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ABSTRACT

Matyukevich, Sergey

The nonstationary Maxwell system in domains with edges and conical points
Jyviéskyla: University of Jyvaskyla, 2005, 131 p.

(Jyvéaskyld Studies in Computing,

ISSN 1456-5390; 53)

ISBN 951-39-2268-5

Finnish summary

diss.

We study the nonstationary Maxwell system in domains with conical points and
edges. The system is endowed with two types of boundary conditions: conductive
and impedance. We consider both homogeneous and inhomogeneous boundary
conditions. Our main purpose is to study the behavior of solutions near the sin-
gularities. We derive the asymptotic expansions of solutions near the edges and
conical points and obtain the explicit formulas for the coefficients in the asymp-
totics. The asymptotics of solutions and the formulas for the coefficients turn
out to be of use in many applications. In particular, the results can be applied
in mathematical and numerical treatment of the problems of electrodynamics in
nonsmooth domains.

Keywords: nonstationary Maxwell system, conical points, edges, asymptotics of
solutions near the singularities, energy estimates.
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1 INTRODUCTION

1.1 Preliminaries

We study the nonstationary Maxwell system

OE /ot —rot B = —J,

OB /ot + rot E = -G, (1.1)
divE = p,
divB = 0

in domains with conical points and edges. Two types of boundary conditions are
considered: conductive

—

[Ex 7] =[®xD], (B 7)=6 (1.2)

and impedance . . .
VX [BxU|+¢[Vx E]=[®x . (1.3)

Here by 7 we denote the unit outward normal and by ¢ we denote an impedance
(a complex-valued function describing the conductive properties of the boundary).

Our main purpose is to study behavior of solutions to the problems (1.1),
(1.2) and (1.1), (1.3) near the conical points and edges. We obtain and justify the
asymptotics of solutions near the singularities. Besides, we derive the formulas for
the coefficients in the asymptotics and study their properties.

Elliptic boundary value problem in domains with piecewise smooth bound-
ary were thoroughly investigated in the works of V. A. Kondrat’ev, V. G. Maz’ya,
B.A. Plamenevskii, and others (see, e.g., [28] and the extensive bibliography in
this book). Since solutions to elliptic problems are not smooth in singular points of
the boundary, it is important to describe the properties of the solutions near such
points. The asymptotics of solutions near the singularities of the boundary is de-
scribed in terms of eigenvalues and eigenfunctions of operator pencil (polynomial
with operator coefficients) corresponding to the elliptic problem under consider-
ation. These spectral characteristics of the pencil depend on the properties of
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the problem and the boundary near the singular point. The coefficients in the
asymptotics are calculated through the right-hand side of the problem and certain
singular solutions to the homogeneous adjoint problem. Note that the form of the
asymptotics is defined by the local properties of the problem near the singular
point, while the coefficients depend on the whole problem.

The "elliptic” results can be applied to other problems. For instance, the
electromagnetic oscillations are governed by the Maxwell system, which is not
elliptic. However, in certain cases the study of the singularities of solutions to the
Maxwell system can be reduced to the singularities of solutions to second-order
scalar elliptic equations. In the case of empty resonator with perfectly conducting
boundary the Maxwell singularities are described in terms of the singularities of
the Dirichlet and Neumann problem for the Laplace operator.

The results concerning the asymptotics of solutions near the singularities have
numerous applications. Here we indicate one example that is about the Maxwell
system in domains with reentrant edges or corners. It turns out that the appli-
cation of nodal finite elements in numerical treatment of this problem leads to an
error in calculations (see [5]). The discrete iterations converge to a wrong solution
since principal Maxwell singularities can not be approximated by nodal elements.
Different methods were suggested to avoid this ”Maxwell bug” (see [12, 7]). In
particular, some methods make use of the explicit asymptotic expansions of solu-
tions near the singular points on the boundary. Namely, the Maxwell singularities
are added to the standard finite element spaces.

Hyperbolic problems in nonsmooth domains are still poorly understood. Here
we mention some papers, in which the behavior of solutions near the singularities
is studied. G. I. Eskin in [9] studied the wave equation in a wedge with edge of
codimension 2. On the boundary, the author considered homogeneous differential
operators with constant coefficients satisfying the uniform Lopatinskii condition.
The main result is an explicit formula for solutions. However the method (reduc-
tion to the Riemann — Hilbert problem) can not be generalized to edges of higher
codimensions.

The Cauchy — Dirichlet problem for the wave equation in domains with conical
points was studied by V. A. Kondrat’ev, O. A. Oleinik , and I. I. Mel’nikov in
[14, 26]. The authors suggested the following method. They proved the solvability
results for generalized solutions to the problem and estimated the derivatives of
solutions with respect to time by some Sobolev norms of the right-hand side. Then
all the derivatives with respect to time were rearranged to the right-hand side of
the equation. This problem was treated as an elliptic one in order to obtain the
asymptotics of solutions near the conical points by well-known ”elliptic” technique
(see [28] or [25]). Later Nguen Man’ Khung in [29] applied this method to study
strictly hyperbolic systems in domains with conical points. However the method
suggested in [14], [26] does not lead to the formulas for the coefficients in the
asymptotics.

B. A. Plamenevskii in [33], then B. A. Plamenevskii and A. Yu. Kokotov in
[15, 16] investigated different initial boundary value problems for the wave equation
and strictly hyperbolic systems in domains with edges and conical points. They
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proved the solvability results in scales of weighted spaces, derived the asymptotics of
solutions near the singularities and obtained the formulas for the coefficients in the
asymptotics. It turns out that the principal term of the asymptotics is of the form
u(x,t) ~ > c;(t)uj(x), where u; are some special solutions to the homogeneous
problem for the spatial part of the system under consideration. The hyperbolic
properties of the asymptotics can be observed in the coefficients ¢; expressed by
the explicit formulas through the right-hand side of the system and some singular
solutions to the homogeneous problem.

Further, we discuss some papers related to the stationary Maxwell system in
nonsmooth domains. J. Saranen in [35] described the singularities of solutions to
the Maxwell system in cones with smooth basis.

N. Weck in [38] investigated the generalized Maxwell acting on differential
forms on Riemannian manifold. The author developed the solution theory for a
certain class of manifolds with piecewise smooth boundary.

M. Sh. Birman and M. Z. Solomyak in [4] defined and studied the Maxwell
operator in domains with much more relaxed restrictions on the boundary. They
considered the perfectly conductive boundary conditions. For Lipschits domains
the principal part of the asymptotics was obtained via the singularities of solutions
to second-order elliptic equations.

M. Costabel and M. Dauge in [6] investigated the singularities of solutions
to the time-harmonic Maxwell system in domains with edges, conical points, and
polyhedral corners. Applying the classical Mellin analysis, the authors derived the
asymptotic formulas based on Dirichlet and Neumann singularities for the Laplace
operator.

We modify the approach suggested in [33, 15] to study the nonstationary
Maxwell system in domains with conical points. In these papers, the results con-
cerning elliptic boundary value problems are applied to obtain the asymptotics of
solutions near the conical points, and the ellipticity of the spatial part of the system
under consideration is crucial. However the spatial part of the Maxwell system is
not elliptic. That is why we consider the augmented Maxwell system

-

OE )t —rot B+ Vh = —J,
OB/ot +rot E + Vq=—G,
Oh/ot + divE = p,
dq/0t + divB = 4,

(1.4)

which has the elliptic spatial part (see, e.g., [4, 21]). For brevity we rewrite the
system (1.4) in the form

ou/ot + A(Q)u = f,
where u = (E, B, h, q), [ = (—f, —G, p, w), and 0 = (O, Oz,,0zy). The
augmented system (1.4) is endowed with the augmented boundary conditions

[Exi|=[®x7, (B-#)=¢, h=H (1.5)

or

—

IX[Bxi]+yp[Fx E|=[®x7, h=H, ¢=Q (1.6)
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such that the boundary value problems (1.4), (1.5) and (1.4), (1.6) are elliptic.

Further, we give a detailed description of the method to be used. For the sake
of simplicity we consider the system (1.4) with homogeneous boundary conditions
(1.5) in the cone X smooth outside the vertex. By F;_, we denote the Fourier
transformation defined by the formula

a(r) = (fﬂ_,Tu> (r) = / e~ (t) dt,

R

where 7 = 0 — iy (0 € R, v > 0). Applying the Fourier transformation to the
system under consideration we arrive at a problem with parameter in the cone.
This problem is elliptic for a fixed 7, but the dependence on 7 is ”hyperbolic”. As
in [33, 15], the method is based on certain a priori estimates of solutions. The
first estimate follows from simple energy arguments, where for the energy we take
the expression

/(!E(%W + Bz, ) + |h(a, 1) + la(, 1)) da.

Note that if h = 0 and ¢ = 0, then it is the usual formula for the energy of
electromagnetic field. The first estimate is of the form

7 [l@P as < e [ |+ AP a.

where the constant ¢ is independent of 7. It is called the energy estimate. We
apply it to prove the solvability results in the class of solutions with finite energy
(energy solutions).

When proving the energy estimate for the augmented Maxwell system, we face
the necessity to consider the spatial part A(J) as a symmetric operator. Therefore
one has to choose asymptotics near singularities of the boundary for the functions
in the domain of A(9). This gives rise to a family of self-adjoint extensions of
A(0). The possibility of coming back to the initial non-augmented Maxwell system
depends on the choice of a self-adjoint extension. In particular, in a bounded
domain with conical point, the passage to the initial system is possible for the only
self-adjoint extension. To 1mplement this passage, it suffices to take a rlght hand
side of the form (—J —G, p, ) for the augmented system, where J, G, Py [
are subject to the equations div J + dp/ot = 0, div G+ ou/ot = 0, and to
the boundary condition (C_j, V) = 0. Then h and ¢ vanish and the solution of
the augmented system satisfies the usual Maxwell system. It turns out that the
mentioned self-adjoint extension coincides with the Maxwell operator studied in [4]
for the stationary situation.

We need a more informative estimate to investigate the behavior of energy
solutions near the conical points. To prove it, we split the cone into zones. In a
small zone near the vertex we can apply the weighted elliptic estimate of solutions.
The volume of this zone is inversely related to the parameter. Far from the vertex
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we use a localized energy estimate. ”Gluing” these inequalities together we obtain
the so called weighted combined estimate

VoIl Hy (K, [TDIP + [lx-vs Hy (K, [7DII* <
<<f / (7 + A(D,))v(@) 2 () dat

(1P 2) [+ A da),

where the constant ¢ is independent of 7. Here by r(z) we denote the distance
between the point x € K and the vertex of the cone, by x we denote a cut-off
function such that x = 1 for » < 1, and x = 0 for r > 2; x,(r) = x(|7|r). The
function spaces Hj3(X,|7|) are defined below, in the next section. The weighted
combined estimate is proved for all 5 < 1, 8 & {0 }x>1, where {0 }x>1 is a sequence
such that 1/2 > ; > -+ > [ — —oo. In spaces related to the weighted
combined estimate there is a closed operator corresponding to the problem with
parameter in the cone. The kernel and cokernel of this operator are trivial if
B € 161, 1]. As (3 decreases, the dimension of the cokernel increases (when 3
crosses ) but remains finite. The elements of a basis of the cokernel are uniquely
determined by their asymptotics near the vertex. Along with the ”elliptic” results
on the asymptotics, this allows us to obtain the asymptotics of the solutions near
the vertex of the cone, including formulas for the coefficients in the asymptotics.
The inverse Fourier transformation carries the theory over to the nonstationary
problem.

Now we discuss the structure of the asymptotics of solutions near the vertex
of the cone. For simplicity we consider the asymptotics containing the principal
part only. If the right-hand side of the system decays with a certain rate near the
vertex, then for the solution the representation holds

u(e,t) =Y e;(thu;(x) + R(x,t).
J
Here by u; we denote some special solutions to the homogeneous problem for the

spatial part of the system under consideration, by R we denote the remainder. The
coefficients are calculated by the formula

i®)= [ [ (et =s), Wite.s)) do ds,
X R

where f is a right-hand side of the system. By W we denote some singular solutions
to the adjoint nonstationary problem determined by their growing asymptotics near
the vertex of the cone. For model domains (a cone and a wedge) we can obtain
explicit formulas for W;. Applying these formulas, it is possible to observe some
phenomena related to the finite propagation speed of the electromagnetic waves.
Suppose that the singular support of the right-hand side f is located in the set
{(x1, 29,23, t) : By <1 < Ry, 0 <t <ty}. Then ¢;(t) are smooth for ¢ > t; + Ro.
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In other words, there is the phenomenon of ”back edge”: the coefficients have been
smooth after the perturbation from the singular support of the right-hand side has
left the vertex of K. Assume now that supp f C {(x1,z9,23,t) € K xR : Ry <
r < Ry, t > 0}. Then ¢;(t) = 0 for ¢ < Ry. Thus we observe the phenomenon of
"forward edge” in the coefficients: the coefficients have been equal to zero before
the perturbation from the support of the right-hand side arrives at the vertex.

Now we turn to the augmented Maxwell system with inhomogeneous
impedance boundary conditions. Actually the same method is applied as for the
homogeneous boundary conditions. Namely, we prove certain a prior: estimates.
Using these estimates, we study the problem in scales of weighted spaces and prove
the solvability results. Taking into account well-known elliptic results, we derive
the asymptotics of solutions near the vertex of the cone and obtain the formulas for
the coefficients in this asymptotics. However in the case of inhomogeneous bound-
ary conditions, as distinct from the homogeneous boundary conditions, there is a
considerable difficulty in proving the energy estimate.

In smooth domains there is a general approach for the proof of the energy
estimates for hyperbolic problems satisfying the uniform Lopatinskii condition.
This approach was suggested by S. Agmon in [1] for higher order scalar hyperbolic
operators. Then R. Sakamoto in [34] improved the results of Agmon, and H.-O.
Kreiss in [22] investigated hyperbolic systems. These authors proved the energy
estimates in smooth domains considering model problems in R” and R". It turns
out that their approach can not be applied to domains with conical points due
to the difficulties arising from the model problem in a cone. Besides, the uniform
Lopatinskii condition is not satisfied for the wave equation and the Lamé system
with Neumann boundary conditions, which are important for the applications in
elasticity theory.

For second-order scalar hyperbolic equations in smooth domains L. Garding
and L. Hormander suggested another proof of the energy estimates. The equation
was multiplied by a certain first-order differential operator applied to the solution
and integrated over the domain, then integrated by parts. Using this method, L.
Garding in [11] investigated the oblique derivative problem for the wave equation
and L. Hérmander in [13] studied the Cauchy — Dirichlet problem for second-order
scalar hyperbolic equations.

B. A. Plamenevskii and A. Yu. Kokotov in [15] modified the method of
Garding and Hormander to study hyperbolic systems in nonsmooth domains. Sec-
ond - order strictly hyperbolic systems with inhomogeneous Dirichlet boundary
conditions were considered in domains with edges and conical points. In particu-
lar, the authors proved the energy estimates and applied them for investigation of
the problem. The suggested proof of the energy estimates is valid only for cones
and wedges satisfying a certain admissibility condition. Namely, the wedge D is
called admissible if there exists a constant vector f such that ( 7, V) > ¢y > 0 for
all outward normals to D \ M, where M is the edge of the wedge. It was also
shown that the energy estimates may fail for nonadmissible wedges.

In this work we prove the energy estimate for the augmented Maxwell system
with boundary conditions (1.5) and (1.6) modifying the method of L. Garding
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and L. Hormander for first-order systems and taking into account certain specific
features of the system (1.4). The energy estimate in the case of inhomogeneous
conductive boundary conditions (1.5) is of the form

V?[lvs La(K)I* + v (| Tv; Lo (0K)||* <
< c{|l(7 + A(D))v; La(K)|* + [[To; Lo(95) |7},

where v = (E, B, h, ¢), Tv = ([ x E|, (B,?), h)7T, and Tu = (7 x [B x
7, ¢, (E, 7))T. Asin [15], this estimate is valid for admissible cones.

The energy estimate in the case of inhomogeneous impedance boundary con-
ditions (1.6) is of the form

V2 llvs La(K1P + ([ Tro; Lo (0K ||* < 0
< {ll(m + A(Da))v; La(K)* + Y[ITrv; L(0K)[*}, |

where v = (E, B, h, q), Iw = (7 x [E X U] + [7 x E], h, q), and Thu =
((1/9) Px [B x ), (E,#), (B,7)). This estimate is also valid for admissible cones.

It will be shown that the boundary conditions H = 0, @ = 0 in (1.6) are
set when we "return” from the augmented system with impedance boundary
conditions to the usual Maxwell system. Thus if we are mainly interested in the
results for the usual Maxwell system, then we can consider only these boundary
conditions when studying the augmented system. For the boundary conditions
(1.6) with H =0, @ = 0 we prove another energy estimate

V2lv; La(3)|2 + (v[Re |/ [¢]) - || B x 7; La(030)|* < )
1.8
< c{|M(Dy, m)v; La(K)|? + (1[¢]/[Re ) - [| € x 7 Lo (9K) [}

which is valid for arbitrary cones. Applying the energy estimate (1.8) instead of
(1.7), we can obtain the results for the usual Maxwell system in arbitrary cones.
However, the estimate (1.7) is more informative: its left-hand side contains also
the normal boundary components of the fields E, B.

The results for the usual Maxwell system (1.1) with boundary conditions (1.2)
and (1.3) follow from those for the augmented problems (1.4), (1.5) and (1.4), (1.6).
It turns out that if the right-hand side of the augmented problem satisfies some
natural conditions (the compatibility conditions for the ordinary Maxwell system),
then in the solution (E, B, h, q) the functions h, ¢ vanish, and (E, E) satisfies
the ordinary Maxwell system.

1.2 Review of results

Here we briefly describe the main results and give the exact references on the
corresponding theorems and propositions in this work.

In the second chapter we study the augmented Maxwell system (1.4) with
homogeneous boundary conditions (1.5) in a cone and in a domain with conical
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point. Applying Fourier transformation we arrive at the problem with param-
eter. We prove a prior: estimate taking into account simple energy arguments
(Proposition 2.8), then we prove a more informative combined weighted estimate
(Proposition 2.20). By means of these estimates the operator of the problem un-
der consideration is investigated in a scale of weighted spaces (Theorems 2.16 and
2.24). Applying the properties of the operator and well-known elliptic results we
derive the asymptotics of solutions near the conical point and obtain the explicit
formulas for the coefficients in the asymptotics (Theorem 2.26). Finally, we exam-
ine the connection between the augmented and usual Maxwell systems in Theorem
2.34. Due to this theorem, all the results concerning the solvability and asymp-
totics of the usual Maxwell system can be obtained from those for the augmented
Maxwell system. The inverse Fourier transformation carries the theory over to the
nonstationary problem (Theorems 2.29, 2.31, and 2.32).

In the third chapter we study the augmented Maxwell system (1.4) with ho-
mogeneous boundary conditions (1.5) in a wedge and in a waveguide with edges.
In comparison with the results obtained in [33, 15], we weaken the requirements
on the right-hand side which are necessary to obtain the asymptotics of the solu-
tion near the edge. Namely, we do not require extra smoothness of the right-hand
side along the edge. This reduction in requirements is achieved by the accurate
consideration of the properties of the spatial part for the Maxwell system in a
wedge (Theorem 3.2). The scheme of investigation is the same as in Chapter 2.
In Proposition 3.3 and Proposition 3.8 we prove a priori estimates. By means of
these estimates we study the operator of the problem with parameter (Theorem
3.14 and Theorem 3.15). Then we formulate Theorem 3.24 about the connection
between the usual and the augmented Maxwell systems. Finally, applying the in-
verse Fourier transformation, we obtain the results for the nonstationary problem
(see Theorems 3.19, 3.21, and 3.22).

In the fourth chapter we study the augmented Maxwell system (1.4) with
inhomogeneous boundary conditions (1.5) in an admissible cone and in a domain
with admissible conical points. The method is basically the same as in Chapters
2 and 3. However, the proof of the energy estimates presents a considerable dif-
ficulties due to the inhomogeneous boundary conditions (see Propositions 4.3 and
4.6). As soon as we have proved the energy estimate, we follow the same scheme
as in Chapters 2 and 3. We prove the combined weighted estimate in Proposition
4.14, investigate the operator of the problem (Theorems 4.10 and 4.18), and study
the asymptotics of solutions in Theorem 4.20. The connection between the aug-
mented Maxwell system and the usual Maxwell system is examined in Theorem
4.28. Applying the inverse Fourier transformation, we obtain the results for the
nonstationary problem (see Theorems 4.23, 4.25, and 4.26).

In the fifth chapter we study the augmented Maxwell system (1.4) with inho-
mogeneous impedance boundary conditions (1.6) in a cone and in a domain with
conical points. Here we prove two types of energy estimates. The proof of the
first energy estimate is quite complicated (see Propositions 5.8, 5.10). It follows
the scheme suggested in Chapter 4. This energy estimate is valid only for admis-
sible conical points. The second estimate is proved by simple energy arguments
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similar to those in Chapters 2 and 3 (see Proposition 5.13). This estimate is valid
for arbitrary conical points, however it is less informative than the first one. The
further study of the problem can be based on any of these two energy estimates.
Here the more informative estimate is chosen. Again, as soon as we proved the
energy estimate, we follow the same scheme as in Chapters 2 and 3. We prove
the combined weighted estimate in Proposition 5.23, investigate the operator of
the problem (Theorems 5.17 and 5.28), and study the asymptotics of solutions in
Proposition 5.30. The connection between the augmented Maxwell system and the
usual Maxwell system is examined in Theorem 5.39. Applying the inverse Fourier

transformation, we obtain the results for the nonstationary problem (see Theorems
5.34, 5.36, and 5.37).

1.3 Basic definitions

Now we introduce notations to be used in the text. We describe domains, function
spaces and present some known results concerning the augmented Maxwell system.

Let X C R? be a cone with vertex at the origin of coordinates © such that
K N 82 is one-connected. Let G C R3 be a bounded domain with only one conical
point O such that G coincides with K in a neighborhood of O. The boundaries of
X and G are smooth outside O.

We introduce function spaces in the domains. Let s € N, § € R | and
r=(z}+ 23+ w%)l/z. By Hj3(X) denote the completion of the set C2(X\ O) with
respect to the norm

1/2

o (%) = (3 [ 042 Dzua)f do)

|a|§sg<

where a = (aq, ag, ag) is a multi-index, = = (z1, x9, x3), de = dzy dzydrs, DY =

D1 Dg2 D32, and Dy, = —i0/0xy. The space H3(X, q) with ¢ > 0 is endowed with

xr3?
the norm
1/2

s H5(5, )| = (D a™ s H (301
k=0

By H;fl/ 2(8%, q) we denote the space of traces on 90X of the functions belonging
to H3(X, q). Changing X for G, we analogously define the spaces H3(G), H5(G, q),
and H;71/2(8G, q).

In the cylinder Q = X x R we introduce the space H3(Q) by completing
CX((X \ O) x R) in the norm

stz @) = (Y [ [ pbute ot arar)

lel+k<s 5c R

1/2

The space H3(Q,q) with ¢ > 0 is endowed with the norm

1/2

s H5(2, )| = (D a™ lws H (@)1

k=0
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Changing X for G, we define the spaces H3(Q) and Hj3(Q, ¢) in the cylinder Q =
G x R. Finally, we denote by V;(Q,v) and V3 (Q,~) with v > 0 the spaces with
the norms

[w; VE(Q ) = [lw™; H(Q,y)ll and - Jw; V3(Q,7)I| = [lw”; H3(Q, ),

respectively, where w? = e .

Let K = {(r,) : r >0, |¢| < o} be an angle in the plane RZ , with
opening 2«, where (r,¢) are polar coordinates centered at O. Denote by D =
K x R the wedge with edge M = O x R. We introduce function spaces. Let
seN, 3 eR, r=(af +23)"/%. Denote by H5(K) and H5(D) the completion of

Cx(K\ O) and C(D \ M) with respect to the norms

1/2
|u; H3(K)| = ( Z r2(5+k1+k2—5)|D§1D§§u(x1,x2)|2 dxy dx2> :
k1+ko<s
1/2
o B = (3 [ 2042 Dgu(a)? do)
|| <s D
The spaces H3(K, q), H5(D,q) for ¢ > 0 are equipped with the norms
s 1/2
Jus HA(, @)l = (o lhws HEH)P)
s 1/2

Jus 3D, 0) | = (S s 3 (D)1?)

By H;_I/Q(ﬁK, q) and H;_1/2(8]D>, q) we denote the spaces of traces of the functions
belonging to H3(K, ¢) and H3(DD, q) respectively.

We define functional spaces in the cylinder T =D x R. Let H3(T) stand for
the completion of C((D\ M) x R) in the norm

s 3 = (3 / / PO D2 Db, )] dr d)
R

|| +k<s

1/2

The space H3(7, q) for ¢ > 0 is endowed with the norm

1/2

s 3T, )| = (3™l 3 ()]

k=0
Finally, V(T,) for v > 0 denotes the space with norm
[w; Vi (T, )l = llw™s H5(T, )l

where w? = e w.
Let 2 C R? be a bounded domain with corner point O. We assume that, in a
neighborhood of O, the domain €2 coincides with K. Outside O, the boundary of
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() is smooth. Denote by ¥ the waveguide €2 x R with edge O x R, and by T the
cylinder 3 x R. In €2, ¥, and T, we introduce function spaces similar those defined
in K, D, and 7.

We also need the function space E}(K) which is the completion of Cx(K\ O)
in the norm

1/2
s ESE) | = (> I+ o) DR DEU; LK) 2)

k1+ka<l

By E/lgfl/ 2(G]K) we denote the space of traces on JK of the functions belonging
to E4(K). In fact, the norms ||-; E4(K)|| and ||-; H5(K, 1) are equivalent. The
notation E4(K) was used in  [28, Chapter 8]. Here we introduced this notation

for the convenience of references. The next assertion was proved in [28, Lemma
8.1.2]

PROPOSITION 1.1. The norms ||w; Hy(D)|| and

([repe 2w, o Byl ag) ™

R
are equivalent, where W((, &) = (Fpy—ew)(|€]71¢, €) and ¢ = (|€]z1, |€]22).

In the following proposition we summarize some known properties of the augmented
Maxwell system.

PROPOSITION 1.2. 1) The operator A(0) is elliptic, but it is not strongly elliptic.
2a) In a domain V' with smooth boundary OV the Green formula

/ (A(D)u, v), AV + / (T, —iTyw), dS

14 ov (1.9)
:/<U,A(D)v>8 dV+/<—iT0u,Fv>5 ds,
\%4 oV

holds, where u,v € €=(V,C®). By (, ), we denote the inner product in C*. By I'u
and Tou we denote (U x @, (U, U)5, h)T and (U x [0 x U], q, (4, U);)" respectively,
where u = (4, U, h, q)T.

2b) The system A(0)u = f with boundary conditions I'u = g is an elliptic boundary
value problem self-adjoint with respect to the Green formula (1.9).

3a) In a domain V with smooth boundary OV the Green formula

/(A(D)u,v)S dv +/(F1u, —iTyv), dS
v ov (1.10)
:/(U,A(D)v>8 dv —I—/(—iTgu,ng)st

|4 ov
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holds, where u,v € C*®(V,C®) and (, ), stands for the inner product in C*; for
u = (a4, 0, h, )7 we have Tyu = (7 x [0 x U] + Y[ x 4], h, ) , Tyu =
(1)) U x [0 x 7], (@, D), (7,0)T, Tqu = (=7 x [ x ¥] + ¥[F x @], h, ¢)T, and
Tou = ((1/¢) S [UX ﬁ]? <ﬁ7 77>7 <277 ﬁ>>T
3b) The boundary value problems {A(0),I'1} and {A(0),I'2} are elliptic and adjoint
with respect to the Green formula (1.10).

The proof is a straightforward check of the definitions of elliptic operators
and elliptic boundary value problems. The Green formulas are obtained from the
integration by parts and the Gauss divergency theorem.



2 THE PROBLEM IN A CONE AND IN
A BOUNDED DOMAIN WITH CONICAL
POINT

2.1 Preliminaries

In this chapter we study the augmented Maxwell system

OE )0t —rot B + Vh =
OB /0t + 1ot E + Vg =
Oh)ot + div E = p,
dq/ot +div B =

~J,
-G, (2.1)

in a model cone and in a bounded domain with conical point. The system (2.1) is
endowed with boundary conditions corresponding to ideal conductive boundary:

FxE=0, (B, i),=0, h=0, (2.2)
where 7/ is the unit outward normal. The system (2.1) will be written in the form
U/ot+ A0)U =T,

where U = (E, B, h, q)T, 0 = (8,,,04,, 0u,)-

Let 7 =0 —iv, 0 € R, v > 0. Applying the Fourier transform &F; .. to the
problem (2.1), (2.2), we obtain the problem with parameter 7 in the cone X (in
the domain G)

r

U+ A(D,)i = —if,
i=0

Rewrite this problem as follows

M(Dxa7_>u: /5 (23)
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I'u =0, (2.4)

where M(D,,7) = 7+ A(D,). The Green formula (1.9) for the problem (2.3), (2.4)
takes the form

<M(Dw, T)u, v)g{ + (Fu, Tv)

where T' = —iTy.

When considering the problem in X, one can change the variables
n = (|7|z1,|7|z2, |T|23). Denote 7/|7| by 6 , put M(D,,0) =0+ A(D,), U(n, 1) =
ﬂ(|7'|_177,7'), F(n,1) = |T\*1§"(|T|_1n,7'), and rewrite the problem (2.3), (2.4) in
the form

:<u,M(Dz,?)U>K—|—(TU,FU) . (25)

0K 0K

M(D,,0)U = F, (2.6)
IU = 0. (2.7)

2.2 Operator pencil

We introduce the operator pencil
AN P(p, ) = ' A(Dyy, Dyyy Doy )7 ®(ip,9) (2.8)

for functions ® € H'(Z) such that r*®(yp, ) satisfy (2.2) on 9K. Here (1,9, ¢) are
spherical coordinate centered at O and = = KX N S%. We will write the boundary
conditions for ® in an explicit form. Assume (€,, €y, €,) to be the basis vectors

in the spherical coordinate system. Let & be a tangent vector to 0= and let d =
(U, V, H, Q). Then the boundary condition on 0= take the form

(U, &),=0, (U, &), =0, (V, 7, =0, H=0,

where 7 stands for the unit outward normal to the boundary of K. Since 2 is an
elliptic pencil, its spectrum consists of normal eigenvalues { Ay} gen-

PROPOSITION 2.1. All the eigenvalues of 2 belong to the imaginary axis. To every
etgenvalue \; there corresponds a finite collection of linearly independent eigenvec-

tors ®,;, s =1,..,N;. There are no associated vectors.

Proof. The operator A(D) in the spherical coordinates take the form
A(D) = Ai(p,0) Dy + (1/r)As(ip,9) Dy + (1/1) As(p, 9) D, (2.9)
where A;(¢, 1) are 8 x 8-matrices that can easily be calculated. The matrices satisfy

Al'A:[:[, AQ'AQZI, sin219-A3-A3:[,
Al'A2+A2'A1:O, Sinﬁ'(Al'Ag—f—Ag'Al):O, (210)
8A1/819 = AQ, (9A2/819 = —Al, 8A1/8<p = sin21§‘ . Ag.

From (2.9) it follows that
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Let \,, be an eigenvalue of the operator pencil and ®,, an eigenvector, i.e.,

ANpn) P, = 0. Then B, = A\, P,,,, where B is defined by B = —A; - AsDy —
Ay - A3D,, for functions in the domain of . Using the Green formula (2.5), it is
not hard to verify that the operator iB is symmetric on Ly(Z). Since the problem
{A(D), T'} is elliptic (see Proposition 1.2), the operator iB with such a domain
is self-adjoint. Its domain is compactly embedded into Ls(Z), so the spectrum of
B is discrete. Obviously, the spectrum of B coincides with that of the pencil 2.
Therefore, the eigenvalues of the pencil belong to the imaginary axis. We show
there are no associated vectors. Let A, ®,, be an eigenvalue and an eigenvector
of 2 and let ® an associated vector. In other words, A(\,;,,)® = HhA(\y,) Py, or,
equivalently, (B — /\m)CTD = &,,. However, ®,, is not orthogonal to the subspace
ker(B — A,). Therefore, ® does not exists. O

Consider the pencil 20*()\), defined by 24*(\) = (A(\))*. It is known that if
w1 is an eigenvalue of 2, then 1 is an eigenvalue of 2A* while their multiplicities
coincide. Eigenfunctions {®s}s—1 n and {¥,}s—1 n can be chosen to satisfy the
orthogonality and normalization conditions (see [28], Chapter 1, §2):

/ (0, A1) Dy, V) g sin ) A dep = d . (2.12)

In the next proposition we obtain the formula for 2*(\).

PROPOSITION 2.2.
A (N) = AN+ 210).

Proof. We verify this statement applying the definition of 2 and the Green formula
(1.9). Consider the inner product

(2(()\)@,\1!) - / (AN D(w), T(w))s dw, (2.13)

(1]

where ®, U € H'(Z) such that T(r*®) = 0 and I'(r**¥) = 0 on K. Multiply both
sides of (2.13) by 1/r and integrate with respect to r from r = 1 to r = 2. Then
we get

/2 dr%(%l()\)q), xp)

= [ ¢ PADI ), W) do = (AD)P R

K12

N / ars / (r' P AD)rF A P(w), U(w))s dw =

1 =

[1

K12

where K12 = {x € X : 1 <r < 2}. Applying the Green formula (1.9), we arrive
at
(ADyP@, 2 2w) = (10, A(D)P2w)  +
g{lg ﬂ{12
(2.14)
(rrite, Trd-2w) g (Trive,Drdtw)
83(12 8:K12
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The integrals over {z € 9K : 1 < |z| < 2} are equal to zero due to the boundary
conditions T'(r*#®) = 0 and I'(r**¥) = 0. Let us verify that the integrals over
Kn{r=1} and XN {r =2} are also equal to zero. We have

(rrite, 7r%29) + (Tre, 2w =

Kn{r=1} Kn{r=2}

_ / dw P2 (D (=P)rPB(w), T(=F)r™ W (w))s+
Knfr=1} )
N / dw 12 (T(F)r B (w), T(F)r 20 (w))s

Kn{r=2}

- / Ao (D(~7)®(w), T(~P)T(w))s + / dw (T(7)®(w), T(7) T (w))s,

where 7/ is the outward unit normal to 82. Recall that T'(Z)u = (7 x @, (7-V)3, h)
and T(V)u = —i(V x [0 x V], q, (4 - V)3), where w = (@, ¥, h, q). From these
formulas it follows that (I'(—7)®, T(—7)W)s + (I'(7)®, T(ﬁ)\I/>8 = 0. In the same
way we verify that the last integral on the right-hand side of (2.14) equals to zero.
Therefore we get

<Q[()\)q)7\11>5 _ ﬁ(A(D)TiAq)’TiX_ZW)KH _ 1;2( AP A(D)Tﬁ_mp)ﬂcm =

T 3+iA ix—2 _
ln2 dr— / dw (r°™®(w), A(D)r'* =¥ (w))s

:/dw (@, 13 A(D)r? W) = (CD,QL(XJr 2i)\11> :

[1

Then we have 2A(\)* = (X + 2i). To complete the proof it remains to recall the
definition of A*(\). O

Applying this proposition, we reformulate the above results as follows. If y is
an eigenvalue of 2, then @ + 27 is an eigenvalue of 2 as well, their multiplicities
coincide and the eigenfunctions can be chosen to satisfy the orthogonality and
normalization conditions (2.12). The numbers p and 7z + 2i are symmetric about
the point ¢. In the following proposition we check that if ® is an eigenvector of the
pencil 2 corresponding to an eigenvalue A, then A;® is an eigenvector of 2 as well
and corresponds to the eigenvalue \ + 2.

PROPOSITION 2.3. Suppose that A(A\)® = 0. Then A(\ + 2i)A;® = 0.
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Proof. Applying the formulas (2.10), we obtain
AN+ 20) A1 = (N +20) Ay - A1 ® + A Dy(A,®) + AzD, (A, ®) =

= A1XA1(I) + 21 + AQ . A1D19¢ — ZAQ . AQCI) + A3 . AlD@(I) — ’L.Sil'l2 19143 . qu) =

- Al . (XAlq) - AQDﬁ(I) - ABD@(I)) = Al . ()\Alq) + AQD@CI) + AgDipq)) = 0
O

The pencil is of a block structure since the operator A(D) is of a block struc-
ture. One block acts on the components (lj , @) and the other one on the com-
ponents (17', H) of the function ® = ([7, V, H, (). The matrix A; acts on the
components in the following way:

A (U, 0,0, Q) = (0, & xU+Qé, (&, ), 0)7,
Ay (0, V, H, 0) = (=€, xV + HE,, 0, 0, (&, V).

Recall that the eigenvectors of the pencil are also eigenvectors of a self-adjoint
operator (see Proposition 2.1). Therefore eigenvectors corresponding to distinct
eigenvalues are orthogonal. Taking into account this fact, the block structure of 2
and the equality 0 \2((\) = A1, we can choose all the eigenvectors of the pencil in the
form (ﬁ . 0,0, Q) or (6, V., H, 0) satisfying the orthogonality and normalization
conditions (2.12). In the following three lemmas, we describe in more detail the
properties of eigenvalues and eigenvectors of the pencil.

LEMMA 2.4. If the set {ia : a €10, 1[} contains some eigenvalues of A, then the
components H, Q) of the corresponding eigenvectors vanish.

Proof. Let & = ([7, 0, 0, Q) and let (®,\) be an eigenvector and an eigenvalue
of the pencil A. Then A(D,,, D,,, D,,)r"*® = 0. We again apply the operator
A(D,,, D,,, D,,) and obtain Ar*® = (. Let us find out the boundary conditions
on Q. Since r*U x 7 = 0, we have (rot(r"*U/), #) = 0. From the relation rot(r"*U)+
V(r*Q) = 0 it follows that (r*Q)/dn = 0 on dX. This means that (X, Q) is
an eigenvalue and an eigenvector of the pencil of the Neumann problem for the
Laplace operator. Analogously, if ® = (0, V, H, 0), then (X, H) is an eigenvalue
and an eigenvector of the pencil of the Dirichlet problem for the Laplace operator.
However, for the cone X C R3, the strip {A € C : ImA\ € ]0, 1[} contains no
eigenvalues of the pencils (see [18, §1], [33, §3]). O

LEMMA 2.5. Let A be an eigenvalue of the pencil A, Im X\ € |1, 2[, and let ® be an
eigenvector corresponding to .

If®=(U,0,0,Q), then Q#0, and if ® = (0, V, H, 0), then H # 0.

Proof. We consider one of these cases, the other can be verified in a similar
way. Assume that ® = (U, 0, 0, Q). Then ¥ = A;® is an eigenvector of
2 corresponding to the eigenvalue p = X\ + 2i. Moreover, Impu € |0, 1] and



26

U= (0, & x U+ Qé, (&,U), 0). According to Lemma 2.4, (&,, U) = 0. We
suppose that @ = 0 and rewrite the pencil rot(r*U) + V (r*Q) = 0, div(r*U) =0
in the spherical coordinates

(  cosV

1
U<P + aﬁU@ - ma¢Uﬁ + l)\Q — 0,

sin 9

1
~(A+ DU, + —=0,U, +05Q =0,

(A + DUy + ——8,Q — 0yU, = 0,

sin ¢

cos

1
19U79 + 09Uy + m&pU@ =0,

(24 iNU, + —
\ sin
where U = U,é, + Uyey + Uye,. Taking U, = @ = 0 and X # 7 into account, we
obtain U, = Uy = 0 . Hence, ® = 0. This contradiction completes the proof. [

LEMMA 2.6. The number X\ =1 is reqular for the pencil 2.

Proof. Suppose that A = ¢ is an eigenvalue of 2. Let & = ((7, 0, 0, Q) be an
eigenvector corresponding to the eigenvalue. Then ¥ = A;® = (6, U xé +
Qe,, (U', é-),0), too, is an eigenvector for A = i. Arguing as in the proof of Lemma
2.4, one can verify that @) = const and H = (€, [7) = 0. Indeed, X\ =i is a regular
number for the operator pencil of the Dirichlet problem for the Laplace operator.
In the case of Neumann problem, a constant is an eigenvector for A = 7. Then
V = —U x &, 4+ Q&, satisfies rot(r—1V) = 0, div(r~'V) = 0. Since the cone K is 1-
connected, this implies that PV = VZ, where AZ =0, 0Z/0n = 0. We rewrite
7'V = VZ in the spherical coordinates r—V = (8Z/8r)e, + r—(0Z/89)ey +
(rsin®)~*(0Z/d¢)é, and obtain Z = Qlogr + A(p,¥). The function Z satisfies
the homogeneous Neumann problem for the Laplace operator in KX C R3. Using
results on the asymptotics of solutions to elliptic problems near singularities of the
boundary [28, Chapters 3,4], we arrive at Q@ = 0, A(p, ) = const. It follows that
V =0and U = 0. O

Let A\p with £ > 0 stand for the eigenvalues of 2 whose imaginary part is
greater than 1, Im A\, < Im Az, ;1. Denote by A\, with k > 0 the eigenvalues of the
pencil symmetric to A; about the point A = 7. Let {®x}s=1.. n, be a basis in the
eigenspace corresponding to \p. We list some of properties of the pencil 2 in the
following assertion.

PROPOSITION 2.7. Eigenvectors {®sy}s—1.. n, corresponding to the eigenvalues Ay
of the pencil A can be taken in the form (U, 0, 0, Q) or (0, V, H, 0). Moreover,

/ <6)\Q((/\k>q)s,ka (I)m,p>g sin ¢ dv ng = 5k,—p . 5s,m7 (215)

where k,p = F1,F2..., and 0y, is the Kronecker symbol.
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Introduce the notation '
Ugp = 7D, ). (2.16)
The functions u,y, satisfy A(D)us; = 0 in K and I'u,, = 0 on 9K.

2.3 A global energy estimate
PROPOSITION 2.8. Assume that v = (i, ¥, h, q)T is in C(G\ O, C®) and satisfies
the boundary conditions (2.2). Then

YMos LG < [|M (Do, m)v; Lao(G (2.17)
where M (D, 7)v = 70+ A(Dyy, Dyy, Doy )v and 7 = 0 — iy with 0 € R, 7 > 0.

Proof. Let u(x,t) = ¢(t)v(x), where ¢, e7 ") € §(R), where §(R) stands for the
Schwartz space. Taking the Green formula (2.5) and the boundary conditions into
account, we obtain

Re / (A@)ul, 1), ule. 1)), dz = 0.

G

Then J
£||u, Ly(G)|? = 2Re /{u,ut + A(0)u) dx.
e

Therefore,
d
e £); La(G)[I* < llus Lo(G)|| - | M (D, De)us Lo (G) |

and consequently
t
lu(-s £); La(G)|1* < 2 / [u:, 8); Lo(G)| - [M(Dg, Ds)ul-, s); La(G)]| ds.

Multiply by e 2" and integrate from —oo to +00. Changing the order of integration
in the right-hand side, we obtain

—+00 +o
/e‘wllu(-, £); Lo(G)[|* dt <~ / e Ju(-, ) L2(G)] %

X||M(Dg, Dy)u(-, t); Lo(G)|| dt.
Let us apply the Cauchy inequality to the right-hand side

+o0o +o0

oa / e (-, 1); Lo(G)])* dt < /G_QVtIIM(Dth)U(-, t); La(G)|* dt.

—00 —00
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By Parseval’s equality,

/M4WMW|MM

x/ ar [ | M (Dy, 7o (z)

G R—iy

Since 1) is arbitrary, this leads to the wanted estimate (2.17). O

REMARK 2.9. The same estimate is valid for the functions in C(X \ O) subject
to the boundary conditions (2.2).

REMARK 2.10. The inequality (2.17) remains true with T changed for T.

In what follows we do not indicate that v is a function in (G \ O, C?), v =
(@, U, h, q)T, and v satisfies the boundary conditions (2.2). As a rule, we only
mention that a function belongs to €2(G \ O) (or another function class) and is
subject to (2.2).

Our next goal is to expand (2.17) to the lineal consisting of all linear com-
binations of the form u = v + x>, jusx. Here v is in Cx(G \ O) and satisfies
(2.2). By x we denote a cut-off function that is equal to 1 near the point O and
vanishes outside a neighborhood where GG coincides with K. The functions u,j are
defined by (2.16). Since the inclusion yus; € L2(G) is required, the lineal contains
only xusy with Im Ay, < 3/2. The right-hand side M (D,, 7)xus belongs to Ly(G)
because A(D,)usr = 0 (see Section 1.2). Moreover, when proving (2.17) on D(G),
we suppose that

Re /G(A(G)u, u)ys do = 0.

If there is an eigenvalue \; of the pencil & such that Im A\, € [1, 3/2[, then by
(2.15) we have

Re /G (A(0)w, w)g dz = 2Re (af)

for w = x(aus + Pus k). Therefore, the lineal contains combinations of the form
X (s ks g + Bs s i) for all A\g in the strip Im A €]1/2, 3/2[, where ayy, Osy are
some fixed coefficients satisfying Re as 13 = 0, |asi| + |Bsk| > 0. The latter
condition will be explained a little bit later. It is easy to see that the proof of
(2.17) is still valid for the functions in the modified lineal. Let us summarize the
obtained results.

DEFINITION 2.11. Denote by D(G) the lineal spanned by the functions in €°(G\O)
satisfying the boundary conditions (2.2) on OG; by functions xusy for Im A\, < 1/2;
by functions x(as sy + Bsrts—k) for Im g €]1, 3/2[, where oy, Bsy are some
fized coefficients such that Re aspfsx = 0, |ask| + |Bsk| > 0. The lineal D(X) is
defined in the same way with G replaced by K. Note that the lineals D(G), D(X)
depend on the special choice of the pairs {as, sk}

PROPOSITION 2.12. The estimate (2.17) holds for any function in D(QG).
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In what follows we consider only the problem in G. However, all results
remain valid for the problem in X as well. At the end of the section we give the
corresponding statements.

We associate with problem (2.3), (2.4) the unbounded operator v — M (7)v :=
M(D,,7)v on Ly(G) . As the domain DM (1), we take D(G) (see Definition 2.11).
The operator M(7) admits closure. Indeed, let {vy} C DM(7), vy — 0, and
M(1)vy — fin Ly(G). Then (M (1)vg, w)g = (vg, M(T)w), for any w in CX(G).
Letting k — +o00, we obtain (f,w), = 0, hence f = 0. We further consider the
closed operator only, keeping the notation M (1) and DM (7) for the operator and
its domain. Clearly, the estimate

Alv; La(G)] < IM(7)vs La(G) | (2.18)
holds for any v € DM (7). The next assertion follows from (2.18).

PROPOSITION 2.13. Ker M (1) = 0 and the range RM(7) of M(7) is closed in
Ly(G).

PROPOSITION 2.14. RM (1) = Lyo(G).

Proof. Tt suffices to verify that Ker M(7)* = {0}. Suppose that w € Ker M(7)".
Then in view of local properties of solutions to elliptic problems (see [28, Chapter
1]) we have w € €>(G \ O) while w satisfies the homogeneous problem adjoint with
respect to the Green formula (2.5) :

M(D,,T)w=0, z € G, (2.19)

'vw=0, x€0G\O. (2.20)

In a neighborhood of O, the function w admits the asymptotic representation

w o~ X Z Z Cs o Vo ko, T-

k S=1,..,Nk

Here x stands for a cut-off function, equal to 1 near O and V1 is the sum of first
T terms of the formal series

Vor(z,7) = =63 " rtm e, o), (2.21)

q=0

(where \P(()s’*k) = &, ;) satisfying (2.19) and (2.20); for more detail, we refer, e.g.,
to [15, §4.2] or [28, Chapters 3,4]. Since w € DM (7)* C La(G), the asymptotics
of w may contain only Vj ;7 such that xVi 7 € La(G). However, it is not the only
restriction on the terms of asymptotics. Let us find out which functions yus are
actually in the domain of M (7)*. It is easily seen that xus, € DM (7)* for A\, with
Im A\, < 1/2. We now consider the eigenvalues of the pencil 2 in the strip Im A\ €
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]1/2, 3/2[. The domain DM (1) contains terms of the form x(axtss + Bsptis, )
with ag g, [sx satisfying Re a1 0sx = 0, |ask| + |Osx| > 0. In view of (2.15),

(M<D:L‘a T)X(as,k Us + 5S,k‘ us,—k) ) X(C Us + d us,—k))(} -
= (1/i)(as,ka + Bs1C)+
+(X(as,k Us k + ﬁs,k us,fk) ) M(D:w?)X(C Us,k +d Us,fk>)G

The condition ajjd + B x¢ = 0 is necessary for the inclusion x(c usy +d us 1) €
DM (7)*. Together with the equality Re o ;s = 0 this leads to

c
X(ask Us i + Bs i Us—k)

X(cusy +dus_r) =
sk

for o, # 0. In the case a,, = 0 we obtain [, # 0. Then the equality 3¢ = 0
implies that ¢ = 0. Thus, the domain DM (7)* contains the same combinations of
XUsx as D(G). Therefore, the functions Vj j r corresponding to the eigenvalues of 2
in the strip Im A €]1/2, 3/2[ are included in the asymptotics of w as combinations
sk Ve—kr + Bsk Vsrr. To prove that w = 0 it remains to take into account
Remark 2.10 and Proposition 2.12. O

Let us discuss the obtained results. We have proved that the operator M ()
with domain D(G) admits closure; here 7 = 0 — iy, 0 € R, 7 > 0. The closed
operator has trivial kernel, and its range coincides with Ls(G). The inverse operator
is bounded in virtue of (2.17). The same is true for M (7). The operator A(D,)
with domain D(G)is symmetric. It follows that for the closed operator A = A(D)
there exists (A — \)7! for all A € C\ R, while A is self-adjoint. Note that for
D(G) one can choose various collections {a , 351} satisfying Re a0, = 0 and
|as x| + |Bsk| > 0. This gives rise to various self-adjoint extensions A of A(D). In
what follows as A is taken any of the extensions, unless otherwise indicated.

DEFINITION 2.15. A solution of the equation (T+ A)u = f with f € Lo(G) is called
a strong solution of the problem (2.3), (2.4).

The next assertion summarizes the results of this section.

THEOREM 2.16. For any f in Ly(G) and every 7 = o — iy (0 € R, v > 0) there
exists a unique strong solution v to the problem (2.3), (2.4) with right-hand side f.
The solution satisfies

YMvs La(G)F < [1f5 L2(G) -
REMARK 2.17. Theorem 2.16 is true for the problem (2.3), (2.4) in K as well.

REMARK 2.18. Theorem 2.16 is valid for the problem (2.3), (2.4) in X and in G
with T replaced by T.

To complete the section, we discuss the condition |asy| + |Bsk| > 0 (see
Definition 2.11). Assume that |, k.| + |Bso.ke| = 0 holds for some s, k. Clearly,
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(2.17) is true for the functions in such a lineal, which will be denoted by D;(G).
However the range of the corresponding closed operator does not coincide with
Ly(G). The point is that DM (7)* contains the linear combination y(aus,x, +
B, k) With arbitrary coefficients «, 8 not connected by ReaB = 0. Therefore,
(2.17) cannot be applied to w in the kernel of M (7)* to prove w = 0 (cf. the proof
of Proposition 2.14). In this case the operator M(7)* has a kernel of dimension
1. We construct an element in the kernel. Assume that f = M(D,,T)XUs, k-
Introduce the closure My(7) of the operator M(D,,T) with domain Dy(G), where
sy ko = 0, By = 1 and the rest o, Gsx are the same as in D;(G). Let v be a
solution to the equation My(7)v = f. It is obvious that w = v — xus, x, is a wanted
element in the kernel of M(7)*. We show that any element in the kernel differs
from w by a constant factor. Let w € Ker M(7)*, w # w. The asymptotics of w

near O contains the term x(cus, x, + dis, —k,) With some ¢, d. Then w = w + cw

is in DM, (7). Since My(T)w = 0, we obtain w = 0.

2.4 A combined weighted estimate

In this section, we prove a more informative estimate on solutions to problem (2.3),
(2.4) in a bounded domain and in a cone which will be used in the study of the
asymptotics of solutions near the point O.

DEFINITION 2.19. Let Dg(G) with 3 <1 stand for the lineal spanned by functions
of the following three types:

1) the functions in C(G \ O), satisfying the boundary conditions (2.2) on
oG\ 0.

2) the functions xus . with k > 0 for the eigenvalues A_y of the pencil A such
that TmA_ < B+ 1/2 and Im A\, > B+ 1/2.

3) the functions x (o sk + Bsits—i) for the eigenvalues A\, (k > 0) of the
pencil A such that Im Ay, < 6+ 1/2, where {ask, Bsi} are fized pairs satisfying
Reasifs 1 =0, |asi| + Bk > 0.

The lineal Dg(XK) is defined in a similar way.

PROPOSITION 2.20. Let 3 < 1 and let the number A = i($+1/2) be regular for the
pencil A. Then for v € Dg(XK) the inequality

V2 lv; HB(K)IIQ2  [xrv; H3(K, mDI” <
< c{llF; HYOOI™ + (172 /2) 1 f5 Lo(30)11°)

holds, where f = (T + A(Dy))v, x-(r) = x(|7|r) and x is any fixved cut-off function

in CX(X) equal to 1 near the vertex. The constant ¢ is independent of v and T.

(2.22)

Proof. Step 1. An estimate near the vertex of a cone

We consider problem (2.6), (2.7) in K. According to Proposition 1.2, the problem
{A(D,), I'} is elliptic. Therefore, if the line Im A = +1/2 contains no eigenvalues
of the pencil corresponding to the problem under consideration (the pencil 2( in this
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case), then a function U € H(X, 1) such that I'U = 0 satisfies (see [28, Chapter
3, §5])

IXU; HYSON” < el A(D XU HY(K)|
Since AxU = xAU + [A, x]U and M(D,,0) = 6 + A(D,), the inequality can be
rewritten in the form

IXU; HY(K, D)|* < e{|[xM(D,, )U; HYI) | + [|0U; HY)1PY,  (2.23)

where ¢ € C(X), x¥ = x.
Step 2. An estimate far from the vertex
At this step we prove the inequality

3/ 171 lmecUs HYK)I” <

2.24
< e{lrawM(Dy, O)U: HYK) |2 + [l HE (5|2}, (2.24)

for any 8 € R and every U € Hj(X, 1) satisfying the boundary conditions I'U = 0,
where the constant c is independent of U and 7, k., and 1, are smooth functions in
X, equal to 0 near the vertex and 1 in a neighborhood of infinity, while K ¥oo = Koo-

Assume that x,1 € C®(X), k) =k ,supprk C {zr € X : 1/2 < r < 2},
supp ¥ C {x € X : 1/4 <r < 4}. According to (2.17),

VNKU; Ly(K)||* < |M(Dg, 7)KU; Lo(K)||°.
Since MkU = kMU + [M, k|U, we have
VU La(K)|* < e{|[sM (D, 7)U; Lo(K) > + [0 U La(K) |-

As U, we take the function z — U¢(x) = U(xy1/e,x9/e,23/¢), and change 7 for
7/(|Tle) , where € > 0. Then the last inequality takes the form

(7/|71e)* WU La(K)||* <
< c{[|8M(Da, 7/|712)U%; La(K)|* + [[0U; La(30)]*}-

After the change of variables x +— n = (21/e,x2/€, x3/€) we arrive at

(/7)) *|%U; Lo(K)|* < el M (D, O)U Lo (%) +
+&?|[¥U; La(K) |7,
with k.(n) = k(en). Multiplying the inequality by 72, putting e = 277,j =
1,2,3, ..., and adding all these inequalities, we obtain (2.24).
Step 3. An estimate in intermediate zone

Add the inequalities (2.23), (2.24). Let ko, = 1 outside the support of xy. Then K,
can be dropped from the left-hand side because

(V/ITDIIXU; Hy(K)| < [IxU; Hy(K)|| < |IxU3 H5(K, D]].
The inequality takes the form

(/71?103 HYEOI? + U HYK, D < 2
< (1M (D, 0)Us HYO + inslls HY- (O + 1005 HY(0]°
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We transform the last term

WU HYEOI® < [ Inf*|U P dn =

Inl<a

=( [+ [ WP dy.

0<|n|<e  e<|nl<a

The first integral does not exceed ce?||xU; H 3(X) II>. Therefore by choosing a small

enough ¢, one can rearrange the integral to the left side of the inequality. The
second integral is majorized by ¢||[¢U; Hg_l(IK)HQ. Now the estimate can be
rewritten in the form

(/I 105 HY(3)|* U Hy(X, DI* < )
< c{|M(Dy, O)U; HR(K)|I” + [[¢eeUs Hy 1 (3]}

After the change of variables x = |T‘7177, we obtain

o HYE)IP + s HYOK )P <
< {IIM (D, 7)s HYO® + e HY (X))

where Yo (1) = Voo (|T]7), X+ (1) = x(|7|7), v(z) = U(|7|2). Taking the inequalities
(2.17) and @ < 1 into account, we have

thser HY_ ()] < / PED]y(z) de <
b/|T|<r

< el [ @) dr < ¢ [P, s L@,
X

which leads to (2.22). O

_Introduce the spaces DHp(G,7), RHp(G,7) by completing the set
C*(G \ O) in the norms

2\ 1/2
"),

v DH (G, 1) = (o5 HYGI + xsv; HY(G, I7])
173 RH (Gl = (L5 HYGI + (1 01 L)1)

1/2
)

while x(z) = x(|7|z) and x € C>*(G) is a cut-off function that is equal to 1 near
the conical point O and vanishes outside the neighborhood where GG coincides with
XK. The spaces DH (XK, 7) and RH 3(K, 7) are defined in a similar way. Now (2.22)
takes the form

los DH (X, 7| < ¢ [ M(Dy, 7)o REH5(%, 7). (2.25)

Using (2.25), we prove a similar estimate in the domain G.
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PROPOSITION 2.21. Let 3 < 1 and let the number A\ = i($+1/2) be regular for the
pencil A. Assume that v > ~o with sufficiently large vo. Then the inequality

lo; DH(G,7)|| < cl|M(Dz, 7)v; RH(G, 7) ||, (2.26)
holds for any v € Dg(G) with a constant ¢ independent of v and T.

Proof. Let ¢ € C*(G) be a cut-off function that is equal to 1 near O and vanishes
outside the neighborhood where G coincides with K. Since v = ¢Yv + (1 —)v, we
have

[o; DH (G, )| < [[do; DH(G, 7) || + [[(1 = ¥)v; DH(G, 7). (2.27)

Estimate the first term on the right. Taking the inclusion Yv € Dg(X) and the
relation (2.25) into account, we arrive at

[0; DH (G, 7)[| < [|Mypw; RH (X, 7)|| <
< c{llvMo; RH (X, 7) || + [[[M, ¢]v; RH (X, 7)1},

where M denotes M (D,, ). Further,
[[M, ]v; RH (K, 7) || < {[I[M, w]v;ngf_)g + (|72 NNM, lv; La(K)[|} <
< cf[lo; HY(G)|| + (1717 /)llv; La(G) I},
from whence, using (2.17), we conclude that

I, wlos RE (3, 1) < eflo; HYUG)| + (717 /7) - (L)) || Mv; Lo(G) ||} <
< cfllvs H5(G)|| + | Mv; RH (G, 7)1}

for v > 1. In its turn,
[ Mo RH 5(X, 7)|| < el Mv; RH (G, 7).
Thus, from (2.27) we obtain
lv; DHs(G, 7)|| < e{[[Mv; RH3(G, 7)|| + ||vs Hp(G)|}-
We now estimate the second term in the right-hand side of (2.27). From the
definition of the norm in DH 3(G, 7) it follows that
I(1 = )os DHp(G, )| < {7l(1 = ¥)vs Hy(G)| + lIx-(1 = ¥)v; Hg(G, |7])I}-

For sufficiently large v we have x,(1 — 1) = 0 because the supports of the factors
do not overlap. In view of (2.17),

YA =)o Hy(G < ev[| (1 = ¢)v; La(G)|| < el M(1 = ¢h)v; Ly(G)]| <
< c{ll(1 =) Mu; Lo(G)|| +[[[M, (1 = )]v; Lo(G) [} <
< c{[|Muv; Hy(G)| + [lo; HE(G)]]} <
< o{[|Mv; RH (G, 7)|| + [Jo; Hy(G) ]I}
Summarizing the obtained estimates, we rewrite (2.27) in the form

lo: DH(G, 7)|| < c{[[Mo; RH (G, 7)|| + [|lvs Hy(G) | }-

We take account of the definition of the norm in DH 43(G, 7), choose a large enough
7, and rearrange the second term to the left side. As a result, we obtain (2.26). [
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2.5 The operator of problem in a scale of weighted spaces

In the section, we study the operator of problem (2.3), (2.4) in spaces related to
(2.25), (2.26). We consider the problem in a bounded domain G. The corresponding
statements for the problem in X are given at the end of this section.

With the problem (2.3), (2.4) in a bounded domain G with conical point O
we associate the operator v — Mpg(7)v := M(D,, 7)v with domain Ds(G) acting
from DH (G, 1) to RH(G, 7). It is easy to see that the operator Mg(7) admits
closure. Further we keep the same notation for the closed operator. If the number
A =i(0 + 1/2) is regular for the pencil 2l and 5 < 1, then the estimate

lv, DHp(G, 7)[| < ¢ [[Mp(T)v, RHs(G, 7)| (2.28)

holds for the functions in the domain DMpg(T) of the closed operator. The next
proposition immediately follows from (2.28).

PROPOSITION 2.22. Let the number A = i(3 + 1/2) be regular for the pencil A and
B < 1. Then the kernel of the operator Ker Mg(7) is trivial and the range RMg(T)
is closed in RHg(G,T).

Let 1/2 > 3 > (B2 > ... be all numbers in the interval | —oo, 1/2[ such that the
number A\ = i(8), + 1/2) is an eigenvalue of the pencil 2. Denote by S, the sum of
the multiplicities of all the eigenvalues of 2 in the strip Im A € [3,,+1/2; (1 +1/2].

DEFINITION 2.23. A solution to the equation Mg(T)v = f, where f € RH3(G, 1),
is called a strong B-solution to the problem (2.3), (2.4) with right-hand side f.

THEOREM 2.24. A) Let B € [(1, 1] and let the number \ = i(5 + 1/2) be regular
for the pencil A. Assume that v > 7o with sufficiently large vo. Then for any
f € RH3(G, ) there exists a unique strong 3-solution v of the problem (2.3), (2.4)
with right-hand side f and

lv; DH(G, )| < el f; RH (G, 7).

B) Assume that 3 €|Bmi1, Bm|- A strong B-solution of the problem (2.3), (2.4) with
right-hand side f € RH3(G, ) exists under the S, conditions (f, ws;)c = 0, where
{wex }:=2N s a basis in Ker Mg(t)*. Such a solution satisfies the estimate in

k=-1,..,—m
A)

Proof. A) Suppose that w € Ker Mg(7)*, where Mg(7)* is the adjoint operator for
Mg(7) with respect to the extension of the inner product on Lo(G). According
to local properties of solutions to elliptic problems (e.g., see [28, Chapter 1]), w
belongs to C>(G \ O) and satisfies (2.19), (2.20). Moreover, in a neighborhood of
O the asymptotic representation

w~X Z Z Cs,k‘/s,k,T

k s=1,..,Ng
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holds, where Vj j r is the sum of the first 7" terms in the formal series (2.21). For

a fixed T,
1/2
(/ ol2(1+12%) " da)
G

is an equivalent norm in RHg(G,7)*. If § >0, then w € RH3(G, 7)* C Lo(G). In
view of the equality (Mgs(7)u,v)e = (u, Mg(T)*v)q, the asymptotics near O of the
functions in the domain DMp(7)* may contain the terms V7 corresponding to
the eigenvalues in the strip Im A €]1/2, 3/2[ only in the combinations o, Vs —p 7 +
Bs i Vskr (see the proof of Proposition 2.14). The coefficients {asx, Gsx} are the
same as in the lineal Dg(G), where the operator Ms(7) was initially given and
then extended by closing. Then w is in Ly(G) and has asymptotics such that the
inclusion w € DM (7) holds, while the operator M(7) extended by closing was
initially given on the lineal D(G), where the coeflicients {ox, s} are the same
as in Dg(G). Taking account of estimate (2.17) and Remark 2.10, we obtain w = 0.

Let 8 € [, 1] and § < 0. This means the strip Im\ € [6; + 1/2, 3/2]
contains no eigenvalues of the pencil 2. Using results on the asymptotics of solu-
tions to elliptic problems from [28, Chapter 4, §2], we deduce for w the asymptotic
representation

w=x E Cs Vs + 0.
s,k

Here v € RHy (G, 7)*, /' € [0, 1[, the sum contains Vjjr corresponding to the
eigenvalues of 2 in the strip Im A € [+ 1/2, '+ 1/2]. Since the strip is free from
the spectrum, we have w = v and w € RHz/(G, 7)* C Lo(G). The above argument
for the case § > 0 leads to w = 0.

B) Assume that § €]|8,11, Om[. We construct a collection consisting of S,
function and prove that it is a basis in Ker Mg(7)*. Thus we prove the theorem
because the range of Ms(7) is closed in RH3(G, 7) and the kernel is trivial. Let
M (1) and M (7T) be the closure of M(D,,7) and M(D,,T), respectively, given on
the lineal D(G) where o,y = 0 and s = 1. Recall that V1 is the sum of
first 7' terms in (2.21). Tt is easy to see that M (D,,T)xVixr = O(r™Ax=2+T)
near the point O. Choose a sufficiently large T' to obtain the inclusion M(D,,T)
XVsrr := Fspr € Lao(G). For the eigenvalues of 2 in the strip Im A €]1/2, 1], it
suffices to take the first term V. 1(r, 9, p) = r*-+®, (9, ¢) = us_1(r, 9, ). For
the eigenvalues with imaginary part not exceeding 1/2 one has to take more terms.
The strip Im A € [5,, + 1/2, (1 + 1/2] contains precisely m eigenvalues of . Let
Ar be in the strip. The corresponding function Fyjr is in Ly(G). According to
Theorem 2.16, there exists a solution to the equation M(T)wspr = Fspr. Put
Ws = XVsrr — Wspr. We construct such functions for all eigenvalues of 2 in
the strip Im A € [, +1/2, (1 + 1/2]. For A, there are N, such functions. It is
not hard to see that wsy satisfies (2.19), (2.20) and belongs to RHz(G,1)*. We
show that wsy, are in the kernel of Mg(7)*. Let f € C*(G) N RHg(G, 7). From
the inclusion f € RHz(G,7) C Lo(G) and Theorem 2.16 it follows there exists
v € Ly(G) satisfying M(7)v = f. Near the point O, the function v admits the
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asymptotic representation ( see [15, §4.2] or [28, Chapters 3,4]):

v=X Z ds,kUs,k,T + h,

where Uy i, r stands for the sum of first 7" terms of the formal series

Us,k('r7 T) = Ti)\k Z quq\Ij((]s,k) (197 @)7 (229)

q=0

while \I/(()S’k) = ®,;. In D(G), all the coeflicients o,y are equal to 0, therefore
v contains the terms corresponding to the eigenvalues in the strip Im A € [3,, +
1/2, $1+1/2]. The remainder h is o(r**=). The number T is taken sufficiently large
so that xr*+ 710, decays more rapidly than r*= as r — 0. The coefficients d, ,
are defined by d . = i(f, ws ) (see [28, Chapter 4, §3]). The conditions (f, wsx) =
0 with all the constructed ws ;, are necessary for the inclusion v € DHg(G, 7). Thus
ws i, are in the kernel of Mz(7)*. We show that they form a basis in Ker Mg(7)*.
Let w € Ker Mg(7)*. Then the representation

w=x Z CskVsrr +h

holds near the point O, the sum contains the functions corresponding to the eigen-
values of 2 in the strip Im A € [5,,+1/2, $1+1/2], and the remainder h is in Ly(G).
We put z = w — ) ¢ pws . The function z belongs to Ly(G). The asymptotics
contains the terms corresponding to the eigenvalues satisfying Im A < 1. Therefore
z € DM(T). Since M(T)z =0, we have z = 0 and w = ), €5 pWs k. O

REMARK 2.25. Theorem 2.24 is valid for the problem (2.3), (2.4) in the cone K.

The above proof goes almost without changes for the problem in X. There is
only one distinction. For the problem in X, there arises a question on the behavior
of functions in the kernel at infinity. Using (2.24), one can check that the functions
decay more rapidly than any power of r.

2.6 The asymptotics of solutions

Let f € RH3(G, 1) and B €]Bm+1, Bm|. Since RHz(G,7) C Lo(G), there exists
a unique strong solution w to problem (2.3), (2.4) (Theorem 2.16). According
to Theorem 2.24, this solution is in DHg(G, 7) provided <f, ws,k>G = 0 with
k=—1,..,—m and s = 1,.., N;,, where {wsk}zzalN’im is the basis in Ker Mz(7)*

constructed in the proof of Theorem 2.24. For any f, we obtain an asymptotic
formula for the strong solution with remainder in DH (G, 7).

THEOREM 2.26. Assume that f € RHg(G,T), B €|Bm+1, Bml, and v > ~o with
sufficiently large ~o. Then the strong solution u to the problem (2.3), (2.4) with
right-hand side f admits the representation

U= Xr Z Cs,kUs,k,T +w. (2?)0)
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Here U, 1 denotes the sum of first T terms of the formal series (2.29), w €
DHs(G,7), and x-(r) = x(|7|r), while x is a cut-off function that is equal to 1 near
the point O and vanishes outside the neighborhood where the domain G coincides
with the cone K. The sum consists of the terms corresponding to the eigenvalues
of the pencil A in the strip Im X € [B,, + 1/2, By + 1/2]. The coefficients csy are
defined by

Cs ke = 2<f7 ws,k)
G

The estimates
ol < e |7 P £ RE (G Tl
|w; DH(G, 7)|| < e (I7|/ NI f; RH (G, )|,

hold with a constant ¢ independent of .

Proof. As in the proof of Theorem 2.24, let M(7,G) and M (7, G) be the closure
of M(D,,7) and M(D,,T), respectively, given on the lineal D(G) where o, =
0, Bsx = 1. Denote by {ws} the basis in Ker Mz(7, G)* constructed in the proof
of Theorem 2.24 with the help of the operator M (7, G). We will denote by M (6, K)
and M (6, X) the corresponding operators for the problem (2.6), (2.7) in the cone
XK. The coefficients {asx, Gk} in D(XK) are the same as in D(G). We write {W, .}
for the basis in Ker M3(6,XK)* constructed by means of the operator M (#,X) in
the same way as the basis {w;} in Ker Mg(7,G)* by means of M(7,G). Let Us
stand for the formal series similar to that in (2.29) satisfying (2.6), (2.7).

Note that the values of {asx, s} indicated above were chosen for the sake of
simplicity. One can take any collection obeying Re as,kﬁT,k =0, |ask|+|Bsk| > 0.
This gives rise to new operators M (1,G), M(7,G) and another basis {ws} in
Ker Ms(r,G)*. The new formula (2.30) would contain the terms c, (o xUs —p7 +
BsxUs k1) corresponding to the eigenvalues of 2( in the strip Im A €]1/2, 3/2[. The
formulas for the coefficients ¢, ; and the estimates in the statement of theorem do
not change.

Let u be a solution to the equation M (7, G)u = f and let h := M (7, G)xu. De-
note by U a solution to the equation M (0, K)U = H with H(n) = (1/|7])h(n/|T]),
n = |r|z. Since a strong solution is unique, we have U(n) = x(n/|7])u(n/|7]). In
view of the properties of solutions to elliptic problems in domains with singularities,
the representation

U(n) = () > dexUsrr(n) +V(n) (2.31)

holds in a neighborhood of O. The sum contains Uy ;7 corresponding to the eigen-
values of 2 in the strip Im A € [5,, + 1/2, 1[, while T" is taken large enough in
order for the inclusions yr* 7+, , € H 5(X) to be valid. The coefficients d,

are defined by d; = i(H, Ws,k> o The function ¢V is in Hé(iK). Now we describe
in more detail the properties of V. To this end we consider M (6, K)T? = H , where
H=H-M(D,,0)(¢>_ ds;Uskr)and the sum is the same as in (2.31). Taking into
account the equality (H , W&’f)gc = 0, Theorem 2.24, and Remark 2.25, we obtain
V € DHy(K,1). Since M(0,K)V = H, we see that V=V and V € DH4(X, 1).
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Let us majorize the coefficients ds ;. The representation dsj = i(H, \/\787;§)g<

implies that
(o] < e H; RH (3, D)|| < elr|™ 2|1 RE (K, |7])].
Using h = xf + [M, x]u, we obtain
17 RH (X, 7)|| < |[fs RH (G, 7)I| + [|[M, x]us RH (K, 7).
The inequality v > vy with large v, leads to the estimate
1M x]u; RH (X, 7)|| < 1|_[Jg4, XJu; RH (G, 7)|| <
< cfllu; Lo(G)| + (171" /9)l[w; La(G) ||} <

< {WNNF; LG+ (177 /7)1 3 LG} <
< dlf;RH(G, 7]

Thus,
k| < el |72 f; RH 5(G, 7))

with a constant ¢ independent of 7. Since U(n) = x(r)u(z), the representation

x(@)u(@) = ((7lr) Y dolUspr(|7lz,7/17]) + V(|7]2)

holds near the point 0. Taking into account the equality

Usr(|7le, /7)) = qé(\T!?“)"A’“W(T/IT!)"\PS(??, ) =

= ‘T’Mk US,’C,T(T7 79’ ©, T)a

we finally obtain

u(@) = C(|71r) Y caxlUspr(@, 7) + w(x)

with ¢y = |7|™d,r. It is not hard to verify that yw € Hi(K) and

Cof = i(f, ws,k> . Using the estimate on ds, we have:
G

sl < elr| TN RH (G 7).

Consider the remainder w. Since M (7, G)w = f with
f: f=M(D,,7)(¢ Z Cs kUsk,T)
and <]?, wng)G: 0, Theorem 2.24 leads to w € DHz(G, 7) and

[w; DH (G, 7)|| < ef[|f; RH p(G, )|+
HIM(De, 7) (G 22 CorUspir); RH (G, 7)1}

Making use of the estimate on ¢y, and the explicit form of M(D,,7)Us i1, we

majorize the last term and obtain

lw; DHs(G, )| < (|7l /7)1 RH (G, 7).

REMARK 2.27. Theorem 2.26 is valid for the problem (2.3), (2.4) in X.
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2.7 Nonstationary problem in the cylinders Q and Q

Applying the inverse Fourier transform F*

., we pass from problem (2.3), (2.4) to
problem (2.1), (2.2).

DEFINITION 2.28. Let f € VP(Q,~) and let u(x,T) be the strong solution to the
problem (2.3), (2.4) in G with right-hand side —if, where f(z,7) = Fir f(,1).
The function u, defined by u(z,t) = F-1,(x,7), is called a strong solution to the

—t

problem (2.1), (2.2) in the cylinder Q with right-hand side f.
The next result follows from Theorem 2.16.

THEOREM 2.29. For every f € VY(Q,~) and for any v > 0 there exists a strong
solution v to the problem (2.1), (2.2) with right-hand side f. Moreover,

Yo VI (@Q I < I1£5 V5 (Q ).

Let us fix a cut-off function xy € €*(G) that equals 1 near the point O and
vanishes outside the neighborhood where the domain G coincides with the cone X.
We put

XU(ZE, t) = Hf;itx(|7'|r)3'"t/_,Tu(x, t/)’
Au(z,t) = F 1| 7FFy_ru(, t').

Introduce the spaces DV 3(Q,7), RV 3(Q, ) equipped with the norms

[u; DV 3(Q, )l = (V?Ilu; VE(Q M)II” + | X u; VE(Q>’Y)HQ)1/2,
15 RV s(Q NN = (L5 VI(Q, M1 + (/4N £ V(Q, )[?)

DEFINITION 2.30. Let f € RV 3(Q,~y) and let u(x, T) be the strong (3-solution to the
problem (2.3), (2.4) in G with right-hand side —if, where f(x,7) = For f(,1).
The function u, defined by u(z,t) = F-1,0(x,7), is called a strong B-solution to

the problem (2.1), (2.2) in the cylinder Q with right-hand side f.

1/2

The next result follows from Theorem 2.24.

THEOREM 2.31. 1) Let 5 € (1, 1] and let the number A = i(S+1/2) be reqular for
the pencil A. Let v > ~o with sufficiently large ~y. Then there exists a unique strong
B-solution v to the problem (2.1), (2.2) with any right-hand side f € RV 5(Q, 7).
Moreover,

[0; DV 5(Q, V)| < ellf; RV 5(Q, )|

2) Let B €|Bm+1, Bm|. A strong B-solution to the problem (2.1), (2.2) with right-
hand side f € RV 5(Q,~) exists (and is unique) if for all T = o —iy (0 € R, v > 0)
the conditions (f(-,7),wsx(-,T))c = 0 holds, where {wsk}Zil_lN’“_m is a basis in

Ker Mg(7)*. If such a solution exists, it satisfies the inequality in 1).

We now formulate the theorem obtained deduced from Theorem 2.26 by the
inverse Fourier transform. As the spatial part of the system (2.1), we take the
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operator A which is the closure of the operator A(D,) with domain D(G) where
Qg | = 0.

THEOREM 2.32. Assume that f € RV 3(Q,v), v > Yo with sufficiently large o,
and B €|Bm+1, Bm|- Then the strong solution to the problem (2.1), (2.2) admits the
representation

u(@,t) =Y Uspr(r, 0.0, D) (Xep) (x,t) + w(z, t),

where w € DV 3(Q, ). The sum consists of the terms corresponding to the eigen-
values of the pencil A in the strip Im A € B, +1/2, 51 +1/2]. The coefficients are
defined by s (t) = F 101 (T) with cop = (f(~,T),w5,k(-,F))G or, equivalently,

ualt) = [ o [ ds (Gt =) Weslo9)es
G R

with W . (x,t) = F 1w, p (2, 7). Moreover,

le™ ean(); H™ B2 R)|| < el £; RV 5(Q, )l
[[w; DV s(Q, VIl < (e/NIAS RV 5(Q, Y-

Strong solutions and strong (-solutions to the problem (2.1), (2.2) in Q can
be defined in the same way as those to the problem in the cylinder Q in (2.28),
(2.30).

REMARK 2.33. All the theorems in this section are still valid for the problem (2.1),
(2.2) in Q.

2.8 Explicit formulas for the functions w,; and W, for the
problem in the cone X
According to Theorem 2.26 and Remark 2.27, the strong solution u to the prob-

lem (2.3), (2.4) in K with right-hand side f € RHg(XK, 7) admits the asymptotic
representation

u(z) = x(r) Z CskUsir(x, 7) +w(x).
The coefficients ¢, are defined by

cMﬂ:/MU@ﬂmMLm&

X

where {wsk}zzl_lN’“_ ., 1s the same basis in Ker Mg(7,XK)* as before. Recall some

properties of the functions ws ;. They satisfy the homogeneous problem (2.3), (2.4)
with 7 instead of 7. In a neighborhood of the conical point

Wy = Ti’\*’“q)s,,k(z?, )+ o(ri)‘*’“).
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In this section, we obtain explicit formulas for the functions w,j and their Fourier
transforms. Denote ws ,(x,T) by hsx(z, 7). Since wyy, satisfies M (D,,T)wsy = 0,
we have M (D,, —7)hs, = 0. In spherical coordinates (r, 9, ¢) the operator A takes
the form

0 1 o 1 P
A(0) = A1(19780)§ + ;Az(ﬁ,g&)a—ﬁ -+ ;Ag(ﬁa 90)%

We write hgj in the form

hsi(w,7) = 12 (irg ()] + €' (r) ALY, ) Ps (0, ),

& being a scalar function. Such a representation of hyj is motivated by the corre-
sponding argument for the Helmholtz equation in [17, §3] and by the equality

M(D,,71)M(=D,,7) = A + 72

We substitute the above expression for hgy in (—7 + A(D))hsy = 0 and, using
(2.10), arrive at
2(iA_ + 1)

r

5//_*_ fl—i-TQf:O.

Choose the solution £(r) = er” K, (itr) with v = —(2i\, + 1)/2. Here by K, (z) we
denote the Macdonald functions, which are also called the modified bessel functions
of the second kind. The coefficient

c=(Gr)" 2T (w).

is determined by the behavior of h,j near the vertex of X. Then

1—v

['(v)

hop(z,t) = rA=" {(imr)" K, (itr)] — (itr)" K,—1(i11) A1 (9, @) } @ 1 (0, ©).

We apply the inverse Fourier transform. It is known (see [3]) that

-2
22T (2 + 1)(2) NKQV(Tp) = /exp(—pt)P(t) dt for Rep > —1/4,
T
R

P(t) =0(t —r) 7'/2(t* — 7‘2)(4u_1)/2F(u — v+, 2u+1/2,1 — 2 /r?),

and F'(a,b,c, z) is the hypergeometric function. Then

(i7) Ko(imr) = 27

— = v Ng, (d)dt)NTn(r,t
(/1/+1/2)7’ t ( / ) N(T7 7:“71/)7

where
Tn(r,t, pu,v) = 0(t — r)yrt/2(12 — Tz)u—l/QX
F((M - V)/Q, (M‘FV)/Q,,M—G— 1/2’ 1 — t2/7’2)
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with p = [v] — v+ m, N = [v] + m, and an arbitrary positive integer m. The
Fourier transform and differentiation are understood in the sense of distribution
theory.

Thus, according to Theorem 2.32 and Remark 2.33, the strong solution u
to the problem (2.1), (2.2) in Q with right-hand side f € RVj3(Q,v) admits the
asymptotic representation

u(a,t) =Y Uspr(r, o0, D) (Xéop) (x,t) + w(z, ),

where
és,k(t)—/dx/ds (f(w,t —5), W p(x,5))ps-
x R
Moreover,

21—1/—/1

NONCESYO

Wsi(z,t) = F-1 hen(z,7) = -

T—1

{(d/dt)NTn (r,t, p,v) — (d/dt)N Tna (r, b, v — 1) As (0, 0) } s 1 (9, ).

Let us discuss some properties of the coefficients ¢, which follow from those of Wy,
and from the formula for ¢, ;. Note that supp W = {(x,t) € K xR : r <t} and
sing supp Wi, = {(z,t) € K x R : r =t}. Assume that f is a smooth function
and supp f C {(z,t) € K x R: Ry <r < Ry, t > 0}. Then ¢, are smooth while
¢sk(t) = 0 for t < R;. Thus we observe the phenomenon of ”forward edge” in
the coefficients. Suppose now that the singular support of the right-hand side f is
located in the set {(z,t) : Ry <r < Ry, 0 <t < tg}. Then ¢ (t) vanish for t < Ry
and are smooth for ¢t > ¢y + Ry. In other words, there is the phenomenon of ”back
edge”: the coefficients have been smooth after the perturbation from the singular
support of the right-hand side has left the vertex of XK.

2.9 Connection between the augmented and non-
augmented Maxwell systems

Up to this point the discussion was related to the augmented Maxwell system. We
are now going to prove that under some conditions on the right-hand side of such
a system, its solutions satisfy the usual (non-augmented) Maxwell system. For
sufficiently smooth vector fields E, ]§, the right-hand side (—f, —é, p, p) of the
usual Maxwell system is subject to the compatibility conditions dp/dt 4 div J =
0, Ou/ot + div G = 0 and the boundary condition <é, 7) = 0. We show, for a
certain self-adjoint extension of A(J) taken as the spatial part of the augmented
system, that if a right-hand (f:, far 01, g2) satisfies Ogy /Ot — div ﬁ =0(k=1,2)in-
side the domain and the boundary condition ( fa, V) = 0, then in the corresponding
strong solution u = (@, ¥, h, q) we have h =0, ¢ = 0.

Consider the problem in a bounded domain G C R? with conical point O.
Applying the Fourier transform, we rewrite the condition on right-hand side in
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the form irg, — div fr = 0 (k =1,2), <f§, V) = 0. Since the right-hand side is
an element in Ly(G), the conditions should be understood in a proper way. Let

div f, div f, € Lo(G), where div is understood in the sense of distributions. The

o~

boundary condition (f5, 7) = 0 means that
= (P .
(£ V) ==(div fs v) Vv eH G).

Let us rewrite the indicated properties of the vector fields ﬁ in another form. To
this end introduce the space

H(div ,G) ={u € Ly(G) : divu € Ly(G)}

1/2
with norm ||@; H(div ,G)| = (Hﬁ, Ly(@)]|? + ||div @ LQ(G)||2) and its closed
subspace )
H(div ,G) ={ud € H(div,G) : (4, V) = 0}.

Then fi € H(div ,G), f> € H(div,G), §i, % € Lo(G), irgp, = div f.

We consider M (1) = 7+ A, while A is the self-adjoint extension of the differ-
ential operator A(D,) given on the lineal D(G), where all the g vanish. In other
words, the functions in the domain of A increase near the conical point O slower
than the functions in the domains of all the other self-adjoint extensions.

For the proof of theorem on connection between solutions to the augmented
and usual Maxwell systems, we need some properties of the Helmholtz operator in
the domain G. Here we recall all the necessary definitions. For details and proofs
we refer the reader to the articles [18] and [33]. Let = = X N 82, where the cone
X coincides with the domain G near the conical point O. For the Laplace operator
we introduce the operator pencil € in the domain = by the formula

E(\) = (iN)? +4X — 6,

where ¢ is the Laplace-Beltrami operator. In the case of the Dirichlet problem
the pencil € is defined on the functions u € H?*(Z) such that ulspz = 0. In the
case of the Neumann problem the pencil € is defined on the functions u € H?(Z)
such that 0,|s= = 0. Let {ux, wi} and {p, wi} be the sets of eigenvalues and
eigenfunctions of the Dirichlet and Neumann problems for the operator pencil €.
Denote by Lp the lineal spanned by the functions in €°(G) and by functions of
the form yr**w, with Im yu, < 0, where Y is a cut-off function equal to 1 near
the conical point. We also introduce the lineal Ly spanned by the functions in
C>(G'\ O) with normal derivative vanishing on dG'\ O and by functions of the form
xr#* iy, where Im i, < 0. According to [18, §4] and [33, §3], the range of the
Helmholtz operator 72 + A with 7 = o — iy (v # 0) given on Lp or Ly is dense in
Ly (G).

THEOREM 2.34. 1) Suppose that A is the self-adjoint extension of the differential
operator A(D,) given on the lineal D(G), where all the coefficients oy are zeros.
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Let the operator A be taken as the spatial part of the system (2.3), (2.4). Assume
that the right-hand side f = (—J_: —(_j? p, 1) of the system is subject to the conditions
o, € Ly(G), J € H(div ,G), G € H(div ,G) while irp+divJ =0 and
1T+ div G = 0. Then the corresponding strong solution u is of the form u =
(u,7,0,0). 2) If the role of spatial part is played by a self-adjoint extension distinct
from that in 1), then there exist right-hand sides subject to the conditions in 1)
such that the corresponding strong solutions has nonzero components h, q.

Proof. Prove the first part of the theorem. Verify the equality h = 0. Since A
is the closure of the differential operator A(D,) given on D(G), there exists a
sequence {ux} C D(G) such that uy — u = (@, U, h, q) and fr := M(T)ux — f
(the convergence in Lo(G)). We have up € C°(G \ O) so the system (2.3), (2.4)
can be understood as usual. In particular,

iTU, — rot U + Vh, = _j;m
1Thy + div Uy = pg.

Moreover, uy satisfies the boundary conditions (2.4) on G \ O. Assume that
¢ € Lp. Multiply the first equality by V¢, the second one by ¢, and integrate over
G. Then

it (i, Vo) . — (vot @, Vo), + (Vhe, Vo), = —(Jr, Vo), |

—72 (hk, gb)G + iT(diV Uk, gb)G = iT(pk, gb)G.

We integrate by parts in the two first terms of the first equality, then add the
second line and obtain

_T2<hk7 (b)G + (thv V¢)G = iT(plm ¢)G - (Lj;m V(b)G

We integrate the sgcond term by_’parts, let £ — +o00, and take into account that
—(J,Vo)g = (divJ, ¢)g and divJ +itp = 0. Then

(h, (7 + A)¢)G —0.

Therefore h = 0 because the range of the operator 72 + A given on Lp is dense in
Lo (G).
Verify the equality ¢ = 0. We have

iTU + 1ot U + Vg = —G_?k,
1Tqr + div U = .

Assume that ¢ € Ly. Then
it (0h, Vo) . + (rot @, Vo), + (Var, Vo) , = —(Gr, Vo), »

—T2(qk, qb)G + iT(div U, qﬁ)G = iT(uk, qb)G.
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We integrate by parts all the terms in the left-hand side of the first line, add the
second line, and let k — oo:

(q, (72 + A)¢)G = Z'7—(/‘7 ¢)G - (é7 v¢)c‘

Using the inclusion G € H(div ,G), ¢ € Ly ¢ H'(G) and the condition div G +
1T = 0, we obtain

(q, (72 + A)¢)G — 0.

Since the range of the operator 72 + A given on Ly is dense in Lyo(G), we arrive
at ¢ = 0.

Let us turn to the second part of the theorem. The domain of any other self-
adjoint extension contains at least one function yr*+®,, with Im X\, € |1, 3/2[.
In view of the properties of the pencil 2, the eigenfunction @, is of the form
((j, 0, 0, Q) or (6, vV, H, 0). For instance, assume that @, = (l'j, 0, 0, Q).
According to [18, §4], there exists a solution ¢y to the homogeneous Neumann
problem for the equation Agy + 72¢y = 0 having the asymptotics g ~ r"**Q near
the conical point O while gy € C=(G \ 0). We set ug := (Xr“k[j, 0, 0, Q) € fo:=
M(T)ug = (iU, rot (xr™U)+Vqo, div (xr™U), itqo). It is not hard to see
that fo € Ly(G)NC>(G\O) and f, satisfies the conditions in part 1) of the theorem.
However, the component ¢q of the solution uq differs from zero. We now assume that
O\ = (0, V., H, 0). According to [33, Proposition 5.2], there exists a solution hg
to the homogeneous Dirichlet problem for the equation Ahg+ 72hy = 0 having the
asymptotics ho ~ r* H while hg € C®(G \ 0). We set uy = (0, xr"™*V, he, 0)
and fi := M(7)uy = (—rot (xr**V) + Vhe, irxr™V, irhe, div (xr*V)). The
function f; satisfies the conditions in 1). However the component h; of u; differs
from zero. O

The extension A chosen in part 1 of Theorem 2.34 coincides with the operator
investigated in  [4, §2.2]. Before proving this, we recall some definitions and
statements in [4] taking into account that, in the case under consideration, the
dielectric and magnetic permittivity matrices are equal to the identity matrix. Set

F(G) ={u € Ly(G) : divu € Ly(G), rot @ € Lyo(G)}.
The class F'(G) is a complete Hilbert space with inner product defined by the norm

1/2

I PG = (lldiv @ Lo + frot i@ Lo(G)|* + 17 Lo(G)]?)
Introduce the closed subspaces
F(r,G)={ue F(Q): uxvV =0}, F(v,G) ={u € F(G) : (u, V) = 0}.
The condition 4 x 7 = 0 is understood in the following sense:

(a, rot z)G - (rot z :z)G VZ € Ly(G) such that rot 7 € Lo(G).
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The dense subsets D(v,G) = F(v,G) @ hofl(G) and D(1,G) = F(r,G)® H'(G) in
the Hilbert space B(G) = Ly(G, C3) ® Ly(G) are taken as domains of the operators
L(w){7, q} = {rot ¥+ Vq, —div ¢} and L(7){d, h} = {rot @+ Vh, —div u}. It
turns out (see [4, Lemma 2.4]) that the block operator

2=( e V)

is self-adjoint in B(G) @ B(G). Let P be the matrix defined by the equality
P(d, 0, h,q)T = (d, —q, v, h)T. We prove that PAP~! = L. The properties of
the pencil 2 and the asymptotics of the functions in D(G) near the conical point
O imply that P(D(G)) € D(v,G) @ D(1,G). The self-adjoint operator A is the
closure of the differential operator A(D,) defined on D(G). Since the operators
A(D,) and P7'AP coincide on D(G), we obtain A = P~'LP.



3 THE PROBLEM IN A WEDGE AND IN A
WAVEGUIDE WITH EDGE

3.1 Preliminaries

In this chapter we study the augmented Maxwell system

OE /ot —rot B+ Vh = —J,
OB/t +rot E + Vq = —G, (3.1)
Oh/dt + div E = p, ‘
dq/ot+div B = p
with boundary conditions
FxE=0, (B, #),=0, h=0, (3.2)

where 7/ is the unit outward normal. The problem (3.1), (3.2) is considered in a
wedge D = K x R and in a waveguide ¥ = 2 x R. Rewrite the system (3.1) in the
form
Ou/ot + A(Q)u = f,
where u = (E, B, h, )T, 0 = (84, 0y, Ony).
Assume that 7 = 0—ivy, 0 € R, v > 0, and £ € R. Applying the Fourier trans-
form F(g, 1)—(e,r) to (3.1),(3.2), we obtain the problems in K (in §2) with parameter

(&,7):

i+ A(D,,, D,,, )0 = —if,
Ia = 0.

Rewrite this problem as follows

M(D,, &, m)u = f, (3.3)

['u=0, (3.4)
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where M(D,,&,7) =7+ A(Dyy, Dyy, €) . The Green formula (1.9) for the problem
(3.3), (3.4) takes the form

<M(Dgc,§,7')u,v>]K + (Fu,Tv)aK = <u, M(Dx,é,?)v)K + (TU’FU>3K’ (3.5)

where T' = —iT. When considering the problem in K, we may change the variables
n = (px1, prsy), where p = (|7]? + |€*)Y/2. Denote (&/p,7/p) by 6, introduce the
notation M(D,,0) = 7/p+ A(D,,&/p) and U(n,&,7) =u(p~'n,&,7), F(n,,& 1) =
p ' f(p~'n, €,7) and rewrite (3.3), (3.4) in the form

M(D,,0)U = F, (3.6)
TU = 0. (3.7)

3.2 Operator pencil
We define the operator pencil
BA)D(p) = 7' A(Dyy, Doy, 0)r ()

for ® € H'[—a, a] such that r"*®(y) satisfy (3.4) on 9K, where (r, @) are the polar
coordinates. If ®(p) = (ud(p), U(v), h(p), q(¢)), then the boundary conditions
can be written as

h(a) = h(—a) = uz(a) = uz(—a) = 0,
(a)cosa+u2( )sina = 0,

( a) cos o — ug(—a) sina = 0,
)
)

vy (@) sina — ve(a) cosa = 0,
( a)sina + va(—a) cosa = 0.

In polar coordinates, the operator A(D,,, D,,,0) is of the form
A<D3317D127O) = Al(gp)DT +7,71A2(()0)D<P7 (38)
where A; and A, are 8 x 8-matrices. Let G stand for A(0,0,1). We have

Al'Alzl A2 AQZI,Al'A2+A2‘A1:0,
dA; dA,
= Ay, —2=—-A .
d(p 25 d(p 1 (39)
G-G=1A4-G+G-A=0,G-Ay+A-G=0.

The eigenfunctions and eigenvalues of the pencil 9B satisfy B(A\)® = 0. Taking
(3.8) into account, we obtain

AAL(p) () + Aa(0) Dy ®(p) = 0. (3.10)

From the formulas for A; and A, and the boundary conditions for ®, it follows
that the eigenfunctions and eigenvalues of 28 can be found by solving the two
Sturm-Liouville problems for the system

da/dp +i\b = 0,
db/dp —ira =0
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with boundary conditions

1) a(a) = a(—a) =0,
2) a(a)sina — b(a) cosa = 0, a(—a)sina + b(—a) cosa = 0.

Thus the spectrum of B consists of the two sequences of eigenvalues

k k
=it A ==+ 1), k€ Z.

A
k1 2x 2x

Using the link of the Sturm-Liouville problems with (3.10), one can show that two
linearly independent eigenfunctions correspond to every eigenvalues while there
are no associated functions. Moreover, the eigenvalues Ay, correspond to the com-
ponents h, ¢, us, vz while A\go to u;, ua, vy, ve. The eigenvalues of B are
symmetrically located about the point ¢/2. If i/2 is an eigenvalue, we denote it
by Aog. Let A\x with &£ > 0 stand for the eigenvalues of 98 such that Im Ay > 1/2
numbered in order of increasing imaginary part. By A_, with k£ > 0 we denote the
eigenvalue symmetric to Ay about the point i/2. The same argument as in Section
2.2 shows that the eigenfunctions {® +x}s—12 corresponding to A+x can be chosen
to satisfy the orthogonality and normalization conditions

«

/ ((‘A%(/\k)@&k, q)p,—k>8 ng = 5s,p‘

—

If ® is an eigenfunction of B corresponding to A\, then G®, too, is an eigenfunction
corresponding to the same eigenvalue \j.

The properties of the pencil B discussed in this section are summarized in the
next proposition.

PROPOSITION 3.1. 1) To every eigenvalue A\, of B with k # 0 there correspond
two linearly independent eigenfunctions {®s}s—12 satisfying GPy = Poy. There
are no associated functions. The eigenfunctions can be chosen so that

«

[ A Oal0) B A = 8y G .11

—

2) If « =, then Ao = /2 is an eigenvalue of the pencil B. There are four linearly
independent functions {®s 0}s=12 corresponding to this eigenvalue. The functions
can be chosen to satisfy the orthogonality and normalization conditions

«

_.? <A1 (QO)CI)S,:FO(SD)a (Dp,:i:()((p»g d(p = 58,1)? f <A1 (90)(1)87:‘:0(90)7 ®p7i0(w>>8 dg@ =0,

—Q

T {A(@)Pok(2), @y wo(9))g dip = 0

for k # 0.
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We put
Vsl = r”\’“@s,k, Vs 70 = r’A°<I>s,3F0. (3.12)

The functions v, satisfy the boundary value problem A(D,,, D,,,0)v) = 0 in K,
I'vg, = 0 on JK.

3.3 On properties of the operator A(D)

Let us consider the elliptic problem in a wedge

{A<D$1)DLE27 Dz3)u(l‘1,x2,$3) - 97(‘Tla'r27x3)7 (Il)x27x3) € D7 (3 13)

TU(zy, 29, x3) = H(21, 2, 23), (1, 22,23) € OD\ M.
In this section, we study the operator Ag of problem (3.13),
Ag = {A(D),T} : HYD) — HYD) x H*(9D),

and find out the numbers § for which the operator is an isomorphism. We apply
the Fourier transform F,, . to problem (3.13) and obtain the family of problems

(3.14)

A(‘D$/1\7 meg)ﬁ(xlaf%f) = §(xl’x27§)u (1’1,1‘2) € K7
T (w1, 22,8) = H(wy, 22,§), (21,22) € OK\ O.

We introduce the new variables

n = |El(@,22), w = &/IE], UM, €) = Un/I€], ©),
F(n,€) = €[5 (n/1¢],€), H(n,&) = Hn/l¢,9),

and rewrite (3.14) in the form

{A(me)U(n,f) = F(n,€), n ek, (3.15)
TU(n, &) = H(n,§), n € 0K\ O. '

Consider the operator
Ap(w) = {A(Dy,w),T} : EYK) — EYK) x E;*(9K).

THEOREM 3.2. If o < 7, then the operator Ag is an isomorphism for
B €Jmax{0,1 — 7/2a}, min{l, 7/2a}|.

Proof. According to [28, Theorem 8.2.1], the operator Ag implements isomorphism
if and only if Az(w) is an isomorphism for w = F1. The operator Ag(w) is Fredholm
if and only if the line Im A = /3 is free from the spectrum of the pencil B (see [28,
Theorem 8.2.3]). We show that the kernel and cokernel of Ag(w) are trivial in some
interval Im A\, < f < Im A;1;1. Hence Ag(w) is an isomorphism for such 5. Outside
the interval, the operator Ag(w) is not an isomorphism ( see [28, §8.3]).

Let U be a solution in E}(K) to the homogeneous problem (3.15). Then ( [28,
Proposition 8.2.6]) xU € E!(K), where x is any function in C>(K) vanishing near
the vertex, the numbers [ > 1 and 7 € R being arbitrary. We apply A(—D,,w) to
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the equality A(D,,,w)U = 0 and obtain (-4, + 1)U = 0. Denote by (u, v, h, q)
the components of U. We are now looking for § such that h = 0. The function h
satisfies

h=0,nedK\O.

Multiply (=4, + 1)h = 0 by h and integrate over K. = {n € K : |n| > ¢}.
Integrating by parts and taking into account the boundary condition, we arrive at

{(—An—k )h =0, n €K,

[ oh
[+ 1vnPyian =< -5 ao, .16

Ke —a

where (p, ¢) are polar coordinates in the plane ]R%. Let x be a cut-off function
equal to 1 near the vertex. We have xyh € Hy(K). According to [28, Theorem
4.2.1 |, the representation

h=>Y cop™Hop+ R (3.17)
k

holds in a neighborhood of the vertex, where YR € H; (K), 1> 8 —v>0, and A\
is an eigenvalue of B which is an element of the sequence {mm/2a},,ez0. The sum
consists of the terms for the indicated eigenvalues in the strip Im A €]y, [, while
H, j are components of the eigenfunctions ®,; of 8 corresponding to h. In order
that the right-hand side of (3.16) tends to 0 as € — 0, the inequality Im A, < 0 is
necessary for all the terms in (3.17). Since h € Ej(K) we have Im Ay < 3. Assume
that 8 < m/2c. Then Im A\, < —7/2a for all the terms in (3.17). Therefore h =0
in K. Similarly, us vanishes in K for the same 3. Now the equality A(D,,,w)U =0
implies that

Dy ui + Dyp,us = —wuz =0, n € K,

D,,v1 — Dpvs = —wh =0, n € K.

We consider uy, uy and put @ = (us,u2,0). Rewrite (—A, + 1)@ = 0 in the form
rot rotw — V divid + @ = 0.

We calculate the inner product of this expression and w and integrate it over

K. x I,,, where I = [0, 1]. Taking account of the boundary conditions @ x 7/ =

0, Dy ui + Dy,us = 0 on 0D and applying the Stokes formula, we obtain
/ ([rot@|2-+|divad]2 -+ |@]2)dmds = < / (trotas, [ +divii-(7. @) o, (3.18)
Ke -
where 77 = (cos ¢, sing, 0). Let Ay, be the only eigenvalue of % in the sequence
{i(mm/2a + 1)}, o located in the strip Im A € [Im \y,, B[. The asymptotic repre-
sentation
Nig

w = Z Cs, ko (Ti)\ko Ws,ko + Ti)\kOJrlT\I?s) + Z cs,kr“"“ Ws,k + R (319)

s=1 k
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holds near the vertex. The third component of every term in the first sum van-
ishes, while the two first components are equal to those of the partial sum Uj g, 2
(consisting of two terms) of the formal series (2.29). The two first components
of I/T/S,k are equal to those of ®,;, and the third component vanishes. The sec-
ond sum consists of the terms corresponding to the eigenvalues A, of the pencil
B which are elements of the sequence {i(mm/2a + 1)}, ., located in the strip
ImA € JIm A, — 1, Im Ay, [ The function R is a remainder. Using the definition of
B, one can check that rot r* W&k =0, div ri* Ws,k = 0. Therefore the right-hand
side in (3.18) behaves as el ™2™ je. under the condition Im Ay, < 1/2, it tends
to zero as ¢ — 0. Such a condition is fulfilled in the case § < 1. Therefore, if
0 < 1, then u; = up = 0 in K. The same argument shows that if § < 1, then
v1 = v2 = 0. The equality A(D,,,w)U = 0 implies that

—Dy,uy + Dyug = —wq =0,
Dy, vi + Dy,vy = —wvz = 0.

Thus, if 8 < min{l,7/2a}, then the kernel of Ag(w) is trivial. Consider the
adjoint operator Ag(w)*. Let V € Ker Ag(w)*. According to [28, Theorem 8.3.3],
V € Ker Ay_g(w). Hence, V = 0 provided 1 — f < min{1, 7/2a}. Thus, if

max{0,1 — 7/2a} < f < min{1, 7/2a},

then the operator Ag(w) is an isomorphism. The operator Az implements an
isomorphism under the same condition. O

Note that if 2a < 7, then Ag is an isomorphism for 3 €]0, 1[. If 7 < 2« < 2,
then Ag is an isomorphism for 8 €|1 — 7/2a, 7/2a|. In the case 2o = 27, the
operator Ag is not an isomorphism for any (.

3.4 Estimates on solutions to problems in a wedge and in
an angle
In this section, we prove a global energy estimate and a weighted combined estimate

on solutions to the problem (3.3), (3.4) in K and in Q. We drop some proofs similar
to those for the problems in X and in G.

PROPOSITION 3.3. Let v be in C(K\ O) satisfying the boundary conditions (3.4).
Then
YMv; La(K) || < |M(Day, Dy, & 7)v; La(K)], (3.20)

where M(Dy,, Dy, &, 7) =T + A(Dyy, Doy, &), T=0—iy (0 €R, v >0), £ €R.
REMARK 3.4. The estimate (3.20) is still valid with T replaced by T.

We define lineals similar to D(X), Dg(X) in Sections 2.3, 2.4. Since the
spectrum of the pencil B is known, we can describe the lineals D(K) and Ds(K)
in more detail.
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DEFINITION 3.5. Define the lineal D(K) by the following conditions:

A) If 2a <, then D(K) is spanned by the functions in C(K\ O) satisfying
the boundary conditions (3.4) and by the functions xvsy corresponding to the
eigenvalues of B subject to the inequality Im \,, < 1; here x stands for a cut-off
function equal to 1 near the vertex.

B) If 2a € |, 27|, then D(K) is spanned by the functions in CX(K \ O)
satisfying (3.4), by the functions xvs, corresponding to the eigenvalues of B subject
to Im A\ <0, and by the linear combinations x(svs1 + Bsvs 1), where o, Bs (s =
1,2) are fired coefficients such that Re a3, = 0 and |a| + |3, > 0.

C) If 2a = 27, then D(K) is spanned by the functions in C(K \ O), subject
to (3.4), by the functions xvsy corresponding to the eigenvalues of B subject to
Im A\, <0, and by the linear combinations x(csvs 40 + Bsvs.—o), where as, By (s =
1,2) are fired coefficients satisfying Re aBs = 0 and |ag| + | 3| > 0.

The next assertion is analogous to Proposition 2.12.
PROPOSITION 3.6. The estimate (3.20) holds for any function in D(K).
We now define a lineal Dg(K) and prove a combined estimate in K.

DEFINITION 3.7. Let 3 < min{1,7/2a}. Introduce the lineal Dg(K) spanned by the
functions in C°(K\ ) satisfying the boundary conditions (3.4) and by the functions
XVs,k corresponding to the eigenvalues of B subject to the inequality Im A < 3.

PROPOSITION 3.8. Let f < min{1,7/2a} and let the number A = i3 be regular for
the pencil B. Then the inequality

Vv HR(K)1? + |[xrv; Hy(K, p)|I?
< |l HYE)P + (1772 /)| f5 LK)}
holds for any v € Dg(K), where f = (7 + A(Day, Dy, §))v, x-(r) = x(|7]r), and

X is a cut-off function in CX(K) equal to 1 near the vertex. The constant ¢ is
independent of & and T.

(3.21)

Proof. Step 1. Estimating in a neighborhood of the edge. Applying the Fourier
transform F;_,, to the problem (3.1), (3.2) in the cylinder T, we arrive at the
problem in the wedge D
U+ AD)U =7, zeD,
M'U=0, ze€dD\ M,

with parameter 7. Introduce the new variables
¢ = Irlz, UGm) = U/I7l,7), F(Gm) = 7|75 (/|7 7).
and rewrite the problem in the form

{(T/|T|)U+A(D<)U =F, ¢ =((1,82.¢3) €D,
TU =0, €D\ M.
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If 3 < min{l,7/2a} and the number A\ = i3 is regular for the pencil B, then the
operator Ag(w) is Fredholm with trivial kernel (see the proof of Theorem 3.2). The
inequality

lus E5(K)|| < el As(w)u; E5(K)||

holds for any function u in E};(K) satisfying the boundary conditions I'u = 0.
Using Proposition 1.1, one can show that the estimate

U Hy(D)|| < cl| A(D¢)U; Hy(D)|
is valid for U in Hj(D) subject to TU = 0. Hence
IXU; Hy(D, D] < e{IXA(D)U; Hy(D)| + [[¥U; Hg(D)]1},

where x = x(r) and ¢ = 9(r) are smooth cut-off functions equal to 1 near the
vertex such that xy = x. Rewrite the inequality in the form

IXU; Hy(D, )| < c{lxM (D¢, 7/|71)U; Hy(D) | + || U; Hy(D)][}. (3.22)

Step 2. FEstimating far from the edge. We prove that, for any § € R and
each U € Hj(D, 1) satisfying the boundary condition I'U = 0, the inequality

(v/I71)? 5ol HYD)|* <

< f||kooM (D, 7/|TU; HYD)|® + [eeUs HI_, (D)%} (3.23)

holds with constant ¢ independent of U and 7; here the functions k., =
Koo(T), Yso = Yso(r) are smooth in K, vanish near the vertex, and equal 1 in
a neighborhood of infinity while Ky = Koo-

Let x,¢ € C®(K), s = K, supp £ C {(z1,22) € K : 1/2 < r < 2},
supp ¥ C {(x1,22) € K : 1/4 < r < 4}. The estimate (3.20) and Parseval’s
equality imply that

V(IkU; La(D)[|* < | M(De, 7)xU; Lo(D)|*.
Since MkU = kMU + [M, k)U, we have
VIIRU; Lo(D)||* < e{[|[eM (D¢, 7)U; La(D)||* + [[9U; Lo (D)||*}.
As U, we take ¢ — U¢(¢) = U((/e) and change T for 7/|7|e , where € > 0. Then

(v/|T\€)QI\KUE;L2(ﬂ3)H2 < 2
< {||kM (D¢, 7/|7|e)U*, Ly(D)||” + || U*; Lay(D)]|7}.

After the change of variables ( — (/e we obtain

(v/ 71?5 U; L2<21D>>||2 < 2
< {||[k-M (D¢, 7/|7)U; Ly(D)||” + €% ||00-U; Lo(D) ||}

where k.(n) = k(en). Multiplying the estimate by £72°, putting ¢ = 277,j =
1,2,3, ..., and adding the inequalities, we arrive at (3.23).
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Step 3. FEstimating in an intermediate zone. As in the proof of Proposition
2.20 (Step 3), from (3.22) and (3.23) we deduce the inequality

PPllus HYD)| + xeus YD, |7])]]* <
< c{ | M (De, 7)u; HY(D) "+ (3:24)
(17" /)" IM(Da, 7); La(D) '}

Step 4 Estimating in the angle K. Let u(zy,29,23) = v(x1,22)¢(x3), where
v € Dg(K) and ¢, e € §(R). Since ¢ is arbitrary, the estimate (3.24) and
Parseval’s equality lead to (3.21). O

The lineals D(€2) and Dg(2) are defined like D(K) and Dg(K).

PROPOSITION 3.9. The estimate
YNw; La( Q)| < |M Dy, Doy, §,7); La(Q)
holds for any v in D(Q)
PROPOSITION 3.10. Let f < min{l,7/2a} and let the number \ = i3 be regular
for the pencil 8. Assume that v > v with sufficiently large vo. Then
V2 llos HR(Q)|* + [[x-v; H3(Q, p)|1* <
< c(){ILfs H3QIP + (|7P42 /)1 fs L2 ()17}
for every v in Dg(2), where f = (7 + A(Dy,, D1y, €))v, X-(r) = x(|7|r), and x is

any fized cut-off function in CX(2) equal to 1 near the point O. The constant c is
independent of (§,7) and v.

~We introduce the spaces DH3(K, &, 7) and RHp(K, £, 7) by completing
CX(K '\ 0) with respect to the norms

9 9 1/2
lv; DHs(K, &, 7)|| = (72||U;HB(K)|| + v Hy(Kop)lI7)

15 RE (K, &) = (1 HYEK® + (1712 /2)° 13 LRI

Changing K for 2, we define DHp(Q2, &, 1), RHg(2,&, 7).

1/2

3.5 The operators of problems in K and (2

We associate with problem (3.3), (3.4) in K the unbounded operator v
M, 1)v := M(Dy,, Dy, &, 7)v on Ly(K) with domain DM (&, 1) := D(K). As
for the operator M (7) in the previous chapter, it is easy to show that M (&, 7)
admits closure and the estimate

os LK) < [|M(E, 7)v; Lo (K|

holds for the functions in the domains of the closed operator. In what follows,
M(&,7) and DM (&, 7) denote the closed operator and its domain. The proof of
the next assertion is similar to those of Propositions 2.13 and Proposition 2.14.
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PROPOSITION 3.11. Ker M(&,7) =0, RM(&,7) = Lo(K).

The operator A(D,,, D,,,0) with domain D(K) is symmetric. It follows from

Proposition 3.11 that the closure A of A(D,,, D,,,0) is a self-adjoint operator.
If 2a > 7, then D(K) contains the combinations x(asvs1 + Bsvs-1) (s = 1,2),
where a,, 3, are fixed coefficients satisfying Re a3, = 0, || + |3s] > 0. Thus for
2a > m, one can define various self-adjoint extensions of A(D,,, D,,,0) by choosing
the parameters {as, Os}s=12. In what follows we take as A any of the extensions,
unless otherwise indicated.
Let us turn to the problem in a scale of weighted spaces. For the problem (3.3),
(3.4) we introduce the unbounded operator v +— Mg(&, 7) := M(D,,, D,,, &, ) with
domain Dg(K), acting from DH3(K, &, 7) to RH3(K, £, 7). The operator Mz(¢€, )
admits closure. We will denote by Mgz(€, 7) and DMp(&, 7) the closed operator and
its domain. Let 1/2 > B > B, > ... be all the numbers in | — oo, 1/2[ such that
A = i is an eigenvalue of the pencil B. Denote by S5, the total multiplicity of
the eigenvalues of 98 in the strip Im A € [3,,, (1]

DEFINITION 3.12. A solution to the equation M (&, T)v = f is called a strong solu-
tion to the problem (3.3), (3.4) with right-hand side f € Lo(K).

DEFINITION 3.13. A solution to the equation Mg(§,7)v = f is called a strong
B-solution to the problem (3.3), (3.4) with right-hand side f € RHz(K, €, 1).

The next result follows from Proposition 3.11.

THEOREM 3.14. For every [ in Ls(K) and any 7 = 0 —iy (0 € R, v > 0),
and £ € R, there exists a unique strong solution v to the problem (3.3), (3.4) with
right-hand side f. Moreover,

Yws LK) < [|.f5 L2 (K-

The next assertion can be verified in the same way as Theorem 2.24.

THEOREM 3.15. Assume that o < 7.

A)Let B €1, min{l,7/2a}[. Then for every f € RH3(K, &, ) there exists a
unique strong (B-solution v to the problem (3.3), (3.4) in K with right-hand side f.
Moreover,

||v;®Hﬁ(K7§aT)H < CHf;RH,@(va?T)H'

B) Let 5 € |Bms1, Bm|. A strong B-solution to the problem (3.3), (3.4) with right-
hand side f € RH3(K, &, T) exists and is unique under the following S,, conditions:
(fywsk)x = 0, where {wsk}izljfm is a basis in Ker Mg(&,7)*. The solution
satisfies the estimate in part A) of the theorem.

REMARK 3.16. Theorem 3.14 is valid for the problem (3.3), (3.4) in Q. Theorem
3.15 is still true for the problem (3.3), (3.4) in Q under the supplementary condition
v > o with sufficiently large ~q.
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Now we formulate the remark concerning the angle K of opening 2a = 27. In
this case the interval of unique solvability vanishes. For g €], 1/2[ there exists
the cokernel of dimension 2 corresponding to the eigenvalue \g = i/2 of the pencil
B. The elements w; _g, ws_o of the cokernel near the corner point admit the
asymptotics ws _o ~ asUs 10 + G505, 0 With Re oszS =1,s=12.

REMARK 3.17. Assume that « = w. Let 3 € |Bpmi1, B[ A strong (B-solution to
the problem (3.3), (3.4) with right-hand side f € RHg(K, &, ) exists and is unique
under the following S, + 2 conditions: (f,wsr)x = 0, where {wy;},_" 12 o isa

basis in Ker Mg(&,7)*. The solution satisfies the following estimate

HU;DHQ(KvgaT)H < CHf;RHﬂ(KagaT)H'

3.6 The problems in the cylinders T and T

Applying the Fourier transform 9’
T (or T).

we pass to the problem (3.1), (3.2) in

(§m)—(z3,t)°

DEFINITION 3.18. Let f € VX(T,v) and let u(xy,22,&,7) be a strong solution to
the problem (3.3), (3.4) in K with right-hand side —if, where

~

f('rlu Jfg,f, T) = gf(x3,t)—>(§,7')f($17x27$37t)'

The function u defined by u(xy,x2,3,t) = 97(_57 T u(zy, xe,&,7) is called a
strong solution to the problem (3.1), (3.2) in T with right-hand side f.

Theorem 3.14 leads to the following result.

THEOREM 3.19. For every f € VQ(T,v) and any v > 0 there exists a strong
solution v to the problem (3.1), (3.2) with right-hand side f. Moreover,

s V(TN < 1F: V3 (T AL
We fix a cut-off function y € C*®(K) equal to 1 near the corner point O. Put

Xu(xy, 9, 23,1) = ?;itx(|7'|x1, |7|2x2)Fyru(xy, 29, 23, 1),
A“u(xl, Zo, t) - gjfr_it|7—|ugjt’—>’ru<wla X2,X3, t/)a
P#U,([Eh ZUQ,.Tg,t) = gé}T)H(xS’t)p”f}d@éﬂ)_,(gﬂ_)U(.Tl,.CEQ, l’g, t/).

Here A is the same operator as in Section 2.7 while X differs in that the cut-off
function is independent of x3. Introduce the spaces DV 5(T,v), RV (T, ) with
norms

lu; DV (T, )| = (72 1lws V(T )% + (| Xw; VA (T, )]l )”212
1F RV 5T ) = (15 VT )2+ (L) A £ VT, ) 1) 2.
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DEFINITION 3.20. Let f € RV 3(T,v) and let u(xq,xq,&,7) be a strong [(3-solution
to the problem (3.3), (3.4) in K with right-hand side —if, where

f(flfl,l'g,g,7'> = EF(zg t)—( gr)f($1,$2,$3,t)-

The function u given by u(zy, T2, r3,t) = ff_{ (Er)— (z3.0) u(wy, x2,&,7) is called a strong

B-solution to the problem (3.1), (3.2) in T with right-hand side f.
The next assertion follows from Theorem 3.15.

THEOREM 3.21. Suppose that o < 7.
A) Let 5 €1, min{1,7/2a}[. Then for every function f € RV 5(T,~) there exists
a unique strong [-solution v to the problem (3.1) (3.2) with right-hand side f.
Moreover,

[o; DV (T, )| < ellf; RV (T, )]

B) Let 8 €|6m+1, Bm|- A strong (-solution to the problem (3.1), (3.2)
with right-hand side f € RV (T,v) exists and is unique under the following
Sm conditions (f(~,§,r),w5’k(-,§,F))K =0 for all £ € R and 7 € R — 47, where
{wsk}zzljfm is a basis in Ker Mz(&, 7)*. Such a solution satisfies the estimate
in part A) of the theorem.

The following theorem on the asymptotics of solutions near an edge is analo-
gous to Theorem 2.32. One can prove it by modifying in an evident way the proof
of Theorem 2.26 and by applying the Fourier transform 97(_5717)%933@. For the sake
of simplicity we exclude the case of screen. Introduce the formal series

Rup(r,0.6,7) = D r (M (0,0,€, M) (p), W5 = @y
q=0
satisfying the homogeneous problem (3.3), (3.4). Denote by Ry r the first T' terms
of R&k.

THEOREM 3.22. Let o < m. Assume that f and AY=PPPf are in RV 5(T,~) with
B €|Bm+1, Bm|. Then the strong solution to problem (3.1), (3.2) in T admits the
asymptotic representation

t) = Ropr(r, ¢, Doy, D) (X o) (2, 1) + w(x, t) (3.25)
with w € DV 3(T,v). The sum consists of the terms corresponding to the eigen-
values of B in the strip Im\ € [B,,, [i1]. The coefficients are defined by
Cs (3, t) = 3'"_ o (st) csk(f T) and csp = (f(-,{,T),w&k(-,f,?))K, the collection
{ws, k}k—fl bemg the basis in Ker Mz(&,7)* as before. Moreover,

le™ eoi(-); H™ M PR < cll f; RV (T, y)]l,
lw; DV (T < (e/NIATIPPf;RV (T, 7).

REMARK 3.23. Theorem 3.19 is valid for problem (3.1), (3.2) in T. Theorem 3.21
and Theorem 3.22 remain true for the problem (3.1), (3.2) in'T under the condition
v > v with sufficiently large vq.
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3.7 Explicit formulas for the coefficients in the asymptotics
of solutions to the problem in T

In Theorem 3.22, the coefficients were expressed in terms of the elements

{wsk}iljfm of a basis in the kernel of Mg(¢,7)*. In the section, we explic-

itly calculate the mentioned elements. Note that the elements satisfy the equation
M(D,,D,,&,T)ws ) = 0 and the boundary conditions (3.4). Near the vertex of K,
the functions w,; admit the asymptotic representations

Wy = 10, 1) + o(r-*).

From (3.23) it follows that wy decay more rapidly than any power of the distance
far from the vertex. Since

Cs,k(ﬁﬂ'):/(A(l‘hxzafﬂ')aws,k(l‘hx%ﬁﬂ'»g dwy dws,

K

we have to find hyp = Wsg. It is clear that M (D,,, D,,, —&, —T)hsx = 0 because
M(Dyy, Dyy, &, T)wsy, = 0. In polar coordinates

M =71+ €6 + Ai(9)D, + (1/r) As(¢) D,

Introduce

hsi(r, @) = (imn(r)] —iGEn(r) + As()n (r)r'* @, i (¢),

where 7 is a scalar function. Such a representation of Zs,k is motivated by the
corresponding argument for the Helmholtz equation in  [17, §3], [18, §4.2] and by
the fact that M (D,,, Dy,,&,7)-M(—=Dy,, —Dy,, —&,7) = A+12—£2%. Denote iTnl —
i€nG + A1(@)n’ by S(r,¢,&, 7). Then the equation M(D,,, D,,,—¢&, —T)ﬁs,k =0
can be written in the form

(=7 — G + A1(p) Dy + (1/1) Ag(0) D)r*=+S(r, 0, €, 7)®s () = 0. (3.26)
Being eigenfunctions of the pencil B, ®, _; satisfy equation (3.10), therefore

dq)sﬁk((:p)

gy = AR A(R)2 k() (3.27)

We now transform (3.26) and write A and ® for A_;, and @, to simplify notation.

—(iT + i€G)rrS® + i1 A S + 1A A (dS ) dr)®
+r 7t Ay (dS /dp)® + rAS(d® /dyp) = 0.

Taking (3.27) into account, we obtain

(=it — i€G)S + (iM/r) A S + Ay (dS/dr)

+(1/r)As(dS/dp) — (iX/r)ASA A = 0. (3.28)
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Substituting S and its derivatives into (3.28) and making use of (3.9), we arrive at

YA+ 1
N+ Sy (1P - Py =

which reduces to Bessel’s equation. As a solution, we take a function n(r) =
CrvK,(in/T? — €%r), v = i\ assuming that n(r) — 0 as r — +oo. Here by
K, (z) we denote the Macdonald functions, which are also called the modified bessel
functions of the second kind. The asymptotic representations

Cm2v1

r)= o(1),
1(r) v (12 — fZ)V/2sin(7rl/)F(1 —v) oll)

n'(r) =o(1)
hold as  — 0. This and the equality G®; _ = P9 _ (see Proposition 3.1) lead to

Elvk = n(0)(i7P1, k() — iEPa _k())rAF + o(rir-+),
ha g = 0(0)(i70s_k(10) — i€D1 _x(p))rA=+ + o(riA-+).

We put B B _ B
hag = Thig + §hag, hog = Thoy + Ehy .

Then, in a neighborhood of the vertex,

hix = in(0)(r? 2)7““\*’@31,,;C + O(T’f’\*’f),
hoy = in(0)(12 — E2)rt=kdy _ + o(rt-+).
We fix the constant C assuming that in(0)(72 — £?) = 1. Therefore,

sin(7v)I'(1 —v) v—2)/2
_ ( 7T)2V(1 )Z 1(7'2_52)( )/‘

Finally, applying the formula I'(v)I'(1 — v) = «/ sin(7v), we obtain

1 1 v
77<T) - ,L'Qu—lF(V) T2 — &2 (iT VT = 52) K, (i?“ VT2 = 52)’

n'(r) = ﬁr("\/ T2 — 52)V_1Ky 1 (ir/72 = €2).
Let B stand for 1/(2"7'T'(v)). Recall that
hig =i(7% = En(r)rt=rdy _p + 7AW (r)ri*=c®y . + EA (r)rit-cdy 4,
hog = i(7% — E2)n(r)rr=rdy . + EA (r)r*=rdy . + TA (r)rid-+dy 4.

To find Wy, = 3"_
:}d_,T

(€.7)—(zs,)ls,k; We have to calculate the Fourier transform

) (s, OF the functions

(2'7“ T2 — 52)'/}(1, (ir T2 — 52) ,
; "R, (iry/7 — &),
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Denote these functions by f,(r, z3,t) and f,_1(r, x3,t), respectively. Then
afuflri)_k

Wl’k(l',t) = Bf,,(?", ng,t) M’kq) _k — BAl(QD) 815 qDl,fk
_BAI( )afv 1 z)\ kP, ok
03 of
Way(z,t) = Bf,(r, x5, t)r*k®y _. — BA;(p) 5t_17’i’\”“‘1>2,—k
fl/ 1 in_
—BA 'Ry
1(0)—5— o
We now calculate f,, p =v,v —1,
(1, 23, 1) /df / dr "5 (/72 — 52) (zrm).
R—i~y

After the change of variables u = i(7 +&)/2,s = i(7 — £)/2, we have

fp(r,xs,t) =2 / du / ds euttes)tslt=es) (9p 122\ ¢ (9 /251/2)
Reu=v/2 Res=v/2

The equality (see [3])

1 1
st /2 1/2 .1/2\ _ = v/2 —cx/t
/ ds e”s"* K, (2a7/%s7/%) = 5 0(t) a S|
Res=v/2
leads to
u(t+x —r2u/(t—x 1
fp(r,zs,t) = oPy2p du e (tHes)yp O(t —x3) e /(t 3)7@ o
Reu=~/2

We now employ the formula (see [37, Chapter 2, §9.3])
0(t)

a—1
X F(a)t ,a >0,
RO = [ e, hao -
Repr2 A" foin(t) a<0,a+N>0
av =7
and obtain
1 avy

fp(ra €3, t) = 2p7ﬂ2p0(t - 173) (t — $3)p+1 dvN fN—P(U>|U:(t2—z§—r2)/(t—x3)a

where p = v, v — 1 (v > 0). Thus, we have got the explicit expressions for hy
and W;j, which participate in the following representations of the coefficients in
the asymptotic formula (3.25):

csk(&,7) :/<A(x1,x2,§ 7), he (@1, 02,&, 7)) gs davy das,

Cs i (3,1) /// (w1, 29,23 — 5,1 —u), Wy i(21, 22, 5, u))ps dy dzo ds du.
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3.8 Connection between the augmented and non-
augmented Maxwell systems

In this section we briefly discuss the connection between the augmented and the
usual Maxwell systems. Here the case of screen is excluded, in other words we
assume that a < w. The main result is essentially the same as in Chapter 2.
Namely, if the right-hand side of the augmented system is subject to the compat-
ibility conditions of the usual Maxwell system, then the strong solution is of the
form (u,7,0,0), hence (u, V) satisfies the usual Maxwell system. Here we consider
the problem in €2, though all the results are valid for the problem in K.
Introduce the space

H(div,Q) = {i € Ly(Q,C?) : div & € Ly(Q)}

1/2
with norm ||@; H(div ,Q)| = (Hﬁ; Lo(Q)|2 + ||div @ LQ(Q)||2> and its closed
subspace
H(div ,Q) ={u € H(div,Q) : (&, ) = 0}.
Here div is understood in the sense of distributions and the boundary condition
(4, 7) = 0 means that

/(m,vwg dx+/divw-1/)dx:0 Vi e HY(Q).

Q Q

Recall that for 2a > 7 one can define various self-adjoint extensions of
A(D,,, D,,,0) by choosing the parameters {as, 3;}s=12 such that Rea,3, =
0, |as| + |8s| > 0. In the following theorem we consider the self-adjoint exten-
sion A with ay = a3 = 0. If 2o < 7 then we have the only self-adjoin extension,
which we consider in the following theorem.

THEOREM 3.24. Assume that o < 7.

1) Suppose that A is the self-adjoint extension of the differential operator
A(D,,,D,,,0) given on the lineal D(Y) with a; = ay = 0. Let the operator A
be taken as the spatial part of the system (3.3), (3.4). Let f = (—j, -G, p, 1) be
the right-hand side of the system with G = (G1,Ga, G3), J = (J1, Jo, J3), where
Js, G, pop € La(Q), J = (Ji,Js) € H(div ,Q), § = (G1,Gs) € H(div ,Q), and
itp+i€Js +div § =0, iTp + i€Gs + div § = 0. Then the strong solution is of the
form u = (@, 7,0,0).

2) Let a self-adjoint extension A be distinct from that in 1). Then there exist
right-hand sides satisfying the conditions in 1) such that the components h,q of the

corresponding strong solutions do not vanish.

This theorem is proved in the same way as Theorem 2.34. For the proof
we need two lineals. Let {ug, wy} and {fg, wy} be the sets of eigenvalues and
eigenfunctions of the operator pencils of the Dirichlet and Neumann problems for
the Laplace equation in 2. Denote by Lp the lineal spanned by the functions in
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C>°(€Q2) and by functions of the form yr#*w,, with Im p; < 0, where x is a cut-off
function equal to 1 near the conical point. We also introduce the lineal Ly spanned
by the functions in €>(Q2\ O) with normal derivative vanishing on Q2 \ O and by
functions of the form yr#*wy, where Im i, < 0. According to [18, §4] and [33,
§3], the range of the Helmholtz operator 72 — &2 + A with 7 = 0 — iy (v # 0) given
on Lp or Ly is dense in Ly(£2).

Let us turn to the problem in the waveguide ¥. Consider the lineal D((2)
with a3 = ay = 0 (see Definition 3.5). Let D(X) stand for the lineal spanned by
the functions in D(2) with coefficients in the Schwartz space S(R,,). Denote by
A the closure in Ly(X) of the differential operator A(D,) given on D(X). It is not
difficult to prove that A is a self-adjoint operator. Let P be the matrix defined
by the equality P(@, ¥, h,q)! = (@, —q, ¥, h)T. It turns out that the operator
PAP™! coincides with the augmented Maxwell operator studied in [4, §2.2]. The
proof is basically the same as the proof of the similar fact in Section 2.9.



4 THE PROBLEM WITH INHOMOGENEOUS
CONDUCTIVE BOUNDARY CONDITIONS

4.1 Preliminaries

In the fourth chapter we study the augmented Maxwell system

OE ot — rot B + Vh =
OB/t +rot E + Vq =
dh/ot + div E = p,
dq/ot +div B = p

—J,
-G, (4.1)

in a model cone and in a bounded domain with conical point. The system is
endowed it with the inhomogeneous boundary conditions

IxE=C, (B, 0)=6, h=uw, (4.2)

where 77 is the unit outward normal and C is tangent to the boundary. The system
(4.1) is rewritten in the short form

Ou/ot + A(Q)u = f, (4.3)

where u = (E, B, h, )T, f = (—=J, =G, p, )T, and 8 = (9,,, Dn,, Ony).
Let 7 = 0 — i7y, where 0 € R, 7 > 0. Applying F,_., to the problem (4.1), (4.2),
we obtain the problem with parameter in the cone X (in the domain G):

i+ A(D,)u = —if,
I'i=3.

Let us rewrite this problem as follows

M(DJ:77—)UZ fa (44)

I'u=gyg, (4.5)
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where M(D,,7) = 7+ A(D.). Note that for the problem (4.4), (4.5) the Green
formula (1.9) is rewritten in the form

<M(Dx,7')u,v)g<+ (Fu,Tv) = <u, M(DI,F)U)K+ (Tu,Fv) , (4.6)

0K 0K

where T' = —iTy. Considering the problem (4.4), (4.5) in the cone X, we can
change the variables n = (|7|x1, |7|ze, |T|z3). Denote 7/|7| by 6, put U(n,7) =
u(’T‘ilan)a F(U,T) = ’T‘_lf(‘Trlan% and G(U’T) = 9(\71717777)- Thus the
problem (4.4), (4.5) can be rewritten in the form

M(D,,0)U = F, (4.7)

IU =G. (4.8)

With the problem (4.4), (4.5) we associate the operator pencil 2 considered in
Chapter 2. In this chapter we make use of the functions usy defined by (2.16) and
the formal series Vjy, Usy defined by (2.21), (2.29).

4.2 FEnergy estimate

In this section we obtain a global energy estimate for solutions to the problem
(4.4), (4.5) in a domain with smooth boundary and in a class of cones in space.

4.2.1 The main identity

In the fixed cartesian coordinates the operator A(J) can be written in the form
3

A(0) = >~ g*0, where {¢gF} are the constant real symmetric 8 x 8 — matrices. Let

k=1
us rewrite the equation (4.3):

3 8
DY g0au; = fi, i =1,..,8;

a=0 j=1

by 9y and ¢° denote 9; and I (the identity matrix) respectively. Consider the
following identity

—_ —_ o —_—
Do Tk URGiju; } = Oa(Tili) giytty + TikUkgi;Oatl;,

where R = {r;.} is a real 8 x 8 — matrix. By Z we denote the complex conjugate of
z. Note that repeated indices imply summation; here « = 0,..,3 and ¢, 5,k =1, .., 8.
Multiplying both sides by e=2", we get

—2~t — « —2~vt —_—
dale™ M rilingiyu b + 2ve” i,
2t —\ —27t —
=e 3a(rikuk)gijuj + e g Oaty.

(4.9)

Let Q C R? be a domain with smooth boundary and let u € C(Q x R, C?). We
integrate (4.9) over 2 x R, applying the divergence theorem of Gauss to the first
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We see that
Pu = (7 x [ii x ], U{0, D)4, h, 0).

Note that the vector Pu corresponds to the boundary conditions (4.2) for the vector
u. Let Q = I — P, then we have

Qu = (7, 7), 7 x [ x 7, 0, )"
Taking into account the formulas for Pu and Qu, we obtain

P+Q:I7 <PU,QU>8:07
P?=P Q=Q.

Therefore P, () are orthogonal projections and we have the decomposition
C® =RP & RQ,

where by RL we denote the range of L. Using the explicit formulas for A(7), P, @,
we get
A(W)Pu = (h, 7 x [7 x [d x D], 0, (¢,0),)7,
AD)Qu = (—v x [V x [U x )], vq, (u,V),, 0)T,
A(V)PulRP, A(7)QulRQ.

These formulas imply the following representation for the matrix A(7) in a basis
adapted to the decomposition C® = RP & RQ :

A(ﬁ)uz(BO Bé)(g), where u:<g),
2
Pu:(%)EfRP, Qu:(‘(;)EfRQ.

Since A(7) is a real symmetric matrix and A(V)A(V) = I, it follows that

A<ﬁ>:<32 BO> BB =B"B=1.

Now we choose the matrix R in (4.10). Let R = I, then we get

(A(F)u, Ru), = <( o ) ( 0 ) , ( 0 >>8 —9Re(BU,V),.  (411)

Let R = R(¥) such that
. 0 B
R(V) - ( _BT 0 ) )
then we obtain

(A(ﬁ)u,Ru>8=<(B:(p) %)(g)a(_gg Bo)(g)>8: (4.12)

— |BV|2 - |BTUP.
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Let us find the representation of the matrix R(7) in the initial standard basis. In
a basis adapted to the decomposition C® = RP @ RQ we have

p=(55)@=(5 ) am=(s* §)mo=( 5 §)

A(ﬁ)Pz(Bg 8),,4(;7)@:(8 %)

It now follows that R(V) = —A(V)P + A(7)Q. Finally, applying the formulas for
A(V), P,Q, we obtain

o
o
|
S
o
N
S
|
N
o oo

R(Ij): Vg —Ul9y 0 0 0 0 141 . (413)

V2

0
Vo —1U1 0 0 0 0 0 V3
41 Vo U3 0 0 0 0 O
0 0 0 — vy —lVy —Ul3 0 0

A@R(E) = ~RE)AG@) (4.14)
for all 6,56 C3.

4.2.3 Energy estimate for the problem (4.4), (4.5) in Q
If we replace R by I in (4.10) and recall (4.11), we get

27// dz dt e " |ul? =

:2Re//dxdte 27w, Mu) —2Re//d5dt627t BV, U), .
QR

o R

Let us apply the Cauchy inequality to the first term on the right

72// dodt e ul* <
QR
_c(//dxdte_27t|Mu|2—27Re// dete_27t<BV,U)4>.
QR

o0 R

(4.15)

Let ¢ € €*(Q) such that ¢ = 1 on the set {y € Q : dist(y,00) < §} and
¢ =0on{y € Q : dist(y,002) > 20}, where ¢ is a small positive number.
Let 7 € C®(f2) be a smooth vector field such that 7i|sq = 7. In (4.10) we put
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term on the left. Then we obtain

// dsSdt e rlkuk(g”yl + gwl/g + gwyg uj + 2y // de dt e 2w,
o0 R

:// dx dt e_QVt(?a(nku_k)g?juj—i-// dadt e? T ratiRgs; Oa iy,
QR QR

where 7 = (11, 1, v3) is the unit outward normal to €. Introduce the notation
3

3
AV) = Zgiyl- and M = Zgaaa.

=1 a=0

Using these notations we rewrite the last identity in the vector form

// dS dt e " (A(P)u, Ru)g + 27// dz dt e " (u, Ru)q

o R Q R (410)
—// dx dt eQVt(u,Mng—i-// dz dt e (Mu, Ru)y.
QR QR

Our aim is to estimate the energy ||u; L2(2)|| by appropriate norms of the right-
hand side {Mw,T'u}. For this purpose we investigate the structure of the matrix
A(7) and choose a matrix R. Then, applying the main integral identity (4.10), we
arrive at the required energy estimate.

4.2.2 Structure of the matrix A(V)

For the matrix A(7) we have the formula

0 0 0 0 vy —lVy U7 0
0 0 0 —U3 0 vy Vo 0
0 0 0 Vo —11 0 V3 0

0 — Vs 1%5) 0 0 0 0 141

3 0 —ug 0 0 0 0 1y
—Uy 2] 0 0 0 0 0 uvs
141 %) Vs 0 0 0 0 0

0 0 0 1241 125) Vs 0 0

Then A(7)A(7) = I and A(7) takes the vector u = (@, ¥, h, ¢)T to
AWy = (=7 x 0] + ih, [V x @] + vq, (i, D)y, (T,7),)".

Consider the 8 x 8 matrix

1—1num —UV g —11 3 0 0 0 00

—vov; 1 — 11y —Usl/3 0 0 000

—U3l —13vy 1 — 313 0 0 0 00

p_ 0 0 0 iy vy s 0 0
0 0 0 Vo1 V9l Vaols 0 0

0 0 0 V31 Vsl UVsls 0 0

0 0 0 0 0 010

0 0 0 0 0 000
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R = (R(7), where R(7) is defined by the formula (4.13) with 7 instead of 7.

Recall that A(¥) = ¢g'vy + ¢*vs + ¢°v3. Then ¢' = A(€;), where {¢€;}?_, is the
standard basis in R3. Using (4.14), we get

3 3
MRu = ROwu + Z g (O;R)u + Z g'ROu =

3 3
= Rou + Z g (0;R)u — Z R¢'Ou =
i=1 i=1
= 2R0yu + Su — RMu,

3
where S = " ¢'(0;R). Now if we recall (4.12), we rewrite (4.10) in the form
=1

// dSdt e (|BV|? — |BTU?) + 27// dz dt e > (u, Ru)q =
R

o0 R Q
= / / de dt e~ (Mu, Ru)g — / / dz dt e (u, RMu)g (4.16)

Q R
// dz dt e~ (u, Su) 8+2// dz dt e (u, ROyu),.
Q R

Let us take the real part of the identity (4.16) and apply the Cauchy inequality to
the term with S. Then we have

//dete_27t|BV|2§c<// dSdt e | BTU >+

o R o R

—|—2Re// dz dt 6_27t(Mu,Ru)8+// do dt e " ul*+ (4.17)
Q R Q R
—|—2Re// dxdt e’27t<u,R8tu>8).
Q R

In (4.15) and (4.17) we take u(x,t) = ¥ (t)v(z) with ¥, e € 8(R) and v €
C>(Q2,C?). Introduce the notations U,V such that U = U, V = ¢V. Applying
the Fourier transform F;_.., we obtain

v [ [ dedo it =P ota)? <

< C(// dzdo |¢(o — iv)[? - |M(Dy, 7)v(x)|*+
Q R

w2 [ [ asdolilo — P BV @) |T(a)])

o0 R
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// dS do \J(U—W)E-\BV@:)PSC(// dSdo |ih(o —iy)|? - |BTU (z)*+

o R o R

—l—// drdo ’7;(0 —iy))? - [M(Dg, 7)v(z)] - |Jv(x)]+

+//dazda|¢a—w (@) + //dxdawa—wn |- fo() )

Since v is arbitrary, we obtain the estimates

72/ dzr ’U(;C)‘Qgc(/ dzw ]M(Dx,T)U(SC)’z-F’Y/ ds !BV(x)I‘lﬁ(ﬂfN) (4.18)

Q Q oN
and
/dS |Bx7(x)\2<c(/ ds |BT(7(;1:)]2+/ dz |M(Dg, 7)v(z)| - [v(z)|+
o0 a0 (4.19)
/dx\v( |2+]T\/dx|v )])

Let us remember that for x € 00 we have

~(7) = (De(2)

and Pv corresponds to the boundary conditions (4.2). This implies that
Ul = [To| and ||U; Ly(99Q)|| = ||ITv; Ly(09)]|.
Similarly we obtain
V[ =[Tv| and |V; Lo(09Q)|| = ||Tw; Ls(99)].
Applying the Cauchy inequality to the surface integral in (4.18), we get

v [ as 187 0 < D eop+ -

o0

where ¢ is a sufficiently small positive number. Let v > 1. Combining (4.18),(4.19),
and (4.20) we obtain

(4.21)

< c{|M(Dy, 7)v; La(Q)[* + |7] - [Tv; L (0Q) 7}

V2 llv; La(Q)]1* +

The inequality (4.21) is called the global energy estimate for the problem (4.4),
(4.5) in Q.



72

4.2.4 Energy estimate for the problem (4.4), (4.5) in X and in G

In this subsection we show that the global energy estimate (4.21) is valid in a
certain class of cones in space. Now we introduce this class.

DEFINITION 4.1. A cone X C R3 is called admissible if there exists a constant
vector f € R? such that (f, 7) > co > 0 for all outward normals to OK.

It is not hard to find a nonadmissible cone, considering nonconvex sets K N 82. In
what follows we only deal with admissible cones.

DEFINITION 4.2. Let D(X) denote the lineal spanned by the functions
w € C€X(X\ O,C% and by the functions of the form xusy for Im Ay < 1 (see
(2.16)). Here x € C(X) is a cut-off function such that x =1 near the point O.

Note that for any function u € D(X) we have u € La(XK), ulsx € La(90K), and
A(D,)u € Ly(X). Now we prove the first main result of this section.

PROPOSITION 4.3. For any function v € D(KX) the estimate

Y [lvs La(IO)N1? + = [1T'w; Lo (0K)|* <

|
| | (4.22)
< 1M (D, T)v; La(I) |2 + |7 - [ITv; L2(0K) ||}

holds, where T = o — iy with o € R, v > 0. The constant c is independent of the
parameter T and of the function v.

Proof. Let u(z,t) = ¢ (t)v(z) with ¥, e € §(R) and v € D(K). We use the
same notations U, V, U,V as in the previous subsection. The estimate (4.18) in
XK is proved in the same way as in 2. Now we turn to the estimate (4.19) in X.

Let f € R? be a constant vector from the condition imposed on the cone X (see
Definition 4.1). We put R = R(f) in (4.10). Let us remark that R(f) is a constant

matrix, then Z ' (O;R) = 0. Since M Ru = 2RO;u — RMu, we get

// dS dt e~ (A ()u,R(ﬂu)S—l—Q’y// dadt e (u, R(fYu), =

0K R

// dz dt e~ (Mu, R(f' // dadt e (u, R(f)Mu)g (4.23)
X R

+2// Az dt e~ (u, R([)Oyu)s.

For the vector f we have f = s(z)i(z) + &(x), © € 9K\ O, where 7 is the
unit outward normal to 0K, & is tangent to 0K, and the func:cion s satisfies the
inequalities 0 < ¢y < s(x) < C for z € 0K. Then we have R(f) = sR(V) + R(7).
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Using the explicit formulas for A(7) and R(&), it is not hard to prove that
[{A@)u, R(G)u)g| < c|U] - V]
Since BBT = BTB = I, we get
a|BTU| < |U| < | BTU|, ¢1|BV| < |V| < e BV,
and
U1 [V] < el BVE + Z|BTUP) (4.24)

where ¢ > 0 is sufficiently small. Let us take the real part of (4.23) and apply
(4.12), (4.24), then we obtain

//dete—M|BV|2<c //det e P BTU >+

oK R 0K R

+2Re// dz dt e~ (Mu, R(f +2Re// de dt e~ (u, R( 3atu>8).

Since v is arbitrary, after the Fourier transform we arrive at the estimate
/ ds |B\7(:L‘)|2 < c(/ ds |BTﬁ(x)|2 +/ dz |M(D,, m)v(z)| - |v(z)|+

oK 0K X (425>
+|T|/ d [v(x)[?) .

Combining (4.18) for K, (4.20), and (4.25), we obtain (3.13). O
REMARK 4.4. Proposition 4.3 remains valid with T instead of T.

To prove this we put —~ instead of v in (4.10). Then we repeat the proofs with
obvious changes.

Finally, we consider the problem (4.4), (4.5) in G and we prove the result
similar to Proposition 4.3. Let us remember that G C R? is a domain such that G
coincides with an admissible cone X in a neighborhood of the point O.

DEFINITION 4.5. Let D(G) denote the lineal spanned by the functions w € C2(G'\
O) and by the functions of the form xusy for Im X\, < 1. Here x € C®(G) is a
cut-off function such that x = 1 near the point O and x = 0 outside a neighborhood
where G coincides with XK.

PROPOSITION 4.6. For any function v € D(G) the estimate

(4.26)

< c{|M (Da, 7)v; Lo(G)|1* + I7] - [ITv; L2(0G) 1}

V2o La(G)[1* +

holds. Here T = o — 117y, 0 € R, v >~y with sufficiently large vo. The constant c is
independent of the parameter T and of the function v.
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Proof. Let x + ¢ = 1 be a partition of unity on G such that y = 1 near the point
O and x = 0 outside a neighborhood where G coincides with K. Then we have

V¥llv; Lo(G )H“HHTU La(0G)|2 < (42xw; La(%) 2 + 7 |||T(><v) Lo (950)|1*)+

(s La(G) | + 2||1T<<v> L&) ).

For the first expression in brackets we use the estimate (4.22). The second ex-
pression in brackets is estimated by the inequality (4.21) for domains with smooth
boundary. Therefore we obtain

2
2|lv; Lo(G) )% + %HTU;LQwG)nZ <

< c{[|M(Dy, 7)(x0); La(K)[|* + 7| - [T (xv); L2 (0K) |2+
M (Da, 7)(C0); La(G)I* + |7] - [IT(Cv); L2(0G) [P} <

< c{|M(Dz, 7)v; Lo(G)|]* + |7] - T3 Lo(9G) [+
H[A(D2), XJv; La(G)|* + I[A(D2), CJo; Lo(G) 17}

For the commutators we get
I[A(Da), X]v; Lo(G)1* < cllo; La(G)1%, I[A(D), (Jv; La(G) ) < cflo; La(G)*.
By choosing a large «y, we can rearrange the term c||v; Lo(G)]||* to the left side. [

We note that the obtained estimates do not contain the boundary Sobolev
spaces of fractional order H*(0X) and H*(0G). One might expect the order s = 1/2
considering the elliptic problem or applying some kind of trace theorems. The
order s = —1/2 could appear if the estimate was proved applying some ”duality”
technique. But the original problem is not elliptic, it is hyperbolic and we treated
it applying completely distinct methods. In the following section these estimates
will lead us to "weak” operator of the problem with parameter.

4.3 Operator of problem

In this section we investigate the operator of the problem (4.4), (4.5) in spaces
related to (4.22). In what follows we consider only the problem in K. However, all
results remain valid for the problem in G as well. At the end of the section we give
the necessary remarks.

Let us introduce the function space corresponding to the boundary operator
I' by

LZ’T(ﬁfK) -
- {(6, v, h) ¢ v, h € Ly(dK): @ € Ly(0K, C?) and (@, 7), = 0 a.c. on aac}.
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Further we often use function spaces of vector-valued functions, e.g., Lo(XK,C?),
H é(ﬂ@ 7|, C®). As a rule, we omit the symbol C* and keep the simple notations
Ly(K), Hy(XK,|7]).

We associate with the problem (4.4), (4.5) in X the unbounded operator
v — M(t)v == {M(D,,7)v,I'v} with domain D(X) (see Definition 4.2) acting
from Ly(K) to La(K) x Lor(0K). We claim that M(7) admits closure. Indeed,
let {v} € D(K), vy — 0in Ly(K), and {M (D, 7)vy, Lvy} — {f, g} in La(K) x
Ly 1(0K) as m — oo. Then (M(D, T)vpm, w)g = (U, M (Dy, T)w), for any w €
C®(X). Letting m — oo, we obtain (f,w)s = 0, hence f = 0. Now let w €
C2(X \ 0) such that I'w = 0. Applying the Green formula (4.6), we get

(M(Dy, T)Vm, w) g + (T, Tw) goe = (U, M (Dy, T)W) g + (10, T'w) 4.

As m — oo we have (g,Tw),q = 0, hence g = 0. In what follows we deal with
the closed operator only, keeping the notations M(7) and DM(7) for the closed
operator and its domain. Using (4.22) it is easy to prove that for any v € DM(7)
such that M(7)v = {f, g} we have

Vil Lo ()1 < e{llf; L2(FON* + |71 - Nlgs Lor (OK)[|*}-
This estimate implies the following result.

PROPOSITION 4.7. A) Ker M(7) = {0},
B) The range RM(7) is closed in Ly(K) X Lor(0K).

Let us now prove that the range RM(7) of M(7) coincides with Lo(K) X Lg 17(0K).
To this end we investigate the kernel of adjoint operator.

PROPOSITION 4.8. RM(7) = Lo(K) X Ly 1(0K).

Proof. It suffices to verify that Ker M(7)* = {0}. Suppose that {w,z} €
Ker M(7)*. Now we apply local properties of solutions to elliptic problems and
properties of adjoint operators to elliptic problems (see [28, Chapter 1]). Then
we have w € €*°(X \ O) and z = Tw while w satisfies the homogeneous problem
adjoint with respect to the Green formula (4.6):

M(D,,T)w =0, z € X, (4.27)

Tw=0, z € IK. (4.28)

Moreover, in a neighborhood of O, the function w admits the asymptotic represen-

tation
w=xY_ Y carVarn +h (4.29)

k  s=1,..,Ng

where Vi, is defined by (2.21). Since {w,Tw} € Ly(K) x Ly(0K), the asymptotics
contains only V;; y such that ImA_; < 1 (this _Condition implies that xV,,n €

Ly(K) and xVs i n|ox € L2(0K), where y € C2°(K) such that x = 1 near the point
0).
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Let ¢, € €>°(X) such that (, =1 for r <n and ¢, = 0 for r > n+ 1. Applying the
estimate (4.22) and Remark 4.4 to ,w, we obtain

V)| Gow; Lo(K)[1? < | [M(Dy,7), CaJw; La(XK) 1.
The commutator is estimated as follows
[[M (D, T), (ulw; La(K)|| < cf|w; Lo(KN{n <r <n+1})|.

Since w € Ly(XK), then ||w; Ly(KN{n <r <n+1})|| — 0 as n — co. Hence
w = 0. O

DEFINITION 4.9. A solution of the equation M(71)v = {f, g} with {f,g} € La(K) x
Ly 1(0K) is called a strong solution of the problem (4.4), (4.5) in K.

In the same way, we define strong solutions of the problem (4.4), (4.5) in G. The
next assertion summarizes the results of this section.

THEOREM 4.10. For any {f,g9} € La(K) x Lo (0K) and every 7 = o — iy (0 €

R, v > 0) there exists a unique strong solution v to the problem (4.4), (4.5) in K
with right-hand side {f,g}. The solution satisfies

Villvs La(I < e{llfs L2(SON* + |71 - llgs L2(0%))1},

where ¢ is independent of T and of v.

REMARK 4.11. Let v > ~o with sufficiently large vo. Then Theorem 4.10 is true
for the problem (4.4), (4.5) in G as well.

REMARK 4.12. Theorem 4.10 (for X and G) remains true with T instead of T.

4.4 Weighted combined estimate

In this section, we prove a more informative a priori estimate for the problem (4.4),
(4.5). This estimate will be used in the study of the asymptotics of solutions near
the point O.

DEFINITION 4.13. Let Dg(K) with 8 < 1 stand for the lineal spanned by the
functions w € CX(K \ O,C®) and by the functions of the form Xusy such that
Im A, < min{1, 3+ 1/2}. Here x € CX(X) is a cut-off function such that x = 1
near the point O.

The lineal Dy(G) is defined in a similar way.
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4.4.1 The estimate in the cone X

PROPOSITION 4.14. Let 3 < 1 and let the number A = i($+1/2) be regular for the
pencil A. Then for v € Dz(K) the inequality

V2 llo; HR(SONI + [lx-v; Ha(3 [m)1* < C(HM(DI,T)U; H(30) "+
7] - [T HY(D) | + [[x-Dos Hy(0%) ||+ (4.30)
+(I7 72 /1) M Dy 705 La()|2 + |7 IIFU;L2(39<)II2}>

holds, where x,(r) = x(|7|r) and x € CX(XK) is a fized cut-off function such that
X = 1 near the point O. The constant c is independent of v and T.

Proof. Step 1. An estimate near the vertex of K. We consider problem (4.7), (4.8)
in K. According to Proposition 1.2, the problem {A(D,), I'} is elliptic. Then the
following result holds (see [28, Chapter 3, §5.2]) : if the line Im A = §+1/2 contains
no eigenvalues of the pencil corresponding to the problem under consideration (the
pencil 2 in this case), then a function U € H é(fK, 1) satisfies the inequality

IXU; H3(3OI < e{|A(Dy)xU; HY()|” + [DxU; Hy*(9%) 17}

Since A(D,)xU = xA(D,)U + [A(D,),x]U and M(D,,0) = 6 + A(D,), the in-
equality can be rewritten in the form

IXU3 HY3C DI < e{|[xM(Dy, 0)U; HY(30)|>+

(4.31)
XU HY*(0%)|)? + |9 U5 HY(K)||2},

where 1 € C(XK), x¢ = .
Step 2. An estimate far from the verter. On this step we prove the inequality

2

-

WllﬁooU; Hy(K)I* < e{ll5oe M (Dy, 0)Us Hy(K)||*+
HvoUs Hy 1 (K)I1P + |5 IUs HG (0K}

(4.32)

for any € R and every U € H, é(fK, 1), where the constant ¢ is independent of U
and 7. The functions k., and 9, are smooth in X, equal to 0 near the vertex and
1 in a neighborhood of infinity, while Koo = Koo-

Let #,1 € €®(X) such that supp k C {(z1,29,23) € X : 1/2 < r < 2},
supp ¢ C {(x1, 22, 23) € X : 1/4 <r < 4}, and ki) = k. The application of (4.22)

yields
V2 llwvs La(F)* < {|6M(Dy, 7)v; La(K)|1? + [[1hv; Lo(K)|* + |7] - [|T0; L2 (9K) [}

If we replace v by the function (xy, x9, 23) — U®(x1, 29, x3) = U(x1 /e, 12/e, 23/¢),
and change 7 for 7/(|7|e) with € > 0, we obtain

(v/171e)?[15U°%; La(F)|I* < c{[|sM (Da, 7/|7|2)U*; Lo(K) |+
H[YUS; Lo(K)|* + (1/2) kLU Lo (95) ||}
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After the change of variables (z1,%2,x3) — (n1,12,13) = (x1/e, 22/, x3/) We

arrive at )

~
WHF&EU; Ly(K)|I* < efl|keM(Dy, 0)U; La(K) |*+
+e?||[veU; La(K)||* + || 5 TU;5 L2 (0K) |12},
where k.(n) = r(en), ¥-(n) = ¥(en). Multiplying the inequality by =2, putting
e=2773j=1,2,3,..., and adding all these inequalities, we obtain (4.32).
Step 3. An estimate in intermediate zone. Let ko, = 1 outside the support of

X. Since
(V/ITDIIXT; H5 () < [IxUs Hy(K)| < [IxUs Hy(X, DI,
then, summing (4.31) and (4.32), we obtain the inequality
2
v
WHU; HE(K)* + [IxUs Hy(XK, DI* < e{[[M (D, 0)U; Hg(K)|I*+

[ tbocUs HY_y ()% + [0 HYI)|2 + | 5o TU; HYOK)|2 + [XTU; Hy (9K}

Now we estimate the term on the right

[wUs HY)E < [ 1P dn =
n|<a

= [+ [ mPloran

0<[n|<e  e<|nl<a

The first integral is majorized by ce?||xU; H3(X)||>. We can rearrange it to the left
side of the inequality, choosing ¢ sufficiently small. The second integral does not
exceed c||[¢oU; Hy_; (X)||?. Now the estimate can be rewritten in the form

2
8]
WHU? HE(K)* + [IxUs Hy(XK, DI* < e{[[M (D, 0)U; Hg(K)|*+
e Us H_y (K| + [|roc DU HY(OK)|? + [[XTU; Hy*(05)|12}.

After the change of variables (11, 12,m3) — (21, T2, 23) = (\7']_1771, \7']_1772, ]T\_lng)
we obtain

Vlv; HRIO? + [Ixzv; H3(K 7D < {|M (D, 7)v; H21<3<>H2+
[0 HY 1 (FON2 + 7] - [[5oo D05 HY(OK)| + [[x-Tos H* (9%},
where woo;r(x) = Qﬁc>o<|7—|x)7 XT(:E) = X(|T|$),U(ZL‘1,:L’2,ZL‘3) = U(|T|=’L‘17 |T|1’2, |T|.I‘3).

Note that
HK;OO,TFU;HB@JC)H < HFv;Hg(aiK)H.

Taking the inequalities (4.22) and 5 < 1 into account, we get

et HY_ (K)]I? < / PP dg <
b/|r|<r

|T|2(1_ﬁ) 2 2
(1M (D2, 7); La(K) 2 + I7] - [Tw; Lo (012,

72

<ec \7’|2(1_ﬁ) / v dz < ¢
x

which leads to (4.30). O
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By DH (X, 7) we denote the completion of the set €(X\ O, C?) with respect
to the norm

9 2 1/2
o DH (%, 7)) = (721l BN + lhrs HYEK, rDI7)

By RH 3(X,7) we denote the completion of the set C3°(XK \ O, C?) x C=(X \ O, CP)
with respect to the norm

17, 9% RH 55, 7| = (115 HY() |1+
7l - llgs HYQOK)|P + [Ixrgs Hy'* (0%) |+ .
(7120 (L5 LSO + 171 - g La(0%)|2))

Here x,(x1, z2, x3) = x(|7|21, |T|z2, |T|23) and x € CX(XK) is a cut-off function that
is equal to 1 near the conical point O. The spaces DH (G, 7) and RHg(G, 1) are
defined in a similar way. Using these new notations, one can rewrite the estimate
(4.30) in the form

lo; DH(X, 7)[| < ¢ [{M(Dz, 7)o, Tv}; RH5(X, 7). (4.33)

4.4.2 The estimate in G

PROPOSITION 4.15. Let 5 < 1 and let the number A = i(+1/2) be regular for the
pencil A. Assume that v > vy with sufficiently large vo. Then the inequality

lv; DH(G, )| < e[ {M(Dq, v, To}; RH (G, 7)| (4.34)

holds for any v € Dg(G) with a constant ¢ independent of v and .

Proof. Let 1 € C*°(G) be a cut-off function that is equal to 1 near O and vanishes
outside the neighborhood where G coincides with K. Since v = ¥v + (1 —)v, we
have

lo; DH3(G,7)|| < [[Yo; DH(K, 7)[| + [[(1 — ¢)v; DHp(G, 7). (4.35)
Estimate the first term on the right. Applying (4.33), we obtain

[v; DH (X, 7)|| < [{M¢pv, v} RH (K, 7)|| <
< c{l{ Mo, YTy RH (X, 1) + [{[M, ¢]v, 0}; RH 3(K, )|},

where M denotes M (D,, 7). Clearly
[{Mv,yTo}; RH (K, 7)|| < [{Mv,Tv}; RH (G, 7).
For the commutator we have

2
I

{10, o, 0} RH (X, 7)I* = [[[M, ¥]o; Hy(X)II” + (1712 /7)
< e{llos HYGIP? + (71" /7) llo; L(G) |1}

[M, ¢]v; La(K)|*
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Taking the estimate (4.26) into account we arrive at

||{[M72¢]U’ O}; :RH/@(K’ 7_)||2 <
< e(lvs HYG) 2 + (1717 /7)” - (1)1 Mws La(@)I + I - [Tv; L2(0G) 12}
< fllv; HYG)I? + (1/4)[{Mv, Do} RH (G, 7))

Finally, for the first term in the right-hand side of (4.35) we get
v DH( DI < e((1+ 1/47){Mo, To} RE (G 1) 2 + v HYG)I).

We now estimate the second term in the right-hand side of (4.35). From the
definition of the norm in DH 3(G, 7) it follows that

(1 =)o DHg(G, 7)1 = (1 = ¥)vs Hy(G)|I* + lIx7 (1 = w)vs Hy(G, 7).

For sufficiently large v we have x,(1 — 1) = 0 because the supports of the factors
do not overlap. Then we obtain

P =) BYG)IP < er?|(1 = 6)v; La(G) <

< (1M1= 0)s La(G)][? + 7] - | (1 = )Tv; La(0G)|

<e(ln- M B + 171 11— )T HY@OG)P + M < Pl Ll )I?)
< e(I{Mv, Do} RH (G, 7) 2 + |los HY(G)?)

\_/

Summarizing the obtained estimates, we rewrite (4.35) in the form
los DHA(G 72 < e (14 1/92) [{ Mo, Tok RH (G, 7)1 + [los HY(G) ).
Since

lvs H3(G)|| < (1/7) v DHp(G, 7).

we choose a large enough v and rearrange the term (1/7)||v; DHg(G, 7)|| to the
left side. As a result, we obtain (4.34). O

4.5 The operator of problem in a scale of weighted spaces

In the section, we study the operator of problem (4.4), (4.5) in spaces related to
(4.33), (4.34). We consider the problem in an admissible cone K. The correspond-
ing statements for the problem in G are given at the end of this section.

Let us introduce a subspace of RHz(K, 7) similar to Ly 1(X) by

RHgr(X,7) = {{f, 9} € RH(X. 7) with g = (&.v,h)
such that (¢,7); = 0 a.e. on 8%}.

It is easy to see that for any v € D(K) we have the inclusion {M(D,, 7)v,['v} €
:)QH@T(jC, 7').
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We associate with the problem (4.4), (4.5) in the cone X the operator v —
M(7, B)v :=={M(D,, 7)v,['v} with domain Dz(X) such that

M(r,8) : DHp(K, 1) — RHgr (K, 7).

It can be proved that the operator M(7, 3) admits closure. We keep the notations
M(r, 3) and DM(r,3) for the closed operator and its domain. If the number
A =i(0 + 1/2) is regular the pencil 2l and 3 < 1, then the estimate

lv, DHp (X, )| < ¢ |M(7, B)v, RHp 2 (K, 7)|

holds for the functions in DM(7, 3). The next proposition immediately follows
from this inequality.

PROPOSITION 4.16. Let § < 1 and let the number A = i(6 + 1/2) be regular for

the pencil A. Then the kernel of the operator Ker M(t, 3) is trivial and the range
RM(7, B) is closed in RHgr(K, 7).

Let 1/2 > (3 > [ > ... be all numbers from | — 0o, 1/2[ such that A =
i(Ok 4+ 1/2) is an eigenvalue of 2(. Denote by S, the sum of the multiplicities of all
the eigenvalues of 2 in the strip Im A € [5,, + 1/2, 5 + 1/2].

DEFINITION 4.17. A solution to the equation M(t,B)v = {f, g}, where {f,g} €
RHp (K, T), is called a strong [(3-solution to the problem (4.4), (4.5) in K with
right-hand side {f,g}.

THEOREM 4.18. A) Let 8 € [$1, 1] and let the number \ = i(5 + 1/2) be regular
for the pencil A. Then for any {f,g9} € RHgr(K,T) there exists a unique strong
B-solution v of the problem (4.4), (4.5) with right-hand side { f, g} and the estimate

[o; DH(X, 7)l| < cl{f, g}; RH (X, 7)]]

holds. The constant c is independent of v and of T
B) Assume that B €]Bmi1, Bm|. A strong B-solution of the problem (4.4), (4.5) with
right-hand side {f, g} € RH (XK, T) exists under the S,, conditions

(f, w&k)gc + (g, Twsﬁk)afK = 0,

where {ws,k,Tw&k}Zf_"l"?Y’“_m is a basis in Ker M(7, 5)*. Such a solution satisfies
the estimate in A).

Proof. A) Suppose that {w,z} € KerM(r,3)*, where M(7,3)* is the adjoint
operator for M(r,3) with respect to the extension of the inner product on
Ly(K) x Lop(0K). Now we apply local properties of solutions to elliptic prob-
lems and properties of adjoint operators to elliptic problems, e.g., see [28, Chapter
1]. Then we have w € C®°(X \ O) and z = Tw, while w satisfies (4.27), (4.28).
Moreover, in a neighborhood of O the asymptotic representation of the form (4.29)
holds. The estimate (4.32) with 7 instead of 7 implies that w decays more rapidly
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The formal series Uy is defined by (2.29). The sum (4.37) contains the terms
corresponding to the eigenvalues of 2 in the strip Im A € [5,, +1/2, 51 +1/2]. The
remainder i decays more rapidly than r**» as r — 0. The number N for each term
is taken sufficiently large so that yr®* N+ = o(r*m) as 7 — 0. The coefficients
ds . are defined by the formula (see [28, Chapter 3 §5 and Chapter 4 §3 |)

ds,k = ’l(f, ws,k)g{ + Z(ga Tws,k)ajC'

If {f, g} is in the range RM(7, 3) then the conditions d;; = 0 in the sum (4 37) are
necessary for the inclusion v € DHg(XK, 7). Thus we have {w; ., Tw; k}k——l Nk o €
Ker M(r, 5)*. We show that they form a basis in Ker M(7, 5)*. Let {w, Tw} €
Ker M(7, 5)*. Then the representation

w=x Z CskVern + I

holds near the point O, the sum contains xVj i n corresponding to the eigenvalues
of 2 in the strip Im A € [5,, + 1/2, 51 + 1/2]. For the remainder A the inclusion
{h,Th} € Ly(X) x Ly(0K). We put

w2 QL
k=—1,..,—m s=1,.
We see that {z,Tz} € Ly(K) x Ly(0K), M(D,,T)z = 0, and I'z = 0. It is not
hard to prove that z € DM(T). Applying the estimate (4.22) with 7 instead of 7,
we get z = 0. Then we obtain w = ) ¢, yws k. O

REMARK 4.19. Assume that v > o with sufficiently large vo. Then Theorem 4.18
is valid for the problem (4.4), (4.5) in G.

4.6 Asymptotics of solution

Let {f.g} € RHpr(G,7) and let 8 €811, Bm| Since RHpr(G,7) C Lo(G) %
Ly 1(0G), then there exists a unique strong solution u to the problem (4.4), (4.5)
in G with right-hand side {f, g} (Theorem 4.10). According to Theorem 4.18 and
Remark 4.19, this solution is in DH (G, 7) provided

(f, ws’k> + (g, Tws’k> =0
G oG
8:1 Nk

with £ = —1,..,—m and s = 1,.., Ny, where {w;, Tws};— 7", is the basis in
Ker M(7, 5)* (see Theorem 4.18). For any {f, g}, we obtain an asymptotic formula
for the strong solution with remainder in DH4(G, 7).

THEOREM 4.20. Assume that {f,g} € RHzr(G,7), B €|Bm+1, Bml, and v > 7o
with sufficiently large 7. Then the strong solution u to the problem (4.4), (4.5) in
G with right-hand side {f, g} admits the representation

U= Xr g CskUsp, N + w.
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Here U, n denotes the sum of first N terms of the formal series (2.29), w €
DHs(G,7), and x-(r) = x(|7|r), while x is a cut-off function that is equal to 1 near
the point O and vanishes outside the neighborhood where the domain G coincides
with the cone K. The sum consists of the terms corresponding to the eigenvalues
of the pencil A in the strip Im X\ € [, + 1/2, /1 + 1/2]. The number N in each
term is taken large enough to provide the inclusion XTM’CJFNH\I/S\S,’J?)I € DH3(G, 1),
where \Irﬁf)l are the functions from the definition of Uy, (see the formula (2.29)) .
The coefficients cs, are defined by

Csk = Z(f: ws,k) + Z(.ga Tws,k)
G oG
The estimates

lesi| < e 7PN fL g REH 5 0(G, 7)),
Jw; DH (G, 7)|| < e (7S, g} RH5.2(G, 7)),

hold with a constant ¢ independent of .

Proof. In this proof we use the operators for the problems (4.4), (4.5) in X and G
and for the problem (4.7), (4.8) in K. In order to distinguish all these operators we
slightly change the notations. Namely, we insert the domains into the notations:
M(7,G), M(1,K),Mz(7,G), Mgz(0,K), etc. By {Wsx, TW; 1} we denote the basis
in Ker Mz(0, X)*. Let Usj, stand for the formal series (2.29) with § = 7/|7| instead
of 7.

Let u be a solution to the equation M(7,G)u = {f,g}. We put {h,s} =
{M(7, G)xu,'xu}. Denote by U a solution to the equation M(0, K)U = {H,S}
where H(n) = (1/|7))h(n/|7|), S(n) = s(n/|7|), and new variables n are introduced
by the formula (n1,72,73) = (|7|z1, |7|z2, |T|23). Since a strong solution is unique,
we have U(n) = x(n/|7|)u(n/|7|). In view of the properties of solutions to elliptic
problems in domains with singularities, the representation

Un) = x> deiUssn(n) + V(n)

holds. The sum contains U, y corresponding to the eigenvalues of 2 in the strip
ImA € [B, +1/2, f1 +1/2], while N in each term is taken large enough in order

for the inclusions yr®++V +1\If§3’f)1 € Hj(X) to be valid. For the remainder V we
have xV € Hj(X). The coefficients d,; are defined by

dyp = i(H, Ws,k) + i(S, TWS,k) . (4.38)
x x
Let us majorize the coefficients d; . From (4.38) it follows that
ol < ell{H, SY;RH3(5, 1)I| < e|r|™ 2|1 {h, s} RH 5.0(5, [ ]

Using h = xf + [M, x]u and s = xg, we obtain
{7, s} RH g.o(K, )| < S, 93 RH .0 (G, 1)l + [{M, x]u, 0F; RH 3(3, 7).



82

than any power of 7 as r — oo. Since {w,Tw} € RHg(XK,7)*, then for a fixed
parameter 7 we see that

/ dz |w* (1 +r?) 7 < ¢|{w, Tw}; RH(K, 7)*||2. (4.36)
x

Assume that 8 > 0. Since w decays as r — oo and the estimate (4.36) holds, it
follows that w € Lo(X). Then the asymptotic representation (4.29) contains xVj y n
such that Im A_, < 3/2 (this inequality implies the inclusion xViin € Lo(X)).
Moreover, we claim that the asymptotic representation contains only xVj i n such
that Im A_;, < 1. Indeed, the formula (2.15) implies that

(M(Darv T)Xus,ka Xus,—k)g( =1 + (Xus,ky M(Dx7?)xus,—k)j<'

The functions xusx with & < 0 belong to DM(7, 3) (see Definition 4.13). Hence
the functions xusx with & > 0 can not be included into DM(r, §)*. It follows
that the asymptotic representation (4.29) contains the terms xV,,n such that
ImA_; < 1. Note that the inequality Im A_; < 1 implies the inclusions xVs n €
Ly(K), xVsknlox € L2(0K). Now it is not hard to prove that w € DM(T). Since
M(T)w = {0,0}, we have w = 0.

Now assume that 3 < 0. The estimate (4.36) implies that the asymptotic repre-
sentation (4.29) contains the terms y Vs ny such that ImA_;, < 3/2 — 3. Let us
rewrite the asymptotics in the form

w =X Z Cs Vs, N + 0,
s,k

where the sum contains xV;x n such that Im A_; €]1, 3/2 — (], while v € Ly(X)
and v|gx € Lo(0XK). Since the spectrum of 2( is symmetric about the line Im A = 1,
the strip Im A\ €]6; + 1/2, 3/2 — 31 does not contain the eigenvalues of 2. Thus
the sum vanishes and we have w = v. Taking the inclusions of v into account, it is
not hard to prove that v € DM(T). Since M(T)w = {0,0}, we get w = 0.

B). Assume that 3 €]8,11, Bm[- We construct a collection consisting of .S, function
and prove that it is a basis in Ker M(7, 8)*. Thus we prove the theorem because
the range of M(7, ) is closed in RHg (XK, 7) and the kernel Ker M(7, ) is trivial.
The strip Im A € [5,, + 1/2, B1 + 1/2] contains precisely m eigenvalues of . Let
Ar be in the strip. We put Fipn := M(D,, T)xVsgen. Since M(D,,T)xVsrn =
O(rm M =2+N) a5 r — 0, one can choose sufficiently large T such that Fy,y €
Ly(KX). According to Theorem 4.10 and Remark 4.12, there exists a solution to the
equation M(7)ws kN = {Fskn,0}. Put wsy = xVspn —ws i n. We construct such
functions for all eigenvalues of 2 in the strip Im A € [3,, + 1/2, 8, + 1/2]. For A,
there are N, such functions. It is not hard to see that ws satisfies (4.27), (4.28)
and {wsy, Tws i} € RHzr(K,7)*. We show that {ws, Twsi} € Ker M(7, 5)*.
Let {f,g} € RHz (X, 7). From the inclusion RHg (K, 7) C Ly(K) X Lor(0K)
and Theorem 4.10 it follows that there exists v € Lo(XK) satisfying M(7)v = {f, g}
Near the point O, the function v admits the asymptotic representation

V=X Z ds,kUs,k,N + h. (437)
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The inequality v > vy with large =, leads to the estimates
I{IM, X]u, 0}; RH 5(X, 7)||* = H{[M xJu, 0}; RHﬂ (Gl <
< o{lu; L@ + (PO /) ls Lo (@)} <
< e(1/72 4 [P 7 Lo G2 + [l - g Lo (D)2} <
< (P 21 oG + 171 Nl Lo (OGP} < cll{f, g RH 5.2(G, )|
Thus, we arrive at the estimate
okl < elr* M 2I{f g} RH5.0(G 7)) (4.39)

with a constant ¢ independent of 7. Since U(n) = x(r)u(zy, z2, x3), the represen-
tation

u(ay, vy, 23) = X(17|r) Y dosWUs kv (7|21, 7|22, [ 7|23, 0) + w(1, 22, 25)

holds in G. Taking into account the equality

N
WUs e N (I7]a1, [Tlwa, [7]as, 0) = 32 (I7|r) ™ F4 (7 /|7]) W9, ) =
= |T|1AkUS,k,N('xl7 T, X3, 7—)7
we finally obtain

u(z, T2, w3) = Xx(|7|r) ch,kUs,k,N(ﬂ,ﬂ?m 3, 7T) + w(z1, T2, T3)

with ¢, = |7/ d, and yw € H(G). Tt is not hard to verify that

Csk = Z(f: ws,k) + Z(.ga Tws,/c) 5
G oG
where {wsj, Tw;, ; } is a basis in Ker Ms(7, G)*. Using the estimate (4.39), we have
lcor] < clr|"H L F, g} RH 5.0(G, 7).
Consider the remainder w. Since M (7, G)w = {f, g} with

f=Ff=MDem)xr Y corlsrn)

and B
<f7 ws7k> + (ga Tws,k) = Oa
G oG

Theorem 4.18 and Remark 4.19 leads to the inclusion w € DHg(G, 1) and the
inequality _
lw; DHs(G, )| < cll{f, 9} RHp (G, 7).

Making use of the estimate on ¢, and the explicit form of M(D,,7)Us N, we
arrive at the estimate

lw; DH (G, 7)|| < c(ITl/I{S 9} RH (G, 7).
O

REMARK 4.21. Theorem 4.20 is valid for the problem (4.4), (4.5) in X for v > 0.
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4.7 Nonstationary problem in the cylinders Q and Q

Applying the inverse Fourier transform F,1,, we pass from problem (4.4), (4.5) to

problem (4.1), (4.2). Let us fix a cut-off function y € €°(G) that equals 1 near
the point O. We put

Xu(xhl'Qamfﬂvt) = gj;itx<|7—|r>9:t’—>7'u(xlax2ax37t/)7
A'U'U(x'l,fﬂg,l'g,t) = gj;it‘T’M?t/*)TU(l'l,iL'Q,.leg,t,).

Introduce the spaces DV 3(Q,v), RV (Q, ), and RV 53(Q, v) equipped with the norms

1/2
Y

s DV (9, | = (2l VI(@ )P + 11 Xus VA9, 1)
0 2 1/2 0 2 1/2
147,91 RV Q)] = (I V(@ IP + 14726 V202, 1)|12)

15,95 RVa(Q ) = (I1F5 VA + (/42N £ V0@,
1/2
HAV2g; VE(09, )| + (1/4)| A2 g; V(09,7 2 + 11X g: Vs (02, 1)17)

Denote by RV 7(Q,~) and RV 57(Q,~) the subspaces of RV (Q,v) and RV 5(Q,~)
respectively such that for any {f,g} € RV1(Q,v) (or RV2(Q,7)) with g =
(d,v,h) we have (4, V); = 0 a.e. on 0Q. The spaces in the cylinder Q are defined
in a similar way.

DEFINITION 4.22. Let {f,g} € RV7(Q,v) and let u(xy,x9,x3,7) be the strong
solution to the problem (4.4), (4.5) in K with right-hand side {—if,g}, where

fz1, 20,23, 7) = Fprfa1, 20, 23,1), g(x1, 29,23, 7) = Fyrg(x1, 20, 23,t). The
function u, defined by u(xy, xe,v3,t) = F 1, 0(x1, 29,23, 7), is called a strong solu-

tion to the problem (4.1), (4.2) in the cylinder Q with right-hand side {f, g}.
The next result follows from Theorem 4.10.

THEOREM 4.23. For every {f,g} € RVr(Q,v) and for any v > 0 there exists
a strong solution v to the problem (4.1), (4.2) in Q with right-hand side {f,g}.
Moreover,

Mo V5 (Il < I{f g3 RV (2,9)])-

DEFINITION 4.24. Let {f,g9} € RV g7r(Q,v) and let u(zy, 2, x3,7) be the strong
B-solution to the problem (4.4), (4.5) in K with right-hand side {—if,g}, where

f($1,$27$377> - 3Tt—>7’f<xla=/L‘27'£E37t)7 /g\<$17$2,$3,7—) - 3:',5_)7—9(1'1,[[‘271'3,{:). Th@
function u, defined by u(x1,xs,25,t) = F 1, 0(x1, 29, 25,7), is called a strong -
solution to the problem (4.1), (4.2) in the cylinder Q with right-hand side {f, g}.

The next result follows from Theorem 4.18.
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THEOREM 4.25. 1) Let § € |31, 1] and let the number A = i(G+1/2) be reqular for
the pencil 2. Then there exists a unique strong [3-solution v to the problem (4.1),
(4.2) in Q with any right-hand side {f, g} € RV s1(Q,v). Moreover,

|v; DV (29[| < c[{f, 9} RV (2, 7).

2) Let B €]Bmi1, Bm|- A strong B-solution to the problem (4.1), (4.2) in Q with
right-hand side {f, g} € RV 310(Q,~) exists (and is unique) if for allT = o —iy (0 €
R, v > 0) the conditions

(<ifCm)wan(s7) + (307, Tw( 7)) =0

oK

hold, where {ws,k,Tws,k}Zzl_"l'fY’“_m is a basis in Ker M(7,8)*. If such a solution

exists, it satisfies the inequality in 1).
Next theorem follows from Theorem 4.38 and Remark 4.39

THEOREM 4.26. Assume that {f,g} € RV 3r(Q,v) and B €]6m+1, Bm|. Then the
strong solution to the problem (4.1), (4.2) admits the representation

U({L‘l,ﬂfg,l'g,t) = Z Us,k,N(raspaﬁa Dt)(Xés7k)($1,I2,l'3,t) + w(l'l,._'['g,w?,,t),

where w € DV 5(Q,7). The sum consists of the terms corresponding to the eigen-
values of the pencil A in the strip Im A € [B,,+1/2, B1+1/2], while N in each term
is taken large enough in order for the inclusions xr» N Wy € DH4(G, 1) to
be valid. The coefficients are defined by

Cope(t) = T Licop(T)
with R
Cs,k(T) = Z(_Zf(u T)? ws,k('7 ?))iK + Z(/g(’ T)a Tws,k('7 ?))aj('
Moreover, we have the estimates

le™ () ' =0712R)|| < cll{f, 9} RV 52(2, )],
lw; DVs(Q I < (¢/NI{AS, Agh; RV 5.0 (2, 7)1

Strong solutions and strong (-solutions to the problem (4.1), (4.2) in Q can
be defined in the same way as those to the problem in the cylinder Q in Definition
4.22 and Definition 4.24.

REMARK 4.27. All the theorems in this section are still valid for the problem (4.1),
(4.2) in Q if v > o with sufficiently large ~yo.

Applying the Fourier transform to the formula for ¢, x(7), we get

és,k(t):/ d$/ du <f(l',y,2,t—U),W&k(l',y,Z,U»RS—

x R
—/ dS/ du (g(z,y, z,t —u), TyWs (2, y, 2, u))gs,
oK R
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with W (21, 29, 3, 1) = ?_itws7k($1,$2,l’3,F). The explicit formulas for W in

T

K were derived in Chapter 2.

4.8 Connection between the augmented and non-
augmented Maxwell systems

Up to this point the discussion has been related to the augmented Maxwell system.
In this section we prove that under some conditions on the right-hand side of such a
system, its solutions have the form u = (i, 7, 0,0), therefore (u, ¥) satisfy the usual
(non-augmented) Maxwell system. The mentioned conditions on the right-hand
side are derived from the compatibility of the usual Maxwell system

OE |0t —rot B =

dB/dt 4 rot E =
diVE:p, divézu

-,
_F7

with boundary conditions
vx El=®, (B, 7) =4

Namely, for sufficiently smooth functions from the first and the third equations of

this system we obtain B
dp/ot + div J = 0. (4.40)

Similarly, from the second and the forth equations we get
Aot + div F = 0. (4.41)

Consider the inner product of the second equation with unit outward normal v:

9 - . ,
5 (B.P) + (rot E,7), + (F.7), = 0. (4.42)

Let us apply the formula
(rot E,7), = —Div [7 x E],

where Div is the surface divergency of a tangent vector field on the boundary (see,
e.g., [8]). Then we rewrite (4.42) in the form

%5 — Div & + (F, %), = 0. (4.43)
Consider the problem (4.4), (4.5) in G with right-hand side {f, g} € La(G) x
Ly (0G), where f = (A, B,a,8)T and g = (®,6,w)”. Since the right-hand side is
not smooth, the conditions should be understood in a proper way. For this purpose
we recall the following definitions.

Let @ and v be functions such that for any ¢ € C>°(G) we have

/dx(ﬁ,v¢>3+/dxv-$:0.

G G
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Then we say that v = div « in the distributional sense. By H(div, G) we denote
the space of functions @ € Ly(G) such that div 4 € Ly(G), where the divergency is
understood in the distributional sense. We endow this space with the norm

1/2

I H(div, @)l = (1 La(G)|1 + ldiv it Lo(G) )

With the obvious inner product, H(div,G) is a Hilbert space. The mapping 7, is
defined by the formula 7,0 = (¥]se, ¥); on smooth vector-valued functions. This
mapping can be extended by continuity to a continuous map 7, : H(div,G) —
H~Y2(0G).  Moreover, the following Green formula holds for functions

v € H(div,GQ), ¢ € H'(G) (see [27, Chapter 3, Theorem 3.24]):

dz (7,V$), + [ dedivi-¢= [ dS 7, (D) ¢. (4.44)
Justewns fuees]

Now we turn to the space of tangent vector fields on the boundary. Let @ €
Ly 7(0G) and v € Ly(G) be functions such that for any ¢ € H'(0G) the equality

/ dS (u, Vo), + / dSv-¢=0 (4.45)

oG oG

holds, where V is the surface gradient. Then we write v = Div @ and we say
that the function @ € Ly (0G) has the square-integrable surface divergency. By
H(Div, 0G) we denote the space of all functions from Lo r(0G) with the square-
integrable surface divergency. The space H(Div, dG) is endowed with the norm

1/2
| 3(Div, 0G)| = (|1 La(9G) |2 + [Div @ L2(0G)|*)

With the obvious inner product, H(Div, 0G) is a Hilbert space.
Applying the Fourier transform &F;_,,, we rewrite (4.40), (4.41) in the form

A e H(div,G), a € Ly(@), div A = ita, (4.46)
B e H(div,G), B € Ly(G), div B = ir0. (4.47)

For (4.43) we have
$ € H(Div,dG), § € Ly(8@), ité — Div & — 7, (B) = 0. (4.48)

The last condition imposed on the right-hand side { f, g} is the boundary condition
w=0.

For the proof of theorem on connection between solutions to the augmented
and usual Maxwell systems, we need some properties of the Helmholtz operator in
the domain GG. Here we recall all the necessary definitions. For details and proofs
we refer the reader to the articles [18] and [33]. Let £ = X N 82, where the cone
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X coincides with the domain G near the conical point O. For the Laplace operator
we introduce the operator pencil € in the domain = by the formula

E(\) = (iN)? +4A — 6,

where 0 is the Laplace-Beltrami operator. In the case of the Dirichlet problem the
pencil € is defined on the functions u € H*(Z) such that u|sz = 0. In the case of
the Neumann problem the pencil € is defined on the functions « € H*(Z) such that
Oyloz = 0. Let {px, wy} and {fx, wy} be the sets of eigenvalues and eigenfunctions
of the Dirichlet and Neumann problems for the operator pencil €. Denote by Lp
the lineal spanned by the functions in €3°(G) and by functions of the form xr**uwy,
with Im p < 0, where y is a cut-off function equal to 1 near the point O and 0
outside the neighborhood where G coincides with a cone. We also introduce the
lineal Ly spanned by the functions in C°(G \ O) with normal derivative vanishing
on G\ O and by functions of the form yr#*wy, where Im i, < 0. According to [18,
§4] and [33, §3], the range of the Helmholtz operator 72+ /A with 7 = o —ivy (v # 0)
given on Lp or Ly is dense in Ly(G).

THEOREM 4.28. Consider the problem (4.4), (4.5) in the domain G with the right-
hand side {f,g}, where the functions f = (A, B,a, )T and g = (,6,0)7 are
subject to the conditions (4.46), (4.47), and (4.48). Then the corresponding strong
solution u is of the form u = (4, ,0,0).

Proof. Since M(7, G) is the closure of the differential operator M (D,, ) given on
D(G), there exists a sequence {uk = (Uy, Vg, hk,qk)T} C D(G) such that up — u

(the convergence in Lo(G)) and {M(Dx, T) Uy, Fuk} — {f,g} (the convergence in

Ly(G) x Lyp(0G)). We have uy, € C°(G \ O)) so the system (4.4), (4.5) can be
understood as usual. In particular,

iTﬁk — rot Uk + th = Ak,
iThy, + div U, = ay.

We show that i = 0. Assume that ¢ € Lp. Multiply the first equality by Vo, the
second one by i7¢, and integrate over G. Then

it [ dx (i@, Vo), — [ da (rot T, Vo) + [ dz (Vhe, V), = [ da (A, V), ,
[ astaron- | / /

e G G
—7'2/ dz hy - ¢ —1—2'7'/ dxdivﬁk-azh/ dz ay, - ¢.

G G G

We integrate by parts in the two first terms of the first equality, add the first and
the second equalities, and obtain

_72/ dz hk-5+/ dx (th,V¢>3:iT/ dw ak-5+/ dz (ffkawﬁ)s-

G G G G
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Integrate by parts the second term on the left. Then we get

—7'2/ dx hk-g—/ dx hk-A—qﬁ—i-/ dS hy-0¢/0v = iT/ dx ak-$—|—/ dx (%Tk,V@g.
G G oG G G

As k — oo, taking into account the boundary condition for h and the property
(4.46), we arrive at the formula

/dxh‘(72+A>(b:0.
G

Therefore h = 0 because the range of the operator 72 + A given on Lp is dense in
Ly(G).
Verify the equality ¢ = 0. We have

1TV, + 1ot Uy + Vg = ék,
Assume that ¢ € Ly. Then

zT/ dz (ﬁk,V¢>3+/ dz (rot ak,v¢>3+/ dz <qu,V¢>3:/ dz (B, Vo), ,
G G G G
—7‘2/ dqu-a—kzﬁ'/ dxdivﬁk-g_b:iT/ dz B - .
G G G

We integrate by parts all the terms in the left-hand side of the first line, add the
second line, and let £k — oc:

—/ qu-(?2+A)gb+ir/ d55-$+/ds<cf>,v¢>3=
G oG oG
—ir [ dz B-9+ [ da (B, V),
[ o]

Since Ly C HY(G) and Ly|sg C H*(0G), we can apply the formulas (4.44), (4.45).
Therefore we obtain

—/ dz q- (?2+A)¢+/ dS (it0 — Div® — ~,(B)) - ¢ =
e aG
:zT/ dw@—/ dz div B - 6.
e e
Finally, using (4.47), (4.48)

/dxq-(?Q—i-A)qﬁ:O.
G

Since the range of the operator 72 + A given on Ly is dense in Lyo(G), we arrive
at ¢ = 0. ]



5 THE PROBLEM WITH INHOMOGENEOUS
IMPEDANCE BOUNDARY CONDITIONS

5.1 Preliminaries

In the fifth chapter we study the augmented Maxwell system

OE |0t — rot B + Vh =
OB/dt + ot E + Vq =
Oh)ot + div E = p,
dq/ot+div B = p

—J
-G, (5.1)

in a model cone and in a bounded domain with conical point. On the boundary,
we impose the inhomogeneous impedance conditions

Ux[Bx 0 +¢[Fx E|=®, h=H, q=Q, (5.2)

where 77 is the unit outward normal and ¢ € C is an impedance. Suppose the
impedance 1 to be constant such that Ret¢ < 0. We rewrite the system (5.1) in
the form

Ou/ot + A(d)u = f, (5.3)

where u = (E, B, h, ()T, f = (—=J, =G, p, )T, and 8 = (9,,, Dx,, Osy).

Let 7 = 0 — iy, where 0 € R, v > 0. Applying the Fourier transform ¥, ., to the
equations (5.1), (5.2), we obtain the problem with parameter in the cone X (in the
domain G):

i+ AD,)i = —if,
Fl’/LL\ - /g\

Rewrite this problem as follows

M(D,,T)u = f, (5.4)
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u=gy, (5.5)

where M(D,,7) = 7+ A(D,). Note that for the problem (5.4), (5.5) the Green
formula (1.10) is of the form

(M(D;p;T)U,U) + (Flu, —ileJ) =
= (u M (Dx,?)1)533<+ (—iTgu, r;ig(, (5:6)

so we have the following adjoint problem with respect to this formula:

M(Dy, T)u = f, (5.7)

Fou = g. (5.8)

Considering the problem (5.4), (5.5) in the cone X, we can change the vari-
ables (21,9, x3) — n = (|7|xy, |T|x2,|T|2x3). Denote 7/|7| by 6, put U(n,7) =
u(|7|"'n,7), F(n,7) = 7|7 f(I7|"'n,7), and G(n,7) = g(|7|"'n,7). Thus we ar-
rive at

M(D,,0)U = F, (5.9)
MU =G. (5.10)

5.2 Operator pencil
For the problem (5.4), (5.5), we introduce the operator pencil

CN)® =" A(D)r o (5.11)
with @ = (U, V, K, Q) € H*(Z) such that
Ix[Vxi]+y[FxU=0, H=0 Q=0 ond=,

where 2 = K N 82 and ¥ is the unit outward normal to 9K. Note that these
boundary conditions can be rewritten in the form I'y (r“@) = 0 on 90X. Since
the problem (5.4), (5.5) is elliptic, the spectrum of the pencil € consists of normal
eigenvalues. Concerning the notions of eigenvalues, eigenvectors and associated
vectors of the pencil, we refer to [20] or [28, Chapter 1, §2].

LEMMA 5.1. The eigenvalues of the pencil € are independent of the impedance 1.

Proof.  Let {\, ®¢} with &y = (f(o, \70, Ho, Q) be an eigenvalue and
an eigenvector of the pencil € that is €(A\)®y = 0. Then {\, &} with &, =
(—wﬁo, \70, Ho, —1Qp) are an eigenvalue and an eigenvector of the pencil &,
defined by (5.11) on functions ® = (U, V, H, Q) € H'(Z) such that

—

Fx[Vxd]—[FxU=0 H=0 Q=0 on K.



94

In the same way one can verify that if A is an eigenvalue of the pencil €, then A is
an eigenvalue of the pencil €. Thus the spectrum of € coincides with the spectrum
of €y. It remains to note that the pencil €, is independent of the impedance . [

Now our purpose is to show that the line {A\ € C : Im A = 1} is free from the
spectrum of €.

LEMMA 5.2. Let A be an eigenvalue of the pencil € Im X € [0, 1], and let & =
(U, V, H, Q) be an eigenvector corresponding to A. Then H =0, Q = 0.

Proof. Since {\, ®} are an eigenvalue and an eigenvector of the pencil €, we
have A(D,)r*® = 0. We again apply the operator A(D,) and obtain Ari*® = 0.
Thus for the functions H, Q we have

Ar*H =0 in K, Ar*Q =0 in X,
H=0 on 0K, Q=0 on 0X.

This means that X is an eigenvalue of the Dirichlet problem pencil for the Laplace
operator and H, Q are the eigenvectors corresponding to A. Since the strip
{A» e C : ImA\ € [0, 1]} contains no eigenvalues of the pencil of the Dirichlet
problem for the Laplace operator (see [33, §3]), we obtain H =0, Q=0 .

PROPOSITION 5.3. Let X C R? be a cone such that = = KN 8?2 is a one - connected
domain with smooth boundary. Then the line {\ € C : Im X\ = 1} contains no
points of the spectrum of the pencil €.

Proof.  According to Lemma 5.1, it suffices to consider the pencil €. Suppose
that A is an eigenvalue of €, such that ImA = 1. Let ® = (U, V, H, Q) be an
eigenvector corresponding to A\. From Lemma 5.2 it follows that H =0, Q = 0.
Apply the Green formula

<A(&r)u, v)g + (u, A(&JU)Q = (Flu, Tlv)(99 + (TQU, FQU) (5.12)

o0N

tou=1r?® v=r?® and Q=K.zg={re€X : e<|z| <R} with0< e < R.
Since A(D,)r**® = 0, we see that the right hand side is equal to zero. The integrals
over S. ={xe€X : |z|] =€} and Sgp={r €KX : |z|] = R} cancel each other.
Taking into account the boundary conditions 7 x [V x 7] — [ x U] = 0, we arrive
at
ds |7 x V|*/r? = 0.
dXn{e<r<R}

This formula and the boundary condition imply that v/ x V=0and #xU=0on
9X. Note that the boundary condition 77X [Vx 7] —[FxU] =0 splits into the simple
independent parts v/ x U=0and #xV =0. _Let us show that V = 0. We have
rot ("*V) = 0, div (+#"*V) = 0 in K, and 7 x V = 0 on K. Recall that = is one-

connected. So r*V = Vi, where Ap =0 in K and ¢ = 0 on K. It is easy to see
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that ¢(z) = W (w) with Im g = 0. However, the line {\ € C : Im X\ =0} con-
tains no eigenvalues of the pencil of the Dirichlet problem for the Laplace operator.
Therefore we get ¢ = 0 and V = 0. In the same way it can be shown that U = 0. [J

Let €(A\)* be the operator adjoint to €(\). Introduce the pencil C 5 A —
€*(\) := €(\)*. By means of the Green formula (5.12) one can check that €*(\) =
D(A+2i), where D is the pencil defined by (5.11) on functions ® = (U, V, ¥, Q) €
H'(Z,C?) such that

—

Ix[Vxd]—g[FxU =0, H=0, Q=0 on J=.

The pencil ® corresponds to the adjoint problem (5.7), (5.8). Now we give some
facts concerning the pencils € and €*. Here we restrict ourselves to formulations
and refer the reader to [20] or [28, Chapter 1] for the proofs.

If \y is an ecigenvalue of €, then )y is an eigenvalue of €*; the geometric
and the algebraic multiplicities of A and )y coincide. The canonical system of
Jordan chains {@®7) ... =) 5 =1 . J} and {49 . =l . 5 =
1,...,J} corresponding to Ag and ) can be chosen to satisfy the orthogonality
and normalization conditions

v

(ay+k+1 PIE () )go(q’“),tb(p’@)_ = Opc Oy b1

k
qz V—I—k—f—l— —q)!

p=

where 0, ( =1,...,J; v=0,...,65c—1, k=0,...,k, — 1; 6,4 is the Kronecker
symbol. The functions

k

. ) 1 )
ukd) () = piro Z —'(i In7)?p*=99) (),
= T
where k =0,...,k;—1; j=1,...,J, form a basis in the space of power solutions

corresponding to Ag for the problem

ADy)u(x) =0, z € X,
Iu(z) =0, € dXK.

Similarly, the functions

k

1
(k, g) i(No+2i) = 4,/,(k—a.5)
v 0 Z J (tInr)% (w),
q=0
where £ =0,...,x;—1; j=1,...,J, form a basis in the space of power solutions

corresponding to Ao + 2i for the problem

A(Dy)u(z) =0, z € X,
Fou(z) =0, x € K.
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Substituting 47 in the homogeneous problem (5.4), (5.5) and successively elimi-
nating the discrepancies, we can construct the formal series
U (z,7) = Z rlA‘)*qPq(k’])(w, Inr,7), (5.13)

q=0

satisfying the homogeneous problem (5.4), (5.5); here_Pq(k’j ) are polynomials in Inr
and 7 with coefficients smoothly depending on w € =. In the same way, starting
from the function v*7), we can construct the formal series

+w N . .
VED (g, 7) = Zri(’\OH’Hng’“’J)(w,ln r,T) (5.14)

q=0

satisfying the homogeneous problem (5.7), (5.8). B
Let u be a function such that xu € Hj(X), where y € C°(X) and x = 1 near
the vertex of the cone XK. Assume that

{M(Dm,T)u(x) = f(z), z€eX,
Tu(z) = g(x), x € IX,

where f € HY(K) N HY(X) and g € HY*(0X) N Hy/*(9K) with v < 3. Then the
asymptotic formula

s S

holds with the remainder h such that yh € H}(X). Here by U, ;(LkT] ) we denote the
first T terms of the series (5.13) corresponding to A,. Number 7" is chosen to be
sufficiently large to provide the inclusion XriA#+(T+1)P}ﬁi) € H(X). In the last
formula summation is over all K = 0,...,K;,, all j =1,...,J,, and all ;1 such that
ImAe [y+1/2, +1/2].

5.3 Energy estimates

In this section we obtain estimates for solutions to the problem (5.4), (5.5) in
domains with smooth boundary and in a class of admissible cones. Our aim is to
estimate the ”energy” |lu; Lo(2)|| by appropriate norms of the right-hand side
{Mu,Tu}.

5.3.1 The main identity

Now we make some technical preparations for the further work. We prove an
integral identity. It will be the starting point for the proof of energy estimates.
In the fixed cartesian coordinates the operator A(J) can be written in the form

3
A(9) = 3 g*0y, where {g*} are the constant real symmetric 8 x 8 matrices. Rewrite

k=1
(5.3) in the form

3 8
ZZg%@auj = fi, 1= 1, ,8,

a=0 j=1
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by 9y and ¢° denote 9; and I (the identity matrix), respectively. Consider the
following identity

Da{Tirr gy } = Oa(rinte) g1y + TikUkGi;Oatty,
where R = {r;} is a real 8 x 8 — matrix. Repeated indices imply summation: here
a=0,.,3and i, j,k=1,..,8. Multiplying both sides by e~2", we get
2

—27t —_— —27t —_
Oale™ M ratingiyu; } + 2ve” My dipu; =

{ TRgiyu v ik Uk 5.15
= 2 O (rapiy) gyuy + € g g O o

Let © C R? be a domain with smooth boundary and let u € C¥(Q x R, C?).
Integrate (5.15) over Q x R, applying the divergence theorem of Gauss to the first
term on the left, then we have

// dsdt e’27triku_k(gi1jul + gijQ + g?ng)Uj + 27// do dt e 'ryapu; =
09 R

Q R
://dxdt e27t0a(7‘iku_k)gf’juj+//dxdt e g Oa
Q R O R

where U/ = (v, s, v3) is the unit outward normal to Q. Introduce the notation
3 3
A(D) = Zgzyi and M = Zgaﬁa.

i=1 a=0

Using these notations we rewrite the main identity in the vector form
// dS dt e " (A(P)u, Ru)g + 27// dz dt e (u, Ru)q =

o R Q R (516)
://dxdt ezvt(u,MRu)S%—//dxdt e " (Mu, Ru)q.
QR QR

5.3.2 Structure of the matrix A(V)

From the expression for A(0) we get

0 0 0 vy —lUy U7 0

0 0 0 —U3 0 vy Vo 0

0 0 0 Vs —14 0 v3 O

o 0 —us Vo 0 0 0 0 1n
A= 0 0 Z 0 0 0 0w |

—Uy 1241 0 0 0 0 0 V3

V1 2 Vs 0 0 0O 0 O

0 0

0 0 0 141 1) U3



AW)AW) =1, and A(V)u = (—[V x 0] + Uh, [V x d] + Uq, (4,V),, (U,0),)7 for the
vector u = (@, ¥, h, q¢)T. Consider the 8 x 8 matrix, defined by the formula
1— 145041 — U1V —Ul1l3 0 0 0 00
22141 1-— 12014} —Ul9ols 0 0 0 00
—Ul3ly —U3l/9 1-— V3ls 0 0 0 00
p_ 0 0 0 1—wnum %) -y 0 0
0 0 0 —Ull1 1-— 1201%)] —Ulrl3 0 0
0 0 0 —VUV3l1 —UV3l/9 1-— V3ls 0 0
0 0 0 0 0 0 0O
0 0 0 0 0 0 00
We see that

Pu = (i,,,, 0, 0),
where i, =V x [t X J]. Let Q =1 — P, then
Qu = (ﬁ<ﬁ’ ﬁ>37 77<777 ﬁ>37 h, Q)T-
Taking into account the formulas for Pu and Qu, we obtain

P+Q=1, (Pu,Qu)g =0.
PP=PQ=Q

Therefore P, () are orthogonal projections and the decomposition
C¥=RP®RQ
holds, where by RL the range of L is denoted. From the explicit formulas for
A(V), P, Q we get
A(D)Pu = ([t x V], —[u x 7], 0,0)T,

A@D)Qu = (hi?, qi, (i, 7)5, (5,7)3)7,
A(P)PulRQ, A(7)QulLRP,

These formulas imply the following representation for the matrix A(7) in a basis
adapted to the decomposition C® = RP & RQ :

A(ﬁ)uz(B(l) BO>(‘(£), where uz(x(i),
2
Pu:(%)ERP, Qu:<‘9>€fRQ.

Since A(7) is a real symmetric matrix and A(7)A(7¥) = 1, it follows that
B,-B =1 B =B By,-By=1, By=DB}.

Prepare the choice of the matrix R in (5.16). Let R = R(¥) such that

ro = (% g )
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then we obtain

(A(ﬁ)u,RU>8=<( b B(Z) ( 5)( - BS) ( v )>8:

= <B2V, BQV>4 - (BlU> BlU>4 = |V|2 - |U’2-

(5.17)

Let us find the representation of the matrix R(7) in the initial standard basis. In
a basis adapted to the decomposition C® = RP @ RQ we have

(3 0) 0= (8 D)= (% ) me=( 5 )

awr= (%0 ) ame= (g 5 )

therefore R(V) = —A(V)P 4+ A(V)Q. Finally, applying the formulas for A(7), P, @,

we obtain

0 0 0 0 —us vy v O

0 0 0 V3 0 — vy Vo 0

0 0 0 — 1)) 141 0 V3 0

~ 0 Vs —1Uy 0 0 0 0 1y
RO=1_,0 0 v 0 0 0 0
Vs —11 0 0 0 0 0 us

2 Vs U3 0 0 0O 0 0

0 0 0 141 1%} V3 0 0

It can be easily checked by means of the formulas for A(7) and R(V) that

— -

A(@)R(b) = R(b)A(a) (5.18)

for all @b € C3. Recall that A7) = g'vy + ¢*vs + gPus, so g = A(ey), where
{€;}3_, is the standard basis in R3. From (5.18) it follows that R( 7) - g% = g*- R(D)
with k=1,...,3.

5.3.3 Energy estimates in domains with smooth boundary

PROPOSITION 5.4. Let 2 C_]R3 be a domain with smooth boundary. Suppose v > 1
and u = (4, U, h, q) € C(Q x R, C?); then the inequality

//dxdte27t|u|2+7//d5dte‘2”t D)ol + (@, 7)) + 15,]%) <

o0 R (5.19)
//det (D)2 + |h? + |g?) //d:vdte 27 Moul? )

o R

-

holds, where ® = UV x [V x V] + ¢[V x @]. The constant c is independent of the
function w.
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Proof. Put R=1 in (5.16), then we get

27//dxdt e MMl =
(5.20)
= 2Re //dmdt 6_2% (u, Mu)g //det e AP )u, ug -
QR

o0 R

Consider the surface integral in (5.20). Taking into account the explicit formula
for A(7), we obtain

(A(F)u, u)g = 2Re {7 x @), T)5+2Re (R-(@,7)) +2Re (7-(7,7)s).

Transform the first term on the right side in order to get the boundary conditions:

2Re ([7x 1],7)3 =2Re (- [Fxd], (1/¢) v);=
2 Re (ﬁx[ﬁxﬁ]+@/};[ﬁxﬁ]—ﬁx [0 x U], (1/4)0), =
2 Re ((1/9)8, 7), + 2Re(—1/u)|i, |

Recall that ¢ = a + ib, where a < 0, then o = Re(—1/1) = —a/[1)|*> > 0. Finally,
we rewrite (5.20) in the form

//dete 27t|vg|2+7//dxdte “ul* =
o0 R
e//dxdte 2w, Mu)g— (5.21)
QR

—Re//det e (B {70y + 7 (0.0); + (1/0)(.7,),).

o R

Note that in the surface integral on the right-hand side the functions (f), h, q cor-
respond to the boundary condition I'yu. Now it remains to estimate the functions
|<ﬁvﬁ>3’7 |<U7Ij>3| _

Choose a sufficiently small positive number §. Let { € €>(f2) be a function
such that ((z) = 1 for all z € {y € Q : dist(y,09) < §} and ((x) = 0 for all
r€{y €O : dist(y,00) > 20}. Let @ € C°(Q) be a smooth vector field such
that 7i|pq = V. Put R = (R(77) in (5.16) and recall (5.17). Besides, from (5.18) it
follows that

3 3
MRu = ROy + Zgj(GjR)u + Zijaju =

j=1 j=1
3 3

= RO + Zgj(ajR)u + Z Rg’0u =
= =1

]—1 ]1=
= Su+ RMu,
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3
where S = > ¢7(9;R). Thus for this choice of the matrix R the identity (5.16)
=1

]_
takes the form

//det e (V2 = |UP) +27//dxdte " (u, Ru)g =

o R

—2Re//dxdte 2 Mu, Ru)g //dxdte 2 (u, Su)g.

Applying the Cauchy inequality to the terms with Su, Mu, Ru, we have

7//det e V|2 §c{”y//d5dt e U2+

00 R o0 R (522)

—l—//d:cdt eQVt\Mu\z—i-(’y—i-’yQ)//dxdt e’zvtlu\z}.

Let us remember that |U|? = |Pu|? = |i,|* + |0,|* and |V |* = |Qu|* = [(€, V)4|* +
(T, 7)4)% + |h|* + |g|*. From (5.21) we get the following estimate:

//det e v, |2 + 42 //dxdt e ul? <

o0 R
<c //dxdt e 2”t|MUI2+7//det e P+ (5.23)
o0 R
+v//d5dt e, 7)) - A+ 1{5,7)5) - lal) }
o0 R

The last term on the right-hand side of (5.23) is majorized by

7// dSdt e (e[(d, 7),]* + (1/e)|h]* + el (¥, 7),]* + (1/e)lql*)
o0 R

The application of (5.22) yields the estimate

//dxdtwwu\?ﬂ//dsa (| (T, P2 + (@, ), + [5,7) <

o R

<ody / / ASdt 2 (el, |2 + elinl? + B2 + (1/2)|h2 + (1/2)|q?)+

o R

—i—//dwdt e‘zyt]Mu]2+€(7+72)//dxdt e‘27t\ul2}.
Q R Q R

|t |* = |7 x ail* = (1/ [ )| - [7 > ] |* =
(/[P)7 x & — 7 [7x 7] < 2/ [ (|B2 + |7, ).
Suppose 7 > 1. Choosing the number ¢ sufficiently small, one can rearrange the
right-hand side terms with |v,|* and |u|? to the left side. As a result we obtain the
required estimate (5.19). O

(5.24)
We have
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PROPOSITION 5.5. Let ) C R3 be a domain with smooth boundary. For any func-
tion v € CX(Q, C®) the estimate
YVloy La(Q)P + vl Thv; L2(0Q)* <

SC{HM(DI,T)U; LQ(Q)HZ‘i"}/”FlU; LQ(@Q)HQ} (525)

holds, where T = o — iy with v > 1 and 0 € R. The constant c is independent of
the function v and the parameter 7.

Proof. It can be easily shown that the identity (5.16) and the estimate (5.19)
are valid for all functions u such that u(x,t) = »(t)v(z), where v € C2°(2) and
s, e M € §(R). Applying the Fourier transform F, .. to the estimate (5.19), we
obtain

[ a0 i3to = )P (¥ los @I+ 2l1Tiws Lo0R)?) <

R
<c [ dafto — )P (IMDsr)os L@ +[Tuvs Lo0R)).
R

Since s is arbitrary, we arrive at the required estimate (5.25). O

5.3.4 Energy estimates in domains with conical points

In this subsection it is shown that the energy estimate (5.19) remains valid for K
instead of GG, where X is an admissible cone in the sense of the following definition.

DEFINITION 5.6. A conequ C R? is called admissible if there exists a constant
vector f € R? such that (f, U); > co > 0 for all outward normals to 0X.

It is not hard to find a nonadmissible cone, considering nonconvex sets K N 82. In
what follows we only deal with admissible cones.

DEFINITION 5.7. Let D(X) denote the lineal spanned by the functions
w e (‘320@\ O, C¥) and by the functions of the form Xu,(ff’]) for Im A, < 1. Here
X € C(XK) is a cut-off function such that x = 1 near the point O.

Note that for any function u € D(XK) the inclusions u € Lo(K), ulgx € La2(0K),
and A(D,)u € Ly(X) hold. Now we prove the first main result of this section.

PROPOSITION 5.8. Let X C R3 be an admissible cone with conical point O. For
any function v € D(K) the estimate

Vlv; La(X) |2 + y1[Trv; Le(9XK)||? <
(5.26)
< c{|M(Dy, 7)v; La(XK) || + y]IT1v; L2 (0K) ||}

holds, where T = o — iy with o € R, v > 0. The constant c is independent of the
parameter T and of the function v.
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Proof. Let u(x,t) = ¥ (t)v(z), where v € D(X) and ¢, e ) € 8(R). The
estimate (5.23) in X is proved in the same way as in 2. Now we turn to the estimate
in K similar to (5.22). Let f € R3 be a constant vector from the condition imposed
on the cone X (see Deﬁnition 5.6). We put R = R(f) in (5.16). Note that R(f) is

a constant matrix, hence Z g'(0:R) = 0. Therefore M Ru = RMu and we get

//det “2 A(P)u, +27//dxdte 29 (u, R(fu)g =

ox R . (5.27)
:Re//dxdt e " (Mu, R(f)u)q
X R

For the vector f the decomposition f = s(z)7(z) + &(z), holds, where z € 8K\ 0,
U is the unit outward normal to 09X, & is tangent to 0X, and the function s
satisfies the inequalities 0 < ¢g < s(x) < C for x € 9K \ O. Then we have
R(f) = sR(7) + R(3). Recall the explicit formulas for A(#)u and R(&)u:

AW u = (=[V x 0] + vh, [V x @)+ vq, (4,0),, (U,0);)7,
R(G)u = ([¢ x U] + Gh, —[¢ x 4] + dq, (@,7),, (V,5);)T.
Taking into account these formulas it is not hard to prove that
1
[(A@)u, R(@)u)s| < clU] - V] < (U +e[V]). (5.28)
Combining (5.17), (5.27), and (5.28) we obtain

//det e—W\V\2<c //det e U2+

0K R 0K R (5 29)
—i—// dx dt 627t|Mu|2+72// dx dt e’27t\u|2).
X R X R

This estimate plays the same role as the estimate (5.22) played in the proof of
Proposition 5.4. In the same way as we did in Proposition 5.4, from the estimate
(5.23) for the cone K and from the estimate (5.29) we get

//dxdt627t|u|2+7//d5dt627t D)5 + (@, 7)5)* + 17,%) <
//det o2 \(I)\Z+|h]2+|q! //d:vdt e~ Muf?).

oKX R
Let us now apply the Fourier transform F;_,, to the last inequality:

[ o130~ ) (s La@OI? + [ Tios L@ <

R

< c/ do |52(0 — i7)[? (||M(Dx, 7)v; Lo(K)[|* + 7[IT1v; L2(89<)||2)-

R
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Since s is arbitrary, we arrive at the required estimate (5.26). O

Finally, we consider the problem (5.4), (5.5) in bounded domains with conical
point. Let G C R3 be a domain such that G coincides with an admissible cone XK
in a neighborhood of the point O.

DEFINITION 5.9. Let D(G) denote the lineal spanned by the functions
w € C®(G \ O) and by the functions of the form Xuff’” for ImA, < 1. Here

X € C®(G) is a cut-off function such that x = 1 near the point O and x = 0
outside a neighborhood where G coincides with XK.

PROPOSITION 5.10. For any function v € D(G) the estimate

V2|lv; La(G)|1? + (| Tho; L (0G) |I? <
(5.30)
< c{IM(Dy, 7)v; La(G)|? + 7[|T1v; Lo (0G) ||*}

holds. Here 7 = o — 17y, 0 € R, v >~y with sufficiently large vo. The constant c is

independent of the parameter T and of the function v.

Proof. Let x + ( =1 be a partition of unity on G such that x = 1 near the
point O and x = 0 outside a neighborhood where GG coincides with K. Then we
have

Vs La(G)|I? + A1 T1v; Lo(0G)|P < (2] xw; La(K)1P + A1 T3 (xv); L2(0K)[1?) +
+(V2[ICv; La(G) P + 721 Ta (Cv); L2(9G)?).

For the first expression in brackets we use the estimate (5.26). The second ex-
pression in brackets is estimated by the inequality (5.25) for domains with smooth
boundary. Therefore we obtain

V?llvs La(G)|I? + 411 T1v; L2(0G)|* <

< c{||M (Do, 7)(xv); La(IK)|I? + v - T1(xv); L2 (9K) |2+
+[|M (D, 7)(Cv); La(G) 1> + 7 - T1(Cw); Lo(9G)[1?} <

< {|[|M(Ds, 7)v; La(G)||? + 7 - [T1v; L2(0G) ||+
HI[A(Dz), XJv; L2(G)[1? + [I[A(Da), (Jvs La(G) [}
For the commutators we get
IA(D.), x]v; L2(G)|I* < ellvs La(G)|1?, [[[A(D.), ¢Jos L2 (G)||* < eflvs La(G)]1%,
then
Vlv; Lo (G| + (|1 T1v; Lo (0G)||* <
< A[IM (D, 7)v; La(K)||? + 7 - D1 La(OK) [ + [|vs Lo(G) [}

Choosing ~ sufficiently large, one can rearrange the term c||v; Lo(G)||? to the left.
U

Now we briefly discuss the adjoint problem (5.7), (5.8) in X.
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DEFINITION 5.11. Let E(XK) denote the lineal spanned by the functions
w € CX(K \ O) and by the functions of the form valk’]) for Im A, > 1. Here

X € C®(X) is a cut-off function such that x = 1 near the vertex O of the cone.

Slight modification of the proofs given in this section leads us to the following
result for the adjoint problem.

PROPOSITION 5.12. Let X C R? be an admissible cone with conical point O. For
any function v € E(X) the estimate

V2(Jv; Lo (I + (| Tov; Lo (0K) || <
(5.31)
< c{IM (D, T)vs La(K) |2 + [ T20; L2(0K) ||}

holds, where T = o — iy with 0 € R, v > 0. The constant c is independent of the
parameter T and of the function v.

We note that the obtained estimates do not contain the boundary Sobolev
spaces of fractional order H*(0X) and H*(90G). One might expect the order s = 1/2
considering the elliptic problem or applying some kind of trace theorems. The
order s = —1/2 could appear if the estimate was proved applying some ”duality”
technique. But the original problem is not elliptic, it is hyperbolic and we treated
it applying completely distinct methods.

5.3.5 Another energy estimate

Here we prove a different energy estimate for the boundary conditions (1.6) with
H = 0 and @ = 0. It will be shown in the last section that such boundary
conditions are needed when we ”"return” to the usual Maxwell system. So if we
are mainly interested in the usual Maxwell system, then we can confine ourselves
to these boundary conditions. It is important that the new estimate is valid for
arbitrary cones. Besides, the proof is simpler than the proof of (5.30).

PROPOSITION 5.13. Let v = (4, U, h, q) € D(G) satisfy the augmented impedance
boundary conditions (5.2) with H =0, Q = 0. Then

Vo llvo; La(G)IIF + (VRe |/ [9]) - |0 x 7; Lo(0G)|*

< o{|M(D, 7)s La(G) + (211 /IRew]) - |6 x 7: Lo(oc) Py, O

where the constant ¢ is independent of v and 7.

Proof. Let u(xy,xq,x3,t) = ((t)v(x1, 22, 23) with ¢, e77*¢ € 8§(R). From the
Green formula (1.10) it follows that

Re /(A(a)u, u) dxy dzy dzs = Re /(ﬁ, [V x 1)), dS
G

oG
1 [ - 1
:Re—/ & x 7, 7, dS—Re—/UJQdS,
" ([® x 7], Up)q 7 pA
oG oG
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where ¥, = U/ x [/ X 7] is the component of ¢ tangent to G and ¥/ the unit outward
normal. Then

d
Cu(- 1): Lo(@)] = 2Re /(ut + A9, u)y dy dy drg—
G
—QReJ/([CDXV] Uy)s dS—I—ZRe—/|UU|2 ds.

oG

Taking into account the equality ¥ = a + tb and majorizing the right-hand side,
we arrive at

d lal = 2
0 Lo(G )|]+2|¢| 105 L2(0G)||” <

< o{|Mu; Lo(G)|| - [|u; La(G) | + | x 75 La(IG)| - |55 La(OG)]I}-

Integrate over (—oo, t), multiply the obtained equality by e~ and then integrate
over (—o00, 4+00). Changing the order of integration, we have

+o0o
t/€2“WA»w ()de+|@\ 7%Wﬁxwﬂﬂé@GHth§
S N
C
gg-/ewawmymLxGw-m«un«nua+
+—/’QW@ ) La(OG)|| - 17, 1); Lo(OG) | di.
Further,
7 o [
/e”“WuL()Wdﬁ+|w| e 515 Lo(IG) |2 dt <

+oo
C —2vt . ‘QM
< g/e (|Mu; Ly(G)]| + al ||®; Ly (0G)]|)

lal

(s L@+ | - s L0
By the Cauchy inequality,
+oo
/ﬂWWM@W 19l s o)) at <
. Y]
+o00
C _ ¢ Y
s;/e”WMMwW W|Mmem

—00
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Since ( is an arbitrary function, Parseval’s equality for the Fourier transform J; ..
leads to (5.32). O

Applying in subsequent considerations the estimate (5.32) instead of (5.30), we can
finally obtain the results for the Maxwell system (1.1) with impedance boundary
conditions (1.3) in arbitrary cones. However, the energy estimate (5.32) is less in-
formative than (5.30), because in (5.30) the left-hand side contains also the normal
components of the electric and magnetic fields (see the formula for T}v).

5.4 Operator of the problem

In this section we investigate the operator of the problem (5.4), (5.5) in spaces
related to (5.26). In what follows we consider only the problem in X. However,
all results remain valid for the problem in G as well. At the end of the section
we give the necessary remarks. Introduce the function space corresponding to the
boundary operator I'y by

L27T(aj<) -
= {(5, h, q) : h,q € Ly(0K); de Ly (0K, C3) and <<I§ V)3 =0a.e. on 83(}.

Further we often use function spaces of vector-valued functions, e.g., Lo(XK,C?),
Hi(X,|7],C%). As a rule, we omit the symbol C* and keep the simple notations
LZ(:K>a HE?(SK’ ‘T’)

With the problem (5.4), (5.5) in K we associate the unbounded operator v —
My(1)v = {M(D,,7)v,I'1v} with domain D(XK) acting from Lo(K) to La(K) x
Ly 7(0K). We claim that M, (7) admits closure. Indeed, let {v,,} C D(K), v, — 0
in Ly(X), and {M(Dy, 7)vm, T1vm}t — {f, g} in Ly(K) X Loz (0K) as m — oo.
Then (M (D, )V, w)qe = (Vn, M(Dy, T)w)g for any w € €°(X). Letting m — oo,
we obtain (f,w)s = 0, hence f = 0. Now let w € €2(X \ O) such that T'yw = 0.
Applying the Green formula (5.6), we get

(M (D, T) 0y, ) ge + (C103, T1W) g = (Vs M (D, T)W) g + (Lo, Tow) g

As m — oo we have (g,Tiw),q = 0, hence g = 0. In what follows we deal with
the closed operator only, keeping the notations M;(7) and DM (7) for the closed
operator and its domain.

Let v € DM (1) and M, (7)v = {f,g}. There exists a sequence {v;}32,; C
D(XK) such that vy — v in Ly(K), M (D, 7)vx, — f in Ly(KX), and I'jvp — g in
Ly(0K). From the energy estimate (5.26) it follows that there exists h € Ly(0X)
such that Thyvy — h in Ly(0K). It can be shown that if v|, € H'(w), where
w C X\ O such that dw N IK = S, then Tyv = h on S. Thus we say that for
v € DM, (1) there exists a boundary value Thv = h. Applying (5.26) we see that

Y Tw; La(OK)1* + 7 lv; La(ON* < e{ 1 f5 La(ION” + 7llg5 L (0K) |}

This estimate implies the following result.



108

PROPOSITION 5.14. A) Ker My (1) = {0}.
B) The range RM(7) is closed in Ly(K) x Lo (0K).

Let us now prove that the range RM; (7) of M (7) coincides with Lo(K) X Lg 17(0K).
To this end we investigate the kernel of the adjoint operator.

PROPOSITION 5.15. RM;(7) = Lo(K) X Ly 1(0K).

Proof. Tt suffices to verify that KerM;(7)* = {0}. Suppose that {w,z} €
Ker My (7)*. Applying the known local properties of solutions to elliptic problems
(see [28, Chapter 1, §1]), we get w € C®°(X\ O) and z = Tiw while w satisfies the
homogeneous problem (5.7), (5.8). Moreover the function w admits the asymptotic
representation
w=yx Z ch’j)Vlffc]{f) + h, (5.33)
kg
where y € €*(X) such that xy = 1 near the point O). Since {w, Tiyw} € Ly(X) x
Ly(0K), the asymptotics contains only Vlfﬁ\’,j) such that Im A, < 1 (this condition
implies that xV. 57 € Ly(K) and xV.E |oc € Lo(0K)).

Let ¢, € €*°(X) such that ¢, =1 for r < n and ¢, = 0 for r > n+ 1. It is easy to
see that we can apply the estimate (5.31) to (,w. So we get

V)1 Gow; La(K)[]? < || [M(Dy,7), Calw; Lo(XK) 1.
The commutator is estimated as follows
[[M(Dy,7), Galw; La(K) || < cfjw; Lo(K N {n <r <n+1})].

Since w € Ly(XK), then ||w; Lo(KN{n < r <n+1})]] — 0 as n — oo. Hence
w=0. 04

DEFINITION 5.16. A solution of the equation My(T)v = {f,g} with {f,g} €
Ly(K) x Lo p(0K) is called a strong solution of the problem (5.4), (5.5) in K.

The next assertion summarizes the results of this section.

THEOREM 5.17. For any {f,g} € La(K) X Lyr(0K) and every T = o — iy with
o € R, v > 0 there exists a unique strong solution v to the problem (5.4), (5.5) in K
with right-hand side {f, g}. Moreover, there exists a boundary value T1v € Ly(0K)
and the estimate

YTy La(0K)1* + 7*[lvs La(B)* < e{ll 5 LT +vllgs L2(OK)||*}
holds, where ¢ is independent of T and of v.

REMARK 5.18. Let v > ~o with sufficiently large vo. Then Theorem 5.17 is true
for the problem (5.4), (5.5) in G as well.
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Finally we briefly discuss the results concerning the adjoint problem. With
the problem (5.7), (5.8) in K we associate the unbounded operator v — My(T)v :=
{M(D,,T)v,I'yv} with domain E(X) acting from Ly(XK) to Lao(K) x Ly r(0K). This
operator admits the closure. The closed operator Ms(7) has the same properties
as the operator My (7). Namely, we have Ker My(7) = {0} and RM»(7) = Lo(K) x
LQVT(&’K).

DEFINITION 5.19. A solution of the equation My(T)v = {f, g} with {f, g} €
Ly(K) x Lo r(0K) is called a strong solution of the problem (5.7), (5.8) in XK.

THEOREM 5.20. For any {f,g} € L2(K) X Lo (0K) and every T = o — iy with
o € R, v > 0 there exists a unique strong solution v to the problem (5.7), (5.8) in X
with right-hand side {f, g}. Moreover, there exists a boundary value Tov € Lo(0K)
and the estimate

ooy La(0K)1* + 7*llvs La(B)* < e{ll 5 LT +vllgs L2(OK)|*}
holds, where ¢ is independent of T and of v.

REMARK 5.21. Let v > ~o with sufficiently large vo. Then Theorem 5.20 is true
for the problem (5.7), (5.8) in G as well.

5.5 Weighted combined estimate

In this section, we prove a more informative a priori estimate for the problem (5.4),
(5.5). This estimate will be used in the study of the asymptotics of strong solutions
near the conical point O.

DEFINITION 5.22. Let Dg(K) with 8 < 1 stand for the lineal spanned by the
functions w € CX(K \ O,C®) and by the functions of the form Xuff’]) such that

Im A, < min{l,3+1/2}. Here x € C°(X) is a cut-off function such that x =1
near the point O.

The lineal Dy(G) is defined in a similar way.

5.5.1 The estimate in the cone K
PROPOSITION 5.23. Let 3 < 1 and let the line Im A = 3+ 1/2 be free from the
spectrum of €. Then for v € Dg(XK) the inequality
N T HGOK)P + 72 [lvs HZ(K)? + lxrv; Hy(K, [7])]|* <
< (M (D, 7yo: HYO) |2 + ATz HY@KO + [, Tres HY @) 2 (5.3
_ 2
+(I12 /) UM (Da, 7)v; La(K)|* + 7| Trw; L2(53<)H2}>

holds, where x,(r) = x(|7|r) and x € CX(XK) is a fized cut-off function such that
x = 1 near the point O. The constant ¢ is independent of v and T.
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Proof. Step 1. An estimate near the vertex of X. According to Proposition
1.2, the problem {A(D,), I'1} is elliptic. Therefore, if the line ImX = 5+ 1/2
contains no eigenvalues of the pencil €, then a function U € Hj(XK, 1) satisfies the
inequality

IXU; HA(3O|* < e{| A(D,)XU; HY(K)|? + |TixU; HY* (9K) |12}
Since A(D,)xU = xA(D,)U + [A(D,),x|U and M(D,,0) = 6 + A(D,), the last

inequality takes the form

IXU; HY(K, D|” < e{|[xM (D, 0)U; HY(K)||?

5.35
I HY2@0)|12 + [ICU3 HY() |2}, (5.35)

where ¢ € C°(X), x¢ = x-
Step 2. An estimate far from the vertex. On this step we prove the inequality

i

v
—”/fooTlU; H2<aj<)”2 + |7_|2

7l

IKools Hy(3)]1* <
< c{llfoe M (Dy, O)U5 HG(K)|I* + [[eclUs Hi (K)*+ (5.36)

Hllas U3 H050I7)
for any 0 € R and every U € H é(fK, 1), where the constant ¢ is independent of U
and 7. The functions k., and (,, are smooth in X, equal to 0 near the vertex and
1 in a neighborhood of infinity, while Keo(oo = Keo-

Let ,¢ € €>°(X) such that supp k C {z € KX : 1/2 < |z| < 2}, supp ¢ C
{r eX : 1/4 < |z| <4}, and k¢ = k. The application of (5.26) yields

YIETrv; Ly(0K)||* + 72| 5v; La(HO)||* <
< {lrM(Dy, 7)v; La(K)|* + [ICvs La(K)|* + v[|sLvv; L2(0K) ||}

If we replace v by the function (z1,xs,x3) — US(21,x9,x3) = U(x1/e, 22/, 23/¢),
and change 7 for 7/(|7|e) with € > 0, we obtain

(V|71 IKTUS; Ly (0K) |12 + (v/I7]e)? | 5U; La(3) | * <
< c{|kM(Dq, 7/|7|e)U%; La(K)||* + [|CUS; La(3O)||*+
+(y/ 7KL U%; Lo (0K)]|*}-

Change the variables (x1, o, x3) — (n1,72,m3) = (x1/€, 22 /€, 23/¢). Then we arrive
at the estimate

2
8 Y
TllRT U3 La@K) |2 4+ llels La(X) P < e lneM (D, 0)U; La(5)
+€2||CU; Lo(K) |2 + L |5 T2 U; Lo(0K) %),

7l

where r.(n) = k(en), (.(n) = ((en). Multiplying the inequality by ¢=2°, putting
e=2773j=1,2,3,..., and adding all these inequalities, we obtain (5.36).
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Step 3. An estimate in intermediate zone. Let ko = 1 outside the support
of x. Since

(VI DIXUs Hy(K)| < [IxUs Hy(K)| < [IxUs Hp(K, 1)]|

and
(V/ITDIXTU; HY(OK)|| < |IxUs HY (0K, 1)|| < [IxU; HY(K., D),

then, summing (5.35) and (5.36), we obtain the inequality

2
gl gl
mll%ooTlU; H(0%)||* + T—PIIU; Hy ()| + IxU; Ha(XK, DI <
< {||M(Dy, O)U; HY(K)|? + (| CocUs Hy_1 (F)1* + [|CU HG ()| +

ol U3 HEOKOI? + U3 (05011
Now we estimate the term on the right

IUs I < [ PP dn =
In|<a
= [+ [ mPloran
0<nl<e  e<Inl<a
The first integral is majorized by ce?||[xU; H3(X)||>. We can rearrange it to the left

side of the inequality, choosing e sufficiently small. The second integral does not
exceed ¢||GoU; Hy 1 (X)||*. Now the estimate can be rewritten in the form

2
gl
T—|2||U; Hy(K)|1* + IXU; Ha(X, DI <
< c{|M(Dy, O)U; Hy(K)||* + [[CoUs Hpg_y (K)[*+

+ kT3 U HYOK)|2 + X2 U; HY(05%)[1%}

7l

g
HIITlU; H(0%)|1* +

After the change of variables (11, 12,m3) — (21, T2, x3) = (|T|_1771, |7‘|_1772, |7'|_1773)
we obtain
V| Tyv; H3(0XK)||” + 72||?é; HE(QC)HQ + ||XTU;({{23(9<, !72'|)||2 <

< {||M(Dy, 7)v; Hy(K)||* + ||§Oo77v;li[g,1(ﬂ<)|| +

+9loe. Trvs HY(OK)|2 + [[x-Trvs Hy* (0%)]12},
where COO,T(‘T) - CW(|T|w)7 XT(m> = X(|T|$),U($1,[E2,J}3) - U(|T|$1,|T|ZE2,|T|IL‘3)
Note that

e T HY(OK) | < [Ty H3(0)|.

Taking the inequalities (5.26) and 5 < 1 into account, we get
[Gerti H GO < [ 70 Iuf e <
b/|r|<r

(11D, 7yo; La(&) 2 + 7 ITrv: L) )

2(1-0)

S c |T|2(1—6)/‘U|2 dz S C|T| :
% Y
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which leads to (5.34).00

By DH (X, ) we denote the completion of the set (X \ O, C®) with respect to
the norm

lv; DH (K, 7)|| = (72]|lv: HY(XO)|? v ) 2)
DH (K, 7)[| = (v llvs Hyg(K™ + lxzvs Hy(I 7DIT)

By RH 3(X,7) we denote the completion of the set C3°(K \ O, C?) x C=(X \ O, CP)
with respect to the norm

145, 9% RHa(%, 1)l = (115 H(K) |+
+9llg: HY@OI|? + lIx-9: Hy'(09) >+ b
(712215 oSO +gs La(0%) [3))

Here x, (21, 2, 23) = X(|7|21, |T|T2, |7|73) and x € €2(K) is a cut-off function that
is equal to 1 near the conical point O. The spaces DH3(G, 7) and RH (G, 1) are
defined in a similar way. Taking into account these new notations, one can rewrite
the estimate (5.34) in the form

Y Tvo; HY(OK)||* + |lo; DH(K, 7)||* <
(5.37)
<c|{M(Dy,1)v,T10}; RH (K, 7‘)||2.

5.5.2 The estimate in G

PROPOSITION 5.24. Let < 1 and let the line Im A = 3+ 1/2 contain no eigen-
values of the pencil €. Assume that v > vy with sufficiently large ~o. Then the
inequality
WNTvo; HE(0G)|? + [lv; DH(G, 7)1 <
(5.38)
< c|{M(D,,)v,T1v}; RH(G, 7)|?

holds for any v € Dg(G) with a constant ¢ independent of v and .

Proof.  Let ¢ € C®(G) be a cut-off function that is equal to 1 near O
and vanishes outside the neighborhood where G coincides with K. Since v =
v+ (1 = ¢)v, we have

lo; DH (G, 7)|| < [[Qv; DH (XK, 7) || + [[(1 = Qvs DH (G, 7). (5.39)
Estimate the first term on the right. From (5.37) it follows that

V2 ¢Trvs HY(OK) | + [[Cvos DHp(K, 7)|| < [{MCv,TiCu} RH (X, 7)|| <
< {I{Mw, (Tyv}; RH g(X, 1) + [I{IM, CJv, 0F; RH 5(X, 7)1},

where M stands for M (D,, 7). Clearly

{CMuw, (Tyv}; RH (K, 7)|| < [{Mo, Tyo}; RH (G, 7).
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The commutator can be estimated as follows

I{1M, CJo, 0}; RH (K, 7)[1* = [|[M, CJo; Hy(K)[|*+

(172 /) 1M, s Ea(3) 2 < e los BYG 2 + (177 /9) [0 La(G) 2}

Taking the estimate (5.30) into account we arrive at

||{[M’ g]vv 0}; RHﬂ(:Kv 7-)||2 <
< (llos HYGIP + (171" /3)" - (12| M; La(G) 2 + |ITyv; L3 (9G) |2} )
< fllv; HYG)I? + (1/3)I1{Mv, D0} RH (G, 7P}

Finally, for the first term in the right-hand side of (5.39) we get

YCTyws HY@OK)|? + v DH (%, 7)]|? <
< o((1+1/9){Mo, Tyl RH(G, 7)1 + o HYG)?)

Consider the second term in the right-hand side of (5.39). From the definition of
the norm in DH (G, 7) it follows that

11 = Qus DH (G, 7)1 = 4*[[(1 = Qvs HE(G)I* + [Ix+ (1 = Qvs Ha (G, 7))

For sufficiently large v we have x,(1 — {) = 0 because the supports of the factors
do not overlap. Then

Y1 = QT HYOG) 2 +72(1 = Qv HYG)|? <
< (111 = OTvw; La(9G) |2 + 12I|(1 = O; La(G)?) <
< e(IM(1 = Qv La(G) 12 +1l(1 = OTaw; La(0G) |2
< (111 = QM HYG)|P +41I(1 = QT 10 HYOG) |2 + 1M, (1 = Q)]s Lo(G)]?)
< o I{M, Tk RE (G 1) + o HY(G) ).

Combining the obtained estimates, we rewrite (5.39) in the form

YTyws HYOG)|? + o3 DH,(G, 1) <
< (L 1/72) {Mu, Do} RH (G, 7)1 + llos H(G)1?)-

Since [[v; HY(G)|| < (1/7)|[v; DH(G, 7). then

NI HR(OG)|? + [lv; DHp(G, 7)|* <
< oL+ 1/7*)I[{Mu, Trok; RH (G, 7)II* + (¢/7?) |lv; DH (G, 7).

One can rearrange the term (1/7)||v; DHg(G, 7)]| to the left, choosing ~ sufficiently
large. As a result, we obtain (5.38). O
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Introduce a subspace of RHg(X, ) by

RHyr(X,7) = {{f,g} € RHs(X,7) with g = (B,h,q)
such that (P, V), =0a.e. on 8.’K}.

It is easy to see that for any v € D(K) we have the inclusion {M(D,,7)v,I'v} €
RH@T(:K, T).

With the problem (5.4), (5.5) in the cone X we associate the operator v
My (7, B)v :={M(D,,7)v,I'1v} with domain Dg(XK) such that

Mi(7,8) : DHp(K,7) — RHpgr (K, 7).

It can be proved that the operator My (7, 3) admits closure. We keep the notations
My (7, B) and DMy (7, B) for the closed operator and its domain.

Let the line Im A = 4 1/2 contain no eigenvalues of the pencil € and g < 1.
Applying the same arguments as in Section 5.4, we say that for v € DM, (7, )
there exists a boundary value Tyv € Hj(0X) and the estimate

YN Trv; HZQI)|* + [lv, DHg(K, 7)|I* < ¢ | M (7, B)v, RH5(K, 7)|*
holds. The next proposition immediately follows from this inequality.

PROPOSITION 5.26. Let 3 < 1 and let the line Im A = 3+ 1/2 be free from the
eigenvalues of the pencil €. Then the kernel Ker My (7, 3) is trivial and the range
RM (7, B) is closed in RH 51r(K, 7).

Let 1/2 > (1 > (2 > ... be all numbers from | — oo, 1/2[ such that the
line Im A = [ + 1/2 contains an eigenvalue of €. Denote by S, the number of
the eigenvalues of € (counted with multiplicity) in the strip {A € C : ImA\ €

[6771 + 1/27 51 + 1/2}}‘

DEFINITION 5.27. A solution to the equation My (T, B)v = {f, g}, where {f,g} €
RHp (K, T), is called a strong [(3-solution to the problem (5.4), (5.5) in K with
right-hand side {f,g}.

THEOREM 5.28. A) Let § €|p1, 1] and let the line Imn X = 3+ 1/2 contain no
eigenvalues of the pencil €. Then for any {f,g} € RHgr(K,T) there ezists a
unique strong (3-solution v of the problem (5.4), (5.5) with right-hand side {f,g}.
Moreover, there exists a boundary value Tiv € Hg(@ﬂ() and the estimate

V2 Tyos HROX)| + [lvs DHp(K, )| < el {f. g} RH 5(3, 7)]|

holds. The constant c is independent of v and of T.
B) Let 8 €|Bma1, Bm|- A strong B-solution of the problem (5.4), (5.5) exists only
for the right-hand sides {f, g} € RHzr(X,T) satisfying the conditions

(F i) + (g, —iTrw) o = 0,
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for all functions w9 corresponding to the eigenvalues of the pencil € in the strip
{ANe C : ImX\ € [Bn+1/2, B1+1/2]}. A strong f—solution v is unique.
Moreover, there exists a boundary value Tyv € Hg(@ﬂ() and the estimate

V2| Ty HG(0K)|| + [lo; DH (K, 7)|| < ell{f, g} RH3(3, )|
holds. The constant c is independent of v and T.

Proof.  A) Suppose that {w,z} € Ker My(7, 5)*, where M (7, 3)* is the
adjoint operator to M (7, 3) with respect to the extension of the inner product
in Ly(K) X Ly r(0K). Applying the known local properties of solutions to elliptic
problems (see [28, Chapter 1, §1]), we get w € C®°(K \ O) and z = —iTyw, while
w satisfies (5.7), (5.8). Moreover, the asymptotic representation

w=x Z ch’j)VlffCT’j) +p (5.41)
L NT

holds. Since {w, —iTyw} € RHg(K, 7)*, then for a fixed parameter 7 we see that

/dx Jw|?(1+ 7)™ < e|[{w, —iTyw}; RHs(K, 7). (5.42)

X

The estimate (5.36) with 7 instead of 7 and I'y instead of I'y implies that w decays
more rapidly than any power of r as r — oc.

Assume that § > 0, hence w € Ly(X). Let the summation in the asymptotic
representation (5.41) be over all p such that Im A, €]1/2, 1, then p(z,7) = O(|z|")
with A = min{—ImX\, : Im\, < 1} as |z| — 0. The coefficients in (5.41) are
defined by the formula (see [25] or [28, Chapter 3 §5 and Chapter 4 §3]):

59 = i(w, M(Dy, 7)xuff) ot i(—iTw, Tixul, w) .
Taking into account the inclusions yul™” € DMi(r,8) and {w, —iTiw|ox} €
Ker My (T, 5)*, we get

k7. . k"
) = <{w, —iTywlosc}, Mi(T, B)xuf, ])>L (J0xLa(0%)
2 2

_ * ; (k.5) _

= (Ml(T, B){w, —iTiw|ss}, xup )LQ(K) =0.
So we see that w € C*(K\ 0), (1 — x)w € Hy(X) for all 3 € R, and w = O(|z|")
with A = min{—Im ), : ImA\, < 1} as |z| — 0. Therefore the estimate (5.31) is
valid for w. Applying this estimate, we obtain w = 0.

Assume that § < 0. In order to show that w = 0 we follow the same scheme
as for § > 0. In this case the proof is even simpler : since ; < 0, then the strip
{A» € C : ImX € [1/2, 1]} contains no eigenvalues of the pencil €. Thus the
sum is absent in (5.41) and we immediately obtain the estimate w = O(|z|") with
h =min{—ImA\, : Im\, <1} as [z| — 0.
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5.6 Operator in the scale of weighted spaces

In this section we study the problem (5.4), (5.5) in the function spaces related to the
estimate (5.34). In the first proposition we construct solutions to the homogeneous
problem (5.7), (5.8) growing near the vertex of the cone.

PROPOSITION 5.25. A) Let A, be an eigenvalue of the pencil € such that Im A\, < 1.

Then there e:z;z'st solutions x w,&k ')(x,F) to the homogeneous problem (5.7), (5.8)

such that w ) e C®(K \ O) and
w9 (@, 7) = xV,7 (@.7) + pla, 7). (5.40)

By x € €X(X) we denote a cut-off function that is equal to 1 near the verter O and
by V#(z’]) the first T terms of the series (5.14). The number T is sufficiently large

to provide the estimate Im (X, + 2i) — (T 4+ 1) < 1. The remainder p satisfies the
conditions p € C*(K\ 0) and p(z,7) = O(|z|") with h = min{—Im X, : Im ), <
1} as |x| — 0 and the parameter T is ﬁxed Besides, the inclusion (1—x)p € Hj(X)
holds for all B € R. The functions w,(t depend neither on T nor on .

Proof. 1) Let us show that there exists a unique function w,g 9 with stated
properties. Assume that there exists a function w( 7 such that

~ k},' = (kJ) ~
wl(t ) = Xvu,f +p

with the same properties as w,ﬂ Then it is easily seen that the estimate (5.31) is

valid for the function v = @ w,g 7). From this estimate we obtain @5 = w{?

2). Let us prove the existence of the functions w,& 7 We put

fr =MD, F)XVE = xM(D,, 7)VE + M V5D
The support supp fr C X is compact and fr = O(r—™ (Xu'f‘?i)-‘r(T'H)) as |y| — 0.
Therefore for sufficiently large 7" the inclusion fr € Lo(XK) holds. According to the
Theorem 5.20, there exists a unique solution p to the problem My(7)p = {—fr,0}

such that p € DMs(7). Put wi?) = XV '+ .

3). Let us show now that the functions w,g satisfy all the stated properties. Since

the problem (5.7), (5.8) with a fixed parameter 7 is elliptic and fr € €2(X\ 0),
we obtain p € C*(K \ O). Starting at § = 1, we iterate the estimate (5.36)

with 7 instead of 7 and I's instead of I'; for the function wfﬁ’j ) Then we get

(I —=x)p € HY(X) for all § € R.

Since p is a solution to the elliptic problem with the right-hand side decay-
ing rapidly near the vertex of the cone, we obtain the asymptotics of the form
pr~> c&k’j )Vu(k’j ). This asymptotics and the inclusion p € DMy (7T) imply the re-
quired estimate p = O(|y|") with A = min{—Im ), : ImA\, < 1} as |z| — 0 and
the parameter 7 is fixed. [J
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B). Assume that 5 €]G,41, Ol Let {f,9} € RHzr(X,7). From the in-
clusion RHp (K, 7) C La(K) x Lo (0K) and Theorem 5.17 it follows that there
exists v € Lo(K) satisfying My (7)v = {f,g}. The known results concerning the
elliptic problems in domains with conical points (see [28, Chapters 3, 4]) and the
inequality (5.36) imply that the function v admits the asymptotic representation

v=Yx Z dgk’j)Ul(L?fj) +h (5.43)

Hk,j

with h € DH (K, 7). Here the sum is over all p such that Im A, € [G,, +1/2, 51 +
1/2]. The coefficients are defined by the formula ( see [25] or [28, Chapter 3 §5
and Chapter 4 §3])

dff’j) = i(f, wf]‘”’j))x +i(g, —ile/(f’j))aK,
where ka’j) were constructed in Proposition 5.25. If {f, g} € RM;(7,3) then
the conditions dy"” = 0 in (5.43) are necessary for the inclusion v € DH, 3(XK, 7).
Therefore {w(™, —ileLk’j)} € Ker My (7, 8)* for all p such that Im\, € B, +
1/2, 6y +1/2].

Show that these functions form a basis in Ker My (7, 5)*. Let {w, —iTiw} €
Ker M, (7, 5)*, then the representation

w=xY_ eV 4 p

holds, where the sum is over all p such that Im\, € [, + 1/2, (5 + 1/2] and
for the remainder we have p = O(|z|") with A = min{—Im X, : Im), < 1} as

|z| — 0. Put
z=w— Z cff’j)w/(f’j).

We see that {z, —iT1z} € Ly(K) x Lo(0K), M(D,,T)z =0, and I'yz = 0. It is not
hard to prove that estimate (5.31) is valid for z. Applying this estimate, we get
z=0and w=>cFuwl O

REMARK 5.29. Assume that v > v with sufficiently large vo. Then Theorem 5.28
is valid for the problem (5.4), (5.5) in G.

5.7 Asymptotics of solutions

Let {f,g9} € RHzr(X,7) and let 8 €|Bm+1, Bm|. Since RHz (K, 7) C Lao(K) x
Ly 7(0K), then there exists a unique strong solution u to the problem (5.4), (5.5)
in K with the right-hand side {f, g}. According to Theorem 5.28, this solution is
in DH3(X, 7) provided

(f,wFD) 4 (g, —iTw) =0 (5.44)
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for all functions w corresponding to the eigenvalues of the pencil € in the strip
{AeC : ImA € [Bn+1/2, 1 +1/2]}. Now we show that if the conditions (5.44)
fail, then the strong solution admits the asymptotics modulo DHz(X, 7). For the
sake of simplicity we make several additional assumptions. These assumptions as-
sure that the asymptotics of solutions contains only the leading term corresponding
to Am.

PROPOSITION 5.30. Lety > 0, 3 €]Bmi1, Bm| such that B < B, < 0 and 3, — 5 <
1. Suppose {f,g} € RHp (XK, T) and the conditions

(w0, 5,?))3< + (g, T, f,?))ax —0 (5.45)

hold for all functions w,(f’j)(-, &, T) corresponding to the eigenvalues A, of the pencil

¢ in the strip {A\ € C : Im A € [Bn—1 +1/2, B1 +1/2]}.
Then the strong solution u to the problem (5.4), (5.5) in K with the right-hand
side {f,g} admits the representation

JIm ij’m*l

u(x,f)zx(m)z > d¥D (rul (x) + w(z, 7). (5.46)

where w € DH(K, 7) and x € CX(K) such that x = 1 near the vertex O of the
cone K. The coefficients are defined by the formula

dk9) = z( f, wﬁ,’jﬂ’>) + i(g, —ile,(fj’j)> . (5.47)
x oK
Besides, for the remainder and the coefficients the estimates
Jw; DHs(K,7)|| < cll{f, 9} RHs(K, 1),

Kjm—1—k 1 (548)
(A D] < e - |g|PHt/Rm A ( (1D!T|)Tﬁ) 1 fs g} RHp(K, 1)

r=0

hold. The constant ¢ is independent of T, f, and g.

Proof.  The inclusion RHg (K, 7) C Ly(K) X Lyr(0K) and Theorem 5.17
imply that there exists a unique strong solution u to the problem (5.4), (5.5) in
K with the right-hand side {f,g}. Since the problem (5.4), (5.5) with a fixed
parameter 7 is elliptic, then we can deduce the asymptotic representation (5.46)
and the formulas (5.47) from the results concerning the elliptic problems in domains
with singularities. It remains to prove the estimates (5.48). From (5.47) we easily
obtain

48] < 14£, 9% RHH(I )] - [{wD, ~iTiw}; RH, (K, 7).

However, it is not an easy task to obtain the dependance of the norm
[{wS? —iTwdY; RH(XK,7)*|| on the parameter 7. That is why we prove
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the estimates (5.48) in a different way. Change the variables x +— n = ||z and
consider the problem (5.9), (5.10) depending on the parameter § = 7/|7|. Since
the problem (5.9), (5.10) with a fixed parameter 6 is elliptic, we have the following
asymptotic representation for the strong solution U:

ZZ s cy’ (n) +W(n,0), (5.49)

m
p=1 j=1 k=0

where xW € Hj(X) and

(kg) — ; (k3)(. 9 ; g (k3)(. g
o Z(F,w“ (,9))36“(@, iTyW! (,9))%. (5.50)

By W(k’j)( ,0) we denote the solutions to the problem (5.9), (5.10) with @ instead

of # similar to the functions w( ) , constructed in Proposition 5.25. Applying the
conditions (5.45) we rewrite (5. 49) as follows

UG,0) = x> 32 i Ot o) + W(n.6), (5:51)

The formula (5.50) yields the inequality
e < I{F.GY: R || - [{Win?, ~iTy Wi} RH, (5, 1)
Since the functions W'r?) depend only on # then we can estimate the norm
WG, =YW} RH (K, 7))
by the constant ¢ independent of |7|. Thus we get
el < cll{F, G}; RH (K, 7). (5.52)

Let us now estimate the remainder in the formula (5.51). Consider the problem
(5.9), (5.10) with the right-hand side

{F, G} = {F = M(Dy,0)(x D cli”uli?), G = T1(x D eli?ufy?
It is easily shown that

r AWk (.G - (k.4) —
<F WD ( ,9))jC (G Ty WA, 9))69< 0
for W7 such that Tm A, € [B,, +1/2, 81 +1/2]. Then Theorem 5.28 leads to the
inclusion W € DHg(XK, 1) and the estimate

IW; DH (I V]| < el[{F', G'); RH(, 1)]| <

< |{F.G}; RH;(X,1)]. (5.53)
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Change the variables n — x = n/|7| and return to the problem (5.4), (5.5).
Then we have

Hj’mfl Kjm—
. ]. 4 . — ]
S oty = 5 iy el () =
k=0 k=0 q= 0
K/j,mfl k 1
> 05’2”')|xl“’”\7|“’"2q (iln ]|+ iln 7))@l 49 (w) =
k=0 q=0
Kjm—1
> ’”)IxI‘A’”M”’"ZZ i Zln!x\)q*’(iln\T|)’90£’i’q’”(w) =
k=0 q=0 1=0
Rl (B3 o idom | |2 : 11 . 01 plh-0)
D D[Py (i) Z unyx\) Dw) =
k=0 1=0 z
i (B.7) [ [idom | | =, zl 1 (k=)=
> a7 Z(@ln|f|)ﬁ g(@lnlxb DNw) =
k=0 ) 1=0 " r=0
Kjm— k
L 1 4
> el 3 il s ) =
k=0 1=0 )
Kjm—1 k 1
D P Y i ) i ) =
k=0 s=0 :
Kjm—1 Kjm—1—s
; (s,9) iAm ’ 2l ki (k+s,7)
> ul? ()] |7 > (iln|7)) 11Cm :
s=0 k=0 ’

Finally, the asymptotics (5.51) takes the form

Im K‘j»m_l

u(z,7) =X(ITI$)Z Y AR uly) (@) + w(z, 7)

j=1 k=0
with
Kjm—1—k 1
(kvj) — iAm ) r_— . (k‘-‘rT‘,j)
dpy?(7) = |7 z; (@lnfr])" 5 -en™™

Changing the variables in (5.52), (5.53) we arrive at the required estimates
(5.48). O

REMARK 5.31. Let {(p(O] | be the eigenvectors corresponding to \,,. Suppose
that there are no assoczated vectors. Then the asymptotics (5.46) takes the form

I
u(e,m) = x(|7|2) Y d? ()r*m o9 (w) + w(a, 7).

j=1

REMARK 5.32. Let v > o with sufficiently large vy > 0. Then Proposition 5.30 is
valid for the problem (5.4), (5.5) in G.
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5.8 Nonstationary problem in cylinders

Applying the inverse Fourier transform F,',, we pass from the problem (5.4), (5.5)

T—1)

to problem the (5.1), (5.2). Fix a cut-off function y € €>(X) such that y = 1 near
the vertex O of the cone X. Put

Xu(z,t) = F L x(|7|2)Fp_ru(z, t),
Au(z,t) = FL | 7|FFru(a, '),

(In A)ru(w,t) = F1

T*)t(hl |T|)M?t/_>7—U(£U, t/)
Introduce the spaces DV 5(Q,v), RV (Q, ), and RV 5(Q, v) equipped with the norms

1/2
s DV (@I = (221w VR I + 1 Xus V@ IP)

1/2
17,93 RV = (I V@A + g V02,7 2)

11/, 9} RV ()] = (HJ‘T;VBO(QW)H2 + (/AP £ VR(Q,9))12
1/2
+70g; VR0, )1+ (1/ AP g; VR0, v)|I* + [ X g; Vé/Q(aQ,v)HQ) :

Denote by RV7(Q,v) and RVgr(Q,v) the subspaces of RV(Q,v) and
RV 5(Q, ) respectively such that for any {f,g} € RVr(Q,7) (RVsr(Q,v)) with

g = (®,h,q) we have (P - V), = 0 a.e. on 0Q. The spaces in the cylinder T are
defined in a similar way.

DEFINITION 5.33. Let {f,g} € RVy(Q,v) and let u(x,7) be the strong so-
lution to the problem (5.4), (5.5) in K with right-hand side {—zﬁﬁ}, where
f(:v,T) =F . flx,t), g(z,7) = Fr_rg(z,t). The function u, defined by u(x,t) =
F10(x,7), is called a strong solution to the problem (5.1), (5.2) in the cylinder
Q with right-hand side {f, g}.

The next result follows from Theorem 5.17.

THEOREM 5.34. For every {f,g} € RVr(Q,v) and for any v > 0 there exists
a strong solution v to the problem (5.1), (5.2) in Q with right-hand side {f,g}.
Moreover, there exists a boundary value Thv € Vi(0Q,7) and the estimate

YNT10; Vi (02, V)12 + 22[lo; VR (Q)IP < I{F, 93 RV (Q,9)]1?
holds.

DEFINITION 5.35. Let {f,g} € RVyr(Q,7) and let u(x,T) be the strong [3-
solution to the problem (5.4), (5.5) in K with right-hand side {—zf, g}, where
f(a:,T) =Fi . f(x,t), g(x,7) = Frrg(x,t). The function u, defined by u(x,t) =
L 3(x,7), is called a strong 3-solution to the problem (5.1), (5.2) in the cylinder
Q with right-hand side {f, g}.
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The next result follows from Theorem 5.28.

THEOREM 5.36. 1) Let 8 €31, 1] and let the line Im X\ = 3+ 1/2 be free from the
spectrum of €. Then there exists a unique strong 3-solution v to the problem (5.1),
(5.2) in Q with any right-hand side {f, g} € RV 510(Q,7). Moreover, there exists a
boundary value Tiv € Vi (09,v) and the estimate

V[ Tyv; VR(0Q,9)|1> + [Jv; DV s(Q, 7)1 < cll{f. g}; RV 5(2,7)|)?

holds.
2) Let B €|6m+1, Bml|. A strong [-solution to the problem (5.1), (5.2) in Q with
right-hand side {f, g} € RV s1(Q, ) exists (and is unique) if the conditions

(=ifCm) w6 D)+ (36 =Tl (7)) =0

oK

hold for all T = 0 — iy (0 € R, v > 0) and for all wu 3) corresponding to the
eigenvalues of the pencil € in the strip {\ € C : Im\ € [, +1/2, 01 + 1/2]}.
If such a solution exists, then it has a boundary value Tyv € V;(@Q,’y) and the
estimate from the first part of the theorem holds.

The next theorem follows from Proposition 5.30.

THEOREM 5.37. Assume that {f,g} € RV 1r(Q,v) and B €|Bm+1, Bm| such that
B < Bm <0, B — B < 1. Then the strong solution to the problem (5.1), (5.2)
admits the representation

Im Kjm—

Xd'” tyulkD (z) + w(w,t),
j=1 k=0

where w € DV 5(Q,~). The coefficients are defined by

dn(t) = F,1,d3 ()

m Tt
with

dsD(r) = i(=if (-, 7), WD (7)) e+ 8 (G0 7), =T1wf D (7)) e
Moreover, the following estimates hold

e~ du?) (-); H™ M= B=12(R)|| < e (In A)=sm=1=F{ £, g} RV 5(2, 7)),
[w; DV 5(2,9)]| < ell{f, 9} RV 5(Q,7)]].

Strong solutions and strong [-solutions to the problem (5.1), (5.2) in T can
be defined in the same way as those to the problem in the cylinder Q in Definition
5.33 and Definition 5.35.

REMARK 5.38. All the theorems in this section are valid for the problem (5.1),
(5.2) in T if v > o with sufficiently large 7o > 0.
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5.9 Connection between the augmented and non-
augmented Maxwell systems

Up to this point the discussion was related to the augmented Maxwell system. In
this section we prove that under some conditions on the right-hand side of such a
system, its solutions have the form u = (i, 7, 0,0), therefore (u, ¥) satisfy the usual
(non-augmented) Maxwell system. The mentioned conditions on the right-hand
side are derived from the compatibility of the usual Maxwell system

OE /ot —rot B =—J,
OB/t +rot E = —F,
diVE:p, divgzu

with boundary conditions
7 X [T x D)+ lF x i) = ®.

Namely, for sufficiently smooth functions from the first and the third equations of
this system we obtain B
Op/ot +div J = 0. (5.54)

Similarly, from the second and the forth equations we get
Aot + div F = 0. (5.55)

Consider the problem (5.4), (5.5) in the cone X with the right-hand side {f, g} €
Lo(K) X Lo (0K), where f = (A, B, o, §) and g = (®, 0, 0). Since the right-hand
side is not smooth, the conditions (5.54), (5.55) should be understood in a proper
way. For this purpose we recall the following definitions.

Let @ and v be functions such that for any ¢ € €°(X) we have

/dx (ﬁ,V¢>3+/dxv-$:O.

X X

Then we say that v = div 4 in the distributional sense. By H(div,X) we denote
the space of functions @ € Ly(XK) such that div @ € Lo(KX), where the divergency
is understood in the distributional sense. We endow this space with the norm

1/2

I 1 (div, )| = (117 Lo() 12 + div @ Lo(%)1?)

With the obvious inner product, H(div,X) is a Hilbert space.
Applying the Fourier transform F;_,,, we rewrite (5.54), (5.55) in the form

A€ H(div,X), a € Ly(X), div A = iray,

° - 5.56
B € H(div,X), B € Ly(X), div B = ir3. (5.56)

For the proof of theorem on connection between solutions to the augmented
and usual Maxwell systems, we need a lineal. Let {ux, wy} be the set of eigenvalues
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and eigenfunctions of the Dirichlet problem pencils for the Laplace equation in XK.
Denote by Lp the lineal spanned by the functions in €°(X) and by functions of
the form yr##w;, with Im py < 0, where x € C(X) is a cut-off function equal to 1
near the vertex O of the cone K. According to [33, §3], the range of the Helmholtz
operator 72 + A with 7 = ¢ — iy (7 # 0) given on Lp is dense in Ly(X).

THEOREM b5.39. Consider the problem (5.4), (5.5) in the cone K with the right-
hand side {f, g}, where g = (®,0,0)T and the function f = (A, B,a, 8)T is subject
to the conditions (5.56). Then the strong solution wu is of the form u = (u,,0,0).

Proof.  Since My (7) is the closure of the operator {M(D,, ), I'1} given on
D(XK), there exists a sequence {uk = (U, Uk, hi, qk)T} C D(X) such that ur, — u
(the convergence in Ly(X)) and {M(Dm, T)Ug, Fluk} — {f, g} (the convergence in
Ly(XK) x Lor(0K)). We have uy, € C°(K \ 0)) so the system (5.4), (5.5) can be
understood as usual. In particular,

iT’LTk —rot ’Uk + th = ffk,

iThk + div l_[k = .

We shall prove that & = 0. Assume that ¢ € Lp. Multiply the first equality by
V¢, the second one by iT¢, and integrate over K. Then

w/ <ﬁk,v¢>3dx—/ (rot ﬁk,V¢>3dx+/ <th,V¢>3dx:/ (Ay, V), da
X X X X
—72/hk-adx—l—zﬁ'/divﬁk-adm:h/ak-adm.
X e X

We integrate by parts in the two first terms of the first equality, add the first and
the second equalities, and obtain

—72/ hk@dxnt/ <th,v¢>3dx:z'r/ak-$dx+/ (A, V), da.

X X X X

Integrate by parts the second term on the left. Then we get

_72/ hy- & dx—/ hi- NG dx+/ hy,-0¢ /v dszw/ak& dx+/ (A, V), da.

X X oK X X

As k — oo, taking into account the boundary condition for h and the property
(5.56), we arrive at the formula

/h-(?2+A)¢da::0.
e

Therefore h = 0 because the range of the operator 72 + A given on Lp is dense in
Ly(XK). By the same argument one can prove that ¢ =0 [J.



6 CONCLUSIONS

In this thesis we investigated the Maxwell system in domains with conical points
and edges on the boundary. We considered conductive and impedance boundary
conditions. The main purpose was to study the behavior of solutions near the
singularities on the boundary. We derived and justified the asymptotic expansions
of solutions near the singularities and obtained the explicit formulas for the coeffi-
cients in the asymptotics. We obtained the explicit formulas for the coefficients in
the asymptotics in terms of singular solutions to the adjoint problem and studied
the properties of the coefficients.

The suggested methods and obtained results can be applied in numerical treat-
ment of the nonstationary Maxwell system in nonsmooth domains and on different
problems of electrodynamics and mathematical physics.



YHTEENVETO (FINNISH SUMMARY)

Vaitoskirjassa tutkitaan ei-stationaarista Maxwell-yhtaloa alueissa, joissa on kar-
tiomaisia karkia ja teravia sarmia. Yhtaloihin liittyy johtavuus- ja impedanssi-
tyyppisia, homogeenisia ja epahomogeenisia reunaechtoja. Tyon keskeisena tavoit-
teena on tutkia yhtalon ratkaisujen kayttaytymista lahella ns.  singulaarip-
isteita, joita epasiledt reunat aiheuttavat. Tyossa johdetaan ratkaisuille ek-
splisiittiset, asymptoottiset laajennukset alueen kartiomaisten karkien ja teravien
sarmien ymparistossa. Naita asymptoottisia esityksia voidaan hyodyntaa useissa
sovelluksissa.  Tuloksia voidaan erityisesti soveltaa useiden ei-stationaaristen
sahkomagnetiikan yhtaloiden matemaattisessa ja numeerisessa analysoinnissa
epasileissa alueissa.

Avainsanat: ei-stationaarinen Maxwell-yhtalo, epasiled reuna, asymptoottinen
laajennus, energiaestimaatti
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