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Finnish summary
diss.

We study the nonstationary Maxwell system in domains with conical points and
edges. The system is endowed with two types of boundary conditions: conductive
and impedance. We consider both homogeneous and inhomogeneous boundary
conditions. Our main purpose is to study the behavior of solutions near the sin-
gularities. We derive the asymptotic expansions of solutions near the edges and
conical points and obtain the explicit formulas for the coefficients in the asymp-
totics. The asymptotics of solutions and the formulas for the coefficients turn
out to be of use in many applications. In particular, the results can be applied
in mathematical and numerical treatment of the problems of electrodynamics in
nonsmooth domains.
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1 INTRODUCTION

1.1 Preliminaries

We study the nonstationary Maxwell system




∂ ~E/∂t− rot ~B = − ~J,

∂ ~B/∂t+ rot ~E = − ~G,

div ~E = ρ,

div ~B = µ

(1.1)

in domains with conical points and edges. Two types of boundary conditions are
considered: conductive

[ ~E × ~ν] = [~Φ × ~ν], 〈 ~B, ~ν〉 = δ (1.2)

and impedance
~ν × [ ~B × ~ν] + ψ[~ν × ~E] = [~Φ × ~ν]. (1.3)

Here by ~ν we denote the unit outward normal and by ψ we denote an impedance
(a complex-valued function describing the conductive properties of the boundary).

Our main purpose is to study behavior of solutions to the problems (1.1),
(1.2) and (1.1), (1.3) near the conical points and edges. We obtain and justify the
asymptotics of solutions near the singularities. Besides, we derive the formulas for
the coefficients in the asymptotics and study their properties.

Elliptic boundary value problem in domains with piecewise smooth bound-
ary were thoroughly investigated in the works of V. A. Kondrat’ev, V. G. Maz’ya,
B.A. Plamenevskii, and others (see, e.g., [28] and the extensive bibliography in
this book). Since solutions to elliptic problems are not smooth in singular points of
the boundary, it is important to describe the properties of the solutions near such
points. The asymptotics of solutions near the singularities of the boundary is de-
scribed in terms of eigenvalues and eigenfunctions of operator pencil (polynomial
with operator coefficients) corresponding to the elliptic problem under consider-
ation. These spectral characteristics of the pencil depend on the properties of
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the problem and the boundary near the singular point. The coefficients in the
asymptotics are calculated through the right-hand side of the problem and certain
singular solutions to the homogeneous adjoint problem. Note that the form of the
asymptotics is defined by the local properties of the problem near the singular
point, while the coefficients depend on the whole problem.

The ”elliptic” results can be applied to other problems. For instance, the
electromagnetic oscillations are governed by the Maxwell system, which is not
elliptic. However, in certain cases the study of the singularities of solutions to the
Maxwell system can be reduced to the singularities of solutions to second-order
scalar elliptic equations. In the case of empty resonator with perfectly conducting
boundary the Maxwell singularities are described in terms of the singularities of
the Dirichlet and Neumann problem for the Laplace operator.

The results concerning the asymptotics of solutions near the singularities have
numerous applications. Here we indicate one example that is about the Maxwell
system in domains with reentrant edges or corners. It turns out that the appli-
cation of nodal finite elements in numerical treatment of this problem leads to an
error in calculations (see [5]). The discrete iterations converge to a wrong solution
since principal Maxwell singularities can not be approximated by nodal elements.
Different methods were suggested to avoid this ”Maxwell bug” (see [12, 7]). In
particular, some methods make use of the explicit asymptotic expansions of solu-
tions near the singular points on the boundary. Namely, the Maxwell singularities
are added to the standard finite element spaces.

Hyperbolic problems in nonsmooth domains are still poorly understood. Here
we mention some papers, in which the behavior of solutions near the singularities
is studied. G. I. Eskin in [9] studied the wave equation in a wedge with edge of
codimension 2. On the boundary, the author considered homogeneous differential
operators with constant coefficients satisfying the uniform Lopatinskii condition.
The main result is an explicit formula for solutions. However the method (reduc-
tion to the Riemann – Hilbert problem) can not be generalized to edges of higher
codimensions.

The Cauchy – Dirichlet problem for the wave equation in domains with conical
points was studied by V. A. Kondrat’ev, O. A. Oleinik , and I. I. Mel’nikov in
[14, 26]. The authors suggested the following method. They proved the solvability
results for generalized solutions to the problem and estimated the derivatives of
solutions with respect to time by some Sobolev norms of the right-hand side. Then
all the derivatives with respect to time were rearranged to the right-hand side of
the equation. This problem was treated as an elliptic one in order to obtain the
asymptotics of solutions near the conical points by well-known ”elliptic” technique
(see [28] or [25]). Later Nguen Man’ Khung in [29] applied this method to study
strictly hyperbolic systems in domains with conical points. However the method
suggested in [14], [26] does not lead to the formulas for the coefficients in the
asymptotics.

B. A. Plamenevskii in [33], then B. A. Plamenevskii and A. Yu. Kokotov in
[15, 16] investigated different initial boundary value problems for the wave equation
and strictly hyperbolic systems in domains with edges and conical points. They



11

proved the solvability results in scales of weighted spaces, derived the asymptotics of
solutions near the singularities and obtained the formulas for the coefficients in the
asymptotics. It turns out that the principal term of the asymptotics is of the form
u(x, t) ∼

∑
cj(t)uj(x), where uj are some special solutions to the homogeneous

problem for the spatial part of the system under consideration. The hyperbolic
properties of the asymptotics can be observed in the coefficients cj expressed by
the explicit formulas through the right-hand side of the system and some singular
solutions to the homogeneous problem.

Further, we discuss some papers related to the stationary Maxwell system in
nonsmooth domains. J. Saranen in [35] described the singularities of solutions to
the Maxwell system in cones with smooth basis.

N. Weck in [38] investigated the generalized Maxwell acting on differential
forms on Riemannian manifold. The author developed the solution theory for a
certain class of manifolds with piecewise smooth boundary.

M. Sh. Birman and M. Z. Solomyak in [4] defined and studied the Maxwell
operator in domains with much more relaxed restrictions on the boundary. They
considered the perfectly conductive boundary conditions. For Lipschits domains
the principal part of the asymptotics was obtained via the singularities of solutions
to second-order elliptic equations.

M. Costabel and M. Dauge in [6] investigated the singularities of solutions
to the time-harmonic Maxwell system in domains with edges, conical points, and
polyhedral corners. Applying the classical Mellin analysis, the authors derived the
asymptotic formulas based on Dirichlet and Neumann singularities for the Laplace
operator.

We modify the approach suggested in [33, 15] to study the nonstationary
Maxwell system in domains with conical points. In these papers, the results con-
cerning elliptic boundary value problems are applied to obtain the asymptotics of
solutions near the conical points, and the ellipticity of the spatial part of the system
under consideration is crucial. However the spatial part of the Maxwell system is
not elliptic. That is why we consider the augmented Maxwell system





∂ ~E/∂t− rot ~B + ∇h = − ~J,

∂ ~B/∂t+ rot ~E + ∇q = − ~G,

∂h/∂t+ div ~E = ρ,

∂q/∂t+ div ~B = µ,

(1.4)

which has the elliptic spatial part (see, e.g., [4, 21]). For brevity we rewrite the
system (1.4) in the form

∂u/∂t+ A(∂)u = f,

where u = ( ~E, ~B, h, q), f = (− ~J, − ~G, ρ, µ), and ∂ = (∂x1
, ∂x2

, ∂x3
). The

augmented system (1.4) is endowed with the augmented boundary conditions

[ ~E × ~ν] = [~Φ × ~ν], 〈 ~B · ~ν〉 = ϕ, h = H (1.5)

or
~ν × [ ~B × ~ν] + ψ[~ν × ~E] = [~Φ × ~ν], h = H, q = Q (1.6)
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such that the boundary value problems (1.4), (1.5) and (1.4), (1.6) are elliptic.
Further, we give a detailed description of the method to be used. For the sake

of simplicity we consider the system (1.4) with homogeneous boundary conditions
(1.5) in the cone K smooth outside the vertex. By Ft→τ we denote the Fourier
transformation defined by the formula

û(τ) =
(
Ft→τu

)
(τ) =

∫

R

e−itτu(t) dt,

where τ = σ − iγ (σ ∈ R, γ > 0). Applying the Fourier transformation to the
system under consideration we arrive at a problem with parameter in the cone.
This problem is elliptic for a fixed τ , but the dependence on τ is ”hyperbolic”. As
in [33, 15], the method is based on certain a priori estimates of solutions. The
first estimate follows from simple energy arguments, where for the energy we take
the expression

∫

K

(| ~E(x, t)|2 + | ~B(x, t)|2 + |h(x, t)|2 + |q(x, t)|2) dx.

Note that if h ≡ 0 and q ≡ 0, then it is the usual formula for the energy of
electromagnetic field. The first estimate is of the form

γ2

∫

K

|v(x)|2 dx ≤ c

∫

K

|(τ + A(Dx))v(x)|
2 dx,

where the constant c is independent of τ . It is called the energy estimate. We
apply it to prove the solvability results in the class of solutions with finite energy
(energy solutions).

When proving the energy estimate for the augmented Maxwell system, we face
the necessity to consider the spatial part A(∂) as a symmetric operator. Therefore
one has to choose asymptotics near singularities of the boundary for the functions
in the domain of A(∂). This gives rise to a family of self-adjoint extensions of
A(∂). The possibility of coming back to the initial non-augmented Maxwell system
depends on the choice of a self-adjoint extension. In particular, in a bounded
domain with conical point, the passage to the initial system is possible for the only
self-adjoint extension. To implement this passage, it suffices to take a right-hand
side of the form (− ~J, − ~G, ρ, µ) for the augmented system, where ~J, ~G, ρ, µ

are subject to the equations div ~J + ∂ρ/∂t = 0, div ~G + ∂µ/∂t = 0, and to

the boundary condition 〈 ~G, ~ν〉 = 0. Then h and q vanish and the solution of
the augmented system satisfies the usual Maxwell system. It turns out that the
mentioned self-adjoint extension coincides with the Maxwell operator studied in [4]
for the stationary situation.

We need a more informative estimate to investigate the behavior of energy
solutions near the conical points. To prove it, we split the cone into zones. In a
small zone near the vertex we can apply the weighted elliptic estimate of solutions.
The volume of this zone is inversely related to the parameter. Far from the vertex
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we use a localized energy estimate. ”Gluing” these inequalities together we obtain
the so called weighted combined estimate

γ2‖v;H0
β(K, |τ |)‖2 + ‖χτv;H

1
β(K, |τ |)‖2 ≤

≤ c
{∫

K

|(τ + A(Dx))v(x)|
2r2β(x) dx+

+
(
|τ |2(1−β)/γ2

)∫

K

|(τ + A(Dx))v(x)|
2 dx

}
,

where the constant c is independent of τ . Here by r(x) we denote the distance
between the point x ∈ K and the vertex of the cone, by χ we denote a cut-off
function such that χ = 1 for r < 1, and χ = 0 for r > 2; χτ (r) = χ(|τ |r). The
function spaces Hs

β(K, |τ |) are defined below, in the next section. The weighted
combined estimate is proved for all β ≤ 1, β 6∈ {βk}k≥1, where {βk}k≥1 is a sequence
such that 1/2 > β1 > β2 · · · > βk → −∞. In spaces related to the weighted
combined estimate there is a closed operator corresponding to the problem with
parameter in the cone. The kernel and cokernel of this operator are trivial if
β ∈ ]β1, 1]. As β decreases, the dimension of the cokernel increases (when β
crosses βk) but remains finite. The elements of a basis of the cokernel are uniquely
determined by their asymptotics near the vertex. Along with the ”elliptic” results
on the asymptotics, this allows us to obtain the asymptotics of the solutions near
the vertex of the cone, including formulas for the coefficients in the asymptotics.
The inverse Fourier transformation carries the theory over to the nonstationary
problem.

Now we discuss the structure of the asymptotics of solutions near the vertex
of the cone. For simplicity we consider the asymptotics containing the principal
part only. If the right-hand side of the system decays with a certain rate near the
vertex, then for the solution the representation holds

u(x, t) =
∑

j

cj(t)uj(x) +R(x, t).

Here by uj we denote some special solutions to the homogeneous problem for the
spatial part of the system under consideration, by R we denote the remainder. The
coefficients are calculated by the formula

cj(t) =

∫

K

∫

R

〈f(x, t− s), Wj(x, s)〉 dx ds,

where f is a right-hand side of the system. ByWj we denote some singular solutions
to the adjoint nonstationary problem determined by their growing asymptotics near
the vertex of the cone. For model domains (a cone and a wedge) we can obtain
explicit formulas for Wj. Applying these formulas, it is possible to observe some
phenomena related to the finite propagation speed of the electromagnetic waves.
Suppose that the singular support of the right-hand side f is located in the set
{(x1, x2, x3, t) : R1 < r < R2, 0 < t < t0}. Then cj(t) are smooth for t > t0 + R2.
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In other words, there is the phenomenon of ”back edge”: the coefficients have been
smooth after the perturbation from the singular support of the right-hand side has
left the vertex of K. Assume now that supp f ⊂ {(x1, x2, x3, t) ∈ K × R : R1 <
r < R2, t > 0}. Then cj(t) = 0 for t < R1. Thus we observe the phenomenon of
”forward edge” in the coefficients: the coefficients have been equal to zero before
the perturbation from the support of the right-hand side arrives at the vertex.

Now we turn to the augmented Maxwell system with inhomogeneous
impedance boundary conditions. Actually the same method is applied as for the
homogeneous boundary conditions. Namely, we prove certain a priori estimates.
Using these estimates, we study the problem in scales of weighted spaces and prove
the solvability results. Taking into account well-known elliptic results, we derive
the asymptotics of solutions near the vertex of the cone and obtain the formulas for
the coefficients in this asymptotics. However in the case of inhomogeneous bound-
ary conditions, as distinct from the homogeneous boundary conditions, there is a
considerable difficulty in proving the energy estimate.

In smooth domains there is a general approach for the proof of the energy
estimates for hyperbolic problems satisfying the uniform Lopatinskii condition.
This approach was suggested by S. Agmon in [1] for higher order scalar hyperbolic
operators. Then R. Sakamoto in [34] improved the results of Agmon, and H.-O.
Kreiss in [22] investigated hyperbolic systems. These authors proved the energy
estimates in smooth domains considering model problems in R

n
+ and R

n. It turns
out that their approach can not be applied to domains with conical points due
to the difficulties arising from the model problem in a cone. Besides, the uniform
Lopatinskii condition is not satisfied for the wave equation and the Lamé system
with Neumann boundary conditions, which are important for the applications in
elasticity theory.

For second-order scalar hyperbolic equations in smooth domains L. G̊arding
and L. Hörmander suggested another proof of the energy estimates. The equation
was multiplied by a certain first-order differential operator applied to the solution
and integrated over the domain, then integrated by parts. Using this method, L.
G̊arding in [11] investigated the oblique derivative problem for the wave equation
and L. Hörmander in [13] studied the Cauchy – Dirichlet problem for second-order
scalar hyperbolic equations.

B. A. Plamenevskii and A. Yu. Kokotov in [15] modified the method of
G̊arding and Hörmander to study hyperbolic systems in nonsmooth domains. Sec-
ond - order strictly hyperbolic systems with inhomogeneous Dirichlet boundary
conditions were considered in domains with edges and conical points. In particu-
lar, the authors proved the energy estimates and applied them for investigation of
the problem. The suggested proof of the energy estimates is valid only for cones
and wedges satisfying a certain admissibility condition. Namely, the wedge D is
called admissible if there exists a constant vector ~f such that 〈~f, ~ν〉 ≥ c0 > 0 for
all outward normals to ∂D \M , where M is the edge of the wedge. It was also
shown that the energy estimates may fail for nonadmissible wedges.

In this work we prove the energy estimate for the augmented Maxwell system
with boundary conditions (1.5) and (1.6) modifying the method of L. G̊arding
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and L. Hörmander for first-order systems and taking into account certain specific
features of the system (1.4). The energy estimate in the case of inhomogeneous
conductive boundary conditions (1.5) is of the form

γ2‖v;L2(K)‖2 + γ‖Tv;L2(∂K)‖2 ≤

≤ c{‖(τ + A(Dx))v;L2(K)‖2 + γ‖Γv;L2(∂K)‖2},

where v = ( ~E, ~B, h, q), Γv = ([~ν × ~E], 〈 ~B, ~ν〉, h)T , and Tu = (~ν × [ ~B ×

~ν], q, 〈 ~E, ~ν〉)T . As in [15], this estimate is valid for admissible cones.
The energy estimate in the case of inhomogeneous impedance boundary con-

ditions (1.6) is of the form

γ2‖v;L2(K)‖2 + γ‖T1v;L2(∂K)‖2 ≤

≤ c{‖(τ + A(Dx))v;L2(K)‖2 + γ‖Γ1v;L2(∂K)‖2},
(1.7)

where v = ( ~E, ~B, h, q), Γ1v = (~ν × [ ~B × ~ν] + ψ[~ν × ~E], h, q), and T1u =

((1/ψ) ~ν× [ ~B×~ν], 〈 ~E, ~ν〉, 〈 ~B, ~ν〉). This estimate is also valid for admissible cones.
It will be shown that the boundary conditions H = 0, Q = 0 in (1.6) are

set when we ”return” from the augmented system with impedance boundary
conditions to the usual Maxwell system. Thus if we are mainly interested in the
results for the usual Maxwell system, then we can consider only these boundary
conditions when studying the augmented system. For the boundary conditions
(1.6) with H = 0, Q = 0 we prove another energy estimate

γ2‖v;L2(K)‖2 + (γ|Reψ|/|ψ|) · ‖ ~B × ~ν;L2(∂K)‖2 ≤

≤ c
{
‖M(Dx, τ)v;L2(K)‖2 + (γ|ψ|/|Reψ|) · ‖~Φ × ~ν;L2(∂K)‖2

}
,

(1.8)

which is valid for arbitrary cones. Applying the energy estimate (1.8) instead of
(1.7), we can obtain the results for the usual Maxwell system in arbitrary cones.
However, the estimate (1.7) is more informative: its left-hand side contains also

the normal boundary components of the fields ~E, ~B.
The results for the usual Maxwell system (1.1) with boundary conditions (1.2)

and (1.3) follow from those for the augmented problems (1.4), (1.5) and (1.4), (1.6).
It turns out that if the right-hand side of the augmented problem satisfies some
natural conditions (the compatibility conditions for the ordinary Maxwell system),

then in the solution ( ~E, ~B, h, q) the functions h, q vanish, and ( ~E, ~B) satisfies
the ordinary Maxwell system.

1.2 Review of results

Here we briefly describe the main results and give the exact references on the
corresponding theorems and propositions in this work.

In the second chapter we study the augmented Maxwell system (1.4) with
homogeneous boundary conditions (1.5) in a cone and in a domain with conical
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point. Applying Fourier transformation we arrive at the problem with param-
eter. We prove a priori estimate taking into account simple energy arguments
(Proposition 2.8), then we prove a more informative combined weighted estimate
(Proposition 2.20). By means of these estimates the operator of the problem un-
der consideration is investigated in a scale of weighted spaces (Theorems 2.16 and
2.24). Applying the properties of the operator and well-known elliptic results we
derive the asymptotics of solutions near the conical point and obtain the explicit
formulas for the coefficients in the asymptotics (Theorem 2.26). Finally, we exam-
ine the connection between the augmented and usual Maxwell systems in Theorem
2.34. Due to this theorem, all the results concerning the solvability and asymp-
totics of the usual Maxwell system can be obtained from those for the augmented
Maxwell system. The inverse Fourier transformation carries the theory over to the
nonstationary problem (Theorems 2.29, 2.31, and 2.32).

In the third chapter we study the augmented Maxwell system (1.4) with ho-
mogeneous boundary conditions (1.5) in a wedge and in a waveguide with edges.
In comparison with the results obtained in [33, 15], we weaken the requirements
on the right-hand side which are necessary to obtain the asymptotics of the solu-
tion near the edge. Namely, we do not require extra smoothness of the right-hand
side along the edge. This reduction in requirements is achieved by the accurate
consideration of the properties of the spatial part for the Maxwell system in a
wedge (Theorem 3.2). The scheme of investigation is the same as in Chapter 2.
In Proposition 3.3 and Proposition 3.8 we prove a priori estimates. By means of
these estimates we study the operator of the problem with parameter (Theorem
3.14 and Theorem 3.15). Then we formulate Theorem 3.24 about the connection
between the usual and the augmented Maxwell systems. Finally, applying the in-
verse Fourier transformation, we obtain the results for the nonstationary problem
(see Theorems 3.19, 3.21, and 3.22).

In the fourth chapter we study the augmented Maxwell system (1.4) with
inhomogeneous boundary conditions (1.5) in an admissible cone and in a domain
with admissible conical points. The method is basically the same as in Chapters
2 and 3. However, the proof of the energy estimates presents a considerable dif-
ficulties due to the inhomogeneous boundary conditions (see Propositions 4.3 and
4.6). As soon as we have proved the energy estimate, we follow the same scheme
as in Chapters 2 and 3. We prove the combined weighted estimate in Proposition
4.14, investigate the operator of the problem (Theorems 4.10 and 4.18), and study
the asymptotics of solutions in Theorem 4.20. The connection between the aug-
mented Maxwell system and the usual Maxwell system is examined in Theorem
4.28. Applying the inverse Fourier transformation, we obtain the results for the
nonstationary problem (see Theorems 4.23, 4.25, and 4.26).

In the fifth chapter we study the augmented Maxwell system (1.4) with inho-
mogeneous impedance boundary conditions (1.6) in a cone and in a domain with
conical points. Here we prove two types of energy estimates. The proof of the
first energy estimate is quite complicated (see Propositions 5.8, 5.10). It follows
the scheme suggested in Chapter 4. This energy estimate is valid only for admis-
sible conical points. The second estimate is proved by simple energy arguments
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similar to those in Chapters 2 and 3 (see Proposition 5.13). This estimate is valid
for arbitrary conical points, however it is less informative than the first one. The
further study of the problem can be based on any of these two energy estimates.
Here the more informative estimate is chosen. Again, as soon as we proved the
energy estimate, we follow the same scheme as in Chapters 2 and 3. We prove
the combined weighted estimate in Proposition 5.23, investigate the operator of
the problem (Theorems 5.17 and 5.28), and study the asymptotics of solutions in
Proposition 5.30. The connection between the augmented Maxwell system and the
usual Maxwell system is examined in Theorem 5.39. Applying the inverse Fourier
transformation, we obtain the results for the nonstationary problem (see Theorems
5.34, 5.36, and 5.37).

1.3 Basic definitions

Now we introduce notations to be used in the text. We describe domains, function
spaces and present some known results concerning the augmented Maxwell system.

Let K ⊂ R
3 be a cone with vertex at the origin of coordinates O such that

K ∩ S2 is one-connected. Let G ⊂ R
3 be a bounded domain with only one conical

point O such that G coincides with K in a neighborhood of O. The boundaries of
K and G are smooth outside O.

We introduce function spaces in the domains. Let s ∈ N, β ∈ R , and

r = (x2
1 + x2

2 + x2
3)

1/2
. By Hs

β(K) denote the completion of the set C∞
c (K \O) with

respect to the norm

‖u;Hs
β(K)‖ =

(∑

|α|≤s

∫

K

r2(β+|α|−s)|Dα
xu(x)|

2 dx
)1/2

,

where α = (α1, α2, α3) is a multi-index, x = (x1, x2, x3), dx = dx1 dx2 dx3, D
α
x =

Dα1

x1
Dα2

x2
Dα3

x3
, and Dxk

= −i∂/∂xk. The space Hs
β(K, q) with q > 0 is endowed with

the norm

‖u;Hs
β(K, q)‖ =

( s∑

k=0

q2k‖u;Hs−k
β (K)‖2

)1/2

.

By H
s−1/2
β (∂K, q) we denote the space of traces on ∂K of the functions belonging

to Hs
β(K, q). Changing K for G, we analogously define the spaces H s

β(G), Hs
β(G, q),

and H
s−1/2
β (∂G, q).

In the cylinder Q = K × R we introduce the space Hs
β(Q) by completing

C∞
c ((K \ O) × R) in the norm

‖w;Hs
β(Q)‖ =

( ∑

|α|+k≤s

∫

K

∫

R

r2(β+|α|+k−s)|Dα
xD

k
tw(x, t)|

2
dx dt

)1/2

.

The space Hs
β(Q, q) with q > 0 is endowed with the norm

‖u;Hs
β(Q, q)‖ =

( s∑

k=0

q2k‖u;Hs−k
β (Q)‖2

)1/2

.
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Changing K for G, we define the spaces Hs
β(Q) and Hs

β(Q, q) in the cylinder Q =
G × R. Finally, we denote by V s

β (Q, γ) and V s
β (Q, γ) with γ > 0 the spaces with

the norms

‖w;V s
β (Q, γ)‖ = ‖wγ;Hs

β(Q, γ)‖ and ‖w;V s
β (Q, γ)‖ = ‖wγ;Hs

β(Q, γ)‖,

respectively, where wγ = e−γtw.
Let K = {(r, ϕ) : r > 0, |ϕ| < α} be an angle in the plane R

2
x1,x2

with
opening 2α, where (r, ϕ) are polar coordinates centered at O. Denote by D =
K × R the wedge with edge M = O × R. We introduce function spaces. Let
s ∈ N, β ∈ R, r = (x2

1 + x2
2)

1/2. Denote by Hs
β(K) and Hs

β(D) the completion of

C∞
c (K \ O) and C∞

c (D \M) with respect to the norms

‖u;Hs
β(K)‖ =

( ∑

k1+k2≤s

∫

K

r2(β+k1+k2−s)|Dk1

x1
Dk2

x2
u(x1, x2)|

2
dx1 dx2

)1/2

,

‖v;Hs
β(D)‖ =

(∑

|α|≤s

∫

D

r2(β+|α|−s)|Dα
xv(x)|

2 dx
)1/2

.

The spaces Hs
β(K, q), Hs

β(D, q) for q > 0 are equipped with the norms

‖u;Hs
β(K, q)‖ =

( s∑
k=0

q2k‖u;Hs−k
β (K)‖2

)1/2

,

‖u;Hs
β(D, q)‖ =

( s∑
k=0

q2k‖u;Hs−k
β (D)‖2

)1/2

.

By H
s−1/2
β (∂K, q) and H

s−1/2
β (∂D, q) we denote the spaces of traces of the functions

belonging to Hs
β(K, q) and Hs

β(D, q) respectively.
We define functional spaces in the cylinder T = D × R. Let Hs

β(T) stand for

the completion of C∞
c ((D \M) × R) in the norm

‖w;Hs
β(T)‖ =

( ∑

|α|+k≤s

∫

D

∫

R

r2(β+|α|+k−s)|Dα
xD

k
tw(x, t)|

2
dx dt

)1/2

.

The space Hs
β(T, q) for q > 0 is endowed with the norm

‖u;Hs
β(T, q)‖ =

( s∑

k=0

q2k‖u;Hs−k
β (T)‖2

)1/2

.

Finally, V s
β (T, γ) for γ > 0 denotes the space with norm

‖w;V s
β (T, γ)‖ = ‖wγ;Hs

β(T, γ)‖,

where wγ = e−γtw.
Let Ω ⊂ R

2 be a bounded domain with corner point O. We assume that, in a
neighborhood of O, the domain Ω coincides with K. Outside O, the boundary of
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Ω is smooth. Denote by Σ the waveguide Ω × R with edge O × R, and by T the
cylinder Σ×R. In Ω, Σ, and T, we introduce function spaces similar those defined
in K, D, and T.

We also need the function space E l
β(K) which is the completion of C∞

c (K \O)
in the norm

‖u;El
β(K)‖ =

( ∑

k1+k2<l

‖rβ(1 + rk1+k2−l)Dk1

x1
Dk2

x2
U ;L2(K)‖2

)1/2

.

By E
l−1/2
β (∂K) we denote the space of traces on ∂K of the functions belonging

to El
β(K). In fact, the norms ‖·;E l

β(K)‖ and ‖·;H l
β(K, 1)‖ are equivalent. The

notation E l
β(K) was used in [28, Chapter 8]. Here we introduced this notation

for the convenience of references. The next assertion was proved in [28, Lemma
8.1.2]

Proposition 1.1. The norms ‖w;H l
β(D)‖ and

(∫

R

|ξ|2(l−β)−2‖W (·, ξ);E l
β(K)‖2 dξ

)1/2

are equivalent, where W (ζ, ξ) = (Fx3→ξw)(|ξ|−1ζ, ξ) and ζ = (|ξ|x1, |ξ|x2).

In the following proposition we summarize some known properties of the augmented
Maxwell system.

Proposition 1.2. 1) The operator A(∂) is elliptic, but it is not strongly elliptic.
2a) In a domain V with smooth boundary ∂V the Green formula

∫

V

〈A(D)u, v〉8 dV +

∫

∂V

〈Γu,−iT0v〉5 dS

=

∫

V

〈u,A(D)v〉8 dV +

∫

∂V

〈−iT0u,Γv〉5 dS,
(1.9)

holds, where u, v ∈ C∞(V ,C8). By 〈 , 〉k we denote the inner product in C
k. By Γu

and T0u we denote (~ν × ~u, 〈~v, ~ν〉3, h)
T and (~ν × [~v × ~ν], q, 〈~u, ~ν〉3)

T respectively,
where u = (~u, ~v, h, q)T .
2b) The system A(∂)u = f with boundary conditions Γu = g is an elliptic boundary
value problem self-adjoint with respect to the Green formula (1.9).
3a) In a domain V with smooth boundary ∂V the Green formula

∫

V

〈A(D)u, v〉8 dV +

∫

∂V

〈Γ1u,−iT1v〉5 dS

=

∫

V

〈u,A(D)v〉8 dV +

∫

∂V

〈−iT2u,Γ2v〉5 dS
(1.10)
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holds, where u, v ∈ C∞(V ,C8) and 〈 , 〉k stands for the inner product in C
k; for

u = (~u, ~v, h, q)T we have Γ1u = (~ν × [~v × ~ν] + ψ[~ν × ~u], h, q)T , T1u =
((1/ψ) ~ν × [~v × ~ν], 〈~u, ~ν〉, 〈~v, ~ν〉)T , Γ2u = (−~ν × [~v × ~ν] + ψ[~ν × ~u], h, q)T , and
T2u = ((1/ψ) ~ν × [~v × ~ν], 〈~u, ~ν〉, 〈~v, ~ν〉)T .
3b) The boundary value problems {A(∂),Γ1} and {A(∂),Γ2} are elliptic and adjoint
with respect to the Green formula (1.10).

The proof is a straightforward check of the definitions of elliptic operators
and elliptic boundary value problems. The Green formulas are obtained from the
integration by parts and the Gauss divergency theorem.



2 THE PROBLEM IN A CONE AND IN

A BOUNDED DOMAIN WITH CONICAL

POINT

2.1 Preliminaries

In this chapter we study the augmented Maxwell system





∂ ~E/∂t− rot ~B + ∇h = − ~J,

∂ ~B/∂t+ rot ~E + ∇q = − ~G,

∂h/∂t+ div ~E = ρ,

∂q/∂t+ div ~B = µ

(2.1)

in a model cone and in a bounded domain with conical point. The system (2.1) is
endowed with boundary conditions corresponding to ideal conductive boundary:

~ν × ~E = 0, 〈 ~B, ~ν〉3 = 0, h = 0, (2.2)

where ~ν is the unit outward normal. The system (2.1) will be written in the form

∂U/∂t+ A(∂)U = F,

where U = ( ~E, ~B, h, q)T , ∂ = (∂x1
, ∂x2

, ∂x3
).

Let τ = σ − iγ, σ ∈ R, γ > 0. Applying the Fourier transform Ft→τ to the
problem (2.1), (2.2), we obtain the problem with parameter τ in the cone K (in
the domain G)

{
τ û+ A(Dx)û = −if̂ ,

Γû = 0.

Rewrite this problem as follows

M(Dx, τ)u = f, (2.3)
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Γu = 0, (2.4)

where M(Dx, τ) = τ+A(Dx). The Green formula (1.9) for the problem (2.3), (2.4)
takes the form

(
M(Dx, τ)u, v

)
K

+
(
Γu, Tv

)
∂K

=
(
u,M(Dx, τ)v

)
K

+
(
Tu,Γv

)
∂K

, (2.5)

where T = −iT0.
When considering the problem in K, one can change the variables

η = (|τ |x1, |τ |x2, |τ |x3). Denote τ/|τ | by θ , put M(Dη, θ) = θ +A(Dη), U(η, τ) =

Û(|τ |−1η, τ), F (η, τ) = |τ |−1F̂(|τ |−1η, τ), and rewrite the problem (2.3), (2.4) in
the form

M(Dη, θ)U = F, (2.6)

ΓU = 0. (2.7)

2.2 Operator pencil

We introduce the operator pencil

A(λ)Φ(ϕ, ϑ) = r1−iλA(Dx1
, Dx2

, Dx3
)riλΦ(ϕ, ϑ) (2.8)

for functions Φ ∈ H1(Ξ) such that riλΦ(ϕ, ϑ) satisfy (2.2) on ∂K. Here (r, ϑ, ϕ) are
spherical coordinate centered at O and Ξ = K ∩ S2. We will write the boundary
conditions for Φ in an explicit form. Assume (~er, ~eϑ, ~eϕ) to be the basis vectors

in the spherical coordinate system. Let ~σ be a tangent vector to ∂Ξ and let ~Φ =
(~U, ~V , H, Q). Then the boundary condition on ∂Ξ take the form

〈~U, ~er〉3 = 0, 〈~U, ~σ〉3 = 0, 〈~V , ~ν〉3 = 0, H = 0,

where ~ν stands for the unit outward normal to the boundary of K. Since A is an
elliptic pencil, its spectrum consists of normal eigenvalues {λk}k∈N.

Proposition 2.1. All the eigenvalues of A belong to the imaginary axis. To every
eigenvalue λj there corresponds a finite collection of linearly independent eigenvec-
tors Φs,j , s = 1, .., Nj. There are no associated vectors.

Proof. The operator A(D) in the spherical coordinates take the form

A(D) = A1(ϕ, ϑ)Dr + (1/r)A2(ϕ, ϑ)Dϑ + (1/r)A3(ϕ, ϑ)Dϕ, (2.9)

where Ai(ϕ, ϑ) are 8×8-matrices that can easily be calculated. The matrices satisfy

A1 · A1 = I, A2 · A2 = I, sin2ϑ · A3 · A3 = I,
A1 · A2 + A2 · A1 = 0, sinϑ · (A1 · A3 + A3 · A1) = 0,
∂A1/∂ϑ = A2, ∂A2/∂ϑ = −A1, ∂A1/∂ϕ = sin2 ϑ · A3.

(2.10)

From (2.9) it follows that

A(λ) = λA1 + A2Dϑ + A3Dϕ. (2.11)
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Let λm be an eigenvalue of the operator pencil and Φm an eigenvector, i.e.,
A(λm)Φm = 0. Then BΦm = λmΦm, where B is defined by B = −A1 · A2Dϑ −
A1 · A3Dϕ for functions in the domain of A. Using the Green formula (2.5), it is
not hard to verify that the operator iB is symmetric on L2(Ξ). Since the problem
{A(D), Γ} is elliptic (see Proposition 1.2), the operator iB with such a domain
is self-adjoint. Its domain is compactly embedded into L2(Ξ), so the spectrum of
B is discrete. Obviously, the spectrum of B coincides with that of the pencil A.
Therefore, the eigenvalues of the pencil belong to the imaginary axis. We show
there are no associated vectors. Let λm, Φm be an eigenvalue and an eigenvector
of A and let Φ̃ an associated vector. In other words, A(λm)Φ̃ = ∂λA(λm)Φm or,

equivalently, (B − λm)Φ̃ = Φm. However, Φm is not orthogonal to the subspace

ker(B − λm). Therefore, Φ̃ does not exists.

Consider the pencil A∗(λ), defined by A∗(λ) = (A(λ))∗. It is known that if
µ is an eigenvalue of A, then µ is an eigenvalue of A∗ while their multiplicities
coincide. Eigenfunctions {Φs}s=1,..,N and {Ψs}s=1,..,N can be chosen to satisfy the
orthogonality and normalization conditions (see [28], Chapter 1, §2):

∫

Ξ

〈∂µA(µ)Φs,Ψp〉8 sinϑ dϑ dϕ = δs,p. (2.12)

In the next proposition we obtain the formula for A∗(λ).

Proposition 2.2.
A

∗(λ) = A(λ+ 2i).

Proof. We verify this statement applying the definition of A and the Green formula
(1.9). Consider the inner product

(
A(λ)Φ,Ψ

)
Ξ

=

∫

Ξ

〈A(λ)Φ(ω),Ψ(ω)〉8 dω, (2.13)

where Φ,Ψ ∈ H1(Ξ) such that Γ(riµΦ) = 0 and Γ(riµΨ) = 0 on ∂K. Multiply both
sides of (2.13) by 1/r and integrate with respect to r from r = 1 to r = 2. Then
we get

2∫

1

dr
1

r

(
A(λ)Φ,Ψ

)
Ξ

=

2∫

1

dr
r2

r2 · r

∫

Ξ

〈r1−iλA(D)riλΦ(ω),Ψ(ω)〉8 dω =

=

∫

K12

〈r−2−iλA(D)riλΦ(ω),Ψ(ω)〉8 dx =
(
A(D)riλΦ, riλ−2Ψ

)
K12

,

where K12 = {x ∈ K : 1 < r < 2}. Applying the Green formula (1.9), we arrive
at (

A(D)riλΦ, riλ−2Ψ
)

K12

=
(
riλΦ, A(D)riλ−2Ψ

)
K12

+

(
ΓriλΦ, T riλ−2Ψ

)
∂K12

+
(
TriλΦ,Γriλ−2Ψ

)
∂K12

.

(2.14)
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The integrals over {x ∈ ∂K : 1 < |x| < 2} are equal to zero due to the boundary
conditions Γ(riµΦ) = 0 and Γ(riµΨ) = 0. Let us verify that the integrals over
K ∩ {r = 1} and K ∩ {r = 2} are also equal to zero. We have

(
ΓriλΦ, T riλ−2Ψ

)
K∩{r=1}

+
(
ΓriλΦ, T riλ−2Ψ

)
K∩{r=2}

=

=

∫

K∩{r=1}

dω r2〈Γ(−~ν)riλΦ(ω), T (−~ν)riλ−2Ψ(ω)〉8+

+

∫

K∩{r=2}

dω r2〈Γ(~ν)riλΦ(ω), T (~ν)riλ−2Ψ(ω)〉8 =

=

∫

Ξ

dω 〈Γ(−~ν)Φ(ω), T (−~ν)Ψ(ω)〉8 +

∫

Ξ

dω 〈Γ(~ν)Φ(ω), T (~ν)Ψ(ω)〉8,

where ~ν is the outward unit normal to S2. Recall that Γ(~ν)u = (~ν × ~u, 〈~v · ~ν〉3, h)
and T (~ν)u = −i(~ν × [~v × ~ν], q, 〈~u · ~ν〉3), where u = (~u, ~v, h, q). From these
formulas it follows that 〈Γ(−~ν)Φ, T (−~ν)Ψ〉8 + 〈Γ(~ν)Φ, T (~ν)Ψ〉8 = 0. In the same
way we verify that the last integral on the right-hand side of (2.14) equals to zero.
Therefore we get

(
A(λ)Φ,Ψ

)
Ξ

=
1

ln 2

(
A(D)riλΦ, riλ−2Ψ

)
K12

=
1

ln 2

(
riλΦ, A(D)riλ−2Ψ

)
K12

=

=
1

ln 2

2∫

1

dr
r2

r3

∫

Ξ

dω 〈r3+iλΦ(ω), A(D)riλ−2Ψ(ω)〉8 =

=

∫

Ξ

dω 〈Φ, r3−iλA(D)riλ−2Ψ〉8 =
(
Φ,A(λ+ 2i)Ψ

)
Ξ
.

Then we have A(λ)∗ = A(λ + 2i). To complete the proof it remains to recall the
definition of A∗(λ).

Applying this proposition, we reformulate the above results as follows. If µ is
an eigenvalue of A, then µ + 2i is an eigenvalue of A as well, their multiplicities
coincide and the eigenfunctions can be chosen to satisfy the orthogonality and
normalization conditions (2.12). The numbers µ and µ + 2i are symmetric about
the point i. In the following proposition we check that if Φ is an eigenvector of the
pencil A corresponding to an eigenvalue λ, then A1Φ is an eigenvector of A as well
and corresponds to the eigenvalue λ+ 2i.

Proposition 2.3. Suppose that A(λ)Φ = 0. Then A(λ+ 2i)A1Φ = 0.
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Proof. Applying the formulas (2.10), we obtain

A(λ+ 2i)A1Φ = (λ+ 2i)A1 · A1Φ + A2Dϑ(A1Φ) + A3Dϕ(A1Φ) =

= A1λA1Φ + 2iΦ + A2 · A1DϑΦ − iA2 · A2Φ + A3 · A1DϕΦ − i sin2 ϑA3 · A3Φ =

= A1 · (λA1Φ − A2DϑΦ − A3DϕΦ) = A1 · (λA1Φ + A2DϑΦ + A3DϕΦ) = 0.

The pencil is of a block structure since the operator A(D) is of a block struc-

ture. One block acts on the components (~U, Q) and the other one on the com-

ponents (~V , H) of the function Φ = (~U, ~V , H, Q). The matrix A1 acts on the
components in the following way:

A1 (~U, ~0, 0, Q) = (~0, ~er × ~U +Q~er, 〈~er, ~U〉, 0)T ,

A1 (~0, ~V , H, 0) = (−~er × ~V +H~er, ~0, 0, 〈~er, ~V 〉)T .

Recall that the eigenvectors of the pencil are also eigenvectors of a self-adjoint
operator (see Proposition 2.1). Therefore eigenvectors corresponding to distinct
eigenvalues are orthogonal. Taking into account this fact, the block structure of A

and the equality ∂λA(λ) = A1, we can choose all the eigenvectors of the pencil in the

form (~U, ~0, 0, Q) or (~0, ~V , H, 0) satisfying the orthogonality and normalization
conditions (2.12). In the following three lemmas, we describe in more detail the
properties of eigenvalues and eigenvectors of the pencil.

Lemma 2.4. If the set {iα : α ∈ ]0, 1[} contains some eigenvalues of A, then the
components H,Q of the corresponding eigenvectors vanish.

Proof. Let Φ = (~U, ~0, 0, Q) and let (Φ, λ) be an eigenvector and an eigenvalue
of the pencil A. Then A(Dx1

, Dx2
, Dx3

)riλΦ = 0. We again apply the operator
A(Dx1

, Dx2
, Dx3

) and obtain 4riλΦ = 0. Let us find out the boundary conditions

on Q. Since riλ~U×~ν = 0, we have 〈rot(riλ~U), ~ν〉 = 0. From the relation rot(riλ~U)+
∇(riλQ) = 0 it follows that ∂(riλQ)/∂n = 0 on ∂K. This means that (λ,Q) is
an eigenvalue and an eigenvector of the pencil of the Neumann problem for the
Laplace operator. Analogously, if Φ = (~0, ~V , H, 0), then (λ,H) is an eigenvalue
and an eigenvector of the pencil of the Dirichlet problem for the Laplace operator.
However, for the cone K ⊂ R

3, the strip {λ ∈ C : Imλ ∈ ]0, 1[} contains no
eigenvalues of the pencils (see [18, §1], [33, §3]).

Lemma 2.5. Let λ be an eigenvalue of the pencil A, Imλ ∈ ]1, 2[, and let Φ be an
eigenvector corresponding to λ.
If Φ = (~U, ~0, 0, Q), then Q 6≡ 0, and if Φ = (~0, ~V , H, 0), then H 6≡ 0.

Proof. We consider one of these cases, the other can be verified in a similar
way. Assume that Φ = (~U, ~0, 0, Q). Then Ψ = A1Φ is an eigenvector of
A corresponding to the eigenvalue µ = λ + 2i. Moreover, Imµ ∈ ]0, 1[ and
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Ψ = (~0, ~er × ~U + Q~er, 〈~er, ~U〉, 0). According to Lemma 2.4, 〈~er, ~U〉 = 0. We

suppose that Q = 0 and rewrite the pencil rot(riλ~U)+∇(riλQ) = 0, div(riλ~U) = 0
in the spherical coordinates





cosϑ

sinϑ
Uϕ + ∂ϑUϕ −

1

sinϑ
∂ϕUϑ + iλQ = 0,

−(iλ+ 1)Uϕ +
1

sinϑ
∂ϕUr + ∂ϑQ = 0,

(iλ+ 1)Uϑ +
1

sinϑ
∂ϕQ− ∂ϑUr = 0,

(2 + iλ)Ur +
cosϑ

sinϑ
Uϑ + ∂ϑUϑ +

1

sinϑ
∂ϕUϕ = 0,

where ~U = Ur~er + Uϑ~eϑ + Uϕ~eϕ. Taking Ur = Q = 0 and λ 6= i into account, we
obtain Uϕ = Uϑ = 0 . Hence, Φ = 0. This contradiction completes the proof.

Lemma 2.6. The number λ = i is regular for the pencil A.

Proof. Suppose that λ = i is an eigenvalue of A. Let Φ = (~U, ~0, 0, Q) be an

eigenvector corresponding to the eigenvalue. Then Ψ = A1Φ = (~0, −~U × ~er +

Q~er, 〈~U, ~er〉, 0), too, is an eigenvector for λ = i. Arguing as in the proof of Lemma

2.4, one can verify that Q = const and H = 〈~er, ~U〉 = 0. Indeed, λ = i is a regular
number for the operator pencil of the Dirichlet problem for the Laplace operator.
In the case of Neumann problem, a constant is an eigenvector for λ = i. Then
~V = −~U ×~er +Q~er satisfies rot(r−1~V ) = 0, div(r−1~V ) = 0. Since the cone K is 1-

connected, this implies that r−1~V = ∇Z, where 4Z = 0, ∂Z/∂n = 0. We rewrite

r−1~V = ∇Z in the spherical coordinates r−1~V = (∂Z/∂r)~er + r−1(∂Z/∂ϑ)~eϑ +
(r sinϑ)−1(∂Z/∂ϕ)~eϕ and obtain Z = Q log r + A(ϕ, ϑ). The function Z satisfies
the homogeneous Neumann problem for the Laplace operator in K ⊂ R

3. Using
results on the asymptotics of solutions to elliptic problems near singularities of the
boundary [28, Chapters 3,4], we arrive at Q = 0, A(ϕ, ϑ) = const. It follows that
~V = 0 and ~U = 0.

Let λk with k > 0 stand for the eigenvalues of A whose imaginary part is
greater than 1, Imλk ≤ Imλk+1. Denote by λ−k with k > 0 the eigenvalues of the
pencil symmetric to λk about the point λ = i. Let {Φs,k}s=1,..,Nk

be a basis in the
eigenspace corresponding to λk. We list some of properties of the pencil A in the
following assertion.

Proposition 2.7. Eigenvectors {Φs,k}s=1,..,Nk
corresponding to the eigenvalues λk

of the pencil A can be taken in the form (~U, ~0, 0, Q) or (~0, ~V , H, 0). Moreover,
∫

Ξ

〈∂λA(λk)Φs,k,Φm,p〉8 sinϑ dϑ dϕ = δk,−p · δs,m, (2.15)

where k, p = ∓1,∓2..., and δk,p is the Kronecker symbol.
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Introduce the notation
us,k = riλkΦs,k. (2.16)

The functions us,k satisfy A(D)us,k = 0 in K and Γus,k = 0 on ∂K.

2.3 A global energy estimate

Proposition 2.8. Assume that v = (~u, ~v, h, q)T is in C∞
c (G\O,C8) and satisfies

the boundary conditions (2.2). Then

γ‖v;L2(G)‖ ≤ ‖M(Dx, τ)v;L2(G)‖, (2.17)

where M(Dx, τ)v = τv + A(Dx1
, Dx2

, Dx3
)v and τ = σ − iγ with σ ∈ R, γ > 0.

Proof. Let u(x, t) = ψ(t)v(x), where ψ, e−γtψ ∈ S(R), where S(R) stands for the
Schwartz space. Taking the Green formula (2.5) and the boundary conditions into
account, we obtain

Re

∫

G

〈A(∂)u(x, t), u(x, t)〉8 dx = 0 .

Then
d

dt
‖u;L2(G)‖2 = 2Re

∫

G

〈u, ut + A(∂)u〉 dx.

Therefore,

d

dt
‖u(·, t);L2(G)‖2 ≤ ‖u;L2(G)‖ · ‖M(Dx, Dt)u;L2(G)‖

and consequently

‖u(·, t);L2(G)‖2 ≤ 2

t∫

−∞

‖u(·, s);L2(G)‖ · ‖M(Dx, Ds)u(·, s);L2(G)‖ ds.

Multiply by e−2γt and integrate from −∞ to +∞. Changing the order of integration
in the right-hand side, we obtain

+∞∫

−∞

e−2γt‖u(·, t);L2(G)‖2 dt ≤ γ−1

+∞∫

−∞

e−2γt‖u(·, t);L2(G)‖×

×‖M(Dx, Dt)u(·, t);L2(G)‖ dt.

Let us apply the Cauchy inequality to the right-hand side

γ2

+∞∫

−∞

e−2γt‖u(·, t);L2(G)‖2 dt ≤

+∞∫

−∞

e−2γt‖M(Dx, Dt)u(·, t);L2(G)‖2 dt.
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By Parseval’s equality,

γ2

∫

G

dx

∫

R−iγ

dτ |ψ̂(τ)|
2
|v(x)|2 ≤

≤

∫

G

dx

∫

R−iγ

dτ |ψ̂(τ)|
2
|M(Dx, τ)v(x)|

2.

Since ψ is arbitrary, this leads to the wanted estimate (2.17).

Remark 2.9. The same estimate is valid for the functions in C∞
c (K \ O) subject

to the boundary conditions (2.2).

Remark 2.10. The inequality (2.17) remains true with τ changed for τ .

In what follows we do not indicate that v is a function in C∞
c (G \O,C8), v =

(~u, ~v, h, q)T , and v satisfies the boundary conditions (2.2). As a rule, we only
mention that a function belongs to C∞

c (G \ O) (or another function class) and is
subject to (2.2).

Our next goal is to expand (2.17) to the lineal consisting of all linear com-
binations of the form u = v + χ

∑
k,s us,k. Here v is in C∞

c (G \ O) and satisfies
(2.2). By χ we denote a cut-off function that is equal to 1 near the point O and
vanishes outside a neighborhood where G coincides with K. The functions us,k are
defined by (2.16). Since the inclusion χus,k ∈ L2(G) is required, the lineal contains
only χus,k with Imλk < 3/2. The right-hand side M(Dx, τ)χus,k belongs to L2(G)
because A(Dx)us,k = 0 (see Section 1.2). Moreover, when proving (2.17) on D(G),
we suppose that

Re

∫

G

〈A(∂)u, u〉8 dx = 0.

If there is an eigenvalue λk of the pencil A such that Imλk ∈ [1, 3/2[, then by
(2.15) we have

Re

∫

G

〈A(∂)w,w〉8 dx = 2Re (αβ)

for w = χ(αus,k + βus,−k). Therefore, the lineal contains combinations of the form
χ(αs,kus,k + βs,kus,−k) for all λk in the strip Imλ ∈]1/2, 3/2[, where αs,k, βs,k are
some fixed coefficients satisfying Reαs,kβs,k = 0, |αs,k| + |βs,k| > 0. The latter
condition will be explained a little bit later. It is easy to see that the proof of
(2.17) is still valid for the functions in the modified lineal. Let us summarize the
obtained results.

Definition 2.11. Denote by D(G) the lineal spanned by the functions in C∞
c (G\O)

satisfying the boundary conditions (2.2) on ∂G; by functions χus,k for Imλk ≤ 1/2;
by functions χ(αs,kus,k + βs,kus,−k) for Imλk ∈]1, 3/2[, where αs,k, βs,k are some
fixed coefficients such that Reαs,kβs,k = 0, |αs,k| + |βs,k| > 0. The lineal D(K) is
defined in the same way with G replaced by K. Note that the lineals D(G), D(K)
depend on the special choice of the pairs {αs,k, βs,k}.

Proposition 2.12. The estimate (2.17) holds for any function in D(G).



29

In what follows we consider only the problem in G. However, all results
remain valid for the problem in K as well. At the end of the section we give the
corresponding statements.

We associate with problem (2.3), (2.4) the unbounded operator v 7→M(τ)v :=
M(Dx, τ)v on L2(G) . As the domain DM(τ), we take D(G) (see Definition 2.11).
The operator M(τ) admits closure. Indeed, let {vk} ⊂ DM(τ), vk → 0, and
M(τ)vk → f in L2(G). Then (M(τ)vk, w)G = (vk,M(τ)w)G for any w in C∞

c (G).
Letting k → +∞, we obtain (f, w)G = 0, hence f = 0. We further consider the
closed operator only, keeping the notation M(τ) and DM(τ) for the operator and
its domain. Clearly, the estimate

γ‖v;L2(G)‖ ≤ ‖M(τ)v;L2(G)‖ (2.18)

holds for any v ∈ DM(τ). The next assertion follows from (2.18).

Proposition 2.13. KerM(τ) = 0 and the range RM(τ) of M(τ) is closed in
L2(G).

Proposition 2.14. RM(τ) = L2(G).

Proof. It suffices to verify that KerM(τ)∗ = {0}. Suppose that w ∈ KerM(τ)∗.
Then in view of local properties of solutions to elliptic problems (see [28, Chapter
1]) we have w ∈ C∞(G\O) while w satisfies the homogeneous problem adjoint with
respect to the Green formula (2.5) :

M(Dx, τ)w = 0, x ∈ G, (2.19)

Γw = 0, x ∈ ∂G \ O. (2.20)

In a neighborhood of O, the function w admits the asymptotic representation

w ∼ χ
∑

k

∑

s=1,..,Nk

cs,kVs,k,T .

Here χ stands for a cut-off function, equal to 1 near O and Vs,k,T is the sum of first
T terms of the formal series

Vs,k(x, τ) = riλ−k

∞∑

q=0

rqτ qΨ(s,−k)
q (ϑ, ϕ), (2.21)

(where Ψ
(s,−k)
0 = Φs,−k) satisfying (2.19) and (2.20); for more detail, we refer, e.g.,

to [15, §4.2] or [28, Chapters 3,4]. Since w ∈ DM(τ)∗ ⊂ L2(G), the asymptotics
of w may contain only Vs,k,T such that χVs,k,T ∈ L2(G). However, it is not the only
restriction on the terms of asymptotics. Let us find out which functions χus,k are
actually in the domain of M(τ)∗. It is easily seen that χus,k ∈ DM(τ)∗ for λk with
Imλk ≤ 1/2. We now consider the eigenvalues of the pencil A in the strip Imλ ∈
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]1/2, 3/2[. The domain DM(τ) contains terms of the form χ(αs,kus,k + βs,kus,−k)
with αs,k, βs,k satisfying Reαs,kβs,k = 0, |αs,k| + |βs,k| > 0. In view of (2.15),

(
M(Dx, τ)χ(αs,k us,k + βs,k us,−k) , χ(c us,k + d us,−k)

)
G

=

= (1/i)(αs,kd+ βs,kc)+

+
(
χ(αs,k us,k + βs,k us,−k) , M(Dx, τ)χ(c us,k + d us,−k)

)
G
.

The condition αs,kd + βs,kc = 0 is necessary for the inclusion χ(c us,k + d us,−k) ∈
DM(τ)∗. Together with the equality Re αs,kβs,k = 0 this leads to

χ(c us,k + d us,−k) =
c

αs,k

χ(αs,k us,k + βs,k us,−k)

for αs,k 6= 0. In the case αs,k = 0 we obtain βs,k 6= 0. Then the equality βs,kc = 0
implies that c = 0. Thus, the domain DM(τ)∗ contains the same combinations of
χus,k as D(G). Therefore, the functions Vs,k,T corresponding to the eigenvalues of A

in the strip Imλ ∈ ]1/2, 3/2[ are included in the asymptotics of w as combinations
αs,k Vs,−k,T + βs,k Vs,k,T . To prove that w = 0 it remains to take into account
Remark 2.10 and Proposition 2.12.

Let us discuss the obtained results. We have proved that the operator M(τ)
with domain D(G) admits closure; here τ = σ − iγ, σ ∈ R, γ > 0. The closed
operator has trivial kernel, and its range coincides with L2(G). The inverse operator
is bounded in virtue of (2.17). The same is true for M(τ). The operator A(Dx)
with domain D(G)is symmetric. It follows that for the closed operator A = A(D)
there exists (A − λ)−1 for all λ ∈ C \ R, while A is self-adjoint. Note that for
D(G) one can choose various collections {αs,k, βs,k} satisfying Re αs,kβs,k = 0 and
|αs,k| + |βs,k| > 0. This gives rise to various self-adjoint extensions A of A(D). In
what follows as A is taken any of the extensions, unless otherwise indicated.

Definition 2.15. A solution of the equation (τ+A)u = f with f ∈ L2(G) is called
a strong solution of the problem (2.3), (2.4).

The next assertion summarizes the results of this section.

Theorem 2.16. For any f in L2(G) and every τ = σ − iγ (σ ∈ R, γ > 0) there
exists a unique strong solution v to the problem (2.3), (2.4) with right-hand side f .
The solution satisfies

γ‖v; L2(G)‖ ≤ ‖f ; L2(G)‖.

Remark 2.17. Theorem 2.16 is true for the problem (2.3), (2.4) in K as well.

Remark 2.18. Theorem 2.16 is valid for the problem (2.3), (2.4) in K and in G
with τ replaced by τ .

To complete the section, we discuss the condition |αs,k| + |βs,k| > 0 (see
Definition 2.11). Assume that |αs0,k0

| + |βs0,k0
| = 0 holds for some s0, k0. Clearly,



31

(2.17) is true for the functions in such a lineal, which will be denoted by D1(G).
However the range of the corresponding closed operator does not coincide with
L2(G). The point is that DM(τ)∗ contains the linear combination χ(αus0,k0

+
βus0,−k0

) with arbitrary coefficients α, β not connected by Reαβ = 0. Therefore,
(2.17) cannot be applied to w in the kernel of M(τ)∗ to prove w = 0 (cf. the proof
of Proposition 2.14). In this case the operator M(τ)∗ has a kernel of dimension
1. We construct an element in the kernel. Assume that f = M(Dx, τ)χus0,k0

.
Introduce the closure M0(τ) of the operator M(Dx, τ) with domain D0(G), where
αs0,k0

= 0, βs0,k0
= 1 and the rest αs,k, βs,k are the same as in D1(G). Let v be a

solution to the equation M0(τ)v = f . It is obvious that w = v−χus0,k0
is a wanted

element in the kernel of M(τ)∗. We show that any element in the kernel differs
from w by a constant factor. Let w̃ ∈ KerM(τ)∗, w̃ 6= w. The asymptotics of w̃

near O contains the term χ(cus0,k0
+ dus0,−k0

) with some c, d. Then ˜̃w = w̃ + cw

is in DM0(τ). Since M0(τ) ˜̃w = 0, we obtain ˜̃w = 0.

2.4 A combined weighted estimate

In this section, we prove a more informative estimate on solutions to problem (2.3),
(2.4) in a bounded domain and in a cone which will be used in the study of the
asymptotics of solutions near the point O.

Definition 2.19. Let Dβ(G) with β ≤ 1 stand for the lineal spanned by functions
of the following three types:

1) the functions in C∞
c (G \ O), satisfying the boundary conditions (2.2) on

∂G \ O.
2) the functions χus,−k with k > 0 for the eigenvalues λ−k of the pencil A such

that Imλ−k < β + 1/2 and Imλk ≥ β + 1/2.
3) the functions χ(αs,kus,k + βs,kus,−k) for the eigenvalues λk (k > 0) of the

pencil A such that Imλ∓k < β + 1/2, where {αs,k, βs,k} are fixed pairs satisfying
Reαs,kβs,k = 0, |αs,k| + |βs,k| > 0.

The lineal Dβ(K) is defined in a similar way.

Proposition 2.20. Let β ≤ 1 and let the number λ = i(β+1/2) be regular for the
pencil A. Then for v ∈ Dβ(K) the inequality

γ2‖v;H0
β(K)‖

2
+ ‖χτv;H

1
β(K, |τ |)‖

2
≤

≤ c{‖f ;H0
β(K)‖

2
+ (|τ |1−β/γ)

2
‖f ;L2(K)‖2}

(2.22)

holds, where f = (τ +A(Dx))v, χτ (r) = χ(|τ |r) and χ is any fixed cut-off function
in C∞

c (K) equal to 1 near the vertex. The constant c is independent of v and τ .

Proof. Step 1. An estimate near the vertex of a cone
We consider problem (2.6), (2.7) in K. According to Proposition 1.2, the problem
{A(Dη), Γ} is elliptic. Therefore, if the line Imλ = β+1/2 contains no eigenvalues
of the pencil corresponding to the problem under consideration (the pencil A in this
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case), then a function U ∈ H1
β(K, 1) such that ΓU = 0 satisfies (see [28, Chapter

3, §5])

‖χU ;H1
β(K)‖

2
≤ c‖A(Dη)χU ;H0

β(K)‖
2
.

Since AχU = χAU + [A,χ]U and M(Dη, θ) = θ + A(Dη), the inequality can be
rewritten in the form

‖χU ;H1
β(K, 1)‖

2
≤ c{‖χM(Dη, θ)U ;H0

β(K)‖
2
+ ‖ψU ;H0

β(K)‖
2
}, (2.23)

where ψ ∈ C∞
c (K), χψ = χ.

Step 2. An estimate far from the vertex
At this step we prove the inequality

(γ/|τ |)2‖κ∞U ;H0
β(K)‖

2
≤

≤ c{‖κ∞M(Dη, θ)U ;H0
β(K)‖

2
+ ‖ψ∞U ;H0

β−1(K)‖
2
},

(2.24)

for any β ∈ R and every U ∈ H1
β(K, 1) satisfying the boundary conditions ΓU = 0,

where the constant c is independent of U and τ , κ∞ and ψ∞ are smooth functions in
K, equal to 0 near the vertex and 1 in a neighborhood of infinity, while κ∞ψ∞ = κ∞.

Assume that κ, ψ ∈ C∞(K), κψ = κ , supp κ ⊂ {x ∈ K : 1/2 < r < 2},
supp ψ ⊂ {x ∈ K : 1/4 < r < 4}. According to (2.17),

γ2‖κU ;L2(K)‖2 ≤ ‖M(Dx, τ)κU ;L2(K)‖2.

Since MκU = κMU + [M,κ]U , we have

γ2‖κU ;L2(K)‖2 ≤ c{‖κM(Dx, τ)U ;L2(K)‖2 + ‖ψU ;L2(K)‖2}.

As U , we take the function x 7→ U ε(x) = U(x1/ε, x2/ε, x3/ε), and change τ for
τ/(|τ |ε) , where ε > 0. Then the last inequality takes the form

(γ/|τ |ε)2‖κU ε;L2(K)‖2 ≤

≤ c{‖κM(Dx, τ/|τ |ε)U
ε;L2(K)‖2 + ‖ψU ε;L2(K)‖2}.

After the change of variables x 7→ η = (x1/ε, x2/ε, x3/ε) we arrive at

(γ/|τ |)2‖κεU ;L2(K)‖2 ≤ c{‖κεM(Dη, θ)U ;L2(K)‖2+

+ε2‖ψεU ;L2(K)‖2},

with κε(η) = κ(εη). Multiplying the inequality by ε−2β, putting ε = 2−j, j =
1, 2, 3, ..., and adding all these inequalities, we obtain (2.24).

Step 3. An estimate in intermediate zone
Add the inequalities (2.23), (2.24). Let κ∞ = 1 outside the support of χ. Then κ∞

can be dropped from the left-hand side because

(γ/|τ |)‖χU ;H0
β(K)‖ ≤ ‖χU ;H0

β(K)‖ ≤ ‖χU ;H1
β(K, 1)‖.

The inequality takes the form

(γ/|τ |)2‖U ;H0
β(K)‖

2
+ ‖χU ;H1

β(K, 1)‖
2
≤

≤ c{‖M(Dη, θ)U ;H0
β(K)‖

2
+ ‖ψ∞U ;H0

β−1(K)‖
2
+ ‖ψU ;H0

β(K)‖
2
}.
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We transform the last term

‖ψU ;H0
β(K)‖

2
≤
∫

|η|<a

|η|2β|U |2 dη =

= (
∫

0≤|η|≤ε

+
∫

ε≤|η|≤a

)|η|2β|U |2 dη.

The first integral does not exceed cε2‖χU ;H1
β(K)‖

2
. Therefore by choosing a small

enough ε, one can rearrange the integral to the left side of the inequality. The
second integral is majorized by c‖ψ∞U ;H0

β−1(K)‖
2
. Now the estimate can be

rewritten in the form

(γ/|τ |)2‖U ;H0
β(K)‖

2
+ ‖χU ;H1

β(K, 1)‖
2
≤

≤ c{‖M(Dη, θ)U ;H0
β(K)‖

2
+ ‖ψ∞U ;H0

β−1(K)‖
2
}.

After the change of variables x = |τ |−1η, we obtain

γ2‖v;H0
β(K)‖

2
+ ‖χτv;H

1
β(K, |τ |)‖

2
≤

≤ c{‖M(Dx, τ)v;H
0
β(K)‖

2
+ ‖ψ∞,τv;H

0
β−1(K)‖

2
},

where ψ∞,τ (r) = ψ∞(|τ |r), χτ (r) = χ(|τ |r), v(x) = U(|τ |x). Taking the inequalities
(2.17) and β ≤ 1 into account, we have

‖ψ∞,τv;H
0
β−1(K)‖

2
≤

∫

b/|τ |<r

r2(β−1)|v(x)|2 dx ≤

≤ c |τ |2(1−β)

∫

K

|v(x)|2 dx ≤ c |τ |2(1−β)γ−2‖M(Dx, τ)v;L2(K)‖2,

which leads to (2.22).

Introduce the spaces DHβ(G, τ), RHβ(G, τ) by completing the set
C∞

c (G \ O) in the norms

‖v; DHβ(G, τ)‖ =
(
γ2‖v;H0

β(G)‖
2
+ ‖χτv;H

1
β(G, |τ |)‖

2
)1/2

,

‖f ; RHβ(G, τ)‖ =
(
‖f ;H0

β(G)‖
2
+ (|τ |1−β/γ)

2
‖f ;L2(G)‖2

)1/2

,

while χτ (x) = χ(|τ |x) and χ ∈ C∞(G) is a cut-off function that is equal to 1 near
the conical point O and vanishes outside the neighborhood where G coincides with
K. The spaces DHβ(K, τ) and RHβ(K, τ) are defined in a similar way. Now (2.22)
takes the form

‖v; DHβ(K, τ)‖ ≤ c ‖M(Dx, τ)v; RHβ(K, τ)‖. (2.25)

Using (2.25), we prove a similar estimate in the domain G.
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Proposition 2.21. Let β ≤ 1 and let the number λ = i(β+1/2) be regular for the
pencil A. Assume that γ > γ0 with sufficiently large γ0. Then the inequality

‖v; DHβ(G, τ)‖ ≤ c‖M(Dx, τ)v; RHβ(G, τ)‖, (2.26)

holds for any v ∈ Dβ(G) with a constant c independent of v and τ .

Proof. Let ψ ∈ C∞(G) be a cut-off function that is equal to 1 near O and vanishes
outside the neighborhood where G coincides with K. Since v = ψv + (1 − ψ)v, we
have

‖v; DHβ(G, τ)‖ ≤ ‖ψv; DHβ(G, τ)‖ + ‖(1 − ψ)v; DHβ(G, τ)‖. (2.27)

Estimate the first term on the right. Taking the inclusion ψv ∈ Dβ(K) and the
relation (2.25) into account, we arrive at

‖ψv; DHβ(G, τ)‖ ≤ ‖Mψv; RHβ(K, τ)‖ ≤
≤ c{‖ψMv; RHβ(K, τ)‖ + ‖[M,ψ]v; RHβ(K, τ)‖},

where M denotes M(Dx, τ). Further,

‖[M,ψ]v; RHβ(K, τ)‖ ≤ {‖[M,ψ]v;H0
β(K)‖ + (|τ |1−β/γ)‖[M,ψ]v;L2(K)‖} ≤

≤ c{‖v;H0
β(G)‖ + (|τ |1−β/γ)‖v;L2(G)‖},

from whence, using (2.17), we conclude that

‖[M,ψ]v; RHβ(K, τ)‖ ≤ c{‖v;H0
β(G)‖ + (|τ |1−β/γ) · (1/γ)‖Mv;L2(G)‖} ≤

≤ c{‖v;H0
β(G)‖ + ‖Mv; RHβ(G, τ)‖}

for γ > 1. In its turn,

‖ψMv; RHβ(K, τ)‖ ≤ c‖Mv; RHβ(G, τ)‖.

Thus, from (2.27) we obtain

‖ψv; DHβ(G, τ)‖ ≤ c{‖Mv; RHβ(G, τ)‖ + ‖v;H0
β(G)‖}.

We now estimate the second term in the right-hand side of (2.27). From the
definition of the norm in DHβ(G, τ) it follows that

‖(1 − ψ)v; DHβ(G, τ)‖ ≤ {γ‖(1 − ψ)v;H0
β(G)‖ + ‖χτ (1 − ψ)v;H1

β(G, |τ |)‖}.

For sufficiently large γ we have χτ (1 − ψ) ≡ 0 because the supports of the factors
do not overlap. In view of (2.17),

γ‖(1 − ψ)v;H0
β(G)‖ ≤ cγ‖(1 − ψ)v;L2(G)‖ ≤ c‖M(1 − ψ)v;L2(G)‖ ≤

≤ c{‖(1 − ψ)Mv;L2(G)‖ + ‖[M, (1 − ψ)]v;L2(G)‖} ≤
≤ c{‖Mv;H0

β(G)‖ + ‖v;H0
β(G)‖} ≤

≤ c{‖Mv; RHβ(G, τ)‖ + ‖v;H0
β(G)‖}.

Summarizing the obtained estimates, we rewrite (2.27) in the form

‖v; DHβ(G, τ)‖ ≤ c{‖Mv; RHβ(G, τ)‖ + ‖v;H0
β(G)‖}.

We take account of the definition of the norm in DHβ(G, τ), choose a large enough
γ, and rearrange the second term to the left side. As a result, we obtain (2.26).
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2.5 The operator of problem in a scale of weighted spaces

In the section, we study the operator of problem (2.3), (2.4) in spaces related to
(2.25), (2.26). We consider the problem in a bounded domainG. The corresponding
statements for the problem in K are given at the end of this section.

With the problem (2.3), (2.4) in a bounded domain G with conical point O

we associate the operator v 7→ Mβ(τ)v := M(Dx, τ)v with domain Dβ(G) acting
from DHβ(G, τ) to RHβ(G, τ). It is easy to see that the operator Mβ(τ) admits
closure. Further we keep the same notation for the closed operator. If the number
λ = i(β + 1/2) is regular for the pencil A and β ≤ 1, then the estimate

‖v,DHβ(G, τ)‖ ≤ c ‖Mβ(τ)v,RHβ(G, τ)‖ (2.28)

holds for the functions in the domain DMβ(τ) of the closed operator. The next
proposition immediately follows from (2.28).

Proposition 2.22. Let the number λ = i(β + 1/2) be regular for the pencil A and
β ≤ 1. Then the kernel of the operator KerMβ(τ) is trivial and the range RMβ(τ)
is closed in RHβ(G, τ).

Let 1/2 > β1 > β2 > . . . be all numbers in the interval ]−∞, 1/2[ such that the
number λ = i(βk + 1/2) is an eigenvalue of the pencil A. Denote by Sm the sum of
the multiplicities of all the eigenvalues of A in the strip Imλ ∈ [βm +1/2; β1 +1/2].

Definition 2.23. A solution to the equation Mβ(τ)v = f , where f ∈ RHβ(G, τ),
is called a strong β-solution to the problem (2.3), (2.4) with right-hand side f .

Theorem 2.24. A) Let β ∈ [β1, 1] and let the number λ = i(β + 1/2) be regular
for the pencil A. Assume that γ > γ0 with sufficiently large γ0. Then for any
f ∈ RHβ(G, τ) there exists a unique strong β-solution v of the problem (2.3), (2.4)
with right-hand side f and

‖v; DHβ(G, τ)‖ ≤ c‖f ; RHβ(G, τ)‖.

B) Assume that β ∈]βm+1, βm[. A strong β-solution of the problem (2.3), (2.4) with
right-hand side f ∈ RHβ(G, τ) exists under the Sm conditions (f, ws,k)G = 0, where

{ws,k}
s=1,..,Nk

k=−1,..,−m is a basis in KerMβ(τ)∗. Such a solution satisfies the estimate in
A).

Proof. A) Suppose that w ∈ KerMβ(τ)∗, where Mβ(τ)∗ is the adjoint operator for
Mβ(τ) with respect to the extension of the inner product on L2(G). According
to local properties of solutions to elliptic problems (e.g., see [28, Chapter 1]), w
belongs to C∞(G \ O) and satisfies (2.19), (2.20). Moreover, in a neighborhood of
O the asymptotic representation

w ∼ χ
∑

k

∑

s=1,..,Nk

cs,kVs,k,T



36

holds, where Vs,k,T is the sum of the first T terms in the formal series (2.21). For
a fixed τ ,

(∫

G

|v|2(1 + r2β)−1 dx
)1/2

is an equivalent norm in RHβ(G, τ)∗. If β ≥ 0, then w ∈ RHβ(G, τ)∗ ⊂ L2(G). In
view of the equality (Mβ(τ)u, v)G = (u,Mβ(τ)∗v)G, the asymptotics near O of the
functions in the domain DMβ(τ)∗ may contain the terms Vs,k,T corresponding to
the eigenvalues in the strip Imλ ∈]1/2, 3/2[ only in the combinations αs,kVs,−k,T +
βs,kVs,k,T (see the proof of Proposition 2.14). The coefficients {αs,k, βs,k} are the
same as in the lineal Dβ(G), where the operator Mβ(τ) was initially given and
then extended by closing. Then w is in L2(G) and has asymptotics such that the
inclusion w ∈ DM(τ) holds, while the operator M(τ) extended by closing was
initially given on the lineal D(G), where the coefficients {αs,k, βs,k} are the same
as in Dβ(G). Taking account of estimate (2.17) and Remark 2.10, we obtain w = 0.

Let β ∈ [β1, 1] and β < 0. This means the strip Imλ ∈ [β1 + 1/2, 3/2]
contains no eigenvalues of the pencil A. Using results on the asymptotics of solu-
tions to elliptic problems from [28, Chapter 4, §2], we deduce for w the asymptotic
representation

w = χ
∑

s,k

cs,kVs,k,T + v.

Here v ∈ RHβ′(G, τ)∗, β′ ∈ [0, 1[, the sum contains Vs,k,T corresponding to the
eigenvalues of A in the strip Imλ ∈ [β+ 1/2, β ′ + 1/2]. Since the strip is free from
the spectrum, we have w = v and w ∈ RHβ′(G, τ)∗ ⊂ L2(G). The above argument
for the case β ≥ 0 leads to w = 0.

B) Assume that β ∈]βm+1, βm[. We construct a collection consisting of Sm

function and prove that it is a basis in KerMβ(τ)∗. Thus we prove the theorem
because the range of Mβ(τ) is closed in RHβ(G, τ) and the kernel is trivial. Let
M(τ) and M(τ) be the closure of M(Dx, τ) and M(Dx, τ), respectively, given on
the lineal D(G) where αs,k = 0 and βs,k = 1. Recall that Vs,k,T is the sum of
first T terms in (2.21). It is easy to see that M(Dx, τ)χVs,k,T = O(rIm λk−2+T )
near the point O. Choose a sufficiently large T to obtain the inclusion M(Dx, τ)
χVs,k,T := Fs,k,T ∈ L2(G). For the eigenvalues of A in the strip Imλ ∈]1/2, 1[, it
suffices to take the first term Vs,k,1(r, ϑ, ϕ) = riλ−kΦs,−k(ϑ, ϕ) = us,−k(r, ϑ, ϕ). For
the eigenvalues with imaginary part not exceeding 1/2 one has to take more terms.
The strip Imλ ∈ [βm + 1/2, β1 + 1/2] contains precisely m eigenvalues of A. Let
λk be in the strip. The corresponding function Fs,k,T is in L2(G). According to
Theorem 2.16, there exists a solution to the equation M(τ)ws,k,T = Fs,k,T . Put
ws,k := χVs,k,T − ws,k,T . We construct such functions for all eigenvalues of A in
the strip Imλ ∈ [βm + 1/2, β1 + 1/2]. For λp there are Np such functions. It is
not hard to see that ws,k satisfies (2.19), (2.20) and belongs to RHβ(G, τ)∗. We
show that ws,k are in the kernel of Mβ(τ)∗. Let f ∈ C∞(G) ∩ RHβ(G, τ). From
the inclusion f ∈ RHβ(G, τ) ⊂ L2(G) and Theorem 2.16 it follows there exists
v ∈ L2(G) satisfying M(τ)v = f . Near the point O, the function v admits the
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asymptotic representation ( see [15, §4.2] or [28, Chapters 3,4]):

v = χ
∑

ds,kUs,k,T + h,

where Us,k,T stands for the sum of first T terms of the formal series

Us,k(x, τ) = riλk

∞∑

q=0

rqτ qΨ(s,k)
q (ϑ, ϕ), (2.29)

while Ψ
(s,k)
0 = Φs,k. In D(G), all the coefficients αs,k are equal to 0, therefore

v contains the terms corresponding to the eigenvalues in the strip Imλ ∈ [βm +
1/2, β1+1/2]. The remainder h is o(riλm). The number T is taken sufficiently large
so that χriλk+T+1ΨT decays more rapidly than riλm as r → 0. The coefficients ds,k

are defined by ds,k = i(f, ws,k)G (see [28, Chapter 4, §3]). The conditions (f, ws,k) =
0 with all the constructed ws,k are necessary for the inclusion v ∈ DHβ(G, τ). Thus
ws,k are in the kernel of Mβ(τ)∗. We show that they form a basis in KerMβ(τ)∗.
Let w ∈ KerMβ(τ)∗. Then the representation

w = χ
∑

cs,kVs,k,T + h

holds near the point O, the sum contains the functions corresponding to the eigen-
values of A in the strip Imλ ∈ [βm+1/2, β1+1/2], and the remainder h is in L2(G).
We put z = w −

∑
cs,kws,k. The function z belongs to L2(G). The asymptotics

contains the terms corresponding to the eigenvalues satisfying Imλ ≤ 1. Therefore
z ∈ DM(τ). Since M(τ)z = 0, we have z = 0 and w =

∑
cs,kws,k.

Remark 2.25. Theorem 2.24 is valid for the problem (2.3), (2.4) in the cone K.

The above proof goes almost without changes for the problem in K. There is
only one distinction. For the problem in K, there arises a question on the behavior
of functions in the kernel at infinity. Using (2.24), one can check that the functions
decay more rapidly than any power of r.

2.6 The asymptotics of solutions

Let f ∈ RHβ(G, τ) and β ∈]βm+1, βm[. Since RHβ(G, τ) ⊂ L2(G), there exists
a unique strong solution u to problem (2.3), (2.4) (Theorem 2.16). According

to Theorem 2.24, this solution is in DHβ(G, τ) provided
(
f, ws,k

)
G

= 0 with

k = −1, ..,−m and s = 1, .., Nk, where {ws,k}
s=1,..,Nk

k=−1,..,−m is the basis in KerMβ(τ)∗

constructed in the proof of Theorem 2.24. For any f , we obtain an asymptotic
formula for the strong solution with remainder in DHβ(G, τ).

Theorem 2.26. Assume that f ∈ RHβ(G, τ), β ∈]βm+1, βm[, and γ > γ0 with
sufficiently large γ0. Then the strong solution u to the problem (2.3), (2.4) with
right-hand side f admits the representation

u = χτ

∑
cs,kUs,k,T + w. (2.30)
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Here Us,k,T denotes the sum of first T terms of the formal series (2.29), w ∈
DHβ(G, τ), and χτ (r) = χ(|τ |r), while χ is a cut-off function that is equal to 1 near
the point O and vanishes outside the neighborhood where the domain G coincides
with the cone K. The sum consists of the terms corresponding to the eigenvalues
of the pencil A in the strip Imλ ∈ [βm + 1/2, β1 + 1/2]. The coefficients cs,k are
defined by

cs,k = i
(
f, ws,k

)
G
.

The estimates
|cs,k| ≤ c |τ |β+1/2−Im λk‖f ; RHβ(G, τ)‖,

‖w; DHβ(G, τ)‖ ≤ c (|τ |/γ)‖f ; RHβ(G, τ)‖,

hold with a constant c independent of τ .

Proof. As in the proof of Theorem 2.24, let M(τ,G) and M(τ ,G) be the closure
of M(Dx, τ) and M(Dx, τ), respectively, given on the lineal D(G) where αs,k =
0, βs,k = 1. Denote by {ws,k} the basis in KerMβ(τ,G)∗ constructed in the proof
of Theorem 2.24 with the help of the operator M(τ ,G). We will denote by M(θ,K)
and M(θ,K) the corresponding operators for the problem (2.6), (2.7) in the cone
K. The coefficients {αs,k, βs,k} in D(K) are the same as in D(G). We write {Ws,k}
for the basis in KerMβ(θ,K)∗ constructed by means of the operator M(θ,K) in
the same way as the basis {ws,k} in KerMβ(τ,G)∗ by means of M(τ ,G). Let Us,k

stand for the formal series similar to that in (2.29) satisfying (2.6), (2.7).

Note that the values of {αs,k, βs,k} indicated above were chosen for the sake of
simplicity. One can take any collection obeying Reαs,kβs,k = 0, |αs,k|+ |βs,k| > 0.
This gives rise to new operators M(τ,G), M(τ ,G) and another basis {w̃s,k} in
KerMβ(τ,G)∗. The new formula (2.30) would contain the terms cs,k(αs,kUs,−k,T +
βs,kUs,k,T ) corresponding to the eigenvalues of A in the strip Imλ ∈]1/2, 3/2[. The
formulas for the coefficients cs,k and the estimates in the statement of theorem do
not change.

Let u be a solution to the equationM(τ,G)u = f and let h := M(τ,G)χu. De-
note by U a solution to the equation M(θ,K)U = H with H(η) = (1/|τ |)h(η/|τ |),
η = |τ |x. Since a strong solution is unique, we have U(η) = χ(η/|τ |)u(η/|τ |). In
view of the properties of solutions to elliptic problems in domains with singularities,
the representation

U(η) = ζ(η)
∑

ds,kUs,k,T (η) + V(η) (2.31)

holds in a neighborhood of O. The sum contains Us,k,T corresponding to the eigen-
values of A in the strip Imλ ∈ [βm + 1/2, 1[, while T is taken large enough in
order for the inclusions χriλk+T+1ΨT+1 ∈ H1

β(K) to be valid. The coefficients ds,k

are defined by ds,k = i
(
H,Ws,k

)
K

. The function ζV is in H1
β(K). Now we describe

in more detail the properties of V. To this end we consider M(θ,K)Ṽ = H̃, where

H̃ = H−M(Dη, θ)(ζ
∑
ds,kUs,k,T ) and the sum is the same as in (2.31). Taking into

account the equality
(
H̃,Ws,k

)
K

= 0, Theorem 2.24, and Remark 2.25, we obtain

Ṽ ∈ DHβ(K, 1). Since M(θ,K)V = H̃, we see that V = Ṽ and V ∈ DHβ(K, 1).
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Let us majorize the coefficients ds,k. The representation ds,k = i
(
H,Ws,k

)
K

implies that

|ds,k| ≤ c‖H; RHβ(K, 1)‖ ≤ c|τ |β+1/2‖h; RHβ(K, |τ |)‖.

Using h = χf + [M,χ]u, we obtain

‖h; RHβ(K, τ)‖ ≤ ‖f ; RHβ(G, τ)‖ + ‖[M,χ]u; RHβ(K, τ)‖.

The inequality γ > γ0 with large γ0 leads to the estimate

‖[M,χ]u; RHβ(K, τ)‖ ≤ ‖[M,χ]u; RHβ(G, τ)‖ ≤

≤ c{‖u;L2(G)‖ + (|τ |1−β/γ)‖u;L2(G)‖} ≤

≤ c{(1/γ)‖f ;L2(G)‖ + (|τ |1−β/γ2)‖f ;L2(G)‖} ≤
≤ c‖f ; RHβ(G, τ)‖.

Thus,
|ds,k| ≤ c|τ |β+1/2‖f ; RHβ(G, τ)‖

with a constant c independent of τ . Since U(η) = χ(r)u(x), the representation

χ(x)u(x) = ζ(|τ |r)
∑

ds,kUs,k,T (|τ |x, τ/|τ |) + V(|τ |x)

holds near the point O. Taking into account the equality

Us,k,T (|τ |x, τ/|τ |) =
T∑

q=0

(|τ |r)iλk+q(τ/|τ |)qΨs(ϑ, ϕ) =

= |τ |iλkUs,k,T (r, ϑ, ϕ, τ),

we finally obtain

u(x) = ζ(|τ |r)
∑

cs,kUs,k,T (x, τ) + w(x)

with cs,k = |τ |iλkds,k. It is not hard to verify that χw ∈ H1
β(K) and

cs,k = i
(
f, ws,k

)
G
. Using the estimate on ds,k, we have:

|cs,k| ≤ c|τ |β+1/2−Im λk‖RHβ(G, τ)‖.

Consider the remainder w. Since M(τ,G)w = f̃ with

f̃ = f −M(Dx, τ)(ζτ
∑

cs,kUs,k,T )

and
(
f̃ , ws,k

)
G
= 0, Theorem 2.24 leads to w ∈ DHβ(G, τ) and

‖w; DHβ(G, τ)‖ ≤ c{‖f ; RHβ(G, τ)‖+
+‖M(Dx, τ)(ζτ

∑
cs,kUs,k,T ); RHβ(G, τ)‖}.

Making use of the estimate on cs,k and the explicit form of M(Dx, τ)Us,k,T , we
majorize the last term and obtain

‖w; DHβ(G, τ)‖ ≤ c(|τ |/γ)‖f ; RHβ(G, τ)‖.

Remark 2.27. Theorem 2.26 is valid for the problem (2.3), (2.4) in K.
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2.7 Nonstationary problem in the cylinders Q and Q

Applying the inverse Fourier transform F
−1
τ→t, we pass from problem (2.3), (2.4) to

problem (2.1), (2.2).

Definition 2.28. Let f ∈ V 0
0 (Q, γ) and let û(x, τ) be the strong solution to the

problem (2.3), (2.4) in G with right-hand side −if̂ , where f̂(x, τ) = Ft→τf(x, t).
The function u, defined by u(x, t) = F

−1
τ→tû(x, τ), is called a strong solution to the

problem (2.1), (2.2) in the cylinder Q with right-hand side f .

The next result follows from Theorem 2.16.

Theorem 2.29. For every f ∈ V 0
0 (Q, γ) and for any γ > 0 there exists a strong

solution v to the problem (2.1), (2.2) with right-hand side f . Moreover,

γ‖v;V 0
0 (Q, γ)‖ ≤ ‖f ;V 0

0 (Q, γ)‖.

Let us fix a cut-off function χ ∈ C∞(G) that equals 1 near the point O and
vanishes outside the neighborhood where the domain G coincides with the cone K.
We put

Xu(x, t) = F
−1
τ→tχ(|τ |r)Ft′→τu(x, t

′),
Λµu(x, t) = F

−1
τ→t|τ |

µFt′→τu(x, t
′).

Introduce the spaces DV β(Q, γ), RV β(Q, γ) equipped with the norms

‖u; DV β(Q, γ)‖ =
(
γ2‖u;V 0

β (Q, γ)‖2 + ‖Xu;V 1
β (Q, γ)‖2

)1/2
,

‖f ; RV β(Q, γ)‖ =
(
‖f ;V 0

β (Q, γ)‖2 + (1/γ2)‖Λ1−βf ;V 0
0 (Q, γ)‖2

)1/2
.

Definition 2.30. Let f ∈ RV β(Q, γ) and let û(x, τ) be the strong β-solution to the

problem (2.3), (2.4) in G with right-hand side −if̂ , where f̂(x, τ) = Ft→τf(x, t).
The function u, defined by u(x, t) = F

−1
τ→tû(x, τ), is called a strong β-solution to

the problem (2.1), (2.2) in the cylinder Q with right-hand side f .

The next result follows from Theorem 2.24.

Theorem 2.31. 1) Let β ∈ [β1, 1] and let the number λ = i(β+1/2) be regular for
the pencil A. Let γ > γ0 with sufficiently large γ0. Then there exists a unique strong
β-solution v to the problem (2.1), (2.2) with any right-hand side f ∈ RV β(Q, γ).
Moreover,

‖v; DV β(Q, γ)‖ ≤ c‖f ; RV β(Q, γ)‖.

2) Let β ∈]βm+1, βm[. A strong β-solution to the problem (2.1), (2.2) with right-
hand side f ∈ RV β(Q, γ) exists (and is unique) if for all τ = σ− iγ (σ ∈ R, γ > 0)

the conditions (f̂(·, τ), ws,k(·, τ))G = 0 holds, where {ws,k}
s=1,..,Nk

k=−1,..,−m is a basis in
KerMβ(τ)∗. If such a solution exists, it satisfies the inequality in 1).

We now formulate the theorem obtained deduced from Theorem 2.26 by the
inverse Fourier transform. As the spatial part of the system (2.1), we take the
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operator A which is the closure of the operator A(Dx) with domain D(G) where
αs,k = 0.

Theorem 2.32. Assume that f ∈ RV β(Q, γ), γ > γ0 with sufficiently large γ0,
and β ∈]βm+1, βm[. Then the strong solution to the problem (2.1), (2.2) admits the
representation

u(x, t) =
∑

Us,k,T (r, ϕ, ϑ,Dt)(Xčs,k)(x, t) + w(x, t),

where w ∈ DV β(Q, γ). The sum consists of the terms corresponding to the eigen-
values of the pencil A in the strip Imλ ∈ [βm +1/2, β1 +1/2]. The coefficients are

defined by čs,k(t) = F
−1
τ→tcs,k(τ) with cs,k =

(
f̂(·, τ), ws,k(·, τ)

)
G

or, equivalently,

čs,k(t) =

∫

G

dx

∫

R

ds 〈f(x, t− s),Ws,k(x, s)〉R8

with Ws,k(x, t) = F
−1
τ→tws,k(x, τ). Moreover,

‖e−γtčs,k(·);H
Im λk−β−1/2(R)‖ ≤ c‖f ; RV β(Q, γ)‖,

‖w; DV β(Q, γ)‖ ≤ (c/γ)‖Λf ; RV β(Q, γ)‖.

Strong solutions and strong β-solutions to the problem (2.1), (2.2) in Q can
be defined in the same way as those to the problem in the cylinder Q in (2.28),
(2.30).

Remark 2.33. All the theorems in this section are still valid for the problem (2.1),
(2.2) in Q.

2.8 Explicit formulas for the functions ws,k and Ws,k for the
problem in the cone K

According to Theorem 2.26 and Remark 2.27, the strong solution u to the prob-
lem (2.3), (2.4) in K with right-hand side f ∈ RHβ(K, τ) admits the asymptotic
representation

u(x) = χτ (r)
∑

cs,kUs,k,T (x, τ) + w(x).

The coefficients cs,k are defined by

cs,k(τ) =

∫

K

dx 〈f(x, τ), ws,k(x, τ)〉8,

where {ws,k}
s=1,..,Nk

k=−1,..,−m is the same basis in KerMβ(τ,K)∗ as before. Recall some
properties of the functions ws,k. They satisfy the homogeneous problem (2.3), (2.4)
with τ instead of τ . In a neighborhood of the conical point

ws,k = riλ−kΦs,−k(ϑ, ϕ) + o(riλ−k).
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In this section, we obtain explicit formulas for the functions ws,k and their Fourier

transforms. Denote ws,k(x, τ) by hs,k(x, τ). Since ws,k satisfies M(Dx, τ)ws,k = 0,
we have M(Dx,−τ)hs,k = 0. In spherical coordinates (r, ϑ, φ) the operator A takes
the form

A(∂) = A1(ϑ, ϕ)
∂

∂r
+

1

r
A2(ϑ, ϕ)

∂

∂ϑ
+

1

r
A3(ϑ, ϕ)

∂

∂ϕ
.

We write hs,k in the form

hs,k(x, τ) = riλ−k(iτξ(r)I + ξ′(r)A1(ϑ, ϕ))Φs,−k(ϑ, ϕ),

ξ being a scalar function. Such a representation of hs,k is motivated by the corre-
sponding argument for the Helmholtz equation in [17, §3] and by the equality

M(Dx, τ)M(−Dx, τ) = 4 + τ 2.

We substitute the above expression for hs,k in (−τ + A(D))hs,k = 0 and, using
(2.10), arrive at

ξ′′ +
2(iλ−k + 1)

r
ξ′ + τ 2ξ = 0.

Choose the solution ξ(r) = crνKν(iτr) with ν = −(2iλk + 1)/2. Here by Kν(z) we
denote the Macdonald functions, which are also called the modified bessel functions
of the second kind. The coefficient

c = (iτ)ν−121−ν/Γ(ν).

is determined by the behavior of hs,k near the vertex of K. Then

hs,k(x, t) = riλ−k
21−ν

Γ(ν)
{(iτr)νKν(iτr)I − (iτr)νKν−1(iτr)A1(ϑ, ϕ)}Φs,−k(ϑ, ϕ).

We apply the inverse Fourier transform. It is known (see [3]) that

22µΓ(2µ+ 1)(
p

r
)
−2µ

K2ν(rp) =

∫

R

exp(−pt)P (t) dt for Reµ > −1/4,

where

P (t) = θ(t− r) π1/2(t2 − r2)
(4µ−1)/2

F (µ− ν, µ+ ν, 2µ+ 1/2, 1 − t2/r2),

and F (a, b, c, z) is the hypergeometric function. Then

(iτ)νKν(iτr) =
2−µ

Γ(µ+ 1/2)
rν−N

Ft→τ (d/dt)
N

TN(r, t, µ, ν),

where
TN(r, t, µ, ν) = θ(t− r)π1/2(t2 − r2)

µ−1/2
×

F ((µ− ν)/2, (µ+ ν)/2, µ+ 1/2, 1 − t2/r2)
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with µ = [ν] − ν + m, N = [ν] + m, and an arbitrary positive integer m. The
Fourier transform and differentiation are understood in the sense of distribution
theory.

Thus, according to Theorem 2.32 and Remark 2.33, the strong solution u
to the problem (2.1), (2.2) in Q with right-hand side f ∈ RVβ(Q, γ) admits the
asymptotic representation

u(x, t) =
∑

Us,k,T (r, ϕ, ϑ,Dt)(Xčs,k)(x, t) + w(x, t),

where

čs,k(t) =

∫

K

dx

∫

R

ds 〈f(x, t− s),Ws,k(x, s)〉R8 .

Moreover,

Ws,k(x, t) = F
−1
τ→ths,k(x, τ) = riλ−k

21−ν−µ

Γ(ν)Γ(µ+ 1/2)
rν−µ×

{(d/dt)NTN(r, t, µ, ν) − (d/dt)N
TN−1(r, t, µ, ν − 1)A1(ϑ, ϕ)}Φs,−k(ϑ, ϕ).

Let us discuss some properties of the coefficients čs,k which follow from those of Ws,k

and from the formula for čs,k. Note that supp Ws,k = {(x, t) ∈ K×R : r ≤ t} and
sing supp Ws,k = {(x, t) ∈ K × R : r = t}. Assume that f is a smooth function
and supp f ⊂ {(x, t) ∈ K × R : R1 < r < R2, t > 0}. Then čs,k are smooth while
čs,k(t) = 0 for t < R1. Thus we observe the phenomenon of ”forward edge” in
the coefficients. Suppose now that the singular support of the right-hand side f is
located in the set {(x, t) : R1 < r < R2, 0 < t < t0}. Then čs,k(t) vanish for t < R1

and are smooth for t > t0 +R2. In other words, there is the phenomenon of ”back
edge”: the coefficients have been smooth after the perturbation from the singular
support of the right-hand side has left the vertex of K.

2.9 Connection between the augmented and non-
augmented Maxwell systems

Up to this point the discussion was related to the augmented Maxwell system. We
are now going to prove that under some conditions on the right-hand side of such
a system, its solutions satisfy the usual (non-augmented) Maxwell system. For

sufficiently smooth vector fields ~E, ~B, the right-hand side (− ~J,− ~G, ρ, µ) of the

usual Maxwell system is subject to the compatibility conditions ∂ρ/∂t + div ~J =

0, ∂µ/∂t + div ~G = 0 and the boundary condition 〈 ~G, ~ν〉 = 0. We show, for a
certain self-adjoint extension of A(∂) taken as the spatial part of the augmented

system, that if a right-hand ( ~f1, ~f2, g1, g2) satisfies ∂gk/∂t−div ~fk = 0 (k = 1, 2) in-

side the domain and the boundary condition 〈 ~f2, ~ν〉 = 0, then in the corresponding
strong solution u = (~u,~v, h, q) we have h ≡ 0, q ≡ 0.

Consider the problem in a bounded domain G ⊂ R
3 with conical point O.

Applying the Fourier transform, we rewrite the condition on right-hand side in
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the form iτ ĝk − div ~̂fk = 0 (k = 1, 2), 〈 ~̂f2, ~ν〉 = 0. Since the right-hand side is
an element in L2(G), the conditions should be understood in a proper way. Let

div ~̂f1, div ~̂f2 ∈ L2(G), where div is understood in the sense of distributions. The

boundary condition 〈 ~̂f2, ~ν〉 = 0 means that

(
~̂f2, ∇ψ

)
G

= −
(
div ~̂f2, ψ

)
G

∀ ψ ∈ H1(G).

Let us rewrite the indicated properties of the vector fields ~̂fk in another form. To
this end introduce the space

H(div , G) = {~u ∈ L2(G) : div ~u ∈ L2(G)}

with norm ‖~u; H(div , G)‖ =
(
‖~u; L2(G)‖2 + ‖div ~u; L2(G)‖2

)1/2

and its closed

subspace
H̊ (div , G) = {~u ∈ H(div , G) : 〈~u, ~ν〉 = 0}.

Then ~̂f1 ∈ H(div , G), ~̂f2 ∈ H̊ (div , G), ĝ1, ĝ2 ∈ L2(G), iτ ĝk = div ~̂fk.
We consider M(τ) = τ +A, while A is the self-adjoint extension of the differ-

ential operator A(Dx) given on the lineal D(G), where all the αs,k vanish. In other
words, the functions in the domain of A increase near the conical point O slower
than the functions in the domains of all the other self-adjoint extensions.

For the proof of theorem on connection between solutions to the augmented
and usual Maxwell systems, we need some properties of the Helmholtz operator in
the domain G. Here we recall all the necessary definitions. For details and proofs
we refer the reader to the articles [18] and [33]. Let Ξ = K ∩ S2, where the cone
K coincides with the domain G near the conical point O. For the Laplace operator
we introduce the operator pencil E in the domain Ξ by the formula

E(λ) = (iλ)2 + iλ− δ,

where δ is the Laplace-Beltrami operator. In the case of the Dirichlet problem
the pencil E is defined on the functions u ∈ H2(Ξ) such that u|∂Ξ = 0. In the
case of the Neumann problem the pencil E is defined on the functions u ∈ H2(Ξ)
such that ∂ν |∂Ξ = 0. Let {µk, wk} and {µ̃k, w̃k} be the sets of eigenvalues and
eigenfunctions of the Dirichlet and Neumann problems for the operator pencil E.
Denote by LD the lineal spanned by the functions in C∞

c (G) and by functions of
the form χriµkwk with Imµk < 0, where χ is a cut-off function equal to 1 near
the conical point. We also introduce the lineal LN spanned by the functions in
C∞

c (G\O) with normal derivative vanishing on ∂G\O and by functions of the form
χriµ̃kw̃k, where Im µ̃k ≤ 0. According to [18, §4] and [33, §3], the range of the
Helmholtz operator τ 2 +4 with τ = σ− iγ (γ 6= 0) given on LD or LN is dense in
L2(G).

Theorem 2.34. 1) Suppose that A is the self-adjoint extension of the differential
operator A(Dx) given on the lineal D(G), where all the coefficients αs,k are zeros.
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Let the operator A be taken as the spatial part of the system (2.3), (2.4). Assume

that the right-hand side f = (− ~J,− ~G, ρ, µ) of the system is subject to the conditions

ρ, µ ∈ L2(G), ~J ∈ H(div , G), ~G ∈ H̊(div , G) while iτρ + div ~J = 0 and

iτµ + div ~G = 0. Then the corresponding strong solution u is of the form u =
(~u,~v, 0, 0). 2) If the role of spatial part is played by a self-adjoint extension distinct
from that in 1), then there exist right-hand sides subject to the conditions in 1)
such that the corresponding strong solutions has nonzero components h, q.

Proof. Prove the first part of the theorem. Verify the equality h = 0. Since A
is the closure of the differential operator A(Dx) given on D(G), there exists a
sequence {uk} ⊂ D(G) such that uk → u = (~u, ~v, h, q) and fk := M(τ)uk → f
(the convergence in L2(G)). We have uk ∈ C∞(G \ O) so the system (2.3), (2.4)
can be understood as usual. In particular,

iτ~uk − rot ~vk + ∇hk = − ~Jk,
iτhk + div ~uk = ρk.

Moreover, uk satisfies the boundary conditions (2.4) on ∂G \ O. Assume that
φ ∈ LD. Multiply the first equality by ∇φ, the second one by φ, and integrate over
G. Then

iτ
(
~uk,∇φ

)
G
−
(
rot ~vk,∇φ

)
G

+
(
∇hk,∇φ

)
G

= −
(
~Jk,∇φ

)
G
,

−τ 2
(
hk, φ

)
G

+ iτ
(
div ~uk, φ

)
G

= iτ
(
ρk, φ

)
G
.

We integrate by parts in the two first terms of the first equality, then add the
second line and obtain

−τ 2
(
hk, φ

)
G

+
(
∇hk,∇φ

)
G

= iτ
(
ρk, φ

)
G
−
(
~Jk,∇φ

)
G
.

We integrate the second term by parts, let k → +∞, and take into account that
−( ~J,∇φ)G = (div ~J, φ)G and div ~J + iτρ = 0. Then

(
h, (τ 2 + 4)φ

)
G

= 0.

Therefore h = 0 because the range of the operator τ 2 + 4 given on LD is dense in
L2(G).

Verify the equality q = 0. We have

iτ~vk + rot ~uk + ∇qk = − ~Gk,
iτqk + div ~vk = µk.

Assume that φ ∈ LN . Then

iτ
(
~vk,∇φ

)
G

+
(
rot ~uk,∇φ

)
G

+
(
∇qk,∇φ

)
G

= −
(
~Gk,∇φ

)
G
,

−τ 2
(
qk, φ

)
G

+ iτ
(
div ~vk, φ

)
G

= iτ
(
µk, φ

)
G
.
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We integrate by parts all the terms in the left-hand side of the first line, add the
second line, and let k → ∞:

(
q, (τ 2 + 4)φ

)
G

= iτ
(
µ, φ

)
G
−
(
~G,∇φ

)
G
.

Using the inclusion ~G ∈ H̊(div , G), φ ∈ LN ⊂ H1(G) and the condition div ~G +
iτµ = 0, we obtain (

q, (τ 2 + 4)φ
)

G
= 0.

Since the range of the operator τ 2 + 4 given on LN is dense in L2(G), we arrive
at q = 0.

Let us turn to the second part of the theorem. The domain of any other self-
adjoint extension contains at least one function χriλkΦs,k with Imλk ∈ ]1, 3/2[.
In view of the properties of the pencil A, the eigenfunction Φs,k is of the form

(~U, ~0, 0, Q) or (~0, ~V , H, 0). For instance, assume that Φs,k = (~U, ~0, 0, Q).
According to [18, §4], there exists a solution q0 to the homogeneous Neumann
problem for the equation 4q0 + τ 2q0 = 0 having the asymptotics q0 ∼ riλkQ near
the conical point O while q0 ∈ C∞(G \O). We set u0 := (χriλk ~U, ~0, 0, q0) è f0 :=

M(τ)u0 = (iτχriλk ~U, rot (χriλk ~U)+∇q0, div (χriλk ~U), iτq0). It is not hard to see
that f0 ∈ L2(G)∩C∞(G\O) and f0 satisfies the conditions in part 1) of the theorem.
However, the component q0 of the solution u0 differs from zero. We now assume that
Φs,k = (~0, ~V , H, 0). According to [33, Proposition 5.2], there exists a solution h0

to the homogeneous Dirichlet problem for the equation 4h0 + τ 2h0 = 0 having the
asymptotics h0 ∼ riλkH while h0 ∈ C∞(G \ O). We set u1 = (~0, χriλk ~V , h0, 0)

and f1 := M(τ)u1 = (−rot (χriλk ~V ) + ∇h0, iτχr
iλk ~V , iτh0, div (χriλk ~V )). The

function f1 satisfies the conditions in 1). However the component h1 of u1 differs
from zero.

The extension A chosen in part 1 of Theorem 2.34 coincides with the operator
investigated in [4, §2.2]. Before proving this, we recall some definitions and
statements in [4] taking into account that, in the case under consideration, the
dielectric and magnetic permittivity matrices are equal to the identity matrix. Set

F (G) = {~u ∈ L2(G) : div ~u ∈ L2(G), rot ~u ∈ L2(G)}.

The class F (G) is a complete Hilbert space with inner product defined by the norm

‖~u; F (G)‖ =
(
‖div ~u; L2(G)‖2 + ‖rot ~u; L2(G)‖2 + ‖~u; L2(G)‖2

)1/2

.

Introduce the closed subspaces

F (τ,G) = {~u ∈ F (G) : ~u× ~ν = 0}, F (ν,G) = {~u ∈ F (G) : 〈~u, ~ν〉 = 0}.

The condition ~u× ~ν = 0 is understood in the following sense:

(
~u, rot ~z

)
G

=
(
rot ~u, ~z

)
G

∀~z ∈ L2(G) such that rot ~z ∈ L2(G).
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The dense subsets D(ν,G) = F (ν,G)⊕ H̊
1
(G) and D(τ,G) = F (τ,G)⊕H1(G) in

the Hilbert space B(G) = L2(G,C
3)⊕L2(G) are taken as domains of the operators

L(ν){~v, q} = {rot ~v + ∇q, −div ~v} and L(τ){~u, h} = {rot ~u + ∇h, −div ~u}. It
turns out (see [4, Lemma 2.4]) that the block operator

L =

(
0 iL(ν)

−iL(τ) 0

)
.

is self-adjoint in B(G) ⊕ B(G). Let P be the matrix defined by the equality
P (~u, ~v, h, q)T = (~u, −q, ~v, h)T . We prove that PAP−1 = L. The properties of
the pencil A and the asymptotics of the functions in D(G) near the conical point
O imply that P (D(G)) ⊂ D(ν,G) ⊕ D(τ,G). The self-adjoint operator A is the
closure of the differential operator A(Dx) defined on D(G). Since the operators
A(Dx) and P−1AP coincide on D(G), we obtain A = P−1LP .



3 THE PROBLEM IN A WEDGE AND IN A

WAVEGUIDE WITH EDGE

3.1 Preliminaries

In this chapter we study the augmented Maxwell system





∂ ~E/∂t− rot ~B + ∇h = − ~J,

∂ ~B/∂t+ rot ~E + ∇q = − ~G,

∂h/∂t+ div ~E = ρ,

∂q/∂t+ div ~B = µ

(3.1)

with boundary conditions

~ν × ~E = 0, 〈 ~B, ~ν〉3 = 0, h = 0, (3.2)

where ~ν is the unit outward normal. The problem (3.1), (3.2) is considered in a
wedge D = K×R and in a waveguide Σ = Ω×R. Rewrite the system (3.1) in the
form

∂u/∂t+ A(∂)u = f,

where u = ( ~E, ~B, h, q)T , ∂ = (∂x1
, ∂x2

, ∂x3
).

Assume that τ = σ−iγ, σ ∈ R, γ > 0, and ξ ∈ R. Applying the Fourier trans-
form F(x3,t)→(ξ,τ) to (3.1),(3.2), we obtain the problems in K (in Ω) with parameter
(ξ, τ): {

τ û+ A(Dx1
, Dx2

, ξ)û = −if̂ ,
Γû = 0.

Rewrite this problem as follows

M(Dx, ξ, τ)u = f, (3.3)

Γu = 0, (3.4)
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where M(Dx, ξ, τ) = τ +A(Dx1
, Dx2

, ξ) . The Green formula (1.9) for the problem
(3.3), (3.4) takes the form
(
M(Dx, ξ, τ)u, v

)
K

+
(
Γu, Tv

)
∂K

=
(
u,M(Dx, ξ, τ)v

)
K

+
(
Tu,Γv

)
∂K

, (3.5)

where T = −iT0. When considering the problem in K, we may change the variables
η = (px1, px2), where p = (|τ |2 + |ξ|2)1/2. Denote (ξ/p, τ/p) by θ, introduce the
notation M(Dη, θ) = τ/p+A(Dη, ξ/p) and U(η, ξ, τ) = û(p−1η, ξ, τ), F (η, , ξ, τ) =

p−1f̂(p−1η, ξ, τ) and rewrite (3.3), (3.4) in the form

M(Dη, θ)U = F, (3.6)

ΓU = 0. (3.7)

3.2 Operator pencil

We define the operator pencil

B(λ)Φ(ϕ) = r1−iλA(Dx1
, Dx2

, 0)riλΦ(ϕ)

for Φ ∈ H1[−α, α] such that riλΦ(ϕ) satisfy (3.4) on ∂K, where (r, ϕ) are the polar
coordinates. If Φ(ϕ) = (~u(ϕ), ~v(ϕ), h(ϕ), q(ϕ)), then the boundary conditions
can be written as





h(α) = h(−α) = u3(α) = u3(−α) = 0,
u1(α) cosα + u2(α) sinα = 0,

u1(−α) cosα− u2(−α) sinα = 0,
v1(α) sinα− v2(α) cosα = 0,

v1(−α) sinα + v2(−α) cosα = 0.

In polar coordinates, the operator A(Dx1
, Dx2

, 0) is of the form

A(Dx1
, Dx2

, 0) = A1(ϕ)Dr + r−1A2(ϕ)Dϕ, (3.8)

where A1 and A2 are 8 × 8-matrices. Let G stand for A(0, 0, 1). We have

A1 · A1 = I, A2 · A2 = I, A1 · A2 + A2 · A1 = 0,
dA1

dϕ
= A2,

dA2

dϕ
= −A1,

G ·G = I, A1 ·G+G · A1 = 0, G · A2 + A2 ·G = 0.

(3.9)

The eigenfunctions and eigenvalues of the pencil B satisfy B(λ)Φ = 0. Taking
(3.8) into account, we obtain

λA1(ϕ)Φ(ϕ) + A2(ϕ)DϕΦ(ϕ) = 0. (3.10)

From the formulas for A1 and A2 and the boundary conditions for Φ, it follows
that the eigenfunctions and eigenvalues of B can be found by solving the two
Sturm-Liouville problems for the system

{
da/dϕ+ iλb = 0,
db/dϕ− iλa = 0
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with boundary conditions

1) a(α) = a(−α) = 0,
2) a(α) sinα− b(α) cosα = 0, a(−α) sinα + b(−α) cosα = 0.

Thus the spectrum of B consists of the two sequences of eigenvalues

λk,1 = i
πk

2α
, λk,2 = i(

πk

2α
+ 1), k ∈ Z.

Using the link of the Sturm-Liouville problems with (3.10), one can show that two
linearly independent eigenfunctions correspond to every eigenvalues while there
are no associated functions. Moreover, the eigenvalues λk,1 correspond to the com-
ponents h, q, u3, v3 while λk,2 to u1, u2, v1, v2. The eigenvalues of B are
symmetrically located about the point i/2. If i/2 is an eigenvalue, we denote it
by λ0. Let λk with k > 0 stand for the eigenvalues of B such that Imλk > 1/2
numbered in order of increasing imaginary part. By λ−k with k > 0 we denote the
eigenvalue symmetric to λk about the point i/2. The same argument as in Section
2.2 shows that the eigenfunctions {Φs,∓k}s=1,2 corresponding to λ∓k can be chosen
to satisfy the orthogonality and normalization conditions

α∫

−α

〈∂λB(λk)Φs,k,Φp,−k〉8 dϕ = δs,p.

If Φ is an eigenfunction of B corresponding to λk, then GΦ, too, is an eigenfunction
corresponding to the same eigenvalue λk.

The properties of the pencil B discussed in this section are summarized in the
next proposition.

Proposition 3.1. 1) To every eigenvalue λk of B with k 6= 0 there correspond
two linearly independent eigenfunctions {Φs,k}s=1,2 satisfying GΦ1,k = Φ2,k. There
are no associated functions. The eigenfunctions can be chosen so that

α∫

−α

〈A1(ϕ)Φs,k(ϕ),Φp,m(ϕ)〉8 dϕ = δs,p · δk,−m. (3.11)

2) If α = π, then λ0 = i/2 is an eigenvalue of the pencil B. There are four linearly
independent functions {Φs,∓0}s=1,2 corresponding to this eigenvalue. The functions
can be chosen to satisfy the orthogonality and normalization conditions

α∫
−α

〈A1(ϕ)Φs,∓0(ϕ),Φp,±0(ϕ)〉8 dϕ = δs,p,
α∫

−α

〈A1(ϕ)Φs,±0(ϕ),Φp,±0(ϕ)〉8 dϕ = 0,

α∫
−α

〈A1(ϕ)Φs,k(ϕ),Φp,±0(ϕ)〉8 dϕ = 0

for k 6= 0.
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We put
vs,k = riλkΦs,k, vs,∓0 = riλ0Φs,∓0. (3.12)

The functions vs,k satisfy the boundary value problem A(Dx1
, Dx2

, 0)vs,k = 0 in K,
Γvs,k = 0 on ∂K.

3.3 On properties of the operator A(D)

Let us consider the elliptic problem in a wedge
{
A(Dx1

, Dx2
, Dx3

)U(x1, x2, x3) = F(x1, x2, x3), (x1, x2, x3) ∈ D,
ΓU(x1, x2, x3) = H(x1, x2, x3), (x1, x2, x3) ∈ ∂D \M.

(3.13)

In this section, we study the operator Aβ of problem (3.13),

Aβ = {A(D),Γ} : H1
β(D) → H0

β(D) ×H
1/2
β (∂D),

and find out the numbers β for which the operator is an isomorphism. We apply
the Fourier transform Fx3→ξ to problem (3.13) and obtain the family of problems

{
A(Dx1

, Dx2
, ξ)Û(x1, x2, ξ) = F̂(x1, x2, ξ), (x1, x2) ∈ K,

ΓÛ(x1, x2, ξ) = Ĥ(x1, x2, ξ), (x1, x2) ∈ ∂K \ O.
(3.14)

We introduce the new variables

η = |ξ|(x1, x2), ω = ξ/|ξ|, U(η, ξ) = Û(η/|ξ|, ξ),

F (η, ξ) = |ξ|−1F̂(η/|ξ|, ξ), H(η, ξ) = Ĥ(η/|ξ|, ξ),

and rewrite (3.14) in the form

{
A(Dη, ω)U(η, ξ) = F (η, ξ), η ∈ K,
ΓU(η, ξ) = H(η, ξ), η ∈ ∂K \ O.

(3.15)

Consider the operator

Aβ(ω) = {A(Dη, ω),Γ} : E1
β(K) → E0

β(K) × E
1/2
β (∂K).

Theorem 3.2. If α < π, then the operator Aβ is an isomorphism for
β ∈]max{0, 1 − π/2α}, min{1, π/2α}[.

Proof. According to [28, Theorem 8.2.1], the operator Aβ implements isomorphism
if and only if Aβ(ω) is an isomorphism for ω = ∓1. The operator Aβ(ω) is Fredholm
if and only if the line Imλ = β is free from the spectrum of the pencil B (see [28,
Theorem 8.2.3]). We show that the kernel and cokernel of Aβ(ω) are trivial in some
interval Imλk < β < Imλk+1. Hence Aβ(ω) is an isomorphism for such β. Outside
the interval, the operator Aβ(ω) is not an isomorphism ( see [28, §8.3]).

Let U be a solution in E1
β(K) to the homogeneous problem (3.15). Then ( [28,

Proposition 8.2.6]) χU ∈ E l
γ(K), where χ is any function in C∞(K) vanishing near

the vertex, the numbers l ≥ 1 and γ ∈ R being arbitrary. We apply A(−Dη, ω) to
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the equality A(Dη, ω)U = 0 and obtain (−4η + 1)U = 0. Denote by (~u, ~v, h, q)
the components of U . We are now looking for β such that h = 0. The function h
satisfies

{
(−4η + 1)h = 0, η ∈ K,
h = 0, η ∈ ∂K \ O.

Multiply (−4η + 1)h = 0 by h and integrate over Kε = {η ∈ K : |η| > ε}.
Integrating by parts and taking into account the boundary condition, we arrive at

∫

Kε

(|h|2 + |∇h|2)dη1dη2 = ε

α∫

−α

h ·
∂h

∂ρ
dφ, (3.16)

where (ρ, φ) are polar coordinates in the plane R
2
η. Let χ be a cut-off function

equal to 1 near the vertex. We have χh ∈ H1
β(K). According to [28, Theorem

4.2.1 ], the representation

h =
∑

k

cs,kρ
iλkHs,k +R (3.17)

holds in a neighborhood of the vertex, where χR ∈ H1
γ(K), 1 > β − γ > 0, and λk

is an eigenvalue of B which is an element of the sequence {πm/2α}m∈Z\0. The sum
consists of the terms for the indicated eigenvalues in the strip Imλ ∈]γ, β[, while
Hs,k are components of the eigenfunctions Φs,k of B corresponding to h. In order
that the right-hand side of (3.16) tends to 0 as ε → 0, the inequality Imλk < 0 is
necessary for all the terms in (3.17). Since h ∈ E1

β(K) we have Imλk < β. Assume
that β < π/2α. Then Imλk ≤ −π/2α for all the terms in (3.17). Therefore h = 0
in K. Similarly, u3 vanishes in K for the same β. Now the equality A(Dη, ω)U = 0
implies that

Dη1
u1 +Dη2

u2 = −ωu3 = 0, η ∈ K,
Dη2

v1 −Dη1
v2 = −ωh = 0, η ∈ K.

We consider u1, u2 and put ~w = (u1, u2, 0). Rewrite (−4η + 1)~w = 0 in the form

rot rot~w −∇ div~w + ~w = 0.

We calculate the inner product of this expression and ~w and integrate it over
Kε × Iη3

, where I = [0, 1]. Taking account of the boundary conditions ~u × ~ν =
0, Dη1

u1 +Dη2
u2 = 0 on ∂D and applying the Stokes formula, we obtain

∫

Kε

(|rot~w|2+|div~w|2+|~w|2)dη1dη2 = ε

α∫

−α

(
〈rot~w, [~ν× ~w]〉+div~w·〈~ν, ~w〉

)
dφ, (3.18)

where ~ν = (cosφ, sinφ, 0). Let λk0
be the only eigenvalue of B in the sequence

{i(πm/2α + 1)}m∈Z
located in the strip Imλ ∈ ]Imλk0

, β[. The asymptotic repre-
sentation

~w =

Nk0∑

s=1

cs,k0
(riλk0 ~Ws,k0

+ riλk0
+1τ ~Ψs) +

∑

k

cs,kr
iλk ~Ws,k +R (3.19)
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holds near the vertex. The third component of every term in the first sum van-
ishes, while the two first components are equal to those of the partial sum Us,k0,2

(consisting of two terms) of the formal series (2.29). The two first components

of ~Ws,k are equal to those of Φs,k, and the third component vanishes. The sec-
ond sum consists of the terms corresponding to the eigenvalues λk of the pencil
B which are elements of the sequence {i(πm/2α + 1)}m∈Z

located in the strip
Imλ ∈ ]Imλk0

− 1, Imλk0
[. The function R is a remainder. Using the definition of

B, one can check that rot riλk ~Ws,k = 0, div riλk ~Ws,k = 0. Therefore the right-hand
side in (3.18) behaves as ε1−2Im λk , i.e., under the condition Imλk0

< 1/2, it tends
to zero as ε → 0. Such a condition is fulfilled in the case β < 1. Therefore, if
β < 1, then u1 = u2 = 0 in K. The same argument shows that if β < 1, then
v1 = v2 = 0. The equality A(Dη, ω)U = 0 implies that

−Dη2
u1 +Dη1

u2 = −ωq = 0,
Dη1

v1 +Dη2
v2 = −ωv3 = 0.

Thus, if β < min{1, π/2α}, then the kernel of Aβ(ω) is trivial. Consider the
adjoint operator Aβ(ω)∗. Let V ∈ KerAβ(ω)∗. According to [28, Theorem 8.3.3],
V ∈ KerA1−β(ω). Hence, V ≡ 0 provided 1 − β < min{1, π/2α}. Thus, if

max{0, 1 − π/2α} < β < min{1, π/2α},

then the operator Aβ(ω) is an isomorphism. The operator Aβ implements an
isomorphism under the same condition.

Note that if 2α < π, then Aβ is an isomorphism for β ∈]0, 1[. If π ≤ 2α < 2π,
then Aβ is an isomorphism for β ∈]1 − π/2α, π/2α[. In the case 2α = 2π, the
operator Aβ is not an isomorphism for any β.

3.4 Estimates on solutions to problems in a wedge and in
an angle

In this section, we prove a global energy estimate and a weighted combined estimate
on solutions to the problem (3.3), (3.4) in K and in Ω. We drop some proofs similar
to those for the problems in K and in G.

Proposition 3.3. Let v be in C∞
c (K \O) satisfying the boundary conditions (3.4).

Then

γ‖v;L2(K)‖ ≤ ‖M(Dx1
, Dx2

, ξ, τ)v;L2(K)‖, (3.20)

where M(Dx1
, Dx2

, ξ, τ) = τ + A(Dx1
, Dx2

, ξ), τ = σ − iγ (σ ∈ R, γ > 0), ξ ∈ R.

Remark 3.4. The estimate (3.20) is still valid with τ replaced by τ .

We define lineals similar to D(K), Dβ(K) in Sections 2.3, 2.4. Since the
spectrum of the pencil B is known, we can describe the lineals D(K) and Dβ(K)
in more detail.



54

Definition 3.5. Define the lineal D(K) by the following conditions:
A) If 2α ≤ π, then D(K) is spanned by the functions in C∞

c (K \O) satisfying
the boundary conditions (3.4) and by the functions χvs,k corresponding to the
eigenvalues of B subject to the inequality Imλk < 1; here χ stands for a cut-off
function equal to 1 near the vertex.

B) If 2α ∈ ]π, 2π[, then D(K) is spanned by the functions in C∞
c (K \ O)

satisfying (3.4), by the functions χvs,k corresponding to the eigenvalues of B subject
to Imλk ≤ 0, and by the linear combinations χ(αsvs,1 +βsvs,−1), where αs, βs (s =
1, 2) are fixed coefficients such that Reαsβs = 0 and |αs| + |βs| > 0.

C) If 2α = 2π, then D(K) is spanned by the functions in C∞
c (K \ O), subject

to (3.4), by the functions χvs,k corresponding to the eigenvalues of B subject to
Imλk ≤ 0, and by the linear combinations χ(αsvs,+0 + βsvs,−0), where αs, βs (s =
1, 2) are fixed coefficients satisfying Reαsβs = 0 and |αs| + |βs| > 0.

The next assertion is analogous to Proposition 2.12.

Proposition 3.6. The estimate (3.20) holds for any function in D(K).

We now define a lineal Dβ(K) and prove a combined estimate in K.

Definition 3.7. Let β < min{1, π/2α}. Introduce the lineal Dβ(K) spanned by the
functions in C∞

c (K\O) satisfying the boundary conditions (3.4) and by the functions
χvs,k corresponding to the eigenvalues of B subject to the inequality Imλ < β.

Proposition 3.8. Let β < min{1, π/2α} and let the number λ = iβ be regular for
the pencil B. Then the inequality

γ2‖v;H0
β(K)‖2 + ‖χτv;H

1
β(K, p)‖2

≤ c{‖f ;H0
β(K)‖2 + (|τ |2(1−β)/γ2)‖f ;L2(K)‖2}

(3.21)

holds for any v ∈ Dβ(K), where f = (τ + A(Dx1
, Dx2

, ξ))v, χτ (r) = χ(|τ |r), and
χ is a cut-off function in C∞

c (K) equal to 1 near the vertex. The constant c is
independent of ξ and τ .

Proof. Step 1. Estimating in a neighborhood of the edge. Applying the Fourier
transform Ft→τ to the problem (3.1), (3.2) in the cylinder T, we arrive at the
problem in the wedge D

{
τ Û + A(Dx)Û = F̂, x ∈ D,

ΓÛ = 0, x ∈ ∂D \M,

with parameter τ . Introduce the new variables

ζ = |τ |x, U(ζ, τ) = Û(ζ/|τ |, τ), F (ζ, τ) = |τ |−1
F̂(ζ/|τ |, τ),

and rewrite the problem in the form
{

(τ/|τ |)U + A(Dζ)U = F, ζ = (ζ1, ζ2, ζ3) ∈ D,
ΓU = 0, ζ ∈ ∂D \M.
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If β < min{1, π/2α} and the number λ = iβ is regular for the pencil B, then the
operator Aβ(ω) is Fredholm with trivial kernel (see the proof of Theorem 3.2). The
inequality

‖u;E1
β(K)‖ ≤ c‖Aβ(ω)u;E0

β(K)‖

holds for any function u in E1
β(K) satisfying the boundary conditions Γu = 0.

Using Proposition 1.1, one can show that the estimate

‖U ;H1
β(D)‖ ≤ c‖A(Dζ)U ;H0

β(D)‖

is valid for U in H1
β(D) subject to ΓU = 0. Hence

‖χU ;H1
β(D, 1)‖ ≤ c{‖χA(Dζ)U ;H0

β(D)‖ + ‖ψU ;H0
β(D)‖},

where χ = χ(r) and ψ = ψ(r) are smooth cut-off functions equal to 1 near the
vertex such that χψ = χ. Rewrite the inequality in the form

‖χU ;H1
β(D, 1)‖ ≤ c{‖χM(Dζ , τ/|τ |)U ;H0

β(D)‖ + ‖ψU ;H0
β(D)‖}. (3.22)

Step 2. Estimating far from the edge. We prove that, for any β ∈ R and
each U ∈ H1

β(D, 1) satisfying the boundary condition ΓU = 0, the inequality

(γ/|τ |)2‖κ∞U ;H0
β(D)‖

2
≤

≤ c{‖κ∞M(Dζ , τ/|τ |)U ;H0
β(D)‖

2
+ ‖ψ∞U ;H0

β−1(D)‖
2
}

(3.23)

holds with constant c independent of U and τ ; here the functions κ∞ =
κ∞(r), ψ∞ = ψ∞(r) are smooth in K, vanish near the vertex, and equal 1 in
a neighborhood of infinity while κ∞ψ∞ = κ∞.

Let κ, ψ ∈ C∞(K), κψ = κ, supp κ ⊂ {(x1, x2) ∈ K : 1/2 < r < 2},
supp ψ ⊂ {(x1, x2) ∈ K : 1/4 < r < 4}. The estimate (3.20) and Parseval’s
equality imply that

γ2‖κU ;L2(D)‖2 ≤ ‖M(Dζ , τ)κU ;L2(D)‖2.

Since MκU = κMU + [M,κ]U , we have

γ2‖κU ;L2(D)‖2 ≤ c{‖κM(Dζ , τ)U ;L2(D)‖2 + ‖ψU ;L2(D)‖2}.

As U , we take ζ 7→ U ε(ζ) = U(ζ/ε) and change τ for τ/|τ |ε , where ε > 0. Then

(γ/|τ |ε)2‖κU ε;L2(D)‖2 ≤

≤ c{‖κM(Dζ , τ/|τ |ε)U
ε, L2(D)‖2 + ‖ψU ε;L2(D)‖2}.

After the change of variables ζ 7→ ζ/ε we obtain

(γ/|τ |)2‖κεU ;L2(D)‖2 ≤

≤ c{‖κεM(Dζ , τ/|τ |)U ;L2(D)‖2 + ε2‖ψεU ;L2(D)‖2},

where κε(η) = κ(εη). Multiplying the estimate by ε−2β, putting ε = 2−j, j =
1, 2, 3, ..., and adding the inequalities, we arrive at (3.23).
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Step 3. Estimating in an intermediate zone. As in the proof of Proposition
2.20 (Step 3), from (3.22) and (3.23) we deduce the inequality

γ2‖u;H0
β(D)‖

2
+ ‖χτu;H

1
β(D, |τ |)‖

2
≤

≤ c{‖M(Dx, τ)u;H
0
β(D)‖

2
+

(|τ |1−β/γ)
2
‖M(Dx, τ)u;L2(D)‖2}.

(3.24)

Step 4 Estimating in the angle K. Let u(x1, x2, x3) = v(x1, x2)ψ(x3), where
v ∈ Dβ(K) and ψ, e−γtψ ∈ S(R). Since ψ is arbitrary, the estimate (3.24) and
Parseval’s equality lead to (3.21).

The lineals D(Ω) and Dβ(Ω) are defined like D(K) and Dβ(K).

Proposition 3.9. The estimate

γ‖v;L2(Ω)‖ ≤ ‖M(Dx1
, Dx2

, ξ, τ);L2(Ω)‖

holds for any v in D(Ω)

Proposition 3.10. Let β < min{1, π/2α} and let the number λ = iβ be regular
for the pencil B. Assume that γ > γ0 with sufficiently large γ0. Then

γ2‖v;H0
β(Ω)‖2 + ‖χτv;H

1
β(Ω, p)‖2 ≤

≤ c(γ0){‖f ;H0
β(Ω)‖2 + (|τ |2(1−β)/γ2)‖f ;L2(Ω)‖2}

for every v in Dβ(Ω), where f = (τ + A(Dx1
, Dx2

, ξ))v, χτ (r) = χ(|τ |r), and χ is
any fixed cut-off function in C∞

c (Ω) equal to 1 near the point O. The constant c is
independent of (ξ, τ) and v.

We introduce the spaces DHβ(K, ξ, τ) and RHβ(K, ξ, τ) by completing
C∞

c (K \ 0) with respect to the norms

‖v; DHβ(K, ξ, τ)‖ =
(
γ2‖v;H0

β(K)‖
2
+ ‖χτv;H

1
β(K, p)‖

2
)1/2

,

‖f ; RHβ(K, ξ, τ)‖ =
(
‖f ;H0

β(K)‖
2
+ (|τ |1−β/γ)

2
‖f ;L2(K)‖2

)1/2

.

Changing K for Ω, we define DHβ(Ω, ξ, τ), RHβ(Ω, ξ, τ).

3.5 The operators of problems in K and Ω

We associate with problem (3.3), (3.4) in K the unbounded operator v 7→
M(ξ, τ)v := M(Dx1

, Dx2
, ξ, τ)v on L2(K) with domain DM(ξ, τ) := D(K). As

for the operator M(τ) in the previous chapter, it is easy to show that M(ξ, τ)
admits closure and the estimate

γ‖v;L2(K)‖ ≤ ‖M(ξ, τ)v;L2(K)‖

holds for the functions in the domains of the closed operator. In what follows,
M(ξ, τ) and DM(ξ, τ) denote the closed operator and its domain. The proof of
the next assertion is similar to those of Propositions 2.13 and Proposition 2.14.
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Proposition 3.11. KerM(ξ, τ) = 0, RM(ξ, τ) = L2(K).

The operator A(Dx1
, Dx2

, 0) with domain D(K) is symmetric. It follows from
Proposition 3.11 that the closure A of A(Dx1

, Dx2
, 0) is a self-adjoint operator.

If 2α > π, then D(K) contains the combinations χ(αsvs,1 + βsvs,−1) (s = 1, 2),
where αs, βs are fixed coefficients satisfying Reαsβs = 0, |αs| + |βs| > 0. Thus for
2α > π, one can define various self-adjoint extensions of A(Dx1

, Dx2
, 0) by choosing

the parameters {αs, βs}s=1,2. In what follows we take as A any of the extensions,
unless otherwise indicated.

Let us turn to the problem in a scale of weighted spaces. For the problem (3.3),
(3.4) we introduce the unbounded operator v 7→Mβ(ξ, τ) := M(Dx1

, Dx2
, ξ, τ) with

domain Dβ(K), acting from DHβ(K, ξ, τ) to RHβ(K, ξ, τ). The operator Mβ(ξ, τ)
admits closure. We will denote by Mβ(ξ, τ) and DMβ(ξ, τ) the closed operator and
its domain. Let 1/2 > β1 > β2 > . . . be all the numbers in ] −∞, 1/2[ such that
λ = iβk is an eigenvalue of the pencil B. Denote by Sm the total multiplicity of
the eigenvalues of B in the strip Imλ ∈ [βm, β1].

Definition 3.12. A solution to the equation M(ξ, τ)v = f is called a strong solu-
tion to the problem (3.3), (3.4) with right-hand side f ∈ L2(K).

Definition 3.13. A solution to the equation Mβ(ξ, τ)v = f is called a strong
β-solution to the problem (3.3), (3.4) with right-hand side f ∈ RHβ(K, ξ, τ).

The next result follows from Proposition 3.11.

Theorem 3.14. For every f in L2(K) and any τ = σ − iγ (σ ∈ R, γ > 0),
and ξ ∈ R, there exists a unique strong solution v to the problem (3.3), (3.4) with
right-hand side f . Moreover,

γ‖v;L2(K)‖ ≤ ‖f ;L2(K)‖.

The next assertion can be verified in the same way as Theorem 2.24.

Theorem 3.15. Assume that α < π.
A)Let β ∈]β1, min{1, π/2α}[. Then for every f ∈ RHβ(K, ξ, τ) there exists a
unique strong β-solution v to the problem (3.3), (3.4) in K with right-hand side f .
Moreover,

‖v; DHβ(K, ξ, τ)‖ ≤ c‖f ; RHβ(K, ξ, τ)‖.

B) Let β ∈ ]βm+1, βm[. A strong β-solution to the problem (3.3), (3.4) with right-
hand side f ∈ RHβ(K, ξ, τ) exists and is unique under the following Sm conditions:
(f, ws,k)K = 0, where {ws,k}

s=1,2
k=−1,..,−m is a basis in KerMβ(ξ, τ)∗. The solution

satisfies the estimate in part A) of the theorem.

Remark 3.16. Theorem 3.14 is valid for the problem (3.3), (3.4) in Ω. Theorem
3.15 is still true for the problem (3.3), (3.4) in Ω under the supplementary condition
γ > γ0 with sufficiently large γ0.
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Now we formulate the remark concerning the angle K of opening 2α = 2π. In
this case the interval of unique solvability vanishes. For β ∈ ]β1, 1/2[ there exists
the cokernel of dimension 2 corresponding to the eigenvalue λ0 = i/2 of the pencil
B. The elements w1,−0, w2,−0 of the cokernel near the corner point admit the
asymptotics ws,−0 ∼ αsvs,+0 + βsvs,−0 with Reαsβs = 1, s = 1, 2.

Remark 3.17. Assume that α = π. Let β ∈ ]βm+1, βm[. A strong β-solution to
the problem (3.3), (3.4) with right-hand side f ∈ RHβ(K, ξ, τ) exists and is unique
under the following Sm + 2 conditions: (f, ws,k)K = 0, where {ws,k}

s=1,2
k=−0,..,−m is a

basis in KerMβ(ξ, τ)∗. The solution satisfies the following estimate

‖v; DHβ(K, ξ, τ)‖ ≤ c‖f ; RHβ(K, ξ, τ)‖.

3.6 The problems in the cylinders T and T

Applying the Fourier transform F
−1
(ξ,τ)→(x3,t), we pass to the problem (3.1), (3.2) in

T (or T).

Definition 3.18. Let f ∈ V 0
0 (T, γ) and let û(x1, x2, ξ, τ) be a strong solution to

the problem (3.3), (3.4) in K with right-hand side −if̂ , where

f̂(x1, x2, ξ, τ) = F(x3,t)→(ξ,τ)f(x1, x2, x3, t).

The function u defined by u(x1, x2, x3, t) = F
−1
(ξ,τ)→(x3,t)û(x1, x2, ξ, τ) is called a

strong solution to the problem (3.1), (3.2) in T with right-hand side f .

Theorem 3.14 leads to the following result.

Theorem 3.19. For every f ∈ V 0
0 (T, γ) and any γ > 0 there exists a strong

solution v to the problem (3.1), (3.2) with right-hand side f . Moreover,

γ‖v;V 0
0 (T, γ)‖ ≤ ‖f ;V 0

0 (T, γ)‖.

We fix a cut-off function χ ∈ C∞(K) equal to 1 near the corner point O. Put

Xu(x1, x2, x3, t) = F
−1
τ→tχ(|τ |x1, |τ |x2)Ft′→τu(x1, x2, x3, t

′),
Λµu(x1, x2, t) = F

−1
τ→t|τ |

µFt′→τu(x1, x2, x3, t
′),

P µu(x1, x2, x3, t) = F
−1
(ξ,τ)→(x3,t)p

µF(x′

3
,t′)→(ξ,τ)u(x1, x2, x

′
3, t

′).

Here Λ is the same operator as in Section 2.7 while X differs in that the cut-off
function is independent of x3. Introduce the spaces DV β(T, γ), RV β(T, γ) with
norms

‖u; DV β(T, γ)‖ =
(
γ2‖u;V 0

β (T, γ)‖2 + ‖Xu;V 1
β (T, γ)‖2

)1/2
,

‖f ; RV β(T, γ)‖ =
(
‖f ;V 0

β (T, γ)‖2 + (1/γ2)‖Λ1−βf ;V 0
0 (T, γ)‖2

)1/2
.
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Definition 3.20. Let f ∈ RV β(T, γ) and let û(x1, x2, ξ, τ) be a strong β-solution

to the problem (3.3), (3.4) in K with right-hand side −if̂ , where

f̂(x1, x2, ξ, τ) = F(x3,t)→(ξ,τ)f(x1, x2, x3, t).

The function u given by u(x1, x2, x3, t) = F
−1
(ξ,τ)→(x3,t) û(x1, x2, ξ, τ) is called a strong

β-solution to the problem (3.1), (3.2) in T with right-hand side f .

The next assertion follows from Theorem 3.15.

Theorem 3.21. Suppose that α < π.
A) Let β ∈]β1, min{1, π/2α}[. Then for every function f ∈ RV β(T, γ) there exists
a unique strong β-solution v to the problem (3.1) (3.2) with right-hand side f .
Moreover,

‖v; DV β(T, γ)‖ ≤ c‖f ; RV β(T, γ)‖.

B) Let β ∈]βm+1, βm[. A strong β-solution to the problem (3.1), (3.2)
with right-hand side f ∈ RV β(T, γ) exists and is unique under the following

Sm conditions (f̂(·, ξ, τ), ws,k(·, ξ, τ))K = 0 for all ξ ∈ R and τ ∈ R − iγ, where
{ws,k}

s=1,2
k=−1,..,−m is a basis in KerMβ(ξ, τ)∗. Such a solution satisfies the estimate

in part A) of the theorem.

The following theorem on the asymptotics of solutions near an edge is analo-
gous to Theorem 2.32. One can prove it by modifying in an evident way the proof
of Theorem 2.26 and by applying the Fourier transform F

−1
(ξ,τ)→(x3,t). For the sake

of simplicity we exclude the case of screen. Introduce the formal series

Rs,k(r, ϕ, ξ, τ) =
∞∑

q=0

riλk+q(M(0, 0, ξ, τ))qΨ(s,k)
q (ϕ), Ψ

(s,k)
0 = Φs,k,

satisfying the homogeneous problem (3.3), (3.4). Denote by Rs,k,T the first T terms
of Rs,k.

Theorem 3.22. Let α < π. Assume that f and Λ1−βP βf are in RV β(T, γ) with
β ∈]βm+1, βm[. Then the strong solution to problem (3.1), (3.2) in T admits the
asymptotic representation

u(x, t) =
∑

Rs,k,T (r, ϕ,Dx3
, Dt)(Xčs,k)(x, t) + w(x, t) (3.25)

with w ∈ DV β(T, γ). The sum consists of the terms corresponding to the eigen-
values of B in the strip Imλ ∈ [βm, β1]. The coefficients are defined by

čs,k(x3, t) = F
−1
(ξ,τ)→(x3,t)cs,k(ξ, τ) and cs,k =

(
f̂(·, ξ, τ), ws,k(·, ξ, τ)

)
K
, the collection

{ws,k}
s=1,2
k=−1,..,−m being the basis in KerMβ(ξ, τ)∗ as before. Moreover,

‖e−γtčs,k(·);H
Im λk−β(R2)‖ ≤ c‖f ; RV β(T, γ)‖,

‖w; DV β(T, γ)‖ ≤ (c/γ)‖Λ1−βP βf ; RV β(T, γ)‖.

Remark 3.23. Theorem 3.19 is valid for problem (3.1), (3.2) in T. Theorem 3.21
and Theorem 3.22 remain true for the problem (3.1), (3.2) in T under the condition
γ > γ0 with sufficiently large γ0.
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3.7 Explicit formulas for the coefficients in the asymptotics
of solutions to the problem in T

In Theorem 3.22, the coefficients were expressed in terms of the elements
{ws,k}

s=1,2
k=−1,..,−m of a basis in the kernel of Mβ(ξ, τ)∗. In the section, we explic-

itly calculate the mentioned elements. Note that the elements satisfy the equation
M(Dx, Dy, ξ, τ)ws,k = 0 and the boundary conditions (3.4). Near the vertex of K,
the functions ws,k admit the asymptotic representations

ws,k = riλ−kΦs,−k(ϕ) + o(riλ−k).

From (3.23) it follows that ws,k decay more rapidly than any power of the distance
far from the vertex. Since

cs,k(ξ, τ) =

∫

K

〈f̂(x1, x2, ξ, τ), ws,k(x1, x2, ξ, τ)〉8 dx1 dx2,

we have to find hs,k = ws,k. It is clear that M(Dx1
, Dx2

,−ξ,−τ)hs,k = 0 because
M(Dx1

, Dx2
, ξ, τ)ws,k = 0. In polar coordinates

M = τI + ξG+ A1(ϕ)Dr + (1/r)A2(ϕ)Dϕ.

Introduce

h̃s,k(r, ϕ) = (iτη(r)I − iGξη(r) + A1(ϕ)η′(r))riλ−kΦs,−k(ϕ),

where η is a scalar function. Such a representation of h̃s,k is motivated by the
corresponding argument for the Helmholtz equation in [17, §3], [18, §4.2] and by
the fact thatM(Dx1

, Dx2
, ξ, τ)·M(−Dx1

,−Dx2
,−ξ, τ) = 4+τ 2−ξ2. Denote iτηI−

iξηG + A1(ϕ)η′ by S(r, ϕ, ξ, τ). Then the equation M(Dx1
, Dx2

,−ξ,−τ)h̃s,k = 0
can be written in the form

(−τ − ξG+ A1(ϕ)Dr + (1/r)A2(ϕ)Dϕ)riλ−kS(r, ϕ, ξ, τ)Φs,−k(ϕ) = 0. (3.26)

Being eigenfunctions of the pencil B, Φs,−k satisfy equation (3.10), therefore

dΦs,−k(ϕ)

dϕ
= −iλ−kA2(ϕ)A1(ϕ)Φs,−k(ϕ). (3.27)

We now transform (3.26) and write λ and Φ for λ−k and Φs,−k to simplify notation.

−(iτ + iξG)riλSΦ + iλriλ−1A1SΦ + riλA1(dS/dr)Φ
+riλ−1A2(dS/dϕ)Φ + riλS(dΦ/dϕ) = 0.

Taking (3.27) into account, we obtain

(−iτ − iξG)S + (iλ/r)A1S + A1(dS/dr)
+(1/r)A2(dS/dϕ) − (iλ/r)A2SA2A1 = 0.

(3.28)
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Substituting S and its derivatives into (3.28) and making use of (3.9), we arrive at

η′′ +
2iλ−k + 1

r
η′ + (τ 2 − ξ2)η = 0,

which reduces to Bessel’s equation. As a solution, we take a function η(r) =
CrνKν(i

√
τ 2 − ξ2r), ν = iλ−k assuming that η(r) → 0 as r → +∞. Here by

Kν(z) we denote the Macdonald functions, which are also called the modified bessel
functions of the second kind. The asymptotic representations

η(r) =
Cπ2ν−1

iν(τ 2 − ξ2)ν/2sin(πν)Γ(1 − ν)
+ o(1),

η′(r) = o(1)

hold as r → 0. This and the equality GΦ1,−k = Φ2,−k (see Proposition 3.1) lead to

h̃1,k = η(0)(iτΦ1,−k(ϕ) − iξΦ2,−k(ϕ))riλ−k + o(riλ−k),

h̃2,k = η(0)(iτΦ2,−k(ϕ) − iξΦ1,−k(ϕ))riλ−k + o(riλ−k).

We put
h1,k = τ h̃1,k + ξh̃2,k, h2,k = τ h̃2,k + ξh̃1,k.

Then, in a neighborhood of the vertex,

h1,k = iη(0)(τ 2 − ξ2)riλ−kΦ1,−k + o(riλ−k),
h2,k = iη(0)(τ 2 − ξ2)riλ−kΦ2,−k + o(riλ−k).

We fix the constant C assuming that iη(0)(τ 2 − ξ2) = 1. Therefore,

C =
sin(πν)Γ(1 − ν)

π2ν−1
iν−1(τ 2 − ξ2)

(ν−2)/2
.

Finally, applying the formula Γ(ν)Γ(1 − ν) = π/ sin(πν), we obtain

η(r) =
1

i2ν−1Γ(ν)

1

τ 2 − ξ2

(
ir
√
τ 2 − ξ2

)ν
Kν

(
ir
√
τ 2 − ξ2

)
,

η′(r) =
1

i2ν−1Γ(ν)
r
(
ir
√
τ 2 − ξ2

)ν−1
Kν−1

(
ir
√
τ 2 − ξ2

)
.

Let B stand for 1/(2ν−1Γ(ν)). Recall that

h1,k = i(τ 2 − ξ2)η(r)riλ−kΦ1,−k + τA1η
′(r)riλ−kΦ1,−k + ξA1η

′(r)riλ−kΦ2,−k,

h2,k = i(τ 2 − ξ2)η(r)riλ−kΦ2,−k + ξA1η
′(r)riλ−kΦ1,−k + τA1η

′(r)riλ−kΦ2,−k.

To find Ws,k = F
−1
(ξ,τ)→(x3,t)hs,k, we have to calculate the Fourier transform

F
−1
(ξ,τ)→(x3,t) of the functions

(
ir
√
τ 2 − ξ2

)ν
Kν

(
ir
√
τ 2 − ξ2

)
,(

ir
√
τ 2 − ξ2

)ν−1
Kν−1

(
ir
√
τ 2 − ξ2

)
.
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Denote these functions by fν(r, x3, t) and fν−1(r, x3, t), respectively. Then

W1,k(x, t) = Bfν(r, x3, t)r
iλ−kΦ1,−k −BA1(ϕ)

∂fν−1

∂t
riλ−kΦ1,−k

−BA1(ϕ)
∂fν−1

∂x3

riλ−kΦ2,−k ,

W2,k(x, t) = Bfν(r, x3, t)r
iλ−kΦ2,−k −BA1(ϕ)

∂fν−1

∂t
riλ−kΦ2,−k

−BA1(ϕ)
∂fν−1

∂x3

riλ−kΦ1,−k .

We now calculate fp, p = ν, ν − 1,

fp(r, x3, t) =

∫

R

dξ

∫

R−iγ

dτ eix3ξ+itτ
(
ir
√
τ 2 − ξ2

)p
Kp

(
ir
√
τ 2 − ξ2

)
.

After the change of variables u = i(τ + ξ)/2, s = i(τ − ξ)/2, we have

fp(r, x3, t) = 2

∫

Re u=γ/2

du

∫

Re s=γ/2

ds eu(t+x3)+s(t−x3)(2ru1/2s1/2)
p
Kp(2ru

1/2s1/2).

The equality (see [3])
∫

Re s=γ/2

ds estsν/2Kν(2α
1/2s1/2) =

1

2
θ(t) αν/2e−α/t 1

tν+1

leads to

fp(r, x3, t) = 2pr2p

∫

Re u=γ/2

du eu(t+x3)up θ(t− x3) e
−r2u/(t−x3) 1

(t− x3)p+1
.

We now employ the formula (see [37, Chapter 2, §9.3])

fα(t) =

∫

Re p=γ/2

ept 1

pα
dp , fα(t) =





θ(t)

Γ(α)
tα−1, α > 0,

dNfα+N(t)

dtN
, α ≤ 0, α +N > 0

and obtain

fp(r, x3, t) = 2pr2pθ(t− x3)
1

(t− x3)p+1

dN

dvN
fN−p(v)|v=(t2−x2

3
−r2)/(t−x3),

where p = ν, ν − 1 (ν > 0). Thus, we have got the explicit expressions for hs,k

and Ws,k, which participate in the following representations of the coefficients in
the asymptotic formula (3.25):

cs,k(ξ, τ) =

∫

K

〈f̂(x1, x2, ξ, τ), hs,k(x1, x2, ξ, τ)〉R8 dx1 dx2,

čs,k(x3, t) =

∫

K

∫

R

∫

R

〈f(x1, x2, x3 − s, t− u),Ws,k(x1, x2, s, u)〉R8 dx1 dx2 ds du.
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3.8 Connection between the augmented and non-
augmented Maxwell systems

In this section we briefly discuss the connection between the augmented and the
usual Maxwell systems. Here the case of screen is excluded, in other words we
assume that α < π. The main result is essentially the same as in Chapter 2.
Namely, if the right-hand side of the augmented system is subject to the compat-
ibility conditions of the usual Maxwell system, then the strong solution is of the
form (~u,~v, 0, 0), hence (~u,~v) satisfies the usual Maxwell system. Here we consider
the problem in Ω, though all the results are valid for the problem in K.

Introduce the space

H(div ,Ω) = {~u ∈ L2(Ω,C
2) : div ~u ∈ L2(Ω)}

with norm ‖~u; H(div ,Ω)‖ =
(
‖~u; L2(Ω)‖2 + ‖div ~u; L2(Ω)‖2

)1/2

and its closed

subspace

H̊ (div ,Ω) = {~u ∈ H(div ,Ω) : 〈~u, ~ν〉 = 0}.

Here div is understood in the sense of distributions and the boundary condition
〈~u, ~ν〉 = 0 means that

∫

Ω

〈~w,∇ψ〉3 dx+

∫

Ω

div ~w · ψ dx = 0 ∀ ψ ∈ H1(Ω).

Recall that for 2α > π one can define various self-adjoint extensions of
A(Dx1

, Dx2
, 0) by choosing the parameters {αs, βs}s=1,2 such that Reαsβs =

0, |αs| + |βs| > 0. In the following theorem we consider the self-adjoint exten-
sion A with α1 = α2 = 0. If 2α < π then we have the only self-adjoin extension,
which we consider in the following theorem.

Theorem 3.24. Assume that α < π.
1) Suppose that A is the self-adjoint extension of the differential operator

A(Dx1
, Dx2

, 0) given on the lineal D(Ω) with α1 = α2 = 0. Let the operator A

be taken as the spatial part of the system (3.3), (3.4). Let f = (− ~J,− ~G, ρ, µ) be

the right-hand side of the system with ~G = (G1, G2, G3), ~J = (J1, J2, J3), where
J3, G3, ρ, µ ∈ L2(Ω), ~j = (J1, J2) ∈ H(div ,Ω), ~g = (G1, G2) ∈ H̊(div ,Ω), and
iτρ+ iξJ3 + div ~j = 0, iτµ+ iξG3 + div ~g = 0. Then the strong solution is of the
form u = (~u,~v, 0, 0).

2) Let a self-adjoint extension A be distinct from that in 1). Then there exist
right-hand sides satisfying the conditions in 1) such that the components h, q of the
corresponding strong solutions do not vanish.

This theorem is proved in the same way as Theorem 2.34. For the proof
we need two lineals. Let {µk, wk} and {µ̃k, w̃k} be the sets of eigenvalues and
eigenfunctions of the operator pencils of the Dirichlet and Neumann problems for
the Laplace equation in Ω. Denote by LD the lineal spanned by the functions in
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C∞
c (Ω) and by functions of the form χriµkwk with Imµk < 0, where χ is a cut-off

function equal to 1 near the conical point. We also introduce the lineal LN spanned
by the functions in C∞

c (Ω \ O) with normal derivative vanishing on ∂Ω \ O and by
functions of the form χriµ̃kw̃k, where Im µ̃k ≤ 0. According to [18, §4] and [33,
§3], the range of the Helmholtz operator τ 2 − ξ2 +4 with τ = σ− iγ (γ 6= 0) given
on LD or LN is dense in L2(Ω).

Let us turn to the problem in the waveguide Σ. Consider the lineal D(Ω)
with α1 = α2 = 0 (see Definition 3.5). Let D(Σ) stand for the lineal spanned by
the functions in D(Ω) with coefficients in the Schwartz space S(Rx3

). Denote by
A the closure in L2(Σ) of the differential operator A(Dx) given on D(Σ). It is not
difficult to prove that A is a self-adjoint operator. Let P be the matrix defined
by the equality P (~u, ~v, h, q)T = (~u, −q, ~v, h)T . It turns out that the operator
PAP−1 coincides with the augmented Maxwell operator studied in [4, §2.2]. The
proof is basically the same as the proof of the similar fact in Section 2.9.



4 THE PROBLEM WITH INHOMOGENEOUS

CONDUCTIVE BOUNDARY CONDITIONS

4.1 Preliminaries

In the fourth chapter we study the augmented Maxwell system




∂ ~E/∂t− rot ~B + ∇h = − ~J,

∂ ~B/∂t+ rot ~E + ∇q = − ~G,

∂h/∂t+ div ~E = ρ,

∂q/∂t+ div ~B = µ

(4.1)

in a model cone and in a bounded domain with conical point. The system is
endowed it with the inhomogeneous boundary conditions

~ν × ~E = ~C, 〈 ~B, ~ν〉 = δ, h = ω, (4.2)

where ~ν is the unit outward normal and ~C is tangent to the boundary. The system
(4.1) is rewritten in the short form

∂u/∂t+ A(∂)u = f, (4.3)

where u = ( ~E, ~B, h, q)T , f = (− ~J, − ~G, ρ, µ)T , and ∂ = (∂x1
, ∂x2

, ∂x3
).

Let τ = σ − iγ, where σ ∈ R, γ > 0. Applying Ft→τ to the problem (4.1), (4.2),
we obtain the problem with parameter in the cone K (in the domain G):

{
τ û+ A(Dx)û = −if̂ ,

Γû = ĝ.

Let us rewrite this problem as follows

M(Dx, τ)u = f, (4.4)

Γu = g, (4.5)
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where M(Dx, τ) = τ + A(Dx). Note that for the problem (4.4), (4.5) the Green
formula (1.9) is rewritten in the form

(
M(Dx, τ)u, v

)
K

+
(
Γu, Tv

)
∂K

=
(
u,M(Dx, τ)v

)
K

+
(
Tu,Γv

)
∂K

, (4.6)

where T = −iT0. Considering the problem (4.4), (4.5) in the cone K, we can
change the variables η = (|τ |x1, |τ |x2, |τ |x3). Denote τ/|τ | by θ, put U(η, τ) =
u(|τ |−1η, τ), F (η, τ) = |τ |−1f(|τ |−1η, τ), and G(η, τ) = g(|τ |−1η, τ). Thus the
problem (4.4), (4.5) can be rewritten in the form

M(Dη, θ)U = F, (4.7)

ΓU = G. (4.8)

With the problem (4.4), (4.5) we associate the operator pencil A considered in
Chapter 2. In this chapter we make use of the functions us,k defined by (2.16) and
the formal series Vs,k, Us,k defined by (2.21), (2.29).

4.2 Energy estimate

In this section we obtain a global energy estimate for solutions to the problem
(4.4), (4.5) in a domain with smooth boundary and in a class of cones in space.

4.2.1 The main identity

In the fixed cartesian coordinates the operator A(∂) can be written in the form

A(∂) =
3∑

k=1

gk∂k, where {gk} are the constant real symmetric 8× 8 – matrices. Let

us rewrite the equation (4.3):

3∑

α=0

8∑

j=1

gα
ij∂αuj = fi, i = 1, .., 8;

by ∂0 and g0 denote ∂t and I (the identity matrix) respectively. Consider the
following identity

∂α{rikukg
α
ijuj} = ∂α(rikuk)g

α
ijuj + rikukg

α
ij∂αuj,

where R = {rik} is a real 8× 8 – matrix. By z we denote the complex conjugate of
z. Note that repeated indices imply summation; here α = 0, .., 3 and i, j, k = 1, .., 8.
Multiplying both sides by e−2γt, we get

∂α{e
−2γtrikukg

α
ijuj} + 2γe−2γtrikukui

= e−2γt∂α(rikuk)g
α
ijuj + e−2γtrikukg

α
ij∂αuj.

(4.9)

Let Ω ⊂ R
3 be a domain with smooth boundary and let u ∈ C∞

c (Ω × R,C8). We
integrate (4.9) over Ω × R, applying the divergence theorem of Gauss to the first
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We see that
Pu = (~ν × [~u× ~ν], ~ν〈~v, ~ν〉3, h, 0)T .

Note that the vector Pu corresponds to the boundary conditions (4.2) for the vector
u. Let Q = I − P , then we have

Qu = (~ν〈~u, ~ν〉3, ~ν × [~v × ~ν], 0, q)T .

Taking into account the formulas for Pu and Qu, we obtain

P +Q = I, 〈Pu,Qv〉8 = 0,
P 2 = P, Q2 = Q.

Therefore P,Q are orthogonal projections and we have the decomposition

C
8 = RP ⊕ RQ,

where by RL we denote the range of L. Using the explicit formulas for A(~ν), P,Q,
we get

A(~ν)Pu = (~νh, ~ν × [~ν × [~u× ~ν]], 0, 〈~v, ~ν〉3)
T ,

A(~ν)Qu = (−~ν × [~ν × [~v × ~ν]], ~νq, 〈~u, ~ν〉3, 0)T ,
A(~ν)Pu⊥RP, A(~ν)Qu⊥RQ.

These formulas imply the following representation for the matrix A(~ν) in a basis
adapted to the decomposition C

8 = RP ⊕ RQ :

A(~ν)u =

(
0 B1

B2 0

)(
U
V

)
, where u =

(
U
V

)
,

Pu =

(
U
0

)
∈ RP, Qu =

(
0
V

)
∈ RQ.

Since A(~ν) is a real symmetric matrix and A(~ν)A(~ν) = I, it follows that

A(~ν) =

(
0 B

BT 0

)
, BBT = BTB = I.

Now we choose the matrix R in (4.10). Let R = I, then we get

〈A(~ν)u,Ru〉8 = 〈

(
0 B

BT 0

)(
U
V

)
,

(
U
V

)
〉8 = 2Re 〈BU, V 〉4 . (4.11)

Let R = R(~ν) such that

R(~ν) =

(
0 B

−BT 0

)
,

then we obtain

〈A(~ν)u,Ru〉8 =
〈( 0 B

BT 0

)(
U
V

)
,

(
0 B

−BT 0

)(
U
V

)〉

8

=

= |BV |2 − |BTU |2.

(4.12)
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Let us find the representation of the matrix R(~ν) in the initial standard basis. In
a basis adapted to the decomposition C

8 = RP ⊕ RQ we have

P =

(
I 0
0 0

)
, Q =

(
0 0
0 I

)
, A(~ν) =

(
0 B

BT 0

)
, R(~ν) =

(
0 B

−BT 0

)
,

A(~ν)P =

(
0 0

BT 0

)
, A(~ν)Q =

(
0 B
0 0

)
.

It now follows that R(~ν) = −A(~ν)P + A(~ν)Q. Finally, applying the formulas for
A(~ν), P,Q, we obtain

R(~ν) =




0 0 0 0 ν3 −ν2 −ν1 0
0 0 0 −ν3 0 ν1 −ν2 0
0 0 0 ν2 −ν1 0 −ν3 0
0 ν3 −ν2 0 0 0 0 ν1

−ν3 0 ν1 0 0 0 0 ν2

ν2 −ν1 0 0 0 0 0 ν3

ν1 ν2 ν3 0 0 0 0 0
0 0 0 −ν1 −ν2 −ν3 0 0




. (4.13)

Using the formulas for A(~ν) and R(~ν), it can be easily checked that

A(~a)R(~b) = −R(~b)A(~a) (4.14)

for all ~a,~b ∈ C
3.

4.2.3 Energy estimate for the problem (4.4), (4.5) in Ω

If we replace R by I in (4.10) and recall (4.11), we get

2γ

∫

Ω

∫

R

dx dt e−2γt|u|2 =

= 2Re

∫

Ω

∫

R

dx dt e−2γt〈u,Mu〉8 − 2Re

∫

∂Ω

∫

R

dS dt e−2γt〈BV,U〉4 .

Let us apply the Cauchy inequality to the first term on the right

γ2

∫

Ω

∫

R

dx dt e−2γt|u|2 ≤

≤ c
(∫

Ω

∫

R

dx dt e−2γt|Mu|2 − 2γRe

∫

∂Ω

∫

R

dS dt e−2γt〈BV,U〉4

)
.

(4.15)

Let ζ ∈ C∞(Ω) such that ζ = 1 on the set {y ∈ Ω : dist(y, ∂Ω) < δ} and
ζ = 0 on {y ∈ Ω : dist(y, ∂Ω) > 2δ}, where δ is a small positive number.
Let ~n ∈ C∞(Ω) be a smooth vector field such that ~n|∂Ω = ~ν. In (4.10) we put
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term on the left. Then we obtain∫

∂Ω

∫

R

dS dt e−2γtrikuk(g
1
ijν1 + g2

ijν2 + g3
ijν3)uj + 2γ

∫

Ω

∫

R

dx dt e−2γtrikukui

=

∫

Ω

∫

R

dx dt e−2γt∂α(rikuk)g
α
ijuj +

∫

Ω

∫

R

dx dt e−2γtrikukg
α
ij∂αuj,

where ~ν = (ν1, ν2, ν3) is the unit outward normal to Ω. Introduce the notation

A(~ν) =
3∑

i=1

giνi and M =
3∑

α=0

gα∂α.

Using these notations we rewrite the last identity in the vector form
∫

∂Ω

∫

R

dS dt e−2γt〈A(~ν)u,Ru〉8 + 2γ

∫

Ω

∫

R

dx dt e−2γt〈u,Ru〉8

=

∫

Ω

∫

R

dx dt e−2γt〈u,MRu〉8 +

∫

Ω

∫

R

dx dt e−2γt〈Mu,Ru〉8.
(4.10)

Our aim is to estimate the energy ‖u; L2(Ω)‖ by appropriate norms of the right-
hand side {Mu,Γu}. For this purpose we investigate the structure of the matrix
A(~ν) and choose a matrix R. Then, applying the main integral identity (4.10), we
arrive at the required energy estimate.

4.2.2 Structure of the matrix A(~ν)

For the matrix A(~ν) we have the formula

A(~ν) =




0 0 0 0 ν3 −ν2 ν1 0
0 0 0 −ν3 0 ν1 ν2 0
0 0 0 ν2 −ν1 0 ν3 0
0 −ν3 ν2 0 0 0 0 ν1

ν3 0 −ν1 0 0 0 0 ν2

−ν2 ν1 0 0 0 0 0 ν3

ν1 ν2 ν3 0 0 0 0 0
0 0 0 ν1 ν2 ν3 0 0




.

Then A(~ν)A(~ν) = I and A(~ν) takes the vector u = (~u, ~v, h, q)T to

A(~ν)u = (−[~ν × ~v] + ~νh, [~ν × ~u] + ~νq, 〈~u, ~ν〉3, 〈~v, ~ν〉3)
T .

Consider the 8 × 8 matrix

P =




1 − ν1ν1 −ν1ν2 −ν1ν3 0 0 0 0 0
−ν2ν1 1 − ν2ν2 −ν2ν3 0 0 0 0 0
−ν3ν1 −ν3ν2 1 − ν3ν3 0 0 0 0 0

0 0 0 ν1ν1 ν1ν2 ν1ν3 0 0
0 0 0 ν2ν1 ν2ν2 ν2ν3 0 0
0 0 0 ν3ν1 ν3ν2 ν3ν3 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0




.
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R = ζR(~n), where R(~n) is defined by the formula (4.13) with ~n instead of ~ν.
Recall that A(~ν) = g1ν1 + g2ν2 + g3ν3. Then gi = A(~ei), where {~ei}

3
i=1 is the

standard basis in R
3. Using (4.14), we get

MRu = R∂tu+
3∑

i=1

gi(∂iR)u+
3∑

i=1

giR∂iu =

= R∂tu+
3∑

i=1

gi(∂iR)u−
3∑

i=1

Rgi∂iu =

= 2R∂tu+ Su−RMu,

where S =
3∑

i=1

gi(∂iR). Now if we recall (4.12), we rewrite (4.10) in the form

∫

∂Ω

∫

R

dS dt e−2γt(|BV |2 − |BTU |2) + 2γ

∫

Ω

∫

R

dx dt e−2γt〈u,Ru〉8 =

=

∫

Ω

∫

R

dx dt e−2γt〈Mu,Ru〉8 −

∫

Ω

∫

R

dx dt e−2γt〈u,RMu〉8

+

∫

Ω

∫

R

dx dt e−2γt〈u, Su〉8 + 2

∫

Ω

∫

R

dx dt e−2γt〈u,R∂tu〉8.

(4.16)

Let us take the real part of the identity (4.16) and apply the Cauchy inequality to
the term with S. Then we have

∫

∂Ω

∫

R

dS dt e−2γt|BV |2 ≤ c
(∫

∂Ω

∫

R

dS dt e−2γt|BTU |2+

+2Re

∫

Ω

∫

R

dx dt e−2γt〈Mu,Ru〉8 +

∫

Ω

∫

R

dx dt e−2γt|u|2+

+2Re

∫

Ω

∫

R

dx dt e−2γt〈u,R∂tu〉8

)
.

(4.17)

In (4.15) and (4.17) we take u(x, t) = ψ(t)v(x) with ψ, e−γtψ ∈ S(R) and v ∈

C∞(Ω,C8). Introduce the notations Ũ , Ṽ such that U = ψŨ, V = ψṼ . Applying
the Fourier transform Ft→τ , we obtain

γ2

∫

Ω

∫

R

dx dσ |ψ̂(σ − iγ)|2 · |v(x)|2 ≤

≤ c
(∫

Ω

∫

R

dx dσ |ψ̂(σ − iγ)|2 · |M(Dx, τ)v(x)|
2+

+2γ

∫

∂Ω

∫

R

dS dσ |ψ̂(σ − iγ)|2 · |BṼ (x)| · |Ũ(x)|
)
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and
∫

∂Ω

∫

R

dS dσ |ψ̂(σ − iγ)|2 · |BṼ (x)|2 ≤ c
(∫

∂Ω

∫

R

dS dσ |ψ̂(σ − iγ)|2 · |BT Ũ(x)|2+

+

∫

Ω

∫

R

dx dσ |ψ̂(σ − iγ)|2 · |M(Dx, τ)v(x)| · |v(x)|+

+

∫

Ω

∫

R

dx dσ |ψ̂(σ − iγ)|2 · |v(x)|2 +

∫

Ω

∫

R

dx dσ |ψ̂(σ − iγ)|2 · |τ | · |v(x)|2
)
.

Since ψ is arbitrary, we obtain the estimates

γ2

∫

Ω

dx |v(x)|2 ≤ c
(∫

Ω

dx |M(Dx, τ)v(x)|
2 + γ

∫

∂Ω

dS |BṼ (x)| · |Ũ(x)|
)

(4.18)

and
∫

∂Ω

dS |BṼ (x)|2 ≤ c
(∫

∂Ω

dS |BT Ũ(x)|2 +

∫

Ω

dx |M(Dx, τ)v(x)| · |v(x)|+

+

∫

Ω

dx |v(x)|2 + |τ |

∫

Ω

dx |v(x)|2
)
.

(4.19)

Let us remember that for x ∈ ∂Ω we have

v =

(
Ũ

Ṽ

)
, Pv =

(
Ũ
0

)
, Qv =

(
0

Ṽ

)
,

and Pv corresponds to the boundary conditions (4.2). This implies that

|Ũ | = |Γv| and ‖Ũ ;L2(∂Ω)‖ = ‖Γv;L2(∂Ω)‖.

Similarly we obtain

|Ṽ | = |Tv| and ‖Ṽ ;L2(∂Ω)‖ = ‖Tv;L2(∂Ω)‖.

Applying the Cauchy inequality to the surface integral in (4.18), we get

γ

∫

∂Ω

dS |BṼ (x)| · |Ũ(x)| ≤
|τ |

ε
‖Γv;L2(∂Ω)‖2 +

εγ2

|τ |
‖BṼ ;L2(∂Ω)‖2, (4.20)

where ε is a sufficiently small positive number. Let γ ≥ 1. Combining (4.18),(4.19),
and (4.20) we obtain

γ2‖v;L2(Ω)‖2 +
γ2

|τ |
‖Tv;L2(∂Ω)‖2 ≤

≤ c{‖M(Dx, τ)v;L2(Ω)‖2 + |τ | · ‖Γv;L2(∂Ω)‖2}.

(4.21)

The inequality (4.21) is called the global energy estimate for the problem (4.4),
(4.5) in Ω.
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4.2.4 Energy estimate for the problem (4.4), (4.5) in K and in G

In this subsection we show that the global energy estimate (4.21) is valid in a
certain class of cones in space. Now we introduce this class.

Definition 4.1. A cone K ⊂ R
3 is called admissible if there exists a constant

vector ~f ∈ R
3 such that 〈~f, ~ν〉 ≥ c0 > 0 for all outward normals to ∂K.

It is not hard to find a nonadmissible cone, considering nonconvex sets K ∩ S2. In
what follows we only deal with admissible cones.

Definition 4.2. Let D(K) denote the lineal spanned by the functions
w ∈ C∞

c (K \ O,C8) and by the functions of the form χus,k for Imλk < 1 (see
(2.16)). Here χ ∈ C∞

c (K) is a cut-off function such that χ = 1 near the point O.

Note that for any function u ∈ D(K) we have u ∈ L2(K), u|∂K ∈ L2(∂K), and
A(Dx)u ∈ L2(K). Now we prove the first main result of this section.

Proposition 4.3. For any function v ∈ D(K) the estimate

γ2‖v;L2(K)‖2 +
γ2

|τ |
‖Tv;L2(∂K)‖2 ≤

≤ c{‖M(Dx, τ)v;L2(K)‖2 + |τ | · ‖Γv;L2(∂K)‖2}

(4.22)

holds, where τ = σ − iγ with σ ∈ R, γ > 0. The constant c is independent of the
parameter τ and of the function v.

Proof. Let u(x, t) = ψ(t)v(x) with ψ, e−γtψ ∈ S(R) and v ∈ D(K). We use the

same notations U, V, Ũ , Ṽ as in the previous subsection. The estimate (4.18) in
K is proved in the same way as in Ω. Now we turn to the estimate (4.19) in K.

Let ~f ∈ R
3 be a constant vector from the condition imposed on the cone K (see

Definition 4.1). We put R = R( ~f) in (4.10). Let us remark that R( ~f) is a constant

matrix, then
3∑

i=1

gi(∂iR) = 0. Since MRu = 2R∂tu−RMu, we get

∫

∂K

∫

R

dS dt e−2γt〈A(~ν)u,R(~f)u〉8 + 2γ

∫

K

∫

R

dx dt e−2γt〈u,R(~f)u〉8 =

=

∫

K

∫

R

dx dt e−2γt〈Mu,R(~f)u〉8 −

∫

K

∫

R

dx dt e−2γt〈u,R(~f)Mu〉8

+2

∫

K

∫

R

dx dt e−2γt〈u,R(~f)∂tu〉8.

(4.23)

For the vector ~f we have ~f = s(x)~ν(x) + ~σ(x), x ∈ ∂K \ O, where ~ν is the
unit outward normal to ∂K, ~σ is tangent to ∂K, and the function s satisfies the
inequalities 0 < c0 ≤ s(x) ≤ C for x ∈ ∂K. Then we have R( ~f) = sR(~ν) + R(~σ).
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Using the explicit formulas for A(~ν) and R(~σ), it is not hard to prove that

|〈A(~ν)u,R(~σ)u〉8| ≤ c|U | · |V |.

Since BBT = BTB = I, we get

c1|B
TU | ≤ |U | ≤ c2|B

TU |, c1|BV | ≤ |V | ≤ c2|BV |,

and

|U | · |V | ≤ c(ε|BV |2 +
1

ε
|BTU |2), (4.24)

where ε > 0 is sufficiently small. Let us take the real part of (4.23) and apply
(4.12), (4.24), then we obtain

∫

∂K

∫

R

dS dt e−2γt|BV |2 ≤ c
(∫

∂K

∫

R

dS dt e−2γt|BTU |2+

+2Re

∫

Ω

∫

R

dx dt e−2γt〈Mu,R(~f)u〉8 + 2Re

∫

Ω

∫

R

dx dt e−2γt〈u,R(~f)∂tu〉8

)
.

Since ψ is arbitrary, after the Fourier transform we arrive at the estimate
∫

∂K

dS |BṼ (x)|2 ≤ c
(∫

∂K

dS |BT Ũ(x)|2 +

∫

K

dx |M(Dx, τ)v(x)| · |v(x)|+

+|τ |

∫

K

dx |v(x)|2
)
.

(4.25)

Combining (4.18) for K, (4.20), and (4.25), we obtain (3.13).

Remark 4.4. Proposition 4.3 remains valid with τ instead of τ .

To prove this we put −γ instead of γ in (4.10). Then we repeat the proofs with
obvious changes.

Finally, we consider the problem (4.4), (4.5) in G and we prove the result
similar to Proposition 4.3. Let us remember that G ⊂ R

3 is a domain such that G
coincides with an admissible cone K in a neighborhood of the point O.

Definition 4.5. Let D(G) denote the lineal spanned by the functions w ∈ C∞
c (G \

O) and by the functions of the form χus,k for Imλk < 1. Here χ ∈ C∞(G) is a
cut-off function such that χ = 1 near the point O and χ = 0 outside a neighborhood
where G coincides with K.

Proposition 4.6. For any function v ∈ D(G) the estimate

γ2‖v;L2(G)‖2 +
γ2

|τ |
‖Tv;L2(∂G)‖2 ≤

≤ c{‖M(Dx, τ)v;L2(G)‖2 + |τ | · ‖Γv;L2(∂G)‖2}

(4.26)

holds. Here τ = σ− iγ, σ ∈ R, γ > γ0 with sufficiently large γ0. The constant c is
independent of the parameter τ and of the function v.
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Proof. Let χ + ζ = 1 be a partition of unity on G such that χ = 1 near the point
O and χ = 0 outside a neighborhood where G coincides with K. Then we have

γ2‖v;L2(G)‖2 +
γ2

|τ |
‖Tv;L2(∂G)‖2 ≤ (γ2‖χv;L2(K)‖2 +

γ2

|τ |
‖T (χv);L2(∂K)‖2)+

+(γ2‖ζv;L2(G)‖2 +
γ2

|τ |
‖T (ζv);L2(∂G)‖2).

For the first expression in brackets we use the estimate (4.22). The second ex-
pression in brackets is estimated by the inequality (4.21) for domains with smooth
boundary. Therefore we obtain

γ2‖v;L2(G)‖2 +
γ2

|τ |
‖Tv;L2(∂G)‖2 ≤

≤ c{‖M(Dx, τ)(χv);L2(K)‖2 + |τ | · ‖Γ(χv);L2(∂K)‖2+
+‖M(Dx, τ)(ζv);L2(G)‖2 + |τ | · ‖Γ(ζv);L2(∂G)‖2} ≤

≤ c{‖M(Dx, τ)v;L2(G)‖2 + |τ | · ‖Γv;L2(∂G)‖2+
+‖[A(Dx), χ]v;L2(G)‖2 + ‖[A(Dx), ζ]v;L2(G)‖2}.

For the commutators we get

‖[A(Dx), χ]v;L2(G)‖2 ≤ c‖v;L2(G)‖2, ‖[A(Dx), ζ]v;L2(G)‖2 ≤ c‖v;L2(G)‖2.

By choosing a large γ, we can rearrange the term c‖v;L2(G)‖2 to the left side.

We note that the obtained estimates do not contain the boundary Sobolev
spaces of fractional orderHs(∂K) andHs(∂G). One might expect the order s = 1/2
considering the elliptic problem or applying some kind of trace theorems. The
order s = −1/2 could appear if the estimate was proved applying some ”duality”
technique. But the original problem is not elliptic, it is hyperbolic and we treated
it applying completely distinct methods. In the following section these estimates
will lead us to ”weak” operator of the problem with parameter.

4.3 Operator of problem

In this section we investigate the operator of the problem (4.4), (4.5) in spaces
related to (4.22). In what follows we consider only the problem in K. However, all
results remain valid for the problem in G as well. At the end of the section we give
the necessary remarks.

Let us introduce the function space corresponding to the boundary operator
Γ by

L2,T (∂K) =

=
{

(~u, v, h) : v, h ∈ L2(∂K); ~u ∈ L2(∂K,C
3) and 〈~u, ~ν〉3 = 0 a.e. on ∂K

}
.
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Further we often use function spaces of vector-valued functions, e.g., L2(K,C
8),

H1
β(K, |τ |,C8). As a rule, we omit the symbol C

k and keep the simple notations
L2(K), H1

β(K, |τ |).
We associate with the problem (4.4), (4.5) in K the unbounded operator

v 7→ M(τ)v := {M(Dx, τ)v,Γv} with domain D(K) (see Definition 4.2) acting
from L2(K) to L2(K) × L2,T (∂K). We claim that M(τ) admits closure. Indeed,
let {vm} ⊂ D(K), vm → 0 in L2(K), and {M(Dx, τ)vm,Γvm} → {f, g} in L2(K)×
L2,T (∂K) as m → ∞. Then (M(D, τ)vm, w)

K
= (vm,M(Dx, τ)w)

K
for any w ∈

C∞
c (K). Letting m → ∞, we obtain (f, w)

K
= 0, hence f = 0. Now let w ∈

C∞
c (K \ O) such that Γw = 0. Applying the Green formula (4.6), we get

(M(Dx, τ)vm, w)
K

+ (Γvm, Tw)∂K
= (vm,M(Dx, τ)w)

K
+ (Tvm,Γw)

K
.

As m → ∞ we have (g, Tw)∂K
= 0, hence g = 0. In what follows we deal with

the closed operator only, keeping the notations M(τ) and DM(τ) for the closed
operator and its domain. Using (4.22) it is easy to prove that for any v ∈ DM(τ)
such that M(τ)v = {f, g} we have

γ2‖v;L2(K)‖2 ≤ c{‖f ;L2(K)‖2 + |τ | · ‖g;L2,T (∂K)‖2}.

This estimate implies the following result.

Proposition 4.7. A) Ker M(τ) = {0},
B) The range RM(τ) is closed in L2(K) × L2,T (∂K).

Let us now prove that the range RM(τ) of M(τ) coincides with L2(K)×L2,T (∂K).
To this end we investigate the kernel of adjoint operator.

Proposition 4.8. RM(τ) = L2(K) × L2,T (∂K).

Proof. It suffices to verify that KerM(τ)∗ = {0}. Suppose that {w, z} ∈
KerM(τ)∗. Now we apply local properties of solutions to elliptic problems and
properties of adjoint operators to elliptic problems (see [28, Chapter 1]). Then
we have w ∈ C∞(K \ O) and z = Tw while w satisfies the homogeneous problem
adjoint with respect to the Green formula (4.6):

M(Dx, τ)w = 0, x ∈ K, (4.27)

Γw = 0, x ∈ ∂K. (4.28)

Moreover, in a neighborhood of O, the function w admits the asymptotic represen-
tation

w = χ
∑

k

∑

s=1,..,Nk

cs,kVs,k,N + h, (4.29)

where Vs,k is defined by (2.21). Since {w, Tw} ∈ L2(K)×L2(∂K), the asymptotics
contains only Vs,k,N such that Imλ−k < 1 (this condition implies that χVs,k,N ∈
L2(K) and χVs,k,N |∂K ∈ L2(∂K), where χ ∈ C∞

c (K) such that χ = 1 near the point
O).
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Let ζn ∈ C∞(K) such that ζn = 1 for r < n and ζn = 0 for r > n+ 1. Applying the
estimate (4.22) and Remark 4.4 to ζnw, we obtain

γ2‖ζnw;L2(K)‖2 ≤ c‖[M(Dx, τ), ζn]w;L2(K)‖2.

The commutator is estimated as follows

‖[M(Dx, τ), ζn]w;L2(K)‖ ≤ c‖w;L2(K ∩ {n < r < n+ 1})‖.

Since w ∈ L2(K), then ‖w;L2(K ∩ {n < r < n + 1})‖ → 0 as n → ∞. Hence
w = 0.

Definition 4.9. A solution of the equation M(τ)v = {f, g} with {f, g} ∈ L2(K)×
L2,T (∂K) is called a strong solution of the problem (4.4), (4.5) in K.

In the same way, we define strong solutions of the problem (4.4), (4.5) in G. The
next assertion summarizes the results of this section.

Theorem 4.10. For any {f, g} ∈ L2(K) × L2,T (∂K) and every τ = σ − iγ (σ ∈
R, γ > 0) there exists a unique strong solution v to the problem (4.4), (4.5) in K

with right-hand side {f, g}. The solution satisfies

γ2‖v; L2(K)‖ ≤ c{‖f ; L2(K)‖2 + |τ | · ‖g; L2(∂K)‖2},

where c is independent of τ and of v.

Remark 4.11. Let γ ≥ γ0 with sufficiently large γ0. Then Theorem 4.10 is true
for the problem (4.4), (4.5) in G as well.

Remark 4.12. Theorem 4.10 (for K and G) remains true with τ instead of τ .

4.4 Weighted combined estimate

In this section, we prove a more informative a priori estimate for the problem (4.4),
(4.5). This estimate will be used in the study of the asymptotics of solutions near
the point O.

Definition 4.13. Let Dβ(K) with β ≤ 1 stand for the lineal spanned by the
functions w ∈ C∞

c (K \ O,C8) and by the functions of the form χus,k such that
Imλk < min{1, β + 1/2}. Here χ ∈ C∞

c (K) is a cut-off function such that χ = 1
near the point O.

The lineal Dβ(G) is defined in a similar way.



77

4.4.1 The estimate in the cone K

Proposition 4.14. Let β ≤ 1 and let the number λ = i(β+1/2) be regular for the
pencil A. Then for v ∈ Dβ(K) the inequality

γ2‖v;H0
β(K)‖2 + ‖χτv;H

1
β(K, |τ |)‖2 ≤ c

(
‖M(Dx, τ)v;H

0
β(K)‖2+

+|τ | · ‖Γv;H0
β(∂K)‖2 + ‖χτΓv;H

1/2
β (∂K)‖2+

+(|τ |1−β/γ)
2
{‖M(Dx, τ)v;L2(K)‖2 + |τ | · ‖Γv;L2(∂K)‖2}

) (4.30)

holds, where χτ (r) = χ(|τ |r) and χ ∈ C∞
c (K) is a fixed cut-off function such that

χ = 1 near the point O. The constant c is independent of v and τ .

Proof. Step 1. An estimate near the vertex of K. We consider problem (4.7), (4.8)
in K. According to Proposition 1.2, the problem {A(Dη), Γ} is elliptic. Then the
following result holds (see [28, Chapter 3, §5.2]) : if the line Imλ = β+1/2 contains
no eigenvalues of the pencil corresponding to the problem under consideration (the
pencil A in this case), then a function U ∈ H1

β(K, 1) satisfies the inequality

‖χU ;H1
β(K)‖

2
≤ c{‖A(Dη)χU ;H0

β(K)‖2 + ‖ΓχU ;H
1/2
β (∂K)‖2}.

Since A(Dη)χU = χA(Dη)U + [A(Dη), χ]U and M(Dη, θ) = θ + A(Dη), the in-
equality can be rewritten in the form

‖χU ;H1
β(K, 1)‖

2
≤ c{‖χM(Dη, θ)U ;H0

β(K)‖2+

+‖ΓχU ;H
1/2
β (∂K)‖2 + ‖ψU ;H0

β(K)‖2},
(4.31)

where ψ ∈ C∞
c (K), χψ = χ.

Step 2. An estimate far from the vertex. On this step we prove the inequality

γ2

|τ |2
‖κ∞U ;H0

β(K)‖2 ≤ c{‖κ∞M(Dη, θ)U ;H0
β(K)‖2+

+‖ψ∞U ;H0
β−1(K)‖2 + ‖κ∞ΓU ;H0

β(∂K)‖2}
(4.32)

for any β ∈ R and every U ∈ H1
β(K, 1), where the constant c is independent of U

and τ . The functions κ∞ and ψ∞ are smooth in K, equal to 0 near the vertex and
1 in a neighborhood of infinity, while κ∞ψ∞ = κ∞.

Let κ, ψ ∈ C∞(K) such that supp κ ⊂ {(x1, x2, x3) ∈ K : 1/2 < r < 2},
supp ψ ⊂ {(x1, x2, x3) ∈ K : 1/4 < r < 4}, and κψ = κ. The application of (4.22)
yields

γ2‖κv;L2(K)‖2 ≤ {‖κM(Dx, τ)v;L2(K)‖2 + ‖ψv;L2(K)‖2 + |τ | · ‖κΓv;L2(∂K)‖2}.

If we replace v by the function (x1, x2, x3) 7→ U ε(x1, x2, x3) = U(x1/ε, x2/ε, x3/ε),
and change τ for τ/(|τ |ε) with ε > 0, we obtain

(γ/|τ |ε)2‖κU ε;L2(K)‖2 ≤ c{‖κM(Dx, τ/|τ |ε)U
ε;L2(K)‖2+

+‖ψU ε;L2(K)‖2 + (1/ε)‖κΓU ε;L2(∂K)‖2}.
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After the change of variables (x1, x2, x3) 7→ (η1, η2, η3) = (x1/ε, x2/ε, x3/ε) we
arrive at

γ2

|τ |2
‖κεU ;L2(K)‖2 ≤ c{‖κεM(Dη, θ)U ;L2(K)‖2+

+ε2‖ψεU ;L2(K)‖2 + ‖κεΓU ;L2(∂K)‖2},

where κε(η) = κ(εη), ψε(η) = ψ(εη). Multiplying the inequality by ε−2β, putting
ε = 2−j, j = 1, 2, 3, ..., and adding all these inequalities, we obtain (4.32).

Step 3. An estimate in intermediate zone. Let κ∞ = 1 outside the support of
χ. Since

(γ/|τ |)‖χU ;H0
β(K)‖ ≤ ‖χU ;H0

β(K)‖ ≤ ‖χU ;H1
β(K, 1)‖,

then, summing (4.31) and (4.32), we obtain the inequality

γ2

|τ |2
‖U ;H0

β(K)‖2 + ‖χU ;H1
β(K, 1)‖2 ≤ c{‖M(Dη, θ)U ;H0

β(K)‖2+

+‖ψ∞U ;H0
β−1(K)‖2 + ‖ψU ;H0

β(K)‖2 + ‖κ∞ΓU ;H0
β(∂K)‖2 + ‖χΓU ;H

1/2
β (∂K)‖2}.

Now we estimate the term on the right

‖ψU ;H0
β(K)‖2 ≤

∫

|η|<a

|η|2β|U |2 dη =

= (

∫

0≤|η|≤ε

+

∫

ε≤|η|≤a

)|η|2β|U |2 dη.

The first integral is majorized by cε2‖χU ;H1
β(K)‖2. We can rearrange it to the left

side of the inequality, choosing ε sufficiently small. The second integral does not
exceed c‖ψ∞U ;H0

β−1(K)‖2. Now the estimate can be rewritten in the form

γ2

|τ |2
‖U ;H0

β(K)‖2 + ‖χU ;H1
β(K, 1)‖2 ≤ c{‖M(Dη, θ)U ;H0

β(K)‖2+

+‖ψ∞U ;H0
β−1(K)‖2 + ‖κ∞ΓU ;H0

β(∂K)‖2 + ‖χΓU ;H
1/2
β (∂K)‖2}.

After the change of variables (η1, η2, η3) 7→ (x1, x2, x3) = (|τ |−1η1, |τ |
−1η2, |τ |

−1η3)
we obtain

γ2‖v;H0
β(K)‖2 + ‖χτv;H

1
β(K, |τ |)‖2 ≤ c{‖M(Dx, τ)v;H

0
β(K)‖2+

+‖ψ∞,τv;H
0
β−1(K)‖2 + |τ | · ‖κ∞,τΓv;H

0
β(∂K)‖2 + ‖χτΓv;H

1/2
β (∂K)‖2},

where ψ∞,τ (x) = ψ∞(|τ |x), χτ (x) = χ(|τ |x), v(x1, x2, x3) = U(|τ |x1, |τ |x2, |τ |x3).
Note that

‖κ∞,τΓv;H
0
β(∂K)‖ ≤ ‖Γv;H0

β(∂K)‖.

Taking the inequalities (4.22) and β ≤ 1 into account, we get

‖ψ∞,τv;H
0
β−1(K)‖2 ≤

∫

b/|τ |<r

r2(β−1)|v|2 dx ≤

≤ c |τ |2(1−β)

∫

K

|v|2 dx ≤ c
|τ |2(1−β)

γ2

(
‖M(Dx, τ)v;L2(K)‖2 + |τ | · ‖Γv;L2(∂K)‖2

)
,

which leads to (4.30).
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By DHβ(K, τ) we denote the completion of the set C∞
c (K\O,C8) with respect

to the norm

‖v; DHβ(K, τ)‖ =
(
γ2‖v;H0

β(K)‖
2
+ ‖χτv;H

1
β(K, |τ |)‖

2
)1/2

.

By RHβ(K, τ) we denote the completion of the set C∞
c (K \O,C8)×C∞

c (K \O,C5)
with respect to the norm

‖{f, g}; RHβ(K, τ)‖ =
(
‖f ;H0

β(K)‖2+

+|τ | · ‖g;H0
β(∂K)‖2 + ‖χτg;H

1/2
β (∂K)‖2+

+(|τ |1−β/γ)
2
(‖f ;L2(K)‖2 + |τ | · ‖g;L2(∂K)‖2)

)1/2

.

Here χτ (x1, x2, x3) = χ(|τ |x1, |τ |x2, |τ |x3) and χ ∈ C∞
c (K) is a cut-off function that

is equal to 1 near the conical point O. The spaces DHβ(G, τ) and RHβ(G, τ) are
defined in a similar way. Using these new notations, one can rewrite the estimate
(4.30) in the form

‖v; DHβ(K, τ)‖ ≤ c ‖{M(Dx, τ)v,Γv}; RHβ(K, τ)‖. (4.33)

4.4.2 The estimate in G

Proposition 4.15. Let β ≤ 1 and let the number λ = i(β+1/2) be regular for the
pencil A. Assume that γ > γ0 with sufficiently large γ0. Then the inequality

‖v; DHβ(G, τ)‖ ≤ c‖{M(Dx, τ)v,Γv}; RHβ(G, τ)‖ (4.34)

holds for any v ∈ Dβ(G) with a constant c independent of v and τ .

Proof. Let ψ ∈ C∞(G) be a cut-off function that is equal to 1 near O and vanishes
outside the neighborhood where G coincides with K. Since v = ψv + (1 − ψ)v, we
have

‖v; DHβ(G, τ)‖ ≤ ‖ψv; DHβ(K, τ)‖ + ‖(1 − ψ)v; DHβ(G, τ)‖. (4.35)

Estimate the first term on the right. Applying (4.33), we obtain

‖ψv; DHβ(K, τ)‖ ≤ ‖{Mψv,Γψv}; RHβ(K, τ)‖ ≤
≤ c{‖{ψMv, ψΓv}; RHβ(K, τ)‖ + ‖{[M,ψ]v, 0}; RHβ(K, τ)‖},

where M denotes M(Dx, τ). Clearly

‖{ψMv, ψΓv}; RHβ(K, τ)‖ ≤ ‖{Mv,Γv}; RHβ(G, τ)‖.

For the commutator we have

‖{[M,ψ]v, 0}; RHβ(K, τ)‖2 = ‖[M,ψ]v;H0
β(K)‖2 + (|τ |1−β/γ)

2
‖[M,ψ]v;L2(K)‖2

≤ c{‖v;H0
β(G)‖2 + (|τ |1−β/γ)

2
‖v;L2(G)‖2}.
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Taking the estimate (4.26) into account we arrive at

‖{[M,ψ]v, 0}; RHβ(K, τ)‖2 ≤

≤ c
(
‖v;H0

β(G)‖2 + (|τ |1−β/γ)
2
· (1/γ2){‖Mv;L2(G)‖2 + |τ | · ‖Γv;L2(∂G)‖2}

)

≤ c{‖v;H0
β(G)‖2 + (1/γ2)‖{Mv,Γv}; RHβ(G, τ)‖2}.

Finally, for the first term in the right-hand side of (4.35) we get

‖ψv; DHβ(K, τ)‖2 ≤ c
(
(1 + 1/γ2)‖{Mv,Γv}; RHβ(G, τ)‖2 + ‖v;H0

β(G)‖2
)
.

We now estimate the second term in the right-hand side of (4.35). From the
definition of the norm in DHβ(G, τ) it follows that

‖(1 − ψ)v; DHβ(G, τ)‖2 = γ2‖(1 − ψ)v;H0
β(G)‖2 + ‖χτ (1 − ψ)v;H1

β(G, |τ |)‖2.

For sufficiently large γ we have χτ (1 − ψ) ≡ 0 because the supports of the factors
do not overlap. Then we obtain

γ2‖(1 − ψ)v;H0
β(G)‖2 ≤ cγ2‖(1 − ψ)v;L2(G)‖2 ≤

≤ c
(
‖M(1 − ψ)v;L2(G)‖2 + |τ | · ‖(1 − ψ)Γv;L2(∂G)‖2

)
≤

≤ c
(
‖(1 − ψ)Mv;H0

β(G)‖2 + |τ | · ‖(1 − ψ)Γv;H0
β(∂G)‖2 + ‖[M, (1 − ψ)]v;L2(G)‖2

)

≤ c
(
‖{Mv,Γv}; RHβ(G, τ)‖2 + ‖v;H0

β(G)‖2
)
.

Summarizing the obtained estimates, we rewrite (4.35) in the form

‖v; DHβ(G, τ)‖2 ≤ c
(
(1 + 1/γ2)‖{Mv,Γv}; RHβ(G, τ)‖2 + ‖v;H0

β(G)‖2
)
.

Since
‖v;H0

β(G)‖ ≤ (1/γ)‖v; DHβ(G, τ)‖,

we choose a large enough γ and rearrange the term (1/γ)‖v; DHβ(G, τ)‖ to the
left side. As a result, we obtain (4.34).

4.5 The operator of problem in a scale of weighted spaces

In the section, we study the operator of problem (4.4), (4.5) in spaces related to
(4.33), (4.34). We consider the problem in an admissible cone K. The correspond-
ing statements for the problem in G are given at the end of this section.
Let us introduce a subspace of RHβ(K, τ) similar to L2,T (K) by

RHβ,T (K, τ) =
{
{f, g} ∈ RHβ(K, τ) with g = (~u, v, h)

such that 〈~u, ~ν〉3 = 0 a.e. on ∂K
}
.

It is easy to see that for any v ∈ Dβ(K) we have the inclusion {M(Dx, τ)v,Γv} ∈
RHβ,T (K, τ).
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We associate with the problem (4.4), (4.5) in the cone K the operator v 7→
M(τ, β)v := {M(Dx, τ)v,Γv} with domain Dβ(K) such that

M(τ, β) : DHβ(K, τ) 7→ RHβ,T (K, τ).

It can be proved that the operator M(τ, β) admits closure. We keep the notations
M(τ, β) and DM(τ, β) for the closed operator and its domain. If the number
λ = i(β + 1/2) is regular the pencil A and β ≤ 1, then the estimate

‖v,DHβ(K, τ)‖ ≤ c ‖M(τ, β)v,RHβ,T (K, τ)‖

holds for the functions in DM(τ, β). The next proposition immediately follows
from this inequality.

Proposition 4.16. Let β ≤ 1 and let the number λ = i(β + 1/2) be regular for
the pencil A. Then the kernel of the operator KerM(τ, β) is trivial and the range
RM(τ, β) is closed in RHβ,T (K, τ).

Let 1/2 > β1 > β2 > ... be all numbers from ] − ∞, 1/2[ such that λ =
i(βk + 1/2) is an eigenvalue of A. Denote by Sm the sum of the multiplicities of all
the eigenvalues of A in the strip Imλ ∈ [βm + 1/2, β1 + 1/2].

Definition 4.17. A solution to the equation M(τ, β)v = {f, g}, where {f, g} ∈
RHβ,T (K, τ), is called a strong β-solution to the problem (4.4), (4.5) in K with
right-hand side {f, g}.

Theorem 4.18. A) Let β ∈ [β1, 1] and let the number λ = i(β + 1/2) be regular
for the pencil A. Then for any {f, g} ∈ RHβ,T (K, τ) there exists a unique strong
β-solution v of the problem (4.4), (4.5) with right-hand side {f, g} and the estimate

‖v; DHβ(K, τ)‖ ≤ c‖{f, g}; RHβ,T (K, τ)‖

holds. The constant c is independent of v and of τ
B) Assume that β ∈]βm+1, βm[. A strong β-solution of the problem (4.4), (4.5) with
right-hand side {f, g} ∈ RHβ,T (K, τ) exists under the Sm conditions

(f, ws,k)K
+ (g, Tws,k)∂K

= 0,

where {ws,k, Tws,k}
s=1,..,Nk

k=−1,..,−m is a basis in KerM(τ, β)∗. Such a solution satisfies
the estimate in A).

Proof. A) Suppose that {w, z} ∈ KerM(τ, β)∗, where M(τ, β)∗ is the adjoint
operator for M(τ, β) with respect to the extension of the inner product on
L2(K) × L2,T (∂K). Now we apply local properties of solutions to elliptic prob-
lems and properties of adjoint operators to elliptic problems, e.g., see [28, Chapter
1]. Then we have w ∈ C∞(K \ O) and z = Tw, while w satisfies (4.27), (4.28).
Moreover, in a neighborhood of O the asymptotic representation of the form (4.29)
holds. The estimate (4.32) with τ instead of τ implies that w decays more rapidly
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The formal series Us,k is defined by (2.29). The sum (4.37) contains the terms
corresponding to the eigenvalues of A in the strip Imλ ∈ [βm +1/2, β1 +1/2]. The
remainder h decays more rapidly than riλm as r → 0. The number N for each term
is taken sufficiently large so that χriλk+N+1ΨN = o(riλm) as r → 0. The coefficients
ds,k are defined by the formula (see [28, Chapter 3 §5 and Chapter 4 §3 ])

ds,k = i(f, ws,k)K
+ i(g, Tws,k)∂K

.

If {f, g} is in the range RM(τ, β) then the conditions ds,k = 0 in the sum (4.37) are

necessary for the inclusion v ∈ DHβ(K, τ). Thus we have {ws,k, Tws,k}
s=1,..,Nk

k=−1,..,−m ∈
KerM(τ, β)∗. We show that they form a basis in KerM(τ, β)∗. Let {w, Tw} ∈
KerM(τ, β)∗. Then the representation

w = χ
∑

cs,kVs,k,N + h

holds near the point O, the sum contains χVs,k,N corresponding to the eigenvalues
of A in the strip Imλ ∈ [βm + 1/2, β1 + 1/2]. For the remainder h the inclusion
{h, Th} ∈ L2(K) × L2(∂K). We put

z = w −
∑

k=−1,..,−m

∑

s=1,..,Nk

cs,kws,k.

We see that {z, Tz} ∈ L2(K) × L2(∂K), M(Dx, τ)z = 0, and Γz = 0. It is not
hard to prove that z ∈ DM(τ). Applying the estimate (4.22) with τ instead of τ ,
we get z = 0. Then we obtain w =

∑
cs,kws,k.

Remark 4.19. Assume that γ > γ0 with sufficiently large γ0. Then Theorem 4.18
is valid for the problem (4.4), (4.5) in G.

4.6 Asymptotics of solution

Let {f, g} ∈ RHβ,T (G, τ) and let β ∈]βm+1, βm[. Since RHβ,T (G, τ) ⊂ L2(G) ×
L2,T (∂G), then there exists a unique strong solution u to the problem (4.4), (4.5)
in G with right-hand side {f, g} (Theorem 4.10). According to Theorem 4.18 and
Remark 4.19, this solution is in DHβ(G, τ) provided

(
f, ws,k

)
G

+
(
g, Tws,k

)
∂G

= 0

with k = −1, ..,−m and s = 1, .., Nk, where {ws,k, Tws,k}
s=1,..,Nk

k=−1,..,−m is the basis in
Ker M(τ, β)∗ (see Theorem 4.18). For any {f, g}, we obtain an asymptotic formula
for the strong solution with remainder in DHβ(G, τ).

Theorem 4.20. Assume that {f, g} ∈ RHβ,T (G, τ), β ∈]βm+1, βm[, and γ ≥ γ0

with sufficiently large γ0. Then the strong solution u to the problem (4.4), (4.5) in
G with right-hand side {f, g} admits the representation

u = χτ

∑
cs,kUs,k,N + w.
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Here Us,k,N denotes the sum of first N terms of the formal series (2.29), w ∈
DHβ(G, τ), and χτ (r) = χ(|τ |r), while χ is a cut-off function that is equal to 1 near
the point O and vanishes outside the neighborhood where the domain G coincides
with the cone K. The sum consists of the terms corresponding to the eigenvalues
of the pencil A in the strip Imλ ∈ [βm + 1/2, β1 + 1/2]. The number N in each

term is taken large enough to provide the inclusion χriλk+N+1Ψ
(s,k)
N+1 ∈ DHβ(G, τ),

where Ψ
(s,k)
N+1 are the functions from the definition of Us,k (see the formula (2.29)) .

The coefficients cs,k are defined by

cs,k = i
(
f, ws,k

)
G

+ i
(
g, Tws,k

)
∂G
.

The estimates

|cs,k| ≤ c |τ |β+1/2−Im λk‖{f, g}; RHβ,T (G, τ)‖,
‖w; DHβ(G, τ)‖ ≤ c (|τ |/γ)‖{f, g}; RHβ,T (G, τ)‖,

hold with a constant c independent of τ .

Proof. In this proof we use the operators for the problems (4.4), (4.5) in K and G
and for the problem (4.7), (4.8) in K. In order to distinguish all these operators we
slightly change the notations. Namely, we insert the domains into the notations:
M(τ,G), M(τ,K),Mβ(τ,G), Mβ(θ,K), etc. By {Ws,k, TWs,k} we denote the basis
in Ker Mβ(θ,K)∗. Let Us,k stand for the formal series (2.29) with θ = τ/|τ | instead
of τ .

Let u be a solution to the equation M(τ,G)u = {f, g}. We put {h, s} =
{M(τ,G)χu,Γχu}. Denote by U a solution to the equation M(θ,K)U = {H,S}
where H(η) = (1/|τ |)h(η/|τ |), S(η) = s(η/|τ |), and new variables η are introduced
by the formula (η1, η2, η3) = (|τ |x1, |τ |x2, |τ |x3). Since a strong solution is unique,
we have U(η) = χ(η/|τ |)u(η/|τ |). In view of the properties of solutions to elliptic
problems in domains with singularities, the representation

U(η) = χ(η)
∑

ds,kUs,k,N (η) + V(η)

holds. The sum contains Us,k,N corresponding to the eigenvalues of A in the strip
Imλ ∈ [βm + 1/2, β1 + 1/2], while N in each term is taken large enough in order

for the inclusions χriλk+N+1Ψ
(s,k)
N+1 ∈ H1

β(K) to be valid. For the remainder V we
have χV ∈ H1

β(K). The coefficients ds,k are defined by

ds,k = i
(
H,Ws,k

)
K

+ i
(
S, TWs,k

)
K

. (4.38)

Let us majorize the coefficients ds,k. From (4.38) it follows that

|ds,k| ≤ c‖{H,S}; RHβ,T (K, 1)‖ ≤ c|τ |β+1/2‖{h, s}; RHβ,T (K, |τ |)‖.

Using h = χf + [M,χ]u and s = χg, we obtain

‖{h, s}; RHβ,T (K, τ)‖ ≤ ‖{f, g}; RHβ,T (G, τ)‖ + ‖{[M,χ]u, 0}; RHβ(K, τ)‖.
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than any power of r as r → ∞. Since {w, Tw} ∈ RHβ(K, τ)∗, then for a fixed
parameter τ we see that

∫

K

dx |w|2(1 + r2β)−1 ≤ c‖{w, Tw}; RHβ(K, τ)∗‖2. (4.36)

Assume that β > 0. Since w decays as r → ∞ and the estimate (4.36) holds, it
follows that w ∈ L2(K). Then the asymptotic representation (4.29) contains χVs,k,N

such that Imλ−k < 3/2 (this inequality implies the inclusion χVs,k,N ∈ L2(K)).
Moreover, we claim that the asymptotic representation contains only χVs,k,N such
that Imλ−k < 1. Indeed, the formula (2.15) implies that

(M(Dx, τ)χus,k, χus,−k)K
= i+ (χus,k,M(Dx, τ)χus,−k)K

.

The functions χus,k with k < 0 belong to DM(τ, β) (see Definition 4.13). Hence
the functions χus,k with k > 0 can not be included into DM(τ, β)∗. It follows
that the asymptotic representation (4.29) contains the terms χVs,k,N such that
Imλ−k < 1. Note that the inequality Imλ−k < 1 implies the inclusions χVs,k,N ∈
L2(K), χVs,k,N |∂K ∈ L2(∂K). Now it is not hard to prove that w ∈ DM(τ). Since
M(τ)w = {0, 0}, we have w = 0.
Now assume that β < 0. The estimate (4.36) implies that the asymptotic repre-
sentation (4.29) contains the terms χVs,k,N such that Imλ−k < 3/2 − β. Let us
rewrite the asymptotics in the form

w = χ
∑

s,k

cs,kVs,k,N + v,

where the sum contains χVs,k,N such that Imλ−k ∈]1, 3/2 − β[, while v ∈ L2(K)
and v|∂K ∈ L2(∂K). Since the spectrum of A is symmetric about the line Imλ = 1,
the strip Imλ ∈]β1 + 1/2, 3/2 − β1[ does not contain the eigenvalues of A. Thus
the sum vanishes and we have w = v. Taking the inclusions of v into account, it is
not hard to prove that v ∈ DM(τ). Since M(τ)w = {0, 0}, we get w = 0.
B). Assume that β ∈]βm+1, βm[. We construct a collection consisting of Sm function
and prove that it is a basis in KerM(τ, β)∗. Thus we prove the theorem because
the range of M(τ, β) is closed in RHβ,T (K, τ) and the kernel KerM(τ, β) is trivial.
The strip Imλ ∈ [βm + 1/2, β1 + 1/2] contains precisely m eigenvalues of A. Let
λk be in the strip. We put Fs,k,N := M(Dx, τ)χVs,k,N . Since M(Dx, τ)χVs,k,N =
O(rIm λk−2+N ) as r → 0, one can choose sufficiently large T such that Fs,k,N ∈
L2(K). According to Theorem 4.10 and Remark 4.12, there exists a solution to the
equation M(τ)ws,k,N = {Fs,k,N , 0}. Put ws,k := χVs,k,N −ws,k,N . We construct such
functions for all eigenvalues of A in the strip Imλ ∈ [βm + 1/2, β1 + 1/2]. For λp

there are Np such functions. It is not hard to see that ws,k satisfies (4.27), (4.28)
and {ws,k, Tws,k} ∈ RHβ,T (K, τ)∗. We show that {ws,k, Tws,k} ∈ KerM(τ, β)∗.
Let {f, g} ∈ RHβ,T (K, τ). From the inclusion RHβ,T (K, τ) ⊂ L2(K) × L2,T (∂K)
and Theorem 4.10 it follows that there exists v ∈ L2(K) satisfying M(τ)v = {f, g}.
Near the point O, the function v admits the asymptotic representation

v = χ
∑

ds,kUs,k,N + h. (4.37)
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The inequality γ > γ0 with large γ0 leads to the estimates

‖{[M,χ]u, 0}; RHβ(K, τ)‖2 = ‖{[M,χ]u, 0}; RHβ(G, τ)‖2 ≤

≤ c
{
‖u;L2(G)‖2 + (|τ |2(1−β)/γ2)‖u;L2(G)‖2

}
≤

≤ c(1/γ2 + |τ |2(1−β)/γ4)
{
‖f ;L2(G)‖2 + |τ | · ‖g;L2,T (∂G)‖2

}
≤

≤ c(|τ |2(1−β)/γ2)
{
‖f ;L2(G)‖2 + |τ | · ‖g;L2,T (∂G)‖2

}
≤ c‖{f, g}; RHβ,T (G, τ)‖2.

Thus, we arrive at the estimate

|ds,k| ≤ c|τ |β+1/2‖{f, g}; RHβ,T (G, τ)‖ (4.39)

with a constant c independent of τ . Since U(η) = χ(r)u(x1, x2, x3), the represen-
tation

u(x1, x2, x3) = χ(|τ |r)
∑

ds,kUs,k,N (|τ |x1, |τ |x2, |τ |x3, θ) + w(x1, x2, x3)

holds in G. Taking into account the equality

Us,k,N(|τ |x1, |τ |x2, |τ |x3, θ) =
N∑

q=0

(|τ |r)iλk+q(τ/|τ |)qΨs(ϑ, ϕ) =

= |τ |iλkUs,k,N (x1, x2, x3, τ),

we finally obtain

u(x1, x2, x3) = χ(|τ |r)
∑

cs,kUs,k,N (x1, x2, x3, τ) + w(x1, x2, x3)

with cs,k = |τ |iλkds,k and χw ∈ H1
β(G). It is not hard to verify that

cs,k = i
(
f, ws,k

)
G

+ i
(
g, Tws,k

)
∂G
,

where {ws,k, Tws,k} is a basis in Ker Mβ(τ,G)∗. Using the estimate (4.39), we have

|cs,k| ≤ c|τ |β+1/2−Im λk‖{f, g}RHβ,T (G, τ)‖.

Consider the remainder w. Since M(τ,G)w = {f̃ , g} with

f̃ = f −M(Dx, τ)(χτ

∑
cs,kUs,k,N )

and (
f̃ , ws,k

)
G
+
(
g, Tws,k

)
∂G

= 0,

Theorem 4.18 and Remark 4.19 leads to the inclusion w ∈ DHβ(G, τ) and the
inequality

‖w; DHβ(G, τ)‖ ≤ c‖{f̃ , g}; RHβ,T (G, τ)‖.

Making use of the estimate on cs,k and the explicit form of M(Dx, τ)Us,k,N , we
arrive at the estimate

‖w; DHβ(G, τ)‖ ≤ c(|τ |/γ)‖{f, g}; RHβ,T (G, τ)‖.

Remark 4.21. Theorem 4.20 is valid for the problem (4.4), (4.5) in K for γ > 0.
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4.7 Nonstationary problem in the cylinders Q and Q

Applying the inverse Fourier transform F
−1
τ→t, we pass from problem (4.4), (4.5) to

problem (4.1), (4.2). Let us fix a cut-off function χ ∈ C∞
c (G) that equals 1 near

the point O. We put

Xu(x1, x2, x3, t) = F
−1
τ→tχ(|τ |r)Ft′→τu(x1, x2, x3, t

′),

Λµu(x1, x2, x3, t) = F
−1
τ→t|τ |

µFt′→τu(x1, x2, x3, t
′).

Introduce the spaces DV β(Q, γ), RV (Q, γ), and RV β(Q, γ) equipped with the norms

‖u; DV β(Q, γ)‖ =
(
γ2‖u;V 0

β (Q, γ)‖2 + ‖Xu;V 1
β (Q, γ)‖2

)1/2

,

‖{f, g}; RV (Q, γ)‖ =
(
‖f ;V 0

0 (Q, γ)‖2 + ‖Λ1/2g;V 0
0 (∂Q, γ)‖2

)1/2

,

‖{f, g}; RV β(Q, γ)‖ =
(
‖f ;V 0

β (Q, γ)‖2 + (1/γ2)‖Λ1−βf ;V 0
0 (Q, γ)‖2

+‖Λ1/2g;V 0
β (∂Q, γ)‖2 + (1/γ2)‖Λ3/2−βg;V 0

0 (∂Q, γ)‖2 + ‖Xg;V
1/2
β (∂Q, γ)‖2

)1/2

.

Denote by RV T (Q, γ) and RV β,T (Q, γ) the subspaces of RV (Q, γ) and RV β(Q, γ)
respectively such that for any {f, g} ∈ RV T (Q, γ) (or RV β,T (Q, γ)) with g =
(~u, v, h) we have 〈~u, ~ν〉3 = 0 a.e. on ∂Q. The spaces in the cylinder Q are defined
in a similar way.

Definition 4.22. Let {f, g} ∈ RV T (Q, γ) and let û(x1, x2, x3, τ) be the strong

solution to the problem (4.4), (4.5) in K with right-hand side {−if̂ , ĝ}, where

f̂(x1, x2, x3, τ) = Ft→τf(x1, x2, x3, t), ĝ(x1, x2, x3, τ) = Ft→τg(x1, x2, x3, t). The
function u, defined by u(x1, x2, x3, t) = F

−1
τ→tû(x1, x2, x3, τ), is called a strong solu-

tion to the problem (4.1), (4.2) in the cylinder Q with right-hand side {f, g}.

The next result follows from Theorem 4.10.

Theorem 4.23. For every {f, g} ∈ RV T (Q, γ) and for any γ > 0 there exists
a strong solution v to the problem (4.1), (4.2) in Q with right-hand side {f, g}.
Moreover,

γ‖v;V 0
0 (Q, γ)‖ ≤ ‖{f, g}; RV T (Q, γ)‖.

Definition 4.24. Let {f, g} ∈ RV β,T (Q, γ) and let û(x1, x2, x3, τ) be the strong

β-solution to the problem (4.4), (4.5) in K with right-hand side {−if̂ , ĝ}, where

f̂(x1, x2, x3, τ) = Ft→τf(x1, x2, x3, t), ĝ(x1, x2, x3, τ) = Ft→τg(x1, x2, x3, t). The
function u, defined by u(x1, x2, x3, t) = F

−1
τ→tû(x1, x2, x3, τ), is called a strong β-

solution to the problem (4.1), (4.2) in the cylinder Q with right-hand side {f, g}.

The next result follows from Theorem 4.18.
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Theorem 4.25. 1) Let β ∈ [β1, 1] and let the number λ = i(β+1/2) be regular for
the pencil A. Then there exists a unique strong β-solution v to the problem (4.1),
(4.2) in Q with any right-hand side {f, g} ∈ RV β,T (Q, γ). Moreover,

‖v; DV β(Q, γ)‖ ≤ c‖{f, g}; RV β,T (Q, γ)‖.

2) Let β ∈]βm+1, βm[. A strong β-solution to the problem (4.1), (4.2) in Q with
right-hand side {f, g} ∈ RV β,T (Q, γ) exists (and is unique) if for all τ = σ−iγ (σ ∈
R, γ > 0) the conditions

(
−if̂(·, τ), ws,k(·, τ)

)
K

+
(
ĝ(·, τ), Tws,k(·, τ)

)
∂K

= 0

hold, where {ws,k, Tws,k}
s=1,..,Nk

k=−1,..,−m is a basis in KerM(τ, β)∗. If such a solution
exists, it satisfies the inequality in 1).

Next theorem follows from Theorem 4.38 and Remark 4.39

Theorem 4.26. Assume that {f, g} ∈ RV β,T (Q, γ) and β ∈]βm+1, βm[. Then the
strong solution to the problem (4.1), (4.2) admits the representation

u(x1, x2, x3, t) =
∑

Us,k,N (r, ϕ, ϑ,Dt)(Xčs,k)(x1, x2, x3, t) + w(x1, x2, x3, t),

where w ∈ DV β(Q, γ). The sum consists of the terms corresponding to the eigen-
values of the pencil A in the strip Imλ ∈ [βm+1/2, β1+1/2], while N in each term
is taken large enough in order for the inclusions χriλk+N+1ΨN+1 ∈ DHβ(G, τ) to
be valid. The coefficients are defined by

čs,k(t) = F
−1
τ→tcs,k(τ)

with
cs,k(τ) = i

(
−if̂(·, τ), ws,k(·, τ)

)
K

+ i
(
ĝ(·, τ), Tws,k(·, τ)

)
∂K
.

Moreover, we have the estimates

‖e−γtčs,k(·);H
Im λk−β−1/2(R)‖ ≤ c‖{f, g}; RV β,T (Q, γ)‖,

‖w; DV β(Q, γ)‖ ≤ (c/γ)‖{Λf,Λg}; RV β,T (Q, γ)‖.

Strong solutions and strong β-solutions to the problem (4.1), (4.2) in Q can
be defined in the same way as those to the problem in the cylinder Q in Definition
4.22 and Definition 4.24.

Remark 4.27. All the theorems in this section are still valid for the problem (4.1),
(4.2) in Q if γ > γ0 with sufficiently large γ0.

Applying the Fourier transform to the formula for cs,k(τ), we get

čs,k(t) =

∫

K

dx

∫

R

du 〈f(x, y, z, t− u),Ws,k(x, y, z, u)〉R8−

−

∫

∂K

dS

∫

R

du 〈g(x, y, z, t− u), T0Ws,k(x, y, z, u)〉R5 ,
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with Ws,k(x1, x2, x3, t) = F
−1
τ→tws,k(x1, x2, x3, τ). The explicit formulas for Ws,k in

K were derived in Chapter 2.

4.8 Connection between the augmented and non-
augmented Maxwell systems

Up to this point the discussion has been related to the augmented Maxwell system.
In this section we prove that under some conditions on the right-hand side of such a
system, its solutions have the form u = (~u,~v, 0, 0), therefore (~u,~v) satisfy the usual
(non-augmented) Maxwell system. The mentioned conditions on the right-hand
side are derived from the compatibility of the usual Maxwell system





∂ ~E/∂t− rot ~B = − ~J,

∂ ~B/∂t+ rot ~E = − ~F ,

div ~E = ρ, div ~B = µ

with boundary conditions

[ν × ~E] = ~Φ, 〈 ~B, ~ν〉 = δ.

Namely, for sufficiently smooth functions from the first and the third equations of
this system we obtain

∂ρ/∂t+ div ~J = 0. (4.40)

Similarly, from the second and the forth equations we get

∂µ/∂t+ div ~F = 0. (4.41)

Consider the inner product of the second equation with unit outward normal ν:

∂

∂t
〈 ~B, ~ν〉3 + 〈rot ~E, ~ν〉3 + 〈~F , ~ν〉3 = 0. (4.42)

Let us apply the formula

〈rot ~E, ~ν〉3 = −Div [~ν × ~E],

where Div is the surface divergency of a tangent vector field on the boundary (see,
e.g., [8]). Then we rewrite (4.42) in the form

∂

∂t
δ − Div ~Φ + 〈~F , ~ν〉3 = 0. (4.43)

Consider the problem (4.4), (4.5) in G with right-hand side {f, g} ∈ L2(G) ×

L2,T (∂G), where f = ( ~A, ~B, α, β)T and g = (~Φ, δ, ω)T . Since the right-hand side is
not smooth, the conditions should be understood in a proper way. For this purpose
we recall the following definitions.
Let ~u and v be functions such that for any φ ∈ C∞

c (G) we have
∫

G

dx 〈~u,∇φ〉3 +

∫

G

dx v · φ = 0.
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Then we say that v = div ~u in the distributional sense. By H(div, G) we denote
the space of functions ~u ∈ L2(G) such that div ~u ∈ L2(G), where the divergency is
understood in the distributional sense. We endow this space with the norm

‖~u;H(div, G)‖ =
(
‖~u;L2(G)‖2 + ‖div ~u;L2(G)‖2

)1/2

.

With the obvious inner product, H(div, G) is a Hilbert space. The mapping γν is
defined by the formula γν~v = 〈~v|∂G, ~ν〉3 on smooth vector-valued functions. This
mapping can be extended by continuity to a continuous map γν : H(div, G) 7→
H−1/2(∂G). Moreover, the following Green formula holds for functions
~v ∈ H(div, G), φ ∈ H1(G) (see [27, Chapter 3, Theorem 3.24]):

∫

G

dx 〈~v,∇φ〉3 +

∫

G

dx div ~v · φ =

∫

∂G

dS γν(~v) · φ. (4.44)

Now we turn to the space of tangent vector fields on the boundary. Let ~u ∈
L2,T (∂G) and v ∈ L2(G) be functions such that for any φ ∈ H1(∂G) the equality

∫

∂G

dS 〈~u,∇Tφ〉3 +

∫

∂G

dS v · φ = 0 (4.45)

holds, where ∇T is the surface gradient. Then we write v = Div ~u and we say
that the function ~u ∈ L2,T (∂G) has the square-integrable surface divergency. By
H(Div, ∂G) we denote the space of all functions from L2,T (∂G) with the square-
integrable surface divergency. The space H(Div, ∂G) is endowed with the norm

‖~u; H(Div, ∂G)‖ =
(
‖~u;L2(∂G)‖2 + ‖Div ~u;L2(∂G)‖2

)1/2

.

With the obvious inner product, H(Div, ∂G) is a Hilbert space.
Applying the Fourier transform Ft→τ , we rewrite (4.40), (4.41) in the form

~A ∈ H(div, G), α ∈ L2(G), div ~A = iτα, (4.46)

~B ∈ H(div, G), β ∈ L2(G), div ~B = iτβ. (4.47)

For (4.43) we have

~Φ ∈ H(Div, ∂G), δ ∈ L2(∂G), iτδ − Div ~Φ − γν( ~B) = 0. (4.48)

The last condition imposed on the right-hand side {f, g} is the boundary condition
ω = 0.

For the proof of theorem on connection between solutions to the augmented
and usual Maxwell systems, we need some properties of the Helmholtz operator in
the domain G. Here we recall all the necessary definitions. For details and proofs
we refer the reader to the articles [18] and [33]. Let Ξ = K ∩ S2, where the cone
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K coincides with the domain G near the conical point O. For the Laplace operator
we introduce the operator pencil E in the domain Ξ by the formula

E(λ) = (iλ)2 + iλ− δ,

where δ is the Laplace-Beltrami operator. In the case of the Dirichlet problem the
pencil E is defined on the functions u ∈ H2(Ξ) such that u|∂Ξ = 0. In the case of
the Neumann problem the pencil E is defined on the functions u ∈ H2(Ξ) such that
∂ν |∂Ξ = 0. Let {µk, wk} and {µ̃k, w̃k} be the sets of eigenvalues and eigenfunctions
of the Dirichlet and Neumann problems for the operator pencil E. Denote by LD

the lineal spanned by the functions in C∞
c (G) and by functions of the form χriµkwk

with Imµk < 0, where χ is a cut-off function equal to 1 near the point O and 0
outside the neighborhood where G coincides with a cone. We also introduce the
lineal LN spanned by the functions in C∞

c (G \O) with normal derivative vanishing
on ∂G\O and by functions of the form χriµ̃kw̃k, where Im µ̃k ≤ 0. According to [18,
§4] and [33, §3], the range of the Helmholtz operator τ 2+4 with τ = σ−iγ (γ 6= 0)
given on LD or LN is dense in L2(G).

Theorem 4.28. Consider the problem (4.4), (4.5) in the domain G with the right-

hand side {f, g}, where the functions f = ( ~A, ~B, α, β)T and g = (~Φ, δ, 0)T are
subject to the conditions (4.46), (4.47), and (4.48). Then the corresponding strong
solution u is of the form u = (~u,~v, 0, 0).

Proof. Since M(τ,G) is the closure of the differential operator M(Dx, τ) given on

D(G), there exists a sequence
{
uk = (~uk, ~vk, hk, qk)

T
}
⊂ D(G) such that uk → u

(the convergence in L2(G)) and
{
M(Dx, τ)uk,Γuk

}
→ {f, g} (the convergence in

L2(G) × L2,T (∂G)). We have uk ∈ C∞(G \ O)) so the system (4.4), (4.5) can be
understood as usual. In particular,

iτ~uk − rot ~vk + ∇hk = ~Ak,
iτhk + div ~uk = αk.

We show that h = 0. Assume that φ ∈ LD. Multiply the first equality by ∇φ, the
second one by iτφ, and integrate over G. Then

iτ

∫

G

dx 〈~uk,∇φ〉3 −

∫

G

dx 〈rot ~vk,∇φ〉3 +

∫

G

dx 〈∇hk,∇φ〉3 =

∫

G

dx 〈 ~Ak,∇φ〉3 ,

−τ 2

∫

G

dx hk · φ + iτ

∫

G

dx div ~uk · φ = iτ

∫

G

dx αk · φ.

We integrate by parts in the two first terms of the first equality, add the first and
the second equalities, and obtain

−τ 2

∫

G

dx hk · φ+

∫

G

dx 〈∇hk,∇φ〉3 = iτ

∫

G

dx αk · φ+

∫

G

dx 〈 ~Ak,∇φ〉3.
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Integrate by parts the second term on the left. Then we get

−τ 2

∫

G

dx hk·φ−

∫

G

dx hk·4φ+

∫

∂G

dS hk·∂φ/∂ν = iτ

∫

G

dx αk·φ+

∫

G

dx 〈 ~Ak,∇φ〉3.

As k → ∞, taking into account the boundary condition for h and the property
(4.46), we arrive at the formula

∫

G

dx h · (τ 2 + 4)φ = 0.

Therefore h = 0 because the range of the operator τ 2 + 4 given on LD is dense in
L2(G).
Verify the equality q = 0. We have

iτ~vk + rot ~uk + ∇qk = ~Bk,
iτqk + div ~vk = βk.

Assume that φ ∈ LN . Then

iτ

∫

G

dx 〈~vk,∇φ〉3 +

∫

G

dx 〈rot ~uk,∇φ〉3 +

∫

G

dx 〈∇qk,∇φ〉3 =

∫

G

dx 〈 ~Bk,∇φ〉3 ,

−τ 2

∫

G

dx qk · φ+ iτ

∫

G

dx div ~vk · φ = iτ

∫

G

dx βk · φ.

We integrate by parts all the terms in the left-hand side of the first line, add the
second line, and let k → ∞:

−

∫

G

dx q · (τ 2 + 4)φ+ iτ

∫

∂G

dS δ · φ+

∫

∂G

dS 〈~Φ,∇φ〉3 =

= iτ

∫

G

dx β · φ+

∫

G

dx 〈 ~B,∇φ〉3.

Since LN ⊂ H1(G) and LN |∂G ⊂ H1(∂G), we can apply the formulas (4.44), (4.45).
Therefore we obtain

−

∫

G

dx q · (τ 2 + 4)φ+

∫

∂G

dS (iτδ − Div~Φ − γν( ~B)) · φ =

= iτ

∫

G

dx β · φ−

∫

G

dx div ~B · φ.

Finally, using (4.47), (4.48)
∫

G

dx q · (τ 2 + 4)φ = 0.

Since the range of the operator τ 2 + 4 given on LN is dense in L2(G), we arrive
at q = 0.



5 THE PROBLEM WITH INHOMOGENEOUS

IMPEDANCE BOUNDARY CONDITIONS

5.1 Preliminaries

In the fifth chapter we study the augmented Maxwell system





∂ ~E/∂t− rot ~B + ∇h = − ~J,

∂ ~B/∂t+ rot ~E + ∇q = − ~G,

∂h/∂t+ div ~E = ρ,

∂q/∂t+ div ~B = µ

(5.1)

in a model cone and in a bounded domain with conical point. On the boundary,
we impose the inhomogeneous impedance conditions

~ν × [ ~B × ~ν] + ψ[~ν × ~E] = ~Φ, h = H, q = Q, (5.2)

where ~ν is the unit outward normal and ψ ∈ C is an impedance. Suppose the
impedance ψ to be constant such that Reψ < 0. We rewrite the system (5.1) in
the form

∂u/∂t+ A(∂)u = f, (5.3)

where u = ( ~E, ~B, h, q)T , f = (− ~J, − ~G, ρ, µ)T , and ∂ = (∂x1
, ∂x2

, ∂x3
).

Let τ = σ − iγ, where σ ∈ R, γ > 0. Applying the Fourier transform Ft→τ to the
equations (5.1), (5.2), we obtain the problem with parameter in the cone K (in the
domain G):

{
τ û+ A(Dx)û = −if̂ ,

Γ1û = ĝ.

Rewrite this problem as follows

M(Dx, τ)u = f, (5.4)
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Γ1u = g, (5.5)

where M(Dx, τ) = τ + A(Dx). Note that for the problem (5.4), (5.5) the Green
formula (1.10) is of the form

(
M(Dx, τ)u, v

)
K

+
(
Γ1u, −iT1v

)
∂K

=

=
(
u,M(Dx, τ)v

)
K

+
(
−iT2u, Γ2v

)
∂K

,
(5.6)

so we have the following adjoint problem with respect to this formula:

M(Dx, τ)u = f, (5.7)

Γ2u = g. (5.8)

Considering the problem (5.4), (5.5) in the cone K, we can change the vari-
ables (x1, x2, x3) 7→ η = (|τ |x1, |τ |x2, |τ |x3). Denote τ/|τ | by θ, put U(η, τ) =
u(|τ |−1η, τ), F (η, τ) = |τ |−1f(|τ |−1η, τ), and G(η, τ) = g(|τ |−1η, τ). Thus we ar-
rive at

M(Dη, θ)U = F, (5.9)

Γ1U = G. (5.10)

5.2 Operator pencil

For the problem (5.4), (5.5), we introduce the operator pencil

C(λ)Φ = r1−iλA(D)riλΦ (5.11)

with Φ = (~U, ~V, H, Q) ∈ H1(Ξ) such that

~ν × [~V × ~ν] + ψ[~ν × ~U] = 0, H = 0, Q = 0 on ∂Ξ,

where Ξ = K ∩ S2 and ~ν is the unit outward normal to ∂K. Note that these
boundary conditions can be rewritten in the form Γ1

(
riλΦ

)
= 0 on ∂K. Since

the problem (5.4), (5.5) is elliptic, the spectrum of the pencil C consists of normal
eigenvalues. Concerning the notions of eigenvalues, eigenvectors and associated
vectors of the pencil, we refer to [20] or [28, Chapter 1, §2].

Lemma 5.1. The eigenvalues of the pencil C are independent of the impedance ψ.

Proof. Let {λ,Φ0} with Φ0 = (~U0, ~V0, H0, Q0) be an eigenvalue and
an eigenvector of the pencil C that is C(λ)Φ0 = 0. Then {λ,Φ1} with Φ1 =

(−ψ~U0, ~V0, H0, −ψQ0) are an eigenvalue and an eigenvector of the pencil C0,

defined by (5.11) on functions Φ = (~U, ~V, H, Q) ∈ H1(Ξ) such that

~ν × [~V × ~ν] − [~ν × ~U] = 0, H = 0, Q = 0 on ∂K.
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In the same way one can verify that if λ is an eigenvalue of the pencil C0, then λ is
an eigenvalue of the pencil C. Thus the spectrum of C coincides with the spectrum
of C0. It remains to note that the pencil C0 is independent of the impedance ψ. �

Now our purpose is to show that the line {λ ∈ C : Im λ = 1} is free from the
spectrum of C.

Lemma 5.2. Let λ be an eigenvalue of the pencil C, Imλ ∈ [0, 1], and let Φ =

(~U, ~V, H, Q) be an eigenvector corresponding to λ. Then H ≡ 0, Q ≡ 0.

Proof. Since {λ, Φ} are an eigenvalue and an eigenvector of the pencil C, we
have A(Dx)r

iλΦ = 0. We again apply the operator A(Dx) and obtain 4riλΦ = 0.
Thus for the functions H, Q we have

{
4riλH = 0 in K,
H = 0 on ∂K,

{
4riλQ = 0 in K,
Q = 0 on ∂K.

This means that λ is an eigenvalue of the Dirichlet problem pencil for the Laplace
operator and H, Q are the eigenvectors corresponding to λ. Since the strip
{λ ∈ C : Imλ ∈ [0, 1]} contains no eigenvalues of the pencil of the Dirichlet
problem for the Laplace operator (see [33, §3]), we obtain H = 0, Q = 0 �.

Proposition 5.3. Let K ⊂ R
3 be a cone such that Ξ = K∩S2 is a one - connected

domain with smooth boundary. Then the line {λ ∈ C : Im λ = 1} contains no
points of the spectrum of the pencil C.

Proof. According to Lemma 5.1, it suffices to consider the pencil C0. Suppose
that λ is an eigenvalue of C0 such that Imλ = 1. Let Φ = (~U, ~V, H, Q) be an
eigenvector corresponding to λ. From Lemma 5.2 it follows that H ≡ 0, Q ≡ 0.
Apply the Green formula

(
A(∂x)u, v

)
Ω

+
(
u, A(∂x)v

)
Ω

=
(
Γ1u, T1v

)
∂Ω

+
(
T2u, Γ2v

)
∂Ω

(5.12)

to u = riλΦ, v = riλΦ, and Ω = KεR = {x ∈ K : ε ≤ |x| ≤ R} with 0 < ε < R.
Since A(Dx)r

iλΦ = 0, we see that the right hand side is equal to zero. The integrals
over Sε = {x ∈ K : |x| = ε} and SR = {x ∈ K : |x| = R} cancel each other.

Taking into account the boundary conditions ~ν × [~V × ~ν] − [~ν × ~U] = 0, we arrive
at ∫

∂K∩{ε≤r≤R}

dS |~ν × ~V|2/r2 = 0.

This formula and the boundary condition imply that ~ν × ~V = 0 and ~ν × ~U = 0 on
∂K. Note that the boundary condition ~ν×[~V×~ν]−[~ν×~U] = 0 splits into the simple

independent parts ~ν × ~U = 0 and ~ν × ~V = 0. Let us show that ~V = 0. We have
rot (riλ~V) = 0, div (riλ~V) = 0 in K, and ~ν × ~V = 0 on ∂K. Recall that Ξ is one-

connected. So riλ~V = ∇ϕ, where 4ϕ = 0 in K and ϕ = 0 on ∂K. It is easy to see
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that ϕ(x) = riµW (ω) with Im µ = 0. However, the line {λ ∈ C : Im λ = 0} con-
tains no eigenvalues of the pencil of the Dirichlet problem for the Laplace operator.
Therefore we get ϕ = 0 and ~V = 0. In the same way it can be shown that ~U = 0. �

Let C(λ)∗ be the operator adjoint to C(λ). Introduce the pencil C 3 λ 7→
C∗(λ) := C(λ)∗. By means of the Green formula (5.12) one can check that C∗(λ) =

D(λ+2i), where D is the pencil defined by (5.11) on functions Φ = (~U, ~V, H, Q) ∈
H1(Ξ,C8) such that

~ν × [~V × ~ν] − ψ[~ν × ~U] = 0, H = 0, Q = 0 on ∂Ξ.

The pencil D corresponds to the adjoint problem (5.7), (5.8). Now we give some
facts concerning the pencils C and C∗. Here we restrict ourselves to formulations
and refer the reader to [20] or [28, Chapter 1] for the proofs.

If λ0 is an eigenvalue of C, then λ0 is an eigenvalue of C∗; the geometric
and the algebraic multiplicities of λ and λ0 coincide. The canonical system of
Jordan chains {ϕ(0,j), . . . , ϕ(κj−1,j) ; j = 1, . . . , J} and {ψ(0,j), . . . , ψ(κj−1,j) ; j =
1, . . . , J} corresponding to λ0 and λ0 can be chosen to satisfy the orthogonality
and normalization conditions

ν∑

p=0

k∑

q=0

1

(ν + k + 1 − p− q)!

(
∂ν+k+1−p−q

λ C(λ0)ϕ
(q,σ), ψ(p,ζ)

)
Ξ

= δσ,ζ · δκσ−k−1,ν ,

where σ, ζ = 1, . . . , J ; ν = 0, . . . , κζ − 1, k = 0, . . . , κσ − 1; δp,q is the Kronecker
symbol. The functions

u(k,j)(x) = riλ0

k∑

q=0

1

q!
(i ln r)qϕ(k−q,j)(ω),

where k = 0, . . . , κj − 1; j = 1, . . . , J , form a basis in the space of power solutions
corresponding to λ0 for the problem

{
A(Dx)u(x) = 0, x ∈ K,
Γ1u(x) = 0, x ∈ ∂K.

Similarly, the functions

v(k,j)(x) = ri(λ0+2i)

k∑

q=0

1

q!
(i ln r)qψ(k−q,j)(ω),

where k = 0, . . . , κj − 1; j = 1, . . . , J , form a basis in the space of power solutions
corresponding to λ0 + 2i for the problem

{
A(Dx)u(x) = 0, x ∈ K,
Γ2u(x) = 0, x ∈ ∂K.
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Substituting u(k,j) in the homogeneous problem (5.4), (5.5) and successively elimi-
nating the discrepancies, we can construct the formal series

U (k,j)(x, τ) =
+∞∑

q=0

riλ0+qP (k,j)
q (ω, ln r, τ), (5.13)

satisfying the homogeneous problem (5.4), (5.5); here P
(k,j)
q are polynomials in ln r

and τ with coefficients smoothly depending on ω ∈ Ξ. In the same way, starting
from the function v(k,j), we can construct the formal series

V (k,j)(x, τ) =
+∞∑

q=0

ri(λ0+2i)+qQ(k,j)
q (ω, ln r, τ) (5.14)

satisfying the homogeneous problem (5.7), (5.8).
Let u be a function such that χu ∈ H1

β(K), where χ ∈ C∞
c (K) and χ = 1 near

the vertex of the cone K. Assume that
{
M(Dx, τ)u(x) = f(x), x ∈ K,

Γ1u(x) = g(x), x ∈ ∂K,

where f ∈ H0
β(K) ∩H0

γ(K) and g ∈ H
1/2
β (∂K) ∩H

1/2
γ (∂K) with γ < β. Then the

asymptotic formula

u = χ
∑

c(k,j)
µ U

(k,j)
µ,T + h

holds with the remainder h such that χh ∈ H1
γ(K). Here by U

(k,j)
µ,T we denote the

first T terms of the series (5.13) corresponding to λµ. Number T is chosen to be

sufficiently large to provide the inclusion χriλµ+(T+1)P
(k,j)
T+1 ∈ H1

γ(K). In the last
formula summation is over all k = 0, . . . , κj,µ, all j = 1, . . . , Jµ, and all µ such that
Imλ ∈ [γ + 1/2, β + 1/2[.

5.3 Energy estimates

In this section we obtain estimates for solutions to the problem (5.4), (5.5) in
domains with smooth boundary and in a class of admissible cones. Our aim is to
estimate the ”energy” ‖u; L2(Ω)‖ by appropriate norms of the right-hand side
{Mu,Γ1u}.

5.3.1 The main identity

Now we make some technical preparations for the further work. We prove an
integral identity. It will be the starting point for the proof of energy estimates.
In the fixed cartesian coordinates the operator A(∂) can be written in the form

A(∂) =
3∑

k=1

gk∂k, where {gk} are the constant real symmetric 8×8 matrices. Rewrite

(5.3) in the form
3∑

α=0

8∑

j=1

gα
ij∂αuj = fi, i = 1, .., 8;
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by ∂0 and g0 denote ∂t and I (the identity matrix), respectively. Consider the
following identity

∂α{rikukg
α
ijuj} = ∂α(rikuk)g

α
ijuj + rikukg

α
ij∂αuj,

where R = {rik} is a real 8× 8 – matrix. Repeated indices imply summation: here
α = 0, .., 3 and i, j, k = 1, .., 8. Multiplying both sides by e−2γt, we get

∂α{e
−2γtrikukg

α
ijuj} + 2γe−2γtrikukui =

= e−2γt∂α(rikuk)g
α
ijuj + e−2γtrikukg

α
ij∂αuj.

(5.15)

Let Ω ⊂ R
3 be a domain with smooth boundary and let u ∈ C∞

c (Ω × R,C8).
Integrate (5.15) over Ω× R, applying the divergence theorem of Gauss to the first
term on the left, then we have

∫

∂Ω

∫

R

dS dt e−2γtrikuk(g
1
ijν1 + g2

ijν2 + g3
ijν3)uj + 2γ

∫

Ω

∫

R

dx dt e−2γtrikukui =

=

∫

Ω

∫

R

dx dt e−2γt∂α(rikuk)g
α
ijuj +

∫

Ω

∫

R

dx dt e−2γtrikukg
α
ij∂αuj,

where ~ν = (ν1, ν2, ν3) is the unit outward normal to Ω. Introduce the notation

A(~ν) =
3∑

i=1

giνi and M =
3∑

α=0

gα∂α.

Using these notations we rewrite the main identity in the vector form

∫

∂Ω

∫

R

dS dt e−2γt〈A(~ν)u,Ru〉8 + 2γ

∫

Ω

∫

R

dx dt e−2γt〈u,Ru〉8 =

=

∫

Ω

∫

R

dx dt e−2γt〈u,MRu〉8 +

∫

Ω

∫

R

dx dt e−2γt〈Mu,Ru〉8.
(5.16)

5.3.2 Structure of the matrix A(~ν)

From the expression for A(∂) we get

A(~ν) =




0 0 0 0 ν3 −ν2 ν1 0
0 0 0 −ν3 0 ν1 ν2 0
0 0 0 ν2 −ν1 0 ν3 0
0 −ν3 ν2 0 0 0 0 ν1

ν3 0 −ν1 0 0 0 0 ν2

−ν2 ν1 0 0 0 0 0 ν3

ν1 ν2 ν3 0 0 0 0 0
0 0 0 ν1 ν2 ν3 0 0




,
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A(~ν)A(~ν) = I, and A(~ν)u = (−[~ν × ~v] + ~νh, [~ν × ~u] + ~νq, 〈~u, ~ν〉3, 〈~v, ~ν〉3)
T for the

vector u = (~u, ~v, h, q)T . Consider the 8 × 8 matrix, defined by the formula

P =




1 − ν1ν1 −ν1ν2 −ν1ν3 0 0 0 0 0
−ν2ν1 1 − ν2ν2 −ν2ν3 0 0 0 0 0
−ν3ν1 −ν3ν2 1 − ν3ν3 0 0 0 0 0

0 0 0 1 − ν1ν1 −ν1ν2 −ν1ν3 0 0
0 0 0 −ν2ν1 1 − ν2ν2 −ν2ν3 0 0
0 0 0 −ν3ν1 −ν3ν2 1 − ν3ν3 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




.

We see that
Pu = (~uσ, ~vσ, 0, 0)T ,

where ~uσ = ~ν × [~u× ~ν]. Let Q = I − P , then

Qu = (~ν〈~u, ~ν〉3, ~ν〈~v, ~ν〉3, h, q)
T .

Taking into account the formulas for Pu and Qu, we obtain

P +Q = I, 〈Pu,Qv〉8 = 0.
P 2 = P, Q2 = Q.

Therefore P,Q are orthogonal projections and the decomposition

C
8 = RP ⊕ RQ

holds, where by RL the range of L is denoted. From the explicit formulas for
A(~ν), P,Q we get

A(~ν)Pu = ([~v × ~ν], −[~u× ~ν], 0, 0)T ,
A(~ν)Qu = (h~ν, q~ν, 〈~u, ~ν〉3, 〈~v, ~ν〉3)

T ,
A(~ν)Pu⊥RQ, A(~ν)Qu⊥RP.

These formulas imply the following representation for the matrix A(~ν) in a basis
adapted to the decomposition C

8 = RP ⊕ RQ :

A(~ν)u =

(
B1 0
0 B2

)(
U
V

)
, where u =

(
U
V

)
,

Pu =

(
U
0

)
∈ RP, Qu =

(
0
V

)
∈ RQ.

Since A(~ν) is a real symmetric matrix and A(~ν)A(~ν) = I, it follows that

B1 ·B1 = I, B1 = BT
1 , B2 ·B2 = I, B2 = BT

2 .

Prepare the choice of the matrix R in (5.16). Let R = R(~ν) such that

R(~ν) =

(
−B1 0

0 B2

)
,
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then we obtain

〈A(~ν)u,Ru〉8 =
〈( B1 0

0 B2

)(
U
V

)
,

(
−B1 0

0 B2

)(
U
V

)〉
8

=

= 〈B2V, B2V 〉4 − 〈B1U, B1U〉4 = |V |2 − |U |2.

(5.17)

Let us find the representation of the matrix R(~ν) in the initial standard basis. In
a basis adapted to the decomposition C

8 = RP ⊕ RQ we have

P =

(
I 0
0 0

)
, Q =

(
0 0
0 I

)
, A(~ν) =

(
B1 0
0 B2

)
, R(~ν) =

(
−B1 0

0 B2

)
,

A(~ν)P =

(
B1 0
0 0

)
, A(~ν)Q =

(
0 0
0 B2

)
,

therefore R(~ν) = −A(~ν)P +A(~ν)Q. Finally, applying the formulas for A(~ν), P,Q,
we obtain

R(~ν) =




0 0 0 0 −ν3 ν2 ν1 0
0 0 0 ν3 0 −ν1 ν2 0
0 0 0 −ν2 ν1 0 ν3 0
0 ν3 −ν2 0 0 0 0 ν1

−ν3 0 ν1 0 0 0 0 ν2

ν2 −ν1 0 0 0 0 0 ν3

ν1 ν2 ν3 0 0 0 0 0
0 0 0 ν1 ν2 ν3 0 0




.

It can be easily checked by means of the formulas for A(~ν) and R(~ν) that

A(~a)R(~b) = R(~b)A(~a) (5.18)

for all ~a,~b ∈ C
3. Recall that A(~ν) = g1ν1 + g2ν2 + g3ν3, so gk = A(~ek), where

{~ei}
3
i=1 is the standard basis in R

3. From (5.18) it follows that R(~ν) · gk = gk ·R(~ν)
with k = 1, . . . , 3.

5.3.3 Energy estimates in domains with smooth boundary

Proposition 5.4. Let Ω ⊂ R
3 be a domain with smooth boundary. Suppose γ ≥ 1

and u = (~u, ~v, h, q) ∈ C∞
c (Ω × R,C8); then the inequality

γ2

∫

Ω

∫

R

dx dt e−2γt|u|2 + γ

∫

∂Ω

∫

R

dS dt e−2γt(|〈~v, ~ν〉3|
2 + |〈~u, ~ν〉3|

2 + |~vσ|
2) ≤

≤ c
(
γ

∫

∂Ω

∫

R

dS dt e−2γt(|~Φ|2 + |h|2 + |q|2) +

∫

Ω

∫

R

dx dt e−2γt|Mu|2
) (5.19)

holds, where ~Φ = ~ν × [~v × ~ν] + ψ[~ν × ~u]. The constant c is independent of the
function u.
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Proof. Put R = I in (5.16), then we get

2γ

∫

Ω

∫

R

dx dt e−2γt|u|2 =

= 2Re

∫

Ω

∫

R

dx dt e−2γt〈u,Mu〉8 −

∫

∂Ω

∫

R

dS dt e−2γt〈A(~ν)u, u〉8 .
(5.20)

Consider the surface integral in (5.20). Taking into account the explicit formula
for A(~ν), we obtain

〈A(~ν)u, u〉8 = 2Re 〈[~ν × ~u], ~v〉3 + 2Re
(
h · 〈~u, ~ν〉3

)
+ 2Re

(
q · 〈~v, ~ν〉3

)
.

Transform the first term on the right side in order to get the boundary conditions:

2 Re 〈[~ν × ~u], ~v〉3 = 2 Re 〈ψ · [~ν × ~u], (1/ψ) · ~v〉3 =

2 Re 〈~ν × [~v × ~ν] + ψ · [~ν × ~u] − ~ν × [~v × ~ν], (1/ψ)~v〉3 =

2 Re 〈(1/ψ)~Φ, ~vσ〉3 + 2Re(−1/ψ)|~vσ|
2.

Recall that ψ = a + ib, where a < 0, then α = Re(−1/ψ) = −a/|ψ|2 > 0. Finally,
we rewrite (5.20) in the form

α

∫

∂Ω

∫

R

dS dt e−2γt|~vσ|
2 + γ

∫

Ω

∫

R

dx dt e−2γt|u|2 =

= Re

∫

Ω

∫

R

dx dt e−2γt〈u,Mu〉8−

−Re

∫

∂Ω

∫

R

dS dt e−2γt
(
h · 〈~u, ~ν〉3 + q · 〈~v, ~ν〉3 + (1/ψ)〈~Φ, ~vσ〉3

)
.

(5.21)

Note that in the surface integral on the right-hand side the functions ~Φ, h, q cor-
respond to the boundary condition Γ1u. Now it remains to estimate the functions
|〈~v, ~ν〉3|, |〈~v, ~ν〉3|.

Choose a sufficiently small positive number δ. Let ζ ∈ C∞(Ω) be a function
such that ζ(x) = 1 for all x ∈ {y ∈ Ω : dist(y, ∂Ω) < δ} and ζ(x) = 0 for all
x ∈ {y ∈ Ω : dist(y, ∂Ω) > 2δ}. Let ~n ∈ C∞(Ω) be a smooth vector field such
that ~n|∂Ω = ~ν. Put R = ζR(~n) in (5.16) and recall (5.17). Besides, from (5.18) it
follows that

MRu = R∂tu+
3∑

j=1

gj(∂jR)u+
3∑

j=1

gjR∂ju =

= R∂tu+
3∑

j=1

gj(∂jR)u+
3∑

j=1

Rgj∂ju =

= Su+RMu,
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where S =
3∑

j=1

gj(∂jR). Thus for this choice of the matrix R the identity (5.16)

takes the form∫

∂Ω

∫

R

dS dt e−2γt(|V |2 − |U |2) + 2γ

∫

Ω

∫

R

dx dt e−2γt〈u,Ru〉8 =

= 2Re

∫

Ω

∫

R

dx dt e−2γt〈Mu,Ru〉8 +

∫

Ω

∫

R

dx dt e−2γt〈u, Su〉8.

Applying the Cauchy inequality to the terms with Su, Mu, Ru, we have

γ

∫

∂Ω

∫

R

dS dt e−2γt|V |2 ≤ c
{
γ

∫

∂Ω

∫

R

dS dt e−2γt|U |2+

+

∫

Ω

∫

R

dx dt e−2γt|Mu|2 + (γ + γ2)

∫

Ω

∫

R

dx dt e−2γt|u|2
}
.

(5.22)

Let us remember that |U |2 = |Pu|2 = |~uσ|
2 + |~vσ|

2 and |V |2 = |Qu|2 = |〈~u, ~ν〉3|
2 +

|〈~v, ~ν〉3|
2 + |h|2 + |q|2. From (5.21) we get the following estimate:

γ

∫

∂Ω

∫

R

dS dt e−2γt|~vσ|
2 + γ2

∫

Ω

∫

R

dx dt e−2γt|u|2 ≤

≤ c
{∫

Ω

∫

R

dx dt e−2γt|Mu|2 + γ

∫

∂Ω

∫

R

dS dt e−2γt|~Φ|2+

+γ

∫

∂Ω

∫

R

dS dt e−2γt(|〈~u, ~ν〉3| · |h| + |〈~v, ~ν〉3| · |q|)
}
.

(5.23)

The last term on the right-hand side of (5.23) is majorized by

γ

∫

∂Ω

∫

R

dS dt e−2γt(ε|〈~u, ~ν〉3|
2 + (1/ε)|h|2 + ε|〈~v, ~ν〉3|

2 + (1/ε)|q|2)

The application of (5.22) yields the estimate

γ2

∫

Ω

∫

R

dx dt e−2γt|u|2 + γ

∫

∂Ω

∫

R

dS dt e−2γt(ε|〈~v, ~ν〉3|
2 + ε|〈~u, ~ν〉3|

2 + |~vσ|
2) ≤

≤ c
{
γ

∫

∂Ω

∫

R

dS dt e−2γt(ε|~uσ|
2 + ε|~vσ|

2 + |~Φ|2 + (1/ε)|h|2 + (1/ε)|q|2)+

+

∫

Ω

∫

R

dx dt e−2γt|Mu|2 + ε(γ + γ2)

∫

Ω

∫

R

dx dt e−2γt|u|2
}
.

(5.24)
We have

|~uσ|
2 = |~ν × ~u|2 = (1/|ψ|2)|ψ · [~ν × ~u]|2 =

(1/|ψ|2)|~ν × ~Φ − ~ν × [~v × ~ν]|2 ≤ (2/|ψ|2)(|~Φ|2 + |~vσ|
2).

Suppose γ ≥ 1. Choosing the number ε sufficiently small, one can rearrange the
right-hand side terms with |~vσ|

2 and |u|2 to the left side. As a result we obtain the
required estimate (5.19). �
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Proposition 5.5. Let Ω ⊂ R
3 be a domain with smooth boundary. For any func-

tion v ∈ C∞
c (Ω,C8) the estimate

γ2‖v; L2(Ω)‖2 + γ‖T1v; L2(∂Ω)‖2 ≤

≤ c
{
‖M(Dx, τ)v; L2(Ω)‖2 + γ‖Γ1v; L2(∂Ω)‖2

}
(5.25)

holds, where τ = σ − iγ with γ ≥ 1 and σ ∈ R. The constant c is independent of
the function v and the parameter τ .

Proof. It can be easily shown that the identity (5.16) and the estimate (5.19)
are valid for all functions u such that u(x, t) = κ(t)v(x), where v ∈ C∞

c (Ω) and
κ, e−γt

κ ∈ S(R). Applying the Fourier transform Ft→τ to the estimate (5.19), we
obtain

∫

R

dσ |κ̂(σ − iγ)|2
(
γ2‖v; L2(Ω)‖2 + γ‖T1v; L2(∂Ω)‖2

)
≤

≤ c

∫

R

dσ |κ̂(σ − iγ)|2
(
‖M(Dx, τ)v; L2(Ω)‖2 + γ‖Γ1v; L2(∂Ω)‖2

)
.

Since κ is arbitrary, we arrive at the required estimate (5.25). �

5.3.4 Energy estimates in domains with conical points

In this subsection it is shown that the energy estimate (5.19) remains valid for K

instead of G, where K is an admissible cone in the sense of the following definition.

Definition 5.6. A cone K ⊂ R
3 is called admissible if there exists a constant

vector ~f ∈ R
3 such that 〈~f, ~ν〉3 ≥ c0 > 0 for all outward normals to ∂K.

It is not hard to find a nonadmissible cone, considering nonconvex sets K ∩ S2. In
what follows we only deal with admissible cones.

Definition 5.7. Let D(K) denote the lineal spanned by the functions

w ∈ C∞
c (K \ O,C8) and by the functions of the form χu

(k,j)
µ for Imλµ < 1. Here

χ ∈ C∞
c (K) is a cut-off function such that χ = 1 near the point O.

Note that for any function u ∈ D(K) the inclusions u ∈ L2(K), u|∂K ∈ L2(∂K),
and A(Dx)u ∈ L2(K) hold. Now we prove the first main result of this section.

Proposition 5.8. Let K ⊂ R
3 be an admissible cone with conical point O. For

any function v ∈ D(K) the estimate

γ2‖v;L2(K)‖2 + γ‖T1v;L2(∂K)‖2 ≤

≤ c{‖M(Dx, τ)v;L2(K)‖2 + γ‖Γ1v;L2(∂K)‖2}
(5.26)

holds, where τ = σ − iγ with σ ∈ R, γ > 0. The constant c is independent of the
parameter τ and of the function v.
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Proof. Let u(x, t) = ψ(t)v(x), where v ∈ D(K) and ψ, e−γtψ ∈ S(
R). The

estimate (5.23) in K is proved in the same way as in Ω. Now we turn to the estimate

in K similar to (5.22). Let ~f ∈ R
3 be a constant vector from the condition imposed

on the cone K (see Definition 5.6). We put R = R( ~f) in (5.16). Note that R( ~f) is

a constant matrix, hence
3∑

i=1

gi(∂iR) = 0. Therefore MRu = RMu and we get

∫

∂K

∫

R

dS dt e−2γt〈A(~ν)u,R(~f)u〉8 + 2γ

∫

K

∫

R

dx dt e−2γt〈u,R(~f)u〉8 =

= Re

∫

K

∫

R

dx dt e−2γt〈Mu,R(~f)u〉8 .
(5.27)

For the vector ~f the decomposition ~f = s(x)~ν(x) + ~σ(x), holds, where x ∈ ∂K \O,
~ν is the unit outward normal to ∂K, ~σ is tangent to ∂K, and the function s
satisfies the inequalities 0 < c0 ≤ s(x) ≤ C for x ∈ ∂K \ O. Then we have

R(~f) = sR(~ν) +R(~σ). Recall the explicit formulas for A(~ν)u and R(~σ)u:

A(~ν)u = (−[~ν × ~v] + ~νh, [~ν × ~u] + ~νq, 〈~u, ~ν〉3, 〈~v, ~ν〉3)
T ,

R(~σ)u = ([~σ × ~v] + ~σh, −[~σ × ~u] + ~σq, 〈~u, ~σ〉3, 〈~v, ~σ〉3)
T .

Taking into account these formulas it is not hard to prove that

|〈A(~ν)u,R(~σ)u〉8| ≤ c|U | · |V | ≤ c(
1

ε
|U |2 + ε|V |2). (5.28)

Combining (5.17), (5.27), and (5.28) we obtain

γ

∫

∂K

∫

R

dS dt e−2γt|V |2 ≤ c
(
γ

∫

∂K

∫

R

dS dt e−2γt|U |2+

+

∫

K

∫

R

dx dt e−2γt|Mu|2 + γ2

∫

K

∫

R

dx dt e−2γt|u|2
)
.

(5.29)

This estimate plays the same role as the estimate (5.22) played in the proof of
Proposition 5.4. In the same way as we did in Proposition 5.4, from the estimate
(5.23) for the cone K and from the estimate (5.29) we get

γ2

∫

K

∫

R

dx dt e−2γt|u|2 + γ

∫

∂K

∫

R

dS dt e−2γt(|〈~v, ~ν〉3|
2 + |〈~u, ~ν〉3|

2 + |~vσ|
2) ≤

c
(
γ

∫

∂K

∫

R

dS dt e−2γt(|~Φ|2 + |h|2 + |q|2) +

∫

K

∫

R

dx dt e−2γt|Mu|2
)
.

Let us now apply the Fourier transform Ft→τ to the last inequality:
∫

R

dσ |κ̂(σ − iγ)|2
(
γ2‖v;L2(K)‖2 + γ‖T1v;L2(∂K)‖2

)
≤

≤ c

∫

R

dσ |κ̂(σ − iγ)|2
(
‖M(Dx, τ)v;L2(K)‖2 + γ‖Γ1v;L2(∂K)‖2

)
.
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Since κ is arbitrary, we arrive at the required estimate (5.26). �

Finally, we consider the problem (5.4), (5.5) in bounded domains with conical
point. Let G ⊂ R

3 be a domain such that G coincides with an admissible cone K

in a neighborhood of the point O.

Definition 5.9. Let D(G) denote the lineal spanned by the functions

w ∈ C∞
c (G \ O) and by the functions of the form χu

(k,j)
µ for Imλµ < 1. Here

χ ∈ C∞(G) is a cut-off function such that χ = 1 near the point O and χ = 0
outside a neighborhood where G coincides with K.

Proposition 5.10. For any function v ∈ D(G) the estimate

γ2‖v;L2(G)‖2 + γ‖T1v;L2(∂G)‖2 ≤

≤ c{‖M(Dx, τ)v;L2(G)‖2 + γ‖Γ1v;L2(∂G)‖2}
(5.30)

holds. Here τ = σ− iγ, σ ∈ R, γ > γ0 with sufficiently large γ0. The constant c is
independent of the parameter τ and of the function v.

Proof. Let χ + ζ = 1 be a partition of unity on G such that χ = 1 near the
point O and χ = 0 outside a neighborhood where G coincides with K. Then we
have

γ2‖v;L2(G)‖2 + γ‖T1v;L2(∂G)‖2 ≤ (γ2‖χv;L2(K)‖2 + γ‖T1(χv);L2(∂K)‖2)+
+(γ2‖ζv;L2(G)‖2 + γ2‖T1(ζv);L2(∂G)‖2).

For the first expression in brackets we use the estimate (5.26). The second ex-
pression in brackets is estimated by the inequality (5.25) for domains with smooth
boundary. Therefore we obtain

γ2‖v;L2(G)‖2 + γ‖T1v;L2(∂G)‖2 ≤

≤ c{‖M(Dx, τ)(χv);L2(K)‖2 + γ · ‖Γ1(χv);L2(∂K)‖2+
+‖M(Dx, τ)(ζv);L2(G)‖2 + γ · ‖Γ1(ζv);L2(∂G)‖2} ≤

≤ c{‖M(Dx, τ)v;L2(G)‖2 + γ · ‖Γ1v;L2(∂G)‖2+
+‖[A(Dx), χ]v;L2(G)‖2 + ‖[A(Dx), ζ]v;L2(G)‖2}.

For the commutators we get

‖[A(Dx), χ]v;L2(G)‖2 ≤ c‖v;L2(G)‖2, ‖[A(Dx), ζ]v;L2(G)‖2 ≤ c‖v;L2(G)‖2,

then
γ2‖v;L2(G)‖2 + γ‖T1v;L2(∂G)‖2 ≤

≤ c{‖M(Dx, τ)v;L2(K)‖2 + γ · ‖Γ1v;L2(∂K)‖2 + ‖v;L2(G)‖2}.

Choosing γ sufficiently large, one can rearrange the term c‖v;L2(G)‖2 to the left.
�

Now we briefly discuss the adjoint problem (5.7), (5.8) in K.
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Definition 5.11. Let E(K) denote the lineal spanned by the functions

w ∈ C∞
c (K \ O) and by the functions of the form χv

(k,j)
µ for Imλµ > 1. Here

χ ∈ C∞(K) is a cut-off function such that χ = 1 near the vertex O of the cone.

Slight modification of the proofs given in this section leads us to the following
result for the adjoint problem.

Proposition 5.12. Let K ⊂ R
3 be an admissible cone with conical point O. For

any function v ∈ E(K) the estimate

γ2‖v;L2(K)‖2 + γ‖T2v;L2(∂K)‖2 ≤

≤ c{‖M(Dx, τ)v;L2(K)‖2 + γ‖Γ2v;L2(∂K)‖2}
(5.31)

holds, where τ = σ − iγ with σ ∈ R, γ > 0. The constant c is independent of the
parameter τ and of the function v.

We note that the obtained estimates do not contain the boundary Sobolev
spaces of fractional orderHs(∂K) andHs(∂G). One might expect the order s = 1/2
considering the elliptic problem or applying some kind of trace theorems. The
order s = −1/2 could appear if the estimate was proved applying some ”duality”
technique. But the original problem is not elliptic, it is hyperbolic and we treated
it applying completely distinct methods.

5.3.5 Another energy estimate

Here we prove a different energy estimate for the boundary conditions (1.6) with
H = 0 and Q = 0. It will be shown in the last section that such boundary
conditions are needed when we ”return” to the usual Maxwell system. So if we
are mainly interested in the usual Maxwell system, then we can confine ourselves
to these boundary conditions. It is important that the new estimate is valid for
arbitrary cones. Besides, the proof is simpler than the proof of (5.30).

Proposition 5.13. Let v = (~u, ~v, h, q) ∈ D(G) satisfy the augmented impedance
boundary conditions (5.2) with H = 0, Q = 0. Then

γ2‖v;L2(G)‖2 + (γ|Reψ|/|ψ|) · ‖~v × ~ν;L2(∂G)‖2

≤ c{‖M(Dx, τ)v;L2(G)‖2 + (γ|ψ|/|Reψ|) · ‖~Φ × ~ν;L2(∂G)‖2},
(5.32)

where the constant c is independent of v and τ .

Proof. Let u(x1, x2, x3, t) = ζ(t)v(x1, x2, x3) with ζ, e−γtζ ∈ S(R). From the
Green formula (1.10) it follows that

Re

∫

G

〈A(∂)u, u〉 dx1 dx2 dx3 = Re

∫

∂G

〈~u, [~v × ~ν]〉3 dS

= Re
1

ψ

∫

∂G

〈[~Φ × ~ν], ~vσ〉3 dS − Re
1

ψ

∫

∂G

|~vσ|
2 dS,
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where ~vσ = ~ν× [~v×~ν] is the component of ~v tangent to ∂G and ~ν the unit outward
normal. Then

d

dt
‖u(·, t);L2(G)‖ = 2Re

∫

G

〈ut + A(∂)u, u〉8 dx1 dx2 dx3−

−2Re
1

ψ

∫

∂G

〈[~Φ × ~ν], ~vσ〉3 dS + 2Re
1

ψ

∫

∂G

|~vσ|
2 dS.

Taking into account the equality ψ = a + ib and majorizing the right-hand side,
we arrive at

d

dt
‖u(·, t);L2(G)‖ + 2

|a|

|ψ|
· ‖~vσ;L2(∂G)‖2 ≤

≤ c{‖Mu;L2(G)‖ · ‖u;L2(G)‖ + ‖~Φ × ~ν;L2(∂G)‖ · ‖~vσ;L2(∂G)‖}.

Integrate over (−∞, t), multiply the obtained equality by e−2γt, and then integrate
over (−∞,+∞). Changing the order of integration, we have

+∞∫

−∞

e−2γt‖u(·, t);L2(G)‖2 dt+
|a|

γ|ψ|

+∞∫

−∞

e−2γt‖~vσ(·, t);L2(∂G)‖2 dt ≤

≤
c

2γ

+∞∫

−∞

e−2γt‖Mu(·, t);L2(G)‖ · ‖u(·, t);L2(G)‖ dt+

+
c

2γ

+∞∫

−∞

e−2γt‖~Φ(·, t);L2(∂G)‖ · ‖~vσ(·, t);L2(∂G)‖ dt.

Further,

+∞∫

−∞

e−2γt‖u;L2(G)‖2 dt+
|a|

γ|ψ|

+∞∫

−∞

e−2γt‖~vσ;L2(∂G)‖2 dt ≤

≤
c

2γ

+∞∫

−∞

e−2γt(‖Mu;L2(G)‖ +

√
|ψ|γ

|a|
· ‖~Φ;L2(∂G)‖)

×(‖u;L2(G)‖ +

√
|a|

γ|ψ|
· ‖~vσ;L2(∂G)‖) dt.

By the Cauchy inequality,

+∞∫

−∞

e−2γt(‖u;L2(G)‖2 +
|a|

γ|ψ|
· ‖~vσ;L2(∂G)‖2) dt ≤

≤
c

γ2

+∞∫

−∞

e−2γt(‖Mu;L2(G)‖2 +
|ψ|γ

|a|
· ‖~Φ;L2(∂G)‖2) dt.
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Since ζ is an arbitrary function, Parseval’s equality for the Fourier transform Ft→τ

leads to (5.32). �

Applying in subsequent considerations the estimate (5.32) instead of (5.30), we can
finally obtain the results for the Maxwell system (1.1) with impedance boundary
conditions (1.3) in arbitrary cones. However, the energy estimate (5.32) is less in-
formative than (5.30), because in (5.30) the left-hand side contains also the normal
components of the electric and magnetic fields (see the formula for T1v).

5.4 Operator of the problem

In this section we investigate the operator of the problem (5.4), (5.5) in spaces
related to (5.26). In what follows we consider only the problem in K. However,
all results remain valid for the problem in G as well. At the end of the section
we give the necessary remarks. Introduce the function space corresponding to the
boundary operator Γ1 by

L2,T (∂K) =

=
{

(~Φ, h, q) : h, q ∈ L2(∂K); ~Φ ∈ L2(∂K,C
3) and 〈~Φ · ~ν〉3 = 0 a.e. on ∂K

}
.

Further we often use function spaces of vector-valued functions, e.g., L2(K,C
8),

H1
β(K, |τ |,C8). As a rule, we omit the symbol C

k and keep the simple notations
L2(K), H1

β(K, |τ |).
With the problem (5.4), (5.5) in K we associate the unbounded operator v 7→

M1(τ)v := {M(Dx, τ)v,Γ1v} with domain D(K) acting from L2(K) to L2(K) ×
L2,T (∂K). We claim that M1(τ) admits closure. Indeed, let {vm} ⊂ D(K), vm → 0
in L2(K), and {M(Dx, τ)vm,Γ1vm} → {f, g} in L2(K) × L2,T (∂K) as m → ∞.
Then (M(D, τ)vm, w)

K
= (vm,M(Dx, τ)w)

K
for any w ∈ C∞

c (K). Letting m→ ∞,
we obtain (f, w)

K
= 0, hence f = 0. Now let w ∈ C∞

c (K \ O) such that Γ2w = 0.
Applying the Green formula (5.6), we get

(M(Dx, τ)vm, w)
K

+ (Γ1vm, T1w)∂K
= (vm,M(Dx, τ)w)

K
+ (T2vm,Γ2w)

K
.

As m → ∞ we have (g, T1w)∂K
= 0, hence g = 0. In what follows we deal with

the closed operator only, keeping the notations M1(τ) and DM1(τ) for the closed
operator and its domain.

Let v ∈ DM1(τ) and M1(τ)v = {f, g}. There exists a sequence {vk}
∞
k=1 ⊂

D(K) such that vk → v in L2(K), M(Dx, τ)vk → f in L2(K), and Γ1vk → g in
L2(∂K). From the energy estimate (5.26) it follows that there exists h ∈ L2(∂K)
such that T1vk → h in L2(∂K). It can be shown that if v|ω ∈ H1(ω), where
ω ⊂ K \ O such that ∂ω ∩ ∂K = S, then T1v = h on S. Thus we say that for
v ∈ DM1(τ) there exists a boundary value T1v = h. Applying (5.26) we see that

γ‖T1v;L2(∂K)‖2 + γ2‖v;L2(K)‖2 ≤ c{‖f ;L2(K)‖2 + γ‖g;L2,T (∂K)‖2}.

This estimate implies the following result.
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Proposition 5.14. A) KerM1(τ) = {0}.
B) The range RM1(τ) is closed in L2(K) × L2,T (∂K).

Let us now prove that the range RM1(τ) of M1(τ) coincides with L2(K)×L2,T (∂K).
To this end we investigate the kernel of the adjoint operator.

Proposition 5.15. RM1(τ) = L2(K) × L2,T (∂K).

Proof. It suffices to verify that KerM1(τ)
∗ = {0}. Suppose that {w, z} ∈

KerM1(τ)
∗. Applying the known local properties of solutions to elliptic problems

(see [28, Chapter 1, §1]), we get w ∈ C∞(K \O) and z = T1w while w satisfies the
homogeneous problem (5.7), (5.8). Moreover the function w admits the asymptotic
representation

w = χ
∑

k,j,µ

c(k,j)
µ V

(k,j)
µ,N + h, (5.33)

where χ ∈ C∞
c (K) such that χ = 1 near the point O). Since {w, T1w} ∈ L2(K) ×

L2(∂K), the asymptotics contains only V
(k,j)
µ,N such that Imλµ < 1 (this condition

implies that χV
(k,j)
µ,N ∈ L2(K) and χV

(k,j)
µ,N |∂K ∈ L2(∂K)).

Let ζn ∈ C∞(K) such that ζn = 1 for r < n and ζn = 0 for r > n+ 1. It is easy to
see that we can apply the estimate (5.31) to ζnw. So we get

γ2‖ζnw;L2(K)‖2 ≤ c‖[M(Dx, τ), ζn]w;L2(K)‖2.

The commutator is estimated as follows

‖[M(Dx, τ), ζn]w;L2(K)‖ ≤ c‖w;L2(K ∩ {n < r < n+ 1})‖.

Since w ∈ L2(K), then ‖w;L2(K ∩ {n < r < n + 1})‖ → 0 as n → ∞. Hence
w = 0. �

Definition 5.16. A solution of the equation M1(τ)v = {f, g} with {f, g} ∈
L2(K) × L2,T (∂K) is called a strong solution of the problem (5.4), (5.5) in K.

The next assertion summarizes the results of this section.

Theorem 5.17. For any {f, g} ∈ L2(K) × L2,T (∂K) and every τ = σ − iγ with
σ ∈ R, γ > 0 there exists a unique strong solution v to the problem (5.4), (5.5) in K

with right-hand side {f, g}. Moreover, there exists a boundary value T1v ∈ L2(∂K)
and the estimate

γ‖T1v; L2(∂K)‖2 + γ2‖v; L2(K)‖2 ≤ c{‖f ; L2(K)‖2 + γ‖g; L2(∂K)‖2}

holds, where c is independent of τ and of v.

Remark 5.18. Let γ ≥ γ0 with sufficiently large γ0. Then Theorem 5.17 is true
for the problem (5.4), (5.5) in G as well.
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Finally we briefly discuss the results concerning the adjoint problem. With
the problem (5.7), (5.8) in K we associate the unbounded operator v 7→ M2(τ)v :=
{M(Dx, τ)v,Γ2v} with domain E(K) acting from L2(K) to L2(K)×L2,T (∂K). This
operator admits the closure. The closed operator M2(τ) has the same properties
as the operator M1(τ). Namely, we have KerM2(τ) = {0} and RM2(τ) = L2(K)×
L2,T (∂K).

Definition 5.19. A solution of the equation M2(τ)v = {f, g} with {f, g} ∈
L2(K) × L2,T (∂K) is called a strong solution of the problem (5.7), (5.8) in K.

Theorem 5.20. For any {f, g} ∈ L2(K) × L2,T (∂K) and every τ = σ − iγ with
σ ∈ R, γ > 0 there exists a unique strong solution v to the problem (5.7), (5.8) in K

with right-hand side {f, g}. Moreover, there exists a boundary value T2v ∈ L2(∂K)
and the estimate

γ‖T2v; L2(∂K)‖2 + γ2‖v; L2(K)‖2 ≤ c{‖f ; L2(K)‖2 + γ‖g; L2(∂K)‖2}

holds, where c is independent of τ and of v.

Remark 5.21. Let γ ≥ γ0 with sufficiently large γ0. Then Theorem 5.20 is true
for the problem (5.7), (5.8) in G as well.

5.5 Weighted combined estimate

In this section, we prove a more informative a priori estimate for the problem (5.4),
(5.5). This estimate will be used in the study of the asymptotics of strong solutions
near the conical point O.

Definition 5.22. Let Dβ(K) with β ≤ 1 stand for the lineal spanned by the

functions w ∈ C∞
c (K \ O,C8) and by the functions of the form χu

(k,j)
µ such that

Imλµ < min{1, β + 1/2}. Here χ ∈ C∞
c (K) is a cut-off function such that χ = 1

near the point O.

The lineal Dβ(G) is defined in a similar way.

5.5.1 The estimate in the cone K

Proposition 5.23. Let β ≤ 1 and let the line Imλ = β + 1/2 be free from the
spectrum of C. Then for v ∈ Dβ(K) the inequality

γ‖T1v;H
0
β(∂K)‖2 + γ2‖v;H0

β(K)‖2 + ‖χτv;H
1
β(K, |τ |)‖2 ≤

≤ c
(
‖M(Dx, τ)v;H

0
β(K)‖2 + γ‖Γ1v;H

0
β(∂K)‖2 + ‖χτΓ1v;H

1/2
β (∂K)‖2

+(|τ |1−β/γ)
2
{‖M(Dx, τ)v;L2(K)‖2 + γ‖Γ1v;L2(∂K)‖2}

) (5.34)

holds, where χτ (r) = χ(|τ |r) and χ ∈ C∞
c (K) is a fixed cut-off function such that

χ = 1 near the point O. The constant c is independent of v and τ .
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Proof. Step 1. An estimate near the vertex of K. According to Proposition
1.2, the problem {A(Dη), Γ1} is elliptic. Therefore, if the line Imλ = β + 1/2
contains no eigenvalues of the pencil C, then a function U ∈ H1

β(K, 1) satisfies the
inequality

‖χU ;H1
β(K)‖

2
≤ c{‖A(Dη)χU ;H0

β(K)‖2 + ‖Γ1χU ;H
1/2
β (∂K)‖2}.

Since A(Dη)χU = χA(Dη)U + [A(Dη), χ]U and M(Dη, θ) = θ + A(Dη), the last
inequality takes the form

‖χU ;H1
β(K, 1)‖

2
≤ c{‖χM(Dη, θ)U ;H0

β(K)‖2

+‖Γ1χU ;H
1/2
β (∂K)‖2 + ‖ζU ;H0

β(K)‖2},
(5.35)

where ζ ∈ C∞
c (K), χζ = χ.

Step 2. An estimate far from the vertex. On this step we prove the inequality

γ

|τ |
‖κ∞T1U ;H0

β(∂K)‖2 +
γ2

|τ |2
‖κ∞U ;H0

β(K)‖2 ≤

≤ c{‖κ∞M(Dη, θ)U ;H0
β(K)‖2 + ‖ζ∞U ;H0

β−1(K)‖2+

+
γ

|τ |
‖κ∞Γ1U ;H0

β(∂K)‖2}

(5.36)

for any β ∈ R and every U ∈ H1
β(K, 1), where the constant c is independent of U

and τ . The functions κ∞ and ζ∞ are smooth in K, equal to 0 near the vertex and
1 in a neighborhood of infinity, while κ∞ζ∞ = κ∞.

Let κ, ζ ∈ C∞(K) such that supp κ ⊂ {x ∈ K : 1/2 < |x| < 2}, supp ζ ⊂
{x ∈ K : 1/4 < |x| < 4}, and κζ = κ. The application of (5.26) yields

γ‖κT1v;L2(∂K)‖2 + γ2‖κv;L2(K)‖2 ≤
≤ {‖κM(Dx, τ)v;L2(K)‖2 + ‖ζv;L2(K)‖2 + γ‖κΓ1v;L2(∂K)‖2}.

If we replace v by the function (x1, x2, x3) 7→ U ε(x1, x2, x3) = U(x1/ε, x2/ε, x3/ε),
and change τ for τ/(|τ |ε) with ε > 0, we obtain

(γ/|τ |ε)‖κT1U
ε;L2(∂K)‖2 + (γ/|τ |ε)2‖κU ε;L2(K)‖2 ≤

≤ c{‖κM(Dx, τ/|τ |ε)U
ε;L2(K)‖2 + ‖ζU ε;L2(K)‖2+

+(γ/|τ |ε)‖κΓ1U
ε;L2(∂K)‖2}.

Change the variables (x1, x2, x3) 7→ (η1, η2, η3) = (x1/ε, x2/ε, x3/ε). Then we arrive
at the estimate

γ

|τ |
‖κεT1U ;L2(∂K)‖2 +

γ2

|τ |2
‖κεU ;L2(K)‖2 ≤ c{‖κεM(Dη, θ)U ;L2(K)‖2

+ε2‖ζεU ;L2(K)‖2 +
γ

|τ |
‖κεΓ1U ;L2(∂K)‖2},

where κε(η) = κ(εη), ζε(η) = ζ(εη). Multiplying the inequality by ε−2β, putting
ε = 2−j, j = 1, 2, 3, ..., and adding all these inequalities, we obtain (5.36).
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Step 3. An estimate in intermediate zone. Let κ∞ = 1 outside the support
of χ. Since

(γ/|τ |)‖χU ;H0
β(K)‖ ≤ ‖χU ;H0

β(K)‖ ≤ ‖χU ;H1
β(K, 1)‖

and
(γ/|τ |)‖χT1U ;H0

β(∂K)‖ ≤ ‖χU ;H
1/2
β (∂K, 1)‖ ≤ ‖χU ;H1

β(K, 1)‖,

then, summing (5.35) and (5.36), we obtain the inequality

γ

|τ |
‖κ∞T1U ;H0

β(∂K)‖2 +
γ2

|τ |2
‖U ;H0

β(K)‖2 + ‖χU ;H1
β(K, 1)‖2 ≤

≤ c{‖M(Dη, θ)U ;H0
β(K)‖2 + ‖ζ∞U ;H0

β−1(K)‖2 + ‖ζU ;H0
β(K)‖2+

+
γ

|τ |
‖κ∞Γ1U ;H0

β(∂K)‖2 + ‖χΓ1U ;H
1/2
β (∂K)‖2}.

Now we estimate the term on the right

‖ζU ;H0
β(K)‖2 ≤

∫

|η|<a

|η|2β|U |2 dη =

= (

∫

0≤|η|≤ε

+

∫

ε≤|η|≤a

)|η|2β|U |2 dη.

The first integral is majorized by cε2‖χU ;H1
β(K)‖2. We can rearrange it to the left

side of the inequality, choosing ε sufficiently small. The second integral does not
exceed c‖ζ∞U ;H0

β−1(K)‖2. Now the estimate can be rewritten in the form

γ

|τ |
‖T1U ;H0

β(∂K)‖2 +
γ2

|τ |2
‖U ;H0

β(K)‖2 + ‖χU ;H1
β(K, 1)‖2 ≤

≤ c{‖M(Dη, θ)U ;H0
β(K)‖2 + ‖ζ∞U ;H0

β−1(K)‖2+

+
γ

|τ |
‖κ∞Γ1U ;H0

β(∂K)‖2 + ‖χΓ1U ;H
1/2
β (∂K)‖2}.

After the change of variables (η1, η2, η3) 7→ (x1, x2, x3) = (|τ |−1η1, |τ |
−1η2, |τ |

−1η3)
we obtain

γ‖T1v;H
0
β(∂K)‖2 + γ2‖v;H0

β(K)‖2 + ‖χτv;H
1
β(K, |τ |)‖2 ≤

≤ c{‖M(Dx, τ)v;H
0
β(K)‖2 + ‖ζ∞,τv;H

0
β−1(K)‖2+

+γ‖κ∞,τΓ1v;H
0
β(∂K)‖2 + ‖χτΓ1v;H

1/2
β (∂K)‖2},

where ζ∞,τ (x) = ζ∞(|τ |x), χτ (x) = χ(|τ |x), v(x1, x2, x3) = U(|τ |x1, |τ |x2, |τ |x3)
Note that

‖κ∞,τΓ1v;H
0
β(∂K)‖ ≤ ‖Γ1v;H

0
β(∂K)‖.

Taking the inequalities (5.26) and β ≤ 1 into account, we get

‖ζ∞,τv;H
0
β−1(K)‖2 ≤

∫

b/|τ |<r

r2(β−1)|v|2 dx ≤

≤ c |τ |2(1−β)

∫

K

|v|2 dx ≤ c
|τ |2(1−β)

γ2

(
‖M(Dx, τ)v;L2(K)‖2 + γ‖Γ1v;L2(∂K)‖2

)
,
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which leads to (5.34).�

By DHβ(K, τ) we denote the completion of the set C∞
c (K \ O,C8) with respect to

the norm

‖v; DHβ(K, τ)‖ =
(
γ2‖v;H0

β(K)‖
2
+ ‖χτv;H

1
β(K, |τ |)‖

2
)1/2

.

By RHβ(K, τ) we denote the completion of the set C∞
c (K \O,C8)×C∞

c (K \O,C5)
with respect to the norm

‖{f, g}; RHβ(K, τ)‖ =
(
‖f ;H0

β(K)‖2+

+γ‖g;H0
β(∂K)‖2 + ‖χτg;H

1/2
β (∂K)‖2+

+(|τ |1−β/γ)
2
(‖f ;L2(K)‖2 + γ‖g;L2(∂K)‖2)

)1/2

.

Here χτ (x1, x2, x3) = χ(|τ |x1, |τ |x2, |τ |x3) and χ ∈ C∞
c (K) is a cut-off function that

is equal to 1 near the conical point O. The spaces DHβ(G, τ) and RHβ(G, τ) are
defined in a similar way. Taking into account these new notations, one can rewrite
the estimate (5.34) in the form

γ‖T1v;H
0
β(∂K)‖2 + ‖v; DHβ(K, τ)‖2 ≤

≤ c ‖{M(Dx, τ)v,Γ1v}; RHβ(K, τ)‖2.
(5.37)

5.5.2 The estimate in G

Proposition 5.24. Let β ≤ 1 and let the line Imλ = β + 1/2 contain no eigen-
values of the pencil C. Assume that γ > γ0 with sufficiently large γ0. Then the
inequality

γ‖T1v;H
0
β(∂G)‖2 + ‖v; DHβ(G, τ)‖2 ≤

≤ c‖{M(Dx, τ)v,Γ1v}; RHβ(G, τ)‖2

(5.38)

holds for any v ∈ Dβ(G) with a constant c independent of v and τ .

Proof. Let ζ ∈ C∞(G) be a cut-off function that is equal to 1 near O

and vanishes outside the neighborhood where G coincides with K. Since v =
ζv + (1 − ζ)v, we have

‖v; DHβ(G, τ)‖ ≤ ‖ζv; DHβ(K, τ)‖ + ‖(1 − ζ)v; DHβ(G, τ)‖. (5.39)

Estimate the first term on the right. From (5.37) it follows that

γ1/2‖ζT1v;H
0
β(∂K)‖ + ‖ζv; DHβ(K, τ)‖ ≤ ‖{Mζv,Γ1ζv}; RHβ(K, τ)‖ ≤

≤ c{‖{ζMv, ζΓ1v}; RHβ(K, τ)‖ + ‖{[M, ζ]v, 0}; RHβ(K, τ)‖},

where M stands for M(Dx, τ). Clearly

‖{ζMv, ζΓ1v}; RHβ(K, τ)‖ ≤ ‖{Mv,Γ1v}; RHβ(G, τ)‖.
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The commutator can be estimated as follows

‖{[M, ζ]v, 0}; RHβ(K, τ)‖2 = ‖[M, ζ]v;H0
β(K)‖2+

+(|τ |1−β/γ)
2
‖[M, ζ]v;L2(K)‖2 ≤ c{‖v;H0

β(G)‖2 + (|τ |1−β/γ)
2
‖v;L2(G)‖2}.

Taking the estimate (5.30) into account we arrive at

‖{[M, ζ]v, 0}; RHβ(K, τ)‖2 ≤

≤ c
(
‖v;H0

β(G)‖2 + (|τ |1−β/γ)
2
· (1/γ2){‖Mv;L2(G)‖2 + γ‖Γ1v;L2(∂G)‖2}

)

≤ c{‖v;H0
β(G)‖2 + (1/γ2)‖{Mv,Γ1v}; RHβ(G, τ)‖2}.

Finally, for the first term in the right-hand side of (5.39) we get

γ‖ζT1v;H
0
β(∂K)‖2 + ‖ζv; DHβ(K, τ)‖2 ≤

≤ c
(
(1 + 1/γ2)‖{Mv,Γ1v}; RHβ(G, τ)‖2 + ‖v;H0

β(G)‖2
)
.

Consider the second term in the right-hand side of (5.39). From the definition of
the norm in DHβ(G, τ) it follows that

‖(1 − ζ)v; DHβ(G, τ)‖2 = γ2‖(1 − ζ)v;H0
β(G)‖2 + ‖χτ (1 − ζ)v;H1

β(G, |τ |)‖2.

For sufficiently large γ we have χτ (1 − ζ) ≡ 0 because the supports of the factors
do not overlap. Then

γ‖(1 − ζ)T1v;H
0
β(∂G)‖2 + γ2‖(1 − ζ)v;H0

β(G)‖2 ≤

≤ c
(
γ‖(1 − ζ)T1v;L2(∂G)‖2 + γ2‖(1 − ζ)v;L2(G)‖2

)
≤

≤ c
(
‖M(1 − ζ)v;L2(G)‖2 + γ‖(1 − ζ)Γ1v;L2(∂G)‖2

)

≤ c
(
‖(1 − ζ)Mv;H0

β(G)‖2 + γ‖(1 − ζ)Γ1v;H
0
β(∂G)‖2 + ‖[M, (1 − ζ)]v;L2(G)‖2

)

≤ c
(
‖{Mv,Γ1v}; RHβ(G, τ)‖2 + ‖v;H0

β(G)‖2
)
.

Combining the obtained estimates, we rewrite (5.39) in the form

γ‖T1v;H
0
β(∂G)‖2 + ‖v; DHβ(G, τ)‖2 ≤

≤ c
(
(1 + 1/γ2)‖{Mv,Γ1v}; RHβ(G, τ)‖2 + ‖v;H0

β(G)‖2
)
.

Since ‖v;H0
β(G)‖ ≤ (1/γ)‖v; DHβ(G, τ)‖, then

γ‖T1v;H
0
β(∂G)‖2 + ‖v; DHβ(G, τ)‖2 ≤

≤ c(1 + 1/γ2)‖{Mv,Γ1v}; RHβ(G, τ)‖2 + (c/γ2)‖v; DHβ(G, τ)‖2.

One can rearrange the term (1/γ)‖v; DHβ(G, τ)‖ to the left, choosing γ sufficiently
large. As a result, we obtain (5.38). �
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Introduce a subspace of RHβ(K, τ) by

RHβ,T (K, τ) =
{
{f, g} ∈ RHβ(K, τ) with g = (~Φ, h, q)

such that 〈~Φ, ~ν〉3 = 0 a.e. on ∂K
}
.

It is easy to see that for any v ∈ Dβ(K) we have the inclusion {M(Dx, τ)v,Γv} ∈
RHβ,T (K, τ).

With the problem (5.4), (5.5) in the cone K we associate the operator v 7→
M1(τ, β)v := {M(Dx, τ)v,Γ1v} with domain Dβ(K) such that

M1(τ, β) : DHβ(K, τ) 7→ RHβ,T (K, τ).

It can be proved that the operator M1(τ, β) admits closure. We keep the notations
M1(τ, β) and DM1(τ, β) for the closed operator and its domain.

Let the line Imλ = β + 1/2 contain no eigenvalues of the pencil C and β ≤ 1.
Applying the same arguments as in Section 5.4, we say that for v ∈ DM1(τ, β)
there exists a boundary value T1v ∈ H0

β(∂K) and the estimate

γ‖T1v;H
0
β(∂K)‖2 + ‖v,DHβ(K, τ)‖2 ≤ c ‖M1(τ, β)v,RHβ(K, τ)‖2

holds. The next proposition immediately follows from this inequality.

Proposition 5.26. Let β ≤ 1 and let the line Imλ = β + 1/2 be free from the
eigenvalues of the pencil C. Then the kernel KerM1(τ, β) is trivial and the range
RM1(τ, β) is closed in RHβ,T (K, τ).

Let 1/2 > β1 > β2 > . . . be all numbers from ] − ∞, 1/2[ such that the
line Imλ = βk + 1/2 contains an eigenvalue of C. Denote by Sm the number of
the eigenvalues of C (counted with multiplicity) in the strip {λ ∈ C : Imλ ∈
[βm + 1/2, β1 + 1/2]}.

Definition 5.27. A solution to the equation M1(τ, β)v = {f, g}, where {f, g} ∈
RHβ,T (K, τ), is called a strong β-solution to the problem (5.4), (5.5) in K with
right-hand side {f, g}.

Theorem 5.28. A) Let β ∈]β1, 1] and let the line Imλ = β + 1/2 contain no
eigenvalues of the pencil C. Then for any {f, g} ∈ RHβ,T (K, τ) there exists a
unique strong β-solution v of the problem (5.4), (5.5) with right-hand side {f, g}.
Moreover, there exists a boundary value T1v ∈ H0

β(∂K) and the estimate

γ1/2‖T1v; H
0
β(∂K)‖ + ‖v; DHβ(K, τ)‖ ≤ c‖{f, g}; RHβ(K, τ)‖

holds. The constant c is independent of v and of τ .
B) Let β ∈]βm+1, βm[. A strong β-solution of the problem (5.4), (5.5) exists only
for the right-hand sides {f, g} ∈ RHβ,T (K, τ) satisfying the conditions

(f, w(k,j)
µ )

K
+ (g,−iT1w

(k,j)
µ )

∂K
= 0,
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for all functions w
(k,j)
µ corresponding to the eigenvalues of the pencil C in the strip

{λ ∈ C : Imλ ∈ [βm + 1/2, β1 + 1/2]}. A strong β−solution v is unique.
Moreover, there exists a boundary value T1v ∈ H0

β(∂K) and the estimate

γ1/2‖T1v; H
0
β(∂K)‖ + ‖v; DHβ(K, τ)‖ ≤ c‖{f, g}; RHβ(K, τ)‖

holds. The constant c is independent of v and τ .

Proof. A) Suppose that {w, z} ∈ KerM1(τ, β)∗, where M1(τ, β)∗ is the
adjoint operator to M1(τ, β) with respect to the extension of the inner product
in L2(K) × L2,T (∂K). Applying the known local properties of solutions to elliptic
problems (see [28, Chapter 1, §1]), we get w ∈ C∞(K \ O) and z = −iT1w, while
w satisfies (5.7), (5.8). Moreover, the asymptotic representation

w = χ
∑

k,j,µ

c(k,j)
µ V

(k,j)
µ,T + ρ (5.41)

holds. Since {w,−iT1w} ∈ RHβ(K, τ)∗, then for a fixed parameter τ we see that
∫

K

dx |w|2(1 + r2β)−1 ≤ c‖{w,−iT1w}; RHβ(K, τ)∗‖2. (5.42)

The estimate (5.36) with τ instead of τ and Γ2 instead of Γ1 implies that w decays
more rapidly than any power of r as r → ∞.

Assume that β > 0, hence w ∈ L2(K). Let the summation in the asymptotic
representation (5.41) be over all µ such that Imλµ ∈ ]1/2, 1[, then ρ(x, τ) = O(|x|h)
with h = min{−Imλµ : Imλµ < 1} as |x| → 0. The coefficients in (5.41) are
defined by the formula (see [25] or [28, Chapter 3 §5 and Chapter 4 §3]):

c(k,j)
µ = i

(
w, M(Dx, τ)χu

(k,j)
µ

)
K

+ i
(
−iT1w,Γ1χu

(k,j)
µ , w

)
∂K

.

Taking into account the inclusions χu
(k,j)
µ ∈ DM1(τ, β) and {w,−iT1w|∂K} ∈

KerM1(τ, β)∗, we get

c
(k,j)
µ =

(
{w,−iT1w|∂K}, M1(τ, β)χu

(k,j)
µ

)
L2(K)×L2(∂K)

=

=
(
M1(τ, β)∗{w,−iT1w|∂K}, χu

(k,j)
µ

)
L2(K)

= 0.

So we see that w ∈ C∞(K \ O), (1 − χ)w ∈ H0
β(K) for all β ∈ R, and w = O(|x|h)

with h = min{−Imλµ : Imλµ < 1} as |x| → 0. Therefore the estimate (5.31) is
valid for w. Applying this estimate, we obtain w ≡ 0.

Assume that β < 0. In order to show that w ≡ 0 we follow the same scheme
as for β > 0. In this case the proof is even simpler : since β1 < 0, then the strip
{λ ∈ C : Imλ ∈ [1/2, 1]} contains no eigenvalues of the pencil C. Thus the
sum is absent in (5.41) and we immediately obtain the estimate w = O(|x|h) with
h = min{−Imλµ : Imλµ < 1} as |x| → 0.
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5.6 Operator in the scale of weighted spaces

In this section we study the problem (5.4), (5.5) in the function spaces related to the
estimate (5.34). In the first proposition we construct solutions to the homogeneous
problem (5.7), (5.8) growing near the vertex of the cone.

Proposition 5.25. A) Let λµ be an eigenvalue of the pencil C such that Imλµ < 1.

Then there exist solutions x 7→ w
(k,j)
µ (x, τ) to the homogeneous problem (5.7), (5.8)

such that w
(k,j)
µ ∈ C∞(K \ O) and

w(k,j)
µ (x, τ) = χV

(k,j)
µ,T (x, τ) + ρ(x, τ). (5.40)

By χ ∈ C∞
c (K) we denote a cut-off function that is equal to 1 near the vertex O and

by V
(k,j)
µ,T the first T terms of the series (5.14). The number T is sufficiently large

to provide the estimate Im (λµ + 2i) − (T + 1) < 1. The remainder ρ satisfies the
conditions ρ ∈ C∞(K \ O) and ρ(x, τ) = O(|x|h) with h = min{−Imλµ : Imλµ <
1} as |x| → 0 and the parameter τ is fixed. Besides, the inclusion (1−χ)ρ ∈ H 0

β(K)

holds for all β ∈ R. The functions w
(k,j)
µ depend neither on T nor on χ.

Proof. 1) Let us show that there exists a unique function w
(k,j)
µ with stated

properties. Assume that there exists a function w̃
(k,j)
µ such that

w̃(k,j)
µ = χ̃V

(k,j)

µ,T̃
+ ρ̃

with the same properties as w
(k,j)
µ . Then it is easily seen that the estimate (5.31) is

valid for the function v = w̃
(k,j)
µ −w

(k,j)
µ . From this estimate we obtain w̃

(k,j)
µ = w

(k,j)
µ

2). Let us prove the existence of the functions w
(k,j)
µ . We put

fT := M(Dx, τ)χV
(k,j)
µ,T = χM(Dx, τ)V

(k,j)
µ,T + [M,χ]V

(k,j)
µ,T .

The support supp fT ⊂ K is compact and fT = O(r−Im (λµ+2i)+(T+1)) as |y| → 0.
Therefore for sufficiently large T the inclusion fT ∈ L2(K) holds. According to the
Theorem 5.20, there exists a unique solution ρ to the problem M2(τ)ρ = {−fT , 0}

such that ρ ∈ DM2(τ). Put w
(k,j)
µ = χV

(k,j)
µ,T + ρ.

3). Let us show now that the functions w
(k,j)
µ satisfy all the stated properties. Since

the problem (5.7), (5.8) with a fixed parameter τ is elliptic and fT ∈ C∞(K \ O),
we obtain ρ ∈ C∞(K \ O). Starting at β = 1, we iterate the estimate (5.36)

with τ instead of τ and Γ2 instead of Γ1 for the function w
(k,j)
µ . Then we get

(1 − χ)ρ ∈ H0
β(K) for all β ∈ R.

Since ρ is a solution to the elliptic problem with the right-hand side decay-
ing rapidly near the vertex of the cone, we obtain the asymptotics of the form
ρ ∼

∑
c
(k,j)
µ V

(k,j)
µ . This asymptotics and the inclusion ρ ∈ DM2(τ) imply the re-

quired estimate ρ = O(|y|h) with h = min{−Imλµ : Imλµ < 1} as |x| → 0 and
the parameter τ is fixed. �
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B). Assume that β ∈]βm+1, βm[. Let {f, g} ∈ RHβ,T (K, τ). From the in-
clusion RHβ,T (K, τ) ⊂ L2(K) × L2,T (∂K) and Theorem 5.17 it follows that there
exists v ∈ L2(K) satisfying M1(τ)v = {f, g}. The known results concerning the
elliptic problems in domains with conical points (see [28, Chapters 3, 4]) and the
inequality (5.36) imply that the function v admits the asymptotic representation

v = χ
∑

µ,k,j

d(k,j)
µ U

(k,j)
µ,T + h (5.43)

with h ∈ DHβ(K, τ). Here the sum is over all µ such that Imλµ ∈ [βm +1/2, β1 +
1/2]. The coefficients are defined by the formula ( see [25] or [28, Chapter 3 §5
and Chapter 4 §3])

d(k,j)
µ = i(f, w(k,j)

µ )
K

+ i(g,−iT1w
(k,j)
µ )

∂K
,

where w
(k,j)
µ were constructed in Proposition 5.25. If {f, g} ⊂ RM1(τ, β) then

the conditions d
(k,j)
µ = 0 in (5.43) are necessary for the inclusion v ∈ DHβ(K, τ).

Therefore {w
(k,j)
µ ,−iT1w

(k,j)
µ } ∈ KerM1(τ, β)∗ for all µ such that Imλµ ∈ [βm +

1/2, β1 + 1/2].
Show that these functions form a basis in KerM1(τ, β)∗. Let {w,−iT1w} ∈

KerM1(τ, β)∗, then the representation

w = χ
∑

c(k,j)
µ V

(k,j)
µ,T + ρ

holds, where the sum is over all µ such that Imλµ ∈ [βm + 1/2, β1 + 1/2] and
for the remainder we have ρ = O(|x|h) with h = min{−Imλµ : Imλµ < 1} as
|x| → 0. Put

z = w −
∑

c(k,j)
µ w(k,j)

µ .

We see that {z,−iT1z} ∈ L2(K) × L2(∂K), M(Dx, τ)z = 0, and Γ2z = 0. It is not
hard to prove that estimate (5.31) is valid for z. Applying this estimate, we get

z = 0 and w =
∑
c
(k,j)
µ w

(k,j)
µ . �

Remark 5.29. Assume that γ > γ0 with sufficiently large γ0. Then Theorem 5.28
is valid for the problem (5.4), (5.5) in G.

5.7 Asymptotics of solutions

Let {f, g} ∈ RHβ,T (K, τ) and let β ∈ ]βm+1, βm[. Since RHβ,T (K, τ) ⊂ L2(K) ×
L2,T (∂K), then there exists a unique strong solution u to the problem (5.4), (5.5)
in K with the right-hand side {f, g}. According to Theorem 5.28, this solution is
in DHβ(K, τ) provided

(f, w(k,j)
µ )

K
+ (g,−iT1w

(k,j)
µ )

∂K
= 0 (5.44)
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for all functions w
(k,j)
µ corresponding to the eigenvalues of the pencil C in the strip

{λ ∈ C : Imλ ∈ [βm + 1/2, β1 + 1/2]}. Now we show that if the conditions (5.44)
fail, then the strong solution admits the asymptotics modulo DHβ(K, τ). For the
sake of simplicity we make several additional assumptions. These assumptions as-
sure that the asymptotics of solutions contains only the leading term corresponding
to λm.

Proposition 5.30. Let γ > 0, β ∈ ]βm+1, βm[ such that β < βm < 0 and βm−β <
1. Suppose {f, g} ∈ RHβ,T (K, τ) and the conditions

(
f, w(k,j)

µ (·, ξ, τ)
)

K

+
(
g,−iT1w

(k,j)
µ (·, ξ, τ)

)
∂K

= 0 (5.45)

hold for all functions w
(k,j)
µ (·, ξ, τ) corresponding to the eigenvalues λµ of the pencil

C in the strip {λ ∈ C : Imλ ∈ [βm−1 + 1/2, β1 + 1/2]}.
Then the strong solution u to the problem (5.4), (5.5) in K with the right-hand

side {f, g} admits the representation

u(x, τ) = χ(|τ |x)
Jm∑

j=1

κj,m−1∑

k=0

d(k,j)
m (τ)u(k,j)

m (x) + w(x, τ), (5.46)

where w ∈ DHβ(K, τ) and χ ∈ C∞
c (K) such that χ = 1 near the vertex O of the

cone K. The coefficients are defined by the formula

d(k,j)
m = i

(
f, w(k,j)

m

)
K

+ i
(
g,−iT1w

(k,j)
m

)
∂K

. (5.47)

Besides, for the remainder and the coefficients the estimates

‖w; DHβ(K, τ)‖ ≤ c‖{f, g}; RHβ(K, τ)‖,

|d(k,j)
m | ≤ c · |τ |β+1/2−Im λm

(κj,m−1−k∑

r=0

(ln |τ |)r 1

r!

)
· ‖{f, g}; RHβ(K, τ)‖

(5.48)

hold. The constant c is independent of τ, f , and g.

Proof. The inclusion RHβ,T (K, τ) ⊂ L2(K) × L2,T (∂K) and Theorem 5.17
imply that there exists a unique strong solution u to the problem (5.4), (5.5) in
K with the right-hand side {f, g}. Since the problem (5.4), (5.5) with a fixed
parameter τ is elliptic, then we can deduce the asymptotic representation (5.46)
and the formulas (5.47) from the results concerning the elliptic problems in domains
with singularities. It remains to prove the estimates (5.48). From (5.47) we easily
obtain

|d(k,j)
m | ≤ ‖{f, g}; RHβ(K, τ)‖ · ‖{w(k,j)

m ,−iT1w
(k,j)
m }; RHβ(K, τ)∗‖.

However, it is not an easy task to obtain the dependance of the norm
‖{w

(k,j)
m ,−iT1w

(k,j)
m }; RHβ(K, τ)∗‖ on the parameter τ . That is why we prove
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the estimates (5.48) in a different way. Change the variables x 7→ η = |τ |x and
consider the problem (5.9), (5.10) depending on the parameter θ = τ/|τ |. Since
the problem (5.9), (5.10) with a fixed parameter θ is elliptic, we have the following
asymptotic representation for the strong solution U :

U(η, θ) = χ(η)
m∑

µ=1

Jµ∑

j=1

κj,µ−1∑

k=0

c(k,j)
µ (θ)u(k,j)

µ (η) +W (η, θ), (5.49)

where χW ∈ H1
β(K) and

c(k,j)
µ = i

(
F,W(k,j)

µ (·, θ)
)

K

+ i
(
G,−iT1W

(k,j)
µ (·, θ)

)
∂K

. (5.50)

By W
(k,j)
µ (·, θ) we denote the solutions to the problem (5.9), (5.10) with θ instead

of θ similar to the functions w
(k,j)
µ , constructed in Proposition 5.25. Applying the

conditions (5.45) we rewrite (5.49) as follows

U(η, θ) = χ(η)
Jm∑

j=1

κj,m−1∑

k=0

c(k,j)
m (θ)u(k,j)

m (η) +W (η, θ). (5.51)

The formula (5.50) yields the inequality

|c
(k,j)
m | ≤ ‖{F,G}; RHβ(K, 1)‖ · ‖{W

(k,j)
m ,−iT1W

(k,j)
m }; RHβ(K, 1)∗‖.

Since the functions W
(k,j)
m depend only on θ then we can estimate the norm

‖{W(k,j)
m ,−iT1W

(k,j)
m }; RHβ(K, τ)∗‖

by the constant c independent of |τ |. Thus we get

|c(k,j)
m | ≤ c‖{F,G}; RHβ,T (K, τ)‖. (5.52)

Let us now estimate the remainder in the formula (5.51). Consider the problem
(5.9), (5.10) with the right-hand side

{F ′, G′} = {F −M(Dη, θ)
(
χ
∑

c(k,j)
m u(k,j)

m

)
, G− Γ1

(
χ
∑

c(k,j)
m u(k,j)

m

)
}.

It is easily shown that

(
F ′,W(k,j)

µ (·, θ)
)

K

+
(
G′,−iT1W

(k,j)
µ (·, θ)

)
∂K

= 0

for W
(k,j)
µ such that Imλµ ∈ [βm + 1/2, β1 + 1/2]. Then Theorem 5.28 leads to the

inclusion W ∈ DHβ(K, 1) and the estimate

‖W ; DHβ(K, 1)‖ ≤ c‖{F ′, G′}; RHβ(K, 1)‖ ≤
≤ c‖{F,G}; RHβ(K, 1)‖.

(5.53)
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Change the variables η 7→ x = η/|τ | and return to the problem (5.4), (5.5).
Then we have

κj,m−1∑

k=0

c(k,j)
m u(k,j)

m (η) =

κj,m−1∑

k=0

c(k,j)
m

k∑

q=0

1

q!
|η|iλm(i ln |η|)qϕ(k−q,j)

m (ω) =

κj,m−1∑

k=0

c(k,j)
m |x|iλm |τ |iλm

k∑

q=0

1

q!
(i ln |x| + i ln |τ |)qϕ(k−q,j)

m (ω) =

κj,m−1∑

k=0

c(k,j)
m |x|iλm |τ |iλm

k∑

q=0

q∑

l=0

1

q!
·

q!

l!(q − l)!
(i ln |x|)q−l(i ln |τ |)lϕ(k−q,j)

m (ω) =

κj,m−1∑

k=0

c(k,j)
m |x|iλm |τ |iλm

k∑

l=0

(i ln |τ)l 1

l!

k∑

q=l

1

(q − l)!
(i ln |x|)q−lϕ(k−q,j)

m (ω) =

κj,m−1∑

k=0

c(k,j)
m |x|iλm |τ |iλm

k∑

l=0

(i ln |τ |)l 1

l!

k−l∑

r=0

1

r!
(i ln |x|)rϕ((k−l)−r,j)

m (ω) =

κj,m−1∑

k=0

c(k,j)
m |τ |iλm

k∑

l=0

(i ln |τ |)l 1

l!
u(k−l,j)

m (x) =

κj,m−1∑

k=0

c(k,j)
m |τ |iλm

k∑

s=0

(i ln |τ |)k−s 1

(k − s)!
u(s,j)

m (x) =

κj,m−1∑

s=0

u(s,j)
m (x)

{
|τ |iλm

κj,m−1−s∑

k=0

(i ln |τ |)k 1

k!
c(k+s,j)
m

}
.

Finally, the asymptotics (5.51) takes the form

u(x, τ) = χ(|τ |x)
Jm∑

j=1

κj,m−1∑

k=0

d(k,j)
m (τ) · u(k,j)

m (x) + w(x, τ)

with

d(k,j)
m (τ) = |τ |iλm

κj,m−1−k∑

r=0

(i ln |τ |)r 1

r!
· c(k+r,j)

m .

Changing the variables in (5.52), (5.53) we arrive at the required estimates
(5.48). �

Remark 5.31. Let {ϕ
(0,j)
m }Jm

j=1 be the eigenvectors corresponding to λm. Suppose
that there are no associated vectors. Then the asymptotics (5.46) takes the form

u(x, τ) = χ(|τ |x)
Jm∑

j=1

d(0,j)
m (τ)riλmϕ(0,j)

m (ω) + w(x, τ).

Remark 5.32. Let γ > γ0 with sufficiently large γ0 > 0. Then Proposition 5.30 is
valid for the problem (5.4), (5.5) in G.
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5.8 Nonstationary problem in cylinders

Applying the inverse Fourier transform F
−1
τ→t, we pass from the problem (5.4), (5.5)

to problem the (5.1), (5.2). Fix a cut-off function χ ∈ C∞(K) such that χ = 1 near
the vertex O of the cone K. Put

Xu(x, t) = F
−1
τ→tχ(|τ |x)Ft′→τu(x, t

′),

Λµu(x, t) = F
−1
τ→t|τ |

µFt′→τu(x, t
′),

(ln Λ)µu(x, t) = F
−1
τ→t(ln |τ |)µFt′→τu(x, t

′).

Introduce the spaces DV β(Q, γ), RV (Q, γ), and RV β(Q, γ) equipped with the norms

‖u; DV β(Q, γ)‖ =
(
γ2‖u;V 0

β (Q, γ)‖2 + ‖Xu;V 1
β (Q, γ)‖2

)1/2

,

‖{f, g}; RV (Q, γ)‖ =
(
‖f ;V 0

0 (Q, γ)‖2 + γ‖g;V 0
0 (∂Q, γ)‖2

)1/2

,

‖{f, g}; RV β(Q, γ)‖ =
(
‖f ;V 0

β (Q, γ)‖2 + (1/γ2)‖Λ1−βf ;V 0
0 (Q, γ)‖2

+γ‖g;V 0
β (∂Q, γ)‖2 + (1/γ)‖Λ1−βg;V 0

0 (∂Q, γ)‖2 + ‖Xg;V
1/2
β (∂Q, γ)‖2

)1/2

.

Denote by RV T (Q, γ) and RV β,T (Q, γ) the subspaces of RV (Q, γ) and
RV β(Q, γ) respectively such that for any {f, g} ∈ RV T (Q, γ) (RV β,T (Q, γ)) with

g = (~Φ, h, q) we have 〈~Φ · ~ν〉3 = 0 a.e. on ∂Q. The spaces in the cylinder T are
defined in a similar way.

Definition 5.33. Let {f, g} ∈ RV T (Q, γ) and let û(x, τ) be the strong so-

lution to the problem (5.4), (5.5) in K with right-hand side {−if̂ , ĝ}, where

f̂(x, τ) = Ft→τf(x, t), ĝ(x, τ) = Ft→τg(x, t). The function u, defined by u(x, t) =
F

−1
τ→tû(x, τ), is called a strong solution to the problem (5.1), (5.2) in the cylinder

Q with right-hand side {f, g}.

The next result follows from Theorem 5.17.

Theorem 5.34. For every {f, g} ∈ RV T (Q, γ) and for any γ > 0 there exists
a strong solution v to the problem (5.1), (5.2) in Q with right-hand side {f, g}.
Moreover, there exists a boundary value T1v ∈ V 0

0 (∂Q, γ) and the estimate

γ‖T1v;V
0
0 (∂Q, γ)‖2 + γ2‖v;V 0

0 (Q, γ)‖2 ≤ ‖{f, g}; RV (Q, γ)‖2

holds.

Definition 5.35. Let {f, g} ∈ RV β,T (Q, γ) and let û(x, τ) be the strong β-

solution to the problem (5.4), (5.5) in K with right-hand side {−if̂ , ĝ}, where

f̂(x, τ) = Ft→τf(x, t), ĝ(x, τ) = Ft→τg(x, t). The function u, defined by u(x, t) =
F

−1
τ→tû(x, τ), is called a strong β-solution to the problem (5.1), (5.2) in the cylinder

Q with right-hand side {f, g}.
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The next result follows from Theorem 5.28.

Theorem 5.36. 1) Let β ∈]β1, 1] and let the line Imλ = β + 1/2 be free from the
spectrum of C. Then there exists a unique strong β-solution v to the problem (5.1),
(5.2) in Q with any right-hand side {f, g} ∈ RV β,T (Q, γ). Moreover, there exists a
boundary value T1v ∈ V 0

β (∂Q, γ) and the estimate

γ‖T1v;V
0
β (∂Q, γ)‖2 + ‖v; DV β(Q, γ)‖2 ≤ c‖{f, g}; RV β(Q, γ)‖2

holds.
2) Let β ∈]βm+1, βm[. A strong β-solution to the problem (5.1), (5.2) in Q with
right-hand side {f, g} ∈ RV β,T (Q, γ) exists (and is unique) if the conditions

(
−if̂(·, τ), w(k,j)

µ (·, τ)
)

K

+
(
ĝ(·, τ),−iT1w

(k,j)
µ (·, τ)

)
∂K

= 0

hold for all τ = σ − iγ (σ ∈ R, γ > 0) and for all w
(k,j)
µ corresponding to the

eigenvalues of the pencil C in the strip {λ ∈ C : Imλ ∈ [βm + 1/2, β1 + 1/2]}.
If such a solution exists, then it has a boundary value T1v ∈ V 0

β (∂Q, γ) and the
estimate from the first part of the theorem holds.

The next theorem follows from Proposition 5.30.

Theorem 5.37. Assume that {f, g} ∈ RV β,T (Q, γ) and β ∈]βm+1, βm[ such that
β < βm < 0, βm − β < 1. Then the strong solution to the problem (5.1), (5.2)
admits the representation

u(x, t) =
Jm∑

j=1

κj,m−1∑

k=0

(Xd̃(k,j)
m )(x, t)u(k,j)

m (x) + w(x, t),

where w ∈ DV β(Q, γ). The coefficients are defined by

d̃(k,j)
m (t) = F

−1
τ→td

(k,j)
m (τ)

with

d(k,j)
m (τ) = i

(
−if̂(·, τ), w(k,j)

m (·, τ)
)

K
+ i
(
ĝ(·, τ),−iT1w

(k,j)
m (·, τ)

)
∂K
.

Moreover, the following estimates hold

‖e−γtd̃
(k,j)
m (·);H Im λk−β−1/2(R)‖ ≤ c‖(ln Λ)κj,m−1−k{f, g}; RV β(Q, γ)‖,

‖w; DV β(Q, γ)‖ ≤ c‖{f, g}; RV β(Q, γ)‖.

Strong solutions and strong β-solutions to the problem (5.1), (5.2) in T can
be defined in the same way as those to the problem in the cylinder Q in Definition
5.33 and Definition 5.35.

Remark 5.38. All the theorems in this section are valid for the problem (5.1),
(5.2) in T if γ > γ0 with sufficiently large γ0 > 0.
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5.9 Connection between the augmented and non-
augmented Maxwell systems

Up to this point the discussion was related to the augmented Maxwell system. In
this section we prove that under some conditions on the right-hand side of such a
system, its solutions have the form u = (~u,~v, 0, 0), therefore (~u,~v) satisfy the usual
(non-augmented) Maxwell system. The mentioned conditions on the right-hand
side are derived from the compatibility of the usual Maxwell system





∂ ~E/∂t− rot ~B = − ~J,

∂ ~B/∂t+ rot ~E = − ~F ,

div ~E = ρ, div ~B = µ

with boundary conditions

~ν × [~v × ~ν] + ψ[~ν × ~u] = ~Φ.

Namely, for sufficiently smooth functions from the first and the third equations of
this system we obtain

∂ρ/∂t+ div ~J = 0. (5.54)

Similarly, from the second and the forth equations we get

∂µ/∂t+ div ~F = 0. (5.55)

Consider the problem (5.4), (5.5) in the cone K with the right-hand side {f, g} ∈

L2(K)×L2,T (∂K), where f = ( ~A, ~B, α, β) and g = (~Φ, 0, 0). Since the right-hand
side is not smooth, the conditions (5.54), (5.55) should be understood in a proper
way. For this purpose we recall the following definitions.

Let ~u and v be functions such that for any φ ∈ C∞
c (K) we have

∫

K

dx 〈~u,∇φ〉3 +

∫

K

dx v · φ = 0.

Then we say that v = div ~u in the distributional sense. By H(div,K) we denote
the space of functions ~u ∈ L2(K) such that div ~u ∈ L2(K), where the divergency
is understood in the distributional sense. We endow this space with the norm

‖~u;H(div,K)‖ =
(
‖~u;L2(K)‖2 + ‖div ~u;L2(K)‖2

)1/2

.

With the obvious inner product, H(div,K) is a Hilbert space.
Applying the Fourier transform Ft→τ , we rewrite (5.54), (5.55) in the form

~A ∈ H(div,K), α ∈ L2(K), div ~A = iτα,
~B ∈ H(div,K), β ∈ L2(K), div ~B = iτβ.

(5.56)

For the proof of theorem on connection between solutions to the augmented
and usual Maxwell systems, we need a lineal. Let {µk, wk} be the set of eigenvalues
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and eigenfunctions of the Dirichlet problem pencils for the Laplace equation in K.
Denote by LD the lineal spanned by the functions in C∞

c (K) and by functions of
the form χriµkwk with Imµk < 0, where χ ∈ C∞

c (K) is a cut-off function equal to 1
near the vertex O of the cone K. According to [33, §3], the range of the Helmholtz
operator τ 2 + 4 with τ = σ − iγ (γ 6= 0) given on LD is dense in L2(K).

Theorem 5.39. Consider the problem (5.4), (5.5) in the cone K with the right-

hand side {f, g}, where g = (~Φ, 0, 0)T and the function f = ( ~A, ~B, α, β)T is subject
to the conditions (5.56). Then the strong solution u is of the form u = (~u,~v, 0, 0).

Proof. Since M1(τ) is the closure of the operator {M(Dx, τ), Γ1} given on

D(K), there exists a sequence
{
uk = (~uk, ~vk, hk, qk)

T
}
⊂ D(K) such that uk → u

(the convergence in L2(K)) and
{
M(Dx, τ)uk,Γ1uk

}
→ {f, g} (the convergence in

L2(K) × L2,T (∂K)). We have uk ∈ C∞(K \ O)) so the system (5.4), (5.5) can be
understood as usual. In particular,

iτ~uk − rot ~vk + ∇hk = ~Ak,
iτhk + div ~uk = αk.

We shall prove that h = 0. Assume that φ ∈ LD. Multiply the first equality by
∇φ, the second one by iτφ, and integrate over K. Then

iτ

∫

K

〈~uk,∇φ〉3 dx−

∫

K

〈rot ~vk,∇φ〉3 dx+

∫

K

〈∇hk,∇φ〉3 dx =

∫

K

〈 ~Ak,∇φ〉3 dx ,

−τ 2

∫

K

hk · φ dx+ iτ

∫

K

div ~uk · φ dx = iτ

∫

K

αk · φ dx.

We integrate by parts in the two first terms of the first equality, add the first and
the second equalities, and obtain

−τ 2

∫

K

hk · φ dx+

∫

K

〈∇hk,∇φ〉3 dx = iτ

∫

K

αk · φ dx+

∫

K

〈 ~Ak,∇φ〉3 dx.

Integrate by parts the second term on the left. Then we get

−τ 2

∫

K

hk·φ dx−

∫

K

hk·4φ dx+

∫

∂K

hk·∂φ/∂ν dS = iτ

∫

K

αk·φ dx+

∫

K

〈 ~Ak,∇φ〉3 dx.

As k → ∞, taking into account the boundary condition for h and the property
(5.56), we arrive at the formula

∫

K

h · (τ 2 + 4)φ dx = 0.

Therefore h = 0 because the range of the operator τ 2 + 4 given on LD is dense in
L2(K). By the same argument one can prove that q = 0 �.



6 CONCLUSIONS

In this thesis we investigated the Maxwell system in domains with conical points
and edges on the boundary. We considered conductive and impedance boundary
conditions. The main purpose was to study the behavior of solutions near the
singularities on the boundary. We derived and justified the asymptotic expansions
of solutions near the singularities and obtained the explicit formulas for the coeffi-
cients in the asymptotics. We obtained the explicit formulas for the coefficients in
the asymptotics in terms of singular solutions to the adjoint problem and studied
the properties of the coefficients.

The suggested methods and obtained results can be applied in numerical treat-
ment of the nonstationary Maxwell system in nonsmooth domains and on different
problems of electrodynamics and mathematical physics.



YHTEENVETO (FINNISH SUMMARY)

Väitöskirjassa tutkitaan ei-stationaarista Maxwell-yhtälöä alueissa, joissa on kar-
tiomaisia kärkiä ja teräviä särmiä. Yhtälöihin liittyy johtavuus- ja impedanssi-
tyyppisiä, homogeenisia ja epähomogeenisia reunaehtoja. Työn keskeisenä tavoit-
teena on tutkia yhtälön ratkaisujen käyttäytymistä lähellä ns. singulaarip-
isteitä, joita epäsileät reunat aiheuttavat. Työssä johdetaan ratkaisuille ek-
splisiittiset, asymptoottiset laajennukset alueen kartiomaisten kärkien ja terävien
särmien ympäristössä. Näitä asymptoottisia esityksiä voidaan hyödyntää useissa
sovelluksissa. Tuloksia voidaan erityisesti soveltaa useiden ei-stationaaristen
sähkömagnetiikan yhtälöiden matemaattisessa ja numeerisessa analysoinnissa
epäsileissä alueissa.

Avainsanat: ei-stationaarinen Maxwell-yhtälö, epäsileä reuna, asymptoottinen
laajennus, energiaestimaatti
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