents of the ISD deliverables are specified in 
this workflow.  

The main inputs to the ISDM analysis are: (a) overall descriptions of the 
ME context and the target contexts, (b) a list of requirements for the ISD 
method, (c) a summary of the analyses of the current ISD method(s), and (d) a 
structured and preferably prioritized list of ME goals. 

The ISDM analysis is composed of three main tasks: (a) infological ISD 
modeling, (b) conceptual ISD modeling, and (c) inter-perspective ISD modeling.   
With the infological ISD modeling, a description of the ISD method is produced 
to reveal ISD purposes, ISD actions and ISD deliverables. In the conceptual ISD 
modeling an IS ontology is engineered to be used in describing the conceptual 
contents of the ISD deliverables. The inter-perspective ISD modeling is needed 
to integrate and verify the two perspectives of the ISD context.  

Before describing the tasks of this ME workflow in more detail, we first 
define two ME approaches, which affect the order in which the tasks of the 
ISDM analysis workflow are accomplished.  
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11.8.1 Approaches 
 
We distinguish between two ME approaches, the functional approach and the 
conceptual approach, which differ from one another with regard to the order in 
which ISD perspectives are applied (Figure 126). According to the functional 
approach the ISDM analysis starts with describing the functional structure of the 
target ISD context, meaning that ISD purposes, possibly drafted in the previous 
ME workflow, are elaborated and ISD actions and ISD deliverables are sketched 
out. Within each of the aforementioned ISD domains, decomposition and 
specialization are applied to establish goal hierarchies, action hierarchies and 
deliverable hierarchies. The ISD actions and the ISD deliverables are related to 
one another through the intra-domain and inter-domain relationships. After 
constituting some view of the functional features of the ISD context, 
understanding of the contents of the ISD deliverables is captured and deepened 
through conceptual ISD modeling.  
 

ISD systelogical
perspective

ISD infological
perspective

ISD datalogical
perspective

ISD conceptual
perspective

Conceptual approachFunctional approach
 

 
FIGURE 126  Two approaches to the ISDM analysis 
 
The purpose of the conceptual approach is to first establish an overall view of the 
object system (OSISD) which the ISD execution deliverables signify. This means 
engineering an IS ontology. An IS ontology is composed of concepts and 
constructs defining the IS from five IS perspectives (see Section 8.4). There are 
several sub-approaches, which affect the order in which these IS perspectives 
are applied. They will be discussed in Section 11.9.3. After having defined the 
essential part of the IS ontology, ME moves to consider ISD deliverables that 
operate with the concepts of the defined IS ontology, and ISD actions which 
produce those ISD deliverables. The ISD actions and the ISD deliverables are 
then further elaborated.  
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In practice, these two approaches are rarely applied in a pure format.  
Instead, some kinds of mixed approaches are favored. There are, however, 
some circumstances, in which an approach closer to the conceptual one suits 
better than the functional approach, and vice versa. The more novel the 
application domain is for which the ISD method is to be engineered, the more 
important the role of the conceptual ISD modeling has in the ME context. This is 
so because without knowing, at least to some extent, the structure and behavior 
of an artifact, it is very difficult to specify how to design it. Examples of these 
kinds of novel application domains are e.g. architecture design, web-application 
design, geographical information system design, and ubiquitous system design. 
In contrast, if the ME context aims to engineer the ISD method mainly by 
adapting the existing method and for a well-known application domain, it is 
more beneficial to apply an approach that is close to the functional approach, 
because based on the ISD workflows distinguished in infological modeling it is 
easier to recognize those parts of the method that should be adapted.  
Moreover, after re-engineering ISD deliverables it is simpler to make changes in 
the concerned parts of the IS ontology.   

In the ME literature there are only a few considerations of the 
corresponding approaches. Ralyte et al. (2003, 105) suggest the ME strategy 
according to which “a product model” is constructed before engineering “a 
process model”. This strategy roughly corresponds to our conceptual approach. 
The process model ”can take multiple forms: an informal guideline, a set of 
ordered actions, a set of process patterns, multi-process guidelines” (ibid p. 
105). These are deliverables of the infological ISD modeling.  

Another example of applying the conceptual approach to the ISDM 
analysis is given in Hruby (2000b). Hruby presents a methodological 
framework, which regards the “software development artifacts” as the most 
essential constructs. These artifacts are viewed as conceptual, not 
representational (ibid p. 23). In engineering a method, artifacts are first selected. 
Artifacts (artifact types) have two kinds of “methods”172 that rule how to create, 
interrelate and check the artifacts (instances). For instance, the “methods” 
specify preconditions that require that certain artifact (instance) must exist 
before some other artifact (instance) can be created. Thus, preconditions 
indirectly impact on the order in which the ISD actions creating the artifacts 
should be performed (e.g. to create a class life cycle, the artifact ‘class’ must be 
first created (Hruby 2000b,  29)). When selecting and including artifact (types) 
to the body of the method, the “methods” attached to the artifacts also indicate 
the kinds of ISD actions there should be in the ISD method. Hruby (2000b) calls 
his framework a “product-focused” framework, as compared to the OPEN 
framework (Graham et al. 1997), which he calls the “process-focused” 
framework. 
 
 
                                                 
172  Method here corresponds to the notion of a method in the object-oriented paradigm. 

To differentiate it from our term, we present it in quotation marks. 
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11.8.2 Infological ISD Modeling 
 
The purpose of infological ISD modelling is to describe and gradually elaborate 
specifications of ISD purposes, ISD actions and ISD deliverables to include 
them in the body of the ISD method. The modeling actions deploy concepts and 
constructs defined in the ISD ontology (see Section 8.4.2).  From the ISD action 
structures, the generic ISD action structures (i.e. the decomposition structure 
and the control structures), the IS modeling structure, the ISD problem solving 
structure and the ISD workflow structure are applied. The ISD management - 
execution structure and the ISD phase structure are excluded in this task. Also 
the ISD management deliverables are ignored.   

The results from the infological IS modeling are commonly presented in 
ISD action models, ISD deliverable models, and/or some hybrid models. If the 
ISD purposes have an essential role in the ME effort, they are brought out in 
some ISD goal models (i.e. in goal/means graphs, Loucopoulos et al. 1998; 
Katzenstein et al. 2000; Castro et al. 2001). It is, however, more common to 
describe ISD goals as being associated with ISD actions and/or ISD 
deliverables. To give concrete examples of ISD models suitable for presenting 
the results from ISD infological modeling, we give a categorization of ISD 
models with references to the literature173:  
• Action control model (ACM) describes ISD actions and their control 

structures (i.e. sequence, selection, iteration); e.g. action diagrams (Martin 
et al. 1985).  

• Action decomposition model (ADM) describes hierarchical decomposition 
structures of ISD actions; e.g. structure charts (Yourdon 1989). 

• Information flow model (IFM) describes ISD actions and information flows 
(i.e. ISD deliverables) between them; e.g. data flow diagrams (Gane et al. 
1979). 

• Deliverable decomposition model (DDM) describes hierarchical 
decomposition structures of ISD deliverables; e.g. data structure diagrams 
(Jackson 1983). 

• Deliverable supply model (DSM)  describes ISD deliverables and supply 
relationships between them; e.g. I-graphs (Lundeberg 1982). 

 
The conceptual contents of, and the relationships between, the ISD models 
mentioned above are illustrated in Figure 127. In the following we use the 
setting in the figure to illustrate the approaches and steps of infological ISD 
modeling.   

The basis for infological ISD modeling is obtained from the goal 
statements made in the ISDM RE workflow. For proceeding, there are three 
alternative approaches. The approaches differ from one another in regards to 
which ISD  domains  the  modeling  process starts with. The  approaches are: (a)  

                                                 
173  Note that the models mentioned in the parentheses have originally been developed 

for the IS. Here they are applied to model the ISD. 
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FIGURE 127  Models applicable to the infological ISD modeling 
 
the ISD action-driven approach, (b) the ISD deliverable-driven approach, and 
(c) the mixed approach. Figure 128 describes the steps of infological ISD 
modeling and their order in the first two approaches. The steps are called by the 
names of the artifacts that are the targets of the steps (e.g. ‘ISD actions’ means 
infological ISD modeling for specifying ISD actions). The arrows between the 
steps denote sequence relationships.  
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FIGURE 128  Processes (a) in the ISD action-driven approach and (b) in the ISD 
deliverable-driven approach 

 
According to the ISD action-driven approach, infological ISD modeling starts with 
elaborating ISD purposes and proceeds to identify and specify ISD actions and 
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their decomposition and control structures. After that ISD deliverables are 
distinguished, structured and specified.  In contrast, in the ISD deliverable-
approach the identification and specification of ISD actions comes after modeling 
ISD deliverables and their inter-relationships. In the mixed approach modeling is 
carried out more or less in parallel with ISD actions and ISD deliverables. A 
good example of applying the mixed approach is the ME effort to “build a 
software maintenance methodology” (Polo et al. 2002) which proceeded from 
first identifying tasks and then to specifying “input and output products”, and 
techniques. After pilot testing, divergent paths for corrective, perfective, 
preventive and adaptive maintenance types were established. Each path was 
composed of specialized tasks and products.  

A choice between the three approaches depends, to some degree, on the 
approach applied in the ISDM analysis workflow. If the functional approach 
has been applied, the mixed approach to the infological ISD modeling is more 
suitable. If the conceptual approach has been applied, it is more natural here to 
start the process of infological ISD modeling with considering what are the ISD 
deliverables signifying those OSISD constructs that have been identified in 
conceptual ISD modeling. This means that the ISD deliverable-driven approach 
is more appropriate. Because it is not possible here to describe for all three 
approaches, how infological ISD modeling proceeds, we describe the steps in 
the order they appear in the ISD action-driven approach.  

As mentioned in Section 11.2, MEMES has been firmly built upon 
OntoFrame. This means that ISD modelling, here done from the infological 
perspective, is guided to utilize the ISD meta models included in the ISD 
ontology. There are two basic approaches to the utilization of the ISD ontology: 
the bottom-up approach and the top-down approach. According to the bottom-
up approach, ISD modeling starts with specifying instance-level and specialized 
concepts and constructs and proceeds to abstract generic concepts (e.g. 
workflow, activity, task, operation) generalized from them. In the top-down 
approach, generic concepts and constructs are first specified and later made 
more concrete by instantiation and specialization. We favor the top-down 
approach, because this way it is easier to ensure that the concepts and 
constructs constitute a unified and coherent whole. Our ISD ontology offers a 
basis for adaptations when specifying an ISD context-specific ontology. 
Actually, also the bottom-up approach can benefit from our ISD ontology as it 
provides concepts and constructs toward which the process of classification and 
specialization orientates when searching for a coherent set of generic concepts. 
It is not possible for us to show how the utilization of the ISD ontology takes 
place in all the cases. Instead, we give some examples of the utilization when 
following the ISD action-driven approach to the infological ISD modeling with 
the following steps: 
• Elaborate and categorize ISD goals. 
 Based on the ME goals stated in the ISDM RE workflow, reconsider, 

elaborate and categorize those goals that pertain to the target ISD context. 
Consider which concepts and constructs, defined in the ISD purpose 
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domain in the ISD ontology, as such or adapted, apply to this case. In 
order to help infological ISD modeling in the following steps, categorizing 
the goals according to the contextual domains is recommended.   

• Identify and specify ISD actions. 
 Deriving from the ISD goals stated above identify and specify ISD actions 

that are needed to satisfy the goals.  
• Decompose ISD actions.  
 To manage the complexity related to the ISD actions and to get a more 

detailed view of them, decompose the ISD actions into more elementary 
parts (e.g. ISD tasks and ISD steps).  

• Establish other ISD action structures. 
 There are several other action structures in the ISD ontology by which ISD 

actions can be organized, e.g. the ISD workflow structure, the ISD problem 
solving structure, the IS modeling structure, and the control structures. A 
decision on which of these is used as the primary ISD action structure 
depends on the ISD approach(es) (of the category B, see Section 8.1.2) 
selected in the ISDM RE workflow. In the transformation approach, for 
instance, the IS modeling structure may be favored, while in the problem 
solving approach the ISD actions are structured according to the process 
by which ISD problems are solved and decision are made. To have an 
overall structure for the whole ISD effort, ISD workflows are usually 
used174.  The control structures (i.e. sequence, selection and iteration) are 
specified to express monotonic, alternative, and cyclic processes.  

• Identify and specify ISD deliverables. 
 Deriving from the ISD goals and the ISD actions identified above, decide 

what ISD deliverables are needed. At the beginning conceptions about the 
ISD deliverables are quite general. The generic notions of ISD deliverables 
in the ISD ontology can be used to specialize ISD deliverables into more 
concrete concepts. One way of recognizing ISD deliverables is to consider, 
for each identified ISD action, what are the outputs from, and what are the 
inputs to it.  

• Decompose ISD deliverables. 
 To get a more detailed view of the ISD deliverables, decompose them into 

smaller informational objects. Decomposition should be in compliance 
with the structures of the corresponding ISD actions.  

• Specify support relationships. 
 To show what ISD deliverables are needed to produce other ISD 

deliverables, associate ISD deliverables to one another with the support 
relationships (e.g. I-graphs in Lundeberg (1982)). 

• Specify input / output relationships. 
Associate the ISD actions and the ISD deliverables to one another with the 
input and output relationships.  
 

                                                 
174  In the early days it was common to first establish a phase structure.  
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• Check the specifications of ISD actions and ISD deliverables. 
 Reconsider the specifications of the ISD actions and the ISD deliverables in 

order to check their compliance with the stated ISD goals, 
comprehensiveness, and internal and external consistency. Rename 
concepts and reorganize structures and relationships, if necessary. 

 
The steps above are presented in the order in which they are commonly 
executed when applying the ISD action-driven approach to infological ISD 
modeling. An actual ME process may, naturally, deviate to a large degree from 
this order and several steps are carried out concurrently. Also moving up and 
down in the hierarchies of ISD actions and ISD deliverables is common.  
 
11.8.3 Conceptual ISD Modeling  
 
The purpose of conceptual ISD modeling is to specify the conceptual contents of 
ISD deliverables. ISD deliverables are informational objects referring to the IS 
contexts, as well as to the ISD context. The latter objects primarily correspond to 
ISD management deliverables. Because we do not address the management part 
of the ISD context in this stage, we concentrate on ISD execution deliverables. 
The object system of the ISD context, OSISD, embraces three parts, the IS, the 
OSIS and the USIS. These together constitute an IS ontology. Consequently, 
conceptual ISD modeling means IS ontology engineering. 

We have defined the IS ontology to be composed of the concepts and 
constructs in seven IS domains, from five IS perspectives. The IS systelogical 
perspective concerns the business system (USIS) and the support the IS provides 
for it. The IS infological, IS datalogical and IS physical perspectives uncover 
various aspects of the IS. From the IS conceptual perspective the concepts and 
constructs of the object system (OSIS) are recognized.  

IS ontology engineering is neither an easy nor straightforward task for 
several reasons. First, a way of engineering an IS ontology depends on whether 
the ISD addresses the CIS, the HIS, or both of them. In the former case, the IS 
ontology is technology-oriented, whereas in the latter cases the IS ontology also 
contains social and organizational concepts. Second, IS ontology engineering 
differs in the extent to which the ISD method is to support also re-engineering 
of business processes. For instance, if the IS is considered just a ‘tool’ to be taken 
into use without too much interest in consequences to organizational or 
functional issues of the business system, the role of systelogical IS ontology 
engineering remains insignificant. Third, selecting and defining the concepts 
and constructs of the IS are affected by how the IS is actually seen. As 
mentioned in Section 8.1, there are different view-based ISD approaches. For 
example, the IS can be seen as a context for data processing, enabling the 
collection, recording, processing, and dissemination of information to the end-
users. Alternatively, the IS can be considered as a context of cooperation, 
collective decision making, and knowledge sharing. It is clear that these views 
lead to the selection and definition of different concepts and constructs.  
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IS ontology engineering involves the IS domains on different stages. 
Normally, engineering starts with defining concepts in the so-called core 
domains: in the IS purpose domain, the IS action domain, and the IS object 
domain (cf. Section 4.3). After that, engineering proceeds to the consideration of 
the related IS domains. Expressed in terms of IS perspectives we can say that it 
is more common to start with the IS systelogical perspective and proceed 
through the IS infological and IS conceptual perspectives to the IS datalogical 
and IS physical perspectives. To have an overall view of different approaches to 
IS ontology engineering we categorize ME actions according to the IS 
perspectives (see Figure 129). We distinguish between four approaches to the IS 
ontology engineering depending on where the process starts from. The 
approaches are: the US-driven approach, the IS-driven approach, the OS-driven 
approach, and the CIS-driven approach. In the following we shortly 
characterize these approaches.    
 

IS systelogical perspective

IS infological perspective

IS conceptual perspective

IS datalogical perspective

IS physical perspective

US-driven approach

IS-driven approach

OS-driven approach

CIS-driven approach

 
 
FIGURE 129  IS ontology engineering approaches and IS perspectives 
 
In the US-driven approach the alignment of the IS to the business system utilizing 
the services of the IS is seen vital in IS ontology engineering. Therefore, the 
process starts with applying the IS systelogical perspective. This is the case, for 
instance, in developing methods for strategic information systems and decision 
support systems. According to the IS-driven approach, IS ontology engineering 
starts with identifying the main concepts of IS actions and IS objects, as well as 
with defining input and output relationships between them. This approach can 
be applied in engineering methods for information systems, which contain 
complex and abnormal information processing or information structures. In the 
OS-driven approach IS ontology engineering starts with defining the concepts 
that are used to model the conceptual contents of the informational objects of 
the IS (cf. the IS conceptual perspective). Later, it proceeds with defining 
informational objects representing the conceptual constructs and IS actions 
processing them. This approach is applicable in situations where informational 
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objects in the IS refer to unusual conceptual constructs. We can assume that in 
engineering methods for GIS development, it is beneficial first to carry out OS 
metamodeling to specify complex conceptual constructs underlying spatial 
data. The CIS-driven approach is focused on architectural and technical features 
of the computerized information system. This approach is common in 
engineering the ISD method for technical system design (e.g. for architecture 
design).  

Due to the plurality of approaches, each with different orientation and 
emphasis on the IS perspectives, we describe the tasks of conceptual ISD 
modeling in four parts. In the first part, instructions are given for the selection 
of approach(es) and making decisions on the order in which steps in the other 
parts are executed. The next five parts provide steps for IS ontology 
engineering. The parts are: systelogical IS ontology engineering (or business 
system metamodeling), infological IS ontology engineering, conceptual IS 
ontology engineering (or object system metamodeling), datalogical IS ontology 
engineering, and physical IS ontology engineering.  
 
I.   Generic decisions: 
• Select a view through which the IS is primarily considered (e.g. transformation 

view, problem solving view, decision making view ( see Section 8.1)). 
• Deriving from the view selected, decide on the IS perspectives to be applied in IS 

ontology engineering. 
• Define the aim and scope of the IS perspectives.  
• Decide in which order the perspectives are to be applied in the IS ontology 

engineering (cf. US-driven, IS-driven, OS-driven, and CIS-driven approaches). 
 
II. Systelogical IS ontology engineering (cf. Section 6.3.1): 
• Define the most essential concepts by which the utilizing system of the IS can be 

modeled. 
 The concepts and constructs to understand and represent the structural, 

functional and behavioral features of the utilizing system are defined. 
They refer to e.g. US goals and US requirements, US roles, US positions 
and organizational units, US actions and US objects. Also intra-domain 
and inter-domain relationships are defined. 

• Define the essential US rules. 
 US rules are defined and structured in the ECAA (Event, Condition, 

thenAction, elseAction) form, or in some variant of that form. 
• Define US concepts that elaborate the view of the US as a physical, locational and 

temporal context. 
 Elaboration is done with the concepts of the US facility domain, the US 

location domain and the US time domain.  Through the concepts of the US 
facility domain, for instance, it is possible to define the functional role in 
which the IS is deployed in the US.  

• Complete the definitions of the intra-domain and inter-domain relationships 
between the US concepts.  
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III. Infological IS ontology engineering (cf. Section 6.3.2): 
• Define the essential concepts which are used to refer to IS actions (e.g. function, 

activity, task, step, operation). 
• Define the essential concepts which are used to refer to IS objects (e.g. outcome, 

deliverable, information set, message, decision). 
• Define the essential concepts which are used to refer to IS purposes (e.g. 

problem, goal, intention, motive). 
• Define the main IS action structures.  

There is a large set of IS action structures available (see Section 4.4.3): e.g. 
the generic structures (the decomposition structure, the control structures, 
and the temporal structures), the IS problem solving structure, and the IS 
management – execution structure. Select the appropriate structures and 
elaborate them to be included in the method.  

• Define the main structures of information processing rules. 
• Define the main specializations and structures of the IS objects.  

In congruence with the defined IS actions structures, decide on which sub-
concepts of the IS objects and relationships between them (e.g. partOf, 
supports, copyOf, versionOf) are needed. Define the concepts and the 
relationships. 

 
IV.  Conceptual IS ontology engineering (cf. Section 6.3.3): 
• Find out whether there exists a suitable IS meta data model. 
 In the literature there is a large set of meta data models (e.g. ER model 

(Chen 1976), EER (Elmasri et al. 2000), NIAM (Nijssen et al. 1989), OPRR 
(Welke 1988, Smolander 1991), GOPRR (Kelly et al. 1996), UML class 
diagram (Booch et al. 1999)), which provide either a ready solution to the 
needs of the method, or a basis for adaptations. If no such meta model is 
found, the following steps should be accomplished:  

 (a) Define the concept(s) with which independent and distinguishable 
things in reality are modeled (e.g. entity (type), concept (type), thing 
(type), phenomenon (type)). 

 (b) Define the concepts with which relationships between the things are 
modeled (e.g. relationship (type), connection (type), association (type), 
role). 

 (c) Define the concepts with which abstraction structures are modeled (i.e. 
classification, generalization, composition, and grouping). 

 (d) Define the concepts with which characteristics of the things and 
relationships are modeled (e.g. attribute, property, feature). 

 (e) Define the main structures with which static OSIS constraints can be 
modeled (e.g. cardinality constraint, role constraint, attribute constraint).  

• Find out whether there exists a suitable dynamic OS model. 
 If the ISD method should also comprise concepts for modeling the 

dynamic features of the OSIS, a variety of dynamic OS models (e.g. UML 
state diagram, Booch et al. 1999) are evaluated. If no suitable model is 
found, the following steps are carried out: 
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 (a) Define the main concepts with which the states of things are modeled.  
 (b) Define the main concepts with which the shifts between the states are 

modeled.  
 (c) Define the main concepts with which triggering the shifts between the 

states is modeled. 
 
V. Datalogical IS ontology engineering (cf. Section 6.3.4): 
• Define the main concepts, with which humans acting in the IS contexts can be 

modeled (e.g. agent, actor, stakeholder, user, end-user, role). 
• Define the main constructs with which organizational structures can be modeled 

(e.g. organization, unit, team, group). 
• Define the main structures with which IS actions can be decomposed into more 

elementary things (e.g. position, task, operation, step, work procedure, 
process, event).  

• Define the main concepts with which interaction between the human beings and 
the CIS can be modeled (e.g. dialog, window, UI component, UI data, UI 
action, UI state, UI transition).  

• Define the main concepts with which the structure and behavior of the CIS can be 
modeled on a general level (e.g. CIS action, CIS rule, transaction, algorithm).  

• Specify the languages (incl. notations) in which IS models can be presented.  
 
VI. Physical IS ontology engineering (cf. Section 6.3.5): 
• Define the concepts with which processes enacted by persons in a certain spatio-

temporal space are modeled.  
• Define the concepts with which persons, groups and their relationships are 

modeled. 
• Define the concepts with which data and data structures in different forms and on 

different granularity levels are modeled (e.g. data file, data base, record, data 
field, data message etc.).  

• Define the concepts with which the physical structure and behavior of the CIS is 
modeled (e.g. node, processor, memory device, SW component, HW 
component, protocol). 

  
The lists of the steps of the IS ontology engineering given above are not to be 
exhaustive, but rather to provide a concrete view of the wide range of issues 
that might be considered in the accomplishment of this task. On the other hand, 
it is not the purpose that in every ME context all the steps should be carried out. 
In contrast, whenever a part of the IS ontology is found in the literature that 
suits the needs of the ISD method, one should be encouraged to fully utilize it.  
 
11.8.4 Inter-Perspective ISD Modeling  
 
The ME tasks described above are related to specific ISD perspectives. To have 
an integrated view of the ISD context, it is necessary to ensure that the 
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perspective-based ISD models are inter-related in a consistent manner. That is 
the aim of inter-perspective ISD modeling. 

The ISDM analysis workflow comprises ME tasks of infological ISD 
modeling and conceptual ISD modeling. The ISD domains primarily concerned 
are the ISD action domain and the ISD object domain. Things in the ISD object 
domain are seen as linguistic artifacts and conceptual constructs. To ensure the 
consistency between the perspective-based ISD models, it is necessary to check 
that the defined concepts and constructs of those ISD domains are 
appropriately inter-related. 

In Section 11.8.1 we distinguished between the two main approaches to 
the ISDM analysis, the functional approach and the conceptual approach. Here 
we show how, with these approaches, it is possible to carry out inter-
perspective ISD modeling. In Figure 130 the ME processes following the 
approaches are illustrated with two settings composed of eight squares (cf. 
Leppänen 2000). A square stands for a specific sub-area of the ISD context. With 
the symbols in the squares we express the concepts and constructs in these sub-
areas. The meanings of the symbols are175: 
• A x AA. ISD actions and their abstraction relationships (i.e. decomposition, 

and specialization) 
• A x AR. ISD actions and their relationships based on the control structures, 

the ISD problem solving structure, the ISD workflow structure, and the IS 
modeling structure. 

• A x D. ISD actions, ISD deliverables and their inter-relationships. 
• D x DA. ISD deliverables and their abstraction relationships (i.e.  

decomposition and specialization) 
• D x DS. ISD deliverables and their supports relationships. 
• D x C. ISD deliverables, OSISD constructs and the signifies relationships 

between them 
• A x C. ISD actions, OSISD constructs and the involvedBy relationships 

between them. 
 
The setting on the left side (Figure 130a) illustrates the process of the ISDM 
analysis carried out according to the functional approach.  The first tasks 
produce descriptions / prescriptions about ISD actions (A) and ISD deliverables 
(D). At this stage abstraction by decomposition and specialization can be 
applied to the ISD actions (A x AA) and the ISD deliverables (D x DA). In 
addition, a variety of action structures can be defined among the ISD actions (A 
x AR ), and  supports relationships are defined between the ISD deliverables (D 
x DS ). After having defined the main concepts and relationships within the ISD  

                                                 
175  We have used Cartesian product in the symbols to highlight that the symbols stand 

for conceptual constructs within and between the concerned domains. We interpret 
Cartesian product freely so that it covers the n-ary relationships (n ≥ 2) between the 
contextual concepts. The abbreviations used in the subscripts are: A = Abstraction 
(relationship), S = Supports (relationship), R = Rest (of the intra-domain 
relationships).  
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FIGURE 130  (a) The functional approach and (b) the conceptual approach  
 
action domain and the ISD object domain, the ISD analysis proceeds to increase 
the understanding of the meaning of the ISD deliverables through conceptual IS 
ontology engineering. The results from the task comprise OSISD constructs (C x 
C).   

The setting on the right side (Figure 130b) illustrates a process of the ISDM 
analysis carried out according to the conceptual approach. The process starts 
with recognizing phenomena (C x C) in which we are interested during the ISD 
effort. With this better understanding of the structure and behavior of the IS it is 
easier to decide which ISD deliverables should be established to signify those 
phenomena (D x C). Having established the ISD deliverables with relationships 
to the object system of the ISD, it is then possible to define the supports 
relationships (D x DS) and the abstraction relationships (D x DA) between the 
ISD deliverables. To complete the picture, ISD actions are defined based on 
what their inputs and outputs (A x D) are. To verify the total view from the ISD 
infological and ISD conceptual perspectives, the involvedBy relationships 
between the ISD actions and the OSISD constructs (A x C) are defined.  

ME tasks along the path of applying one or the other of the 
aforementioned ME approaches are accomplished with the steps of the 
infological ISD modeling and the conceptual ISD modeling, respectively. In 
addition, it is necessary to verify the consistency between the ISD infological 
and ISD conceptual views. This is carried out with the following steps:  
• Ensure that for each ISD deliverable there is a non-empty set of OSISD constructs 

which the ISD deliverable signifies. 
• Ensure that for each OSISD construct there is a non-empty set of ISD deliverables 

that signify it.  
• Ensure that each OSISD construct is involved by at least one ISD action. 
• Ensure that each ISD action involves at least one of the OSISD constructs.  
 
There are several models that can support carrying out the aforementioned 
verification. The data class/business entity matrix (IBM 1984), for instance, can 
be used to model and analyze the signifies relationships between the ISD 
deliverables and the OSISD constructs. Likewise, the process/data class matrix  
(IBM 1984) can be used to describe the involvedBy relationships between the 
ISD actions and the OSISD constructs. In the latter matrix, special markings (R, C, 
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U, D) can be used to denote whether a certain ISD action requests, creates, 
changes or deletes information about a certain OSISD construct.  
 
 
11.9  ISDM Evaluation  
 
 
ISDM evaluation means ME actions, which aim to assess one or more ISD 
methods, or parts thereof, according to the defined criteria. ISD methods can be 
evaluated in various contexts for different purposes. Evaluation can be 
conducted, for instance, on the bases of drafts made from the method being 
engineered. Evaluation plays an important role also in the selection of the 
method for the use of the specific ISD project. Furthermore, it is common, 
during the method use, to make assessments of it for future acts of 
improvements. There is a large variety of ways and techniques that can be 
applied in the evaluation (Sol 1983; NCC 1987; Law 1988; Avison et al. 1995a; 
Kitchenham 1996a; Kitchenham 1996b; Kitchenham 1996c). To clarify a variety 
of contexts and targets of the evaluation, we present a meta model in Figure 
131. In what follows we define the concepts in the meta model, refer to the 
relevant literature and present a set of generic steps to be applied in ISDM 
evaluation.   

An evaluation context is a situation, the purpose of which is to assess 
and/or compare one or more ISD methods, or parts thereof. There are two main 
reasons for evaluation: academic reasons and practical reasons (Avison et al. 
1995a, 434). In the former case, the purpose of evaluation is to obtain a better 
understanding of the nature of the ISD method(s) in order to improve future 
methods. In the latter case, evaluation aims to choose a method and/or to 
provide the basis for making decisions on necessary improvements in the 
evaluated method. Whereas the categorization above is based on the different 
aspects in the ISD purpose domain, differences between the evaluation contexts 
can be based on the other contextual domains as well. For instance, evaluation 
can be performed in an academic organization, a method vendor organization, 
a software house, or a client organization (cf. Kitchenham 1996b). Evaluators in 
the context can be academic people, method developers, IS developers, and/or 
IS users.  

The main target of evaluation is a method or a method component. Let us 
call them methodical things. There is a myriad of literature on evaluation of 
methods in general (e.g. Olle et al. 1983; Olle et al. 1986; Jayaratna 1994; Blum 
1994; Hughes et al. 1996; Bielkowics 2002; Moody 2003a), or methods of certain 
types (e.g. object-oriented methods (Arnold et al. 1991; de Champeaux et al. 
1992; Hong et al. 1993; Iivari 1994; Liang 2000; Henderson-Sellers et al. 2001), 
component-based methods (Forsell et al. 2000; Boertien et al. 2001), agent-based 
methods (Tran et al. 2003; Dam et al. 2004; Sturm et al. 2004). The most common 
method components  in evaluations  are  models  (e.g.  conceptual   models  (see  
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FIGURE 131  Meta model of issues related to the evaluation of an ISD method 
 
references in Gemino et al. 2002; Moody 2003b; Moody 2000c), process models 
(e.g. Green et al. 2000), enterprise / business models (e.g. Hommes et al. 1999; 
Hommes et al. 2000; Arnesen et al. 2002), and techniques (data requirements 
specification techniques (e.g. Bielkowicz et al. 2001), user interface analysis 
techniques (e.g. Jefferies et al. 1991). A methodical thing can exist at different 
points in its life cycle and appear in different forms. It may be a draft on paper 
or a heavily used method, perhaps embedded in a CASE tool.  Evaluation can 
be made on the basis of primary descriptions (i.e. manual), trials of a CASE tool 
implementing the methodical thing, method specifications recorded in a CAME 
tool (Harmsen 1997; van Slooten et al. 1993), or based on some secondary 
sources, e.g. characterizations presented in articles and books. 

Of a methodical thing one or more features can be selected for evaluation. 
A feature means any property of a method, or of a method component, that is 
considered relevant in the evaluation context. Features can be categorized along 
several dimensions, partly depending on the kind of methodical thing: 
structural, functional vs. behavioral features; systelogical, infological, 
conceptual, datalogical vs. physical features; internal vs. external features; etc. 
Internal features mean properties that can be evaluated without associating the 
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methodical thing with any other thing or empirics (e.g. consistency and 
coherence of a conceptual model). External features mean properties that can be 
evaluated only by comparing them with others or deploying them (e.g. 
applicability and understandability).  

Evaluation of features should be based on well-defined evaluation criteria. 
A criterion means an explicitly specified standard of evaluation (cf. Webster 
1989).  One or more criteria can be used to evaluate a certain feature, and one or 
more features can be evaluated with the same criterion. Examples of criteria are 
readability (Bajaj 2002), expressiveness (Chaves et al. 1996), effectiveness 
(Gemino et al. 2002), efficiency (Moody 2003a) and correctness (Moody 2003b). 
For each criterion there are one or more variables with which “measurement” is 
to be performed (e.g. for measuring correctness of a data model there are 
variables, such as a number of violations to data modeling standards, a number 
of instances of entity redundancy, and a number of instances of relationship 
redundancy (Moody 2003b)). For each variable there is a metric, which specifies 
the data type, range, etc. of the variable. Variables can be qualitative or 
quantitative.  

Individual criteria are commonly structured into the form of an evaluation 
artifact. In the simplest form an artifact is a list of criteria (e.g. Rzevski 1983; Ang 
1993; Brodie 1983; Karam et al. 1993; Flynn et al. 1993). More structured forms of 
the artifacts are a taxonomy (e.g. Brandt 1983; Blum 1994), a hierarchy (e.g. Law 
1988) and a framework (e.g. Iivari et al. 1983; Lindland et al. 1994; Jayaratna 
1994; Krogstie 1995; Krogstie et al. 2000; Wieringa 1999; Bielkowicz 2002). A 
structure and contents of criteria are sometimes grounded on some theory (e.g. 
sociocybernetics in Iivari et al. (1983), semiotic ladder in Krogstie (1995)).   

In an evaluation context one or more evaluation techniques can be 
deployed. An evaluation technique provides criteria, principles, guidelines and 
steps to carry out an evaluation. Examples of evaluation techniques are SDSS 
(Law et al. 1984), STARTS (NCC 1987) and DESMET (Kitchenham 1996a). The 
use of an evaluation technique can be undertaken as an empirical or conceptual 
study. Examples of empirical studies are formal experiments, case studies, action 
research, and surveys. In a formal experiment participants are asked to perform 
a task or a set of tasks using the methodical thing under investigation. In a case 
research and in an action research (e.g. Grant et al. 2003; Tolvanen 1995) the 
method under evaluation is used and assessed in a real project where the 
method developer participates. In a survey ISD stakeholders having experience 
in specific methodical thing(s) are asked to provide information about it. 
Empirical studies aim to uncover method appropriateness (i.e. the fit with the 
needs and culture of the organization) and measurable effects of using a 
methodical thing. In a conceptual study an evaluator focuses on those features 
(i.e. internal features) in a methodical thing that do not necessitate empirical 
evidence for assessments. 

A variety of evaluation contexts is so huge that it is quite impossible here 
to provide detailed guidelines for the accomplishment of the ISDM evaluation 
workflow in all kinds of contexts. Instead, we present a set of steps for ISDM 
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evaluation on a general level with the purpose that the steps can be, in a case-
by-case manner, instantiated to suit a particular evaluation context. The steps 
are:  
• Analyze the evaluation context at hand. 
 Due to a large variety of evaluation contexts it is necessary to find out 

what kind of context is currently being dealt with. For this purpose, goals, 
target and constraints of evaluation are specified. These issues have a 
great impact on what actions are necessary to carry out in the following. 

• Decide what features in general are important to the evaluation. 
 Having specified the target of the evaluation one decides what features of 

the methodical thing(s) are to be evaluated. These features can be specified 
and structured according to the ISD method ontology (Section 9.5).  

• Select an evaluation technique. 
 Based on the goals, target, and constraints of evaluation, as well as on the 

specified features of the methodical thing(s), it is decided which kind of 
evaluation technique is needed. First, a decision is made between the 
empirical techniques and the conceptual techniques. Second, search for the 
literature is carried out to find an appropriate evaluation technique. If not 
found, the one(s) that come(s) closest can perhaps be adapted.   

• Specify evaluation criteria. 
A search is conducted to find an appropriate evaluation artifact (e.g. a list, 
a taxonomy, a framework, etc), which provides suitable evaluation 
criteria. This artifact is perhaps contained by the evaluation technique 
selected, or found from the literature. If not found, necessary adaptations 
are applied to some other artifact(s). For each criterion, the variables, 
metrics and usage guidelines are specified.   

• Fix the methodical thing(s) for the evaluation. 
 The methodical thing can be a method, or some part of it. Depending on 

the nature of the evaluation context and the goals of the evaluation, there 
may be one or more methodical things that should be evaluated. If several 
methodical things are to be evaluated, the selection of them is based on the 
availability, preconception of their match with the needs, and resources 
available for the evaluation.   

• Carry out the evaluation. 
 For each selected methodical thing the evaluation is made according to the 

defined criteria. If the set of the things is large, the evaluation is 
decomposed into two parts. In the first part an investigation is conducted 
on the basis of the most important features in order to decrease the 
number of the methodical things. In the second part an in-depth 
evaluation is carried out only for the most potential things. 

• Make a summary of, and conclusions from, the evaluation.  
 To help the utilization of results from the evaluation the assessments 

should be documented in a structured form. Documentation should also 
contain arguments by which the selections and assessments have been 
made (cf. method engineering rationale, Rossi et al. 2004).  



 

 

525

11.10 Summary 
 
 
In this chapter we have described the methodical skeleton for method 
engineering, called MEMES. It has been built upon OntoFrame, and in 
particular, upon the ISD ontology, the ISD method ontology, the ME ontology, 
and the ME method ontology. The purpose of MEMES is to provide support to 
the engineering of generic and domain-specific methods with any ME strategy. 
MEMES views the ME context from three ME perspectives and from three ISD 
perspectives. It covers three ME workflows that are the ISDM requirements 
engineering, the ISDM analysis and the ISDM evaluation.  

The ISDM requirements engineering starts with making decisions on the 
feasibility of a contingency framework to the ME context at hand. One or more 
frameworks can be selected to aid the elicitation and structuring of the 
characterizations of the concerned contexts (i.e. the prior contexts, the ME 
context at hand, and the target contexts) and the concerned methods. Next, the 
ME context at hand is analyzed to figure out, for instance, what is the level of 
knowledge of, experience from, and skills in method engineering in the 
organization. Also a selection between the problem-driven approach and the 
policy-driven approach is made. In the next tasks the target contexts and the 
prior contexts on three layers are characterized and analyzed. Based on the 
information about the aforementioned contexts, requirements for the ISD 
method are specified and classified. Next, existing ISD methods are analyzed to 
find out to what extent they can be used as the basis for integration and/or 
adaptation in the ME context. Finally, ME goals are stated and structured 
according to the processing layers and the contextual domains.  

The ISDM analysis aims to produce high-level descriptions about the ISD 
method. This workflow is composed of three main tasks, called the infological 
ISD modelling, the conceptual ISD modelling and the inter-perspective ISD 
modelling. For the workflow, two competing approaches, the conceptual 
approach and the functional approach, have been specified. Each of the tasks is 
supported by discussions of relevant issues and step-by-step procedures. In the 
descriptions it is also shown how OntoFrame can be utilized in engineering 
different parts of ISD methods.  

The ISDM evaluation in practice is composed of a large variety of tasks. 
MEMES provides the meta model of the main issues related to the evaluation of 
the ISD method, as well as a set of generic steps for the evaluation. The meta 
model covers concepts such as an evaluation context, an evaluation criterion, an 
evaluation technique, a methodical thing, and a feature. Each concept has been 
defined. The steps of the ISDM evaluation are to be instantiated to suit a 
particular evaluation context.  

MEMES was described in the structure of the methodical views defined in 
Chapter 9. Hence, we first characterized the background (cf. the historical 
view), application area (cf. the application view), and basic assumptions and 
approaches (cf. the generic view) of the artifact. After that we detailed the 
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conceptual contents (cf. the contents view) and functional structure (cf. the 
structural view) of MEMES. By this we demonstrated that the concepts and 
constructs specified in OntoFrame are fully applicable to the construction and 
presentation of new artifacts. More about the ways in which we utilized 
OntoFrame and MEMES themselves in the process of engineering MEMES will 
be said in the next chapter. 

To our knowledge, MEMES is the only ME artifact which provides 
comprehensive support, in terms of contextual issues, for method engineering. 
It is also the only one, which has been constructed in the deductive fashion, 
based on the sound theoretical foundation. In the next chapter we will present 
the results from a large comparative analysis of existing artifacts, which show 
that MEMES compares favorably with the other artifacts also in the other 
respects.  

 



 

 

 
 
 
 
 
 
 
 
 
 
 
12 EVALUATION OF MEMES 
 
 
In the preceding chapter we have defined MEMES (Method Engineering 
MEthodical Skeleton) as a normative prescription for the ME context and 
described it in terms of ME workflows, which structure and guide the ME 
process. In this chapter our purpose is to evaluate MEMES, in particular its 
applicability. In Chapter 1 we defined the goals for the applicability of MEMES 
in terms of framing, analytical and constructive intentions. Our evaluation in 
this chapter covers all of these three intentions.   

The chapter is organized as follows. In Section 12.1 we apply one of the 
ME workflows in MEMES, known as ISDM evaluation, to make sense of and 
structure the evaluation context at hand. In Section 12.2 we use MEMES as a 
frame to describe and analyze the processes of, and the deliverables from, the 
OSSAD project. In Section 12.3 we describe and evaluate how MEMES 
performed, in the constructive sense, in the MEMES effort. In Section 12.4 we 
use MEMES and OntoFrame as the analytical framework to make a 
comparative analysis of those existing artifacts in the ME literature, which are 
aimed to provide methodical support for ME. The chapter ends with a 
summary and discussions. 
 
 
12.1  Evaluation Context 
 
 
In Section 11.10 we presented the meta model of issues related to the evaluation 
of an ISD method and the set of generic steps for the evaluation. The steps to 
perform are: analyze the evaluation context at hand, decide what features in 
general are important to evaluation, select an evaluation technique, specify 
evaluation criteria, fix the methodical thing(s) for the evaluation, carry out the 
evaluation, and make a summary of and draw conclusions from, the evaluation. 
We consider this situation as an evaluation context and apply these steps to 
make sense of and carry out the evaluation of MEMES.  
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The evaluation context at hand is a research context (RW context), the 
purpose of which is to assess the ME methodical skeleton developed in this 
work. This is a one-person effort, in which the engineer of MEMES also acts as 
the evaluator. In Section 11.6 we stated the goals for MEMES in terms of 
internal and external properties. The goals that are based on the internal 
properties are: MEMES should be based on a solid and sound view of the 
relevant sub-domains, and MEMES should be modular and flexible. These 
goals are satisfied by the use of OntoFrame as the conceptual foundation. The 
goal concerning the external properties is: MEMES should be applicable. In this 
chapter we concentrate on the evaluation of the applicability of MEMES for 
three intentions of use. The intentions are: framing intention, constructive 
intention, and analytical intention. The applicability for the framing intention 
means that MEMES should provide concepts and constructs, which help us 
make sense of and structure the phenomena of ME in reality. The applicability 
from the viewpoint of the constructive intention means that MEMES should 
support the engineering of a methodical artifact. The applicability for the 
analytical intention means that MEMES should provide concepts and constructs 
for the analysis and comparison of existing ME artifacts. Next, we tell how we 
will evaluate the applicability of MEMES from these viewpoints. 

To evaluate how MEMES serves as a frame for conceiving the phenomena 
of ME, we make a retrospective analysis of one of our prior ME contexts. As 
mentioned in Chapter 11, the author has been involved in four prior ME efforts. 
In the first context the aim was to develop a language and a “design model” for 
a conceptual schema design (Leppänen 1984a). The second context dealt with 
an international project, which pursued a methodology for the analysis and 
design of office support systems (Conrath et al. 1989). The third context was a 
project which engineered a method for strategic planning of information 
technology and services (Leppänen et al. 1991). In the fourth context a method 
for database application design for teaching purposes was constructed 
(Leppänen 1993; Leppänen 2001). We select the OSSAD project as the target of 
our retrospective analysis for the following reasons. The OSSAD project 
engineered a domain-specific method without considering too much how to 
customize or configure it. This matches with the purpose of MEMES. Second, 
the other contexts either concentrated on specifying a language, not a method 
(cf. the first context), or on engineering methods mainly by the integration 
strategy (cf. the third and fourth ME contexts). Because MEMES does not offer 
specific support for method integration, we do not consider them here. The 
selected prior ME context is analyzed in Section 12.2.  

To evaluate how MEMES performs in the constructive sense, we make a 
retrospective analysis of the effort, which yielded MEMES. As said in Chapter 
11, we have applied MEMES in the engineering MEMES itself. Hence, in this 
effort there were actually two processes, parallel to each another, the RW 
process and the reflection process. In the RW process we constructed, step by 
step, the ME skeleton, and in the reflection process we tried to learn about this 
RW process and its outcome in order to elaborate the skeleton. The whole effort 
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was accomplished iteratively following the reflection-in-action approach (Schön 
1983). The MEMES effort is analyzed in Section 12.3.  

To evaluate the applicability of MEMES in the analytical sense, we carry 
out a comparative analysis of existing ME artifacts. Although in the ME 
literature there is no complete ME method, nor anything that would come even 
close to it, we select the most advanced suggestions for ME artifacts for our 
analysis. In this conceptual evaluation we compare MEMES with existing ME 
artifacts for two purposes: to examine the usefulness of MEMES as a frame, and 
to find out how MEMES compares with the existing ME artifacts. We describe 
the selected ME artifacts as well as the criteria, process and results of the 
comparative analysis in Section 12.4. 
 
 
12.2  Evaluation through the OSSAD Project   
 
 
In this section we make a retrospective analysis of the OSSAD project to 
evaluate MEMES as a frame. First, we outline the OSSAD project and describe 
the research setting. Then, we describe the objectives and process of the OSSAD 
project as well as the OSSAD methodology and analyze them in terms of 
MEMES. At the end we collect findings of and lessons from the retrospective 
analysis.  
 
12.2.1 Research Setting  
 
The OSSAD project (1985-1989) was the ESPRIT Project launched with the aim 
to develop a methodology176 for Office Support Systems Analysis and Design. 
It was funded by the European Union and companies, which participated in the 
project. The project was implemented as cooperation between academic and 
industrial partners from four countries, Finland, France, Germany, and Italy. 
The project engineered the comprehensive methodology that was published in 
a manual (Conrath et al. 1989) and in articles (e.g. Beslmuller et al. 1986; 
Beslmuller et al. 1987; Conrath et al. 1988; Charbonnel et al. 1991; Conrath et al. 
1992; Vincent et al. 1992; Conrath et al. 1999; Savolainen 1999). This author’s role 
as a researcher (1986 – 1989) in the project was to comment on and ideate the 
conceptual foundation of the methodology, to contribute to some specific parts 
of the methodology, as well as to field test the methodology in a Finnish 
organization (Leppänen et al. 1988; Leppänen et al. 1989a).  

The project is relevant from the viewpoint of this study for the following 
reasons. First, it engineered a comprehensive domain-specific method. Second, 
the engineering was not “just another academic exercise” but it was firmly 
linked to practice. An indication of this is that the methodology in its various 
                                                 
176  A methodology means “a set of tools and procedures from which one can abstract a 

sub-set for particular goals and environmental conditions of a project” (Dumas et al. 
1986,  3). 
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versions was field tested several times in practice. Third, the engineering 
occurred at the time when there was available no such body of knowledge of 
method engineering as we have at present. That gives us the possibility to 
analyze the context and its outcomes as “pre-methodical” ME instances.  

As said above, we apply the retrospective analysis (cf. Fitzgerald 1991) to 
make sense of the process and outcomes of the OSSAD project. We set up two 
goals for the analysis. First, we try, using MEMES as the frame, to find out 
essential features and approaches of the OSSAD project, as well as to discover 
possible problems and speculate how these could have been avoided with 
methodical support such as that offered by MEMES. Second, our aim is to 
investigate how MEMES performs as a frame in this kind of analysis. 
Assessments of the OSSAD projects are not intended as criticism against the 
project or its members. It has to be remembered that at the time when the 
project was seen through the ME field was in its infancy.  

Conducting the retrospective analysis in a proper way would necessitate 
keeping a record or log of the process in the context. This is so because it is 
often difficult to remember details at the end, which may be several years later 
(Fitzgerald 1991). The OSSAD project produced no material solely for this kind 
of research purpose. However, there is a large collection of documents, 
including the manual of the methodology, field test reports, memos, working 
papers, etc. that are applicable for the analysis. This material is not sufficient for 
a comprehensive and in-depth analysis of the process and outcomes, but it suits 
for our purposes.  
 
12.2.2 OSSAD Process 
 
The primary objective of the OSSAD project177 was “to develop, implement, and 
validate a methodology (a set of methods) that can be used to design effective 
and acceptable computer-based office systems” (Baron et al. 1989, 2). This 
primary objective was decomposed into four sub-goals concerning “the 
description of an office work and information management systems, the 
creation, application and evaluation of measures of performance, the 
development of a model to describe and explain office work, information 
management systems, etc., and the development, application and evaluation of 
the means to evaluate the performance of various office support systems” 
(Baron et al. 1989, 2-3).  

The ME work in the OSSAD project was divided into four ME stages. In 
the first of these stages a more detailed plan and schedule for ME work were 
made, the project organization composed of several working groups was 
established, and the approaches, fundamental principles and structure of the 
methodology were delineated. Four research fields were explored: taxonomies 
of office activities, a language for describing the office, a model for representing 
office work and organization, and performance measurements of office 
                                                 
177  Esprit Project No. 285, R & D Area 4.1: Office Systems Science and Human Factors. 

Esprit = European Strategic Program for Research in Information Technology. 
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activities (Dumas et al. 1986, 5). The work in these fields contributed to e.g. 
concepts and notations of office models. In the OSSAD approach, the notion of 
a methodology was defined to mean “a set of tools and procedures from which 
one can abstract a sub-set suited for particular goals and environmental 
conditions of a project. This subset is called a ‘method’” (Dumas et al. 1986,  3). 
A methodology was drafted around four dimensions (Dumas et al. 1986, 6): (a) 
“subdivision of the project into steps (What has to be done and how to do it?)”, 
(b) “organizing the project (Who will accomplish the tasks?)”, (c) “selection of 
the set of instruments out of the tool box (Which tools are to be used for each 
step and how?)”, and (d) “documentation for project work and management”. 

In the second stage of the OSSAD project the two first phases (i.e. 
‘Contracting Phase’ and ‘Analysis Phase’) in the OSSAD methodology were, on 
a general level, engineered. About the rest of the phases it was only mentioned 
that “they deal with the design of alternatives, choice, implementation, 
evaluation and the like” (Dumas et al. 1986,  7). The OSSAD methodology for 
the two phases was field tested in three countries (France, German and Italy). 
The common application area for field tests was savings banks. Experience from 
the field tests (Dumas et al. 1986; Beslmuller et al. 1987) were analyzed and 
utilized to refine the methodology. In the third stage the OSSAD methodology 
was enhanced with three more phases, which were ‘Design System’, 
‘Implement Changes’, and ‘Monitor System Performance’. Also in this stage, the 
OSSAD methodology was field tested, now in four countries (Finland, France, 
Germany and Italy) (Baron et al. 1989).  

The purpose of the fourth stage in the OSSAD project was to refine, 
elaborate and complete the methodical support to the analysis and design of 
office support systems, covering for the whole life cycle. Work contained a very 
laborious process of restructuring, streamlining, detailing, and verifying 
descriptions of functions, activities, operations and procedures of the 
methodology. In this stage the decision was made to convert the descriptions of 
the OSSAD methodology to follow the terminology of the OSSAD methodology 
itself. The manual was finalized in 1989 (Conrath et al. 1989).  

Next, we describe the process of the OSSAD project in terms of ME 
workflows of MEMES. First, we make it for the part which corresponds to the 
ISDM requirements engineering workflow.  

In the OSSAD project the ME context as well as the target contexts were 
characterized, but not with any specific contingency framework. The ME 
context at hand was outlined at the beginning and later elaborated during the 
process. By its basic nature, the project was a research project, which was set up 
to fulfill concrete objectives. Despite its “academic flavor”, the project was - 
through its participants, ways of working, and contributions - closely and 
firmly related to ISD practice. This premise “colored” all considerations and 
solutions in the project. The project applied primarily the policy-driven 
approach (cf. Section 11.7.2), as it aimed to provide a new methodology for the 
development of office support systems. That ‘new’ was concretized to mean the 
specification and deployment of more office-specific concepts and structures, as 
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compared to the other methods of that time, as well as to provide more 
possibilities for users to participate in the development.  

No prior contexts on the ME layer, nor on the ISD layer, were analyzed 
explicitly or separately. Instead, the participants brought with them their 
knowledge about and experience from the past contexts of method engineering 
and deployment they had participated in. The key participants in the OSSAD 
project were distinguished scientists or practitioners with long experience from 
the consultancy and software industry. The OSSAD project characterized the 
target contexts such as the one below:  

 
While early systems were usually developed for a single purpose, current 
technologies (e.g. the micro-computer and local area networks) support a variety 
of tasks, and the trend is to increase the level of integration across not only tasks 
but people as well. The consequence is that the nature of office work is changing 
and will continue to change, and to accomplish this work effectively an office […] 
depends on the appropriate integration of the organizational and technical 
support systems (Conrath et al. 1989, 1) 

 
Requirements for the OSSAD methodology were specified throughout the ME 
project. The first requirements were very general, concerning generic 
approaches and principles. Later, they were detailed and made more 
structured. An example of the generic requirements is: “The resulting need is to 
ensure that integration of the organizational and technical support system is 
done in a well-planned, comprehensive and beneficial fashion” (Conrath et al. 
1989, 1) 

Existing ISD methods were not analyzed in an explicit fashion. 
Participants had good knowledge about the application area (i.e. office systems) 
and its evolution, as well as about methods available at that time (e.g. AXIAL, 
MERISE, SADT, X-TOP, OFFIS, OAM, MOBILE-Burotique, etc.). There were 
also some comparisons of relevant methods available in the literature (e.g. 
Newman 1980; Bracchi et al. 1984). Nevertheless, an in-depth analysis of 
existing methods would have given a more solid basis for the ME work. The 
knowledge was summed up with statements such as:  “most of the existing 
system design methods focus on technical aspects of the office systems and pay 
virtually no attention to problems of organizational structure”, “few 
approaches purport to be comprehensive and detailed enough”, and “methods 
ignore organizational change issues” (Conrath et al. 1989, 1). 

Based on the perceived problems in ISD practice and shortcomings in the 
methods available, several goals for the OSSAD methodology were stated in 
terms of ISD approaches, coverage and ISD actors. Examples of the goals are: 
the OSSAD methodology should be “concerned with the entire process – from 
the initial contact with someone interested in changing the existing support 
systems, to their design, implementation and ex post evaluation”. It should be 
“developed on the assumption that those who use it are not experts in the 
design and implementation of integrated organizational /technical –support 
systems”. “The target audience […] is expected to be composed of those who 
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work in the areas of information systems, office automation, organization and 
methods, organisational design and like. (Conrath et al. 1989,  1). Furthermore, 
in the early stage of the project a set of main ISD principles were defined for the 
OSSAD methodology (Dumas et al. 1986,  6). The principles were: contingency, 
problem-orientation, participation, iterativeness, and experimentation. Later, 
the set was enhanced with the principle of decomposition/aggregation 
(Conrath et al. 1989, 2). 

Next, we describe and analyze the process of the OSSAD project in terms 
of the ISDM analysis workflow. According to MEMES the ISDM analysis 
workflow is composed of three main tasks: infological ISD modeling, 
conceptual ISD modeling and inter-perspective ISD modeling. There are also 
three approaches (i.e. the functional approach, the conceptual approach, and 
the mixed approach) which affect how and in which order these tasks are 
carried out.  

The OSSAD project applied the mixed approach to the ISDM analysis. It 
deployed an information flow view to delineate the functional structure of the 
analysis and design process of an office support system, and at the same time it 
made an attempt to establish a new kind of view of an office and office support 
system. For infological ISD modeling the process was decomposed into phases, 
later known as functions, and further into activities, operations, etc. Likewise, 
the notions of a packet and a resource were defined and connected to functional 
notions (cf. the information flow view). For conceptual ISD modeling a special 
work stream was established to define the basic notions of office and office 
support system. It followed the IS-driven approach (cf. Section 11.8.3), resulting 
in that also an office and an office support system were modeled in terms of 
information flows. We return to discuss the feasibility of this view later. From 
the tasks of conceptual ISD modeling (cf. Section 11.8.3) the OSSAD project 
addressed infological IS ontology engineering, datalogical IS ontology 
engineering, and physical IS ontology engineering but ignored systelogical IS 
ontology engineering and conceptual IS ontology engineering. This concretely 
shows how function oriented view the project had adopted. No special 
activities for inter-perspective ISD modeling were carried out.  

Finally, we describe how the OSSAD methodology was evaluated (cf. the 
ISDM evaluation workflow in MEMES). Conceptual evaluation was organized 
in the way in which various versions and parts of the methodology were 
commented in other groups. By this way most of the deficiencies and 
inconsistencies in structures, naming and notations were revealed and 
improved. The decision to apply the terminology and notation of the 
methodology in describing the OSSAD methodology itself enabled easier and 
more transparent internal verification. The methodology was also empirically 
tested several times in practice (Dumas et al. 1986; Leppänen et al. 1988; Baron et 
al. 1989). Experience from field tests was utilized to make improvements in the 
methodology.  

The OSSAD project carried out also engineering actions, which are not 
covered in MEMES. For instance, the OSSAD methodology provides some 
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concepts and constructs for the ISD actor domain, such as a role, a unit and an 
actor. It also enables the modeling of physical and technological support for 
office work. These issues pertain to the ISD datalogical perspective and the ISD 
physical perspective, which belong to the ISDM design workflow and the ISDM 
implementation workflow, respectively. Because they are not covered in 
MEMES, we ignore them in our consideration.  
 
12.2.3 OSSAD Methodology 
 
In this section we briefly describe the OSSAD methodology and use MEMES as 
the frame to analyze it.  Of numerous features of the methodology we 
concentrate on the main principles, the phase structure and the office models178. 
The descriptions are based on the OSSAD manual (Conrath et al. 1989). 

The OSSAD methodology has been built upon a number of fundamental 
premises and beliefs, known as the OSSAD principles. The following is a 
summary of these principles: (1) Contingency: It is not realistic to tackle the 
world of office systems with one unique method. That is why OSSAD proposes 
a methodical framework, which allows the tailoring of the methodology to a 
specific project situation. (2) Decomposition/Aggregation: One has to able to 
examine a system at various levels of detail. (3) Experimentation: No method is 
likely to yield an ideal solution without any experience in its use. (4) Iteration: 
The use of feedback during the analysis, design and implementation of a system 
implies that the procedure is iterative. (5) Participation: The users are invited to 
analyze the existing situation and to model and suggest effective alternatives.   

The methodology is functionally divided into five functions (originally 
called phases): Define Project, Analyze Situation, Design System, Implement 
Changes, and Monitor System Performance. Define Project involves 
establishing the basis upon which a particular study will be undertaken. It 
results in a contract for the re-organization, outlining the terms of reference and 
plans for the development. Analyze Situation concerns the collection, 
processing and presentation of the data needed to describe the organization and 
its environment for diagnostic purposes. The purpose is to identify the 
problems which should be resolved, and the opportunities which could be 
discovered by the introduction of a new and/or revised office support system. 
In Design System, one searches for alternative organizational and technical 
systems that will effectively respond to the identified problems and improve 
performance in general. Implement Changes convert things, which to this point 
have been conceptual, into something that is concrete, into an operational 
system. It consists of acquiring hardware and software, making and executing 
plans for reorganizing, educating and training, and making the system 
operational. Monitor System Performance is devoted to the analysis of an 
implemented office support system to identify whether or not it functions as 

                                                 
178  We have also made an in-depth analysis of the abstraction structures included in the 

OSSAD methodology (Leppänen 1989a). This is not considered here.  
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intended. It is composed of developing instruments and procedures, collecting 
and analyzing data, and devising recommendations for modifications.  

The methodology provides three basic models for describing office and 
office support systems: Abstract Model, Descriptive Model, and Specification 
Model. The Abstract Model is composed of four basic concepts: function, sub-
function, activity, and packet. A packet stands for an informational or material 
object in our terminology. The relationships between the actions (i.e. functions, 
sub-functions, and activities) and the packets are input/output/visited 
relationships. In addition, there are the ascendant/descendant relationships (cf. 
the partOf relationship) between the actions and between the packets. As a 
conclusion from the above we can say that the Abstract Model is a pure instance 
of applying the IS infological perspective.  

In the Descriptive Model the functions, sub-functions and activities are 
decomposed into operations, tasks, and procedures. Tasks can be assembled to 
establish roles and (organizational) units. Corresponding to the concept of a 
packet in the Abstract Model, the concept of a resource is used in the 
Descriptive Model to mean “data or objects which are inputs to, or outputs 
from, operations / tasks / procedures / roles / units” (Conrath et al. 1989,  11). 
A facility is a physical and/or technological support used to perform work. In 
addition, the concept of an actor is used to mean “an individual who fulfills a 
role and/or who possesses the capabilities, such as education and experience, 
to fulfill a role” (Conrath et al. 1989, 11). To conclude, the Descriptive Model 
mainly highlights the features of office support systems from the IS datalogical 
perspective.  

The third basic model, the Specification Model, corresponds mainly to the 
IS physical perspective. The OSSAD methodology distinguishes between two 
systems: the organizational support system (cf. HIS) and the technical support 
system (cf. CIS) (Conrath et al. 1989, 7). Both of them require a specification 
model. The technical specification model is intended to serve as the basis for 
hardware and software acquisition. More specifically, the technical 
specifications encompass the following components: user interfaces, software, 
databases and knowledge bases, hardware, system interconnections, and 
quality and control features. The organizational specifications are broken down 
into positions/roles, communication linkages, and decision making systems 
(incl. job descriptions and organization charts).  

At a rather late stage in the OSSAD project, the decision was made to 
convert the descriptions of the OSSAD methodology itself to apply the 
terminology of two OSSAD models: each function in the OSSAD methodology 
is, therefore, presented in an abstract model and in a descriptive model. These 
two models are deployed to differentiate between situation-independent 
features and situation-dependent features (cf. the contingency principle). The 
abstract model of the OSSAD methodology applies to all applications of the 
OSSAD methodology, whether involving a large or a small organizational unit 
(Conrath et al. 1989, 3). It provides the essentials of office support system 
analysis and design. A descriptive model of the OSSAD methodology describes 
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how in a certain kind of situation the analysis and design should be 
accomplished. Because the set of situations is large, the manual provides 
description models only for one or two situations in each phase.  
 
12.2.4 Findings and Lessons 
 
In this section we collect findings of and lessons from the retrospective analysis 
of the OSSAD project. First, we describe problems in the OSSAD process and 
methodology, identify ME approaches applied in the OSSAD project, and 
characterize the scope, emphasis and nature of the OSSAD methodology. 
Second, we present assessments of how MEMES performed as the frame in the 
analysis. 

The OSSAD project was a comprehensive ME effort covering, to a large 
extent, all five ME workflows recognized in the ME ontology. Some tasks of the 
ME workflows were, however, insufficiently addressed. Methods and models 
of that time, for instance, should have been more carefully analyzed. With 
respect to conceptual ISD modeling, the project ignored tasks of systelogical IS 
ontology engineering as well as tasks of conceptual IS ontology engineering. 
Ignoring the IS conceptual perspective resulted in that the rich variety of office 
documents and communication and the semantics of office work were not 
considered. This led to a rather narrow domain of office models (see below).   

ISDM analysis started with balancing the functional approach and the 
conceptual approach and later proceeded with the emphasis on establishing 
and refining the functional features of the methodology (cf. ISD infological 
perspective). In ISD conceptual modeling the project clearly applied the IS-
driven approach. The OSSAD methodology was the target of several kinds of 
evaluation. First and foremost, field tests in four countries provided a 
noteworthy proof of the applicability of the methodology in practice. 

The OSSAD methodology is quite extensive covering ISD phases from 
contracting to implementation. The methodology is structured according to two 
major constructs: the phase structure and the ‘perspective-based’ office 
modeling structure. Functionally office support system analysis and design is 
decomposed into five functions, corresponding to our phase structure. Three 
models (i.e. Abstract Model, Descriptive Model, and Specification Model) 
provide concepts and constructs for viewing from three different IS 
perspectives. The Abstract Model reflects the essence of office work from the IS 
infological perspective. The Descriptive Model applies the IS datalogical 
perspective, and the Specification Model provides concepts and constructs for 
the IS physical perspective. In the OSSAD methodology the first three phases 
and the first two models are described in more detail. This is justified by having 
several existing methods that can be used to fulfill the possible gaps in the 
support of later phases. Through the scope and contents of the Specification 
Model the methodology becomes more oriented towards the development of a 
technical office system than towards the design of human and social aspects of 
an office support system. This is actually contrary to the goals stated.  
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The OSSAD project was running at the time when several office models 
had been published in the field of office information systems. The best-known 
office models were SCOOP (Zisman 1977), ICN (Ellis 1979), Form Flow Model 
(Ladd et al. 1980), OFFIS (Konsynski et al. 1982), OMEGA (Barber 1983), TAM 
(Sasso 1984), and SOS (Bracchi et al. 1984). Common to all of them is that they 
view an office in terms of information flows (Auramäki et al. 1992a), whether as 
a set of interconnected operations, activities, or tasks. In the models of the 
OSSAD methodology the same orientation can be clearly seen. In this sense the 
methodology can be classified as having a functionalist approach to an office 
(Hirschheim 1986). Implied from the above, we can say that as regards to the 
concepts and constructs, the OSSAD Methodology did not bring much that was 
essentially new. During the OSSAD project human and social aspects were 
emphasized and communication was seen as vital. Unfortunately, the OSSAD 
methodology fails to adequately cope with these aspects (cf. the SAMPO model 
(Auramäki et al. 1988; Auramäki et al. 1992a)). What was new in the 
methodology is how it categorizes the features into three models, each of which 
reflects a particular view on the office and office work. Also its techniques for 
data collection and analysis as well as explicit guidelines for defining 
performance measures are innovative (cf. Auramäki et al. 1992b). It lacks a 
model with which the conceptual contents of office documents could be 
modeled. That means that the methodology applies a kind of document-based 
approach to office modeling (cf. Ladd et al. 1980; Zloof 1981; Ellis et al. 1982) in 
which documents are treated as data objects without explicit knowledge of their 
contents. The terms used to model an office, and in particular informational 
objects (i.e. ‘packet’ and ‘resource’) are not very illustrative, neither “office-
like”. Clearly, more effort would have been required to come up with better 
“essentials” of the office and office work. Any simple categorization of office 
document types would have been welcome, something similar to genres 
perhaps (e.g. Yates et al. 1992; Orlikowski et al. 1994). 

Then, how did MEMES perform in the analysis? It provided conceptual 
constructs and “building blocks” which helped us structure the conceptions 
about the OSSAD process and the OSSAD methodology. We were able, for 
instance, to identify the basic ME action structures and to point out limitations 
in the ME life cycle of the OSSAD project (cf. the analysis of existing methods, 
tasks of systelogical IS ontology engineering, and tasks of conceptual IS 
ontology engineering). Second, we could recognize ME approaches followed in 
the OSSAD project (e.g. the functional approach and the IS-driven approach), 
based on the ISD perspectives and the IS perspectives adopted, which help us 
understand the rationale of ME actions. We found ISD constructs and IS 
constructs embedded in MEMES helpful in analyzing the OSSAD methodology. 
The collection of the main OSSAD models (i.e. Abstract Model, Descriptive 
Model, and Specification Model), for instance, was found to follow closely three 
IS perspectives respectively. All the models were recognized to reflect the view 
of information flows on an office and an office work.  
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12.3  Evaluation through the MEMES Effort 
 
 
In this section we examine how MEMES performed as a prescriptive artifact in 
the engineering of MEMES itself (cf. the constructive intension). First, we 
explain why the MEMES effort is interesting from the research viewpoint, and 
what principles, resulting from the use of the reflection-in-action approach, 
shaped the MEMES process. Second, we describe the MEMES process in more 
detail. Third, we present findings of and lessons from the MEMES effort.  
 
12.3.1 Research Setting 
 
The MEMES effort is interesting from the research viewpoint for several 
reasons. First, evaluative studies of method engineering in practice are fairly 
rare. Second, as far as we know there are no studies that would address method 
engineering for method engineering. Third, two parallel processes, induced by 
the application of the reflection-in-action approach, offer an interesting research 
domain to make sense of, structure and evaluate. In the following, we describe 
and evaluate the MEMES effort by means of retrospective analysis.  

The MEMES effort was carried out applying the reflection-in-action 
approach (Schön 1983). The approach makes the distinction between two 
theories of action (Argyris et al. 1978): espoused theories, which are those that 
an individual claims to follow, and theories-in-use that are those that can be 
inferred from action. The latter are tacit, cognitive maps by which actions are 
designed. They can be made explicit by reflecting in action (Heiskanen 1995, 7).  

In our case there was only one person, who acted in two roles, as a 
practitioner and as a researcher. The practitioner was the method engineer and 
the user of MEMES. The researcher was the one who, based on his reflections, 
formulated and elaborated prescriptions for method engineering. The 
practitioner sought to discover the paricular features of a problematic situation, 
and from the gradual disovery, framed the situation and tried to fomulate a 
solution. An essential ingredient of situation framing in action design is the 
notion of a generative metaphor (Heiskanen 1995,  8). This is a vehicle for 
seeing the phenomena under study as something. In the MEMES effort our 
metaphor was based on the assumed analogy between ISD contexts and ME 
contexts, and between ME contexts and RW contexts. In our view, the ME 
context possesses typical features of the ISD context (e.g. Olle et al. 1983; Kumar 
et al. 1992; Tolvanen 1998), and correspondingly the RW context resembles the 
ME context.  

Reflection is the practice of periodically stepping back to ponder one’s 
immediate environment (cf. Raelin 2001, 11). We can categorize kinds of 
reflection according to (a) the target of reflection, (b) the timing of reflection, 
and (c) the primary goals of reflection (cf. Raelin 2001; Heiskanen 2005, 
Baskerville et al. 1998). Based on the target, Raelin (2001) and Heiskanen (2005) 
distinguish between content reflection, process reflection, and premise 
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reflection. Content reflection is about how a practical problem was solved. 
Process reflection studies the procedures and the sequence of the events. 
Premise reflection questions the presuppositions underlying the problem. Based 
on the timing of reflection, Heiskanen (2005) recognizes anticipatory, 
contemporaneous, and retrospective reflection. Furthermore, we can 
distinguish between three kinds of goals of reflection: organizational 
development, system design, and scientific knowledge (Baskerville et al. 1998,  
95). 

Reflection in the MEMES effort concerned contents, process, and premises, 
with the aim to contribute to method engineering and scientific knowledge. It 
appeared as contemporaneous reflection in the form of a fluid process structure. 
A fluid structure “defines activities very loosely, allowing substantial 
simultaneity or leaving the temporal location of various activities relatively 
undefined” (Baskerville et al. 1998,  95).  

Figure 132 illustrates, in a more concrete way, the two processes in the 
MEMES effort. It expresses how the RW process and the reflection process 
make up an iterative process. It also shows the role of MEMES in this process. 
The RW process means actions of engineering the ME skeleton for the 
construction of an ISD method. The reflection process means actions of learning 
from the aforementioned RW process and engineering ME guidelines for the 
construction of the ME methodical skeleton. The practitioner starts the RW 
process by considering a particular ME problem (e.g. how to decompose the ME 
analysis workflow into ME tasks). He tries to make sense of the problem space 
by using his intuition and the selected generative metaphor according to which 
the ME can be conceived as the ISD context. He produces, for instance, a 
tentative sub-division of the ME analysis workflow into ME tasks to be 
included in the body of MEMES (for ME). Next, he changes his role into a 
researcher  and  starts  the  process of  reflection  on what  he  just  did,  with the 
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FIGURE 132  Iteration between the RW process and the reflection process 
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aim to formulate guidelines for how the corresponding problems should be 
solved in a general case. Using the generative metaphor he tries to reconstruct 
and restructure the past RW process by engineering the corresponding part of 
MEMES (for RW). After this, the researcher returns into the role of a 
practitioner, and repeats the RW process, now with the reconstructed 
guidelines (MEMES for RW) in order to re-engineer MEMES for ME. This may 
be followed by still another reflection process with the help of the re-engineered 
MEMES.  

In iteration within and between the RW process and the reflection process 
MEMES acts in three roles. First, MEMES is an outcome of the RW process. 
Second, MEMES is applied as the frame through which the RW process is 
reflected. Third, MEMES acts as a prescription produced by the reflection 
process and applied in the RW process.  

The reflection-in-action approach was implemented in the form of self-
reflection, not as collaboration between researchers and pracitioners. Thus, our 
way of conducting the research clearly differed, for instance, from the one 
named as ‘reflective IS action research’ in Baskerville et al. (1998, 110). Due to 
this fact, the findings and lessons reported on the MEMES effort are mainly 
subjective and only of moderate significance from the viewpoint of validation. 
We also acknowledge the danger of post-rationalization and one-sidedness 
(Heiskanen 2005, 8) when making interpretations about problem settings, 
decisions, and events in the MEMES effort. However, we believe that including 
the retrospective analysis of the MEMES effort in the thesis increases our 
understanding of an ME effort in general, and of how MEMES performed as the 
prescription in the MEMES effort in particular.   
 
12.3.2 MEMES Process 
 
In this section we describe, in more detail, the RW process and how it was 
related to the reflection process. In particular, we elaborate the role of MEMES 
in the process. In the description of the RW process we refer to an “engineering 
space” (Figure 133), which is composed of two dimensions, one for the RW 
workflows (RW RE, RW analysis, RW evaluation) and the other for the ME 
workflows (ISDM RE, ISDM analysis, ISDM evaluation). The former stands for 
the RW process and the latter corresponds to the ME process covered by those 
parts of MEMES that were engineered in the RW process. RW RE, for instance, 
means requirements engineering in the RW context, in particular for MEMES. 
ISDM RE, in turn, means requirements engineering for an ISD method. The 
analysis workflow in both of the dimensions is sub-divided into two parts 
standing for the infological modeling and the conceptual modeling, 
respectively. Because at the first stages of the RW process MEMES was not yet 
viewed as a composition of the aforementioned parts, the topmost row in 
Figure 133 corresponds to a general view of MEMES. The numbers between 1 
and 20 and the arrows connecting them show how the RW process progressed 
and iterated. 
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FIGURE 133  A detailed description of the cyclic ME process 
 
The RW process started with considering the requirements engineering for an 
ISD method from the ISD conceptual perspective (1). The ISD conceptual 
perspective was applied to obtain a rationale and basis for engineering the core 
ontology and the context ontology. This was followed by RW analysis (2) and 
RW evaluation (3) from the same perspective. RW evaluation means checking 
the internal consistency and coherence of the ontologies, comparing them with 
existing artifacts in the literature and applying the engineered parts of the core 
ontology in the analysis of the OSSAD methodology (Leppänen 1989a). These 
tasks constituted a functional totality within which several iteration cycles were 
carried out. We refer to this totality as the first RW stage179. This stage began in 
small-scale in the 1980’s and strengthened in the 1990’s.  

The second RW stage was triggered in 2000 when the goal to develop a 
more normative support for ME was set up. In this stage the historical view, the 
                                                 
179  For the MEMES effort no phase structure with milestones and baselines were 

defined. Therefore, we refer to these functional wholes as the RW stages.  
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generic view and the application view of MEMES was outlined (4). The work 
done so far in the conceptual IS modeling was reconsidered and plans to 
enhance it into the ME ontology was made (5). The functional structure of 
MEMES was also sketched (6). All these results were evaluated in terms of their 
consistency and coherence (7). The process in this stage contained several 
iterations. Implied from the above, we can say that our ME approach to this end 
was clearly conceptual. 

In the third stage the RW work moved to enhance the ME ontology. So far 
only some parts of the core ontology and the context ontology were established. 
We specified more concrete goals for the missing parts of OntoFrame (8) and 
started the engineering work to fulfill these goals (9). Engineering the 
contextual ontologies, the ISD ontology, the ISD method ontology, the ME 
ontology and the ME method ontology was executed in a highly iterative 
process including repetitive evaluations (10). During that stage several changes 
and enlargements were also made in the core ontology and the context 
ontology. Also the view of methodical support provided by MEMES was 
clarified and refined.  

In the fourth stage we concentrated on refining the functional structure of 
MEMES based on the ME workflow structure delineated in the second stage. 
We started with elaborating goals for the ISDM requirements engineering 
workflow and decomposed the workflow into ME tasks (11-13). In the same 
way we carried out RW actions for the two other ME workflows, the ISDM 
analysis (14-16) and ISDM evaluation (17-20). Here we specified, among other 
things, ME tasks for engineering an ISD ontology and an IS ontology (cf. 
conceptual ISD modeling in Section 11.8.3). The process was highly iterative 
including evaluation in terms of internal and external criteria. 

After outlining the RW process of engineering MEMES above, we will 
next describe in which stage and how we could deploy MEMES as a methodical 
support in this RW process.  

The first stage was carried out without MEMES. The process was guided 
by general knowledge about conceptual modeling (in the 1980’s) and 
metamodeling (in the 1990’s), collected from the literature and experienced 
from practice. In the second stage we made a conscious decision to start 
applying the reflective approach according to which the problem space and the 
solution space of the RW process were framed with those parts of MEMES 
which were already available. This decision was made for two reasons. First, 
this way we could, with only short delays, obtain individual and concrete 
knowledge about how parts of MEMES just sketched functioned. Second, the 
RW process was highly complicated and difficult to manage and MEMES, 
although a half-ready artifact, could substantially benefit the process.  

In the third stage we could not utilize MEMES because it did not yet 
contain normative prescriptions for ontology engineering. However, major 
decisions on essential structures of MEMES made in the preceding stage framed 
the process and its outcomes in this stage. Engineering of the topmost 
ontologies in OntoFrame shaped some conventions, which we later wrote into 
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prescriptions of how to make conceptual ISD modeling. In the fourth stage we 
could fully benefit from MEMES. For instance, in specifying tasks for the ME 
RE workflow (Section 11.7), we reconsidered the specifications made for RW 
requirements and goals. Likewise, in specifying guidelines for infological ISD 
modeling (Section 11.8.2) we applied the same guidelines as in modeling ME 
from the infological perspective.  
 
12.3.3 Findings and Lessons 
 
Our purpose in this section is to describe the MEMES effort in terms of MEMES 
and uncover the approaches, action structures and motives for the RW actions 
performed. We also assess the applicability of MEMES in the MEMES effort.  

We did not use any special contingency framework in the RW 
requirements engineering. Instead, we applied OntoFrame whenever it seemed 
to be applicable. When analyzing the RW context at hand, we recognized it 
possessing features of both the problem-driven approach and the policy-driven 
approach. Our experience from the four prior ME efforts had convinced us that 
ME in practice is too often ‘engineering by trials’ without any systematic way of 
thinking and working. Experiences reported from other ME projects (e.g. 
Vidgen 2002; Polo et al. 2002; Serour et al. 2002; Fitzgerald et al. 2003; Backlund et 
al. 2003, Bajec et al. 2004) confirmed our view of the unsatisfying state of the art 
in ME. On the other hand, we had no detailed problems to be solved. Instead, 
we recognized the need to develop a new approach by which method 
engineering could be considered and managed in a more comprehensive and 
uniform manner, and to implement this approach into the form of generic 
methodical support.  

We analyzed documents reporting on the backgrounds, processes, 
deliverables and experiences of our prior ME contexts (CSDM (Leppänen 
1984a), OSSAD (e.g. Baron et al. 1989; Conrath et al. 1989), SPITS (Leppänen et al. 
1991), DBSD (Leppänen 1993; Leppänen 2001)) in order to obtain an overview 
of how the contexts were accomplished and with which results. Because the 
material available from these contexts was not originally made for research 
purposes and it does not cover all the decisions and phases, we do not want to 
overemphasize its significance to this research. However, it appeared to be 
useful in summoning up thoughts emerged in the prior contexts. Short 
descriptions of these prior ME contexts are presented in Section 11.3. 

We did not specify ISDM requirements in a separate ME task. Instead, we 
established an overall conception of the level of detail in which MEMES should 
be presented and of the application area (i.e. the nature of the target ME context 
and the ME strategy), which MEMES should support. These are reported in 
Sections 11.2 and 11.4, respectively. 

We made a comprehensive analysis of ME approaches, meta models, ME 
techniques and ME procedures in the literature. In addition, we reviewed 
reports of single ME efforts in practice (e.g. Jaaksi 1997; Vidgen 2002; Polo et al. 
2002; Serour et al. 2002; Fitzgerald et al. 2003; Backlund et al. 2003, Bajec et al. 
2004). The purpose of these reviews was two-fold. On one hand, we wanted to 
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learn what kind of support for ME there was already available. On the other 
hand, we were interested in needs and motivations for, processes of, and 
experience from, engineering ME methods, or parts thereof.  

Based on the analysis of the prior contexts and the ME literature, we stated 
goals for our RW effort. In this task we had to take into consideration the scarce 
resources we had for the work and to set the goals at a reasonable level. The 
goals of MEMES are reported in Section 11.5.  

In the RW analysis workflow we postponed the engineering of the 
“procedural” part of MEMES (Kumar et al. 1992), thus following the conceptual 
approach to the RW analysis (cf. Section 11.8.1). The reasons for this are evident. 
Although there were some conceptual frameworks for analyzing, comparing 
and assessing ISD methods, they were far from being suitable as an ISD 
ontology. Without having a profound understanding of what ought to be 
engineered, it is not possible to engineer actions (i.e. ME actions) of engineering.  

The process of engineering OntoFrame followed the top-down approach 
(Uschold et al. 1996; Noy et al. 2001). Consequently, we started conceptual ISD 
modeling with building main parts of the core ontology. Then, we carried out a 
comprehensive search for theories addressing the notion of a context and 
specified the fundamental categorization of contextual domains containing 
specific contextual concepts and constructs. After that, we extended our 
engineering work to address the ISD sub-domain and the ME sub-domain.  

The RW analysis workflow was carried out as a highly iterative process. 
At each level of detail we decomposed and inter-related ME actions and ME 
deliverables, always trying to ensure that ME models were properly grounded 
on OntoFrame. In the inter-perspective ME modeling we followed a variant of 
the conceptual approach (cf. Figure 120 in Section 11.8.4). We started with the 
ISD ontology (C x C) but selected the ME workflow structure from the ME 
ontology to establish a rough decomposition of ME work into ME workflows. 
After that we derived ME deliverables from the ISD constructs (D x C). In the 
later cycles of the RW process we made cross-checking to ensure the 
consistency of MEMES. 

In the RW evaluation we applied the generic steps of the ISDM evaluation 
workflow (cf. Section 11.9). The basis, process and outcomes of this evaluation 
are reported in this chapter.  

To sum up our experience from the RW process and its results, we can say 
that the generative metaphor in the first stages and MEMES in the later stages 
of the MEMES effort appeared to be viable and beneficial. Conceiving ME 
contexts as ISD contexts and correspondingly the RW context as an ME context 
enabled us to make our first choices and specifications of concepts and 
constructs of MEMES. Later, MEMES highlighted, in a structured fashion, those 
issues that should be analyzed and reframed. MEMES povided steps by which 
we could, for instance, split the workflow of RW requirements engineering into 
manageable and inter-related tasks and carry out them. By the help of MEMES 
we could also integrate our earlier work done for the core ontology and the 
context ontology into the methodical skeleton. MEMES helped us categorize 
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relevant engineering issues on the basis of the ME perspectives and the ISD 
perspectives in a way which guided us in making decisions on the scope of 
MEMES (cf. the datalogical and physical perspectives on the ME and ISD layers 
were excluded) and helped us plan for the next ME steps and complete them. 
MEMES also offered a useful set of ME approaches from which we selected the 
mix of the policy-driven approach and the problem-driven approach to the RW 
requirements engineering and the conceptual approach to the RW analysis.  

What could we have done better, or in another way? If the RW process 
was to start now, it would be better first to outline MEMES on a general level 
(see steps (4) – (7) in Figure 133). Based on this outline, it would be much easier 
to decide on the objectives and scopes of OntoFrame. Nevertheless, the next 
steps would be conducted to engineer OntoFrame, with the top-down approach 
as we did.  Second, in engineering the first component ontologies of Ontoframe 
we should have been more conscious of what we are doing and how, so that the 
conventions used could have been devised into structured steps earlier than it 
occurred in the MEMES effort. This would have saved us from gratuitous 
iterations and groping. However, the resulting version of OntoFrame itself 
would hardly be different from the present as to its structure and contents.  

How valid are the conceptions presented above? As mentioned in Section 
12.3.1, in these kinds of subjective evaluations there is a risk of post-
rationalization and one-sidedness. We have been conscious of that risk and 
tried to avoid it. Some of the conceptions are based on the facts. For instance, 
the detailed description of the MEMES process in Figure 133, used to illustrate 
how complicated, multifaceted and iterative the process was, has been made in 
a precise manner on the basis of written working plans, notices and memos. It is 
not a result of post-rationalization but a view of what really happened. 
OntoFrame and MEMES just povided useful means to portray how the process 
navigated from one array of engineering issues to the others. Assessments of 
the quality of the support MEMES provided for the MEMES effort are naturally 
subjective but to increase their credibility we have provided plenty of  
arguments.  
 
 
12.4  Comparative Analysis of ME Artifacts 
 
 
In this section we make a comparative analysis of those artifacts in the ME 
literature which are aimed to provide methodical support to ME efforts. We call 
them the ME artifacts. The analysis is divided into two parts. First, we examine 
the  backgrounds, application areas, ME strategies and ME approaches of the 
ME artifacts. Second, we analyze the coverage and emphases of the ME artifacts 
in terms of ME workflows, perspectives and contextual domains. Our aim here 
is to find out how MEMES compares with the existing ME artifacts, and how 
useful MEMES is as a frame of reference in this kind of comparative analysis.  
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The ME literature is quite large. We can distinguish between three groups 
of ME artifacts there. The first group comprises a large variety of meta models 
and metamodeling languages developed and used to model methods, or parts 
thereof. This group contains two kinds of meta models, that are meta data 
models and meta process models. Meta data models are used to metamodel the 
conceptual contents and notations of data models. Examples of the meta data 
models and metamodeling languages are ER (Chen 1976), eERM (Rosemann et 
al. 2002, Scheer 1998), NIAM (Nijssen et al. 1989), OPRR (Smolander 1991), 
ASDM (Heym et al. 1992), CoCoA (Venable 1993), GOPRR (Kelly et al. 1996), 
Telos (Jarke et al. 1995), and MEL/MDM (Harmsen 1997)). More about meta 
data modeling languages and differences between them can be found in 
Venable (1993), Saeki et al. (1994), Harmsen et al. (1996) and Tolvanen (1998,  
155). Meta process models and modeling languages have been developed for 
modeling SE/ISD process models. Meta process models and process modeling 
languages are presented in Bandinelli et al. (1993), Deiters et al. (1994), Christie 
(1993), Shepard et al. (1992), Dutton (1993), and Kaiser et al. (1993). Evaluations 
of and comparisons between process modeling languages are reported e.g. in 
Söderström et al. (2002). 

The second group of the ME literature comprises ME strategies, ME 
approaches and ME techniques. In what follows we shortly discuss some of 
them. Kumar et al. (1992) propose a methodology for developing a situation-
specific methodology. They distinguish between four ME strategies: modular 
construction, stakeholder-value based composition, the use of automated 
computer-based support, and a supporting organizational structure for ME. 
The proposal does not provide any concrete guidelines for courses of action in 
ME. van Slooten et al. (1993) present a framework and a procedure to configure 
development scenarios from project characterizations defined by project 
contingency factors. Oei (1995) suggests the MMT approach (the Meta Model 
Transformation approach) to relate meta models of languages in an open 
ordering and transformation scheme by means of a set of basic meta model 
transformations. The MMT approach can serve for comparison, integration, and 
evolution of modeling languages. Kinnunen et al. (1996) suggest an O/A (Object 
/ Activity) matrix –based technique for describing and analyzing the 
interoperability of method components. van Slooten et al. (1996) provide a wide 
contingency model for ME and discuss its use in the choice of route map 
fragments and method fragments. Grundy et al. (1996) sketch an integrated 
method engineering approach based on the MViews framework. Saeki (1998) 
presents an approach to integrate multiple methods through the use of a meta 
model and a CASE tool to demonstrate that the approach is beneficial. 
Leppänen (2000) defines the concept of consistency from several perspectives 
and provides an ME technique and a set of ME approaches to ensure the 
conceptual consistency of an ISD method. Hruby (2000b) describes a process 
framework for the specification of development processes that considers 
management and software development artifacts as objects and evolution as 
collaborations between them. None of the aforementioned ME artifacts can be 
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considered to come even close to the notion of an ME method. They either 
remain on a very general level (cf. ME strategies and ME approaches) or they 
cover only a small part of the ME process (cf. ME techniques).  

The third group of the ME literature contains artifacts that aim to offer 
more comprehensive support for ME. No one in this group is, however, a 
complete ME method if weighed with the criteria given in Section 10.5. This 
group contains the dissertation works of Harmsen (1997) and Tolvanen (1998). 
Both of them suggest specific approaches to ME (a situational ME in Harmsen 
(1997) and an incremental ME in Tolvanen (1998)) and offer general-level 
procedures to implement the approaches. In addition, this group contains the 
ME artifacts of Gupta et al. (2001), Song (1997), Vlasblom et al. (1995), Nuseibeh 
et al. (1996) and Ralyte et al. (2003). Gupta et al. (2001) define a representation 
system for a method requirements specification and describe an automated 
process for instantiating a technical meta model. Song (1997) defines a 
framework for the integration of design methods and gives principles of 
applying it. Vlasblom et al. (1995) propose the three-level description of a 
method and present a “protocol” for the construction of a development model. 
Nuseibeh et al. (1996) outline a multi-perspective ME approach based on the 
notion of Viewpoint and describe, on a general level, a process of method 
design and construction. Ralyte et al. (2003) present a generic process model 
supporting the integration of different approaches to situational method 
engineering. Though some of the artifacts in this group are not described in 
detail (e.g. Nuseibeh et al. 1996; Ralyte et al. 2003), they are included here 
because of their special features of support for ME.  

For our comparative analysis we have selected the ME artifacts in the third 
group. In the following, we first describe results from the overall analysis and 
then deepen the view with considerations of the coverage and emphases of the 
ME artifacts. In both of these parts we make comparisons to MEMES.  
 
12.4.1 Overall Analysis  
 
The purpose of the overall analysis is to disclose the backgrounds, application 
areas, ME strategies and ME approaches of the selected ME artifacts. These 
issues concern the historical view, the application view, and the generic view, 
respectively (see the ME method ontology in Section 10.5). To put it more 
precisely, the issues considered are: 
• Historical view. What are the theoretical foundations and research 

methodologies used to engineer the ME artifact (cf. the prior RW 
contexts)? Has the ME artifact been applied and with which experience (cf. 
the prior ME contexts)? Which arguments are given to justify the 
applicability and validity of the ME artifact? 

• Application view. For which kind of ME contexts is the ME artifact intended 
(cf. the target ME context)?  The application area can be characterized with 
types of ISD methods (i.e. generic, domain-specific, organization-specific, 
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vs. project-specific) and ME strategies (i.e. creation, integration, 
adaptation).  

• Generic view. Which kinds of ME strategies and ME approaches does the 
ME artifact apply to?  

 
The summary of the results from the overall analysis is presented in Table 34. In 
what follows, we briefly describe the selected ME artifacts and analyze them in 
terms of the defined issues.  

Harmsen (1997) presents (a) an ontology for products of information 
systems development, called the Methodology Data Model, (b) a method 
engineering language, called MEL, and (c) a process of situational method 
engineering with heuristics and formalized method assembly rules. MEL can be 
used to represent and administrate method fragments. The situational approach 
to method engineering is based on the principle of controlled flexibility 
according to which for each situation, whether a project or an organization, a 
specific method is built. The notion of a situational method corresponds to an 
organization-specific method or a project-specific method in our terminology.   

The process of method engineering has been rooted on the theory of 
situational method engineering. The approach to develop the theory is said 
(ibid p. 16) to follow the so-called Lockean inquiry system (Churchman 1971), 
and three stages are distinguished in it: theory building, theory testing and 
theory expanding. At the first stage a number of methods were metamodeled 
and analysed to develop the ontology of the IS and MEL. At the second stage a 
CAME (Computer Aided Method Engineering) tool was designed and 
implemented to test  the   theory.  At the  third   stage experiences got from tests 
resulted in corrections and enlargements into the ontology and MEL, as well as 
in establishing and formalizing method assembly rules. Some studies are also 
mentioned in which the theory has been empirically tested. 

Harmsen (1997) advocates the contingency approach, which provides a set 
of factors to characterize fragments and IS engineering situations. Second, 
Harmsen (1997) applies the integration strategy in constructing a method from 
method fragments. Method configuration process is seen as a part of project 
management, meaning that a method evolves during the project.  

Tolvanen (1998) presents a set of constructs of method modeling 
languages, defines guidelines and mechanisms for collecting and analyzing 
modeling-related experiences, and explains their implications for method 
improvements. Related to the latter, he brings out principles of incremental 
method engineering and studies method development through experience-
based method refinement. The principles are aimed at supporting organizations 
to develop their own methods, known as local methods. 

Tolvanen advocates a view according to which local method engineering 
is a learning process “in which experience of successful (or unsuccessful) ISD 
efforts needs to be incorporated into future ME efforts: every use situation of 
methods should evaluate and analyze methods with a view to improving them” 
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 (ibid p. 170-171). This experience-based learning is realized through an 
incremental process. Tolvanen divides the process into two kinds of steps: a 
priori steps and a posteriori steps. A priori ME steps are method selection, 
method construction and tool adaptation. A posteriori ME steps are collection 
of experiences, analysis of method use, and method refinement. His view on 
meta modelling and method engineering is limited to meta data models only. 

Research in Tolvanen (1998) applied conceptual and empirical methods. 
Seventeen ISD methods were modeled and their meta data models were 
validated through implementation by a CASE tool. The method specifications 
were used to analyze method knowledge to extend languages for method 
modeling.  Second, an action research strategy was followed in two case studies 
in which methods were developed and adapted to local needs. Experiences got 
from these cases were used to refine the principles and mechanisms for 
collection and analysis of experiences from ISD efforts (Tolvanen 1998, 29-30). 

Gupta et al. (2001) define a representation system for a method 
requirements specification (MRS) and describe an automated process for 
instantiating a technical meta model with an MRS. This instantiation is used to 
produce the actual method, which is then given to a metaCASE tool to produce 
a CASE tool. Interesting in the ME approach is that a method is first specified 
on a ”relatively abstract” level with statements of method requirements, and 
then it is elaborated and instantiated. The approach is based on a belief that 
method engineers are experts of the domain of methods, but not necessarily 
experts of meta models and how to instantiate them. The approach applies the 
static and dynamic views on methods (Prakash 1997; Prakash 1999) reflecting 
the ISD as a decision making process.   

Proposals contained in the paper have been used to construct the CAME 
tool part of a CASE shell, called MERU (Method Engineering Using Rules). 
Nothing is said about research work resulting in the proposals, neither about 
validation of results, although through MERU some proofs by implementation 
are provided.  

Song (1997) defines a framework for the integration of design methods 
and gives general principles of applying it. The framework views integration 
mainly as an effort to enhance the existing method with properties or 
components of some other method(s). In the framework four kinds of 
integration are distinguished: model integration, principle integration, process 
integration, and representation integration. Further, two approaches to 
integration are recognized: function-driven integration and quality-driven 
integration. Song does not provide any method of integration, neither any 
uniform procedure. Instead, he gives an outline of steps for function-driven 
integration and quality-driven integration on two levels of detail. The 
framework and the steps have been derived from the analysis of existing 
methods and practical experiments. No validation has been made in a rigorous 
sense. It is mentioned that "feedback from these experiments has been positive; 
designers appreciate the common forum for generalizing, communicating and 
applying ideas” (ibid p. 108). No generic philosophy can be found underlying 
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the ideas. The framework and the steps are suggested for situations in which it 
is seen beneficial “to borrow ideas and notations from other methods” (ibid p. 
107).  

Vlasblom et al. (1995) propose the three-level description of the method. 
The levels are the generic level, the model level, and the specific level. The 
generic level is composed of building blocks for various elements of the 
method. The model level contains development models for specific application 
domains. The lowest level corresponds to project-specific development 
methods. With these levels a more flexible method architecture and method 
engineering process are pursued. Vlasblom et al. (1995) present the so-called 
”seven-point protocol” to be followed in establishing a development method 
that “is optimally tailored to a project”. The protocol is composed of seven 
questions, like “Which products are to be deliverables?” and “For which target 
group are they intended”? Vlasblom et al. (1995) also suggest steps of how to 
utilize a development model in a specific situation, as well as steps to construct 
a development model. Nothing is said about the research process, neither about 
validation. Several examples of development models with situation profiles, 
taken from practice, are provided to show “that the concepts described are of 
practical significance” (ibid p. 604).  

Nuseibeh et al. (1996) outline an ME approach based on multi-perspective 
development. The key concept of the approach is Viewpoint that is “a loosely 
coupled, locally managed, distributable object that encapsulates representation 
knowledge, development process knowledge and specification knowledge 
about an ISD” (ibid. p. 268). An ISD method is a collection of method fragments, 
each of which describes how to develop a single ViewPoint specification. A 
Viewpoint is internally divided into five ‘slots’: style (notation), work plan 
(development process), specification (one described in the notation, produced 
by the development process), domain (label identifying the area of concern of 
the ViewpPoint), and work record (specification development status, history 
and rationale). A ViewPoint template contains the first two ‘slots’. A method is 
a configuration of ViewPoint templates.  This implies that an ISD process is not 
a sequential series of procedures but dynamically created as the development 
proceeds.  

Nuseibeh et al. (1996, 270) outline a process of method design and 
construction. They also present considerations of method integration. 
Integration is seen useful in three types of cases (cf. Kronlöf 1993): (1) 
integrating common features of several methods, (2) extending a main method 
with some new features of other methods, and (3) restricting a main method by 
replacing or overriding some of its features. To advance the integration they 
advocate the use of pairwise inter-ViewPoint relationships or rules. The 
ViewPoint framework and the Viewer (CASE-tool) have been deployed in a 
number of case studies and research environments (ibid p. 272). A set of 
standard methods have been modelled. These experiments are said to provide 
feedback on improving the structure and organisation of the ViewPoint 
framework.  
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Ralyte et al. (2003) present a generic process model supporting the 
integration of different approaches to situational method engineering. The 
generic model contains three ME techniques: assembling method chunks, 
extending an existing method, and generating a method by 
abstraction/instantiation of a model/meta-model. The paper also shows how 
other ME techniques could be integrated in the generic model.  Nothing is said 
about the theoretical basis underlying the work, or about the applied research 
methodology. Validation of the generic model is suggested to be part of the 
future project.  

To summarize, only in three of the ME artifacts analyzed (Harmsen 1997; 
Tolvanen 1998; Song 1997) the research context is considered. Harmsen (1997) 
compares the research process to the Lockean inquiry system but does not 
describe the process in more detail. Tolvanen (1998) makes very clear what 
research methods have been used and how. Song (1997) mentions the practical 
background of his artifact. The absence of discussions about the research 
context may partly be due to the limited space of the articles but it is more 
probable that there have not been any profound theoretical grounds, nor the 
use of any rigorous research methods.  

Among the analyzed artifacts the target ME context is most commonly a 
situation in which a project-specific method is configured (Tolvanen 1998; 
Gupta et al. 2001; Vlasblom et al. 1995; Ralyte et al. 2003). In Harmsen (1997) a 
constructed method is either an organization-specific method or a project-
specific method. Principles presented in Song (1997) and Nuseibeh et al. (1996) 
apply also to other kinds of ME contexts. As regards with the ME strategies, the 
artifacts of Harmsen (1997), Song (1997) and Nuseibeh et al. (1996) are clearly 
based on integration. Tolvanen (1998) favors the adaptation strategy. Gupta et 
al. (2001) and Vlasblom et al. (1995) give no preference to ME strategies. Ralyte 
et al. (2003) recognize a number of ME strategies and pursue to integrate them 
with the generic model.  

In this study we have clearly and firmly grounded MEMES on the 
conceptual and theory-based foundation, OntoFrame. We have also, in a 
comprehensive manner, brought out the research methodology (i.e. research 
process, research methods) by which MEMES has been produced (cf. Section 
1.4). We have discussed the verification and validation of MEMES in Section 1.5 
and reserved Chapter 12 solely for the evaluation of MEMES. MEMES is aimed 
at the engineering of a generic or domain-specific method. It can be used in 
conjunction with any ME strategy, although with some elaborations.  
 
12.4.2 Coverage and Emphases of the ME Artifacts 
 
The purpose of this section is to analyze the coverage and emphases of the 
selected ME artifacts in terms of ME workflows, perspectives and contextual 
domains.  

In the analyzed ME artifacts the process of method engineering is 
decomposed in different terms: e.g. into phases (Gupta et al. 2001), steps 
(Harmsen 1997; Tolvanen 1998; Song 1997; Vlasblom et al. 1995; Nuseibeh et al. 
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1996), and strategies (cf. Ralyte et al. 2003). Because the notion of a phase has the 
connotation of a temporally ordered entity and ME actions, such as  ‘assembly 
of method fragments’ (Harmsen 1997) and ‘method construction” (Tolvanen 
1998) are too large-scale to be considered as steps, we prefer to use the ME 
workflow structure in this analysis.  Based on our ME ontology, the process of 
ME is composed of five workflows: ISDM requirements engineering (RE), ISDM 
analysis, ISDM design, ISDM implementation, and ISDM evaluation. The 
summary of the analysis in terms of these ME workflows is presented in Table 
35. 

To reveal which features in the ME context are emphasized in the selected 
ME artifacts, we deploy the perspectives and the contextual domains defined in 
OntoFrame. For the ME context we use the ME perspectives to categorize the 
support the ME artifacts offer to conceive, understand, structure and represent 
contextual phenomena of method engineering. Since method engineering also 
addresses, through the conceptual contents of the ISD method, the ISD context, 
we include the ISD context in the scope of our analysis as well. For the ISD 
context we apply the ISD perspectives and the ISD domains. The summary of 
the analysis of the coverage and emphases of the ME artifacts in terms of 
perspectives and contextual domains is presented in Table 36. We use the 
following abbreviations in the table: for the perspectives: S = systelogical, I = 
infological, C = conceptual, D = datalogical, P = physical, and for the domains: 
P = purpose, Ar = Actor, An = Action, O = object, F = facility, L = location, T = 
time. To distinguish whether the ME artifacts consider the ISD objects as 
representational deliverables (D) or conceptual constructs (C) we use the 
markings O/D and O/C, respectively. To express the emphasis the ME artifacts 
give to the contextual domains, we use the following markings: X = concerned 
to a large extent, x = concerned to a small extent, - = not concerned. 
Respectively, we use capital letters (e.g C) and lower letters (e.g. c) to indicate 
how extensively the perspectives are addressed in the artifacts. In the following 
we shortly describe the processes and deliverables of the selected ME artifacts 
and analyze them in terms of the defined issues.  

In Harmsen (1997) the process of situational method engineering is 
decomposed into three main steps. The first step is the characterization of the 
situation, meaning that ISD project goals are determined and a preliminary 
scenario is generated and adapted with situational factors (or contingency 
factors), and possibly with performance indicators. The second step is the 
selection of method fragments, which is induced by the produced 
characterizations as the project scenario. Method fragments are characterized by 
a number of properties, many of which are directly related to scenario aspects. 
Using these relevant properties the method fragments supporting the project 
scenario can be selected. The third step is the assembly of method fragments in 
which the selected fragments are integrated to form a situational method. To 
avoid defects and inconsistencies in and between the fragments, a number of 
method assembly quality assurance rules are defined and applied. These rules 
concern completeness, consistency, efficiency, soundness, and applicability. 
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The steps in the situational ME process cover, at least to some degree, all the 
ME workflows except ISDM implementation (e.g. there are no rules for 
customization nor instantiation). The ME context is described from the ME 
infological and ME conceptual perspectives, and, to a smaller extent, from the 
ME datalogical perspective. Thus, ME purposes, ME actions (steps), ME 
deliverables (incl. method fragments) and ME facilities (CAME, Decamerone) 
are described. Some references to ME actors are also given. The conceptual 
contents of the ME deliverables are described from the ISD infological and ISD 
conceptual perspectives, including descriptions of ISD actions (process types), 
ISD deliverables (products) and ISD facilities (CASE tools). The conceptual 
contents of the ISD deliverables are also structured. Some descriptions of 
Decamerone are so technical that they belong to the physical ME perspective.  

The process of incremental method engineering by Tolvanen (1998) is 
divided into two kinds of steps: a priori steps and a posteriori steps. The a 
priori ME steps are method selection, method construction, and tool adaptation. 
The a posteriori ME steps are collection of experiences, analysis of method use, 
and method refinement. In the first step the ISD environment is analyzed 
according to situation-independent and situation-dependent ISD method 
criteria. In the second step the selected methods are constructed. This means 
integration and adaptation of one or more methods, or parts thereof.  In the 
third step the methods constructed are adapted into a CASE tool. This means 
customizing or building a tool for the method or selecting a set of tools which 
cover all the method knowledge (ibid p. 70). 

In the a posteriori part of ME, experiences from the use of the constructed 
ISD method are first collected in terms of models produced during the ISD, 
meta models, reports on stakeholder interviews, etc. The experiences are 
analyzed according to the defined analysis mechanisms. Evaluation of method 
use   can  lead to modifications in the method and tool support. These 
modifications are done in the final step. The iterative nature of the ME process 
implies that the refined method can be taken as such or as a re-refined method 
in the next ISD project (Tolvanen 1998, 190-192). 

A part of method selection, the analysis of ISD environment, belongs to 
the ISDM RE workflow. The rest of the method selection as well as method 
construction and method refinement correspond to the ISDM analysis 
workflow because the process concerns neither ISD actors nor ISD facilities. 
Part of method construction and tool adaptation belong to the ISDM 
implementation because there the method is particularly tied to technical 
infrastructure of the project.  A part of the first step as well as the fourth and 
fifth steps address issues of the ISDM evaluation workflow. For these steps 
Tolvanen (1998) provides descriptions of ME actions. ME deliverables are, to a 
large degree, addressed from the ME conceptual perspective only. Because the 
incremental ME process has been established on the considerations of the meta 
data model (i.e. the GOPRR model (Kelly et al. 1996)), the only concerned 
domain in the ISD context is the ISD object domain, considered from the ISD 
conceptual perspective.  
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In Gupta et al. (2001) method engineering is composed of three main 
phases: (1) method requirements engineering (MRE), (2) method design (MD), 
and (3) method construction and implementation (MCI). In the MRE phase the 
method requirements definition is first produced. Method requirements are 
“high-level abstraction of services, that a method will provide, and constraints 
under which it functions” (ibid p. 136). They are a part of project characteristics 
and are obtained from the project context in which the method is to be applied. 
Second, the MRE yields a Method Requirements Specification (MRS), which is a 
technical document describing what a method that meets the MRS has to offer. 
Being independent from implementational issues, an MRS details the nature of 
the method but not the method itself. An abstract language, called MRSL, has 
been developed to express a MRS. The MD phase translates an MRS into an 
instantiation of the technical meta model. The method construction phase 
generates the method and builds the CASE tool. A CAME tool, referred to as 
MERU, has been built to provide assistance in the tasks of three ME phases 
(Gupta et al. 136-137). 

Gupta et al. (2001) apply a three-layer architecture to specify an ISD 
method. At the highest level, the generic view of a method offers a basis for 
building the abstract model and MRSL. It is used in the MRE phase. The second 
layer, the metamodel layer, defines the decisional metamodel that is used in the 
MD phase to make an instantiation. At the third layer, the method is finally 
produced from the instantiation performed in the second phase. This layer is 
used in the method construction phase.    

The suggestion of Gupta et al. (2001) is the only one among the analyzed 
ME artifacts that clearly distinguishes between different levels of abstraction on 
which a method can be conceived (cf. the generic view, the metamodel view 
and the construction view). It also differentiates between three “phases” of the 
engineering of the method, based on those abstraction levels. These phases 
stand for our four ME workflows in such a way that the tasks of MRE phase 
belong partly to the ISDM RE (cf. the method nature) and partly to the ISDM 
analysis (cf. the simple method and mapping method). The MD phase and the 
MCI phase correspond to the ISDM design workflow and the ISDM 
implementation workflow, respectively. Issues of the ISDM evaluation 
workflow are not addressed in Gupta et al. (2001). The ME context is mainly 
considered from the ME conceptual perspective, because the emphasis in the 
article is on the MRS language and the decisional metamodel. The ME actions 
are outlined only on a very general level (cf. the ME infological perspective). 
The article also contains a short description of MERU. The ISD context is 
perceived from the ISD infological and ISD conceptual perspectives. Gupta et al. 
(2001) define the notion of a generic work procedure that is composed of 
procedure elements, which in turn can contain several work elements. A 
procedure element is an objectified relationship between a product part and a 
method block. Product parts are contained in the product under development. 
A method block is a pair consisting of an objective and an approach. 
Conceptual structures are used to represent the architecture of the product.  
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Song (1997) gives an outline of the steps for function-driven and quality-
driven integration. The steps are divided into two parts, corresponding to high-
level integration and low-level integration. The former concerns artifact models, 
properties, principles, representations, and processes. The latter involves model 
components (e.g. classes), criteria, guidelines, measures and notations.  

The function-driven integration is applied when new functionalities are 
searched for the existing method from other methods, or parts thereof. In the 
high-level integration, the process starts with consideration of property 
integration with the aim of revealing properties that are not effectively 
supported by the existing method. Next, new and promising ISD principles are 
searched for and integrated into the existing method. Some of these steps 
correspond to the ISDM RE workflow but because Song (1997) does not provide 
any guidance to requirements engineering of the method we locate these steps 
in the ISDM analysis workflow in Table 35. In the artifact model integration the 
existing method is enhanced with new artifact models (IS meta models), and in 
the process integration the processes for specifying the new artifact models are 
associated into the existing method. These steps are related to the ISDM 
analysis workflow. Finally, in representation integration the notations of design 
artifacts are made uniform. This is concerned in the ISDM design workflow in 
our ontology.  The low-level integration considers issues that are related to the 
ISD datalogical perspective in the ME design workflow.  

The quality-driven integration does not aim to enhance the functionalities 
of the ISD method but to improve its quality in terms of more general criteria 
(e.g. more maintainable software, more efficient ISD process, etc.). At the high-
level, the quality-driven integration consists of at most process and 
representation integration, and at the low-level it concerns guidelines, 
measures, actions, and notations. The steps can be located into the ME 
workflows as above.  

The integration process is described in terms of ME deliverables, not by 
detailing steps. In the ISD context the ISD actions (processes) and the ISD 
deliverables (artifacts) are distinguished.  

Based on the three-level architecture of the method, Vlasblom et al. (1995) 
suggest steps for deploying development models in specific situations. The 
process starts with the project initiator analyzing the project situation and 
consulting the library of available development models. After choosing the 
model the profile of which best matches the specific situation profile, it is 
modified until a scenario for project direction and operation is achieved (ibid p. 
602). In addition, Vlasblom et al. (1995) provides steps to the construction of a 
development model from existing approaches / projects. The steps are: 
familiarization with the established practice (i.e. completed projects), 
formalization of the development model, establishing the model situation 
profile, and feedback to the library of building blocks. The steps cover, to some 
extent, first four of our ME workflows. They are, however, described on a 
highly general level, viewing from the ME systelogical and ME infological 
perspectives.  
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Nuseibeh et al. (1996) generally outline a ME process of method design 
and construction. The process is composed of the following steps: (1) identify 
development techniques: derive from the requirements of a method the 
techniques that the target method will deploy, (2) identify ViewPoint templates 
that need to be constructed to describe these techniques, (3) describe templates, 
(4) reuse templates, (5) identify and describe inter-ViewPoint relationships, and 
(6) construct local (ViewPoint) development process models. Nuseibeh et al. 
(1996) also consider method integration, and to advance the integration they 
advocate the use of pairwise inter-ViewPoint relationships or rules. 

In Nuseibeh et al. (1996) the descriptions of the ME context and the target 
ISD context are given on a very general level. The ME steps concern the ISDM 
analysis, ISDM design, and ISDM implementation workflows, the emphasis 
being on the ISDM analysis. The ISD context is perceived through ViewPoint 
patterns, meaning that ISD actions (“work plan”) and ISD deliverables 
(“specification”) are mainly considered from the ISD infological perspective.  

The generic process model by Ralyte et al. (2003) is based on a strategic 
process meta-model, called Map (Rolland et al. 1999), and describes ME process 
in terms of intentions and strategies. An intention is a goal that can be achieved 
by the performance of the process (expressed like “Set Method Engineering 
Goal”, Ralyte et al. 2003, 97). A strategy represents the manner in which the 
intention can be achieved. Ralyte et al. (2003) present separate models for 
assembly-based method engineering, extension-based method engineering, and 
paradigm-based method engineering. The process models are expressed in the 
form of a graph in which nodes stand for intentions and edges correspond to 
strategies. The model applies the ME systelogical perspective and, partly, the 
ME infological perspective. It does not explicitly recognize the ME deliverables.  

To summarize from the analysis of the coverage and emphases of the ME 
artifacts, we can state that the only ME artifact which applies the ME workflow-
like action structure is the one of Gupta et al. (2001). But because it considers the 
ME context mainly from the ME conceptual perspective, ME actions are only 
generally outlined. ME actions of the ISDM evaluation are ignored. Harmsen 
(1997) and Tolvanen (1998) apply an ME action structure that consists of the 
collection of knowledge, selection of methods (fragments in Harmsen (1997)) 
and integration (Harmsen 1997) and/or adaptation (Tolvanen 1998). In the ME 
steps Harmsen (1997) includes also project performance and method base 
administration, whereas Tolvanen (1998), based on his incremental approach, 
specifies three steps succeeding the method use.  In Song (1997) ME work is 
decomposed into steps based on the target of integration. The steps take a 
rather narrow scope to the ME workflows. In Vlasblom et al. (1995) and 
Nuseibeh et al. (1996) ME work is only partially, and on a general level, covered.  

In all the ME artifacts support for the ME context is mainly focused on ME 
actions and ME deliverables. ME purposes are considered in Harmsen (1997), 
Ralyte et al. (2003) and partly in Vlasblom et al. (1995). In some ME artifacts 
(Harmsen 1997; Tolvanen 1998) ME facilities are also discussed. Harmsen (1997) 
provides the most extensive treatment of issues within the ME domains. The 
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ME infological and ME conceptual perspectives are most commonly applied 
among the ME artifacts. In the ISD context the ISD infological perspective and 
the ISD conceptual perspective are considered in Harmsen (1997), Gupta et al. 
(2001) and Song (1997). Tolvanen (1998) addresses the ISD conceptual 
perspective, and Nuseibeh et al. (1996) consider the ISD infological perspective.  

To help the comparison of the selected ME artifacts with MEMES, we have 
included MEMES in the same table (Table 36) with the others. As specified in 
Chapter 11, MEMES applies three perspectives (systelogical, infological, and 
conceptual), on the ME layer as well as on the ISD layer. Implied from the 
perspectives applied, MEMES addresses four contextual domains. On the ISD 
layer MEMES addresses ISD objects as representational artifacts and conceptual 
constructs. Compared to the analyzed ME artifacts MEMES is more 
comprehensive in terms of ME workflows, perspectives and contextual 
domains. In MEMES the ME workflows are decomposed into well-structured 
tasks and steps. In the other ME artifacts ME actions are mostly expressed in 
short outlines. They are very far from being considered even as an ME method 
skeleton. In this sense, our proposal for a method skeleton means a considerable 
enlargement and elaboration of the body of methodical knowledge about ME.  
 
12.4.3 Conclusions from the Comparative Analysis 
 
The purpose of our comparative analysis was to find out how MEMES 
compares with the existing ME artifacts and how MEMES performs as a frame 
in the comparative analysis. The following conclusions can be drawn from the 
analysis of seven ME artifacts.  

There are only some ME artifacts (i.e. Harmsen 1997; Tolvanen 1998; Song 
1997) for which information is provided about the processes and methods by 
which the artifacts have been produced. In contrast, we have explicitly 
described our research process and research methods. We have also brought 
out how MEMES has been validated and verified. Most of the analyzed artifacts 
(Tolvanen 1998; Gupta et al. 2001; Vlasblom et al. 1995; Ralyte et al. 2003) are 
targeted at engineering a project-specific method. As regards the ME strategies, 
there are ME artifacts that apply the integration strategy (e.g. Harmsen 1997; 
Song 1997), and those which follow the adaptation strategy (e.g. Tolvanen 1998;  
Gupta et al. 2001). Ralyte et al. (2003) recognize a number of ME strategies and 
pursue to integrate them with the generic model. MEMES is aimed at the 
engineering of a generic or domain-specific method. It can be used in 
conjunction with any ME strategy, although with some elaborations.  

Gupta et al. (2001) is the only ME artifact in the ME literature which 
decomposes the ME process into ME workflows based on ISD perspectives. 
However, it considers the ME mainly from the ME conceptual perspective, and 
the ME actions are only generally outlined. In most of the ME artifacts (e.g. 
Harmsen 1997; Tolvanen 1998) the ME process is decomposed into the steps 
such as the collection of knowledge, selection of methods, and integration and / 
or adaptation. Tolvanen (1998) specifies also three steps succeeding the method 
use. Some artifacts provide a narrower and/or more general view of the ME 
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process. Harmsen (1997) provides the most extensive treatment of issues within 
the ME domains. The other ME artifacts mostly focus on ME actions and ME 
deliverables from the ME infological and ME conceptual perspectives. From the 
ISD perspectives some of the ME artifacts (e.g. Harmsen 1997; Gupta et al. 2001; 
Song 1997) apply the ISD infological and ISD conceptual perspectives. The 
other artifacts are more limited in their scope. MEMES suggests approaches and 
steps for three ME workflows based on the perspectives. It applies three 
perspectives (i.e. systelogical, infological, and conceptual) on the ME layer as 
well as on the ISD layer. Thus, compared to the analyzed ME artifacts MEMES 
is more comprehensive. Since we have used the notion of comprehesiveness in 
the contextual sense (cf. ME workflows, perspectives and contextual domains), 
what has been said above means that with MEMES, compared to the other ME 
artifacts, it is much better possibilities to recognize, understand, represent and 
engineer contextual features of ME contexts, ISD contexts and ISD methods.  

 MEMES was found to be a feasible frame of reference in the comparative 
analysis. It provided a useful categorization of methodical views with which the 
background and orientation of the ME artifacts could be revealed, analyzed and 
compared. The ME workflow structure of MEMES also assisted in the analysis 
and comparison of functional aspects of the ME artifacts on a general level. The 
perspectives and the contextual domains, on the ME layer as well as on the ISD 
layer, helped us factorize and assess the coverage and emphases of the objects 
systems of the ME artifacts. MEMES offers still more means to elaborate the 
analysis. The IS perspectives and the IS domains can be used to examine which 
kinds of phenomena in the IS and the OSIS are recognized in the ME artifacts. 
Futhermore, it is possible to analyze and compare, on a more detailed level, 
which concepts and constructs the ME artifacts suggest to use for viewing 
reality.  
 
 
12.5  Summary and Discussions 
 
 
The purpose of this section was to evaluate the applicability of MEMES from 
the viewpoints of framing, constructive and analytical intentions. We applied 
one of the ME workflows in MEMES, namely the ISDM evaluation, to make 
sense of and structure this evaluation context at hand. Following the steps 
contained in the workflow we specified the evaluation criteria, selected the 
evaluation methods, carried out the process of evaluation and reported on 
findings and lessons. Here, we present the summary of the evaluation process 
and its results.  

We evaluated MEMES in three ways. First, we made the retrospective 
analysis of one of the prior ME contexts, namely the OSSAD project, to examine 
how MEMES serves as a frame. The analysis showed that the process of the 
OSSAD project could be structured and analyzed with a large variety of ME 
action structures provided by MEMES. The ME strategies and the ME 
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approaches specified in MEMES served as a concrete basis with which the 
orientation of the the OSSAD project and the OSSAD methodology could be 
analyzed. The IS ontology, embedded in MEMES, was viable in the evaluation 
of the universes of discourse of the main office models. In conclusion, we argue 
that MEMES provides structured and feasible means to the retrospective 
analysis of ME contexts from multiple viewpoints. The information got from the 
analysis is useful to making improvements in the applied conventions. The 
retrospective analysis also yielded a structured view of main features (e.g. 
coverage and emphasis) and approaches of the OSSAD project and revealed 
some problems. The OSSAD project was found quite comprehensive although it 
paid insufficient attention to some ME tasks (e.g. analysis of existing methods 
and models) and perspectives (e.g. IS conceptual perspective). The essence and 
main characteristics of the project seem to be induced by the functional 
approach applied in the ISDM analysis workflow and the IS-driven approach in 
ISD modeling. The OSSAD methodology itself is rather extensive covering 
several phases, ranging from contracting to implementation of an office support 
system. However, it totally ignores conceptual modeling. The first three phases 
are emphasized in the methodology. The methodology is structured upon two 
major constructs: phase structure and office modeling structure. Three basic 
models provide concepts and constructs for viewing an office and office work 
from three different IS perspectives, which appeared to be comparable to the IS 
infological, IS datalogical, and IS physical perspectives in MEMES. In all these 
models the functionalist approach (Hirschheim 1986) is applied, meaning that 
an office is seen as a set of information flows in which the semantics of 
documents remains uncovered.  

Second, we made a retrospective analysis of the MEMES effort to evaluate 
how MEMES performed in the constructive sense. We presented a detailed 
description of how MEMES was deployed, according to the reflection-in-action 
approach, in the MEMES effort and tried to find out how useful it was. We 
presented a structured view of the MEMES effort decomposed into two parallel 
and iterative sub-processes, the RW process and the reflection process.  We 
showed that MEMES provided constructs with which the RW process and its 
deliverables could be framed and described in a structured and comprehensive 
fashion. MEMES helped us categorize ME actions and issues according to well-
defined action structures and perspectives. The target of the effort was so 
abstract and fuzzy that it would have been very difficult, without the support of 
gradually enlarging MEMES, to make sense of and shape it. Although the RW 
process was highly iterative, the use of MEMES, even in its early versions, made 
iterations manageable and thus the RW process more efficient. To conclude, 
based on the analysis of, and the experience from, the MEMES effort, we argue 
that MEMES offered a feasible support for the engineering of MEMES. We 
have, however, to remember that the retrospective analysis was based on 
subjective assessments. It is also noteworthy that the MEMES effort was not an 
ordinary ME endeavor but a research project, which engineered the ME 
skeleton. Hence, from the evidence obtained here we cannot conclude that 
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MEMES would be applicable to all kinds of ME efforts. Regardless of what has 
been said above, we believe that since MEMES, even as a half-ready artifact, 
appeared to be useful in the MEMES effort, it has much to offer also for other 
kinds of ME efforts, once it is first elaborated into a complete ME method.  

Third, we made a comparative analysis of existing ME artifacts to evaluate 
the applicability of MEMES in the analytical sense and to find out how MEMES 
compares with those artifacts. For the comparative analysis we selected the 
most advanced artifacts in the ME literature. The first part of the analysis 
uncovered the backgrounds, application areas and ME approaches of the 
artifacts. In the second part we considered the coverage and emphases of the 
artifacts in terms of ME workflows, perspectives and contextual domains. The 
analysis showed that only few ME artifacts have been constructed upon a 
sound theoretical basis and with a proper research methodology. Most of the 
artifacts have been engineered for the purposes of method customization or 
configuration, not to engineer a generic or domain specific method. The 
integration strategy is most commonly applied. There are some artifacts that 
cover the ME workflows more extensively than MEMES. However, they do not 
provide as detailed guidelines for the workflows as MEMES does. Nor do they 
cover as comprehensively as MEMES does the perspectives and contextual 
domains on the ME and ISD layers. All but one (i.e. Gupta et al. 2001) deploy 
“technical” meta models which do not allow the recognition of all that diversity 
of contextual aspects which is typical of the ISD methods. To conclude from the 
use of MEMES as a framework in the comparative analysis, we can say the 
following. First, MEMES provided a useful categorization of methodical views 
with which the background and orientation of the ME artifacts could be 
analyzed and compared. Second, the ME workflow structure included in 
MEMES was found feasible in the analysis and comparison of functional 
aspects of the ME artifacts on a general level. Third, the perspectives and the 
contextual domains, both on the ME layer and on the ISD layer, helped us 
factorize and assess the coverage and emphases of the objects systems of the 
ME artifacts. Fourth, due to the fact that MEMES is strongly anchored on the 
contextual approach and OntoFrame, it provides relevant concepts and 
constructs for the recognition, understanding, representing and engineering of 
contextual aspects and structures of ISD methods. This gives us a general basis 
to argue for the suitability of MEMES as a “yardstick” to the analysis and 
comparison of the ME artifacts.  
 



 

 

 
 
 
 
 
 
 
 
 
 
 
13 CONTRIBUTIONS AND FURTHER RESEARCH 
 
 
Organizations are nowadays required to act more effectively, to face shorter 
time-frames and respond in environments where they are confronted by an 
accelerating pace of change. Rapid and pervasive transformations in business, 
technology and application environments increase pressures to develop new 
and better information systems with higher productivity. This intensifies 
demands to renew and customize current ISD methods, as well as to engineer 
new kinds of ISD methods. Method engineering (ME) is related, in an intrinsic 
and pervasive fashion, to every ISD effort. Those days are over when ME was 
regarded as an “unnecessary nuisance” which could be accomplished with 
minimum effort. At present ME is an endeavor which has to be performed 
effectively with proper methodical support. Unfortunately, there is a paucity of 
ME artifacts that could provide adequate support for ME efforts.  

Our objective in this thesis has been to develop intellectual and methodical 
support for method engineering. The research domain consists of the following 
sub-domains: IS, ISD, ISD method, ME, ME method. The research problem 
stated in Chapter 1 is: How to conceive and methodically support the 
engineering of an ISD method? We have responded to this research problem by 
crafting two design artifacts (in terms of Hevner et al. 2004), the ontological 
framework and the method skeleton for ME. The ontological framework, called 
OntoFrame, aims to provide a coherent and comprehensive groundwork for 
conceiving, understanding, structuring and presenting phenomena in the 
research domain. The method skeleton for ME, called MEMES, contributes to 
the support of ME process.   

In this chapter we first present an overview of the two design artifacts, 
considering how they respond to the research questions derived from the 
research problem mentioned above. Second, we apply the research framework 
of Hevner et al. (2004) to describe each part of OntoFrame and MEMES, 
highlighting their motivation, importance, novelty and significance. 
Furthermore, we point out some limitations in our contributions. Third, we 
bring out several directions for further research.  
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13.1 Contributions  
 
 
13.1.1 Overview  
 
We have decomposed the research problem into three research questions in 
Chapter 1. The questions are: (1) What is the conceptual foundation with which 
phenomena in the research sub-domains can be conceived, understood, 
structured and presented? (2) What is the nature, contents and structure of an 
ISD method? (3) How to structure and support the process of method 
engineering? In what follows, we describe our contributions in terms of how 
they are able to answer these questions. In Table 37 we show which parts of our 
work contribute to each of the research questions.  
 
TABLE 37 Research problems and contributions 
 

Research problems  Contributions Chapters 
RQ1:  What is the conceptual foundation with which 
           phenomena in the research sub-domains can be  
           conceived, understood, structured and 
           presented? 

OntoFrame  Chapters 2-
10 

RQ2: What is the nature, contents and structure of an 
          ISD method? 

ISD ontology 
ISD method ontology 
ME ontology 

Chapter 8 
Chapter 9 
Chapter 10 

RQ3: How to structure and support the process of  
          method engineering? 

ME ontology 
ME method ontology 
MEMES 

Chapter 10 
Chapter 10 
Chapters 
11-12 

 
To answer the first research question we have engineered the extensive 
ontological framework (OntoFrame) that covers the five research sub-domains. 
OntoFrame has been anchored upon several theories. The selection of theories 
has been guided by the pursuit of generality and the contextual approach. 
Implied from the former we gave the preference to the theories that help us 
form a holistic view of the issues in the research sub-domains. These theories 
are philosophy, semiotics and systems theory. On the other hand, we saw it of 
vital importance to recognize, understand, structure and represent meanings of 
things in reality. This is enabled through viewing things as parts in their 
contexts. Resulting from the exhaustive search for theories that recognize the 
importance of meaning we selected semantics, pragmatics and theories of 
human and social action. These theories constitute the underpinning upon 
which the contextual approach has been defined. OntoFrame is a five-
dimensional framework. The first dimension stands for generality. At the one 
extreme of this dimension there is one concept, a thing, from which all the other 
concepts have been derived. At the other extreme there is a very large set of 
concepts intended for the recognition of features of ISD contexts and ME 
contexts. The second dimension is formed by the categorization of features into 
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seven contextual domains (i.e. the purpose domain, the actor domain, the action 
domain, the object domain, the facility domain, the location domain, and the 
time domain). The third dimension stands for the strictly defined perspectives 
(i.e. the systelogical perspective, the infological perspective, the conceptual 
perspective, the datalogical perspective, and the physical perspective) through 
which particular views of the features in reality can be established and applied. 
The fourth dimension contains four processing layers (i.e. IS, ISD, ME, RW). 
Finally, the fifth dimension involves levels on which models can be specified 
(i.e. instance models, type models, meta models, meta meta models, etc.).  

The most important research subject of this thesis is an ISD method. 
Therefore it was taken as the target of our second research question: What is the 
nature, contents and structure of an ISD method? As regards the nature of an 
ISD method, we have given, based on the literature survey, an overview of roles 
and extent in which ISD methods are used in practice. We have also provided a 
structured description of benefits from, and problems in, the method use in 
practice. Second, we have presented a holistic definition of the ISD method and 
defined the ISD method ontology, which highlights, in a more structured and 
comprehensive fashion than any other presentation, various facets of the 
notion. We have also defined a framework which, based on the view of the ISD 
method as a “carrier” of ISD knowledge, helps classify ISD methods. As regards 
the contents of an ISD method, we have defined, applying once again the 
contextual approach, the comprehensive ISD ontology, which specifies in a 
structured manner the features that an ISD method should describe and/or 
prescribe. The ISD ontology covers four ISD domains (i.e. the ISD purpose 
domain, the ISD actor domain, the ISD action domain, and the ISD object 
domain) and four ISD perspectives (the ISD systelogical perspective, the ISD 
infological perspective, the ISD conceptual perspective, and the ISD datalogical 
perspective). To elaborate the structure of an ISD method, we have defined 
seven methodical views based on the semiotic ladder. According to these views, 
an ISD method can be seen as being composed of the issues related to prior ME 
contexts and prior ISD contexts (the historical view) and to target ME contexts 
and target ISD contexts (the application view), of conceptual constructs (the 
contents view), of linguistic expressions (the presentation view), of physical 
things in electronic or paper form (the physical view), and of method 
components (the structural view). To elaborate the structural view, we have 
also defined the contextual interface of a method component and a five-
dimensional scheme for the classification of components.  

To answer the third research question, we have crafted MEMES, the method 
skeleton for method engineering, by deploying the “building blocks” offered by 
the ISD ontology, the ME ontology, and the ME method ontology. The purpose 
of MEMES is to provide support for the engineering of generic and domain-
specific methods. MEMES covers three ME perspectives (i.e. the ME systelogical 
perspective, the ME infological perspective, and the ME conceptual perspective) 
and three ISD perspectives (i.e. the ISD systelogical perspective, the ISD 
infological perspective, and the ISD conceptual perspective). It is composed of 
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three ME workflows: ISD method requirements engineering, ISD method 
analysis, and ISD method evaluation. MEMES is not a complete ME method. To 
make MEMES more complete, it has to be enhanced with the issues related to at 
least the ME datalogical perspective and the ISD datalogical perspective. The 
applicability of MEMES has been evaluated by conceptual and empirical 
methods.  
 
13.1.2 OntoFrame 
 
OntoFrame is composed of four main parts: the core ontology, the contextual 
ontologies, the layer-based ontologies, and the method ontologies. These are 
further divided into several component ontologies. We will briefly discuss each 
of them in the next sub-sections. Here we consider OntoFrame as a whole, 
summarizing its engineering process, assessing it with quality criteria defined 
in Chapter 1 and discussing its implications to research and practice. 

OntoFrame has been built upon two disciplines, metamodeling and 
ontology engineering, and with two approaches, the inductive approach and 
the deductive approach. In building the core ontology we made a thorough 
analysis of existing generic frameworks and ontologies and derived our 
ontology from them by selection, integration, and customization. In engineering 
the contextual ontologies we first searched for disciplines and theories that 
address social and organizational contexts and derived a basic categorization of 
concepts into contextual domains from them. After that we enriched the 
contents and structure of each contextual domain by analyzing existing 
artifacts. For the other parts of OntoFrame we applied the deductive approach 
by specializing concepts and constructs into lower-level ontologies from higher-
level ontologies. In this process we utilized heavily the literature of existing 
artifacts in order to elaborate and customize the derived concepts and 
constructs and make them consistent with specific sub-domains. We applied the 
integration strategy of ontology engineering whenever it was possible. In this 
way we could import existing knowledge from other sub-domains in cases 
where these views and concepts were sufficiently clear and stable and they 
matched with our general premises.  

The engineering of OntoFrame was based on the comprehensive analysis 
of the literature, accomplished in several phases. First we conducted an 
extensive analysis of fifteen of the most advanced frameworks, meta models, 
frames of reference and ontologies related to the IS, ISD, ISD methods, and ME 
(Section 2.5). In addition, comparative analyses of existing artifacts were carried 
out on more detailed level in each of the sub-domains. These analyses are 
related to fundamental concepts (cf. the core ontology) in Section 3.10, the 
notions of information system, object system, and utilizing system in Section 
5.1.6, IS concepts and IS perspectives (cf. the context ontology and the 
perspective ontology) in Section 6.4, and meta levels (cf. the model level 
ontology) in Section 7.3. Furthermore, we analyzed and compared frameworks 
of ISD (cf. the ISD ontology) in Section 8.5, frameworks, architectures and 
reference models of ISD methods (cf. the ISD method ontology) in Section 9.7, 
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and classifications of ISD method components in Section 9.8.6. Finally, we 
analyzed and compared existing ME artifacts in Section 12.4. We have also 
presented a plethora of references to the pertinent literature in each subject 
matter area in order to describe and compare different conceptions and 
concepts. These analyses and references clearly revealed the great divergence 
which prevails in the concerned fields at present. Comparisons with OntoFrame 
showed that our ontological framework is much more comprehensive than any 
of the existing artifacts. Recalling that OntoFrame has been engineered 
according to the contextual approach, OntoFrame recognizes in the most 
extensive way the contextual features of the research sub-domains. 

OntoFrame is presented in informal and semi-formal fashions. The 
concepts and constructs of the component ontologies are defined in English and 
collected into the unified vocabulary in Appendix 1.  In addition, the concepts 
and constructs in each of the component ontologies are presented in meta 
models in the UML-based ontology representation language (Appendix 2). 

Next, we briefly consider how OntoFrame meets the goals stated in 
Section 1.3. The goals were expressed in terms of comprehensiveness, 
contextuality, consistency, coherence, generality, clarity, naturalness, 
generativeness, extensibility, modularity, theory basis, and applicability. The 
evidence obtained from the comparative analyses, together with the use of 
“universal” theories as the basis of the most component ontologies, strengthens 
our confidence that OntoFrame addresses, in a comprehensive fashion, relevant 
contextual phenomena in all five sub-domains. To advance the consistence and 
coherence of OntoFrame we metamodeled it in a disciplined fashion and 
formed the unified vocabulary. The meta models enforced the specificity of the 
concepts, relationships and constraints. The definitions in the vocabulary 
explicitly show how the concepts are inter-related through their intensions. To 
balance between specificity and generality OntoFrame has been composed of 
ontologies at several levels. The most generic component ontologies in the core 
ontology provide concepts that refer to the fundamentals of reality (e.g. thing, 
relationship, point of view). Clarity and naturalness are qualities about which 
we have not carried out empirical studies. Nevertheless, several features in 
OntoFrame have positive impacts on these qualities. For instance, rooting the 
concepts of OntoFrame upon proper theories (cf. semiotics and linguistics) 
contributes to naturalness, and the modular structure of the framework 
enhances its clarity. In addition, we have extensively utilized the established 
terminology that is commonly used in current ISD methods.  

The generative structure is inherent to OntoFrame due to the top-down 
approach by which the concepts and constructs of lower level ontologies have 
been derived from those of higher level ontologies. OntoFrame is composed of 
clearly structured parts and components. The framework with the generative 
nature and modular structure is easier to extend, if necessary. Extensions can be 
carried out by specializing some of the concepts in OntoFrame, or integrating 
new concepts into the existing ones. OntoFrame has been rooted in several 
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theories, ranging from philosophy, semiotics and linguistics to systems theory, 
activity theory, and ISD theories.  

The last goal in the list concerns the applicability of OntoFrame for 
framing, analytical and constructive intentions. We have deployed OntoFrame 
as a frame in multiple comparative analyses of existing artifacts. We found it to 
be a feasible framework with which the backgrounds, comprehensiveness, 
coverage, emphasis, etc. of models, meta models, frameworks, reference 
models, architectures, etc. could be recognized and analyzed. OntoFrame has 
been used mainly as a general-purpose framework, and it should be elaborated 
and customized when deployed with more specific aims. OntoFrame has also 
been used as a groundwork for the construction of MEMES. The extensive 
vocabulary of OntoFrame was found feasible in specifying the scope, structure 
and contents of MEMES. In particular, the main structures of the ISD ontology, 
the ME ontology and the ME method ontology offered usable building blocks 
from which the structure of MEMES could be crafted in a straightforward 
manner. The use of OntoFrame to frame the universe of discourse has not been 
investigated in this work. Hence, to find out how OntoFrame performs in this 
respect requires empirical studies in future.  

Next, we consider rigor from the viewpoint of OntoFrame. Rigor 
“addresses the way in which research is conducted (Hevner et al. 2004,  87)). It 
“is derived from the effective use of the knowledge base  - theoretical 
foundations and research methodologies” (ibid p. 88). This study has been 
rooted in two disciplines: metamodeling and ontology engineering. 
Metamodeling is a young discipline without established theoretical and 
methodological traditions. In ontology engineering there are also divergent 
conceptions about how to engineer and validate an ontology (Gomez-Perez 
1995; Gruninger et al. 1995; Guarino 1997; Shank et al. 2003). Some researchers 
use competence questions to ascertain the comprehensibility and usefulness of 
an ontology (e.g. Gruninger et al. 1995). Others suggest reviews, problem 
solving and transaction testing (e.g. Shank et al. 2003). OntoFrame is too large to 
be derived from and validated with competence questions. We have aspired at 
rigor with the following means. We have strongly utilized relevant theories on 
each level of OntoFrame (i.e. the deductive approach). At the same time we 
have imported views and concepts from the existing literature about 
fundamental elements of reality, information systems, IS development, ISD 
methods, etc. We have applied the integration strategy to combine these into a 
consistent and coherent whole. In integration, contradictory views have been 
reconciled by principles of metamodeling. 

Implied from the above, we argue that OntoFrame is of benefit to both 
research and practice. With the component ontologies contained in OntoFrame 
it is possible to achieve a clear understanding of the contextual phenomena in 
information systems, information system development and method 
engineering. OntoFrame provides a reference background for scientists and 
professionals, thus enabling them to express themselves about matters in the 
concerned sub-domains in a structured and well-defined way. The second 
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thrust of the thesis is to provide a comprehensive and unified framework 
allowing to relate different approaches to each other. It provides bridges 
between various approaches, disciplines, and decades. OntoFrame also 
provides an extensive, consistent and coherent groundwork for teachers and 
students, who can benefit from its large collection of meta models and 
comprehensive vocabulary with clear definitions.  

In the following sub-sections we describe in more detail the contents of the 
main parts of OntoFrame, the principles with which they have been engineered, 
and how they compare with the existing artifacts. 
 
13.1.3 Core Ontology  
 
The core ontology (Chapter 3) provides key concepts and constructs for 
conceiving, understanding, structuring and representing fundamental 
phenomena in reality. These fundamentals serve as a basis upon which all other 
parts of OntoFrame are anchored, thus furthering the consistency and 
uniformity of the large ontological framework. The core ontology is composed 
of seven component ontologies: the generic ontology, the semiotic ontology, the 
intension/extension ontology, the language ontology, the state transition 
ontology, the UoD ontology, and the abstraction ontology. 

We have engineered the core ontology with the top-down approach (cf. 
Noy et al. 2001; Uschold et al. 1996), with the adherence to the constructivist 
position, and with strictly defined viewpoints. The generic ontology is a top 
ontology (Guarino 1998), which defines the most fundamental concepts and 
constructs (e.g. thing, relationship, point of view). Applying specific points of 
view we have specialized lower-level ontologies from the core ontology. For 
instance, things have been specialized into concepts, referents, and signs, and 
concepts have been further specialized into abstract and concrete concepts, 
individual and generic concepts, type and instance concepts, and basic and 
derived concepts. Correspondingly, conceiving the signs from the language 
viewpoint we have recognized expressions, symbols, labels, proper names and 
common nouns. With the viewpoint distinguishing between static things and 
dynamic things we have defined the notions of state, event, and state transition.  

Special attention in the core ontology has been given to the abstraction 
structures, thus emphasizing the importance of abstraction to human 
perception and thinking. We have specified the basic concepts, structural rules, 
and constraints for four basic principles of abstraction (i.e. classification, 
aggregation, generalization, and grouping). Also the intensional and 
extensional derivations of predicate concepts have been defined. In addition, 
we have distinguished between the first-order abstraction and the second-order 
abstraction. While the first-order abstraction concerns things, the second-order 
abstraction (or the predicate abstraction) pertains to predicates characterizing 
things. The predicate abstraction is useful in defining perspectives through 
which the complexity of reality can be managed. 

We have briefly reviewed well-known top ontologies and made a 
comparative analysis of two of the most acknowledged approaches to ontology 
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engineering at the core level in the IS field: the BWW model (Wand 1988a; 
Wand et al. 1989; Wand et al. 1990a; Wand et al. 1990b) and the Frisco 
Framework (Falkenberg et al. 1998). The BWW model is based on the 
philosophy of Bunge (1977) according to which the world is made of things that 
possess properties. Wand (1988a) and Wand et al. (1989, 1990a, 1990b) apply 
Bunge’s ontology to define essential concepts of an IS. The Frisco framework 
(Falkenberg et al. 1998) aims to provide an ordering and transformation 
framework allowing one to relate many different IS modelling approaches to 
each other. Based on the constructivist position, the framework has been built, 
piece by piece, upon one individual concept, called a thing. The framework is 
composed of five layers: the fundamental layer, the layer of actors, actions and 
actands, the layer of cognitive and semiotic concepts, the layer of system 
concepts, and the layer of organizational and information system concepts. 

Our comparative analysis showed that both of the artifacts contain several 
deficiencies. Due to its objectivist assumptions, Bunge’s ontology is oriented 
towards the physical world, and therefore does not provide concepts for human 
perception and social context. It can also be questioned whether the BWW 
model includes constructs that are not relevant for perceiving IS’s.  The BWW 
model does not address the issues of the semiotic ontology, the 
intension/extension ontology, and the language ontology. In addition, only 
some of the concepts in the UoD ontology and the abstraction ontology are 
recognized in the model. The Frisco framework does not provide the notion of a 
point of view, which is important to distinguish and discuss different 
conceptions about reality. It does not explicitly recognize the semiotic concepts, 
although they are needed as a baseline for more specialized concepts and 
constructs. Its suggestions for abstraction concepts are inadequate.  
 
13.1.4 Contextual Ontologies  
 
The contextual ontologies (Chapters 4-7) help us recognize, understand and 
model phenomena in reality as contexts and/or within contexts. They also 
assist in distinguishing between different kinds of contexts and examining and 
modeling contexts from strictly defined points of view. The contextual 
ontologies comprise four component ontologies: the context ontology, the layer 
ontology, the perspective ontology, and the model level ontology.  

The notion of a context is important to the understanding of things in 
reality for many reasons. The only way to make sense of a thing is to associate it 
with its proper environment, whether intentionally, structurally, functionally, 
organizationally, locationally, and/or historically determined. A thing itself can 
be a complex context, and it cannot be understood without decomposing it into 
contextual ingredients. A context is a universal concept, which plays an 
important role in several disciplines. Also in the IS field, context is frequently 
referred to (e.g. Mylopoulos 1998; Motschnik-Pitrik 1999; Motschnik-Pitrik 2000; 
Abecker et al. 2000; Myrhaug 2001; Rolland et al. 1995; NATURE Team 1996; 
Rolland et al. 2000). There are also approaches which refer, although not with 
the term of context, to contextual aspects (e.g. Zachman 1987; Sowa et al. 1992; 
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Loucopoulos et al. 1998; Kirikova 2000; Mentzas et al. 2001; Chiu et al. 1999)). 
Regardless of its importance, context is not included in any uniform ontology in 
the IS field.  

We have constructed the contextual ontologies with five principles. First, 
we wanted to ensure a sound theoretical basis for these ontologies. For this 
reason, we made an extensive search for and review of theories on three 
topmost steps in the semiotic ladder (Stamper 1973; Stamper 1996). The selected 
theories highlight various aspects of the meaning of a thing. Second, we 
explicitly specified the contextual approach according to which phenomena in 
reality can be perceived as contexts and/or within contexts. According to the 
approach a context is composed of parts which all have specific roles of their 
own. It is a totality in which each of its parts gets the meaning through its 
position in the whole and through the relationships it has with the other parts. 
The parts in the context reflect specific aspects of some of the seven contextual 
domains that are: purpose, actor, action, object, facility, location, and time. 
Depending on the chosen point of view (i.e. the semantic view, the pragmatic 
view, the activity theoretic view), a different set of contextual domains forms 
the “nucleus” of the context, thus affecting what parts at least should be 
perceivable in the totality for being considered a context.  

Third, derived from semiotic viewpoints we defined the notions of 
information system, object system and utilizing system, and recognized four 
processing layers on which information processing may be situated. The 
processing layers are: information system, information system development, 
method engineering, and research work. Fourth, we specialized the notion of a 
point of view to define five generic perspectives. These perspectives are: 
systelogical, infological, conceptual, datalogical, and physical perspectives. 
They assist us to recognize certain contextual aspects in the information 
processing contexts. Their use is necessary to manage the complexity faced with 
in reality. Fifth, we applied the principle of classification to establish a hierarchy 
of model levels. The hierarchy is composed of instance models, type models, 
meta models, meta meta models, etc. Models are specialized into a) informal, 
semi-formal, and formal models, b) subjective, inter-subjective, and objective 
models, c) structural and dynamic models, and d) descriptive and prescriptive 
models. The model levels are related to one another with relationships based on 
the language ontology and the abstraction ontology.  

The contextual ontologies differ substantially from the related works. In 
our comparative analysis of the most advanced IS artifacts we found that 
Iivari’s conceptual framework (Iivari 1989a) and the ISA framework (Zachman 
1987; Sowa et al. 1992), although containing large varieties of concepts and 
constructs corresponding to our context ontology, dismiss several important 
contextual parts and suggest conceptualizations that remain on quite a general 
level. Other presentations, such as Essink (1986, 1988), Falkenberg et al. (1998), 
Harmsen (1997) and Olle et al. (1988a), were found even more limited. With 
respect to the perspective ontology, Iivari’s framework (Iivari 1989a) is the most 
comprehensive. Other relevant works are Essink (1986, 1988), Freeman et al. 
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(1994), Olle et al. (1988a), Sowa et al. (1992) and van Swede et al. (1993). 
Although these presentations specify viewpoints that are, to some extent, 
comparable to ours, the relationships between the viewpoints are not defined as 
strictly as we have done and the contents of the viewpoints are not defined on 
such a level of detail and with such a large scope that would compare with 
ours. What also makes our approach novel is that the perspective ontology is 
applicable on all the processing layers, not only for the IS’s.   

The layer ontology and the model level ontology do not provide any new 
fundamental principles or insights compared to the earlier work (e.g. Gasser 
1986; Iivari 1989a; Falkenberg et al. 1992a; ISO 1990; Brinkkemper 1990; OMG 
2002) when considered on a general level. In both of the ontologies the issues 
are, however, considered through the contextual point of view, resulting in, for 
instance, that the relationships between IS, ISD and ME are specified in a more 
detailed manner. Our approach is novel in specifying that the contextual 
ontologies are orthogonal to each other, thus implying that the information 
processing contexts on each layer can be perceived from the viewpoint of any 
contextual domain and from any perspective, and modeled on multiple model 
levels. The component ontologies used together provide an effective intellectual 
device for the conceptualization of sophisticated contextual IS phenomena. 
 
13.1.5 ISD ontology  
 
The ISD ontology (Chapter 8) provides necessary concepts and constructs for 
conceiving, understanding, structuring and representing contextual phenomena 
in ISD. It is composed of two main parts: the ISD domains and the ISD 
perspectives. The ISD domains comprise concepts and constructs within four 
contextual domains (i.e. the ISD purpose domain, the ISD actor domain, the ISD 
action domain, and the ISD object domain). The ISD perspectives specialize the 
generic principles defined in the perspective ontology and offer concepts and 
constructs for viewing ISD from four ISD perspectives (i.e the ISD systelogical 
perspective, the ISD infological perspective, the ISD conceptual perspective, 
and the ISD datalogical perspective). The ISD ontology is a conceptualization of 
the contents of an ISD method. Thus, any attempt to specify an ISD method 
requires the existence of the ISD ontology. 

We have deployed the contextual approach to derive the concepts and 
constructs of the ISD ontology from, and to inter-relate them with, the 
contextual ontologies. Our aim has been to include only those parts in the ISD 
ontology that are common to most of the ISD approaches. As we know, there 
are a large variety of conceptions about ISD, reflecting divergent paradigms 
(Hirschheim et al. 1989; Iivari 1991; Hirschheim et al. 1992a), ISD approaches (cf. 
Hirschheim et al. 1992a; Hirschheim et al. 1995; Iivari et al. 1998a), and ISD 
principles. Our purpose has been to constitute a generic and uniform 
conceptualization of the nature, structure and behavior of ISD that could be 
shared by different approaches. The ISD ontology provides a solid baseline for 
the definition of the ISD method ontology and ontologies on the ME layer.  
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In the comparative analysis of six advanced ISD artifacts, proposed for the 
description, analysis, comparison and/or engineering of the ISD methods, our 
ISD ontology was found the most comprehensive. Only some of the analyzed 
artifacts provide concepts for the ISD purpose domain and the ISD actor 
domain. Also the ISD object domain is insufficiently addressed. There exists no 
artifact that provides ISD perspectives. Although all the artifacts contain some 
constructs for the ISD action domains, our ISD ontology comprises, for instance, 
a much richer collection of ISD action structures (i.e. the ISD management – 
execution structure, the ISD workflow structure, the ISD phase structure, the 
ISD problem solving structure, and the IS modelling structure). These structures 
appeared to be useful in analyzing other artifacts and structuring the contents 
of the ISD method. Most of the analyzed artifacts turned out to be totally 
lacking of the theoretical basis. They have just been abstracted from existing 
ISD methods. This situation is unsatisfactory for two reasons. First, with a 
sound theoretical background we can ensure that ISD phenomena become 
properly conceived, understood and structured. Second, abstracting from 
existing methods replicates properties of existing methods and does not help 
recognize phenomena of ISD outside the methods. Our ontology is based on the 
contextual approach built upon several underlying theories. This increases our 
confidence that the most essential features of ISD are included in the ISD 
ontology. 
 
13.1.6 ISD Method Ontology  
 
The ISD method ontology (Chapter 9) provides concepts and constructs to 
conceive, understand, structure and present contextual aspects of ISD methods. 
It is based on several fundamental classifications related to ISD knowledge and 
ISD methods. We distinguished between bodies of knowledge about ISD 
processes, application domains, IC technologies, and human and social issues. 
We also differentiated between generic methods, domain-specific methods, 
organization-specific methods, and project-specific methods. Moreover, we 
specified seven basic views of the methods, referring to them as the methodical 
views. These views are: the historical view, the application view, the generic 
view, the contents view, the presentation view, the physical view, and the 
structural view.  

We presented criteria for acknowledging an artifact as the ISD method. 
We also recognized and defined three types of artifacts that provide methodical 
support although they are not acknowledged to be methods. These artifacts are 
the ISD methodical framework, the ISD methodical skeleton, and the ISD 
methodical tool kit. By applying the structural view, we defined the notions of a 
method component and a contextual interface. We also presented a multi-
dimensional classification of method components based on the contextual 
ontologies. We illustrated these notions with examples of method components 
and method integration. Finally, we made a literature analysis to compare our 
classification of method components with those presented in the literature. Our 
classification was found to be the most comprehensive and multi-faceted. 
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In the ISD literature there is a large variety of conceptions about the 
nature, structure, contents, role, and significance of ISD methods (see Sections 
9.2, 9.3, 9.4 and 9.6). There is also a myriad of different methods developed for 
ISD. Several attempts to cope with this divergence and to establish a shared 
conceptualization of the contents and structure of the ISD method have been 
made in the field (e.g. Iivari et al. 1983; Lyytinen 1986; Heym et al. 1992a; Avison 
et al. 1995a; Hirschheim et al. 1995). We made an extensive analysis of seven 
well-known frameworks and models aimed either at the comparison and 
evaluation of the ISD methods, or at categorizing method knowledge. The 
analysis clearly brought out how divergent conceptions and views in the 
literature really are. It also showed our ISD ontology covers, much better than 
the others, the contextual features in the ISD and ISD method. In this sense it is 
more comprehensive than the current presentations. In addition, our way of 
structuring the parts and features of the ISD method, based on the contextual 
approach and the methodical views, makes the ontology more contextual, 
explicit and easier to apply.  
 
13.1.7 ME Ontology  
 
The ME ontology (Chapter 10) provides concepts and constructs to conceive, 
understand, structure and present contextual phenomena in method 
engineering. It is composed of two main parts, the ME domains and the ME 
perspectives. The ME domains comprise concepts and constructs within four 
contextual domains (i.e. the ME purpose domain, the ME actor domain, the ME 
action domain, and the ME object domain). The ME perspectives specialize the 
generic principles defined in the perspective ontology and offer concepts and 
constructs for viewing ME from four ME perspectives (i.e. the ME systelogical 
perspective, the ME infological perspective, the ME conceptual perspective, and 
the ME datalogical perspective).  

The ME ontology has been founded on the basic classifications of ME 
strategies, ME processes and ME contexts, as well as on the framework 
integrating these classifications. We distinguished between three ME strategies: 
creation, integration and adaptation. We also specified six ME processes. Three 
of them “transform” the ISD method more specific to a certain organization or 
project (i.e. customization, configuration, and realization). The other three ME 
processes (i.e. abstraction, deconfiguration, and decustomization) generalize 
descriptions of the ISD method and are reverse to the aforementioned 
processes. Based on the above classifications, we recognized three kinds of ME 
contexts: the method development context, the method customization context, 
and the method configuration context. Finally, we applied the contextual 
approach to construct the holistic definition of the ME context. These 
classifications together with the concepts and constructs of the ME domains 
offer a comprehensive and solid conceptualization of method engineering.  

Method engineering is a rather young discipline. For this reason there is a 
large variety of concepts and terms used to refer to phenomena in the ME 
context. Divergent prefixes have been coined (e.g. situation ME, incremental 
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ME, context-specific ME, simulation-based ME, assembly-based ME, and 
ontology-based ME) to highlight specific features in the foundations, strategies, 
approaches, and processes of ME. In the middle of this mix of diverse 
approaches and nomenclature it is important to have a common vocabulary 
with which it is possible to recognize, understand, and express the structural, 
functional, organizational, and behavioral aspects of ME. As far as we know, no 
serious attempt has been earlier made to achieve such a comprehensive and 
uniform conceptual foundation and vocabulary for ME as we have presented 
here. 
 
13.1.8 ME Method Ontology  
 
The ME method ontology (Chapter 10) is composed of concepts and constructs 
with which contextual aspects of ME methods can be conceived, understood, 
structured and represented. As was the case with the ISD method ontology, we 
deployed also here the seven methodical views to decompose the ME method 
ontology into seven parts. The contents view on the ME method corresponds to 
the ME ontology. We distinguished between generic ME methods, domain-
specific ME methods, organization-specific ME methods, and project-specific 
ME methods. Furthermore, we defined the notions of an ME method 
component, an ME model, and an ME technique.  

The ME literature provides only fragmented views on the ME context and 
methodical support to it. There is no uniform suggestion for what the ME 
method should contain and how it should be structured. Compared to this, our 
ME method ontology means a substantial complement to the body of the 
current knowledge. Upon this ontology we have constructed the method 
skeleton for ME, which we will describe in the next sub-section. 
 
13.1.9 MEMES   
 
MEMES (ME MEthodical Skeleton) (Chapters 11 and 12) is a normative 
prescription of the ME context, structuring and guiding the process of method 
development. It has been firmly anchored on the ontological framework, in 
particular on the ISD ontology, the ISD method ontology, and the ME ontology, 
and the ME method ontology. MEMES covers three ME perspectives (i.e. the 
ME systelogical perspective, the ME infological perspective, and the ME 
conceptual perspective) and three ISD perspectives (i.e. the ISD systelogical 
perspective, the ISD infological perspective, and the ISD conceptual 
perspective). It is aimed to give generic support for all the ME strategies.  

MEMES contains three ME workflows: the ISD method (ISDM) 
requirements engineering, the ISDM analysis, and the ISDM evaluation. In the 
ISDM requirements engineering ME stakeholders’ requirements concerning the 
nature, structure and contents of the ISD method are identified, elicited, 
prioritized and finally stated as parts of the ME goals. The ISDM analysis 
denotes an ME workflow which aims to produce high-level descriptions of the 
ISD method from the ISD infological perspective, and the ISD conceptual 
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perspective. In the ISDM evaluation one or more ISD methods, or parts thereof, 
are evaluated using the defined criteria. For each of the aforementioned ME 
workflows, sets of approaches and steps have been provided.  

MEMES has been built using the deductive approach to method 
engineering. This is in contrast to all other efforts in which the inductive 
approach to ME has been deployed. Our approach has brought several 
advantages. The conceptual content of MEMES is coherent and consistent. 
MEMES is clearly organized with the main constructs of the ME purpose, ME 
action and ME object domains. The contents of ME deliverables become evident 
through well-defined models on multiple model levels. The deductive approach 
has also given, compared to the artifacts engineered inductively, a more solid 
basis to elaborate, customize, and configure MEMES further towards a specific 
ME method.  

Next, we consider how MEMES meets the goals stated in Chapter 11. It 
was required that MEMES is based on a solid and sound view of the relevant 
sub-domains. This goal is satisfied by the use of OntoFrame as the conceptual 
groundwork. Second, it was demanded that MEMES is modular and flexible. 
MEMES has been build from well-defined constructs of ME workflows, ME 
perspectives and ME deliverables. All these constructs are rooted on the specific 
parts of the ME ontology, the ISD ontology and the IS ontology. This 
foundation serves as a conceptual basis with which “modules” in MEMES can 
be distinguished, elaborated, reorganized, customized and configured.  

It was also required that MEMES is applicable. We investigated the 
applicability of MEMES with empirical and conceptual methods. Because 
MEMES is not a complete ME method but a methodical skeleton, its use in real 
ME contexts was restricted. Therefore, we decided to make the retrospective 
analyses of two prior ME contexts. The first retrospective analysis addressed 
the OSSAD project with the aim to examine how MEMES served as a frame and 
to understand its process and outcomes (cf. framing intention). Second, we used 
MEMES as a prescription in the contruction of MEMES itself (cf. constructive 
intention). In the process of construction we deployed the reflection-in-action 
approach (Schön 1983) according to which the whole process was composed of 
two parallel and iterative sub-processes, the RW process and the reflection 
process. We described and evaluated this MEMES effort with the means of 
retrospective analysis. MEMES was conceptually evaluated by conducting a 
comparative analysis of ME artifacts in the literature. The purpose was to find 
out how MEMES compares with those artifacts and how MEMES is suited as an 
analytical tool (cf. analytical intention).  

The two retrospective analyses showed that the approaches, processes and 
deliverables of the ME efforts could be clearly recognized, structured, 
represented and assessed with the concepts and constructs provided by 
MEMES. The use of MEMES in engineering MEMES itself was found useful in 
many ways. MEMES helped us categorize and structure ME actions and ME 
deliverables. It made iterations more manageable and the RW process more 
efficient. These assessments are, however, based on the researcher’s subjective 
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views. This reduces their significance from the viewpoint of validation. More 
empirical research is needed to obtain stronger evidence on these issues. In the 
comparative analysis MEMES offered a solid foundation with which the 
backgrounds, application areas, ME approaches, comprehensiveness and 
emphases of existing ME artifacts could be analyzed and compared. The 
analysis showed that only a few existing ME artifacts have been constructed 
upon a sound theoretical basis and with proper research methodologies. Most 
of the analyzed artifacts have been engineered for the purposes of method 
customization or configuration, not to engineer a generic or a domain-specific 
method. Although there are some artifacts that cover the ME workflows more 
extensively than MEMES, they do not provide as detailed guidelines for the ME 
workflows as MEMES does. Nor do they cover, as comprehensively as MEMES 
does, the perspectives and the contextual domains on the ME and ISD layers.  
 
13.1.10 Discussion of the Contributions 
 
OntoFrame, together with MEMES, constitute a very large whole. To many of 
the parts in them we have presented significant contributions, while the other 
parts have been included in the thesis mainly to achieve a coherent and 
consistent body of work. As far we know, there is no other presentation that 
would cover such a large spectrum of research sub-domains, on such a detailed 
level, as we do in this work. We have intentionally aspired after this kind of 
holistic view in order to avoid the fragmentation of views and conceptions that 
is typical of most of the research in our field. The holistic view provided in this 
study enables the recognition, comparison, and integration of current artifacts 
that have been built upon more limited foundations and views. We also hope 
that upon the groundwork established in this study it is easier in future to 
engineer specific artifacts that yet are compatible and interoperable with each 
other. 

Owing to its comprehensiveness the thesis is capable of building bridges 
between different disciplines, sub-domains, approaches, and time periods. First, 
anchoring OntoFrame on relevant theories has created connections to e.g. 
philosophy (cf. ontology engineering in general and the core ontology in 
particular) and linguistics (cf. the contextual approach). For establishing the 
process of engineering OntoFrame we have combined and applied the 
principles of ontology engineering and metamodeling. Second, OntoFrame 
provides a coherent and consistent view on the issues in five sub-domains: IS, 
ISD, ISD method, ME, and ME method. To achieve this has required the 
assimilation of quite different views inherent to the sub-domains. Third, there 
exist a number of approaches with divergent views on ISD (e.g. transformation 
approach, decision making approach, problem solving approach, learning 
approach, etc.). We have tried to identify and define concepts and constructs 
that can be shared by these approaches, and include them in OntoFrame, in 
order to provide the possibility to obtain an integrated view on the concerned 
issues and to specialize the concepts and constructs, when needed, according to 
specific approaches. Fourth, we have intentionally brought forward and 
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acknowledged conceptions and propositions presented in the past decades. 
Many scientists, such as Brodie, Chen, Codd, Ein-Dor, Falkenberg, Gorry, 
Guttag, Hoare, Iivari, Järvinen, Kent, Kerola, Langefors, Mumford, Sisk, Smith 
& Smith, Stamper, Welke, Yourdon, and Zisman, just to mention some of them, 
have presented, as early as in the 1970’s, seminal ideas that still are worthy of 
respecting and comparing with more recent ones. 

In evaluating and comparing the existing artifacts we have frequently 
applied the criterion of comprehensiveness. This criterion should not be 
regarded as a quantitative measure. In contrast, it is highly qualitative and 
closely related to contextuality. By applying the contextual approach we have 
tried to distinguish, define and include in OntoFrame and MEMES the most 
relevant concepts and constructs that are needed to identify, understand and 
represent the contextual features in the five research sub-domains. Thus, when 
assessing the comprehensiveness of artifacts by using OntoFrame or MEMES as 
the “yardstick” we have actually wanted to find out the degree to which the 
artifacts analyzed take into account the contextual features of the subject 
matters.  

Comprehensiveness is not a value in itself. In fact, it may be questioned 
whether OntoFrame is too large and too complicated to be feasible. It is 
sometimes said that “simple is beautiful”. For instance, Simon’s framework of 
problem solving (Simon 1960) is composed of only three main concepts, 
intelligence, design, and choice, and it is universally known and frequently 
applied. We do not want to deny the benefits of simple frameworks. However, 
in order to cope with such a large research domain as we do here, a framework 
inevitably becomes complex. This does not, however, mean that in all situations 
all the concepts and constructs in OntoFrame, or in MEMES, should be used. 
Both of the artifacts have a modular structure allowing the selection of only 
those perspectives, components and constructs that are actually needed.  

One of the biggest challenges in this thesis has been to cope with the 
complexity caused by the large number of the parts and components included 
in OntoFrame, the extensive number of references made to the relevant 
literature, and the great divergence of views and terminologies integrated into 
OntoFrame. It can be estimated that the complexity of work has increased 
“exponentially” in relation to the number of the concepts and constructs 
included in Ontoframe. Management of that complexity is one of the 
contributions of this work.  
 
 
13.2  Further Research 
 
 
The thesis offers numerous possibilities to direct further research. In this section 
we consider how the results of the thesis can be elaborated, extended and 
deployed in research to come.  
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OntoFrame provides a baseline for many kinds of specializations and 
elaborations. Let us consider one example. In pervasive computing paradigm 
location-awareness is nowadays generalized into context-awareness (Matheus 
et al. 2003), thus emphasizing that it is not enough to know where someone or 
something is located. In contrast, it is necessary to comprehend more generally 
in which circumstances someone or something acts or something occurs. To 
perceive, understand, structure and represent the relevant contextual features 
of those circumstances necessitates the construction and deployment of a 
context model that suits the needs of an application area. OntoFrame can 
provide a foundation to decide on the relevant features of a context and to 
engineer such kind of context model. More specifically, the context ontology 
can be used to decide which contextual features are relevant to “context-
awareness”. The model level ontology offers concepts and constructs to specify 
how to model those features. The perspective ontology and the ISD method 
ontology can be used to consider how to integrate the constructed conceptual 
model into a methodical body containing other models and techniques. 

OntoFrame and MEMES can be extended along several dimensions. 
MEMES, for instance, addresses only three ME perspectives and three ISD 
perspectives. To enhance MEMES into a complete ME method it is necessary to 
extend it with the concepts and constructs of at least the ME datalogical 
perspective and the ISD datalogical perspective. The extension with the ME 
datalogical perspective means that the ME context is described / prescribed, 
not only in terms of ME purposes, ME actions and ME deliverables, but also 
with references to ME roles, ME positions and ME facilities. In parallel to 
decomposing ME actions into tasks and operations, ME workflows should be 
specialized to fit a particular ME strategy and ME approach. After these 
extensions MEMES can provide specialized ME workflows for method creation, 
method integration and method adaptation. The extension with the ISD 
datalogical perspective implies that MEMES also contains the ISDM design 
workflow which helps specify how the ISD effort is to be accomplished. This 
means, for instance, that instructions are given for how ISD roles and ISD 
positions are established, how ISD actions are decomposed onto a more 
detailed level, and how CASE tools are used in the ISD.  

OntoFrame and MEMES can be utilized in conceptual, empirical and 
constructive research in many ways. In the following we first consider four 
examples of using OntoFrame in conceptual research. After that we discuss the 
use of OntoFrame and MEMES in empirical and constructive research. 
OntoFrame has been used in this thesis as a framework in the literature analysis 
of a large variety of issues. There are many other issues on which this kind of 
research can be carried out with OntoFrame. For instance, models could be 
assessed and compared either with the core ontology or with the context 
ontology. Enterprise ontologies, such as the TOVE (Toronto Virtual Enterise, 
Fox 1992) and the Enterprise Ontology (Uschold et al. 1998) could be analyzed 
with the support of the context ontology to find out how they perceive 
contextual features of the enterprise. The extensive abstraction ontology 
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provides a solid basis for analyzing abstraction structures included in 
conceptual models in fields such as information systems, software engineering, 
and artificial intelligence.  

Second, empirical studies aiming at testing hypotheses are based on 
conceptual models specifying the underlying concepts and relationships 
between them. Conceptual models are constructed to reflect how the concerned 
slices of reality are viewed. OntoFrame can provide an integrated foundation 
from which relevant parts can be separated for the use of empirical studies, and 
elaborated if necessary (cf. the ontology of software maintenance by 
Kitchenham et al. (1999) for empirical studies of maintenance). Likewise, 
OntoFrame can be used to compare and integrate conceptual models of the 
empirical studies carried out in the same or interrelated domains. This way we 
can unite fragmented views that empirical studies commonly portray.  

Third, OntoFrame can be used to explain and support the evolution of ISD 
methods. Changes in business environments and technology have constantly 
led into situations in which existing approaches, methods and techniques have 
been found inappropriate. Thereupon, customary conventions have been 
abandoned and new working procedures have been searched for. These kinds 
of “discontinuation points” have enabled breaking out of rigorous methods and 
led to the search for, the birth of, and the diffusion of new computing and 
development approaches and paradigms. Following these “discontinuation 
points”, freedom in the selection of one’s own working habits has decreased 
through demands for more efficiency with “rigor” methods. This kind of cyclic 
evolution of methods and method use has characterized the last decades. An 
example of this kind of juncture was a shift from formal life-cycle approaches 
and “universal” structured methods, such as ISAC (Lundeberg et al. 1981), SA 
(Gane et al. 1979) and Structured Design (Yourdon et al. 1979), to more novel 
approaches (e.g. evolutionary and prototyping approaches) and methods (e.g. 
methods for decision support systems, office information systems, and expert 
information systems). The latest “discontinuation point” came up with the 
emergence of WWW technologies and business needs for web applications. 
Web development required shorter time scales, a tighter linkage between 
business models and software architecture, and greater importance on the 
contents management of web sites (Henderson-Sellers 2003, 78). These 
requirements were not possible to achieve with the disciplined use of rigor 
object-oriented methods, known as plan-driven methods (Boehm 2002). A new 
approach, called the agile approach, was born with new “values”(Cockburn 
2001). OntoFrame can be used as a foundation to investigate e.g. what kinds of 
trends and “discontinuation points” have existed, and what kinds of changes in 
views with regards to the IS ontology, the ISD ontology and the ISD method 
ontology can be identified. OntoFrame can also be used in the next upcoming 
“discontinuation point”, whatever that might be, to analyze needs for, and to 
find insights into, new structures and features, as well as to elaborate them into 
more detailed constructs. 
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Fourth, we have witnessed the emergence of domain-based and ontology-
based approaches in the SE/IS fields during the recent years. Domain-based 
development means that a common basis for understanding is first founded 
through defining shared concepts and vocabulary, and then upon this basis 
software is designed and implemented. Domain-based development is a focal 
issue in domain analysis (e.g. Arango et al. 1991; Wartik et al. 1992; Sutcliffe 
2000), domain modeling (e.g. Kaasboll et al. 1996), and domain-specific 
modeling and languages (Tolvanen et al. 2003; Tolvanen et al. 2004). Domain-
specific modeling aims to raise the level of abstraction beyond programming by 
specifying the solution directly using domain concepts (Luoma et al. 2004, 1). 
Ontology-based development, in turn, aims to achieve a common basis for the 
understanding of things in some domain (cf. domain-specific ontology), in 
some task (cf. task-specific ontology), or in some application (cf. application –
specific ontology) (Guarino 1998). This basis can be used, for instance, in 
application integration (e.g. Ciocoiu et al. 2000) and knowledge integration 
through the Semantic Web (e.g. Baclawski et al. 2002). A domain-specific 
ontology is also expected to offer a natural means of representing real world 
knowledge for database design (Sugumaran et al. 2002) and deriving object-
oriented frameworks and patterns (e.g. Guizzardi et al. 2001a; Guizzardi et al. 
2001b). OntoFrame offers a comprehensive baseline to investigate how the 
domain-based approaches and the ontology-based approaches differ from one 
another and how to support the research into and development with those 
approaches.  

Research in this thesis has mostly applied conceptual research methods. 
To obtain stronger evidence on the applicability of the design artifacts 
constructed, more empirical research is needed. For instance, ISD projects could 
be investigated, with the approach of Sabherwal et al. (1993) for instance, to find 
out how explicit the constructs included in the ISD ontology, the ISD method 
ontology and the ME ontology are in practice, and how they should be 
instantiated into project-specific methods. This would be a part of the process 
by which component ontologies of OntoFrame could be validated. Second, to 
gain experience from the use of MEMES, it should be applied in the engineering 
of an ISD method in practice. Because MEMES is a method skeleton, it should 
be first elaborated with the issues related to at least the ME datalogical 
perspective and the ISD datalogical perspective. Case studies can also be used 
to collect information about how ME workflows, not included in MEMES, are 
carried out in practice. Empirical studies, carried out as case studies or action 
research, are also needed to investigate how method engineering is organized  
in practice, and how those parts of ISD methods that have been recently 
modified in, or integrated into, the current methods are used in ISD projects.  

Finally, it should be investigated what kinds of functionalities are needed 
in CAME (Computer Aided Method Engineering) environments to support the 
use of MEMES in method engineering. The current CAME and MetaCase 
environments (e.g. Ernst & Young 1995; Kelly et al. 1996; Harmsen 1997) are 
quite limited in this respect, because most of them address only the ISD 
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conceptual perspective. Also those which support the engineering of ISD 
processes succeed in it only partly. As far as we know, MERU (Gupta et al. 2001) 
is the only CAME tool which supports the ME from more than one perspective, 
but also its capabilities in terms of ME perspectives and ISD perspectives are 
insufficient when compared to those required by the use of MEMES.  
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APPENDIX 1: VOCABULARY 
 
 
This appendix contains the integrated vocabulary of OntoFrame. The terms 
with the definitions are categorized according to the structure of OntoFrame. In 
the definitions the concerned terms are written in bold and the terms already 
defined in italics.  This way we concretely show how the concepts signified by 
the terms are related to one another.  
 
I. Core Ontology 
 
The core ontology provides the key concepts and constructs for conceiving, 
understanding, structuring and representing fundamentals in reality. 
 
I.1 Generic Ontology 
 
The generic ontology provides the most generic concepts from which the 
concepts of all the other component ontologies in Ontoframe have been 
derived.  
 
Reality 
 Reality is anything that exists, has existed or will (possible) exist.  
Subjective reality 
 Subjective reality (or the perceived reality) is reality that is the result from 

our mental processes.  
Physical reality 
 Physical reality (or shortly reality) is reality that is independent of any 

human thinking. It is the source of sense data, which we obtain, and it is 
thus external to us. 

Thing 
 A thing means any phenomenon in the physical or subjective reality. 
Property 
 A property is a thing that is used to characterize other thing(s). 
Characterized thing 
 A characterized thing is a thing that is characterized by at least one 

property. 
Relationship 
 A relationship is a thing that relates two or more characterized things 

together, each one associated with one property characterizing the role of 
that thing within that relationship.  

Role 
 A role is a property, that reflects a position the thing holds, or a function the 

thing conducts, in the relationship. 
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Point of view 
 A point of view is a thing by which some things or some properties of 

thing(s) are selected because they are more relevant than the others.  
Framework 
 A framework is a thing that guides a human being to select the points of 

view that are the most appropriate for the case or the problem at hand.  
 
I.2 Semiotic Ontology 
 
The semiotic ontology provides concepts and constructs to recognize semiotic 
things in reality. It specializes things according to the semiotic framework. 
 
Concept 
 A concept is a thing, some kind of word of mind that refers to a referent 

(thing).  
Construct 
 A construct is a composed of related concepts. 
Referent 
 A referent is a thing in reality to which a concept refers.  
Sign 
 A sign is a thing that can stand for something else. 
 
I.3  Intension/Extension Ontology 
 
The intension/extension ontology provides concepts and constructs to specialize 
the notion of a concept into more specific notions such as basic concept, derived 
concept, individual concept, generic concept, etc. 
 
Intension  
 An intension, or comprehension of a concept, consists of all its predicates.  
Predicate 
 A predicate is a concept, which is used to characterize the (original) concept.  
Extension 
 An extension of a concept is the set of all (referent) things to which the 

intension of the concept applies. 
Population 
 A population of a concept is the set of the existing (referent) things to which 

the intention of the concept applies. 
Basic concept 
 A basic concept is a concept the intension of which is specified without 

using other concepts in question.  
Derived concept 
 A derived concept is a concept the intension of which is derived from the 

predicates of other concepts. 
Abstract concept 
 An abstract concept is a concept that has no referent things. 
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Concrete concept 
 A concrete concept is a concept that is not abstract. 
Individual concept 
 An individual concept, or a particular, is a concept that can only refer to 

one thing. 
Generic concept 
 A generic concept, or a universal, is a concept that can refer to many things.  
Type  
 A type is a generic concept. 
Instance 
 An instance is a member of the extension of a type.  
 
I.4 Language Ontology 
 
The language ontology provides concepts and constructs to specify the syntax 
and semantics of a language. 
 
Language 
 A language is an abstract thing that is used in communication among 

people, between people and computers, or among parts of the computers. 
Abstract syntax 
 An abstract syntax of a language gives the conceptual components of a 

language and rules for connecting them, leaving out representational 
details.  

Concrete syntax 
 A concrete syntax of a language gives notational elements, called the 

symbols in the vocabulary of a language, and rules for connecting them 
with one another and with the concepts (cf. signification rules). 

Semantics 
 Semantics of a language defines the relations of symbols to the referents to 

which the symbols are applicable.  
Vocabulary 
 A vocabulary of a language is a non-empty and finite set of symbols.  
Symbol 
 A symbol is a special sign used as an undividable part of an expression. 
Expression 
 An expression is a sign of a language and a non-empty and finite 

“arrangement” of symbols taken from a vocabulary, constricted by the 
syntax and semantics of the language. 

Formal language 
 A formal language is a language with a precisely defined syntax and 

semantics.   
Semi-formal language 
 A semi-formal language is a language with a precisely defined syntax. 
Informal language 
 An informal language is a language that is neither formal nor semi-formal. 
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Label  
 A label is an elementary expression used to signify a particular concept in 

an elementary way.  
Proper name 
 A proper name is a label signifying an individual concept or a particular. 
Common noun  
 A common noun is a label signifying a generic concept or a universal.  
 
I.5 State Transition Ontology 
 
The state transition ontology provides the concepts and constructs for 
conceiving static and dynamic things in reality. 
 
State 
 A state is a thing, which is seen to have some duration. 
Transition 
 A transition is a binary relationship between two different things, called the 

pre-state and the post-state of that transition. 
Event 
 An event is a thing, which may trigger a transition from the pre-state to the 

post-state. 
Transition structure 
 A transition structure is composed of related transitions. 
 Composite transition 
 A composite transition is a transition structure with a unique pre-state and 

a unique post-state.  
Elementary transition 
 An elementary transition is a transition that does not contain any transition 

structure. 
Life cycle 
 A life cycle of a thing consists of all the states, transitions and events that are 

related to the existence of a thing. 
 
1.6  UoD Ontology 
 
The UoD ontology provides the concepts and constructs for perceiving and 
conceiving the UoD, UoD states, UoD behavior, and UoD evolution from a 
certain point of view. 
 
Universe of discourse (UoD) 
 A universe of discourse (UoD) is a subjective reality that is relevant from 

the point of view adopted. 
UoD state  
 A UoD state is composed of the related states of all those things that are 

included in the UoD. 
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UoD behavior 
 A UoD behavior is composed of extensional transitions among the UoD 

states.  
UoD evolution 
 A UoD evolution is composed of intensional transitions among the UoD 

states. 
 
I.7 Abstraction Ontology 
 
The abstraction ontology provides concepts and constructs for abstraction. 
 
Abstraction 
 Abstraction is a principle by which irrelevant things are ignored and the 

things relevant to understanding some problem of interest are uncovered. 
Concretizing 
 Concretizing is the principle inverse to abstraction. 
First-order abstraction  
 First-order abstraction is abstraction that concerns the concept things and 

their abstraction relationships.  
Second-order abstraction or predicate abstraction 
 Second-order abstraction, or predicate abstraction, means abstraction, 

which mainly concerns the predicates of concept things and their abstraction 
relationships.  

Classification 
 Classification is the principle of abstraction by which the concept, called the 

type, is generated from other concepts, called instances. 
Instantiation 
 Instantiation is the principle inverse to classification. 
instanceOf relationship 
 An instanceOf relationship is the relationship between an instance and its 

type.  
Meta type 
 A meta type is a type, instances of which are types.   
Objective classification 
 An objective classification is a result of classification in which for a type 

there is only one type extension.  
Subjective classification 
 A subjective classification is a result of classification in which for a type 

there may be several (subjective) type extensions.  
Permanent classification 
 A permanent classification is a result of classification that does not change 

in time, that is to say, there is no instance, which refers to more than one 
referent. 
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Evolving classification 
 An evolving classification is a result of classification that changes in time, 

that is to say, there may be an instance, which refers to more than one 
referent. 

Strict classification 
 A strict classification is a result of classification in which for each instance 

there is certain type.  
Non-strict classification 
 A non-strict classification is a result of classification in which there are 

instances for which there are no types.  
Factual predicate 
 A factual predicate is a predicate that mainly contain individual concepts.  
Definitional predicate 
 A definitional predicate is a predicate that is composed of solely generic 

concepts expressed in common nouns. 
Intensional predicate derivation 
 Intensional predicate derivation means that each predicate of a type is 

expected to apply to the corresponding instance concepts. 
Extensional predicate derivation 
 Extensional predicate derivation means that factual predicates of a type can 

be derived from the factual predicates of the instances. 
Generalization  
 Generalization is the principle of abstraction by which differences between 

some types, called subtypes, are suppressed and a new type, called a 
supertype, is generated based on the commonalities of the subtypes.  

Specialization 
 Specialization is the principle of abstraction, inverse to generalization, to 

concretize subtypes from the supertype. 
isA relationship 
 An isA relationship means the relationship between a subtype and its 

supertype. 
Superset  
 A superset is the extension of the supertype. 
Subset 
 A subset is the extension of a subtype.  
One-type specialization 
 One-type specialization means specialization in which for each supertype 

there is only a subtype. 
Hierarchical specialization 
 Hierarchical specialization means specialization in which for each 

supertype there are several subtypes. 
Lattice specialization 
 Lattice specialization means specialization in which for each subtype there 

may be two or more supertypes. 
 
 



 

 

653

Total specialization 
 Total specialization means specialization in which for each supertype 

referent there is always one subtype referent. 
Partial specialization  
 Partial specialization means specialization in which there is a supertype 

referent for which there is no subtype referent.   
Disjoint specialization 
 Disjoint specialization means specialization in which the extensions of the 

subtypes are disjoint.  
Overlapping specialization 
 Overlapping specialization means specialization in which the extensions of 

the subtypes overlap.  
Composition 
 Composition is the principle of abstraction by which a type, called a whole 

type, is composed of other types, called part types, or a whole instance is 
composed of related part instances. 

Decomposition 
 Decomposition is the principle inverse to composition, by which a whole 

(type) is decomposed into inter-related part(s) (types). 
partOf relationship 
 A partOf relationship means the relationship between a part (type) and its 

whole (type). The parts in the whole are related to one another. 
Syntactic composition 
 Syntactic composition means composition, which deals with sign things. 
Semantic composition 
 Semantic composition means composition, which deals with non-sign 

things.  
Total exclusive composition 
 Total exclusive composition means composition in which a thing can be a 

part of only one whole. 
Arbitrary shared composition 
 Arbitrary shared composition means composition in which a thing can be a 

part in arbitrary many wholes. 
Selectively exclusive composition 
 Selectively shared composition means composition in which a thing can be 

a part of one whole but of more than one alternative type.  
Optional composition 
 Optional composition means composition, in which there may be things of 

some part type that are related to no things of the whole type.  
Essential relationship 
 An essential relationship is a partOf relationship between a part type and a 

whole type if each part instance must be connected to at least one arbitrary 
whole instance of that type. 
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Immutable relationship 
 An immutable relationship is a partOf relationship between a part type and 

a whole type, if the parts of that part type are permanently related to the 
whole since its “birth”. 

Homogeneous whole 
 A homogeneous whole is a thing that is composed of things of one part 

type.  
Heterogeneous whole 
 A heterogeneous whole is a thing that is composed of several part types.  
Single-part whole 
 A single-part whole is a thing that contains only one thing of certain part 

type.  
Multi-part whole 
 A multi-part whole is a thing that contains several things of a certain part 

type.  
Flexible-structure whole 
 A flexible-structure whole is a thing in which parts of some part types can 

be missing.  
Fixed-structure whole 
 A fixed-structure whole is a thing, which is composed of parts of all the 

defined part types. 
Grouping 
 Grouping is the principle of abstraction by which a concept, called a group 

type, is generated from other concepts, called member types, or to abstract 
a group instance from member instances. 

Individualization 
 Individualization is the principle inverse to grouping by which a member 

(type) is distinguished from a group (type) for a more detailed 
consideration. 

memberOf relationship 
 A memberOf relationship means the relationship between a member (type) 

and a group (type). 
Homogeneous grouping 
 Homogeneous grouping means grouping in which for a group type there is 

only one member type.  
Heterogeneous grouping 
 Heterogeneous grouping means grouping in which a group can be formed 

from members of several member types. 
Categorical grouping 
 Categorical grouping means grouping in which a member type is related to 

one group type at a time.  
Shared grouping 
 Shared grouping means grouping in which a thing can be a member type of 

several group types. 
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Disjoint grouping  
 Disjoint grouping means grouping in which an instance cannot be a 

member of more than one group (of the same or different type).  
Overlapping grouping  
 Overlapping grouping means grouping in which an instance is allowed to 

be a member of several groups (of the same of different type). 
Mandatory grouping  
 Mandatory grouping means grouping in which each member must belong 

to some group. 
Optional grouping  
 Optional grouping means grouping in which an instance can exist without 

any memberOf relationship. 
Predicate classification 
 Predicate classification means predicate abstraction by which predicate 

instances are definitionalized into a predicate type.  
Predicate instantiation 
 Predicate instantiation means predicate concretizing by which a predicate 

type is factualized into predicate instances.   
Predicate generalization  
 Predicate generalization means predicate abstraction by which special 

features of predicate subtypes are ignored in order to uncover the features 
common to all the predicate subtypes. 

Predicate composition 
 Predicate composition means predicate abstraction by which a predicate as 

an entire construct, called a predicate whole (type), rather than its predicate 
part(s) (types) is/are examined. 

Predicate grouping 
 Predicate grouping means predicate abstraction by which a predicate group 

(type) rather than its predicate member(s) (types) is/are examined. 
 
II. Context ontology 
 
The context ontology provides concepts and construct for conceiving, 
understanding, structuring, and representing things as contexts and/or within 
contexts.  
 
Approach 
 An approach provides generalized principles, which help us conceive 

reality, recognize problems and/or find potential solutions in it. 
Contextual approach 
 A contextual approach is a conception-oriented approach, which serves the 

recognition, understanding and specification of the purposes, meanings, 
and effects of things, through considering them to be contexts and/or parts 
within contexts. 
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Context  
 A context is a conceptual or intellectual construct that can help us 

understand, analyze, and design the natures, meanings, and effects of 
more elementary things in the concerned environment or circumstances. It 
is a whole, which is determined by the focal thing(s) of which making sense 
is important. It is composed of highly related things, each of which 
represents certain contextual domain. 

Contextual concept 
 A contextual concept is a concept, which belongs to some of the contextual 

domains. 
Contextual relationship 
 A contextual relationship is a relationship, which connects two or more 

contextual concepts. Contextual relationships contain intra-domain, inter-
domain, and inter-context relationships, explicitly or implicitly defined. 

Intra-domain relationship 
 An intra-domain relationship is a contextual relationship, which associate 

two or more contextual concepts of the same contextual domain. 
Inter-domain relationship 
 An inter-domain relationship means a contextual relationship that 

associates two or more contextual concepts of different contextual domains. 
Implicit contextual relationship 
 An implicit contextual relationship is a contextual relationship that can be 

derived from other basic or implicit contextual relationships.  
Contextual framework 
 A contextual framework is a framework, which is composed of contextual 

concepts related with one another through contextual relationships, and 
which is used to conceive things within contexts and/or as contexts. 

Contextual role 
 A contextual role is a role, which a thing plays when being part of the 

context.  
Goal-producing context  
 A goal-producing context is a context that produces something, which is 

used as a goal statement or a requirement in another context.  
Actor-producing context 
 An actor-producing context is a context that ”produces” objects (e.g. more 

skilled persons), which act as actors in another context. 
Rule-producing context 
 A rule-producing context is a context that produces objects, which are 

used as rules in another context (e.g. the method engineering context vs. 
the ISD context). 

Object-producing context 
 An object-producing context is a context that produces objects (e.g. 

services), which are utilized in another context (cf. the IS context vs. the 
business system context). 

 
 



 

 

657

Facility-producing context 
 A facility-producing context is a context that produces objects, which are 

utilized as tools or resources in another context (cf. the ISD context 
producing software vs. the business context). 

Location-producing context 
 A location-producing context is a context that produces objects, which are 

used as locations in another context. 
 
Purpose domain  
 The purpose domain consists of those concepts and constructs, which refer, 

directly or indirectly, to goals, motives, or intentions of someone or some 
thing. They may also express reasons for why someone exists, something 
has been done, someone is used, etc. in a context. 

Purpose  
 A purpose is a generic concept standing for things in the purpose domain.  
Goal 
 A goal is a purpose referring to a desired state of affairs. 
Reason 
 A reason is a purpose that is used as a basis or cause for some action, fact, 

event etc. 
dueTo relationship  
 A dueTo relationship between a goal and a reason is a contextual 

relationship meaning that a reason gives an explanation, a justification or a 
basis for setting a goal. 

Strategic goal 
 A strategic goal is a goal with the lifespan of 5 – 10 years. 
Tactic goal 
 A tactic goal is a goal that shows how to attain strategic goals. 
Operative goal 
 An operative goal is a goal that is generally determined as concrete 

requirements that are to be fulfilled by specified time point. 
Hard goal 
 A hard goal is a goal that has pre-specified criteria. 
Soft goal 
 A soft goal is a goal that has not pre-specified criteria. 
Criterion 
 A criterion is a standard of judgment presented as an established rule or 

principle for evaluating some thing.  
Requirement 
 A requirement means some thing that is necessary and needed, a 

statement about the future. 
Functional requirement  
 A functional requirement is a requirement that can be achieved by 

performing a sequence of operations.  
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Non-functional requirement 
 A non-functional requirement is a requirement that is defined in terms of 

constraints, to qualify the functional requirement related to it. 
Problem  
 A problem is the distance or a mismatch between the prevailing state and 

the state reflected by the goal. 
Structured problem 
 A structured problem is a problem that is routine, and can be solved using 

standard solution techniques. 
Semi-structured  
 A semi-structured problem is a problem for which there are, only to some 

extent, standard solution techniques available.  
Unstructured problem 
 An unstructured problem (or a wicked problem) is a problem that does not 

usually fit a standard mold, and is generally solved by examining different 
scenarios, and asking “what if” type questions.  

Strength  
 Strength means something in which one is good, something that is 

regarded as an advantage and thus increasing the possibilities to gain 
something better.  

Weakness  
 Weakness means something in which one is poor, something that could or 

should be improved or avoided.  
Opportunity  
 An opportunity is a situation or condition favourable for the attainment of 

a goal.  
Threat  
 A threat is a situation or condition that is a risk for attainment of a goal. 
refinement relationship 
 A refinement relationship between the goals is a contextual relationship that 

establishes a goal hierarchy, meaning that a goal can be reached when the 
goals below it (so-called sub-goals) in the hierarchy are fulfilled. 

influence relationship 
 An influence relationship is a contextual relationship that indicates that the 

achievement of a goal has some influence on the achievement of another 
goal. 

causalTo relationship 
 A causalTo relationship between two problems is a contextual relationship 

that means that the appearance of one problem is at least a partial reason for 
the occurrence of the other problem. 

 
Actor domain  
 The actor domain consists of those concepts, which refer to human and 

active parts in a context (i.e. individuals, groups, positions, or 
organizations).  
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Actor 
 An actor is a human or administrative actor, a generic concept used to refer 

to things in the actor domain. Actors have an active role in a context. 
Human actor 
 A human actor is an individual person or a group of persons.  
Person  
 A person is a human being, characterized by his/her consciousness, 

emotions, personality, beliefs, desires, intentions, social relationships, and 
behavior patterns conditioned by his/her culture. 

Group  
 A group is a set of two or more persons.  
Position 
 A position is a post of employment occupied by a human actor. 
occupiedBy relationship  
 An occupiedBy relationship is a contextual relationship showing a position 

assigned to a human actor. 
Organizational role 
 An organizational role is a collection of responsibilities, stipulated in an 

operational or structural manner. 
supervision relationship  
 A supervision relationship is a contextual relationship involving two 

positions such as one is a supervisor to another that is called a subordinate. 
Organization 
 An organization is an administrative arrangement or structure established 

for some purposes, manifesting the division of labor into actions and the 
coordination of actions to accomplish the work. 

Organizational unit 
 An organization unit is composed of positions with the established 

supervision relationships. 
 
Action domain 
 The action domain consists of those concepts and constructs, which refer to 

functions, activities, tasks, or operations carried out in a context, that is to 
say, to state transitions in reality. 

Action 
 An action is the generic concept that refers to things (i.e. deeds or events) 

belonging to the action domain. 
Management – execution structure  
 A management – execution structure is a whole composed of one or more 

management actions and those execution actions that implements 
prescriptions provided by the management actions. 

Management action 
 A management action aims at providing the execution actions with 

prescriptions and resources. 
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Execution action 
 An execution action aims to implement prescriptions given by 

management actions with the given resources. 
Planning  
 Planning consists of all those management actions that lead to the creation, 

assessment, and selection of alternative future courses of action and the 
program for carrying out the actions. 

Organizing  
 Organizing contains all those management actions that result in the design 

of a formal organization structure of actions and authority relationships. 
Staffing 
 Staffing consists of all those management actions required to fulfill and 

sustain filled positions that were established by organizing. 
Directing  
 Directing consists of all those management actions dealing with the 

interpersonal aspects through which the personnel come to understand 
and contribute to the achievement of organizational goals. 

Controlling  
 Controlling consists of all those management actions that ensure that the 

actual work goes according to the plans. 
Problem solving structure  
 A problem solving structure is a whole that is composed of three kinds of 

actions: intelligence, design options, and choice. 
Intelligence  
 Intelligence means actions that search the environment for conditions 

calling for a decision and collect information based on which a decision 
can be made.  

Design  
 Design consists of the actions of inventing, shaping and specifying 

alternatives for possible courses of action.  
Choice  
 Choice means the evaluation and comparison of alternatives and the 

selection among them. 
Rule  
 A rule is a principle or regulation governing a conduct, action, procedure, 

arrangement, etc. It is composed of four parts: event, condition, 
thenAction, and ElseAction. 

Event 
 An event is an instantaneous happening in the context or in its 

environment that is significant for the behavior of the context. An event has 
no duration.  

Condition 
 A condition is a prerequisite for triggering an action.  
thenAction  
 A thenAction is an action that is carried out when the event occurs and if 

the condition is true.  
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elseAction 
 An elseAction is an action that is carried out when the event occurs but the 

condition is not true. 
Dynamic rule 
 A dynamic rule is a rule that restricts the allowable transitions between the 

pre-states and the post-states.  
Static rule 
 A static rule is a rule that restricts the allowable states.  
Analytic rule 
 An analytic rule is a rule that cannot be broken by an inter-subjectively 

agreed definition of the terms used in the rule. 
Empirical rule 
 An empirical rule is a rule that cannot be broken according to shared 

explicit knowledge. 
Deontic rule 
 A deontic rule is a rule that is socially agreed among the persons. 
Internal event 
 An internal event is an occurrence happening inside the context.  
External event  
 An external event is an occurrence happening in the environment of the 

context.  
Temporal event  
 A temporal event is an occurrence having time as its impulse. 
Action decomposition structure 
 An action decomposition structure is a whole composed of actions, sub-

actions, sub-sub-actions, etc.  
Action control structure  
 An action control structure is a whole in which the actions are logically 

related to each other according to an execution order. 
sequence relationship 
 A sequence relationship between two actions is a contextual relationship 

meaning that after selecting one action a certain action is next to be 
selected. 

selection relationship 
 A selection relationship is a contextual relationship meaning that after 

selecting one action there is a set of alternative actions from which one 
action (or a certain number of actions) is to be selected. 

iteration relationship 
 An iteration relationship is a contextual relationship meaning that after 

selecting one action the same action is selected once more. 
Temporal action structure  
 A temporal action structure is a whole in which the actions are organized 

on the basis of temporal conditions and events. 
Temporal event 
 A temporal event is a time-driven event. 
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Work procedure  
 A work procedure is a whole that is composed of related rules. 
Process 
 A process is an instance of an action. 
 
Object domain 
 The object domain consists of those concepts and constructs, which refer to 

some objects, which an action is targeted to in a context. The objects can be 
material or informational.  

Object  
 An object is a generic concept used to refer to things in the object domain.  
Material object 
 A material object is an object that does not carry or present any 

information. 
Informational object 
 An informational object is an object that carries and/or presents some 

information. 
Linguistic object 
 A linguistic object is an object that is presented in a language. 
Conceptual object 
 A conceptual object is composed of UoD constructs which are signified by 

linguistic object(s).  
Service  
 A service is some object, tangible or intangible, composed of material and 

informational objects, and made for or given to someone from which 
it/she/he benefits. 

Desciption 
 A description is a descriptive object, i.e. representation of information 

about a slice of the UoD (the actual or possible world). 
Prescription 
 A prescription is a prescriptive object, i.e. a representation of the 

established practice or authoritative regulation for action. 
Assertion 
 An assertion is a description, which asserts that a certain state has existed or 

exists, or a certain event has occurred or occurs.  
Prediction 
 A prediction is a description of a future possible world with the assertion 

that the course of events in the actual world will eventually lead to this 
state. 

Rule 
 A rule is a prescription which consists of at least two parts ((Event or 

Condition) and Action). 
Command 
 A command is a prescription which has neither event nor condition part. 
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Plan 
 A plan is an informational object that may possess aspects of several 

intentional subtypes (e.g.  description, prediction, and prescription).  
Version 
 A version is a result of an iterative or phased action toward the final 

outcome. 
 
versionOf relationship  
 A versionOf relationship is a contextual relationship holding between two 

objects, if the properties of, and the experiences from, one object have 
influenced upon the creation of another object, provided that they are for 
the same purposes and the objects refer to the same UoD.    

copyOf relationship 
 A copyOf relationship is a contextual relationship that holds between two 

objects, if the original object and a copy object are exactly, or to an 
acceptable extent, similar.  

supports relationship  
 A supports relationship is a contextual relationship that involves two 

informational objects, such that the information “carried” by one object is 
needed to produce the other object.  

predAbstract relationship 
 A predAbstract relationship between two informational objects is a 

contextual relationship meaning that one object is more abstract that the 
other object in terms of predicate abstraction and both of the objects signify 
the same thing(s) in the UoD. 

signifies relationship  
 A signifies relationship between a linguistic object and a conceptual object is 

a contextual relationship that defines the conceptual meaning of the 
linguistic object in terms of UoD constructs, which the linguistic object 
signifies. 

UoD construct  
 A UoD construct means any conceptual construct in the same or different 

context. 
 
Facility domain  
 The facility domain consists of those concepts and constructs, which refer 

to means by which something can be done or is done in a context.  
Facility 
 A facility is the generic concept in the facility domain, which means either a 

tool or a resource. 
Tool 
 A tool is a thing that is designed, built, installed, etc. to serve a specific 

action affording a convenience, efficiency or effectiveness. 
Resource 
 A resource is a kind of the source of supply, support, or aid. It can be 

money, energy, capital, goods, manpower, etc. 
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compatability relationship 
 A compatability relationship between two tools (or components) is a 

contextual relationship meaning that the interfaces of the tools are 
structurally and functionally interoperable.  

Configuration 
 A configuration is a whole that is composed of the components with 

compatible versions. 
 
Location domain  
 The location domain consists of those concepts and constructs, which refer 

to parts of space occupied by someone or something in a context.  
Location 
 A location is a generic concept, which refers to a physical or logical location. 
Physical location  
 A physical location is a spatial thing (e.g. a room or a building), which is 

placed in a region of space and which can, through its spatial attachment, 
provide a place for some other thing.  

Spatial thing 
 A spatial thing is some thing that is necessary or beneficial to localize.  
Region 
 A region is a part or division of space.  
Point 
 A point is the elementary unit in space specified by a single coordinate 

with reference to a system of two or three geographical dimensions.  
Area 
 An area is any particular extent of space specified with at least two 

coordinates. 
Geographical dimension 
 A geographical dimension means any dimension within which space can 

be specified.  
Geographical system 
 A geographical system is a system of two or three geographical dimensions. 
placedIn relationship 
 A placedIn relationship between a region and a spatial thing is a contextual 

relationship meaning that the spatial thing is located in the region.  
Logical location 
 A logical location, like a site within a computer network, is a space that is 

not attached to any geographical point or area. 
topological relationship 
 A topological relationship between two regions states how the regions 

are related in terms of geographical points or areas along the geometric 
dimensions. 

connectedTo relationship 
 A connectedTo relationship is a contextual relationship meaning that two 

sites can communicate with each other by sending messages. 
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Time domain  
 The time domain consists of those concepts and construct, which refer to 

temporal aspects in a context. 
Time 
 Time is indefinite, unlimited duration in which something is considered 

as happening in the past, present, or future. Most of our knowledge is 
founded in time and expressed in terms of time units.  

Time unit 
 A time unit means a unit of measuring time.  
Time point 
 A time point is the primitive time unit as an indivisible point on the time 

continuum.  
Time interval  
 A time interval is an abstraction of time points, manifesting duration of 

something.   
Convex time interval 
 A convex time interval is a time interval that consists of continuous time 

points.  
Non-convex time interval 
 A non-convex time interval is an interval with some “holes”. 
Time system 
 A time system is a totally ordered set of time units. 
relatedTo relationship 
 A relatedTo relationship means a contextual relationship between two time 

systems. 
temporal relationship 
 A temporal relationship means a contextual relationship between two time 

units, which are time points and/or time intervals. 
 
expressedBy relationship 
 An expressedBy relationship between an actor and a purpose is an inter-

domain contextual relationship meaning that an actor has expressed a goal, a 
requirement, a problem, or the like concerning the context as a whole or some 
of its part, in the same or different context.  

motivatedBy relationship 
 A motivatedBy relationship between a human actor and a purpose is an 

inter-domain contextual relationship meaning a subjective or inter-subjective 
motive or an inner drive that makes a person or a group to do something or 
behave as he/she/it does.  

strivesFor relationship 
 A strivesFor relationship between an action and a purpose is an inter-

domain contextual relationship expressing a goal, which an action pursues.  
intendedFor relationship 
 An intendedFor relationship between an object, a facility, or a location, on 

one hand, and a purpose, on the other hand, is an inter-domain contextual 
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relationship meaning a goal or a reason for which an object/a facility/an 
object is made, acquired, and/or used.  

carryOut relationship 
 A carryOut relationship is an inter-domain contextual relationship meaning 

that an actor conducts an action.   
responsibleFor relationhip 
 A responsibleFor relationship is an inter-domain contextual relationship 

specifying those actions, which an organizational role is responsible for.  
occursAt relationship 
 An occursAt relationship is an inter-domain contextual relationship defining 

when an action is done, has been done or will be done.  
ownedBy relationship 
 An ownedBy relationship is an inter-domain contextual relationship 

meaning that an actor is an “owner” of an object.   
viewedBy relationship 
 A viewedBy relationship is an inter-domain contextual relationship meaning 

that an object is a view, insight, opinion, etc. of an actor.  
useAbility relationship 
 A useAbility relationship is an inter-domain contextual relationship 

meaning that it is possible for an actor to use a facility. 
input relationship 
 An input relationship is an inter-domain contextual relationship meaning 

that an object is used as an input to an action. 
output relationship 
 An output relationship is an inter-domain contextual relationship meaning 

that an action produces an object as its output. 
involvedBy relationship 
 An involvedBy relationship is an inter-domain contextual relationship 

meaning that a UoD construct is involved by an action through informational 
objects that signify a UoD construct. Involving may mean creating, 
modifying, utilizing, or deleting informational objects.   

performs relationship 
 A performs relationship is an inter-domain contextual relationship meaning 

that an action is performed by a tool. 
uses relationship 
 A uses relationship is an inter-domain contextual relationship meaning that 

an action consumes certain resources. 
usedToMake 
 A usedToMake relationship is an inter-domain contextual relationship 

meaning that a certain facility, i.e. a tool or a resource, is used to produce an 
object. 

situatedIn relationship 
 A situatedIn relationship is an inter-domain contextual relationship meaning 

that a human actor/an object/a facility is situated in a location.   
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existsAt relationship 
 An existsAt relationship is an inter-domain contextual relationship defining 

when a purpose/an actor/an object/a facility/a location exists, has existed, 
or will exist. 

 
III. Layer ontology 
 
The layer ontology provides concepts and constructs to conceive, understand, 
structure and represent the static and dynamic features of information 
processing at four layers. It is composed of two parts. The first part provides the 
concepts and constructs related to information processing in general. The second 
part of the ontology shows how information processing is structured and 
related onto four layers according to the predefined system of layers. 
 
Knowledge 
 Knowledge is a relative stable and sufficiently consistent set of (conceptual) 

informational objects owned by single human actors. 
Explicit knowledge  
 Explicit knowledge is a body of knowledge that can be articulated in a 

natural or formal language. 
Tacit knowledge  
 Tacit knowledge is a body of knowledge that is embedded in personal 

experience and therefore cannot be (easily) represented externally.  
Data 
 Data is knowledge represented in a language. 
Information  
 Information is the knowledge increment brought about by receiving data, 

by observing reality, or by inner thought processes by which a person 
organizes, compares, assesses his/her knowledge. 

Information processing  
 Information processing means action(s) by which informational objects are 

collected, stored, processed, disseminated and interpreted. 
System  
 A system is a conceptual construct through which phenomena in reality can 

be conceived as a whole (system), contained in the environment, 
characterized by emergent predicates, and composed of parts (elements). 

Computerized information system  
 A computerized information system (CIS) is a system in which all 

information processing is automated, that is to say, performed by one or 
more computer systems.  

Human information system  
 A human information system (HIS) is a system, in which human actors play 

the only role in the accomplishment of actions to process information in a 
structured way. 
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Information system 
 An information system is a system, composed of actors, information/data, 

facilities and locations, collecting, storing, processing and distributing 
information about the relevant parts of reality, called the object system, in 
order to enable and/or improve actions in the other context, called the 
utilizing system.  

Utilizing system  
 A utilizing system (US) is a system, which exploits information services, 

provided by the information system, in its decision making or operational 
actions, in order to make plans and execute changes (i.e. state transitions) in 
the controlled system. 

Information service 
 Information service is a service that is composed informational objects.  
Controlled system 
 A controlled system is a system, which the utilizing system has control 

over. 
User 
 A user of IS is an actor who potentially increases his/her knowledge about 

some phenomena in the object system with the help of the IS. 
End-user 
 A end-user is an actor, who increases his/her knowledge by interacting 

directly with the CIS.  
Indirect-user 
 An indirect user is an actor, who increases his/her knowledge by getting 

results from the CIS through other users of the information system. 
Object system  
 An object system (OS) means a system about which the IS, due to the 

interests of the US, collects, stores, processes and disseminates information 
(services) to the US. 

Primary action 
 A primary action means routine-like information processing. 
Development action 
 A development action means an action to make changes in routines of the 

primary action.  
Micro-level development 
 A micro-level development means a development action carried by 

individual persons as part of their personal work.  
Mid-level development 
 A mid-level development means a development action carried out in group 

works, organized often informally when necessary.  
Macro-level development 
 A macro-level development means a pre-planned, controlled, and 

coordinated development action that involves several individual persons 
with various skills, takes weeks or months, sometimes years, and may 
costs a lot of money.  
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Processing layer 
 A processing layer is composed of information processing actions, which 

share the similar goals and the same target (i.e. object) of action.  
System of layers 
 A system of layers is a system that is composed of processing layers, which 

constitute a hierarchical structure, in which actions at a higher layer 
produce informational objects to be used as prescriptions for the actions at the 
next lower layer. 

 
IV.  Perspective ontology 
 
The perspective ontology provides the concepts and constructs for conceiving, 
understanding, structuring and representing things in information processing 
contexts with a system of pre-defined perspectives180. 
 
Perspective 
 A perspective is a strictly defined point of view.  
System of perspectives 
 A system of perspectives is a (static) system, which is composed of 

perspectives and relationships between them. 
Systelogical perspective 
 The systelogical perspective is a perspective according to which the IS is 

seen in relation to its utilizing system (US). 
Infological perspective  
 The infological perspective is a perspective according to which the IS is 

seen as a functional structure of information processing actions and 
informational objects, independent from any representational and 
implementational features. 

Conceptual perspective 
 The conceptual perspective is a perspective according to which the IS is 

considered through the semantic contents of information it processes. 
Datalogical perspective  
 The datalogical perspective is a perspective according to which the IS is 

viewed through representation-specific concepts as a context, in which IS 
actors work with IS facilities to process data. 

Physical perspective  
 The physical perspective is a perspective, which ties the datalogical concepts 

and constructs to the particular organizational and technical environment, 
showing how the IS looks like and behaves when it is implemented. 

 
 
 

                                                 
180  The definitions of the perspectives below are expressed in relation to the IS. The 

notion of the IS should be here understood generally; It can mean information 
processing on any processing layer. 
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V IS ontology181 
 
The IS ontology provides concepts and constructs to conceive, understand, 
structure and represent the contextual features of information processing at the IS 
layer. 
 
V.1  IS domains 
 
IS purpose 
 An IS purpose means an IS goal for the IS and/or s reason for setting up a 

goal.  
IS goal 
 An IS goal is a desired state of affairs in the IS.  
IS reason  
 An IS reason can be a functional or non-functional requirement for 

information processing, a problem in prevailing information processing, 
strength and weakness in, and an opportunity and a threat for, existing or 
planned information processing. 

IS actor 
 An IS actor is an actor working in and for the IS. 
Human IS actor 
 A human IS actor is an individual person or a group of persons working in 

and for the IS. 
IS role 
 An IS role is a collection of responsibilities, stipulated in terms of HIS 

actions.  
IS position 
 An IS position is a position, composed of the defined IS roles and occupied 

by a human IS actor.   
IS organization 
 An IS organization is an organization whose main responsibility is to 

develop, manage and/or carry out information processing in a business 
organization.  

IS organizational unit 
 An IS organizational unit is composed of IS positions.  
IS action 
 An IS action is an action that strives for one or more IS purposes.  
IS object 
 An IS object is an informational object signifying one or more OSIS 

constructs. It is an input to and an output from one or more IS actions.   
 

                                                 
181  The concepts of this ontology are categorized in the following way. The concepts that 

are directly related to the IS are presented in the first part, the IS domains. The 
definitions of the IS perspectives as well as the concepts of the utilizing system (US) 
and the object system (OS) are included in the second part, the IS perspectives.  
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Transient IS object  
  A transient IS object is an IS object, which lasts only a short time (e.g. a 

reply to a routine request).  
Permanent IS object 
 A permanent IS object is an IS object that is valuable enough to “live” 

longer (e.g. personnel information, vehicle information). 
Data object 
 A data object is an IS object represented in some language.  It can be in a 

digital or non-digital form.  
Non-digital data  
 Non-digital data means an IS object that is presented in a language that can 

be interpreted by a human being.  
Digital data  
 Digital data is an IS object that is in a digital form and can be read by a 

computer.  
IS rule  
 An IS rule governs one or more IS actions. It is composed of four parts: IS 

event(s), IS condition(s), thenISAction(s), and elseISAction(s).   
Human information system 
 A human information system (HIS) means a system in which human 

beings have the only role in the accomplishment of the IS actions. 
HIS purpose 
 A HIS purpose is a IS purpose which concerns the HIS as a whole, or parts 

thereof. 
HIS action 
 A HIS action is an IS action carried out by a human IS actor, to attain one or 

more HIS purpose. 
HIS rules  
 A HIS rule is an IS rule governing one or more HIS action.  
User interface 
 A user interface is a part of the CIS which facilitates the interaction 

between the users and the CIS. 
Dialog 
 A dialog means an interaction between a user and the CIS, occurring 

through windows.  
Window 
 A window is a logical whole through which a user can communicate with 

the CIS. It is composed of UI components.  
UI component  
 A UI component is a part of a window. It can be a UI data component or a 

UI action component.  
UI data component 
 A UI data component is a UI component that displays data to a user or 

accepts data from a user. 
UI data 
 UI data is an IS object displayed by the CIS to a user, or got from a user. 
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UI action component 
 An UI action component is a UI component intended to the manipulation 

of the window and the control of the dialog (e.g. a button, a menu, a slider, 
etc).  

UI state 
 A UI state is a state composed of those UI data, UI data components and UI 

action components that are present at the certain time.  
UI transition 
 A UI transition is a transition from one UI state to another, triggered by an 

HIS action or by a CIS action.  
UI event  
 A UI event means any happening that triggers UI transitions.   
Computerized information system 
 A computerized information system (CIS) a system in which all data 

processing is automated, that is to say, performed by one or more computer 
systems.  

CIS action 
 A CIS action means as IS action that is performed by the CIS.  
Transaction 
 A transaction is composed of logically related CIS actions. 
CIS rule 
 A CIS rule is an IS rule governing one or more CIS actions. 
Algorithm 
 An algorithm is a transaction represented in a formal language.  
Hardware architecture 
 A hardware architecture consists of interoperable hardware.  
Software architecture 
 A software architecture is composed of compatible software.  
Application software 
 An application software is composed of SW components.  
Layer 
 A layer is a part of the layered software architecture in which layers are 

related to one another with the black box strategy or the while box 
strategy.  

SW component 
 A SW component means an executable unit of code that provides physical 

black-box encapsulation of related services. Its services can only be 
accessed through a consistent, published interface.  

Node 
 A node is composed of e.g. memory devices, processors, printers and 

displays. 
Communication line 
 A communication line is a line along which data messages are sent from 

one node to another. 
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Protocol 
 A protocol means a set of conventions or rules that govern the interactions 

of processes or software components through communication lines in a CIS or 
between CIS’s.  

Data storage 
 A data storage stands for all kinds of structured digital data (e.g. a data file 

and a database).  
Database 
 A database is a data storage structured according to some database model 

(e.g. a hierarchical model, a relational model, an object-relational model, 
an object model, a document model, XML-native model).  

Data file 
 A data file is a data storage that is decomposed into records and data fields.  
Memory device 
 A memory device is a device for storing permanent data.  
 
V.2  IS Perspectives 
 
IS perspective  
 An IS perspective is a perspective with which features of the IS, relevant to 

the problem or the situation at hand, can be considered.  
IS systelogical perspective  
 The IS systelogical perspective is an IS perspective from which the IS is 

seen in relation to its utilizing system (USIS). 
US purpose 
 A US purpose means a goal for business processes and/or a reason for 

setting up goal(s). 
US organization  
 A US organization is an organization (i.e. an enterprise, a department or 

some other administrative arrangement), which utilizes, or is going to 
utilize, an IS. It is composed of US organizational units. 

US actor 
 A US actor is an actor working in and for the US context. 
US role 
 A US role is a collection of responsibilities, stipulated in terms of US 

actions. 
US position  
 A US position is a position composed of the defined US roles and occupied 

by a US human actor.  
US organizational unit 
 A US organizational unit is composed of US positions.  
US action 
 A US action is an action, which strives for one or more US purposes.  
US rule 
 A US rule governs one or more US actions.  
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US object  
 A US object is a material or informational object that is an input to and/or 

an output from one or more US action.  
US tool 
 A US tool is a tool designed, built, installed, etc. to serve or perform US 

actions.  
US resource 
 A US resource is a resource, like money, energy, goods, manpower, etc. 

that is used in the US context. 
IS infological perspective 
 The IS infological perspective is an IS perspective from which the IS is 

seen as a functional structure of information processing and informational 
objects. 

IS conceptual perspective  
 The IS conceptual perspective is an IS perspective, which reveals the 

semantic contents of the IS objects. 
Entity 
 An entity means any perceivable thing in the object system with an 

independent existence. 
OS relationship 
 An OS relationship means some relevant connection, association or like 

(i.e. a relationship) between two or more entities. 
Attribute value 
 An attribute value identifies and characterizes a particular entity or OS 

relationship. 
OSIS construct 
 An OSIS construct in the OSIS means a conceptual construct composed of 

specific entities related to one another through OS relationships and 
characterized by specific attribute values. 

OSIS state 
 An OSIS state means a state of the object system (OSIS), or its parts, 

composed of OSIS constructs.  
OSIS transition 
 An OSIS transition means a transition from one OSIS state, called the pre-

state, to another OSIS state, called the post-state. 
OSIS event 
 An OS event means an event, which may trigger an OSIS transition from 

the pre-state to the post-state, and which may be caused by another OSIS 
transition. 

IS datalogical perspective 
 The IS datalogical perspective is an IS perspective from which the IS is 

viewed through representation-specific concepts as a context, in which IS 
actors work with IS facilities to process data. 

IS physical perspective 
 The IS physical perspective is an IS perspective, which considers the IS 

with all its physical aspects. 
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VI. Model Level Ontology 
 
The model level ontology provides concepts and constructs for conceiving, 
understanding, structuring, and presenting things in models within a system of 
model levels. 
 
Model 
 A model as a thing that is used to help or to enable the understanding, 

communication, analysis, design, and/or implementation of some other 
thing to which the model refers. 

Concept model 
 A concept model is a model that is composed of concepts and conceptual 

constructs referring to certain things in reality.  
Model denotation  
 A model denotation is a precise and unambiguous representation of a 

concept model in some language. 
Physical model 
 A physical model is a model that consists of physical parts, which, as an 

organized whole, resemble some other thing(s) (e.g. small copies of 
airplanes or ships). 

Model constructing 
 Model constructing is an action by which a physical model is produced 

from concrete things by e.g. moulding, building or crafting. 
Modeling 
 Modeling is an action with which a model is produced.  
Model conceptualizing 
 Model conceptualizing means a modeling action with which a concept model 

is produced by perceiving and conceptualizing the relevant features of the 
concrete thing(s). 

Model transforming  
 Model transforming means a modeling action with which a concept model is 

produced by transforming it from some other concept model(s).  
Model representing 
 Model representing means a modeling action with which a model denotation 

is produced by representing concept model(s) by signs of some language. 
Model translating  
 Model translating means a modeling action with which a model denotation is 

produced by translating it from some other model denotation.  
Model implementing 
 Model implementing means an action with which a model denotation is 

implemented into a physical model.  
Modeling context 
 A modeling context means a context the purpose of which is to produce a 

model for a model utilizing context. 
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Informal model 
 An informal model is a model that is restricted in its structure by the 

modeler’s imagination.  
Semi-formal model 
 A semi-formal model is a model that is constrained by the syntax of the 

language(s) (e.g. diagrams, tables, matrices and structured texts). 
Formal model 
 A formal model is a model that is represented in a formal language 

according to the rigorously defined syntax and semantics. 
Subjective model 
 A subjective model is a model that reflects the modeler’s subjective 

conception about the subject matter. 
Inter-subjective model 
 An inter-subjective model is a model that reflects sharing conceptions 

within a community. 
Objective model 
 An objective model is a model that reflects “objective truth” (e.g. a formal 

model of the Euclidean space). 
Modeled context 
 A modeled context is a context about which the model is.  
Structural model 
 A structural model is a model, which is composed of concepts that refer to 

static phenomena in the modeled context.  
Dynamic model 
 A dynamic model is a model, which is composed of concepts that refer to 

the behavior in or the evolution of the modeled context. 
Instance model 
 An instance model is a model, which is mainly composed of the concepts 

that are instances of the concepts of another model, called the type model. 
Type model 
 A type model is a model, which is composed of the concepts that are types of 

the concepts of another model, called the instance model.  
Model utilizing context 
 A model utilizing context is a context for which the model is produced.  
Descriptive model 
 A descriptive model is a model that is used to portray or predict the 

relevant features of the modeled context, in order to support the analysis of 
the existing reality or the design of the future reality. 

Prescriptive model 
 A prescriptive model is a model that is conceived as normative statements, 

which specify what is permitted, forbidden or obliged in certain 
situations. 

Technique  
 A technique is a prescriptive model that guides the behavior in the modeled 

context. A technique may be composed of procedures and guidelines. 
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Description technique 
 A description technique is a technique to create a model and represent it as 

a model denotation (e.g. diagramming techniques).  
Processing technique 
 A processing technique is a technique to create, transform, translate, 

analyze, validate and/or verify one or more models. 
Procedure 
 A procedure is an explicitly specified manner of proceeding in a process. 
Guideline  
 A guideline is any advice or guide to reach a goal. 
Meta concept 
 A meta concept is a concept an instance of which is a type concept for some 

instance concepts.  
Meta level 
 A meta level is composed of meta concepts.  
Concept level 
 A concept level is composed of concepts among which there are no 

instanceOf relationships. 
System of concept levels 
 A system of concept levels is composed of concept levels in such a way that 

the concepts on a certain concept level have the instanceOf relationships with 
the concepts on the higher concept level. 

Model level  
 A model level is composed of models that comprise concepts on the same 

concept level.  
System of model levels  
 A system of model level is composed of model levels in such a way that the 

models on a certain model level have the instanceOf relationships with the 
models on the next higher model level.  

Meta model 
 A meta model is a model that is composed of meta concepts . 
Metamodeling 
 Metamodeling is an action by which a meta model is produced. 
Deliverable model  
 A deliverable model is a model that describes/prescribes the structure and 

presentation of informational objects (e.g. a relational scheme with dta types).  
Data model 
 A data model is a model that describes/prescribes the conceptual contents 

of informational objects (e.g. an ER schema). 
 
VII. ISD Ontology 
 
The ISD ontology provides concepts and constructs for conceiving, 
understanding, structuring, and representing contextual phenomena of ISD. 
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Paradigm  
 A paradigm means the most fundamental set of assumptions adopted by a 

professional community, which allow it to share similar perceptions and 
engage in commonly shared practices. 

ISD approach  
 An ISD approach means a generic way of conceiving certain aspects of 

ISD, or a generic way of working in ISD. 
ISD approach in Category A 
 An ISD approach in Category A is a kind of schools of though with 

identifiable founders and scientific community as institutionalizations. It 
is a set of goals, guiding principles, fundamental concepts, and principles 
for the ISD process that drive interpretations and actions in the ISD. 

ISD approach in Category B 
 An ISD approach in Category B has a specific view of ISD as a context. 
ISD approach in Category C 
 An ISD approach in Group C has a particular view of some specific 

contextual domain(s) of ISD.  
Transformation approach  
 The transformation approach is an ISD approach in Category B according to 

which ISD is seen as sequential steps of transforming ISD deliverables on 
one level of abstraction into the ISD deliverables on the next lower level of 
abstraction. 

Decision making approach 
 The decision making approach is an ISD approach in Category B according 

to which ISD is seen as a decision making process in which knowledge is 
acquired, options are specified, and the “best” options are selected. 

Problem solving approach 
 The problem solving approach is an ISD approach in Category B according 

to which ISD is seen as a problem solving process in which problems at 
several levels of details are identified and solved. 

Learning approach 
 The learning approach is an ISD approach in Category B according to which 

ISD is seen as a learning process by which knowledge on application 
domain, technology and ISD work is acquired, elaborated and 
disseminated. 

Political approach 
 The political approach is an ISD approach in Category B according to which 

ISD is seen as a cooperative process composed of negotiations, bargaining, 
power and social interactions. 

Knowledge work approach 
 The knowledge work approach is an ISD approach in Category B according 

to which ISD is viewed as knowledge work. 
IS data-oriented approach 
 The IS data-oriented approach is an ISD approach in Category C that 

regards data as the fundamental parts of an IS. 
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IS process-oriented approach 
 The IS process-oriented approach is an ISD approach in Category C that 

views information processing actions or processes as the most essential parts of 
the IS.   

IS user-oriented approach  
 The IS user-oriented approach is an ISD approach in Category C that puts 

the major emphasis on human beings, their needs, views and interactions 
in the IS and in the US. 

Life cycle approach 
 The life cycle approach is an ISD approach in Category C that decomposes 

the ISD work into discrete phases to be accomplished in an order that is 
comparable to sequential waterfalls. Each phase should be satisfactorily 
completed before the next one begins 

Prototyping approach  
 The prototyping approach is an ISD approach in Category C that aims, 

through prototypes, to increase the understanding of those issues on 
which there exists some uncertainty, and thus to decrease risks related to 
the ISD process or its outcome. 

Incremental approach 
 The incremental approach is an ISD approach in Category C that means the 

process of constructing a partial implementation of a total system and slowly 
adding increased functionality or performance. 

Evolutionary approach 
 The evolutionary approach is an ISD approach in Category C according to 

which an information system is an incremental outgrowth of evolution and 
learning and it continues to evolve over time owing to new learning 
experiences. 

Information system development 
 Information development system is a context in which ISD actors carry 

out ISD actions, ranging from requirements engineering to 
implementation and evaluation of an IS, to produce ISD deliverables 
contributing to a renewed or a new IS, by means of ISD facilities in a 
certain organizational and spatio-temporal context, in order to satisfy ISD 
goals set by ISD stakeholders.   

 
VII.1 ISD Domains 
 
ISD purpose domain 
 The ISD purpose domain embraces all those concepts and constructs that 

refer to goals, motives, or intentions of someone or something in the ISD 
context. The concepts may show a direction toward which it is due to 
proceed, a state to be attained or avoided, and reasons for them. 

ISD goal 
 An ISD goal expresses is a desired state or event with qualities and 

quantities, related to an ISD context as a whole or to some of its parts. 
 



 

 

680 

Hard ISD goal 
 A hard ISD goal is an ISD goal with pre-specified criteria for the 

assessment of the fulfilment. 
Soft ISD goal 
 A soft ISD goal is an ISD goal with no pre-specified criteria for the 

assessment of the fulfilment. 
ISD requirement 
 An ISD requirement is some quality or performance demanded in and for 

the ISD context. It is a statement about the future. 
ISD problem 
 An ISD problem is the distance or mismatch between the prevailing ISD 

state and the state reflected by the ISD goals. 
IS criterion 
 A IS criterion is a standard of judgment presented as an established rule 

or principle for evaluating some feature(s) of the IS. 
IS requirement 
 An IS requirement means a condition or capability of the IS needed by an 

IS client or an IS worker to solve a problem or achieve a goal. 
Functional IS requirement 
 A functional IS requirement is an IS requirement that specifies what the IS 

should do and for whom. 
Non-functional IS requirement 
 A non-functional IS requirement is an IS requirement that constraints or 

sets some quality attributes upon the services or functions offered by the IS. 
IS systelogical requirement  
 An IS systelogical requirement is an IS requirement that concerns (e.g. the 

benefits and costs of) information services the IS should provide to its 
utilizing system. 

IS infological requirement 
 An IS infological requirement is an IS requirement that expresses 

demands on the type and quality of information needed as well as actions 
with which the information is to be processed. 

IS conceptual requirement 
 An IS conceptual requirement is an IS requirement that pertains to the 

contents of information to be processed in the IS. 
IS datalogical requirement 
 An IS datalogical requirement is an IS requirement that concerns e.g. how 

to present information, how to divide information processing between persons 
and computers, and how to organize responsibilities for information processing 
into IS roles and IS positions. 

IS physical requirement  
 An IS physical requirement is an IS requirement that expresses detailed 

demands on physical structures and behavior of the HIS and the CIS. 
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ISD actor domain 
 The ISD actor domain consists of all those concepts and constructs that refer 

to human and active part of an ISD context. 
ISD actor 
 An ISD actor is an ISD human actor or an administrative actor that is, one 

way or another, involved in an ISD context.  
ISD human actor 
 An ISD human actor means an individual person or a group of persons 

contributing to ISD work. 
ISD role 
 An ISD role is a collection of ISD responsibilities and authorities, 

stipulated in terms of ISD actions. 
ISD position 
 An ISD position is a position, composed of the defined ISD roles and 

occupied by a human ISD actor. 
IS owner 
 An IS owner is an ISD role in which an ISD actor has financial interest in 

the IS and, thereby, the responsibility for, and the authority of, making 
decisions on the IS as though it would be his/her property. 

IS client 
 An IS client is an ISD role for whom the IS is to be developed. He/she is a 

beneficiary or a ‘victim’ of the IS. 
IS worker 
 An IS worker is an ISD role, in which an ISD actor is working with the 

current IS and/or is going to work with the new IS. 
IS developer 
 An IS developer is an ISD role, in which an ISD actor is engaged in 

meeting the needs and requirements put forward by ISD actors in the other 
roles. 

Project manager 
 A project manager is an ISD role, in which an ISD actor makes plans on 

how to organize an ISD effort. He/She also participates in making 
decisions on the execution of the plans. 

Vendor/consultant 
 A vendor / consultant is an ISD role, which is played by a person from 

outside the organization. 
ISD stakeholder 
 An ISD stakeholder means an ISD actor who is potentially affected by the 

IS or ISD and therefore is invited to act in some of the ISD roles. 
ISD project 
 An ISD project is a temporary effort with the well-defined objectives and 

constraints, the established organization, the budget and the schedule, 
launched for the accomplishment of ISD. 
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ISD project organization 
 An ISD project organization is a composition of ISD positions and ISD 

teams wherein the responsibility, authority and communication 
relationships are defined. 

ISD organizational unit 
 An ISD organisational unit is a composition of ISD positions with a 

coherent set of organizational goals, authorities and responsibilities. 
Steering committee 
 A steering committee is a group, which carries the responsibility of the 

overall management of the ISD project. 
Project team 
 A project team is a group that is collected for the execution of an ISD effort. 
Leader 
 A leader of a project team is an ISD position devoted to the management of 

the team and to ensure the proper communication between the members, as 
well as between the team and the other teams 

IT expert 
 An IT expert is a person whose education, skills, experience as well as 

his/her former position is related to the information technology and/or 
ISD methods.  

Business expert 
 A business expert is a person, who is knowledgeable in business strategies, 

policies, markets, competition, trends, legislation, etc., shortly in how to 
make business, in general or in the organization.  

Work expert 
 A work expert is a person, who masters daily routines, e.g. in making 

orders, invoicing, production planning, inventory control, goods 
deliveries, etc. 

 
ISD action domain 
 The ISD action domain comprises all those concepts and constructs that 

refer to deeds or events in an ISD context. 
ISD action 
 An ISD action is an action carried out to manage and/or execute a part of an 

ISD effort.  
ISD rule 
 An ISD rule governs one or more ISD action. 
ISD process  
 An ISD process is an instance of an ISD action. 
ISD management-execution structure 
 The ISD management–execution structure is a functional and behavioral 

unity, composed of two kinds of actions, ISD management actions and ISD 
execution actions.  

ISD management action 
 An ISD management action aims to plan, organize, staff, direct, and/or 

control ISD work. 
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ISD planning 
 ISD planning means all those ISD management actions that specify the goals 

of an ISD project and the strategies, policies, programs and procedures for 
achieving them. 

ISD organizing  
 ISD organizing means all those ISD management actions that are needed to 

design a formal structure of ISD execution actions and authority 
relationships between them. 

ISD staffing  
 ISD staffing means all those ISD management actions that are needed to fill 

and keep filled the ISD positions of the ISD project organisation. 
ISD directing  
 ISD directing means all those ISD management actions that are needed for 

clarifying the assignments of ISD personnel, assigning actions to 
organisational units, teams and individuals, motivating and inspiring 
personnel, resolving disagreements between personnel and between the 
ISD project and outer stakeholders. 

ISD  controlling  
 ISD controlling means all those ISD management actions that are needed 

for ensuring that actual ISD actions are executed according to the plans. 
ISD execution action 
 An ISD execution action aims to produce the required ISD deliverables 

under the guidance and control of ISD management. 
ISD workflow structure 
 The ISD workflow structure is composed of various ISD workflows.  
ISD workflow 
 An ISD workflow is a coherent composition of ISD actions, which are 

organised to accomplish some ISD process, which share the same target of 
action, and which produce valuable results for stakeholders. 

ISD task 
 An ISD task is a part of an ISD workflow. 
IS requirements engineering  
 IS requirements engineering is an ISD workflow, which aims to identify 

and elicit IS clients’ and IS workers’ requirements on an IS, as well as to 
establish and maintain, at least to some extent, agreement on what the 
information system should do and why. 

IS analysis 
 IS analysis is an ISD workflow, which models the problem domain. 
IS design 
 IS design is an ISD workflow, which models the solution domain. 
IS implementation  
 IS implementation is an ISD workflow, which fleshes out the architecture 

and the system as a whole, by carrying IS design models into effect. 
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IS evaluation  
 IS evaluation is an ISD workflow, which aims at the assessment of an 

existing system, as well as the evaluation of all the specifications, designs 
and implementations made for the future system. 

ISD phase structure 
 The ISD phase structure is composed of sequential ISD phases.  
ISD phase 
 An ISD phase means an ISD action, executed between two milestones, by 

which a well-defined set of goals is met, ISD deliverables are completed, 
and decisions are made on to move or not to move into the next phase. 

Milestone 
 A milestone is a synchronization point where ISD management makes 

important business decisions and ISD deliverables have to be at a certain 
level of completion. 

IS inception 
 The IS inception phase is an ISD phase where the focus is on the 

understanding of the overall requirements and determining the scope of the 
development endeavor. 

IS elaboration 
 The IS elaboration phase is an ISD phase where the focus is on detailed 

requirements engineering, but some systems design and implementation actions 
aimed at prototyping can also be done. 

IS construction 
 The IS construction phase is an ISD phase, which focuses on design and 

implementation of the system. 
IS transition  
 The IS transition phase is an ISD phase into which it is entered when at 

least some part of an ISD baseline is mature enough to be deployed. 
ISD problem solving structure 
 The ISD problem solving structure is a result of seeing ISD as a series of 

interrelated decisions, which involve the identification and articulation of 
problems, alternative solutions, decisions and justifications. 

Intelligence  
 Intelligence means ISD actions that search the environment for conditions 

calling for a decision. 
Design  
 Design consists of ISD actions of inventing, shaping and specifying 

alternatives for possible courses of action in ISD work. 
Choice  
 Choice means the evaluation and comparison of each alternative design 

option and the selection among them. 
IS modeling 
 IS modeling is an ISD action which aims to produce an IS model. 
IS modeling structure 
 The IS modeling structure is composed of IS modeling actions.  
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Elementary modeling structure 
 The elementary modeling structure comprises IS modeling actions that are 

always present in IS modeling.  
Conceptualizing 
 Conceptualizing is an ISD action by which relevant perceptions of the 

existing reality and conceptions of the imagined reality are interpreted, 
abstracted and structured according to some conceptual model. 

Representing 
 Representing is an ISD action by which conceptions are made "visible" and 

proper to communicate about them. Representing yields a model denotation 
from a concept model.  

Single-model action structure  
 The single-model action structure comprises IS modeling actions that 

involve a single model at a time.  
Creating 
 Creating means an ISD action by which an IS model is conceptualized and 

represented for some specific use.  
Refining 
 Refining means an ISD action by which an IS model is corrected, modified, 

and/or enlarged. 
Testing 
 Testing is an ISD action by which a concept model or a model denotation is 

checked against the given quality criteria. 
Multi-model action structure 
 The multi-model action structure comprises IS modeling actions that 

involve, some way or another, two or more IS models at the same time. 
Transforming  
 Transforming is an ISD action by which conceptions structured according 

to one IS model are transformed into conceptions structured according to 
another IS model. 

Translating  
 Translating is an ISD action by which an IS model denotation represented in 

some language is translated into another language. 
Relating 
 Relating is an ISD action by which two or more IS models are mapped to 

one another by finding common concepts within the IS models or defining 
some “bridging” relationships between the concepts of the IS models.  

Integrating 
 Integrating is an ISD action by which a new model is made by assembling 

their concepts and relationships of two or more IS models. 
 
ISD object domain 
 The ISD object domain comprises all those concepts and constructs that 

refer to something, to which an ISD action is directed. 
ISD deliverable 
 An ISD deliverable is an ISD object at which ISD actions are targeted. 
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OSISD construct  
 An OSISD construct is a part of the object system of ISD. 
ISD management deliverable 
 An ISD management deliverable is an ISD deliverable produced by ISD 

management actions.  
ISD execution deliverable 
 An ISD execution deliverable is an ISD deliverable produced by ISD 

execution actions.  
IS model 
 An IS model is a model describing/prescribing certain aspects of an IS. 
IS implementation 
 IS implementation is an ISD deliverable resulting from the 

implementation of one or more IS models (e.g. a software module, a 
prototype). 

ISD baseline 
 An ISD baseline is a set of reviewed and approved ISD deliverables that 

represents an agreed basis for further evolution and development, and can 
be changed only through a formal procedure such as configuration and 
change management. 

 
VII.2  ISD Perspectives 
 
ISD perspective  
 An ISD perspective is a perspective with which the features of the ISD 

context, specific to the problem or the situation at hand, can be considered.  
ISD systelogical perspective  
 The ISD systelogical perspective is an ISD perspective, which reveals the 

support the ISD context provides to its utilizing system (USISD). 
ISD service  
 An ISD service means all those material or immaterial ISD deliverables that 

are produced in the ISD context and delivered to be exploited in the 
intended IS contexts. 

ISD infological perspective 
 The ISD infological perspective is an ISD perspective according to which 

the ISD context is seen as a functional structure of information processing 
actions and informational objects. 

ISD conceptual perspective 
 The ISD conceptual perspective is an ISD perspective, which designates 

the things the ISD deliverables signify.  
Entity type 
 An entity type is a generic concept corresponding to the intensional 

specification of all those features that are shared by the entities that are 
regarded as instances of the entity type. 
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OS relationship type 
 The OS relationship type is a generic concept corresponding to the 

intensional specification of all those features that are shared by the OS 
relationships that are regarded as instances of the OS relationship type. 

Entity role 
 An entity role means a particular role, which an entity type connected by 

an OS relationship type plays in that relationship.  
Attribute 
 An attribute is a relevant predicate used to characterize an entity or an OS 

relationship.   
Single-valued attribute 
 A single-valued attribute is an attribute that has a single value for a 

particular entity or OS relationship. 
Multi-valued attribute 
 A multi-valued attribute is an attribute that may have many values for a 

particular entity or OS relationship.  
Composite attribute 
 A composite attribute is an attribute that can be divided into smaller parts 

that still have independent meanings. 
Atomic attribute 
 An atomic attribute is an attribute that is not divisible.  
Derived attribute 
 A derived attribute is an attribute the value of which can be calculated 

from the values of other attributes, or derived in some other way from the 
existing entities and / or OS relationships.  

OSIS construct type  
 An OSIS construct type means here a conceptual construct composed of 

specific entity types related to one another through OS relationship types and 
characterized by attributes.  

OSIS state type  
 An OSIS state type means a state type of the object system or its parts, 

composed of OSIS construct types.  
OSIS transition type  
 An OSIS transition type is a generic concept corresponding to the 

specification of all those features that are shared by OSIS transitions. 
OSIS event type  
 An OSIS event type means a generic concept corresponding to the 

specification of all those features that are shared by OSIS events, which may 
trigger an OSIS transition and which may be caused by another OSIS 
transition. 

OSIS constraint 
 An OSIS constraint specifies allowed OSIS states (static constraint) and/or 

allowed OSIS transitions (dynamic constraints) between the OSIS states.  
ISD datalogical perspective 
 The ISD datalogical perspective is an ISD perspective according to which 

the ISD context is considered through representation-specific concepts, 
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involving, besides ISD purposes, ISD actors, ISD actions, and ISD 
deliverables, also ISD actors and ISD facilities on a general level. 

 
VIII. ISD Method Ontology 
 
The ISD method ontology provides concepts and constructs for conceiving, 
understanding, structuring and representing contextual aspects of the ISD 
methods.  
 
ISD method 
 An ISD method is an artefact anchored on certain historical, intentional 

and functional backgrounds and aimed to be applied and deployed as a 
prescription in the intended kinds of ISD contexts, in order to make 
organizational and technical changes in IS’s possible or more productive. 
The ISD method, presented and materialized in certain forms, contains 
four kinds of knowledge bringing out how ISD actors carry out ISD actions 
to produce ISD deliverables, by means of ISD facilities, in an organizational 
and spatiotemporal context, in order to satisfy ISD goals set by ISD 
stakeholders. The ISD method is composed of descriptive and prescriptive 
parts with a large variety.  

Knowledge of ISD process  
 Knowledge of ISD process means all the knowledge that concerns how to 

accomplish an ISD work. 
Knowledge of application domain 
 Knowledge of application domain means all the knowledge that concerns 

an information system to be designed, its utilization system and its object 
system. 

Knowledge of IC technology  
 Knowledge of IC technology means all thhe knowledge that concerns the 

search, acquirement, installation, and deployment of hardware and software 
for an IS, as well as for ISD. 

Knowledge of human and social issues  
 Knowledge of human and social issues means all the knowledge that 

concerns human characteristics and behavior as well as social and 
organizational aspects that should be taken into account in building an IS 
and in organizing ISD work. 

Generic ISD method 
 A generic ISD method is an ISD method that provides general support, 

such as general approaches, principles, models and guidelines, to conduct an 
ISD effort in a wide range of ISD contexts.  

Domain-specific ISD method 
 A domain-specific ISD method is an ISD method that provides more 

domain-specific support to conduct an ISD effort in a specific application 
domain.  
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Organization-specific ISD method 
 An organization-specific method is an ISD method that provides 

customized support to conduct an ISD effort in a specific organization.  
Project-specific ISD method 
 A project-specific ISD method is an ISD method that provides configured 

and instantiated support to conduct an ISD effort in a specific project in an 
instantiated manner.  

Methodical view 
 A methodical view is a point of view from which particular aspects of an 

ISD method can be considered.  
Historical view  
 The historical view is a methodical view, which enlightens the backgrounds 

of and experiences from the engineering and use of the ISD method. It 
involves both the prior ME contexts and the prior ISD contexts.  

Application view  
 The application view is a methodical view, which outlines where and how 

the ISD method can be applied. 
Generic view  
 The generic view is a methodical view, which provides the general 

understanding of the nature of the ISD method. 
Contents view  
 The contents view is a methodical view, which reveals the conceptual 

contents of the ISD method. 
Presentation view  
 The presentation view is a methodical view from which an ISD method is 

seen as a set of expressions presented in some language(s). 
Physical view  
 The physical view is a methodical view, which reveals the appearance(s) of 

the ISD method, that is to say, the media on which the ISD method is made 
visible or “functioning”. 

Structural view  
 The structural view is a methodical view from which the ISD method is seen 

as a modular structure of parts with a large variety: of e.g. paradigmatic 
assumptions, ISD approaches, ISD principles, background and application 
knowledge, concepts, notations, ISD models, ISD techniques, ISD rules, and 
ISD guidelines. 

Prior ME context 
 A prior ME context is an ME context that has contributed to the creation 

and engineering of the ISD method.  
Prior ISD context 
 A prior ISD context is an ISD context in which the ISD method has been 

deployed. 
Target ISD context 
 A target ISD context is an ISD context for which the ISD method is 

intended. 
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Target ME context 
 A target ME context is an ME context in which the ISD method is to be 

customized and instantiated for the use of a particular organization or 
project. 

ISD model  
 An ISD model is a model that prescribes/describes structural and/or 

behavioral features of the ISD context(s).  
ISD technique  
 An ISD technique is a technique, which guides the accomplishment of 

specific actions in the ISD context(s). 
ISD purpose model 
 An ISD purpose model is an ISD model that prescribes/describes problems 

in, requirements for, and/or goals of, the intended182 ISD context, or some 
part(s) thereof. 

ISD actor model 
 An ISD actor model is an ISD model that prescribes/describes ISD roles, 

ISD positions, ISD organizational units, persons and/or groups participating 
one way or another in the intended ISD context.  

ISD action model 
 An ISD action model is an ISD model that prescribes/describes ISD actions 

and their relationships in the intended ISD context.  
ISD deliverable model 
 An ISD deliverable model is an ISD model that prescribes/describes the 

structure and presentation of ISD deliverables and how they are related in 
the intended ISD context. 

ISD data model 
 An ISD data model is an ISD model that prescribes/describes the 

conceptual contents of the ISD deliverables in the intended ISD context.  
ISD facility model 
 An ISD facility model is an ISD model that prescribes/describes resources 

and tools available and used in the intended ISD context.  
ISD location model 
 An ISD location model is an ISD model that prescribes/describes the 

nature, structure and features of locations, whether physical or logical, 
involved in the intended ISD context. 

ISD time model 
 An ISD time model is an ISD model that prescribes/describes the time 

system used in the intended ISD context. 
ISD ID model 
 An ISD ID model is an ISD model that prescribes/describes inter-domain 

(ID) features of the intended ISD context. 
 
 

                                                 
182  An intended ISD context means or a target ISD context (‘prescribe’) or a prior ISD 

context (‘describe’). 
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ISD systelogical model 
 An ISD systelogical model is an ISD model that describes/prescribes the 

support the intended ISD provide or should provide to its utilizing system 
(USISD), as well as the assumptions on the target IS’s and their utilizing 
systems (USIS). 

ISD infological model 
 An ISD infological model is an ISD model that describes/prescribes the 

purposes, actions and deliverables of the intended ISD context. 
ISD conceptual model 
 An ISD conceptual model is an ISD model that describes/prescribes the 

conceptual contents of the deliverables of the intended ISD context.  
ISD datalogical model 
 An ISD datalogical model is an ISD model that describes/prescribes the 

purposes, actors, actions, deliverables and tools of the intended ISD context,  
last two on a general level.  

ISD physical model 
 An ISD physical model is an ISD model that describes/prescribes, besides 

the features mentioned above, yet on a more concrete level, also spatial 
and temporal features of the intended ISD context, and all as being 
instantiated into a particular ISD context.  

ISD IP model 
 An ISD IP model is an ISD model that describes/prescribes features of the 

intended ISD context from multiple ISD perspectives. 
ISD methodical framework  
 An ISD methodical framework is composed of IS meta models and/or ISD 

meta models.  
ISD methodical skeleton  
 An ISD methodical skeleton is a normative prescription for the ISD 

context, structuring and guiding the ISD process on a general level. 
Methodical tool kit  
 A methodical tool kit is a collection of more or less unrelated methodical 

parts, which do not, as such, constitute any coherent and concrete method 
for ISD. 

ISD method component  
 An ISD method component is a well-defined part of the ISD method that 

can be integrated to other ISD method components to form a coherent and 
consistent ISD method. 

Contextual ISD method component  
 A contextual ISD method component is an ISD method component that 

contains descriptions/prescriptions of features of ISD within several 
contextual domains. 

Domain-based ISD method component  
 A domain-based ISD method component is an ISD method component that 

contains descriptions/prescriptions of features of ISD with one or at most 
two contextual domains 
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Ontological component  
 An ontological component is an ISD method component, which provides 

concepts and constructs for conceptual modeling. 
Notational component 
 A notational component is an ISD method component, which provides a set 

of symbols (without any predefined semantics). 
Action-based component 
 An action-based component is an ISD method component, which mainly 

describes/prescribes ISD actions.  
Actor-based component 
 An actor-based component is an ISD method component, which 

describes/prescribes ISD actors and how they are related (e.g. an 
organisational structure). 

 Tool-based component 
 A tool-based component is an ISD method component, which 

describes/prescribes elements and architecture of a computerized 
information system. 

Construct component 
 A construct component is an ISD method component, which cannot be 

decomposed into smaller parts without loosing some of its meaningfulness 
and integratability. 

Contextual interface 
 A contextual interface of an ISD method component means a white-box like 

description of those contextual relationships through which an ISD method 
component can be integrated into other ISD method components. The 
contextual relationships are inter-domain relationships and/or intra-domain 
relationships. 

 
IX. ME Ontology 
 
The ME ontology provides concepts and constructs to conceive, understand, 
structure, and represent contextual features of method engineering. 
 
Method engineering 
 Method engineering (ME) means all those actions by which an ISD method 

is developed, and later possibly customized and configured to fit the 
needs of an organization and/or an ISD project. 

ME strategy 
 An ME strategy is a generic way of accomplishing an ME effort.  
Creation  
 Creation means an ME strategy, also known as the “greenfield” or “from 

scratch” strategy, that is applied in a situation where no method is available 
to be used as a basis for ME.  

Integration  
 Integration means an ME strategy according to which an ISD method is 

engineered by assembling components of existing ISD methods.   
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Adaptation  
 Adaptation means an ME strategy according to which an ISD method is 

engineered by dropping off or modifying some part(s) of an existing ISD 
method, or extending an existing ISD method with some new part(s). 

Customization  
 Customization means an ME process by which an organization-specific ISD 

method is derived from some generic ISD method (or domain-specific ISD 
method) by adjusting it with organizational features that fit the traditions, 
culture, infrastructure, management policies, etc. of the target organization.  

Configuration 
 Configuration means an ME process by which a project-specific ISD method 

is derived from an organization-specific ISD method.  
Realization  
 Realization means an ME process by which a project-specific ISD method is 

put into action.  
Decustomization  
 Decustomization is an ME process by which a generic ISD method is 

engineered by clearing an organization-specific ISD method from the 
knowledge specific to a certain organization. 

Deconfiguration  
 Deconfiguration means an ME process by which an organization-specific 

ISD method is engineered by abstracting project-specific knowledge from an 
existing ISD method.  

Method engineering context  
 A method engineering context is a context in which ME actors carry out 

ME actions of (de)customization, (de)configuration, realization, and/or 
abstraction to produce a new or improved ISD method, with ME facilities in 
a certain organizational and spatiotemporal context, in order to satisfy ME 
goals set by ME stakeholders. 

Method development context  
 A method development context is an ME context that aims to engineer a 

generic ISD method or a domain-specific ISD method.  
Method customization context  
 A method customization context is an ME context that aims to attain an 

organization-specific ISD method.  
Method configuration context 
 A method configuration context is an ME context that aims to engineer a 

project-specific ISD method. 
Prior ME context 
 A prior ME context means a context, which has contributed to the ISD 

method that is under consideration/engineering in the ME context at hand. 
Target ME context 
 A target ME context means a context in which the ISD method under 

engineering is later to be customized, configured and/or realized for the 
use of certain ISD contexts. 
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Prior ISD context 
 A prior ISD context means a context in which the ISD method(s) interested 

by the ME context at hand have been applied. 
Target ISD context 
 A target ISD context means a context for which the ME effort at hand has 

been launched.  
 
IX.1 ME Domains 
 
ME purpose domain  
 The ME purpose domain embraces all those concepts and constructs that 

refer to goals, motives, or intentions of someone or something in the ME 
context. 

ME goal  
 An ME goal expresses a desired state or event with qualities and quantities 

related to the ME context as a whole, or to some part of it. 
Hard ME goal 
 A hard ME goal has pre-specified criteria for the assessment of the 

fulfilment.  
Soft ME goal 
 A soft ME goal has no pre-specified criteria for the assessment of the 

fulfilment.  
ME requirement  
 An ME requirement is some quality or performance demanded from the 

ME context, or from some part(s) thereof.  
ME problem  
 An ME problem is a perceived deviation from a desired state or way of 

doing, which may lead to specifying one or more ME requirements and set 
up one or more ME goals. 

ISDM purpose 
 An ISDM purpose is an ME goal or an ME reason pertaining to an ISD 

method.  
ME actor domain  
 The ME actor domain consists of all those concepts and constructs that refer 

to human and active part of the ME context.  
ME actor 
 An ME actor is a human thing or an administrative thing that is, one way 

or another, involved in the ME context. 
Human ME actor  
 A human ME actor means an individual person or a group of persons 

contributing to the ME work.  
ME role 
 An ME role is a collection of ME responsibilities and ME authorities. 
ME position 
 An ME position is a position, composed of the defined ME roles and 

occupied by a human ME actor. 
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ME engineer 
 A method engineer is an ME role in which a human ME actor has the main 

responsibility for ME actions in an ME effort. 
ME project manager 
 An ME project manager is an ME role in which a human ME actor makes 

plans of and decisions on how to organize an ME effort. 
ME stakeholder 
 An ME stakeholder is an ME actor who plays in any ME role. 
Method expert  
 A method expert is a person who has a deep understanding of methods 

generally, and of some specific method(s) in particular.  
Tool expert 
 A tool expert is a person, who has familiarized oneself with tools used in 

method engineering (i.e. CAME tools and/or MetaCase tools) and in ISD 
(i.e. CASE tools).  

Theory expert 
 A theory expert is a person, who has special knowledge on theoretical and 

methodological issues of method engineering. 
ME organization  
 An ME organization is a composition of ME positions with a coherent set 

of organizational goals, authorities and responsibilities. 
ME action domain 
 The ME action domain comprises all those concepts and constructs that 

refer to deeds or events in the ME context. 
ISD modeling structure 
 The ISD modeling structure is composed of ME actions modeling ISD on 

two levels.  
Metamodeling  
 Metamodeling is a modeling process, which takes place on one level of 

abstraction and logic higher than the standard modeling process. 
ME workflow structure 
 The ME workflow structure is composed of various ME workflows.  
ME workflow  
 An ME workflow is coherent composition of ME actions, (a) which are 

organized to accomplish some ME process, (b) which share the same target 
of action, and (c) which produce results valuable for ME stakeholders. 

ME task 
 An ME task is a part of an ME workflow. 
ISDM requirements engineering 
 ISDM requirements engineering means an ME workflow, which aims to 

identify and elicit ME stakeholders’ requirements on the nature, contents and 
structure of the ISD method. 

ISDM analysis 
 ISDM analysis means an ME workflow, which aims to produce high-level 

descriptions of the ISD method, meaning that the ISD method is considered 
from the ISD infological perspective and the ISD conceptual perspective. 
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ISDM design  
 ISDM design means an ME workflow, which aims to produce more 

elaborated descriptions of the ISD method, meaning that the ISD method is 
considered from the ISD datalogical perspective. 

ISDM implementation  
 ISDM implementation means an ME workflow, which aims to produce 

concrete descriptions/prescriptions of the ISD context from the ISD 
physical perspective. 

ISDM evaluation 
 ISDM evaluation means an ME workflow, which aims to produce 

assessments of one or more ISD methods according to the defined criteria. 
ME object domain  
 The ME object domain comprises all those concepts and constructs that 

refer to something, to which ME actions are targeted.  
ME deliverable 
 An ME deliverable is an object to which ME actions are targeted.  
ME management deliverable  
 An ME management deliverable is an ME deliverable that is produced by 

ME management actions. 
ME execution deliverable 
 An ME execution deliverable is an ME deliverable that is produced by ME 

execution actions.  
OSME construct  
 An OSME construct is a part of the object system of ME. 
ME baseline 
 An ME baseline is a set of reviewed and approved ME deliverables. 
 
IX.2 ME Perspectives 
  
ME perspective  
 An ME perspective is a perspective with which the features of the ME 

context, specific to the problem or the situation at hand, can be considered. 
ME systelogical perspective 
 The ME systelogical perspective is an ME perspective that reveals the 

support method engineering provides to its utilizing system (USME). 
ME service 
 An ME service means a material and immaterial ME deliverable that is 

produced in the ME context and delivered to be utilized in the target ISD 
contexts. 

ME infological perspective 
 The ME infological perspective is an ME perspective from which the ME 

context is seen as a functional structure of information processing and 
informational objects. 

ME conceptual perspective 
 The ME conceptual perspective is an ME perspective that addresses the 

conceptual contents of the ME deliverables. 
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OSISD construct type  
 An OSISD construct type in OSISD means a conceptual construct composed 

of specific entity types related to one another with OS relationship types and 
characterized by attributes. 

OSISD state type  
 An OSISD state type means a state type of the object system or its parts, 

composed of OSISD construct types.  
OSISD transition type  
 An OSISD transition type is a generic concept corresponding to the 

specification of all those features that are shared by OSISD transitions. 
OSISD event type  
 An OSISD event type means a generic concept corresponding to the 

specification of all those features that are shared by OSISD events, which 
may trigger an OSISD transition and which may be caused by another OSISD 
transition.  

OSISD constraint  
 An OSISD constraint specifies allowed OSISD states (static constraint) 

and/or allowed OSISD transitions (dynamic constraint) between the OSISD 
states. 

OSis construct meta type 
 An OSis construct meta type in OSME is composed of classes related 

through associations and class roles to one another. 
ME datalogical perspective  
 The ME datalogical perspective is an ME perspective from which ME is 

seen as a context in which ME deliverables, represented in some language, 
are processed by ME actors for certain purposes with some computer-aided 
ME tools. 

 
X. ME Method Ontology 
 
The ME method ontology provides concepts and constructs for conceiving, 
understanding, structuring and representing contextual aspects of the ME 
methods. 
 
ME method  
 An ME method is an artifact anchored on historical, intentional and 

functional backgrounds and aimed to be applied and deployed as a 
prescription in the intended kinds of ME contexts, in order to make 
organizational and technical changes in ISD contexts possible or more 
productive. The ME method, presented and materialized in several forms, 
contains knowledge bringing out how ME actors carry out ME actions to 
produce ME deliverables, by means of ME facilities, in an organizational and 
spatiotemporal context, in order to satisfy ME goals set by ME stakeholders. 
The ME method is composed of descriptive and prescriptive parts in a 
large variety. 

 



 

 

698 

Generic ME method 
 A generic ME method is an ME method, which provides general 

approaches, principles, models and guidelines to conduct ME efforts in a 
wide range of ME contexts.  

Domain-specific ME method  
 A domain-specific ME method is an ME method, which provides more 

domain-specific support to conduct ME efforts in a specific application 
domain.  

Organization-specific ME method  
 An organization-specific ME method is an ME method, which provides 

customized support to conduct ME efforts in a specific organization.  
Project-specific ME method  
 A project-specific ME method is an ME method, which provides 

configured and instantiated support to accomplish a particular ME effort. 
Prior RW context 
 A prior RW context is an RW context, which has contributed to the 

creation and engineering of the ME method. 
Target RW context  
 The target RW context means an RW context in which the ME method is to 

be elaborated, customized, configured and/or instantiated for the use of a 
particular organization or ME project. 

ME strategy 
 An ME strategy means a generic way of accomplishing an ME effort, or a 

part thereof. 
ME approach  
 An ME approach means a generic way of perceiving certain aspects of ME 

and/or a way of working in ME.   
Main ME principle  
 A main ME principle expresses essential aspects of a specific way to 

structure, accomplish, and/or manage the ME process. 
ME method component  
 An ME method component is a well-defined part of the ME method that 

can be integrated to other ME method components to form a coherent and 
consistent ME method. 

ME model  
 An ME model is a model that describes/prescribes structural, functional 

and/or behavioral features of the ME context.  
ME technique  
 An ME technique is a technique, which guides the accomplishment of 

specific actions in the ME context. 
ME contextual models  
 The ME contextual models mean ME models that can be classified into 

eight categories according to which ME domain(s) they address. 
ME perspective models  
 The ME perspective models mean ME models that can be classified into 

five categories according to which ME perspective(s) they address 
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APPENDIX 2:  ONTOLOGY REPRESENTATION LANGUAGE 
 
 
This thesis provides a large number of meta models for describing component 
ontologies in OntoFrame. In this appendix we specify the ontology 
representation language, in which the meta models are presented.  

The ontology representation language is closely based on UML version 1.4 
(OMG 2001)183. We deploy only a small part of the UML language. Following 
the strategy of MOF (OMG 2002) we have selected only those features of UML, 
which are feasible in describing ontologies. That means that even from the set of 
the concepts and constructs of the MOF we have excluded some concepts as 
unnecessary for our purposes. Compared to UML, we have also made changes 
in the semantics of the following concepts:  
• Association: 
 In UML an association is defined as a structural relationship between two 

or more classes. In the ontology representation language an association is 
defined as a binary relationship. This limitation is made in concordance 
with MOF.  

• Aggregation and composition: 
 In UML an aggregation is defined as an association that “specifies a 

whole-part relationship between the whole and its part” (p. Booch et al. 
1999, 458). It represents “a ‘has-a’ relationship, meaning that an object of 
the whole has objects of the part” (Booch et al. 1999, 67). A composition is 
defined “a form of aggregation with strong ownership and coincident 
lifetime of the parts by the whole” (Booch et al. 1999, 460). We define these 
concepts to stand for the relationships between the whole and its part in 
such a way that the parts are assumed to be inter-related. This assumption 
about the internal structure of the parts within the whole is also included 
in the notion of an aggregation in OML (Firesmith et al. 1997).  

 
In the table below we define the UML-based concepts and notation for the 
ontology representation language. The definitions are based on OMG(2001) and 
OMG(2002). 

                                                 
183  Nowadays, there is also the OMG standard for UML 2.0 (OMG 2003), but it was not 

available when we started our work. 
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Class

Association

Generalization

Aggregation

Composition

role

1..*

1..1

Concepts Notation

Ontology representation language

Definition

A description of a set of concepts that share
the same predicates.

An semantic connection between two classes,
each one associated in a specific role
(ClassRole). For each association end a range
of allowed cardinalities is specified with the
multiplicity.

A taxonomic association between a more
general class and a more specific class.

A special form of association that specifies a
whole-part relationship between a whole and
its part in such a way that the parts in the
whole are inter-related.

A special form of aggregation which requires
that a part instance is included in at most one
whole at a time, and that the lifetimes of the
parts are coincident with the lifetime of the
whole.
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YHTEENVETO (FINNISH SUMMARY) 
 
 
Tietojärjestelmien suunnittelumenetelmiä kehitetään, räätälöidään ja sovitetaan 
usein intuitiivisesti ja improvisoiden. Näin toteutettuna menetelmäkehityksellä 
on vaarana tuottaa vaikeasti ymmärrettäviä, huonosti soveltuvia ja tehottomasti 
sovellettavia suunnittelumenetelmiä. Improvisointiin nojaavalle menetelmä-
kehitykselle on usein ominaista myös suurempi resurssitarve. Merkittävänä 
syynä vallitsevalle tilanteelle on se, että menetelmäkehitykseltä itseltään 
puuttuu kunnollinen menetelmätuki. Kirjallisuudessa on kyllä esitetty laaja 
kirjo menetelmäkehityksen strategioita, lähestymistapoja, tekniikoita ja askel-
tasoisia proseduureja, mutta nämä ovat sittenkin vain osaratkaisuja. Kokonais-
valtaista menetelmää menetelmäkehitykseen ei ole tarjolla. Toisaalta ehdotetut 
ratkaisutkin perustuvat suuressa määrin olemassa olevien käytäntöjen kirjaami-
seen. Niiltä puuttuu lähes kokonaan laaja-alainen ja teoreettinen käsiteperusta. 

Tämän väitöskirjatyön tavoitteena on ollut kehittää ensiksikin käsitteel-
linen perusta, joka auttaa tunnistamaan, ymmärtämään, jäsentämään ja esittä-
mään tietojärjestelmien suunnittelumenetelmien luonteeseen, sisältöön, raken-
teeseen ja kehittämiseen liittyviä piirteitä ja ilmiöitä. Toisena tavoitteena on 
ollut rakentaa teoriapohjaista menetelmätukea menetelmäkehitykselle. Erityise-
nä pyrkimyksenä on ollut hyödyntää kontekstuaalisia piirteitä esiin nostavia 
teorioita (esim. semantiikka, pragmatiikkaa, toimintateoria) ja luoda niiden 
pohjalta lähestymistapoja, käsitteistöä, malleja ja ohjeistoja menetelmäkehi-
tykseen.  

Väitöskirjassa esitetään kaksi konstruktiota, ontologinen kehys ja menetel-
märunko. Ontologinen kehys, nimeltään OntoFrame, on moniulotteinen käsit-
teellinen kehys, joka koostuu eri tasoisista ontologioista. Yleisluonteisin 
ontologia on rakentunut ”universaaleista” käsitteistä kuten olevaisesta, suhtees-
ta, roolista, ominaisuudesta ja näkökulmasta. Generatiivisen lähestymistavan 
mukaisesti yleisemmistä ontologioista on johdettu spesifisempien ontologioi-
den käsitteet. Mitä spesifisemmälle tasolle edetään, sitä kontekstuaalisempia 
käsitteitä ontologiat sisältävät. Spesifisimmät ontologiat koskevat menetel-
mäkehitystä ja sitä tukevia menetelmäkomponentteja. OntoFrame on 
rakennettu yhtäältä relevanttien teorioiden päälle (deduktiivinen lähestymis-
tapa) ja toisaalta käyttämällä hyväksi olemassa olevia kehyksiä, viitemalleja, 
metamalleja ja ontologioita (induktiivinen lähestymistapa). Kehykseen sisälty-
vien käsitteiden määritelmät esitetään yhtenäisenä sanastona tutkimuksen 
liitteessä. Kunkin ontologian käsitteistä ja käsiterakenteista esitetään myös 
yksityiskohtaiset UML-pohjaiset metamallit, jotka auttavat muodostamaan 
kokonaiskäsityksen ontologioista ja lisäävät esityksen täsmällisyyttä.  

Menetelmärunko, MEMES, on tarkoitettu menetelmien yleistasoisten 
määritysten tekemiseen ja arviointiin. Se jäsentää menetelmäkehityksen viiteen 
tehtäväkokonaisuuteen ja tarjoaa kolmelle niistä lähestymistapoja, periaatteita 
ja askeleita. Nämä tehtäväkokonaisuudet ovat: menetelmävaatimusten määrit-
täminen, menetelmäanalyysi (so. karkean tason suunnittelu) ja menetelmä-
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arviointi. Vaatimusten määrittämisessä tehdään ensin ratkaisu kontingenssi-
viitekehyksen käytöstä ja valitaan sovellettava lähestymistapa. Sen jälkeen 
karakterisoidaan ja analysoidaan aiempia tietojärjestelmien suunnittelutilan-
teita, käsillä olevaa menetelmäkehitystilannetta sekä olemassa olevia menetel-
miä. Analyysien tulosten perusteella määritellään vaatimukset ja tavoitteet 
menetelmäkehitykselle. Seuraavassa vaiheessa mallinnetaan konstruoitavan 
menetelmän kohteena olevaa tietojärjestelmän suunnittelukontekstia infologi-
sesta ja käsitteellisestä näkökulmasta. Tämä työ sisältää muiden muassa 
tietojärjestelmää koskevien ontologioiden valinnan ja sovittamisen menetelmää 
varten. Menetelmäarvioinnissa valitaan tai määritellään arviointikriteerit, 
arviointitekniikka ja suoritetaan itse arviointi annettuja askeleita soveltaen.  

Tutkimuksessa on sovellettu konstruktiivista tutkimusotetta ja suunnitte-
luteoreettista paradigmaa. Ontologista kehystä ja menetelmärunkoa arvioidaan 
vertailemalla niitä ja niiden osia laajasti olemassa olevaan kirjallisuuteen. 
Menetelmäkehystä arvioidaan myös empiirisin menetelmin.  

Väitöskirjan tuloksia voivat hyödyntää menetelmäkehitystä tekevät ja 
tutkivat organisaatiot. Ontologinen kehys tarjoaa käsitteellisen perustan arvioi-
da ja vertailla olemassa olevia tietojärjestelmien suunnittelumenetelmiä sekä 
konstruoida uusia. Laajana kehyksenä se edesauttaa myös siltojen rakentamista 
eri tieteenalojen, lähestymistapojen ja aikakausien käsitteiden ja käsitysten 
välille. Metodirunkoa voidaan käyttää tarkennettuna ja sovitettuna käytännön 
menetelmäkehityksessä. Sen pohjalta voidaan räätälöidä erilaisiin strategioihin, 
lähestymistapoihin ja organisaationalisiin tilanteisiin sopivia menetelmäkehi-
tyksen menetelmiä ja tekniikoita.  
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