JYVASKYLA STUDIES IN COMPUTING 16

Marko Forsell

Improving Component Reuse
in Software Development

Esitetaan Jyvaskylan yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi Kokkolan yhteislyseon lukion auditoriossa
maaliskuun 8. paivana 2002 kello 12.

Academic dissertation to be publicly discussed, by permission of the Faculty
of Information Technology of the University of Jyvaskyla, in the Auditorium
of Kokkola Yhteislyseo Senior Secondary School, on March, 8, 2002 at 12 o’clock noon.

)

UNIVERSITY OF H JYVASKYLA

JYVASKYLA 2002

Improving Component Reuse
in Software Development

JYVASKYLA STUDIES IN COMPUTING 16

Marko Forsell

Improving Component Reuse
in Software Development

)

UNIVERSITY OF |:| JYVASKYLA

JYVASKYLA 2002

Editors

Seppo Puuronen

Department of Computer Science and Information Systems, University of Jyvaskyla
Marja-Leena Tynkkynen and Pekka Olsbo

Publishing Unit, University Library of Jyvaskyla

URN:ISBN:9513912175
ISBN 951-39-1217-5 (PDF)

ISBN 951-39-1161-6 (nid.)
ISSN 1456-5390

Copyright © 2002, by University of Jyvaskyld

ABSTRACT

Forsell, Marko

Improving Component Reuse in Software Development / Marko Forsell
Jyvaskyla: University of Jyvidskyld, 2002, 167 pages

(Jyvéaskyld Studies in Computing

ISSN 1456-5390;16)

ISBN 951-39-1217-5

Finnish summary

Diss.

This study concerns reuse in the software development process. The focus is in
the reuse of components when creating new software. The aim is to improve
current software processes to adapt them to the purposes of reuse. The specific
research questions are: 1) What are the specific limitations for reuse in the
current component-based software development methods? 2) How should
reusable components be created and used in software development? 3) How
should the components that are created be documented in order to make them
reusable in other development projects? The study follows the reflective systems
development approach. First, current component-based software development
methods are evaluated and examined in the light of reuse process. Also, the
software process currently used in organizations is examined. This improves
our understanding of the current situation. Here it is claimed that successful
and systematic reuse-orientation requires use of the domain analysis method
and a systematic way of documenting components. Next, some improvements
are designed to address the problems identified. Here the hierarchical domain
analysis method and a model to document reusable components are presented.
Finally, presented solutions are tried out in practice.

Keywords: Software reuse, reuse process, component-based development, do-
main analysis, component documentation

ACM Computing Review Categories

D.21
D.2.10

D.2.13

D2.m

Author’s Address

Supervisors

Reviewers

Opponent

Software Engineering: Requirements/Specifications:
Methodologies, Domain analysis, Component documentation
Software Engineering: Design

Methodologies, Domain analysis, Component documentation
Software Engineering: Reusable Software

Domain engineering, Reuse models, Domain analysis,
Component documentation

Software Engineering: Miscellaneous

Reusable software

Marko Forsell

University of Jyvaskyla
Chydenius Institute

P.O. Box 567

FIN-67701 KOKKOLA

Finland

e-mail: marko.forsell@chydenius.fi
Fax: +358 6 8294 202

Jarmo Ahonen
Information Technology Research Institute
University of Jyvaskyld, Finland

Markku Sakkinen
Department of Computer Science and Information Systems
University of Jyvaskyld, Finland

Cornelia Boldyreff
Department of Computer Science
University of Durham, United Kingdom

Eila Niemela
Technical Research Centre of Finland, Oulu, Finland

Jan Bosch
Department of Computing Science
University of Groningen, Netherlands

ACKNOWLEDGMENTS

First of all, I want to thank Anni and Heidi. Anni, you were perhaps one of the
main reasons I went back to the university. Without that this thesis would have
never be written. Of course, I want to acknowledge the role played by the latest
arrival to our family, Maija. I want to thank all of you Anni, Maija, and Heid.i.

I want to thank my parents who have supported me during the years. Also,
I'd like to extend my thanks to my grandparents who continously expressed the
importance of education. Thank you: dad, mom, tuta and Helena.

The first time I thought about post-graduate studies were during the
ECOOP’97 conference. Markku Sakkinen asked for volunteers in an e-mail mes-
sage for that conference. Because I had earlier decided to study that summer I
replied to that message and offered my help. During the conference I happened
to speak with Jarmo Ahonen about post-graduate studies. The main message in
that discussion was that post-graduate studies do not require “super-human” in-
telligence as much as stamina. So, two years later I found myself working in the
IT Research Institute, Jarmo Ahonen as its director. It was at that point of time I
started to work on this thesis. I asked Markku Sakkinen and Jarmo Ahonen to be
my advisors and luckily they accepted this request. I want to thank both of you
Jarmo and Markku.

During my studies I co-operated with various people in our university. I am
especially in dept to Veikko Halttunen and Tero Pdivérinta. In the PISKO project
I co-worked with number of people. I want to thank all of you Ari Héakkinen,
Esko Hakulinen, Tuukka Junttila, Marko Hollanti, and Sanna-Kaisa Taskinen.

This study was done in PISKO project which was funded by Tekes and five
companies participating in that project: Aplicom Oy', Honeywell Oy?, TietoEna-
tor Corp.?, Yomi Solution Ltd.* (formely Relatech Ltd.), and Republica Corp.°,
who have kindly given a written permission to mention them by name. Without
these companies and Tekes this thesis would not have been accomplished.

www.aplicom.com
www.honeywell.com
www.tietoenator.com
www.yomi.com/solution/
www.republica.fi

Ul = W N =

CONTENTS

1 INTRODUCTION AND BACKGROUND 11
1.1 Introduction 11
1.1.1 Background and Motivation. 11
1.1.2 ResearchQuestions 14
1.1.3 Research Approach 16
114 OutlineofThesis 17
1.2 Software Reuse in Software Engineering 18
1.2.1 Approaches to Software Reuse 19
122 ReuseProcess, 20
Managing reuse-oriented software development 22
Producing components 23
Brokering components 23
Consuming components 24
1.2.3 Domain Analysis for Software Reuse 25
1.3 SummaryofPapers 27
1.3.1 Evaluation of Component-Based Software Development
Methodologies 28
1.3.2 Use and Identification of Components in Component-
Based Software Development Methods 30
1.3.3 A Modest but Practical Software Process Modeling Tech-
nique for Software Process Improvement 31
1.3.4 Using Hierarchies to Adapt Domain Analysis to Software
Development 32

1.3.5 A Model for Documenting Reusable Software Components 33
1.3.6 Adding Domain Analysis to Software Development Method 34

1.3.7 About the Joint Articles, . 35

1.4 Limitationsof ThisStudy 35
1.5 Conclusions 37

2 EVALUATION OF COMPONENT-BASED SOFTWARE DEVELOPMENT

METHODOLOGIES 45
21 Introduction o 46
2.2 Evaluation framework 47
23 BEvaluation oo 49
2.3.1 Element 1: Methodology context 51
2.3.2 Element 2: Methodology User 52

2.3.3 Element 3: Methodology 52
Solution Design 53

Design Implementation 53

234 Element4: Evaluation 54

2.3.5 Summary of Evaluation 54
2.4 Implications and furtherresearch 54
25 Conclusions 56

USE AND IDENTIFICATION OF COMPONENTS IN COMPONENT-

BASED SOFTWARE DEVELOPMENT METHODS 59
3.1 Introduction 59
3.2 Crucial Features of a ReuseProcess 61
3.3 The Lim’s Model of the Reuse Process 62
3.4 Evaluation of Reuse Processes in Three Known Methods 65
341 Catalysis 66
342 OMTH+ . .. o e e 66
3.4.3 Unified Process 67
3.44 Evaluationof Methods 67
3.5 Discussion and Further Research 70

A MODEST BUT PRACTICAL SOFTWARE PROCESS MODELING

TECHNIQUE FOR SOFTWARE PROCESS IMPROVEMENT 79
41 Introduction 79
4.2 PISKO Process Modeling Technique 81
421 The Wall-ChartSessions 83
422 Problem Definitions 86
42.3 Process Documentation and Inspection of Documentation . 86
424 Analyzing the Process and Inspecting Results 86
4.3 Evaluation of the Technique 87
43.1 Background for Evaluation 87
432 Evaluation 88
44 Discussion e 89
USING HIERARCHIES TO ADAPT DOMAIN ANALYSIS TO SOFT-
WARE DEVELOPMENT 97
51 Introduction o L 97
5.2 Background for Domain Analysis 99
521 Domain Analysis Concepts 99
52.2 Common Domain Analysis Process 99
5.3 Hierarchical Domain Analysis Concepts 100
5.4 Hierarchical Domain Analysis Process 102
54.1 Create a Domain Model for the Company 103
54.2 Define Sub-Domain 105
5.4.3 Analyze Business Aspect 105
544 Analyze Software Aspect 108
5.4.5 Use Hierarchical Domain Analysis Results 108

55 Conclusions 110

6 A MODEL FOR DOCUMENTING REUSABLE SOFTWARE COMPO-
NENTS 115
6.1 Introduction 116
6.2 Genre Theory: A Basis for Analyzing Component Documentation . 118
6.3 Previous Models for Component Documentation in Light of the

Genre-Based Framework 121

6.3.1 The NATO Model for the Reusable Software Component
Documentation (NATO,1992) 121
6.3.2 The REBOOT Component Model (Karlsson, 1995) 122
6.3.3 Sametinger’s (1997) Reuse Documentation 124
6.34 Shortcomings of themodels 125
6.4 Genre System of Component Documentation 126
6.4.1 Elaboration of the model for documenting components . . . 126
6.42 Anexample of themodeluse 134
6.5 Implications 137
6.6 Conclusion 139

7 ADDING DOMAIN ANALYSIS TO SOFTWARE DEVELOPMENT

METHOD 149
7.1 Introduction o oL 149
7.2 Research Method and Environment of the Study 151
721 ResearchMethod 151
7.2.2 Organization and Environment of the Study 151
7.2.3 Summary of Hierarchical Domain Analysis 152
73 Results 154
7.3.1 Integration of Hierarchical Domain Analysis into Tieto Object154
7.3.2 Results Applying Hierarchical Domain Analysis 156
PhaseOne 156
PhaseTwo 157
PhaseThree 158
PhaseFour. 160
PhaseFive 160
733 Summary 161
Method Construction 162
Method Use, 162
74 Conclusions e 164

YHTEENVETO (FINNISH SUMMARY) 167

1 INTRODUCTION AND BACKGROUND

1.1 Introduction

1.1.1 Background and Motivation

In the modern society software has become a significant part of our everyday life.
New application areas for software are continously discovered and we can find
software in our phones, cars, and television sets. Further, we entrust our lives
to software in the form of various applications used in hospital environments.
All this software must be developed, and after that it must be enhanced and
maintained. Rising demands for new software, software updates, and software
maintenance require human work. Currently software companies must develop
quality software more efficiently, and in a more cost effective way.

If the same production considerations were applicable to software as are to
the conventional industry products we would not have problems since produc-
tion (i.e., producing a new copy) of software is very easy and inexpensive. If
conventional industry wants to improve its production processes, they concen-
trate on the production phase. In the software industry the bottleneck is not the
production but the development. The main cost of software production comes
from developing it. Every time a program must be altered, ported to another
platform, enhanced, or maintained it involves intellectual discovery work from
the human. We have had some “silver bullets” in the past, namely the third gen-
eration languages, the unified programming environments, and the time-sharing
environments (Brooks, 1986) but Brooks did not see new bullets in the horizon.
Brooks evaluated his claims nine years later (Brooks, 1995), and concluded that
the main themes of his claims still hold true. Reuse is a way to improve effi-
ciency and productivity but it is not an easy way. Further, there are no order-of-
magnitude improvements waiting ahead. As a bright side of all of this, Brooks
notes, is that we can finally concentrate on the essential problems and start mak-
ing evolutionary improvements to our software processes, one step at a time.

12

Software engineering (SE) is concerned with practical application of scientific
knowledge in the design and construction of computer programs and the asso-
ciated documentation required to develop, operate, and maintain them (Boehm,
1976). Furthermore, SE must accommodate human, economic and programming
concerns, and these concerns must be satisfied from both the product and process
sides of the SE (Boehm, 1981, Pressman, 1992). Given this definition to software
engineering we notice that it involves a number of different disciplines - com-
puter science, management, psychology, design and economics, among other
things (Freeman & Gaudel, 1991) - to solve problems in building software. In
software engineering the concern is, on one hand, to build economically us-
able software systems, and, on the other, to manage the development process.
(Boehm, 1981.)

Software includes all the artifacts that it takes to represent, i.e., document, it
in machine or human readable form to the machines, workers, and stakeholders
(Jacobson et al. 1999, Boehm, 1976). An artifact is a general term for any kind
of information created, produced, changed, or used by workers in developing
the system, e.g. UML diagrams and their associated text, user-interface sketches
and prototypes, components, test plans, test procedures, and of course the code
and programs (Jacobson et al. 1999). Software development is a disciplined way
to produce systems, which deals with concepts, notations, processes, goals, and
agents that are determined in a method used (see Koskinen, 2000).

As we stated above, software engineering has to consider the design of a
software system. There is a need to model the design of the software system.
According to Mathiassen et al. (1995) and Mathiassen and Stage (1992) there
are different approaches that can be divided in two groups: specification based
and exploratory based. Of the basic specification based approach, the waterfall
model (Royce, 1970) is the prime example, whereas the exploratory approach is
exemplified by the prototype approach (Gomaa, 1983). Third way to approach
software development is a mixture of the two, which could be called evolution-
ary approach (see Sommerville, 1996). Examples of this third type include the
spiral model (Boehm, 1986) and incremental models (see Graham, 1988, Gilb,
1988).

Initially the term life-cycle was used as a reference to the approaches men-
tioned above (see e.g., Davis et al. 1988, Acufia et al. 1999), but in the late 80’s
works by Osterweil (1987) and Humphrey (1989), among others, drew attention
to the process aspect of software development. While the life cycle approach is
concerned with the products that are produced during the development effort,
the process view focuses on the production process. Although historically soft-
ware development has been characterized as being product centered, researchers
and developers have recently focused their efforts on the process dimension
(Vasconcelos & Werner, 1998). A process is a written description of a course of
action to be taken to perform a given task (Gibson, 1999).

Software development process (or just software process), is the set of activities
needed to transform a user’s requirements into a software system (Jacobson et
al. 1999). The general intent of a software process is to coordinate individual

13

activities so that they achieve a common goal (Cook & Wolf, 1998.) Software
development process includes descriptions about how to produce software ar-
tifacts, and how to manage associated development and managerial activities
(see Koskinen, 2000). Examples of software processes include design methods,
change-control procedures, and testing strategies.

Software development most often takes place in projects. A software de-
velopment project is an instance of the software development process (Jacobson
et al. 1999), and the nature of software development makes it an “one-oft” ef-
fort. Most of the work in software industry goes to research and construction
of the first version of the software. The costs in software industry are mainly
attributable to the development. Also, the maintenance can be considered to be
an “one-off” effort because it involves same tasks as development and we do not
make same kind of maintenance twice. The manufacturing itself is easy to do
and can be done without any knowledge about software development.

Different approaches, or life cycles as they are called sometimes, tell us how
software product evolves over the time. Software processes tell the order and the
way different phases follow each other. However, life-cycles and processes give
only a little help, if any, to software modelling. Neither do they tell what should
be described and how these descriptions relate to each other. For these purposes
we use software development methods.

The assumption in software engineering is that people use some sort of
method to construct the software in the software development project (Yourdon,
1979). Software development method is a predefined and organized collection of
techniques and a set of rules which state by whom, in what order, and in what
way the techniques are used to achieve or maintain some objectives (Tolvanen,
1998). In many cases software development methods concern activities from
the requirements analysis to testing. Most of the methods exclude, for example,
maintenance, version and configuration control. One big part that Boehm (1976)
stresses in SE is the management of the process. Management is not considered
in most development methods, although this is changing nowadays.

We define a technique as a set of steps and rules which define how a rep-
resentation of software is derived and handled using some conceptual structure
and related notation (c.f. Tolvanen, 1998, Wieringa, 1998). Interpretation rules
define the conceptual structure and describe, for example, meaning of the no-
tation. Interconnection rules show the relations between different techniques.
Techniques can be connected to each other in different ways. Heuristics de-
fines steps and rules to produce different descriptions of the software in different
phases of the development process. Some researchers consider, for example, data
flow diagrams and class diagrams as techniques (Tolvanen, 1998).

Methods are explicit ways of structuring and rationalizing our thinking and
action, involving both critical and creative thinking. In the field of information
systems (IS) it is estimated that there are over 1000 methodologies (Jayaratna,
1994, Tolvanen, 1998, Koskinen, 2000). In the references mentioned these meth-
ods are described as information system development methods but most of them
can also be considered as software development methods. Many of the recent

14

methods consider themselves as software development methods. (see e.g., Jaaksi
et al. 1999, Jacobson et al. 1999). Examples of structured methods are Modern
Structured Analysis (Yourdon, 1989), and Jackson System Development (Jack-
son, 1983). Examples of Object-Oriented methods include OMT (Rumbaugh et
al. 1991), OMT++ (Jaaksi et al. 1999), Catalysis (D’Souza and Wills, 1999), Unified
Process (Jacobson et al. 1999) and Object-Oriented Software Engineering (Jacob-
son et al. 1992).

As stated above, SE seeks a way to improve the quality, pace, and utiliza-
tion of resources in software development. Different approaches to software de-
velopment, study of the software process, and all of the methods try to address
some or all of these aspects. One specific way to increase productivity and qual-
ity in software development is to reuse existing software. In the field of software
industry the idea was presented in 1968 when Mcllroy (1976) argued that soft-
ware could not be developed the same way it had been so far. He continued
arguing that software development should be similar to computer construction
where the computers are put together from components.

At present most of the reuse texts emphasize that reuse must be systematic,
i.e. it must be planned, defined, and managed (Lim, 1998). The software reuse
community has presented domain analysis as a way to foster reuse in software
development. (Tracz, 1995.) Domain analysis takes place prior to actual devel-
opment of software. A domain may be studied as a group of similar programs or
as a business area (Wartik & Prieto-Diaz, 1992). With domain analysis, software
developers try to identify general features in the domain in order to make them
reusable later. During the development of a component the developers must also
pay attention to documenting it. Documentation must be done in such a way that
other developers in other projects can find and use the component.

In this study we concentrate on the reuse of the software components in
software development. We examine the main limitations in current ways of do-
ing component-based software development and we try to point out areas where
improvements could be made. Also, we present some solutions to problems
identified in creating and using components in software development. More
specifically, this thesis shows a way to do domain analysis during software de-
velopment and how resulting components should be documented in order to
achieve a more efficient and more cost effective software development process
without sacrificing product quality. At the end of the day, the user of the soft-
ware could not care less about who created the individual solutions. His main
concern is to find an end product combining these solutions to create something
new and valuable to the user - faster, more efficiently and with more quality.

1.1.2 Research Questions

This study was conducted in PISKO project (Information Technology Research
Institute /University of Jyvéskyld, Finland). PISKO is funded by Technology De-

15

velopment Centre! and companies that participate in the project, namely Apli-
com Oy, Honeywell Oy, TietoEnator Corp., Yomi Solution Ltd. (formerly Relat-
ech Ltd.), and Republica Corp. All of these participants have made it possible to
conduct this research.

The objective of the project was to introduce and develop component-based
development approaches in the participating companies. The aim of the study is
not to introduce a new component-based method, but rather to introduce tech-
niques, which can be adopted by the companies. Furthermore, these techniques
should not be biased towards any development or implementation technology.
These limitations arise, on the one hand, because companies already have insti-
tutionalized some methods and many of their practices are tied up with these.
On the other hand, companies use structured as well as object-oriented software
development methods and languages.

The unifying idea behind the PISKO project could be phrased as follows:
“How can software development be made more component-based and reuse-
oriented?” From this general question we have drawn three more specific re-
search questions, which we address in this study:

1. What are the specific limitations for reuse in current component-based soft-
ware development methods?

2. How should reusable components be created and used in software devel-
opment?

3. How should the components that are created be documented in order to
make them reusable in other development projects?

The first question can be considered from two points of view. Firstly, we
can examine current component-based development methods in order to find
out what are the most visible problems in them. Secondly, we can study compa-
nies and their development methods in order to understand what is hindering
the reuse of the components. By answering to these questions we can get more
precise direction for our research efforts. We must remember the limitations to
the solution that were set out at the beginning of this section when we search an-
swer to the second question. This means that the solution must be tailored to the
existing development method in a company. We look for some technique that en-
ables a company to shift their thinking from one system to multiple systems and
from the creation of a solution to one specific problem to a solution that is usable
in other environments too. The third question is based on our belief that software
is not only the code produced but also the documentation that supports the use
of the program. An important area in the research of software engineering is the
research of produced documentation. Also, we believe that creating components
with proper documentation results in their successful and systematic reuse (see
also Parnas, quoted in Brooks, 1995, p. 224).

I www.tekes.fi

16

1.1.3 Research Approach

Research method selection should be based on the research setting and the prob-
lem. What is found to be a relevant research problem by an individual researcher
depends on his or her view of the world: what exists, i.e., ontology, and how the
researcher believes that relevant information can be found, i.e., epistemology. If
the researcher can be considered to be one factor in the formula of selecting a
research approach then another factor is the discipline the researcher is in. Quite
often a discipline has created its own understanding of what is perceived to be
an appropriate approach towards research.

Information systems (IS) and software engineering (SE) fields are at a cross-
section of number of disciplines. At the one end one can see for example cogni-
tive and management sciences, which could be understood as “soft” or social sci-
ences. At the other end there is computer science and mathematics, which could
be considered as “hard” or natural sciences. Against this background it is no
wonder that number of scholars suggest the use multi-methodological approach
for studies in the IS and SE fields (cf. Nunamaker et al. 1991, Vidgen & Braa 1997,
Mathiassen, 1998). As stated in the previous section, the aim of this study is to
improve organization’s software development practices to enable reuse. From a
larger perspective this can be understood as an organizational change.

Mathiassen (1998) introduces research approach that he calls Reflective Sys-
tems Development (RSD). This approach intertwines both research and practice
(Figure 1.1) and Mathiassen (1998, p. 81) describes it as follows:

First, our understanding is based on interpretations of practice. Sec-
ond, to support practice we simplify and generalize these interpre-
tations and engage in design of normative propositions or artifacts,
e.g. guidelines, standards, methods, techniques, and tools. Third, we
change and improve practices through different forms of social and
technical intervention.

Improve

Intervention

Support Understand

FIGURE 1.1 Research goals and activities involved in Reflective Systems Devel-
opment. (Mathiassen, 1998, p. 82)

17

We follow this research approach in this study. According to it the first
research activity is to understand current practice and interpret it. The aim of
this phase is to find out what are the required enhancements in current practices.
Here a researcher can use such methods as case studies, field studies, and sample
surveys (c.f. Vidgen & Braa, 1997, Nunamaker et al. 1991). In this study we build
our understanding and interpretation based on surveys to evaluate how current
component-based development methods support reuse. Also, we do case studies
in companies to understand their current software processes.

The second research activity is to create support for perceived problems or
improvement areas. Aim of this phase is to create new methods or techniques
that will improve current development process. This can also be considered as
theory building. Research methods here are constructive and according to Nuna-
maker et al. (1991) its results are new ideas, concepts and conceptual frameworks,
new methods, or models. We created a new technique to improve reuse in soft-
ware development and sketched a model to document found components.

The third research activity, improvement, creates change in the organiza-
tion and in its processes. In this phase we use the solutions that were created in
the second phase and the objective is to prove their practicality. In this study we
used the technique and model in an industrial setting in a project with TietoEna-
tor Corporation?. TietoEnator is the largest Scandinavian software development
organization with the staff of over 10 000 and annual net sales more than 1100
million euros.

1.1.4 Outline of Thesis

This thesis consists of an introductory chapter and six research papers, which
follow the research approach. First, in the introductory chapter we introduce the
research area and the research problem. The chapter gives an overview about
the research area and clarifies some concepts and terms used. The focus of the
chapter is in software engineering and reuse related areas. The chapter presents
the results of the thesis. First there is a short summary of the papers and an
outline about how they relate to research methodology. Also, the limitations of
the study are discussed. The chapter closes with ideas for further study.

The rest of the thesis follows structurally the RSD approach. First we gain
our understanding with three research papers. Here we refine the problems
identified in connection with the more specific research questions and we im-
prove our understanding of the problems. The first of the articles is “Evaluation
of Component Based Software Development Methodologies”. The article sheds
light over the component-based approach to software development. We iden-
tify similarities between different methods to observe some underlying patterns.
In addition, we identify some differences between methods to find out where
consensus in the research field has not yet been achieved. The second article,
“Use and Identification of Components in Component-based Software Develop-

2 See www.tietoenator.com

18

ment Methods,” takes a more close look into three component-based methods
and studies their support of reuse. The third article, “A Modest but Practical
Software Process Modeling Technique for Software Process Improvement”, de-
scribes the process modeling approach we used in the companies we worked
with. Here the aim is to introduce a lightweight and economic way to model
software process so that its results can be used later when we introduce reuse-
oriented software development process into the companies.

Next we design solutions for identified problems. Here we describe con-
ceptual solutions to the problems that were identified while improving our un-
derstanding. We introduce a domain analysis method and a model to document
software components. This is accomplished by two articles: “Using Hierarchy to
Adapt Domain Analysis to Software Development” and “A Model to Document
Software Components”. The first article presents a domain analysis technique
that does not only identify and define reusable components but also aids in the
use of the components. Traditionally, domain analysis methods have focused
solely on identification and definition of reusable components. The second ar-
ticle describes a model to document components. In this documentation frame
three aspects of the reuse process are considered, namely the production, broker-
ing and use of reusable components.

Finally, to complete our research cycle we present improvement which ap-
plies designed solutions. This is done with an article called “Adding Domain
Analysis to Software Development Method” and it describes how we enhanced
an existing software development method to include domain analysis. Also, we
describe what kind of results we gained during this effort. We use the concep-
tual models that are presented in the papers “Using Hierarchy to Adapt Domain
Analysis to Software Development” and “A Model to Document Software Com-
ponents”.

1.2 Software Reuse in Software Engineering

Reuse in software engineering was proposed at the same conference as the term
software engineering was introduced (Krueger, 1992, see also Bauer, 1969 and
Mcllroy, 1976). So reuse and SE have co-existed for thirty years. But even before
this conference Wilkes recognized the need to build a library of mathematical
subroutines in 1949 to avoid having to rewrite them (Tracz, 1995). In 1968 MclIl-
roy (Mcllroy, 1976) introduced the idea of reusable components. Mcllroy’s com-
ponents were comparable to standard, off-the-shelf components that are used
in computer manufacturing. Mcllroy’s components would have been built by
dedicated component factories. His components were source code components
and were to be used in their original form in other programs. Unlike in other
engineering disciplines, SE has only succeeded moderately, at the best, in reuse
(Prieto-Diaz, 1994).

Software reuse is the systematic application of existing software artifacts dur-
ing the process of building a new software system, or the physical incorpora-

19

tion of existing software artifacts in a new software system (Dusink and Katwijk,
1995). Here the term systematic means that the process of reuse is explicated and
that the reusable elements are designed to be reused. Reasons for software reuse
are the same as for SE. More programs should be created in shorter time, with
smaller costs, with higher quality, and with fewer people. In the current eco-
nomic situation the life cycle of a software product is shortening, i.e., new ver-
sions should be presented more often (cf. Bosch, 2000). This cannot be achieved
unless great portions of the old version are reused in the next one.

1.2.1 Approaches to Software Reuse

Reuse in SE can be divided in composition and generation technologies (Big-
gerstaff & Richter, 1987). Composition techniques base reuse on the idea that
components should be understood as atomic units and be reusable more or less
unchanged. An external agent combines these components so that they fulfill
any required functionality. Examples of this kind of components are design pat-
terns (Gamma et al. 1995), code skeletons or frameworks (Fayad et al. 1999), soft-
ware architectures (Tracz, 1995, Bosch, 2000) and of course binary components
(e.g., Szyperski, 1997), among other things.

Generative technologies weave patterns or components into a program
generator. These patterns are of two main types: patterns of code and patterns in
transformation rules (Biggerstaff & Richter, 1987). Usually, in these techniques,
software is defined in a higher level language and from this definition an appli-
cation generator creates the required program. Patterns that are used to generate
the software are modified to fulfill requirements. This way two generated pat-
terns may vary greatly in the resulting program.

Frakes and Terry (1996) propose a faceted classification to identify different
types of software reuse (Table 1.1). In the table each column specifies a facet.

In compositional reuse some portion of the products from the software
development process are reused. This means that the project that creates the
reusable part is not the same as the project which uses the component. Terms and
definitions for a reusable part or component vary greatly (see e.g., Sametinger,
1997). It may be called an asset (Lim, 1998), artifact (Jacobson et al. 1999) or
workproduct, among others. When using these terms the authors want to em-
phasize the fact that a component can be more than a code component. Jones
(cited in Frakes & Terry, 1996, p. 417) identified ten different reusable aspects
of software projects: architectures, source code, data, designs, documentation,
estimates (templates), human interfaces, plans, requirements, and test cases.
Krueger (1992) states that the types of reusable artifacts are not only fragments
of code but can also be design structures, module-level implementation struc-
tures, specifications, documentation, transformations, and so on. Bosch (2000)
defines a software component as a unit of composition with explicitly specified
provided, required and configuration interfaces and quality attributes. Szyperski
(1997) sees software components to be binary units of independent production,
acquisition, and deployment that interact to form a functioning system.

20

TABLE 1.1 Types of Software Reuse. (Frakes & Terry, 1996, p. 418)

Development| Modification | Approach | Domain Management | Reused en-
scope scope tity
Internal (pri- | White Box | Generative | Vertical Systematic Code
vate) (planned)
External Black Box | Composi- | Horizontal | Ad Hoc Abstract
(public) (verbatim) tional level
Adaptive In-the- Instance
(porting) small level
In-the- Customi-
large zation reuse
Indirect Generic
Direct Source code
Carried
over
Leveraged

The definitions vary greatly. Lim’s assets include all kinds of products or
byproducts of the software development process, including code, designs, test
plans, and documentation, as well as knowledge and methodologies. Szyper-
ski’s software components are binary units of composition.

We define a (reusable) component as follows. A reusable component is a
product of a software development process that can be used as part of a software
product other than it was originally designed for. Additionally, a reusable com-
ponent is documented in such a way that the documentation supports all reuse
activities, namely component creation, brokering and consumption. In this thesis
we quite often omit the suffix reusable when we talk about reusable components.

This definition means that a component is part of the end product of the
software development process, for example, (part of) the defined analysis phase
products. Also, we emphasize systematic approach by requiring that compo-
nent’s documentation must support reuse activities. Thirdly, we emphasize the
point that reuse must take place in a different development project than where
the component was created. We do not regard a component reusable unless these
three aspects are satisfactorily taken into account. According to this definition,
the software development process, development method, or project estimates
are not reusable software components since they are not explicitly a part of the
resulting end product.

1.2.2 Reuse Process

If an organization wants to facilitate reuse in its software development it should
adapt reuse activities for its current software development process. Reuse-
oriented software development creates software systems at least partly from ex-

21

isting assets in a systematic way. Systematic software reuse is the purposeful cre-
ation, management, support and reuse of reusable components (Jacobson et al.
1997). There exists some reuse process models (Jacobson et al. 1997, Lim, 1998,
STARS, 1992, Karlsson, 1995) which address the features for reuse process. One
of them is Lim’s reuse model (this is presented more thoroughly in Chapter 3).
In the Lim’s model reuse-process is divided in four tasks: managing the reuse
process, producing assets, brokering, and consuming assets. One problem with
reuse methods and tools is that most of them describe only the use or creation of
components, and further, reuse processes are not usually integrated to software
development process (see Forsell et al. 2000, Rombach & Schifer, 1994).

To give a basis for our discussion we present a model (Figure 1.2) where the
creation, brokering, and consuming of the components are tied up with the soft-
ware development process (see Lim, 1998, Griss et al. 1994). The model is coarse-
grained and it only illuminates the most important aspects of the reuse-oriented
software development, but for the needs of this study the model is sufficient. In
the following sections we will cover each identified element of a reuse process
more closely.

FIGURE 1.2 Model for reuse-oriented software development. In the model es-
sential features of reuse processes are tied up to the software development pro-
cess.

When a company wants to adapt reuse, it must plan how to integrate the
reuse process into the software development process. One particular problem

22

that must be solved is the dichotomy between the software development project
which aims to produce one quality system and the reuse process which aims to
support multiple development projects. This means that software reuse must
be understood in much longer perspective than the development of a product.
On the surface, the objectives of these two processes are quite different. But
the bottom line is that both aim to produce quality software economically and
efficiently.

Managing reuse-oriented software development

Management of reuse process is presented here first, because it should be con-
sidered first when starting a reuse program in organization. The foundation of
systematic reuse lies in the planning of the whole reuse process and by defining
what a company means by reuse and by a reusable component (see Griss et al.
1994). Before a reuse-oriented software development approach can be adapted,
one has to know the current development process. In this section we look man-
agement from three points of view: management of the process, products and
people.

One critical aspect in reuse-oriented software development is the manage-
ment of the reuse process (see Lim, 1998, Griss et al. 1994, Jacobson et al. 1997).
This means all the activities and procedures which are conducted in order to
measure and control the reuse process. Different models and metrics (see Frakes
& Terry, 1996 for more details) should be used in order to find out the effective-
ness of the reuse process. By measuring the process we can, on one hand, reason
what is good and works in the process, and on the other hand, we can find out
flaws and points for improvement in our process. Also, measuring aids us in
deciding whether to create certain components ourselves or acquire them from
some other sources.

Managing the product means the management of components. With com-
ponents, their quality plays a far more important role that their quantity. The
reuser must trust these components as much as they would trust their own code
(see Griss et al. 1994). The reuse level of the component, its usability, and the
cost/benefit of using the component, among other things, must be measured.

Managing the people is our third viewpoint in reuse process management.
Naturally we must know how people are engaging in reuse, that is how they use
and produce components. To foster reuse, we must train people to different reuse
techniques and at the same time we must create reward systems to make the
practice of reuse more appealing. Most successful examples of reuse explicitly
mention that developers were educated to use the reusable components (see e.g.
Griss et al. 1994, Horowitz & Munson, 1984). With this kind of actions we can
signal that the management is committed to reuse and that cultural change can
start.

23

Producing components

Producing components could be called design for reuse or development for reuse
(Griss et al. 1994). Component production involves such tasks as domain analysis
and component creation.

Domain analysis is one of the key features in the road to use components
(Prieto-Diaz, 1994). With domain analysis we can identify reusable components
from a domain. There exists a number of methods or techniques to model and
analyze domains. All of these try to achieve reusable abstractions from a group
of software products or from a business domain.

Reusable components are created in a software development project. This
means that components are a result of a software development effort. The same
methods and techniques as in the production of conventional software products
are used. Of course there is some additional criteria in the development of com-
ponents and there may be a need to introduce new techniques, but, nevertheless,
components are created in the same way as software systems.

New components come into existence also when old ones are enhanced
or maintained (see Lim, 1998). Maintenance and enhancement effort can be di-
vided in three categories, namely corrective, adaptive, and perfective (Lientz et
al. 1978). Sometimes, no matter how extensive the tests and inspections made
on the components, errors or flaws can be found in them. In these situations
components must be fixed i.e. maintained. Maintenance is in these situations
corrective. The old deficient component should in these situations always be re-
placed with a new, corrected component. Enhancement of the component can be
in two forms: perfective or adaptive (see Schach, 1996). In perfective enhance-
ment the component may get user enhancements, improved documentation or
it can be made more efficient. In adaptive enhancement the component’s ability
to accommodate changes to data inputs and files or to hardware and software
changes is improved. (cf. Lientz et al. 1978.)

Brokering components

Brokering components supports reuse across different projects. Brokering is one
of the key elements when creating trust to existing components (see Tracz, 1995).
This is why brokering is not only maintaining a component repository but it also
includes tasks to validate and verify components that are put into a component
repository. Lim (1998) identifies five distinct tasks to brokering components: as-
sessing, procuring, certifying, adding, and deleting components.

Component assessment concerns the estimation of reusability for a com-
ponent (Frakes & Terry, 1996). In assessing, all possible sources for component
should be investigated and after potential components are found several factors
should be explored: i.e. should the component be purchased or acquired, what
is the quality of the documentation of the component, and how adaptable the
component is. The cost/benefit analysis should be made (Lim, 1995) as well, of
course.

24

Procuring components involves the rational decision about how compo-
nents are obtained, i.e., is component bought or is it developed as an in-house
project, among other possibilities.

Certifying assures that component meets the requirements, quality levels
and includes necessary information (Lim, 1998). The components may come
from various sources inside and outside the organization. Without certifying,
the trust for components is hard to build.

Addition and deletion of a component to and from a repository must be
taken into account. Adding components to a repository (or alike) involves cata-
loging, classifying, and describing it (Lim, 1998). Also the physical installation
of the component into repository is done in this step. If a component is seen as
irrelevant to an organization or it is determined that a component will no longer
be valid, it should be deleted from the repository. To determine whether the com-
ponent is useless or not must be done in accordance with the company’s policies.
When a deletion occurs, steps should be taken so that all the relevant parties are
informed.

Consuming components

Much of the research in consuming components is done with the study of reposi-
tories. Most of these studies identify following steps for using components: find,
understand, modify and integrate a component (see e.g. Taivalsaari, 1993, Prieto-
Diaz, 1987). Further, another point that one must remember is that the documen-
tation of a component is crucial in the consumption phase.

First, before we can start searching for the component we must identify
the system we work with and the possible components that can be used within
it. In this task the requirements for the system and thus for the component
are identified. Two approaches are possible: reuse-enabled business approach
and strategy-driven business approach. In reuse-enabled business, requirements
may be altered according to the available components. In strategy-driven busi-
ness the business-areas are partly chosen by available components, i.e. if we
have readily available components that help to create certain kind of software
only then we make decision to enter that particular market.

In the finding components phase, users of the components search reposi-
tory if they expect to find required components there. The number of the rele-
vant components that may be found is highly dependent on the capabilities of
the repository and indexing schema used. Of course the number of components
in the repository affects this, too.

Assessing components for the consumption phase requires the evaluation
of the component found. Before we can evaluate a component and its suitability
for the reuse we must understand it. After we have picked the components that
can be used for a particular situation, only the best and most suitable one is
selected. If components can not be found this creates an initial need for one and
defined steps should be taken.

25

In adapting and modifying components two approaches are available:
black-box reuse and white-box reuse. In black-box reuse components are used as
they are. In white-box reuse components may be modified so that they fit more
perfectly for use.

Integrating and/or incorporating components determines where and how
components can be reused. This means that often components assume some-
thing about their environment and they cannot be used in incompatible envi-
ronments. For example, if a code component is meant to be used with CORBA
middleware, it is impossible to use it in DCOM environment without changes.

1.2.3 Domain Analysis for Software Reuse

One of the truisms in software reuse is that before you can reuse something you
have to have something reusable (Tracz, 1995). It is not that simple to identify el-
ements that will be reusable to developers. This has been painfully demonstrated
by those who have attempted reuse approach in SE (Arango & Prieto-Diaz, 1991).
Software reuse community has come up with one solution to address these dif-
ficulties. This is known as domain analysis. (Tracz, 1995.) Informally domain
analysis (DA) could be defined as an analysis of some application area, leading
toward some predefined goal (Arango & Prieto-Diaz, 1991). After DA is done in
a certain domain we know what is available for reuse in that domain.

In the field of software engineering DA is seen as a prerequisite for suc-
cessful reuse. DA developed from the work of Neighbors (1980). He was in-
terested in automatically producing programs from existing components, and
created an environment called Draco for this purpose (Neighbors 1980, 1989).
Neighbors borrowed the idea of domain from automatic programming and from
Balzer (1973) (see Neighbors 1980) and this resulted in the following definition
to domain analysis: “A domain analysis is an attempt to identify the objects,
operations and relationships between what domain experts perceive to be im-
portant about the domain.” Here Neighbors quoted Balzer’s (1973) definition as
follows: “A model of the domain must be built and it must characterize the rel-
evant relationships between entities in the problem domain and the actions in
that domain.” Neighbors argues that this is the definition of a problem domain.
But if one reads more closely Balzer’s (1973) article and carefully reads Neigh-
bors definition, the definition itself does not define domain or problem domain,
it defines what the model of the problem domain should include.

One difficulty in domain analysis is that there is no clear definition of the
term domain. Wartik and Prieto-Diaz (1992) argue that domain can be under-
stood from two points of view. First of all, a domain can be a group of similar
applications or a program family (Parnas et al. 1989, Parnas, 1976). This point
of view is related to application areas. The problems in a domain can be identi-
tied as based on the problems that applications solve. Second, a domain can be
perceived as a business area. Here the domain is closely related with a business
objective or business needs. Depending on which standpoint is taken, definition
of a domain may become quite different.

26

We define domain here as based on Simos (1996, p. 423) who defines a
domain to be:

An abstraction that groups a set of software systems or some func-
tional areas within systems according to a domain definition shared
by a community of stakeholders. The domain can be considered to
include not only the shared terminology and definitions, but the co-
herent body of knowledge about domain systems shared by that com-
munity.

And we add some more criteria from Arango and Prieto-Diaz (1991, p.13)
that should be considered when selecting domains in SE:

1. deep or comprehensive relationships among the items of information are
known or are suspected with respect to some class of problems,

2. there is a community that has a stake in solving the problem:s,
3. the community seeks software-intensive solutions to these problems, and

4. the community has access to knowledge that can be applied to solving the
problems.

All DA approaches share the dichotomy between problem and solution
(Wartik & Prieto-Diaz, 1992). When we have identified a meaningful domain we
also have to define the solution space (Tracz, 1995). In software development the
solution space is, by definition, software-intensive. This means that a solution is
dependent on the software in one way or another.

The result of DA is a domain model. A domain model refers to those prod-
ucts that result from domain analysis. Again, the result depends on the notion
of domain and on what were the goals for DA. The domain model can focus for
example on repository, software specification, or process specification (Wartik &
Prieto-Diaz, 1992). Naturally, results can also be used for variety of other objec-
tives, e.g., gaining understanding and learning about the domain.

There are a number of domain analysis methods (see e.g. Arango & Prieto-
Diaz 1991, Arango, 1994, Wartik & Prieto-Diaz, 1992). The ideal approach to DA
should help software developers in every phase of the software development
process and it should aid in selecting appropriate components for reuse (Wartik
& Prieto-Diaz, 1992).

Arango (1994) evaluated DA methods that have a shared background, com-
positional software construction, and argued that they are equivalent. The evalu-
ated methods use inductive generalization and classification as key steps in their
processes, and they all can be mapped into The Common Process, as proposed
by Arango (1994).

Unfortunately most of the DA methods do not consider themselves as in-
tegral part of software development but rather as a separate task. Exceptions to

27

this are DA methods KAPTUR and Synthesis. (Arango, 1994.) The situation is
not that much better if we look at the use of DA from the viewpoint of software
development methods. McClure (1997) argues that domain analysis is missing
from most of the currently widely used development methods, but it has been
introduced in current CBD methods (Forsell et al. 2000). Shlaer and Mellor (1992)
have presented a domain analysis method to be used in object-oriented software
development. Their analysis method does not, however, contribute to reuse. In
the current state-of-the-practice their domain modeling is comparable with anal-
ysis phase of OO methods. Recently developed component-based development
methods (Jacobson et al. 1999, Jaaksi et al. 1999, D’Souza & Wills, 1999) do ad-
dress domain analysis as a basis for successful systematic reuse. But in these
methods DA is used more as a means to find components. Also, domain analy-
sis is only briefly described and one gets the feeling that DA is not yet an integral
part of these methods.

1.3 Summary of Papers

This thesis includes six research papers, which structurally follow the selected
research approach. First we gain our understanding with three articles: “Eval-
uation of Component-Based Software Development Methodologies”, “Use and
Identification of Components in Component-Based Methods”, and “A Modest
but Practical Software Process Modeling Technique for Software Process Im-
provement”. Although we use the word 'methodology” in the first title and
‘method’ in the second one, they are used here as synonyms. Here we aim at
improving our understanding based on the interpretations of the practice. We
want to understand the current state-of-the-art in the software development and
this is done in the first two papers. Further, we also want to know how the orga-
nizations create their software, i.e., what is the state of the practice. A technique
to gain this kind of knowledge is presented in the third paper. First three pa-
pers give us two points of view to our research area and we can interpret it more
precisely. On the one hand, we know what the research in the area of component-
based development suggests that we do. On the other hand, we gain knowledge
about how a software development company creates its software.

Next we design support for the identified problems. This is done with two
articles: “Using Hierarchies to Adapt Domain Analysis to Software Develop-
ment” and “A Model for Documenting Reusable Software Components”. The
aim here is to support practice by creating solutions to the problems that are
identified during the problem understanding. We concentrate on two specific
problems, namely domain analysis and component documentation. Here we de-
sign a domain analysis model which can be integrated into an existing software
development method. Further, we want to help in documenting components
found so that they can be reused later on.

Finally we perform improvement. This is presented in the article “Adding
Domain Analysis to Software Development Method”. Here we intervene in an

28

organization and try the created models in a software development project. Ba-
sically, we first integrate the hierarchical domain analysis method to an existing
development method. Then we use this solution in practice and try to develop
it further. We also use our component documentation model to the document
components found.

In Figure 1.3 we show how these articles relate to the Reflective Systems
Development approach (see section 1.1.3). In the following sections we describe
each article in more detail.

Research paper 6

Improve

Research papers 1, 2, and 3

Research papers 4 and 5

Understand

FIGURE 1.3 Research papers and their relation to the research approach.

1.3.1 Evaluation of Component-Based Software Development Methodolo-
gies

In an information society the users of different software are more aware of the
opportunities of modern information technologies and require constantly new
features for the software products. Software developers have to introduce new
applications to the users, and maintain and create new features in the old soft-
ware. As a result we need to find more efficient and effective ways to create
software. Nevertheless, the software industry is bound to continue the current
practices as long as the profits remain at the level they are today. Nowadays
the pressure to produce more software is so high that there are not enough de-
velopers any more. One solution to these problems is to use component-based
software development method.

Reuse does not just happen, it must be planned beforehand. For
component-based development we need methods that support activities that
are needed to create component-based software. In component-based software
development methods we have to bring quality to component use and docu-
mentation. Needless to say that we have to pay attention to the context where
components are used because without context analysis it is problematic to de-
fine what a component is and whether or not components can be successfully

29

utilized. Our research objectives are (1) to find similarities in the methodolo-
gies, through which we attempt to expose the common features and aspects in
component-based software development, and (2) to analyze differences between
methodologies to point out areas where consensus has not been achieved.

We used survey and evaluation as research methods in this study. For eval-
uation we chose three known component-based development methods, namely
Catalysis (D"Souza & Wills, 1999), OMT++ (Jaaksi et al. 1999), and Unified pro-
cess (Jacobson et al. 1999). As an evaluation framework we used NIMSAD (Ja-
yaratna, 1994) because it has a wide scope, it is not restricted to evaluation of
any particular category of methodologies, it is practical, i.e., it has been used in
several real-life cases, and it considers different use situations. Evaluation was
done by carefully reading books that describe selected methods.

For the first research question the answer is that methods have many fea-
tures that are similar. They are object-oriented and use Unified Modeling Lan-
guage (UML) as the description language. This implies that UML is seen as an
adequate means to model systems. Also, it seems evident that developer’s expe-
rience is crucial in component use and definition.

For the second research question the answer is that differences between the
methods lie in the development principles. Catalysis (D’Souza & Wills, 1999)
emphasizes types and type models and stresses formalism. OMT++ (Jaaksi et
al. 1999) seems a practical method, which provides a smooth transition from
analysis to design. Unified Process (Jacobson et al. 1999) places particular stress
on “use cases’, which guides the method users throughout the process. Another
important aspect for Unified Process is the software architecture, which is created
by the most influential use cases as early as possible.

The study contributes to the understanding of the current situation of
component-based methods, and, in particular, it reveals a few areas where these
and other methods could be improved. First of all, using components is left
solely to the experienced developers. We suggest that information about com-
ponents should be added in such a form that even less experienced developers
could use the components. Secondly, evaluation of the development method use
is neglected area in evaluated methods. Thirdly, problem formulation is done
quite implicitly in these methods. Finally, implementation of the components is
presented very briefly.

This article serves as the basis for our understanding of component-based
development. We gain insights into component-based development and we have
much firmer ground beneath us when we look for ways to improve the current
state-of-the-practice. However, this study left open some bothersome questions
about how components are explicitly identified and how they are used in the
software development. The latter question is the topic of the second article.

30

1.3.2 Use and Identification of Components in Component-Based Software
Development Methods

The component-based development tries to achieve reusability through the cre-
ation and use of components. In reuse the basic idea is to use a thing more
than once. In this study we want, first of all, to find out how the component-
based methods explicitly support the creation and use of components in the soft-
ware development. Secondly, we want to expose the areas where these methods
should be improved from the point of view of reuse.

As a research method we use survey and evaluation. This time we choose
an ‘ideal” reuse process as our evaluation framework. This we do because we
believe that component-based development methods should support same ac-
tivities that are seen necessary in the reuse process. Each method was evaluated
in terms of its support for the activities and tasks of the ‘ideal” reuse process
model.

All evaluated methods place emphasis on producing components. Also,
the coverage of the methods is quite similar according to the reuse model: they
include domain modeling, production of components, and identification of a sys-
tem. In practice, elements of component creation and use are intertwined, so it is
noteworthy that the methods, actually, integrate the production of components
into their use. The methods would be more usable if the production of compo-
nents were distinctly separated from the use of components. Although compo-
nents should be produced keeping the reuse aspect in mind, it is necessary to
realize that the two tasks mentioned face different problems and require differ-
ent solutions and need to be managed as separate processes. Because the tasks
of producing and using components are intertwined, it makes the methods more
complicated and decreases their usability from the reuse point of view. As a re-
sult, no or little information on the components is saved to assist in the further
use of those components. It is obvious that in many cases the software people do
not even know what is the necessary information that helps in finding a suitable
component.

Are the evaluated methods component-based? They are, in the sense that
they aim at well-structured architectures, where the purpose is to ease the man-
ageability of the development process and the software. However, they have
several weak areas that need to be improved if it is desired to gain the full bene-
tit from the use of components. First, the methods should put more emphasis on
the sub-processes of the component use. Secondly, methods should support the
use of components from a multi-purpose perspective rather that a single appli-
cation perspective. Thirdly, the methods should include tools to collect relevant
information on the components to be saved into a repository that could then be
effectively used when searching for suitable components.

To guide further research concerning the component-based methods we see
the following research questions as relevant:

1. How to document components of different levels so that people who are
not domain experts could use them?

31

2. What kind of a repository would be the most valuable in supporting the
reuse process?

3. How the different reuse-oriented activities (e.g. managing the reuse in-
frastructure, producing, brokering, and consuming reusable assets) can be
adapted to a software development process?

This paper together with the first one gives us good understanding of the
current component-based methods, and together they help us to interpret the
current situation. The first paper focuses on the methods at a reasonably general
level while the second one focuses on the creation and use of the components
in software development. This paper also gives us hints about what areas are
neglected in current CBDs. One area that needs support is the need of exper-
tise in reuse. This need should be decreased so that people without extensive
knowledge about application area and readily available components could prac-
tice reuse. Secondly, domain analysis is seen as important and methods do cover
that but not sufficiently. Domain analysis has little exposure and it is not pre-
sented in the central role that we expect it to be. Thirdly, documentation of the
components is in its infancy and there is not much support for this area. In later
papers where we present the domain analysis method proposed as a result of
this research and a model for documenting components we attack these prob-
lems directly. But before we can propose any solution for a company, we have
to understand its current software development process. This is done in the next

paper.

1.3.3 A Modest but Practical Software Process Modeling Technique for Soft-
ware Process Improvement

In order to improve the current software development process, one must know
what the process is like. Processes can be assessed with various models, e.g.,
CMM (Paulk et al. 1993, Paulk et al. 1995), SPICE SPICE, 2001, and ISO9001
(Kehoe & Jarvis, 1996). The problems with these models are that they require
extensive knowledge about the models and lots of resources from the target or-
ganization. Furthermore, processes are evaluated according to an ideal process,
which may not be suitable for a particular organization. In our particular case the
ideal process should include reuse processes, too. In addition, there are very few
techniques that include a process description for assessment, a modeling guide,
and a documentation guide in a single package. In this paper we present such a
technique.

As a research method we used a questionnaire to determine the suitability
of the presented technique within industrial software organizations. We con-
ducted twelve case studies in four organizations. We used the presented tech-
nique on three distinct occasions. First, we modeled the overall software devel-
opment process in those organizations. Second, we modeled the reuse of the
components in that process. Third, we produced a process model about the test-
ing in that process. The questionnaire was sent to the experts in organizations

32

who attended the modeling sessions. Based on this questionnaire we evaluate
the presented technique and compare results with experience published about
CMM-based appraisals.

According to the answers, the technique is suitable for modeling the soft-
ware process, and it identifies the points of improvement and problems with
current process. It does not, however, give any order in which those improve-
ments should take place. The target organizations have implemented some of
the suggested improvements but not in the scale expected. When comparing the
results from our technique with CMM-based appraisals it is interesting to note
that the results are roughly comparable. This technique, however, requires less
effort from target organizations.

The technique presented is usable in modeling software processes and it
gives information about the points of improvement. Organizations that want to
gain deeper understanding about their current process can use the technique.
Also, the technique is usable by consultants who have understanding about soft-
ware development. In the future, however, the technique should be improved so
that it would enable enumeration of problems and points of improvement and
give more direct advice about how to initiate improvements.

This paper presents a way of modeling and reasoning about an organiza-
tion’s current software process. The results that we gained during the process
modeling were used as the basis for the improvements that are presented in the
following papers. From the point of view of our research framework this paper
presents a method that can be used to interpret current situation from the point
of view of the organization.

1.3.4 Using Hierarchies to Adapt Domain Analysis to Software Development

Domain analysis (DA) is a prerequisite for successful component reuse and it
aims to identify possible components from the application domain, among other
things. DA is a process through which information used in software devel-
opment is identified, captured, and organized with the purpose of making it
reusable when creating new systems. Traditional development methods focus
on one application but domain analysis focuses on classes of applications.

Current component-based development methods (Jaaksi et al. 1999; Jacob-
son et al. 1999; D'Souza & Wills, 1999) use DA as one part of the development
work (Forsell et al. 2000). Unfortunately, DA is only briefly introduced and it is
used to identify possible components inside one application. The components in
these methods provide a means to manage development work. Also, the com-
ponents are seen as a way to help maintenance later on, so that changes will not
propagate all over the software.

Our problem here is twofold. On one hand, a development method needs
to use components as available resources, not only as a means to control the
development or maintenance work. On the other hand, DA needs to be part of
all of the company’s software development projects, and not residing only inside
narrow, highly specified, domains. Based on these observations we specify our

33

research question as follows: “How should the domain(s) be analyzed so that all
solutions readily available could be part of the resulting software solution, and
that results could be produced and used in everyday software development?”

We assume in this paper that domain analysis can be used to answer to this
research question. The research method here is constructive and it aims at theory
building in a form of a technique to perform domain analysis.

In the paper we present a technique called hierarchical domain analysis
(HDA). In HDA all the software a company produces is seen as a domain, and
by dividing this ‘super” domain into sub-domains, we can use results from the
domain analysis in all the software development projects the company performs.
In the paper we show the process of how to perform HDA.

This paper solves some of the problems that we identified in the previous
papers and aims to create support for the software development process. But it is
not enough that we present a technique to find and use components. There must
also exist guidelines to document found components so that they can be found in
subsequent projects, i.e., we must also support the brokering of the components.
This is the topic of the next paper of this thesis.

1.3.5 A Model for Documenting Reusable Software Components

The effective reuse of the software components needs an effective means for doc-
umenting and communicating many kinds of related information among sev-
eral stakeholders in the reuse process. The existing models for component docu-
mentation (e.g., Karlsson, 1995, NATO, 1993, Sametinger, 1997) plainly highlight
the information content required, without much attention, let alone a theoretical
basis, for the processing and communication of documents by and among the
stakeholders. Our research problem here is that we want to find a theoretically
based model for component documentation.

The research method we use in this paper is theory building. Our aim is
to present a model for component documentation. We take Lim’s reuse model
(Lim, 1998) as the starting point and we look at it through the lens of genre theory
(Yates & Orlikowski, 1992, Bazerman, 1994, Orlikowski & Yates, 1998) .

Our model for component documentation supports the reuse process. The
documentation model has two major parts: a reusable part and a part that en-
ables the reuse. The reusable part is the component itself and it becomes a part of
the final software product. The second part supports the reuse activities that are
going on when reusing the components, namely the brokering, and consuming
of the components, and the management of the reuse process.

The documentation model presented stays at an abstract level and it should
be refined at least in two ways. First of all, it should be refined to address the
specific questions that we come across when we are documenting components
in different abstraction levels, i.e., what should be addressed in the design level
differently from that in the code level, for example. Secondly, it should address
the differences in development methods.

34

This article addresses the questions that we presented in the second article.
Within the thesis as a whole, this paper supports the documentation of the found
components. Further, it addresses some basic questions in the rather neglected
area of component documentation. In the last two papers we have suggested
some solutions to the problem of supporting component reuse in software de-
velopment. In the final paper we use these results in a software development
project in an industrial setting.

1.3.6 Adding Domain Analysis to Software Development Method

When a company wants to use and create components in software development,
one critical success factor is the use of domain analysis (DA). We have presented
a domain analysis method called Hierarchical Domain Analysis (HDA) and a
documentation model for reusable components in papers four and five, respec-
tively. The objective of this paper is to try HDA in practice and to find out what
parts of it should be enhanced. Also, we try to use the presented documenta-
tion model. The research objective implies that first we integrate HDA into an
existing development method and then find out its practicality in a software de-
velopment project.

We use the action case research method (Vidgen & Braa, 1997) in this paper.
We first integrate HDA (Forsell, 2001) into TietoEnator’s in-house development
method Tieto Object. After this we use the HDA technique in a pilot project. We
evaluate our experience using Leavitt’s diamond model (Leavitt, 1965).

The integration of HDA, in our opinion, was successful in three major ways.
First of all it produced reusable business components. Secondly, it showed that
HDA is an approach that is useful. Thirdly, we gained understanding of the
refinement of HDA and we now have experience and material to educate devel-
opers within TietoEnator Corporation.

We want to point out four other contributions this study makes. First, here
we have shown how we integrated HDA into Tieto Object. We believe that our
comments about the integration should be taken into account whenever practi-
tioners intend to integrate DA into a development process. Developers must first
identify any need for reuse and objectives for it. Then one must determine the
kinds of components to be used. Only after this, one can select a domain analysis
method. We also listed the steps we took during the local method development.
Second, we showed that with HDA one can find reusable business components
and get an idea about where in the domain they can be reused. Third, we pre-
sented how to document and model the results. Fourth, we found out what kinds
of roles are needed to take advantage of the results.

The main limitations in this study are that it concentrates on one company
and on one large project. Also, we suspect that modeling an organization’s hi-
erarchy might not be the best way to model hierarchical domain. The modeling
of the hierarchy might be better when reflecting the mission of an organization
rather than the existing chain of command.

35

This research paper completes our research cycle. Problems identified and
solutions sketched are now tried out in practice successfully.

1.3.7 About the Joint Articles

The first two articles “Evaluation of Component-Based Software Development
Methodologies” and “Use and Identification of Components in Component-
Based Software Development Methods” were co-authored by Veikko Halttunen
and Jarmo Ahonen. In both of these articles the research was designed with J.
Ahonen and V. Halttunen. I conducted the research and wrote the first drafts of
the articles. The consequent versions of the articles were written jointly with V.
Halttunen and J. Ahonen.

The third joint article “A Modest but Practical Software Process Modeling
Technique for Software Process Improvement” was written with J. Ahonen and
Sanna-Kaisa Taskinen. The research design was done together with J. Ahonen. S-
K. Taskinen did the empirical part of the work. I, Ari Hiakkinen and Esko Haku-
linen, designed the first version of the process modeling technique. Later on, J.
Ahonen, E. Hakulinen, V. Halttunen, and I further refined the technique. The
tirst draft of the article was written by me. J. Ahonen and I wrote the consequent
versions of the article.

The fourth joint article “A Model for Documenting Reusable Software Com-
ponents” was written with Tero Pdivérinta. I was responsible for designing the
research. T. Pdivdrinta wrote the background about the genre-theory while I was
responsible for the reuse perspective. T. Pdivdrinta and I conducted the research
equally.

1.4 Limitations of This Study

The limitations of this study are grouped in two categories: premises and limita-
tions in the research. The premises that this study relies on are that:

1. reuse must be systematic,
2. systematic reuse can happen with components,
3. domain analysis is crucial for successful component reuse, and

4. only by documenting the components can we assure successful reuse.

The first premise requires that we must focus on reuse process and that we
must define and plan reuse beforehand. Our systematic approach requires that
we have to know what kind of reuse we are planning to do. The second premise
limits our view to the reuse of the components. We acknowledge that there are
other types of reuse that are successful and can be used to achieve same sort
of goals as in this study. The third premise requires that reuse process and the
successful reuse of components must rely on domain analysis. As stated above,

36

the domain analysis is the only technique that software reuse community have
presented to foster reuse in software development. We take this as granted. The
fourth premise requires us to focus on the documentation in the software reuse.
When components are identified and created, we do not consider them reusable
unless they are properly documented for the possible users.

We focused only on domain analysis and component documentation as
ways to improve current way of developing software. There are other ways as
well. For example, there are generative reuse approaches which were wholly ex-
cluded in this study. Nevertheless, we believe that if a company wants to create
components and use these components later on, domain analysis is one of the
first steps that it should take, and if a company creates components they should
be documented somehow.

There are number of limitations in the conduct of the research, too. The
limitations are:

1. the main results rely on one action case study,
2. the focus of the reuse is from the developer’s point of view,
3. the research cycle was conducted only once, and

4. there is no way to model the way business aspect services are dependent
on specific software aspect solutions.

The major limitation in the conduct of the research is that the final paper,
where the solutions are tried out in practice, concerns one company only. Al-
though we argue that integration of any technique is situation bound and de-
pends on the environment, one can always claim that in this study we have tested
our solutions in one company only. Based on this single case study we can not
determine if HDA is suitable, for example, in modelling embedded software.

The second limitation is that we have focused only on the reuse in software
development and our focus is limited to the software developer’s point of view.
The management of the reuse process and the software development process is
not considered. This does not mean that we do not see these issues as important.
We are first to admit that the road towards successful reuse starts with the sup-
port of the upper management and reuse should be supported throughout the
organization.

The third limitation points out, that RSD can be viewed as a continuous
improvement cycle. Here we have completed the research cycle once and now
we would have good basis to do it again.

The fourth limitation focuses to the limitation of the hierarchical domain
analysis. Currently there is no way to model how certain business aspect’s ser-
vice is dependent on particular software aspect’s solutions. This is not important
when we model design pattern type components but if we model code compo-
nents then there should be a way to see instantly what kind of system and mid-
dleware software must exist. In its current form HDA requires component user

37

to read the documentation of a component to determine what kind of software
any particular component requires.

1.5 Conclusions

This study is about how to improve component reuse in software development.
More specifically, this study explores how to support reuse-oriented software
development. Our research questions have been:

1. What are the specific limitations for reuse in the current component-based
software development methods?

2. How should reusable components be created and used in software devel-
opment?

3. How the components that are created should be documented in order to
make them reusable in other development projects?

The answer to the first question is that current component-based devel-
opment methods aid more in the creation of the components, and not in their
use. Also, the components are seen as a means to manage software development
process, because with the components the different parts of the software can be
created and maintained independently, and maintenance and enhancements do
not propagate to other parts of the software.

Our second question is derived from the problems we encountered with
while answering to the first research question. We have proposed that domain
analysis could also help in using components, not only in creating them. With
the help of the hierarchical approach to domain analysis, software developers
can find components in a variety of domains and use results from one domain
across different domains.

The third research question can also be derived from the answer to the first
research question. One limitation that all the evaluated methods have is that
they do not give any specific support to documentation of the components. We
proposed a model that would help a company to create documentation for their
reusable components.

We can see that this study makes four major contributions. First, it evalu-
ates three known component-based software development methods. Any com-
pany that wish to start using component-based development method can use
the results of the evaluations. Results from these evaluations should also help
the research community in method development in weak areas identified.

The second contribution is a technique to model companies” software pro-
cesses practically and economically. The technique can be used as a first step
when a company wants to initiate process improvement.

The third contribution is the hierarchical domain analysis that gives also
guidance in the use of components while current domain analysis methods focus

38

only on finding and defining components. Hierarchical domain analysis can be
used by companies who want to make their current way of creating software
more reuse-oriented.

The fourth contribution is the documentation model for reusable compo-
nents. When companies want to take a systematic approach to the software reuse
and when these companies are designing more specific component documenta-
tion or a repository description, they can use this documentation framework.
Also, the documentation model should be interesting for further study by re-
searchers, because this area needs further improvement.

The results that are presented in this thesis are not biased towards any spe-
cific software development method or any implementation technique (i.e. pro-
cedural or object-oriented). The results should be usable by companies that wish
to start using a reuse-oriented approach to their software development. Never-
theless, one must bear in mind, that the case study presents results from a single
company, which creates tailored and packaged software for its customers. The
software thus created is business-oriented.

In the future, more emphasis should be placed on the empirical testing of
the results. This means that the results, especially HDA and the component doc-
umentation model, should be used in a variety of companies and real-life soft-
ware development projects. In this way, both the HDA and the documentation
model can be refined further.

References

Acuia, A., Lopez, M., Juristo, N., Moreno, A., A Process Model Applicable to
Software Engineering and Knowledge Engineering. International Journal
of Software Engineering and Knowledge Engineering, Vol. 9, No. 5, 1999,
pp. 663-687.

Arango, G., Domain Analysis Methods. In Schifer, W., Prieto-Diaz, R., Mat-
sumoto, M. (eds.), Software Reusability. Ellis Horwood, 1994, pp. 17-49.

Arango, G., Prieto-Diaz, R., Introduction and Overview: Domain Analysis Con-
cepts and Research Directions. In Prieto-Diaz, R., Arango, G. (eds.), Do-
main Analysis and Software Systems Modeling, IEEE Computer Society
Press Tutorial, Los Alamitos, CA, 1991, pp. 9-32.

Balzer, R., A Global View of Automatic Programming. Proceedings of the Third
Joint Conference on Artificial Intelligence, SRI International, August 1973,
pp- 494-499.

Bauer, F, In Naur, P, Randell, B.(eds.), Software Engineering: A Report on
a Conference Sponsored by the NATO Science Committee, NATO, 1969,
Cited in (Pressman, 2000). NATO Conference held in Garmish, Germany,
1968.

39

Bazerman, C., Systems of Genres and the Enactment of Social Intentions, in
Freedman A., Medway, P. (Eds.), Genre and the New Rhetoric ,Taylor &
Francis, London, 1994, pp. 79-101.

Biggerstaff, T., Richter, C., Reusability Framework, Assessment, and Directions.
IEEE Software, Vol. 4, No. 2, March 1987, pp. 41-49.

Boehm, B., Software Engineering. IEEE Transactions on Computers, Vol. C-25,
No. 12, December 1976, pp. 1226-1241.

Boehm, B, Software Engineering Economics. Prentice-Hall Inc., Upper Saddle
River, NJ, 1981.

Boehm, B., A Spiral Model of Software Development and Enhancement. ACM
SIGSOFT Software Engineering Notes, Vol. 11, No. 4, August 1986, pp.
14-24.

Bosch, J., Design & Use of Software Architectures. Addison-Wesley, 2000.

Brooks, E., No Silver Bullet - Essence and Accidents of Software Engineering.
In Kugler, H.-J. (ed.), Information Processing '86, Elsevier North-Holland,
1986, pp. 1069-1976.

Brooks, F.,, The Mythical Man-Month: Essays on Software Engineering, An-
niversary Edition. Addison-Wesley Longman, Inc., 1995.

Cook, J., Wolf, A., Discovering Models of Software Processes from Event-Based
Data. ACM Transactions on Software Engineering and Methodology, Vol.
7,No. 3, July 1998, pp. 215-249.

Davis, A., Bersoff, E., Comer, E., A Strategy for Comparing Alternative Software
Development Life Cycle Models. IEEE Transactions on Software Engineer-
ing, Vol. 14, No. 10, October 1988, pp. 1453-1461.

D’Souza, D., Wills, A., Objects, Components, and Frameworks with UML: The
Catalysis Approach, Addison-Wesley, 1999.

Dusink, L., van Katwijk, J., Reuse Dimensions. Proceedings of the the 17th in-
ternational conference on software engineering on Symposium on software
reusability , Seattle, Washington, April 28-30th 1995, Software Engineering
Notes, Volume 20, No. SI, August 1995, pp. 137-149.

Fayad, M., Schmidt, D., Johnson, R., Building Application Frameworks: Object-
Oriented Foundations of Framework Design. John Wiley & Sons, Inc., 1999.

Frakes, W., Terry, C., Software Reuse: Metrics and Models, ACM Computing
Surveys, Vol. 28, No. 2, June 1996, pp. 415-435.

40

Freeman, P.,, Gaudel, M.-C., Building a Foundation for the Future of Software
Engineering. Communications of ACM, Vol. 34, No. 5, May 1991, pp. 31-
33.

Forsell, M., Using Hierarchies to Adapt Domain Analysis to Software Develop-
ment. in Sein, M., Munkvold, B., Orvik, T., Wojtkowski, W., Wojtkowski, W.
G., Zupandig, J. (eds.), Contemporary Trends in Systems Development. Pa-
pers presented at ISD2000, the Ninth International Conference on Informa-
tion Systems Development: Methods and Tools, Theory and Practice, Au-
gust 14-16, 2000, Kristiansand, Norway. Kluwer Academic/Plenum Pub-
lishers, New York, NY, 2001, pp. 105-118.

Forsell, M., Halttunen, V., Ahonen, J., Use and Identification of Components in
Component-Based Software Development Methods. Frakes, W. (ed.), Soft-
ware Reuse: Advances in Software Reusability. Proceedings of the 6th In-
ternational Conference, ICSR-6, Vienna, Austria, June 2000. Lecture Notes
in Computer Science 1844. Springer-Verlag, 2000.

Gamma, E., Helm, R., Johnson, R., Vlissides,]J., Design Patterns: Elements of
Reusable Software. Addison-Wesley, 1995.

Gibson, R., Software Process Modeling. In McGuire, E. (ed.), Software Process
Improvement: Concepts and Practices, Idea Group Publishing, Hershey,
PA, 1999, pp. 1-16.

Gilb, T., Principles of Software Engineering Management. Addison-Wesley
Publishing Company, 1988.

Gomaa, H., The Impact of Rapid Prototyping on Specifying User Requirements.
ACM SIGSOFT Software Engineering Notes, Vol. 8, No. 2, April 1983, pp.
17-28.

Graham, D., Incremental Development: Review of Non-monolithic Life-cycle
Development Models. Information and Software Technology, Vol. 31, No.
1, January/February 1988, pp. 7-20.

Griss, M., Favaro, J., Walton, P., Managerial and Organizational Issues - Starting
and Running a Software Reuse Program. In Schéfer, W., Prieto-Diaz, R,,
Matsumoto, M. (eds.), Software Reusability. Ellis Horwood, 1994, pp. 51-
78.

Horowitz, E., Munson, J., An Expansive View of Reusable Software. IEEE Trans-
actions on Software Engineering, Vol. 10, No. 5, September 1984, pp. 477-
487.

Humphrey, W., Managing the Software Process. Addison-Wesley Publishing
Company, Inc. 1989.

41

Jaaksi, A., Aalto, J.-M., Aalto, A., Vitto, K., Tried & True Object Develop-
ment: Industry-Proven Approaches with UML. Cambridge University
Press, 1999.

Jackson, M., System Development. Prentice Hall, 1983.

Jacobson, 1., Booch, G., Rumbaugh,]J., The Unified Software Development Pro-
cess. Addison-Wesley, 1999.

Jacobson, 1., Christerson, M., Jonsson, P., Overgaard, G., Object-Oriented Soft-
ware Engineering: A Use Case Driven Approach. ACM Press, New York,
NY, 1992.

Jacobson, 1., Griss, M., Jonsson, P., Software Reuse: Architecture, Process and
Organization for Business Success. Addison-Wesley, 1997.

Jayaratna, N., Understanding and Evaluating Methodologies. McGraw-Hill
Book Company, Maidenhead, England, 1994.

Karlsson, E., Software Reuse: a Holistic Approach. John Wiley & Sons Ltd.,
Chichester, England, 1995.

Kehoe, R., Jarvis, A., ISO 9000-3: A Tool for Software Product and Process Im-
provement, Springer-Verlag, New York, 1996

Koskinen, M., Process Metamodelling: Conceptual Foundations and Applica-
tion. Ph.D. Thesis, Jyvédskyld Studies in Computing, No. 7, University of
Jyvaskyla, 2000.

Krueger, C., Software Reuse. ACM Computer Surveys, Vol. 24, No. 2, June
1992, pp. 131-183.

Leavitt, H., Applied Organizational change in industry: structural, technologi-
cal and humanistic approaches. In March, J. (ed.), Handbook of Organiza-
tions, Rand McNally & Company, 1965, 3rd printing 1970.

Lim, W., Effects of Reuse on Quality, Productivity, and Economics. IEEE Soft-
ware, Vol. 12, No. 5, September 1995, pp. 23-30.

Lim, W., Managing Software Reuse. Prentice Hall Inc. Upper Saddle River, NJ,
1998.

Lientz, B., Swanson, E., Tompkins, G., Characteristics of Application Software
Maintenance. Communications of the ACM, Vol. 21, No. 6, June 1978, pp.
466-471.

Mathiassen, L., Reflective Systems Development. Scandinavian Journal of In-
formation Systems, Vol. 10, No. 1&2, 1998, 67-117.

42

Mathiassen, L., Seewaldt, T., Stage, J., Prototyping and Specifying: Principles
and Practices of a Mixed Approach. Scandinavian Journal of Information
Systems, Vol. 7, No. 1, 1995, pp. 55-72.

Mathiassen, L., Stage, J., The Principle of Limited Reduction in Software Design.
Information, Technology an People, Vol. 6, No. 2-3, 1992, pp. 171-185.

McClure, C., Software Reuse Techniques: Adding Reuse to the Systems Devel-
opment Process. Prentice Hall PTR, New Jersey, 1997.

Mcllroy, M., Mass-produced Software Components. In Naur, P, Randell, B.,
Buxton, J. (eds.), Software Engineering Concepts and Techniques, Proceed-
ings of the NATO Conferences, Petrocelli/Charter, 1976, p. 88-89. NATO
Conference held in Garmish, Germany, 1968.

NATO, NATO Standard for the Development of Reusable
Software Components, Volume 1 (of 3 Documents),
(http:/ /www.asset.com/WSRD/abstracts/archived / ABSTRACT _528 . html),
(accessed 1 June 2000), 1993.

Neighbors, J., Software Construction Using Components. Ph.D. thesis, TR-160,
University of California, Irvine, ICS Department, 1980.

Neighbors, J., Draco: A Method for Engineering Reusable Software Systems.
In Biggerstaff, T., Perlis, A. (eds.), Software Reusability Volume I: Concepts
and Models, ACM Press, New York, NY, 1989, pp. 295-319.

Nunamaker, J., Chen, M., Purdin, T., Systems Development in Information Sys-
tems Research. Journal of Management Information Systems, Vol. 7, No. 3,
1991, 89-106.

Orlikowski, W.J., Yates, J., Genre Systems: Structuring Interaction through
Communicative Norms, Sloan School of Management Working Paper
#4030, MIT, http://ccs.mit.edu/papers/CCSWP205), (accessed 12 July
1999), 1998.

Osterweil, L., Software Processes Are Software Too. Proceedings of the 9th
International Conference on Software Engineering, Monterey, California,
USA, May 1987, IEEE Computer Society Press, USA, 1987, pp. 2-13.

Parnas, D., On the Design and Development of Program Families. IEEE Trans-
actions on Software Engineering, Vol. 5, No. 2, March 1976, pp. 1-9.

Parnas, D., Clemens, P., Weiss, D., Enhancing Reusability with Information Hid-
ing. In Biggerstaff, T., Perlis, A. (eds.), Software Reusability, Volumel: Con-
cepts and Models. ACM Press, New York, NY, 1989, pp. 141-158.

43

Paulk, M., Curtis, W., Chrissis, M., Weber, C., Capability Maturity Model
for Software, Version 1.1. Technical Report, CMU/SEI-93-TR-24, DTIC
ADA263404, 1993.

Paulk, M., Weber, C., Curtis, B., Chrissis, M. 1995. The Capability Maturity
Model: Guidelines for Improving the Software Process, Addison-Wesley,
Reading Massachusetts, 1995.

Pressman, R., Software Engineering, Fourth Edition. Addison-Wesley, 1992.

Pressman, R. (Adapted by Ince, D.), Software Engineering: A Practitioner’s Ap-
proach, European Adaptation, Fifth Edition. Addison-Wesley, Maidenhead
Berkshire, 2000.

Prieto-Diaz, R., Historical Overview. In Schifer, W., Prieto-Diaz, R., Matsumoto,
M. (eds.), Software Reusability. Ellis Horwood, 1994, pp. 1-16.

Prieto-Diaz, R., Freeman, P., Classifying Software for Reusability. IEEE Soft-
ware, Vol. 4, No. 1, January 1987, pp. 6-16.

Rombach, H., Schifer, W. Tools and environments. In (Schifer, W., Prieto-Diaz,
R., Matsumoto, M. (eds.), Software Reusability. Ellis Horwood, 1994, pp.
113-116.

Royce, W., Managing the Development of Large Software Systems: Concepts
and Techniques, 1970 WESCON Technical Papers, Western Electric Show
and Convention, Los Angeles, August 1970, pp. A/1-1- A/1-9.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F, Lorensen, W., Object-
Oriented Modeling and Design. Prentice Hall, Englewood Cliffs, NJ, 1991.

Sametinger, J., Software Engineering with Reusable Components, Springer,
1997.

Schach, S., Classical and Object-Oriented Software Engineering, Third Edition.
McGraw-Hill, 1996.

Shlaer, S., Mellor, S., Object Lifecycles: Modeling the World in States, Prentice-
Hall, Yourdon Press Computing Series, 1992.

Simos, M., Organization Domain Modeling (ODM) Guidebook Version 2.0, In-
formal Technical Report for Software Technology for Adaptable, Reliable
Systems (STARS), STARS-VC-A025/001/00, 14 June 1996.

Sommerville, I., Software Process Models. ACM Computing Surveys, Vol. 28,
No. 1, March 1996, pp. 269-271.

SPICE, http:/ /www.sqi.gu.edu.au/spice/, visited 31.8.2001.

44

STARS, STARS Conceptual Framework for Reuse Pro-
cesses (CFRP), Volume I Definition, Version 3.0, STARS-

VC-A018/001/00, Informal Technical Report, 1992.
(http:/ /www.asset.com/WSRD/ASSET /A /495// ASSET_A _495.tar.gz),
(accessed 1 June 2000).

Szyperski, C., Component Software. Addison-Wesley, 1997.

Taivalsaari, A., A Critical View of Inheritance and Reusability in Object-oriented
Programming. Ph.D. Thesis, Jyvdskyld Studies in Computer Science, Eco-
nomics and Statistics, No. 23, University of Jyvaskyld, 1993.

Tracz, W., Confessions of a Used Program Salesman: Institutionalizing Software
Reuse. Addison-Wesley Publishing Company, Reading, MA, 1995.

Tolvanen,].-P.,, Incremental Method Engineering with Modeling Tools. Ph.D.
Thesis, Jyvaskyld Studies in Computer Science, Economics and Statistics,
University of Jyvaskyld, No. 47, 1998.

de Vasconcelos, F., Werner, C., Organizing the software Development process
Knowledge: An Approach Based on Patterns. International Journal of Soft-
ware Engineering and Knowledge Engineering, Vol. 8, no. 4, 1998, pp.
461-482.

Vidgen, R., Braa, K., Balancing Interpretation and Intervention in Information
System Research: The Action Case Approach. Lee, A., Liebenau, J., De-
Gross, J. (eds.), Information Systems and Qualitative Research. IFIP, Chap-
man & Hall, London, 1997, pp. 524-541.

Wartik, S., Prieto-Diaz, R., Criteria for Comparing Reuse-oriented Domain
Analysis Approaches. International Journal of Software Engineering and
Knowledge Engineering, Vol. 2, No. 3, September 1992, pp. 403-431.

Wieringa, R., A Survey of Structured and Object-Oriented Software Specifica-
tion Methods and Techniques. ACM Computing Surveys, Vol. 30, No. 4,
December 1998, pp. 459-527.

Yates, J., Orlikowski, W.]J., Genres of Organizational Communication: A Struc-
turational Approach to Studying Communication and Media, Academy of
Management Review, Vol. 17, No. 2, 1992, pp. 299-326.

Yourdon, E., (ed.) Classics in software Engineering. Yourdon Press, New York,
NY, 1979.

Yourdon, E., Modern Structured Analysis. Prentice Hall, Englewood Cliffs, NJ,
1989.

2 EVALUATION OF COMPONENT-BASED
SOFTWARE DEVELOPMENT METHODOLOGIES

Forsell, M., Halttunen, V.T, Ahonen, J.!, “Evaluation of Component-Based Soft-
ware Development Methodologies”. Penjam, J. (ed.), Proceedings of the Fenno-
Ugric Symposium on Software Tecnology, FUSST’99, Tallin, Estonia, Institute of
Cybernetics at Tallinn Technical University, 1999, pp. 53-63.

©Institute of Cybernetics at TTU, Tallinn, Estonia, 1999. Reprinted with permis-
sion.

fInformation Technology Research Institute, University of Jyvaskyls,

Abstract

There are hopes that by using components the quality of software products can
be improved. Besides, software production could become faster and the com-
plexity of programs would be more controllable. Component-based software
development aims at reusable computer programs. In order to harvest all the
potential benefits from component-based software development, more emphasis
should be put on the systematicity of the software development process: there
is a need for valid methodologies that guide the software development process.
In this study we evaluate three methodologies that support component-based
thinking. In the evaluation we utilized the NIMSAD framework. Through eval-
uation we try to expose the similarities and differences in the evaluated method-
ologies. The similarities show us, we believe, the areas where a certain level of a
consensus has been reached, while the differences not only tell us about missing
consensus but can also reveal weak points in component software development
seen as an entire process.

46
2.1 Introduction

In everyday life the importance of software programs is rapidly increasing.
Household appliances, entertainment electronics and Internet services are ex-
amples of areas where ever more computer programs are needed. At the same
time, the nature of working life has become more information intensive: in brief,
we have entered into the information society. The users of different software are
more aware of the opportunities of modern information technologies and require
constantly new features in the software products. As a result of the increasing
size and usage of programs more bugs can be found in software [10]. So, how to
keep the quality of software high?

Taivalsaari [23] has argued that the software business will continue on the
current basis as long as the profits remain high. Today, it seems that it is not a
question of money: the need for improved software development processes is
inevitable because of the enormous need for new software products. One piece
of evidence for this trend is that in Europe and USA there is a shortage of 700
000 people in the software industry [20]. Besides increasing education of pro-
fessionals in software development we also need new technologies and methods
to develop high quality software products at an increasing speed. One solution
could be the reuse of programs or program components [18], [15], [16].

Reusability technologies can be divided into two major categories: com-
position technologies and generation technologies [3]. Composition-based tech-
nologies aim to build programs from atomic components, whereas generation
technologies aim to generate programs from recurring patterns or structures (i.e.,
4 GL). In this study we concentrate on composition-based approaches. Compo-
nent reuse at the moment is more or less ad hoc and it is usually based on one
developer’s knowledge and skills [5]. Computer programs are developed in al-
most every house, and, in relation to the extent of the software business, there are
too few professional features in the processes of software production. As Jack-
son [13] put it, one can call himself a software engineer if he has bought a visual
programming tool (like Visual Basic) and has learnt to make ‘programs” with it.

Getting closer to the computer’s ‘soul’, some successful examples of code
reuse can be found: UNIX subprograms, mathematical and program language li-
braries, database interfaces and GUI toolkits. All of these are limited to a narrow
domain which is well understood. Software developers can quickly learn these
domains through education and work [3]. Research into components has also
concentrated on a limited view: the focus has been on the interfaces and proper-
ties of components rather than on the entire process of component creation and
use. Furthermore, there is no integrated model of component use in software de-
velopment [7]. Reuse is not a thing that just happens. Basili [2]stated in 1994 that
current software development methodologies more or less prevent reuse. Com-
ponent usage has to be planned [11], [17], [22], and therefore we need method-
ologies which are seen as a means to achieve a more rigid approach to software
development (cf.[1]). In component-based software development methodologies
(CBM) we have to bring quality to component use and documentation. CBMs

47

have to pay attention to the context where they are used because, without ana-
lyzing the context, it is problematic to define what a component is and whether
or not components can be successfully utilized [5].

Evaluation of different software development methodologies has been car-
ried out (i.e., object-oriented methodologies [9]) but so far there is no compara-
tive studies on component-based methodologies. In this study we aim to con-
tribute to this issue. Our objective is (1) to find similarities in the methodolo-
gies, through which we attempt to expose the common features and aspects in
component-based software development, and (2) to analyze differences between
methodologies to point out areas where consensus has not been achieved For
the possible methodologies we set the following two criteria: (1) the component
usage viewpoint had to be explicitly taken into account, and (2) the methodol-
ogy should have been published in sufficient breadth (i.e. as a book). Using
these criteria we selected the following methodologies for deeper consideration:
Catalysis [6], OMT++[10], and Unified Process [12]. Each of these methodologies
uses components in their process and is described in a recently published book
(in 1999).

2.2 Evaluation framework

Different approaches to comparing methodologies are considered by Avison and
Fitzgerald [1], and Nielsen [19], for example. Based on these two studies we
chose the NIMSAD' framework [14] as our analysis tool. This framework was
chosen for the following reasons: (1) it has a wide scope (it uses the entire prob-
lem solving process as the basis of evaluation), (2) it is not restricted to evaluation
of any particular category of methodologies, (3) it is practical, it has been used
in several real-life cases (cf. [19], [14]), and (4) it considers different use situa-
tions (cf. [19]). According to NIMSAD, methodologies are evaluated through
four elements, which are: the methodology context, the methodology user, the
methodology, and finally the way the methodology evaluates the other three el-
ements (see Table 1).

The methodology context means the situation where the methodology is
intended to be used and what is considered as important in this situation. Usu-
ally, the context is the organization whose problems are to be solved by the soft-
ware being developed. The software development process is supported by the
methodology which, in turn, is used by the methodology user. So, the method-
ology user is the developer. It is necessary to know what guides his decisions,
what kind of abstract thinking is required from him, how well he has to know
the methodology he utilizes, and how he can acquire the necessary skills. These
things are included in the evaluation of the methodology user element.

From the methodology element we would like to know how it supports the
problem-solving process. A methodology guides and assists the methodology
user in seeing the problem in certain way, in asking relevant questions, and in

! Normative Information Model-based Systems Analysis and Design

48

TABLE 2.1 The four elements of the NIMSAD framework and the questions used

in the analysis.

Elements and Questions

Explanation

Methodology Context (MC)

Use situation

Start for methodology use
Customers and problem
owners

Context description

Culture and politics of
methodology use

Risks in describing context

Risks of methodology

What kind of situations does the methodology suit?
Which incidents initiate the use of the methodology?
Who are the customers and problem owners (apart
from users)?

How is the context described for the system to be
built?

What is the culture and politics of methodology use,
explicitly and implicitly (in parenthesis)?

What risks does the methodology identify when de-
scribing context?

What are the risks in using the methodology?

Methodology User (MU)

Users motives and values
Needed abstract reasoning

Needed skills

What are users” motives and values (implicitly)?
What level of abstract reasoning is required from the
user?

What skills does the user need to accomplish tasks
required in methodology use?

Methodology (M)

Problem situation and prob-
lem boundaries

Diagnosis of situation
Prognoses for system

Problem defining

Deriving notional systems
Logical design

Physical design

Implementing the designs

How does the methodology help in understanding
the particular situation and the boundary setting?
How do you diagnose what kind of system is
needed?

How do you make a prognosis for the system to be
built?

How do you define problems which need to be
solved?

How you get systems which need to be described?

Is this phase done? How do you implement this
phase?

Is this phase done? How do you implement this
phase?

Is the implementation phase described? What is in-
cluded in it?

Evaluation (E)

Before intervention
During intervention
After intervention

How are MC /MU /M evaluated before intervention?
How are MC/MU /M evaluated during intervention?
How are MC /MU /M evaluated after intervention?

49

overcoming any new problems that arise. Thus, regarding the methodology ele-
ment, we evaluate how the methodology supports the problem-solving process,
that is: problem formulation, solution design, and implementation. In Table 2.1
the three basic stages are further distinguished as follows: Problem formulation
consists of understanding the situation, performing the diagnosis, defining the
prognosis outline, defining problems, deriving notional systems. Solution design
consists of performing conceptual/logical design, performing physical design.
Implementation is also one stage in Table 2.1 (implementing the designs).

Jayaratna [14] defines an extensive set of questions to analyze each element
of the NIMSAD framework. Avison and Fitzgerald [1] have summed up Ja-
yaratna’s questions. We have used their list of questions as a starting point in
our analysis.

Jayaratna [14] emphasizes that NIMSAD does not try to rank methodolo-
gies. We would also like to remind the reader that we are not going to reveal one
methodology’s superiority or inferiority but our purpose is to analyze whether
some of the evaluated elements are taken into account in the methodology or
not. When selecting methodologies for practical purpose, the evaluator should
set his own criteria for evaluating methodologies (based on the context where the
methodology is used) but he can use our analysis as a starting point or a frame
for a more detailed evaluation that pursues the selection of the "best methodol-
ogy’. NIMSAD especially stresses the early phases of methodology use, which
are problem formulation and problem situation. Also the methodology context
and the methodology’s ‘internal” evaluation (self-evaluation) are seen as crucial
in the framework. We underline the role of the evaluation element by citing Ja-
yaratna’s own words in [14] on page 108:

“No problem-solving process can be considered complete until evalu-
ation has been carried out. It is the evaluation which helps us to mea-
sure the effectiveness of the problem-solving process and the problem
solver in the ‘problem situation’ - unless this element is considered
there is no way of establishing that the "problems” have been success-
tully resolved. Despite the importance of evaluation, however, we
find that very few methodologies incorporate it into their steps.”

2.3 Evaluation

In this section we present the results of our study where Catalysis, OMT++
and Unified Process were evaluated. The element methodology is considered
a problem-solving process comprising the three major phases introduced in Sec-
tion 2: problem formulation, solution design and implementation. The summary
of results is presented in Table 2.2.

50

TABLE 2.2 Results of the evaluation of component-based methodologies accord-
ing to NIMSAD framework elements and selected viewpoints of each element.

Element Catalysis OMT++ Unified Process
Methodology Con-
text
Use situation All Large, interactive All
systems
Start for method- User require- New features, Former Systems,
ology use ments, BPR earlier plans, earlier plans, User
notification customer needs requirements
Customers and System users, System users, sys- Mass markets,
problem owners customer man- tem developers organizations,
agement in-house
Context descrip- Business models Domain models, Business models,
tion Use Cases domain models
Culture and poli- N/A (technical N/A, (technical N/A (technical
tics of methodol- rationality) rationality) rationality)
ogy use
Risks in describ- Customer does N/A, assumes Too precise de-
ing context not know what he that qualified scriptions
wants people do this
Risks of method- Customers are Inexperienced Relays methodol-
ology use in de- seen as problems, methodology ogy user’s abili-
scribing context assumes correct users, assumes ties/knowledge
requirements correct require-
ments
Methodology User
User motives, val- N/A (technical N/A (technical N/A (technical
ues rationality) rationality) rationality)
Needed abstract High, new con- Early in life cycle High, early in

reasoning cepts for CBD are needed more life cycle needed
introduced more

Needed skills Domain and Domain, method- Methodology, Do-
methodology ology, program- main
knowledge ming language

Methodology

Problem situation Use Case mod- Requirements, Business and

and problem els, customer Use Case models, domain mod-

boundaries feedback, exist- former plans, els, dictionary,
ing information, customer reports, former systems,
dictionary dictionary customers

continues

TABLE 2.2 (continued)

51

Element Catalysis OMT++ Unified Process

Diagnosis of situ- Use Cases, Type Domain mod- Business and

ation models, System els, use cases, domain mod-
Context models requirements lists els, Use Cases,

Prognoses for sys-
tem
Problem defining

Deriving notional
systems

Logical design

Physical design

N/A

N/A

N/A

Boundaries be-
tween humans
and between
components

Internals of com-
ponents

Use Cases

Requirements
classification and
evaluation

N/A (Use cases)

Conceptual mod-
els, solutions to
the problem, User
interface

MVC++ -model

requirements lists
Vision of the best
possible system
Technical prob-
lems

N/A (Use Cases,
software architec-

ture)

Architecture de-
scription, Use
cases, use case

analysis, analysis
models

Use case designs,
design models

Implementing the N/A, some strate- Programming, Programming,
designs gies for iterative testing, debug- testing, transition
approach ging to customer

Evaluation

Before interven- N/A N/A N/A

tion

During interven- N/A N/A N/A

tion

After intervention N/A N/A Methodology
User, Methodol-
ogy

2.3.1 Element 1: Methodology context

Context description is seen as crucial in every methodology. Unified Process
seemed to be most in-depth in context description. All the three evaluated
methodologies assume that situation, problem and context can be described in to
the extent that development work can continue based on the information gath-
ered, although the coverage or quality of the information is not formally tested.
Catalysis comes closest to formal testing in formally describing pre- and post-
conditions and in stressing formalism in descriptions.

Catalysis and Unified Process regard the methodology as suitable in almost
every possible software development situation. Unified Process presents itself as

52

an umbrella for software development processes and it can be applied to diver-
sified applications areas, different types of organizations, different competence
levels, and different project sizes [12]. Similarly, according to Catalysis, it suits
embedded software development as well as regular business software develop-
ment. Catalysis provides a set of process patterns from which one can select
those appropriate for different situations. OMT++ considers itself suitable for
large interactive software development. Altogether, consensus prevails in that
all the evaluated methodologies believed that every methodology has always to
be suited to the particular development situation.

The methodologies consider the methodology context an important factor,
and they recommend domain modeling for describing the context where the
methodology is used. By modeling the context we can clarify the function of
the domain, and we can see what skills and what kind of knowledge are re-
quired within the domain. The methodologies employ "use cases’ for modeling
the problem and defining the system being developed. In our estimation, Unified
Process provides most depth to modeling the context.

As a result of this study we believe that Unified Process may serve the de-
veloper as an umbrella for different approaches of software development. In-
stead, we were not convinced of the suitability of Catalysis for this purpose.
OMT++ is claimed to suit large interactive systems development (especially at
Nokia). On the basis of our study we have no argument against it.

2.3.2 Element 2: Methodology User

The methodology user’s values and motives are implicitly presented in method-
ologies but all the evaluated methodologies assume that the methodology user
is driven by technical rationality so that it is both his and the customer’s aim to
produce the rationally best system on the basis of the customer’s needs.

According to the evaluated methodologies the methodology user has to be
experienced and he has to know the domain well. By an ‘experienced user’ the
methodologies imply a user who has been working in the software development
tield for several years and knows how the business (domain) works. Further-
more, he has to know the stages of the methodology and the used notations.
Experience was considered so important that identifying, defining and model-
ing components was left only to experienced developers. Experience was not
seen as equally critical in the design and implementation phases. Only Catalysis
uses design patterns and frameworks as an important part of the methodology.
By using these it aims to help ”structuring” the methodology users” experience
in such a way that the solutions arrived at once can be reused later.

2.3.3 Element 3: Methodology

Problem formulation. With regard to problem formulation, the evaluated
methodologies see customers merely as a means to obtain feedback and nec-
essary information. Their participation in problem formulation is only marginal.

53

However, we have to keep in mind that problem formulation is embedded or
implicitly assumed to be part of the gathering requirements for the system. Dur-
ing problem formulation methodologies set limits on the problem domain by
using domain models and use cases. These descriptions depict which parts of
the problem domain are included in and which are excluded from the system.

Problem formulation is not seen as fruitful for component use. Nearest to
this is Catalysis which describes the problem domain with type models which
themselves can include patterns and frameworks and which later on are used as
a basis for component identification and use.

Solution Design

In Catalysis it is crucial to find types which help fulfil requirements set for the
software. Types are seen as a set of objects that conform to a given type specifi-
cation.

OMT++ relies on its own MVC++ design pattern when designing a solu-
tion. In the logical/conceptual design phase it is, according to OMT++, crucial
to find the central concepts of the problem domain and to design the solution ac-
cording to these found concepts. The resulting model is called an analysis model.
Also, in the logical/conceptual design phase, the user interface is designed, and
it has to be accepted by the customer. In the physical design phase the analysis
design model and interface model are linked according to the MVC++ design
pattern.

For Unified Process it is essential to create a software architecture that
works. In the logical/conceptual phase the software architecture is designed
so far that one can be sure that also the forthcoming parts of the software and
the changes to the software are taken into account in the architecture. In Unified
Process the software development process is guided by use cases and the soft-
ware architecture. Unified Process and OMT++ see components as code compo-
nents, the main purpose of which is to replace existing components. Catalysis
puts more emphasis on design patterns and frameworks in problem solution de-
sign. Any particular interest in finding and reusing components made once, was
not found in the evaluated methodologies. Catalysis takes note of the reuse of
components made earlier but only to a minor extent. More weight was given to
defining and implementing new components.

Design Implementation

OMT++ gives most guidance for implementation. In OMT++, for example, map-
ping the object model to the rational database is explained in depth.

Unified Process gives the most extensive description of how to hand over
the software system to the customers and does this in two phases. First, the beta
version of the software is released to selected users. After testing and correction
of the system it is delivered in its entirety to the customer. During beta version

54

testing experience of use is collected, possible errors are corrected, educational
material is created, setup programs and manuals are finalized, etc.

Catalysis does not take note of design implementation to any noticeable
extent. It appears that the evaluated methodologies see language libraries, GUI-
kits, databases and so forth business as normal in the implementation phase be-
cause use of them is not discussed with any particular meaning.

2.3.4 Element 4: Evaluation

Only Unified Process points out the importance of evaluating the use of the
methodology. It also gives instructions to do this but the evaluation is carried
out after the utilization of the methodology (only) and it concerns the methodol-
ogy user and the methodology itself after each phase of the process.

2.3.5 Summary of Evaluation

Generally speaking the evaluated methodologies have many features that are
similar. This can be explained by the fact that all of them are object-oriented
and use Unified Modeling Language (UML). There are no major differences in
the way they model components. This can imply that UML is seen as an ade-
quate means to model systems so that the user of software components can get
sufficient information. The developer’s experience seems to be crucial in com-
ponent use and definition. Also the methodology user’s competence is crucial in
deriving requirements from the interactions with the customer.

The differences between the methodologies lie in the development princi-
ples. Catalysis emphasizes types and type models which are also a central means
to define and model components. Catalysis also puts weight on formalism, so
that the models at different levels of abstraction use the same concepts. OMT++
seems to be a very practical methodology, which provides a smooth transition
from analysis to design. OMT++ builds upon its own MVC++ design pattern,
which is a central part of the methodology. Unified Process, instead, places par-
ticular stress on "use cases’ which guide the methodology users throughout the
process. By employing use cases it is possible to collect requirements, to analyze
and design the system, and finally to test the system. Another crucial aspect for
Unified Process is the software architecture, which is created by the most influ-
ential use cases as early as possible in the development cycle.

24 Implications and further research

This study evaluated methodologies at quite a general level. It does not explic-
itly reveal how well a methodology supports component-based software devel-
opment. The study, however, contributes to the understanding of the current sit-
uation of component-based methodologies, and especially it reveals a few areas
where these and other methodologies could be improved. In the following we

55

analyze the implications of our study with regard to both the evaluation frame-
work (NIMSAD) and the evaluated methodologies.

The NIMSAD framework does not give any criteria for finding the 'best’
methodology. The companies pursuing this kind of selection should create their
own criteria, based on their needs and the situation where the methodology is to
be applied. Nevertheless, the following general conclusions about the evaluated
methodologies can be drawn:

e OMT++ gives quite a consistent and clear way of transforming logical mod-
els to physical ones so that the physical models are easy to implement.

o Catalysis emphasizes a formal approach and describes how pre- and post-
conditions for components can be created. Through these conditions one
can describe software requirements as specifically as needed.

e Unified Process puts much weight on the beginning and the end of the
development cycle; that is, on the one hand, on describing the context and,
on the other, on the phase where the software is passed to the customer.

From the component viewpoint, it is quite disturbing that using compo-
nents is left solely to the experienced developer. What if we do not have suitable
resources? We suggest that information about components is added in such a
form that even less experienced developers can use the components. Another
alternative is that experienced developers” experiences are recorded in design
patterns as described in Gamma et. al. [8]. Evaluation is almost totally neglected
by methodologies, only Unified Process carries out evaluation and this is done
only at the end of the project. Methodologies should put more weight on eval-
uation so that even before and during methodology use one could evaluate the
methodology and the methodology user. In our opinion, evaluating the context
might make methodology use too cumbersome. Unified Process and Catalysis
see themselves as general development process frames. We are waiting for ex-
periences and examples of how to specialize these methodologies in different
contexts. Problem formulation is implicit in all the evaluated methodologies
We would not see it as a bad thing if this was an explicit phase in methodolo-
gies. Finally, implementation, at least component implementation, is presented
quite briefly. Perhaps object-oriented programming from models which are gen-
erated during development is so straightforward that these questions are unim-
portant but we consider that guidelines or templates for component implemen-
tation would be important.

NIMSAD is quite exacting as a evaluation framework and the use of it re-
quires much time. It is not that straightforward to answer all of the elements
included and part of the questions presented in the book overlap and are am-
biguous. First of all, when starting to use the NIMSAD framework, it is good
to start by defining the questions or viewpoints you want to answer concern-
ing each element. Many questions presented in NIMSAD methodologies are an-
swered only implicitly. Therefore, ready-made specific classifications are some-
times needed. For example, when defining how culture and politics affect the

56

methodology context, you can use Schon’s [21] classification technical rational-
ity and reflection-in-action. At the moment, after using NIMSAD, the evaluator
has to create specific criteria and re-evaluate every methodology according to
specific criteria and, moreover, if any criteria are outside NIMSAD there is no
means to take these criteria into account.

We see the following features of the NIMSAD as confusing: (1) the method-
ology user is separated from the methodology context; we see that the methodol-
ogy user becomes part of the methodology context at the moment he starts to use
the methodology, (2) Jayaratna’s viewpoint on what epistemology and ontology
are differs from commonly accepted viewpoints (compare Jayaratna’s [14] com-
ments on pages 40-41 to, for example, Burrell and Morgan’s [4] comments on
ontology and epistemology), and (3) some concepts are used ambiguously; for
example on pages 30-31 Jayaratna [14] writes about the waterfall model but in
the clarifying picture it is called the waterfall method.

From the above we can derive three essential research topics: (1) to further
study which components are explicitly taken into account by the methodologies,
(2) to improve methodologies in making a context description (in the component
view sense), and to improve the component use process in methodologies, and
(3) to create a way of adding evaluation criteria to NIMSAD in such a way that it
supports the selection of methodology in a particular use and context.

2.5 Conclusions

We evaluated three component-based methodologies according to the NIM-
SAD framework [14]. The evaluated methodologies, Catalysis [6], OMT++[10]
and Unified Process [12], are quite similar in the sense that they all are object-
oriented, they use UML as a description language, they see software architecture
as a driving force in component-based development, and they see that experi-
enced developers are mandatory if component-based development is to succeed.
The methodologies differ from each other with regard to (1) the phases of a de-
velopment process when components are used, and (2) the types of components
used.

Acknowledgements

This research was supported by Tekes Technology Development Centre, Finland,
and companies participating in the PISKO project.

References

1. Avison, D, Fitzgerald, G.: Information Systems Development: Methodolo-
gies, Techniques and Tools, 2nd Edition. McGraw-Hill International (UK)
Limited (1995)

10.

11.

12.

13.

14.

15.

16.

17.

57

. Basili, V.: Facts and myths affecting software reuse. Proceedings of the 16th

International Conference on Software Engineering (1994), 269

. Biggerstaft, T., Richter, C.: Reusability framework, assessment, and direc-

tions. IEEE Software, March (1987), 41-49

Burrell, G., Morgan, G.: Sociological Paradigms and Organisational Analy-
sis. Gower Publishing Company Ltd. (1989)

. Caldiera, G., Basili V.: Identifying and Qualifying Reusable Software Com-

ponents. IEEE Computer, February (1991), 61-70

. D’Souza, D., Wills, A.: Objects, Components, and Frameworks with UML:

The Catalysis Approach. Addison-Wesley (1999)

Dusink, L, van Katwijk, J.: Reuse dimensions. Proceedings of the 17th Inter-
national Conference on Software Engineering on Symposium on Software
Reusability (1995), 137-149

. Gamma, E., Helm, R,, Johnson, R., Vlissides, J.: Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley (1995)

. Hutt, A. (editor): Object Analysis and Design: Comparison of Methods.

John Wiley & Sons, Inc. (1994)

Jaaksi, A., Aalto, J-M., Aalto, A., Vitts, K.: Tried & True Object Devel-
opment: Industry-Proven Approaches with UML. Cambridge University
Press (1999)

Jacobson, 1., Griss, M., Jonsson, P.: Software Reuse: Architecture, Process
and Organization for Business Success. ACM Press (1997)

Jacobson, 1., Booch, G., Rumbaugh, J.: The Unified Software Development
Process. Addison-Wesley (1999)

Jackson, M.: Problems, methods and specialization. = Software En-
gineering Journal, November (1994), 249-255. Also available at
ttp:/ /st.cs.uiuc.edu/pub/patterns/papers/problem-frames.ps (21.5.1999)

Jayaratna, N.: Understanding and Evaluating Methodologies. McGraw-
Hill Book Company (1994)

Krueger, C.: Software reuse. ACM Computing Surveys, Vol. 24, No. 2, June
(1992), 131-183

Liao H-C., Chen M-F,, Wang, F-J.: A domain-independent software reuse
framework based on a hierarchical thesaurus. Software - Practice and Ex-
perience, Vol. 28, No. 8, July (1998), 799-818

Lim, W.: Managing Software Reuse. Prentice Hall PTR (1998)

58

18

19.

20.

21.

22.
23.

24.

Mcllroy, M.: Mass produced software components. In Naur, P., Randell,
B. (editors): Software Engineering; report on a conference by the NATO
Science Committee (Garmisch, Germany), October (1968), 138-150

Nielsen, P.: Approaches to appreciate information systems methodologies:
a soft systems survey. Scandinavian Journal of Information Systems, Vol.
2, (1990), 43-60

Nukari, J., Forsell, M.: Finnish Software Industry’s Growth Strategy and
Challenges. Teknologiakatsaus 67/99, TEKES, Paino-Center Oy, Sipoo
(1999) (In Finnish)

Schon, D.: Educating the Reflective Practitioner. Jossey-Bass Inc. (1987),
78-79

Szyperski, C.: Component Software. Addison-Wesley (1997)

Taivalsaari, A.: A Critical View of Inheritance and Reusability in Object-
oriented Programming. Ph.D. Dissertation, Jyvaskyld Studies in Computer
Science, Economics and Statistics, No. 23, University of Jyvaskyld (1993)

Tolvanen, J-P.: Incremental Method Engineering with Modeling Tools: The-
oretical Principles and Empirical Evidence. Ph.D. Dissertation, Jyvaskyla
Studies in Computer Science, Economics and Statistics, No. 47, University

of Jyvaskyla (1998)

3 USE AND IDENTIFICATION OF COMPONENTS IN
COMPONENT-BASED SOFTWARE DEVELOPMENT
METHODS

Forsell, M., Halttunen, V.f, Ahonen,]J.T, “Use and Identification of Components
in Component-Based Software Development Methods”. Frakes, W. (ed.), Soft-
ware Reuse: Advances in Software Reusablitiy. Proceedings of the 6th Interna-
tional Conference, ICSR-6, Vienna, Austria, June 2000, Lecture Notes in Com-
puter Science 1844, Springer-Verlag, Berlin, Heidelberg, 2000, pp. 284-301.
(©Springer-Verlag, 2000. Reprinted with permission.

fInformation Technology Research Institute, University of Jyvéskyld, Finland.

Abstract

New software systems are needed ever more but to keep up with this trend soft-
ware developers must learn to create quality software more efficiently. One ap-
proach is to (re-)use components as building blocks of the new software. Re-
cently there has been more interest to create component-based software devel-
opment methods to support this. In this article we first set out requirements for
reuse-based software development and then evaluate three component-based
methods, namely Catalysis, OMT++, and Unified Process. As a conclusion
we argue that evaluated methods produce prefabricated components and that
component-based means that software developers can change better compo-
nents to existing systems. Reuse of components to create new software is ne-
glected in these methods.

3.1 Introduction

While the users” requirements and needs for software products are rapidly in-
creasing, the number of software professionals is not accompanying this trend.

60

Every time new software system is created at least half of the developers are
needed to keep it going on. This is due maintenance needs. One solution to pro-
duce quality software systems more efficiently is to use components as building
blocks of the new software. This fact means that software components need to
be more reusable and reused.

The very basic idea of reuse is: use a thing more than once [3, 32, 20]. A
component is the common term for a re-usable piece of software. Depending on
the level of abstraction and the ways of selection, specialization to the specific
situation and integration to the whole, reuse technologies can be categorized as
follows [20]:

1. high-level languages
. design and code scavenging
. source code components

. software schemas

. very high-level languages

2
3
4
5. application generators
6
7. transformational systems
8

. software architectures

A more coarse division distinguishes two kinds of reuse technologies: composi-
tion and generation. In composition technologies the software is composed of its
parts (components) whereas in generation technologies the software is generated
from the higher-level descriptions or specifications.

Successful areas of software reuse, such as UNIX subroutines, mathemati-
cal or programming language specific program libraries, database management
systems, or tools for graphical user interface, are well known and carefully ex-
plored and these areas have well established patterns [5]. A software developer
can easily learn the use of them through education and working experience.

Reuse does not just happen it requires careful planning and coordination
[23, 17, 13]. However, the research of software reuse usually concentrates on the
properties of software component or their interfaces without having a proper
understanding on the whole process of software reuse. Dusink and Katwijk [12]
note that there is no integrated model available for reuse support in the soft-
ware development. Reuse-based software development requires specific meth-
ods. However, good “reuse methods” are not available. As Basili [2] puts it, cur-
rent software development methods even hinder reuse in system development.
Furthermore, Bailey and Basili [1] argue that the reuse models, which build upon
expertise of the application domain without having clear instructions on how to
do things, offer insufficient guidelines for the reuse process. In brief, such models
burden the experts too much and make, thus, the process vulnerable.

61

The objective of this paper is to assess how current methods support reuse
in software development, and, through the evaluation, to expose how to improve
methods aiming at software reuse. For the possible methods we set the following
two criteria:

1. component usage viewpoint had to be explicitly taken into account, and

2. the method should have been published in a sufficient breadth (i.e. as a
book).

By these criteria we selected the following methods for deeper consideration:
Catalysis [11], OMT++ [16], and Unified Process [18]. Each of these methods
uses components in their process and is described in a lately published book (in
1999).

In this paper we approach software reuse from the above mentioned com-
position aspect. We consider ‘a component” in a wider sense than traditionally.
Thus, a component is not restricted to be a code component, but it can be also
some other artifact like software schemas or software architectures (see [20]). We
see also many other reusable elements in software development, for example,
domain models, analysis and design documents etc.

When analyzing the support of a method for the reuse process, it is neces-
sary to define the process model, through which the analysis is done. For finding
such a model we first scan for the essential features of a reuse process and then

— according to these features — select a process model that can be considered
“ideal”.

3.2 Crucial Features of a Reuse Process

Traditional software development processes require substantial consideration
when component-based reuse is adopted. In this part of the paper we make a
literature review to find out the most crucial features of a reuse process gained
attention of the contributors of the area. We have listed the features that have
been noticed by several contributors. These are:

1. Domain modeling [9, 26, 24, 6, 10, 15, 8, 4]
2. Software architecture [17, 25, 8, 20]

3. “More than code” [15, 7, 21, 22,19, 13]

4

. Separate processes for component (re)use and creation [7, 30, 19, 32, 23, 5,
17]

5. (Component) repository [20, 28, 27, 14, 26, 10]

62

There is a wide consensus that domain modeling and software architecture are
pre-requisites for successful use of software components. It is absolutely nec-
essary to know the context where the components are (re-)used, because it is
not self-evident how well the components suite to different contexts (see [7]).
The identification of components starts with domain analysis, which defines the
reusable components at the conceptual level. Therefore, domain analysis is an
important phase in finding out what components are needed and how they in-
terrelate. Software architecture, which defines how the software is composed of
its subsystems, helps to manage with the software as a whole, which makes eas-
ier the selection of suitable components. The domain analysis and the software
architecture form together a sound basis for use of components in the particular
application domain (see [10] and [26]).

Despite the fact that reuse has traditionally meant reuse of code, it is nec-
essary to realize that reuse can — and should — be extended to many other
artifacts, too. Like Horowitz and Munson [15] state, reuse can happen at several
levels and the best benefits can be achieved when, in addition to the reuse of
code, requirement analysis, designs, testing plans etc. are reused. Caldiera and
Basili [7] argue that experience is also an important reusable resource. Reuse of
experience enables other types of reuse. Lanergan and Grasso [21] report highly
successful reuse of the software’s logic structures.

It is the size and the abstraction level of the components that decides the
phase of the development process wherefrom the components can be used [22].
When talking about reuse of components, two different processes can be sepa-
rated: production of components and use of them [32, 30, 5]. In addition to this,
some researchers see the maintenance of the component repository as a separate
task [23,27, 10, 7, 26]. Some emphasize the role of managing the reuse infrastruc-
ture (e.g. [17] and [23]). Moreover, some researchers have considered abstraction
as a means to find a component (see [26] and [19]).

The most extensive models for reuse include the STARS [31] and the models
by Lim [23] and Karlsson [19]. The Karlsson’s model considers reuse purely from
the object-oriented point of view. The coverage of the STARS model and the
Lim’s model is very similar. However, it seems that the STARS model is a little
more directed towards code-components. The Lim’s model is not dependent on
any software development paradigm. It notifies the essential features of a reuse
process and thus it sees components as “more than code”. We selected the Lim's
model for our evaluation.

3.3 The Lim’s Model of the Reuse Process

Lim [23] talks about ‘assets’ instead of ‘components’. This shifts the emphasis
from pure code orientation to conceiving ‘a component” as a wide concept that
covers designs and other things besides computer programs. We believe that
perspective is absolutely necessary when aiming at successful and wide-spread
reuse of components in software development.

63

Lim divides the reuse process into the following four major activities:
1. managing the reuse infrastructure
2. producing reusable assets
3. brokering reusable assets
4. consuming reusable assets

First activity, managing the reuse infrastructure, plans and drives the other three
activities. It manages the whole reuse process. Lim’s [23] subtasks of the three
latter activities are described more closely in Table 3.1. Lim names distinct roles
for the developers in three latter activities. Producers create assets for reuse, bro-
kers provide repository and support for reusable assets, and consumers produce
new software with reusable assets.

Domain analysis and software architecture are considered in phases analyz-
ing domain and producing assets respectively. In Lim’s model it is very obvious
that target of the reuse is much more than merely the code and that for produc-
ing and using of the components are two separate processes. Repository and use
of it are in very central position in Lim’s reuse model. To be successful reuse has
to be planned carefully.

TABLE 3.1 The reuse process, its phases and explanations.

| Activity / Tasks | Explanation |

Producing Reusable assets can be created either by prefabrication or retrofitting. In ei-

Reusable Assets | ther case, the production of the reusable asset is preceded by domain anal-

(PRA) ysis (DA). Two major elements of PRA are domain analysis and domain
engineering.

Analyzing Domain | Tasks:

e DA attempts to create a domain model which generalizes all systems
within a domain.

e DA is at a higher level of abstraction than systems analysis.

e The resulting assets from a DA possess the functionality necessary
for applications developed in that domain.

Continues on next page

64

Activity / Tasks

Continued from previous page (Reuse process)
Explanation

Producing Assets

Tasks:

e Produced assets are those identified by the DA and include both
components and architectures.

e The architecture is the structure and relationship among the con-
stituent components. Having identified the set of assets that have
a high number of future reuse instances.

e Two approaches are available for producing these assets: prefabrica-
tion and retrofitting. Prefabricating is approach to “build” reusability
into assets when they are created. This approach has been variously
called “design for reuse” and “a posteriori reuse”. Retrofitting is sec-
ond approach to examine existing assets, evaluate the feasibility of
reengineering them for reuse, and if viable, doing so. This set of ac-
tivities has been called salvaging, scavenging, mining, leveraging, or
a priori reuse.

Maintaining & En-
hancing Assets

Tasks:

e Maintenance involves changing the software system / product after
it has been delivered. Maintenance can be

e Perfective maintenance (enhancing the performance or other at-
tributes),

e Corrective maintenance (fixing defects), or
e Adaptive maintenance (accommodating a changed environment).

e When assets are enhanced, fixed, or replaced, the consumers are noti-
fied of the changes, and in many cases for active projects, will require
integration of the newer versions of the assets.

e Verification and validation (V&V) are performed throughout the life
cycle. In software reuse, V&V are intended to demonstrate that the
reusable asset will perform without fault under its intended condi-
tions.

Brokering
Reusable Assets
(BRA)

Aids the reuse effort by qualifying or certifying, configuring, maintaining,
and promoting reusable assets. It also involves classifying and retrieving
assets in the reuse library.

Assessing Assets

Tasks:

e Potential assets from both external and internal sources should be
assessed before order.

e Potential assets are identified and brokers examine them, reviewing
several factors.

Procuring Assets

Broker determines whether to purchase or license the asset, purchase and
reengineer the asset to match the consumers’ needs, produce the asset in-
house, or reengineer an existing in-house non reusable asset to meet con-
sumer needs.

Continues on next page

65

Continued from previous page (Reuse process)

Activity / Tasks Explanation

Certifying Assets Tasks:

e Reusable assets should be certified before they are accepted into the
repository.

e Certification involves examining an asset to ensure that it fulfills re-
quirements, meets quality levels, and is accompanied by the neces-
sary information. Once the asset is certified, the next step in the pro-
cess is to accept the asset.

Adding Assets Adding an asset involves formally cataloging, classifying, describing it, and
finally entering it to the list of reusable assets.

Deleting Assets The broker should examine the inventory of assets and delete those which
are not worth continuing to carry or have been superseded by other
reusable assets.

Consuming CRA involves using these assets to create systems and products, or to mod-

Reusable Assets | ify existing systems and products. CRA is also known as application engi-

(CRA) neering.

Identifying System
& Assets

Tasks:
e End-users’ needs are translated into system requirements.
¢ Requirements for assets are also determined as part of this analysis.

e In reuse-enabled businesses, system requirements are determined in
part by the availability of reusable assets

o In strategy-driven reuse, a deliberate decision is made to enter certain
markets or product lines in order to economically and strategically
optimize the creation and use of reusable assets which fulfill multiple
system requirements.

Locating Assets

Consumers locate assets which meet or closely meet their requirements, us-
ing the reuse library, directory, or other means.

Assessing Assets
for Consumption

Tasks:
e Consumers evaluate the assets.

e If a suitable asset cannot be found externally, the consumer must de-
termine whether a reusable version should be requested from the
producer group. In some circumstances, it may be more viable to
create a non reusable version for the project at hand.

e A modified asset may be valuable to other projects as well. Con-
sequently, the consumer should consider submitting a request for a
modification of the reusable asset which would be supported by the
broker group.

Adapting / Modi-
fying Assets

Asset is adapted to the particular development environment. If modifi-
cation is necessary, the consumer should carefully document the changes.
Possible reuse strategies are black box reuse and white box reuse.

Integrating / In-
corporating Assets

Reusable assets are incorporated with new assets created for the applica-
tion.

66

To cope with such a complicated process it is necessary to make difference
between the above mentioned areas of the process. It is also important to know
thoroughly the tasks of each phase.

3.4 Evaluation of Reuse Processes in Three Known Methods

The evaluation of the three methods, Catalysis, OMT++ and Unified Process,
was started by reading carefully the following books: D’Souza and Wills [11],
Jacobson et al. [18], and Jaaksi et al. [16]. Next, each method was evaluated
in terms of its support for the activities and tasks of the Lim’s model. In this
section we summarize the main findings of our analysis. We start with a brief
description each of the methods, after which we analyze the general features of
them using the Lim’s model.

3.4.1 Catalysis

Catalysis is based on three modeling concepts: type, collaboration, and refine-
ment. Furthermore, it uses frameworks to describe recurring patterns. A collab-
oration defines a set of actions between group of objects. A type defines external
behavior of an object. Precise description what is external behavior of the type
is given in type model. Types serve as basic means to identify and document
components. A refinement describes how abstract model maps to the more con-
crete ones. Frameworks are used to describe recurring patterns in specifications,
models, and designs. [11]

Catalysis distinguishes between three levels of abstraction: do-
main/business level, component level, and internal design level. In the
domain level one identifies the problem and defines the domain terminology
and tries to understand the business processes. At the component level one
specifies the system’s boundary and distributes responsibilities among the
identified /defined components. In the internal design level one implements spec-
ifications of the system and defines internal architecture, internal components
and collaborations and designs the insides of the system and/or component.
[11]

Finally, Catalysis is founded on three principles: abstraction, precision, and
pluggable parts. In Catalysis abstraction means that one should focus on essential
aspects one at the time while leaving others for later consideration. Precision
means that one should be able to find out inconsistencies between specifications
as early as possible, trace requirements through specifications or models, and
allows to use support tools at a semantic level. Pluggable parts enables one to use
results from the development work in the following projects. [11]

Catalysis does not give any specific process to produce software but it gives
number of process patterns. By combining the process patterns one can create
suitable process for current development needs.

67

34.2 OMT++

OMT++ uses OMT [29] as the backbone of the approach. The notations and
naming conventions of OMT are used as is in OMT++. Even the methods name
relies heavily on OMT.

OMT++ consists of four phases, namely object-oriented analysis, object-
oriented design, object-oriented programming and testing. These phases are
separate ones and they can be arranged either in a waterfall or iterative man-
ner. In each of the phases there is activities that aim to model either the static or
the functional properties of the system.

Although the use cases are seen as a very key to the successful develop-
ment of software, for architectural and practical reasons the key abstractions are
service blocks and components. A service block is a grouping of closely related
components that provide a consistent set of reusable software assets to design-
ers using the service block. A component is a configuration of files implementing
a basic architectural building block, such as an executable program or a link li-
brary.

3.4.3 Unified Process

Rational Unified Process (RUP) is use-case driven, architecture-centric, iterative,
and incremental. To serve its users the software system must correspond to user
needs. RUP uses use cases to capture functional requirements which satisfies
user needs. Additionally use cases drive the development process. Based on the
found use cases developers of the software system create series of design and
implementation models that realize the use cases. Thus use-case driven means
that the development process follows a flow — it proceeds through a series of
workflows that derive from the use cases.

By architecture-centric RUP means that a system’s architecture is used as a
primary artifact for conceptualizing, constructing, managing, and evolving the
system under development. Full scale construction of the software system is not
started before architecture designers can be sure that the developed architecture
can manage through the software’s lifecycle (i.e. maintenance and further devel-
opment).

The iterative and incremental process in RUP means that the software system
is developed in many iterations and through small increments. Each iteration
deals with a group of use cases that together extend the usability of the product
thus producing an increment to the whole software system.

Key abstractions are service packages, service subsystems, and compo-
nents. A service package provides a set of services to its customers. Service pack-
ages and use cases are orthogonal concepts meaning that one use case is usually
constructed by many service packages and one service package can be employed
in several different use-case realizations. In RUP service packages are primary
candidates for being reused, both within a system and across related systems.

68

TABLE 3.2 The scale for evaluating the features of the methods.

| Symbol | Corresponding |

- Not mentioned at all or mentioned incidentally
+ Briefly considered

++ Distinctly considered

+++ Thoroughly considered

A service subsystem is based on the service package and there is usually one
to one mapping between them. Usually service subsystem provide their services
in terms of interfaces. Often service subsystems leads to a binary or executable
component in the implementation. A component is the physical packaging of
model elements, such as design classes in the design model. Stereotypes of com-
ponents are for example executables, files, and libraries.

3.4.4 Evaluation of Methods

In the evaluation of the methods we analyzed the features of the methods against
the Lim’s model of a reuse process. The phases of “the ideal model” are depicted
earlier in Table 3.1. We created a scale for estimating the support of the methods
for each phase of the reuse process (Table 3.2). We remind that our evaluation is
not based on experiences of using the methods but only on the book reviews we
have accomplished.

The results of our analysis are summarized in Table 3.3. A more detailed
analysis can be found in Appendix 1.

As Table 3 shows, the three evaluated methods have emphasis on produc-
ing components. In OMT++ and Unified Process this means production of code
component whereas in Catalysis other types of components are also considered.
The use of components has gained some attention, which, however, largely fo-
cuses on the identification of the system. The coverage of the methods is quite
similar: they include domain modeling, production of components, and identi-
fication of a system. In practice, these elements seem to be intertwined. So, it is
noteworthy that the methods, actually, integrates the production of components
into the use of them.

According to the analyzed methods software production progresses as fol-
lows:

1. analyze the domain
identify the functionality of the system

define the software architecture

Ll

construct the software using components.

TABLE 3.3 Summary of the results.

69

Process / Phase

| Catalysis |

OMT++ | Unified Process |

Producing Reusable Assets (PRA)

Analyzing domain

—t

++

+++

Producing Assets
Prefabricating
Retrofitting

+++

+++

+++

Asset Maintenance - - -
Asset Enhancement - + +
Brokering Reusable Assets (BRA)
Assessing Assets - - -
Procuring Assets - - -
Certifying Assets - - -
Adding Assets
Deleting Assets - - -
Consuming Reusable Assets (CRA)
Identifying System +++ +++ i+
Identifying Assets + + +
Locating Assets

Assessing Assets for Consumption
Adapting / Modifying Assets
Integrating / Incorporating Assets

+|+

The methods would be more usable if the production of components were dis-
tinctly separated from the use of components. Although components should be
produced keeping the reuse aspect in mind, it is necessary to realize that the men-
tioned two tasks face different problems and different solutions and need to be
managed as separate processes. For example, finding and adapting a component
might get too little attention when these tasks are not seen as important processes
of component reuse. This is due to the fact that the person responsible for pro-
ducing a component naturally sees the component from the perspective of how
the component is to be implemented, whereas the user of the component see the
”service” provided by the component.

What is, then, the reason for integrating of the two tasks? Possible answers
include:

e It is difficult to get acceptance for a method that suggests big changes into
the prevailing practices.

e The developers of methods have not yet deep enough understanding on
the information that is necessary when storing and retrieving components.

e If the producer and user of a component is the same person it may be diffi-
cult and even unnecessary to separate the two processes.

70

e Some methods use component purely for managing the complexity per-
haps ignoring the reuse perspective.

The strength of the evaluated methods is their thoroughness in domain modeling
and describing the software architecture. These two tasks, which

1. bind components to the context, and
2. define the connections between components,

are a crucial part of successful component-based software development. So, it
seems that these areas are well covered by the current methods.

It appears that the telecommunication backgrounds of OMT++ and Unified
Process have affected the development of these methods: since the telecommu-
nication applications tend to be very complicated the methods, which are used
to build such applications, must help splitting the application into parts that are
manageable. The software architecture is in a crucial role when the maintenance
of the application means replacing a component by a new one, or adding a new
component to the old system.

We have already noted that the term ‘component” has a wider meaning
in Catalysis compared with the ‘component’ in OMT++ or in Unified Process.
There is also another remarkable point where Catalysis differs from the other
two methods. That is the way of building a component. Whereas OMT++ and
Unified Process talk about service blocks or service packages, respectively, Catal-
ysis derives components from the functions of the system. There is a big differ-
ence here, because these two approaches should be seen as orthogonal since one
service package can be utilized by several functions. This implies that a function
normally consists of several service packages or vice versa.

3.5 Discussion and Further Research

In the current methods the tasks of producing and using components are in-
tertwined. This makes the methods complicated and decreases their usability.
For example, storing and searching for a component can gain too little attention,
when production of components dominates the software process. A concrete re-
sult of this problem is that no or little information on the components is saved for
helping the further use of the components. It is obvious that in many cases the
software people do not even know what is the necessary information that helps
find a suitable component.

Are the contemporary component-based methods, then, really component-
based? In our opinion, the answer is “Yes” and ‘No’. They are component-based
in the sense that they aim at well-structured architectures, where the purpose of
each element can be distinctly defined and where an element can be easily re-
placed by another element. They are component-based also in that they aim at
well-defined interfaces. However, they have several weak areas that need to be

71

improved if desired to fully benefit from the use of components. First, the meth-
ods should put much more emphasis on the sub-processes of the component use.
These include identifying and searching for a component. The methods should
have support to view the use of components from multi-purpose perspective.
This means that the methods should not only help divide an application into its
pieces but also find more generic features to be implemented in the component.
Furthermore, the methods should include tools to collect relevant information
on the components to be saved into a repository that can be effectively used
when searching for a suitable component. The current methods have little or
no support for using such a repository. Apparently Basili’s [2] statement about
hindrance of the current methods is still true.

It seems that the current practices in component-based software develop-
ment still rely on software experts” personal knowledge. Although this point of
view is understandable, it is, however, contradictory to the idea of using generic
elements in software production. A real component orientation should, there-
fore, aim at practices and models that decrease the irreplaceableness of individ-
ual knowledge. This can be reached by standardization and other agreements
but also by supporting the entire software process with information restored in
repositories. Because the standardization process is usually a stony way, the im-
portance of using repositories cannot be overestimated.

To direct the further research concerning the component-based methods we
provide the themes that we see important:

e We should explore how to document components of different levels so that
people not being expert of the domain could use them.

e What kind of a repository would be most valuable in supporting the reuse
process.

e We should explore how the different reuse-oriented activities (e.g. manag-
ing the reuse infrastructure, producing, brokering, and consuming reusable
assets) can be adapted to a software development process.

These three themes are the most important ones seen in the light of our research.
Because we based our analysis on a known model of a software process (Lim’s
model), some tasks do not obtained attention very much although we see them as
important parts of software process. This concerns especially testing and adapt-
ing of components. The current methods offer no component-specific means to
test a software product or a piece of it. This issue deserves more efforts by the
researchers.

Acknowledgements

This research was supported by Tekes' and companies participating in the
PISKO-project. We also like to thank the four anonymous reviewers for their
useful comments.

! National Technology Agency, Finland. ht t p: / / www. t ekes. fi

72
Bibliography

[1] Bailey, J., Basili, V.: The software-cycle model for re-engineering and reuse.
Proceedings of the conference on Ada: today’s accomplishments; tomor-
row’s expectations, ACM (1991), 267-281.

[2] Basili, V.: Facts and myths affecting software reuse. Proceedings of the 16th
International Conference on Software Engineering (1994), 269.

[3] Basili, V., Caldiera G., Cantone G.: A reference architecture for the compo-
nent factory. ACM Transactions on Software Engineering and Methodology,
Vol. 1, No. 1, January (1992), 53-80.

[4] Batory, D., O’Malley, S.: The Design and Implementation of hierarchical
software systems with reusable components. ACM Transactions on Soft-
ware Engineering and Methodology, Vol. 1, No. 4, October (1992), 355-398.

[5] Biggerstaff, T., Richter, C.: Reusability framework, assessment, and direc-
tions. IEEE Software, March (1987), 41-49.

[6] Burton, B., Aragon, R., Bailey, S., Koehler, K., Mayes, L.: The reusable soft-
ware library. IEEE Software, July (1987), 25-33.

[7] Caldiera, G., Basili, V.: Identifying and qualifying reusable software compo-
nents. IEEE Computer, February (1991), 61-70.

[8] Capretz, L.: A CASE of reusability. Journal of Object-Oriented Program-
ming, June (1998), 32-37.

[9] Davis, J., Morgan, T.: Object-oriented development at Brooklyn Union Gas.
IEEE Software, January (1993), 67-74.

[10] Devanbu, P., Brachman, R., Selfridge, P., Ballard, B.: LaSSIE: A knowledge
-based software information system. Communications of ACM, Vol. 34, No.
5, May (1991), 33-49.

[11] D’Souza, D., Wills, A.: Objects, Components, and Frameworks with UML:
The Catalysis Approach. Addison-Wesley (1999).

[12] Dusink, L, van Katwijk,].: Reuse dimensions. Software Engineering Notes,
August (1995), Proceedings of the Symposium on Software Reusability,
Seattle, Washington, April 28-30 (1995), 137-149.

[13] Fisher, G.: Cognitive view of reuse and redesign. IEEE Software, July (1987),
61-72.

[14] Henninger, S.: An evolutionary approach to constructing effective soft-
ware reuse repositories. ACM Transactions on Software Engineering and
Methodology, Vol. 6, No. 2, April (1997), 111-140.

73

[15] Horowitz, E., Munson, J.: An expansive view of reusable software. In Big-
gerstaff, T., Perlis, A. (eds.): Software Reusability, Volume I: Concepts and
Models. ACM Press (1989), 19-41.

[16] Jaaksi, A., Aalto,]-M., Aalto, A., Vitto, K.: Tried & True Object Devel-
opment: Industry-Proven Approaches with UML. Cambridge University
Press (1999).

[17] Jacobson, 1., Griss, M., Jonsson, P.: Software Reuse: Architecture, Process
and Organization for Business Success. ACM Press (1997).

[18] Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development
Process. Addison-Wesley (1999).

[19] Karlson, E.: Software Reuse: A Holistic Approach. John Wiley & Sons Ltd.,
(1995).

[20] Krueger, C.: Software reuse. ACM Computing Surveys, Vol. 24, No. 2, June
(1992), 131-183.

[21] Lanergan, R., Grasso, C.: Software engineering with reusable designs and
code. In Biggerstaff, T., Perlis, A. (eds.): Software Reusability, Volume II:
Applications and Experience. ACM Press (1989), 187-195.

[22] Lenz, M., Schmid H., Wolf, P.: Software reuse through building blocks. IEEE
Software, July (1987) 35-42.

[23] Lim, W.: Managing Software Reuse. Prentice Hall PTR (1998).

[24] Neighbors, J.: Draco: A method for engineering reusable software systems.
In Biggerstaff, T., Perlis, A. (eds.): Software Reusability, Volume I: Concepts
and Models. ACM Press (1989), 295-319.

[25] Nierstrasz, O., Meijler, D.: Research directions in software composition.
ACM Computing Surveys, Vol. 27, No. 2, June (1995), 262-264.

[26] Ostertag, E., Prieto-Diaz, R., Braun C.: Computing similarity in a reuse li-
brary system: An Al-based approach. ACM Transactions on Software Engi-
neering and Methodology, Vol. 1, No. 3, July (1992), 205-228.

[27] Prieto-Diaz, R.: Implementing faceted classification for software reuse.
Communications of the ACM, Vol. 34, No. 5, May (1991), 88-97.

[28] Prieto-Diaz, R., Freeman, P.: Classifying software for reusability. IEEE Soft-
ware, January (1987), 6-16.

[29] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-
Oriented Modeling and Design. Prentice-Hall, Inc., (1991).

74

[30] Sommerville, I.: Software Engineering Fourth Edition. Addison-Wesley,
(1992).

[31] STARS Conceptual Framework for Reuse Processes (CFPR) Volume I: Def-
inition, Version 3.0. STARS-VC-A018/001/00, October 25 (1993). Available
at http:/ /direct.asset.com/wsrd /product.asp?pf_id=ASSET%5FA %5F495.

[32] Taivalsaari, A.: A Critical View of Inheritance and Reusability in Object-
oriented Programming. Ph.D. Dissertation, Jyvaskyld Studies in Computer
Science, Economics and Statistics, No. 23, University of Jyvaskyla (1993).

75

Appendix 1. The More Detailed Analysis of Catalysis, OMT++ and

Unified Process.

TABLE 3.4 More detailed results of the analysis of Catalysis.

| Activity / Tasks

| Catalysis

Producing Reusable Assets (PRA)

Analyzing domain

Domain analysis is performed by creating business models. Business
models include use cases, joint actions and type models. In this phase
vocabulary of the domain is created with the aid of the user.

Producing Assets
e Prefabricating

e Retrofitting

Components are mainly created from the domain model and are de-
signed for reuse. There is briefly mentioned reengineering existing sys-
tems. If third party components or legacy systems are used, one should
create type models of them.

Brief description of component development. Description of compo-
nents is done by type models which are created during business mod-

eling.
1.
2.
3.

Basic course of action is as follows:
Describe every component from the one users point of view.
Combine view points.

Design largest components and according to the use cases dis-
tribute them to functional blocks.

. Define interfaces and extract business logic from user interface.

Create layered architecture for the software.
Extract middleware from business components.
Create draft design model where one class presents one type.

Distribute responsibilities and collaboration among objects so that
you can create flexible design.

Define components connections, and attributes and document
them.

Asset
¢ Maintenance

e Enhancement

Brokering Reusable Assets (BRA)

Assessing Assets

Procuring Assets

Certifying Assets -

Adding Assets Component management should be created through reuse group. Re-
sources to build and maintenance repository should be given.

Deleting Assets -

Consuming Reusable Assets (CRA)

Continues on next page

76

Activity / Tasks

Continued from previous page (Catalysis)
Explanation

Identifying
e System

e Assets

Software system is identified through use cases (joint actions). First one
should define technical architecture which includes infrastructure com-
ponents and their relationships with physical and logical architectures.

Locating Assets

Assessing Assets for
Consumption

First architecture is implemented which guides experienced developer
to find components.

Adapting / Modify-
ing Assets

Components interfaces can be altered or interfaces can be added, but the
component should be left unchanged.

Integrating / Incor-
porating Assets

77

TABLE 3.5 More detailed results of the analysis of OMT++.

Activity / Tasks

| OMT++

Producing Reusable Assets (PRA)

Analyzing domain

You model domain by class diagram and that gives you and your cus-
tomer common vocabulary. Use cases and analysis phase’s class diagram
are also used to gather understanding of the context.

Producing Assets
e Prefabricating

o Retrofitting

Components which are created through OMT++ are prefabricated com-
ponents. No discussion of retrofitting is done. Components are iden-
tified during architectural design which is done via OMT++ own 3+1
views. Components which result from this process are code components.
Component identification process is basically as follows:

1. Create software architecture according to OMT++'s 3+1 views to
the software architecture. As anresult you get the following layers
to the software system: System Products, Application products /
Platforms; Applications / Service Blocks; Components; Classes

2. Implement group of classes as components. Component is ‘size
of the human being’ (500 to 15 000 lines of code) and is a code
component.

Asset
¢ Maintenance

e Enhancement

Component maintenance is when you create better (in size, functionality,
quality etc.) component for the new software system and replace old
component with it. OMT++ sees this as normal development work.

Brokering Reusable Assets (BRA)

Assessing Assets

Procuring Assets

Certifying Assets

Adding Assets

Deleting Assets

Consuming Reusable Assets (CRA)

Identifying
e System

e Assets

Software system is identified through use cases and you create the soft-
ware architecture according to the use cases. Reusable components are
discovered from the old system by experienced developers.

Locating Assets

Experienced developer locates reusable components from existing soft-
ware system. He/she can use architecture descriptions to identify
reusable components.

Assessing Assets for
Consumption

Adapting / Modify-
ing Assets

Guided by the software architecture (implicitly).

Integrating / Incor-
porating Assets

78

TABLE 3.6 More detailed results of the analysis of Unified Process.

| Activity / Tasks

| Unified Process

Producing Reusable Assets (PRA)

Analyzing domain

RUP advises to do domain analysis as a project of its own. DA can be
done via business modeling or domain modeling (which is subset of
business modeling).

Producing Assets
e Prefabricating

o Retrofitting

RUP concentrates to prefabricate components and typical components
are binary or executable files, files, libraries, table, or document.
Application-specific and application-general layers are separated from
middleware and system-software layers at the analysis phase. In analy-
sis main focus is describing application layers and in design the focus is
describing more middleware and system-software.

Basic course of action to create component:

1. Create use cases.

2. Do analysis phase’s class diagram and classify analysis classes to
service packages.

3. Create service subsystems according to service packages.

4. Implement service subsystems. There should be straight mapping
between service packages, service subsystems and implemented
components. Components are identified and created by “reuse-
enabled” developers.

Asset
e Maintenance

e Enhancement

Brokering Reusable Assets (BRA)

Assessing Assets

Procuring Assets
hline

Certifying Assets
Adding Assets -
Deleting Assets -
Consuming Reusable Assets (CRA)
Identifying Software system is identified through business/domain models and use
cases. Mock up user interface can be used to gather more specific infor-
e System . - - .
mation about requirements. Existing systems can be used as a basis for
e Assets identifying assets.

Locating Assets

Components are located through existing systems or by “reuse-enabled”
developers. Possible components can be found from third party, through
corporate standards for using and creating components (i.e. frameworks
or design patterns), or by using “team memory”.

Assessing Assets for
Consumption

Adapting / Modify-
ing Assets

Guided by software architecture (implicitly).

Continues on next page

79

Activity / Tasks

Explanation

Continued from previous page (Unified Process)

Integrating / Incor-
porating Assets

4 A MODEST BUT PRACTICAL SOFTWARE
PROCESS MODELING TECHNIQUE FOR
SOFTWARE PROCESS IMPROVEMENT

Ahonen, J.!, Forsell, M.}, Taskinen, S-K., “A Modest but Practical Software Pro-
cess Modeling Technique for Software Process Improvement”. This paper has
been submitted for publication to Software Process: Improvement and Practice.
Copyright may be transferred without further notice and the accepted version
may be posted by the publisher.

I Information Technology Research Institute, University of Jyvdskyld, Finland.
} Chydenius Institute, University of Jyvéskyld, Finland.

Abstract

One of the main problems with software engineering is due to the difficulties
in evaluating and improving our software processes, especially in the light of
the fact that reuse depends on a process which supports it. Generally used
approaches to the evaluation and improvement of software processes are based
on CMM, for example. In this paper we present a technique to improve software
processes through modeling and evaluation. The presented technique is fairly
easy to use, provides reasonably good results and requires only a fraction of
resources required by CMM appraisals.

Keywords: process modeling, software process improvement, modeling
technique

4.1 Introduction

Software companies are constantly fighting against the perils of software
projects. Timetables do not hold, talented personnel is not available when re-

82

quired, budgets are overrun and software quality is not adequate. Those prob-
lems are severe and it is obvious that there are no “silver bullets” for those prob-
lems (Brooks, 1987).

The problems that software engineering organizations face are not, how-
ever, completely incurable. It is a common opinion that it is possible to improve
the situation through gradual improvement (see e.g. Humphrey, 1989). One
approach is to improve the software development process. The main ways to
improve a process are

1. to omit unnecessary phases from the process;
2. to introduce new phases to the process; and
3. to improve the existing phases of the process.

The necessary steps to be taken in order to implement any of the above ways of
process improvement require good knowledge of the actual software process to
be improved. In this paper the terms software, and software process, and software
process modeling are considered in the light of (Pressman, 2000, Boehm, 1976, and
Gibson, 1999, and Curtis et al. 1992), respectively.

The software process is described (or prescribed) in extensive models like
CMM (Paulk et al. 1993, Paulk et al. 1995), SPICE (SPICE, 2001) and ISO9001
(Kehoe & Jarvis, 1996). Those models do not include any way to model the actual
process and for that purpose it is possible to use techniques like SADT, IDEF0
and Petri Nets (see e.g. (Curtis ef al. 1992) for an evaluation). There are very few
techniques which include processes, modeling and documentation in a single
package (Curtis et al. 1992). In this paper such a technique is presented.

The technique has been developed in an industry cooperation project called
PISKO. The aim of the project was to improve the software process — and espe-
cially software reuse — of the participating companies. The interest was espe-
cially in software reuse and the organization of reuse, in which the actual charac-
teristics of the software process is especially important. This is expressed by Lim
(Lim, 1997) when he stresses the importance of considering reuse in every phase
of the software process, i.e. the actual characteristics of the process.

In the very first steps of the research it was decided that CMM is not prob-
ably useful considering the aim of the project and the lack of explicit notion of
software reuse in CMM. The view was backed up by the companies which were
already familiar with CMM. One of the problems expressed by the companies
already familiar with CMM were the overall feeling of CMM appraisals. The
representatives of those companies thought those appraisals too serious, almost
like inspections in the army', and an approach with a more positive feeling was
sought after.

! Something like: “All you programmers, arrange yourself in straight lines according to the qual-
ity manual. Now we will have a look at your code and your ways to program it. No speaking in
the line.”

83

In order to improve software reuse in participating companies a technique
to model software processes was required. There were a few requirements for the
technique. Those requirements were based on the fact that all participating com-
panies were in constant need of talented personnel and their current employees
were generally overstressed. Therefore any technique had to fulfill the following
restrictions:

1. the technique should be easy to use for people who have no prior knowl-
edge of it;

2. the technique should require as minimal resources as possible from the tar-
get organization; and

3. the technique should be able to point out real problems in the software
process and hence provide input for process improvement.

In this paper a technique which satisfies the requirements in a reasonable way is
presented. The situation in which the technique has been applied is outlined and
the results are analyzed and their usability discussed.

4.2 PISKO Process Modeling Technique

The practical requirements lined out above restricted the complexity of the tech-
niques that we could use. Process modeling is based on observation and report-
ing (Verlage, 1997). Therefore the most important part of any attempt to model
the actual software process should emphasize the opinion and experience of the
experts of the target organization. In our case the object of description and anal-
ysis is the software process actually used in the organization — not a process
found from quality handbooks.

Our organization have earlier used the wall-chart technique (Saaren-
Seppald, 1997)* and experiences have been positive. The wall-chart technique
is an excellent technique when a group of specialists are required to communi-
cate and achieve a consensus regarding the current situation in a tight timetable
(Karjalainen et al. 2000). It is the backbone of our modeling technique.

The PISKO Modeling Technique includes six phases, which are shown in
the figure 4.1. We acquire the current process from expert knowledge by using
the wall-chart technique in sessions which are organized in the target organiza-
tion. During these sessions problems and points of improvement are recorded.
After this the process models are transformed into a digital form which is in-
spected by the target organization. Next the process and problems are analyzed
and evaluated, and naturally these results are inspected. In the following sec-
tions the phases are briefly discussed.

2 The wall-chart technique has been fairly popular in Finland since 1970s, especially in informa-
tion system design.

84

Existing process
descriptions.

\ 4

Development
method /

Modeling the
process with
wall-chart technique

\

Wall-chart. Textual
descriptions

\ 4

/

Definfing the
problems and points
of improvement

\

Enhanced wall-chart
Enhanced textual

Y

descriptions /

Creating an
electronic version of
the process
description

\

Digital document /

Y

Inspection of the
electronic version

/

Approved digital
document

Y

Analysis of the
process description

L

Approved description
of software process

/
/
/
/
/
/

Enhanced digital
document

\ 4

/

Inspection of the
results

FIGURE 4.1 The process description of the PISKO technique.

85

4.2.1 The Wall-Chart Sessions

During the Wall-Chart Sessions the model of the current process is constructed
and problems with it are identified. The session lasts normally from three to
tive hours and it is done in a room where the session can be held without dis-
turbance. In most cases there are seven people participating in the session: five
experts from the target organization and two consultants. The experts should
be chosen from those who know the actual software engineering process very
well and have relatively long experience from the process. Two consultants are
required to fill the roles of the chairman of the sessions and the secretary, whose
responsibility is to make sure that every important piece of information revealed
in the session will be written down.

The chairman and the secretary have prepared for the session by study-
ing the existing material of the target organization’s processes. That knowledge
should, however, be used for gentle guidance, not for auditing. That is because
the aim of the session is to let the experts describe the real process as is, which
very often differs from the official process.?

In the beginning of the session the technique is briefly explained to the
experts. After the introduction the chairman lets the experts identify the main
phases of the software process. Every expert is allowed, practically required, to
express his/her opinion. When the experts have achieved a common opinion
of a phase and its name, the secretary writes it down on a piece of paper. The
chairman attaches the paper to the wall-chart into a place which represents the
position of the phase in the software process. The flows of information are identi-
tied and represented in the same way (e.g. a document produced by a phase and
required by another phase is represented by an elongated piece of paper which
is marked by the name of the document). The wall-chart notation is shown in
the figure 4.2, a simple process description is shown in the figure 4.3, and a wall-
chart under construction is shown in the figure 4.4.

Often the process model needs greater accuracy. These may be pointed out
by the experts participating the session, or the chairman may hint on the possible
phases or flows that need to be handled with greater precision. Normally the
experts can be trusted to make such decisions. In these cases the phases and
flows of information may be divided into subphases and subflows if necessary.
In some cases the subphases and subflows may require separate wall-charts and
they need to be modeled in separate sessions.

The session may be recorded, but in many cases recording makes the situ-
ation a bit awkward. Therefore we have decided to have the secretary to make
accurate notes of the discussion and especially on the reasons why particular
decisions have been made and consensus achieved.

The secretary uses a predefined report template as much as possible during
the note-taking. The outline of the template is shown in the figure 4.5.

3 This is somewhat in contrast to the attitude of CMM appraisals.

86

FIGURE 4.2

Conditional connections

Connection may be conditional. In this case it is good to mark the
condition to the’connection line

Conditional situation may be emphasized with a violet piece of

A<10

paper which is shaped as a diamond.
@ on<0

By marking conditions to the connection
lines, one can describe rather complicated

logical constructs.

If a task is conditional but one does not want to show the conditions
then the task is written in parenthesis.

Tasks may be exclusive. In this cz?,se the word “OR” is written
down in each of the connection lines.

If at least one of the optional tasks is performed and possibly
more, then minimum and maximum number of tasks are written

down to the connection line. 1.3

Describing results

Description of the results and their connections is similar to description
of the tasks.

H s
H

Loops

-
If there is need to go backwards, for example, to repeat
some task, an arrow is marked down to the connection line. \

Task 3

The wall-chart notation.

Data 1

Task 1

Data 2 Task 2 Data 4

FIGURE 4.3

Task 1

Task 1

And]

(Task)

Task 1
Task 2

Task 3

Task 1

Task 2

Task 3

(Data 1)

Data 1

Data 1

Data 1

Task 2

\

Data 3 Task 3

A process fragment.

Data 5

2001/ 4/18 1:58pm

FIGURE 4.4 A wall-chart under construction.

Table of Contents

1. Introduction
2. Process Description
a. Phase 1
i. Step 1
ii. Step 2
iii. ...
b. Phase 2

C. ...
3. Problems and Points of Improvement
a. Problems
b. Points of Improvement
4. Analysis of the Process
5. Process Environment and Context
6. Vocabulary

FIGURE 4.5 The table of contents for the process description document.

87

88

The result of the first phase is a wall-chart presenting the software process
as is. Also, the secretary have taken notes about the comments of the experts,
that they have made during the modeling session.

4.2.2 Problem Definitions

The second phase of the modeling session finds and outlines the problems exist-
ing in the software process. Most of the problems have been found out during the
modeling phase when the experts try to find a consensus regarding the process,
specific phases, their control, output and/or input. In addition to those sponta-
neously found problems, the chairman and the secretary use their prior knowl-
edge and the notes in order to assure that all relevant problems are brought up,
identified and marked by using the wall-chart notation.

Each problem is named and numbered when identified. The number is
written down to a red piece of paper which denotes the problem in the wall-
chart. The experts locate the phase or information flow where the problem oc-
curs. The experts describe the problem and its significance, and they identify
phases the problem affects. This phase results list of problems that are num-
bered, described and attached to the wall-chart.

4.2.3 Process Documentation and Inspection of Documentation

The wall-chart session ends when the experts think that the achieved accuracy is
good enough. After the decision the experts return to their normal work, but the
secretary and the chairman start documenting of the session. In order to create
the documentation the wall-chart is photographed (the figure 4.4 is one of the
photographs taken). There should be enough photographs so that detailed anal-
ysis of the wall-chart is possible even without the physical chart. The physical
chart is carefully packaged and the consultants return to their office.

The consultants create a digital version of the wall-chart and of the notes
of the secretary. They aim to a coherent and understandable representation. The
process description is refined and it is completed with textual descriptions. The
process description notation is different than in wall-chart due to the require-
ments of understandability and expressivity.

The digital process description is sent to the target organization for inspec-
tion. Misunderstandings, errors and omissions are clarified and corrected ac-
cording to the feedback provided by the target organization’s experts. The re-
sulting document is an approved description of the organization’s software pro-
cess.

4.2.4 Analyzing the Process and Inspecting Results

The approved digital model of the process is used for analyzing and evaluating
the process. The chairman and the secretary carefully analyze the process. In the
analysis, specific consideration is paid to the problems in the software process.

89

The analysis should consider existing process models and standards like
CMM (Paulk et al. 1993, Paulk et al. 1995), SPICE (SPICE, 2001) and ISO9000 (Ke-
hoe & Jarvis, 1996). Common sense should be used in evaluating and analyzing
the process (see e.g. Paulk, 1999), and there is no reason why best ideas from
CMM, SPICE and ISO9000 should not be utilized. The result from the analysis is
the completed report (the layout of the report is outlined in the figure 4.5) of the
process and a list of suggestions for improvement.

The completed report is evaluated and commented by the experts of the
target organization. The report is corrected if necessary for approval. After ap-
proval the target organization can use the report and its suggestions in order to
improve its software process.

4.3 Evaluation of the Technique

The modeling technique and its application presented in the previous section
require just a few resources. Therefore the practical usability of the technique
requires further evaluation.

4.3.1 Background for Evaluation

The technique has been used in four different target organizations and for each
organization three separate modeling sessions were held. The total number of
modeling cases is twelve. The target organizations were different in their size
and operative sector in the information technology market.

The first organization is a small software development company which pro-
duces software mainly as a subcontractor for an international company which
produces telecommunications technology and applications. The number of soft-
ware engineers and other development personnel is below one hundred. In most
cases the company uses the same software engineering method as its main client.
The method has been successfully used in several large-scale projects by both
the client and the company itself. The method requires demanding education
in order to be utilized correctly. The company grows rapidly which creates new
requirements for its processes constantly.

The second organization is a small software company with less than fifty
software developers. The main product of the company is a family of mobile
terminals for logistics and transportation. The product family includes a few dif-
ferent product lines with their own operating systems, programming APIs, de-
velopment tools, and programming guidelines for their customers. The method
used is a structural approach to embedded systems programming and design,
although it has been gradually enhanced during the last few years. During the
time of the study reported in this article the process was managed by senior engi-
neers without a formal guidance. Because the company had started to grow at a
reasonable rate, the need for formal process definition and general improvement
arose.

90

The third company is a medium sized company producing automation
hardware and software for the utilization and management of their automation
systems. The company has less than one thousand software engineers. The pro-
cess used by the company has its strengths in managing large-scale system de-
liveries. The driving force of that in-house developed method is that the results
produced by subphases must be useful in subsequent phases. Therefore reuse,
change management, and testing are especially important for that company.

The fourth company is a large software company which produces shrink-
wrapped and tailored software for its customers. The company has approxi-
mately seven thousand developers. The company has its own in-house devel-
oped method which incorporates both object-oriented and structural develop-
ment.

4.3.2 Evaluation

The evaluation of the modeling technique is based on the answers given to a
questionnaire presented in appendix (the appendix includes a summary of the
answers). One of the aims of the questionnaire was to separate modeling as a
method and the used technique in order to be able to evaluate them both. It
must be noted, however, that there were only six answers to the questionnaire,
and that should be kept in mind during the evaluation.

Process modeling as a method got positive reactions. Modeling was seen as
a way to improve the understanding of the process and the effort used for it was
well-spent. Modeling was considered a suitable method to be used in identifying
problems and potential points of improvement.

The wall-chart technique was seen as useful in creating process models
which represent the real process. The technique permitted experts to describe
and explain all important phases, information flows, and tasks in the process. In
addition, the most dominant opinion was that the technique succeeded in mak-
ing problems visible, but it did not place the problems or points of improvement
in any useful order or classified them according to how remarkable they are. The
technique did not identify those parts of the process which were strong.

Generally the modeling activity with wall-chart technique was considered
too dependent on the chairman’s and the secretary’s professional knowledge and
social capabilities. Further, the technique was considered very dependent on the
actual expertize of the experts chosen to represent the target organization. One
of the problems seen with the technique was that it did not produce practical
proposals on the actual implementation of improvements or changes in the case
that the chairman and the secretary were not resourceful enough.

It was not considered necessary for the experts to have prior knowledge
of the wall-chart technique. The time required by the sessions or the number of
experts participating in the session were not considered important. The optimum
number of experts is probably five or six because the effectiveness of wall-chart
technique slows down with larger numbers (Saaren-Seppild, 1997), but it has not
been tested because no more than six experts participated in any session.

91

According to the results the technique can be used to:

increase the knowledge of the real process;

model the current software process;

identify the points of improvement; and

propose improvement points.

The results can be achieved with a reasonably small investment in required re-
sources.

4.4 Discussion

According to the answers and other experience from the technique, it is suit-
able for modeling the software process and identifying points of improvement
and possible problems. It does not, however, give any order in which improve-
ments should be conducted. The target organizations have implemented some
improvements, but not in the expected scale. Reasons for that include the lack of
any particular priority of the improvements and the lack of resources.

It is interesting to compare the results to the results of the study conducted
by Goldenson and Herbsleb (Goldenson&Hersleb, 1995) in which they studied
how CMM-based appraisals are perceived by different organizations and how
those appraisals have changed the organization. Their study is much broader,
but it is very interesting to compare the results.

According to Goldenson and Herbsleb (Goldenson&Hersleb, 1995) the
problems of the process identified with CMM-based appraisals were considered
generally correct but the appraisals were unable to order the importance of the
problems. Role of the conductors of the CMM-based appraisal was considered
important although some reported that their role was negative. However, orga-
nizations think that the CMM-based appraisals give usable results and they are
used as bases to initiate process improvements. Problems are that CMM-based
appraisals do not give sufficient information to conduct the improvements and
they do not support improvements. Respondents considered CMM appraisals
more like road maps and conducting the actual implementation of improve-
ments require more specific guidance. This is supported by Paulk (Paulk, 1999)
when he states that CMM is road map and it does not prescribe the change. In
addition to that, some of the improvements are clearly too ambitious and initiat-
ing them becomes harder (Paulk, 1999).

When comparing the results of CMM-based appraisals and the results from
the PISKO Modeling Technique interestingly enough the results are roughly
comparable. This is especially interesting due to the fact that the PISKO Mod-
eling Technique requires very little resources from the target organization when
compared to the resources required by CMM.

92

Generally it seems that the use of resources required by CMM are an
overkill. Fairly similar results can be achieved by the PISKO Process Modeling
Technique which is easy to use, does not require extensive use of resources from
the target organization and has been shown to be useful in software process im-
provement. The missing features are the ability to order possible improvement
points and how to implement those improvements. In addition to that, the no-
tion of different perspectives to the process should be included to the technique,
as proposed in (Curtis et al. 1992). The technique should be improved to include
the missing features.

References

Boehm, B. 1976. Software Engineering. IEEE Transactions on Computers C-25(12):
1226-1241.

Brooks, F. 1987. No Silver Bullet - Essence and Accidents of Software Engineer-
ing. Computer, April: 10-19.

Curtis, B., Kellner, M., Over, J. 1992. Process Modeling. Communications of the
ACM 35(9): 75-90.

Gibson, R. 1999. Software Process Modeling. In McGuire, E. (ed.) Software Pro-
cess Improvement: Concepts and Practices. Idea Group Publishing: Hershey,
PA; 1-16.

Goldenson, D., Herbsleb, J. 1995. After the Appraisal: A Systematic Survey of Pro-
cess Improvement, its Benefits, and Factors that Influence Success. Technical
Report CMU /SEI-95-TR-009.

Humphrey, W. 1989. Managing the Software Process. Addison-Wesley.

Kehoe, R., Jarvis, A. 1996. ISO 9000-3: A Tool for Software Product and Process
Improvement. Springer-Verlag: New York.

Lim, W. 1997. Management of Software Reuse. Addison-Wesley: Upper Saddle
River, NJ.

Paulk, M., Curtis, W., Chrissis, M., Weber, C. 1993. Capability Maturity Model
for Software, Version 1.1. Technical Report. CMU/SEI-93-TR-24, DTIC
ADA263404.

Paulk, M., Weber, C., Curtis, B., Chrissis, M. 1995. The Capability Maturity Model:
Guidelines for Improving the Software Process. Addison-Wesley: Reading Mas-
sachusetts.

Paulk, M. 1999. Using the Software CMM with Small Projects and Small Orga-
nizations. In McGuire, E. (ed.) Softawre Process Improvement: Concepts and
Practices. Idea Group Publishing: Hershey, PA; 76-92.

93

Karjalainen, A., Pdivarinta, T., Tyrvdinen, P, Rajala, J. 2000. Genre-Based Meta-
data for Enterprise Document Management. Proceedings of the 33rd Annual
Hawaii Interna-tional Conference on System Sciences (HICSS); Digital Docu-
ments Track; Genre in Digital Documents, Maui HI, USA, January 4-7, IEEE
Computer Society, Los Alamitos CA, CD-ROM.

Pressman, R. 2000. Software Engineering: A Practitioner’s Approach, Europiean
Adaptation, Fifth Edition. McGraw-Hill International (UK) Limited.

Saaren-Seppadld, K. 1997. Seindtekniikka prosessien kehittimisessi. (Using the wall-
chart technique in process development, in Finnish), Kari Saaren-Seppala
Ltd., Finland.

SPICE. 2001. http://www.sqi.gu.edu.au/spice/, visited 31.8.2001.

Taskinen, S-K. 2000. Prosessin = mallinnusmenetelmin soveltuvuus
ohjelmistotuotantopro-sessin kehittimisen apuvilineeksi (Applicability of
software process modeling to support software process improvement, in
Finnish). Master’s Thesis, University of Jyvéaskyla.

Verlage, M., Experience with Software Process Modeling. Software Process: Im-
provement and Practice 3(2): 133-136.

94
APPENDIX: QUESTIONNAIRE

A BACKGROUND

1. Resources needed to modeling session
1.1 Name of the company:
1.2 Time used to modeling and inspections:
1.3 What were the main goals of the modeling:
1.4 Did the goals change during modeling session and how?

B QUESTIONS ABOUT THE TECHNIQUE

2. General valuation: PISKO Process Modeling Technique in general. Do you agree or
disagree with the statements?

Question Totally DisagreeDon’t Agree Totally
dis- know agree
agree

2.1. Technique helped to improve the un- 0 2 1 3 0
derstanding of the current process.

2.2. The results gained with the process 0 0 0 4 2
modeling were well worth the effort

we spent.

2.3. Technique succeeds in identifying 0 0 0 3 3
problems and points of improvement.
2.4. Created process descriptions and doc- 0 3 0 3 0

umentation are adequate to perform
the improvements.

2.5. Technique helped to create a realistic 0 0 0 4 2
process description.
2.6. The created process descriptions were 0 2 2 2 0

too dependent on the expertise and
judgment of the experts attending to
the modeling session.
2.7. The reality and content of the process 0 5 0 1 0
description is too dependent on the
session leader’s expertise and faculty
to judge.
2.8. Used modeling technique is not able 1 4 0 1 0
to describe all the important aspects
(phases and tasks inside those phases)
of the process.

2.9. Technique helps to figure out the se- 0 2 1 3 0
quence of the needed actions of im-
provement.

2.10.Identified problems or points of im- 0 0 0 4 2
provement were essential.

2.11.Suggested actions of improvement 0 0 1 4 1

were good and it was/would have
been possible to implement them.
2.12.The used notation is able to represent 0 0 0 5 1
all of the most important aspects of the
software process.

95

3. Success factors: Attributes that are perceived to support utilizing the method.

Question Substan-Mode- Don’t Some Little
tially rate know if any

3.1. The expertise and the competence of 1 5 0 0 0
the leader of the session.

3.2. Knowledge about the process the par- 1 2 0 3 0
ticipants already have and the quality
of that knowledge.

3.3. Previously made process descriptions, 0 2 0 4 0
documentation and definitions.

3.4. The amount of information gathered 2 3 0 1 0
during process modeling session.

3.5. Objectives and their clarity. 2 3 0 1 0

3.6. Approval of the results right after col- 2 3 0 1 0
lecting them.

3.7. The structure of the group thatis using 2 3 1 0 0
the technique.

3.8. Competence of the participants.

3.9. Time consumed to process modeling.

3.10.Inspections after modeling session.

3.11.The number of participants in the pro-
cess modeling session.

C INFLUENCE OF THE PROCESS MODELING EFFORT:

oo onN
o Wk W
WO ==
W Wk O
o O OO

4. Experiences after the modeling

Mark as many boxes as you need to describe you experiences and answer to the additional
questions when needed.

7 After the process modeling the software process has changed. How?

“We recognized a part of the process that doesn’t have an operations model. We have started
to improve that part of the process.”

“Small changes are happening every day because customers are changing and developing
their own methods. The major change is the new phase in the process, architecture design,
that includes component designing.”

] After the process modeling there have been changes mostly in the way of thinking.
What kind of changes have happened?

“We have started to improve also the processes in the upper level, like the product manage-
ment -process.”

“We are going to add the points of reuse to our current process model.”

7 Nothing much has changed since the process modeling. Possible reasons:
“Lack of time, no allocated resources to process improvement.”

7 Results of the process modeling didn’t answer to the objectives. Possible reasons for
this:
- No marks here

] After the modeling sessions we have seriously considered starting systematic pro-

cess improvement actions. What kind of actions has been done to make the start of
the improvement easier?

- Two of the companies have started to consider the process improvement but no
actions were listed here.

96

After the modeling session we have started our process improvement actions. What
kind of actions has been done?

“We have updated our quality manual.”

Other things took priority and we didn’t start process improvement. What kind of
events or crises there was?

- No marks here

After the modeling session we have been interested in process improvement, but to
start the concrete actions is difficult.

- One mark here, but no comments.

Process modeling was just one task in PISKO-project and we didn’t have great ex-
pectations or objectives concerning it.

- One mark here, but no comments.

. About the results

5.1 How accurately did the technique identify the major problems with software
process? What kind of problems left unidentified?
“Problems were identified very well.”
“One important problem was found.”
“Different projects use different kind of process and they have different kinds of prob-
lems that only people who are involved are aware of. ”

5.2 Did the technique identify “needless” problems? Examples?
“No “needless” problems were identified.”
“We recognized some “needless” problems.”

5.3 How well did the technique characterize the strong points of the organization
and process?
“Mostly the weak points were identified.”
“The opinion and estimations of the consult (session leader) were in important role in
this.”
“The technique did not support the identification of the strong points.”
“The strong points were identified well enough.”

5.4 Were the improvement suggestions good enough to solve the identified prob-
lems?
“We found points of improvement, not means to fix the problems.
“The suggestions of improvement were mainly ideas. ”
“Some, but not much.”
“The suggestions of improvement were quite approximate.”

5.5 Did the process descriptions help to prioritize the importance of the found
problems or the points of improvement?
- Two “yes” replies.
- Two “no” replies.
“They support at least the decision-making.”

”

5.6 Does the documentation and the analysis of the process contain useful addi-
tional information?
- Three “yes” replies.
- One “no” reply.
- One “some” reply.

5.7 Were the points of improvement and the solutions to them easy to recognize?
- Four “yes” replies.
“Quite easily.”

5.8

59

5.10

511

Were the improvement suggestions proven to be practical and useful?
“The improvement effort is still unfinished.”

“They are solutions to problems.”

“Not exactly.”

Were the improvement suggestions practiced in action?
- Two “yes” replies.

- One “no” reply.

“They will be.”

“I don’t know.”

Were the gathered information shared among organization?
“Yes, we started to model the product management process based on that.”
“Yes, to people responsible for process improvement tasks.”

97

How well the used modeling technique was able to represent the aspects of the

software process? What was missing?
- Three “well” replies.
“Process was well described and the need for improvement was recognized.”

“Process was well described, but the phases and results should be represented more

precisely. ”
“It should be possible to describe the process more precisely to the A3-paper.”

5 USING HIERARCHIES TO ADAPT DOMAIN
ANALYSIS TO SOFTWARE DEVELOPMENT

Forsell, M.T, “Using Hierarchies to Adapt Domain Analysis to Software Devel-
opment”. Sein, M., Munkvold, B., Orvik, T., Wojtkowski, W., Wojtkowski, W.
G., Zupandig, J. (eds.), Contemporary Trends in Systems Development. Papers
presented at ISD2000, the Ninth International Conference on Information Sys-
tems Development: Methods and Tools, Theory and Practice, August 14-16, 2000,
Kristiansand, Norway. Kluwer Academic/Plenum Publishers, New York, 2001,
105-118.

©Kluwer Academic/Plenum Publishers, 2001. Reprinted with permission.

Information Technology Research Institute, University of Jyvaskyld, Finland.

Abstract

Domain analysis is used to achieve reusability in software development but the
current component-based software development methods do not treat domain
analysis deeply enough and domains are seen quite narrowly in domain analysis
methods. We present hierarchical domain analysis that helps adapting domain
analysis to the software development and it also aids using reusable informa-
tion across domains. Hierarchical domain analysis has phases to reuse domain
analysis results across different domains and it is to be used with the company’s
current software development method.

5.1 Introduction

Software development strives toward increasing the amount and quality of the
software and at the same time decreasing the costs and development time. One
approach to achieve these diverse goals is the systematic software reuse (Big-
gerstaff and Richter, 1987). In the reuse-oriented software development the key

100

success factor is domain analysis (DA) (Arango, 1989; Lam and McDermid, 1997;
Prieto-Diaz, 1994). DA is a process through which information used in software
development is identified, captured, and organized with the purpose of making
it reusable when creating new systems (Prieto-Diaz, 1990). While the traditional
development methods (e.g., Jaaksi et al., 1999; Jacobson et al., 1999) focus on one
application, DA focuses on classes of applications (Arango, 1994).

Neighbors (1980; 1989) was one of the first persons to introduce DA as part
of software development. DA was used to gather necessary information to be
used in the DRACO system, which created software by assembling existing com-
ponents. Since then many DA methods have been introduced (see e.g., Prieto-
Diaz and Arango, 1991; Wartik and Prieto-Diaz, 1992; Arango, 1994) and they
have been used to produce domain specific application generators (Villarreal and
Batory, 1997), domain specific application frameworks (Codenie et al., 1997), and
domain specific software architectures (Tracz, 1995), among other things. In most
examples domains are quite narrowly understood, for example, text formatting
domain (Arango and Prieto-Diaz, 1991), airline reservation domain (Prieto-Diaz,
1987), or database domain (Villarreal and Batory, 1997). Hence, the reuse that
DA fosters in these cases resides inside these narrow or small domains. Further-
more, DA is most often seen as viable inside domains that are mature (Wartik
and Prieto-Diaz, 1992).

Current component-based development methods (Jaaksi et al., 1999; Jacob-
son et al., 1999; D"Souza and Wills, 1999) use DA as one part of the development
work (Forsell et al., 2000). Unfortunately, DA is only briefly introduced and it is
used to identify possible components inside one application. The components in
these methods help manage the development work, and enable replacing com-
ponents so that changes do not propagate to the rest of the software. Our prob-
lem here is twofold. On one hand, a development method needs to use compo-
nents as available resources, not only as a means to control the development or
maintenance work. On the other hand, DA needs to be part of the whole com-
pany’s software development, not only inside narrow highly specified domains.
Based on these observations we specify our research question as follows: "How
should the domain(s) be analyzed so that all solutions readily available could
be part of the resulting software solution, and that results can be produced and
used in everyday software development?”

We assume here that it is feasible to use DA to achieve answer to this
question. And in this paper we illustrate how these problems can be tackled
with the hierarchical domain analysis. We show that by conceiving all the soft-
ware a company produces as a domain, and by dividing this “big” domain into
sub-domains, we can use results from DA in software projects that traditionally
would be considered as being in different domains (in our case they are in the
different sub-domains). The approach in this paper is created for TietoEnator
Corporation (the largest software company in the Scandinavia) and it is meant
to be used as one part of TietoEnator’s in-house software development method
TietoObject.

101

The structure of the paper is as follows: In Section 2 we introduce key con-
cepts of DA and present Common Process (Arango, 1994) to perform DA. In
Section 3 we introduce hierarchical domain analysis concepts. In Section 4 we
present hierarchical domain analysis process and show how it relates to Com-
mon Process. Also, phases of hierarchical domain analysis are described more
closely. Finally, in Section 5 we discuss about the hierarchical domain analysis,
present limitations for this study and set out some further research questions.

5.2 Background for Domain Analysis

5.2.1 Domain Analysis Concepts

The usefulness of DA is grounded on the belief that reusable information is de-
pendent on the problem domain, and that the problem domain is cohesive and
stable (Arango and Prieto-Diaz, 1991). Arango and Prieto-Diaz (1991) see a prob-
lem domain as a synonym for a class of problems that are similar. They add that
in software context a body of information is considered a problem domain if:

1. deep or comprehensive relationships among the items of information are
known or are suspected with respect to some class of problems,

2. there is a community that has a stake in solving the problems,
3. the community seeks software-intensive solutions to these problems, and

4. the community has access to knowledge that can be applied to solving the
problems.

Besides the problem domain we also have a solution space. A solution
space is the area inside of which a solution to the defined problems has to be
created (Tracz, 1995). In a software-intensive solution we have to use, by defi-
nition, software at least partly in our solution. The solution space tells us what
kind of operating systems, databases, object request brokers, and programming
languages, among other things, we have to use when a solution to the defined
problems is designed.

The result of DA is a domain model. In the domain model the concepts and
the relations between these concepts are presented and the rationale for them is
given (Arango and Prieto-Diaz, 1991). It is quite difficult to draw a line between
domain modeling and domain analysis and in many cases they are used as syn-
onyms (Arango, 1994). We use the term domain analysis, and we consider that it
is hard to do analysis without modeling the results of it.

5.2.2 Common Domain Analysis Process

Arango (1994) argues that all domain analysis methods he evaluated map onto
Common Process. We argue that this also holds true for Tracz’s DSSA (Tracz,

102

1995) and the newest version of Organizational Domain Modeling by Simos
(1996) although they were not among those evaluated. The five generic activ-
ities of Common Process are:

1. domain characterization and project planning,
data collection,
data analysis,

classification, and

AR T

evaluation of domain model

In the domain characterization and project planning activity the necessary
preparation for DA is done. This means that it is decided if the DA is feasible
in the first place. Also, the problem domain is identified and its boundary is set.
One difficult part of DA is defining the boundary (Prieto-Diaz, 1987) where we
have to make clear what is inside the particular domain and what is outside.

In the data collection activity all valid information about the domain is
gathered. In order to do this information sources must be identified. Good
sources are literature, domain experts, existing applications, customer surveys,
and market analysis, among other things (Arango and Prieto-Diaz, 1991).

Gathered information is checked for correctness, consistency and complete-
ness in the data analysis activity. Validated information is analyzed to find
similarities and variation points between concepts, activities, and relationships.
(Arango, 1994.) This kind of information modeling concerns classes of applica-
tions as the traditional analysis techniques in software development methods are
used to analyze one application.

The next activity is classification and it is the most important phase of the
DA. As a matter of fact, classification is the only thing that differentiates domain
analysis from software development cycle analysis. Classification captures and
makes explicit the information structures that characterize classes of applications
in the domain. (Arango, 1994.)

The fifth generic activity is evaluation of the DA results. Here the produced
models and results are inspected and checked for correctness and completeness.
Often the most suitable evaluators for the results are the domain experts.

5.3 Hierarchical Domain Analysis Concepts

Hierarchy is one of the most often used concepts to give order for human think-
ing. Jarzabek (1997) outlined DA approach that identified multiple domains
underlying a program family (cf. Parnas, 1976). This “divide and conquer ap-
proach,” according to Jarzabek, makes results of DA more understandable and
it facilitates design of a reference architecture for program families. We apply
this idea of hierarchies into another direction, i.e., we see all the software that

103

company produces as a domain and this company-wide domain can be further
refined into sub-domain. So, we see domains as business areas and domains
(or sub-domains) help achieve some business objectives for the company. This
company-wide domain can be divided into sub-domains, which are subsets of
the business area and together comprise the entire domain. The sub-domains
may be comprised form other sub-domains. This way we can gradually refine
business areas as they evolve during the lifetime of an organization. (See Wartik
and Prieto-Diaz, 1992.) The aim of using hierarchies this way is to facilitate the
reuse of software components in the whole company and not just inside a narrow
domain. We call this approach hierarchical domain analysis (HDA).

The emphasis of DA has shifted from the reuse of the code to the reuse of
more abstract structures (Wartik and Prieto-Diaz, 1992; cf. Mclllroy, 1976). We
do not want to hinder this progress and thus we see the components that can
be found during DA as products of the software development process (see e.g.,
Freeman, 1983; Horowitz and Munson, 1984; Karlsson, 1995; Krueger, 1992; Mc-
Cain, 1985; Wegner, 1983; Whittle, 1995). Software is not only the program code
but also the documentation that supports the use of the software. This means that
a software component may be requirement, design document, program code, test
script, installation manual or a user’s guide, among other things. However, we
do not regard the software development process or methods used as software
component.

In DA it is important to separate the problem domain from the solution
space (see Jackson, 1994; Tracz, 1995). We see that the problem domain concerns
the business of a company and the solution space deals with the constraints that
are built by the software solution. In Figure 5.1 domain is partitioned to two
aspects. On one hand, we have business aspect that deals with the problems in
the domain. On the other hand, we have the solution space, which is comprised
of the software that is used to solve the problems.

1
Domain
B \
. s - N
A Y
| 1 .
Problem d . Business Software .
roblem domain Aspect Aspect Solution space

FIGURE 5.1 Basic Partitioning of the Hierarchical Domain Model into the Prob-
lem Domain and the Solution Space (UML Package Diagram).

We distinguish between four separate roles in the HDA process. The roles
are a domain expert, an user of the software system, a domain analyzer and a
(software) developer. A Domain expert is a person with extensive experience of,
or substantial knowledge, about the work in the domain. A user is a person who
actually works in the modeled domain and uses software that is created into that
domain. A domain analyzer is someone who creates HDM and she or he must

104

have knowledge about the technique. The domain analyzer is concerned with
the similarities and the variation points in the domain. A developer uses the
results from the HDA process, when she or he is creating new software (from
components) to the domain. The domain analyzer and the developer might be
the same person in small companies but in these cases one has to make it clear
which role she or he plays (cf. Moore and Bailin, 1991).

5.4 Hierarchical Domain Analysis Process

We use Common Process as a starting point but we add some tasks to it. When
Common Process divides the process to activities we divide the process to
phases. Every phase in HDA contains several steps. In Figure 5.2 relations be-
tween activities in Common Process and phases in HDA can be seen. As one can
notice from Figure 5.2 we add one phase prior to any Common Process activities.
In the first phase of HDA we create a domain model to cover all the software that
the company produces and also, we model the software aspect that set limits to
solutions. Secondly, we add a phase after all Common Process’ activities. In
the fifth phase of HDA we use the results in the current software development
project. Third modification is that we use activities two to five of Common Pro-
cess in HDA phases three and four. Fourth notable point of HDA that is not
visible in the picture is that we do classification in two stages. First we classify
data according to Common Process after which we have a second classification
stage. This stage locates identified components into the company-wide domain
model.

Common DA Process Hieararchical Domain Analysis

1. Domain characterization and 1. Create domain model for the
project planning \\ company

2. Data collection > 2. Define sub-domain

3. Data analysis 3. Analyze business aspect

4. Classification [4. Analyze softawre aspect

5. Evaluation of domain model 5. Use DA results

FIGURE 5.2 Relationships between Common DA Process and Hierarchical Do-
main Analysis.

HDA is used as part of an existing development method. Phases from one
to four are done prior to the development method’s analysis phase. Phase five is
performed (at least partly) in all the development method’s phases.

Next, we present the phases and steps of the HDA process. We present only
briefly those phases and steps, which are well presented in Common Process
and concentrate on the phases and tasks that differ from it. We chose to use
Unified Modeling Language (UML) (Booch et. al., 1998) and its package diagram
to present the results of the HDA, which is hierarchical domain model (HDM).

105

The reasons for selecting UML are due to its de facto status and our familiarity
with it. We also use other UML diagrams during HDA such as the activity and
class diagrams but they are in a subsidiary role (see Arango, 1994). Although
we chose UML to be used as a modeling language we see that any modeling
technique that offers similar features can be used to model HDM.

5.4.1 Create a Domain Model for the Company

The objective of the first phase of HDA is to create company-wide domain model,
where the company is divided into hierarchical structure of sub-domains. The
domain experts in this case are the top management of the company and the
information system designers. One must notice that the first phase is performed
in its total range only when HDA is used for the first time. When HDA is used in
the subsequent software development projects, it is only checked for correctness,
and only the parts that are particular to the development project at hand are
scrutinized.
The first phase has four steps:

1. Identify company’s key processes
2. Determine the rationale for software development
3. Create the hierarchy of sub-domains for the business aspect

4. Create the hierarchy of sub-domains for the software aspect

The first step identifies how the company accomplishes its business objec-
tives. The answer to this can be found partly from the top management and
partly from the organizational structure. We are assuming here that top manage-
ment is aware of the company’s mission and vision, and that they know what
are the strategies to get there. Organizations group their units basically either by
the function performed or the market served (Mintzberg, 1984) and this group-
ing is a fundamental means to coordinate work in the organization (Mintzberg,
1983). Software programs are produced for the company to achieve its business
objectives. This means that a software program must give service that is useful
for the organization.

The second step determines the rationale of the software development. The
companies produce the software for various reasons. One can produce software
for the in-house needs and the other may produce tailored software for a partic-
ular customer while the third creates packaged software. If company’s business
is in producing software it is very likely that the organizational structure already
reflects this, for example, packaged software company is likely to divide its units
according to its product families while tailored software producer may group its
functions according to the customers lines of business.

The third step is to create the hierarchy of sub-domains. Here we combine
the organizational structure and the nature of the software development. In this

106

way we produce HDM for the business aspect. The resulting hierarchy is not by
definition replica of the company’s organization chart because we only want to
model the applications that are used and produced by the organization. There
is no point to model such an organizational division where there are different
departments to market product to east and west side of a country, i.e., we cannot
see much point in producing west side of the country software apart from the
east side of it.

The fourth and last step of the first phase creates hierarchy for the software
aspect. This is based mainly to the existing ways to produce software intensive
solutions. Often the basic division to middleware and system software is suffi-
cient (cf. Jacobson et al., 1997).

As a result of the first phase we have the initial HDM where both the busi-
ness and software aspects are by and large defined (see Figure 5.3). In the HDM
higher levels in the hierarchy mean more general not more abstract levels. Each
of the identified sub-domains may be further refined to include more specific
sub-domains in.

The Information Technology Research Institue (ITRI) is an organizatoin that carries out research
companies. Research is done in projects. ITRI has also some educational services that it offers.
Now ITRI is designing software to support its project planning. This development project decided
to use HDA approach. The first task is to create initial hierarchy for the domain. ITRI is creating
software only for itself and its organizational structure is functionally grouped, thus hierarchy

for the business aspect is done according to these functions. Because the target of the development
is project planning software, the project function is examined more closely. The software aspect
hierarchy is created according to middleware and system software layers.

1
ITRI
_ -7 V<
1 1
Business Software
Aspect Aspect
PP cr e) S T
_ - - /7 N S ~o - 1
 1.--- 1’ — 1 1 [1v
Administration Technical Project Education Middleware
support services services
4 A = T
e [} ~ < 1
P 1 1
[1- I — [v
Project Project Project System
planning implementation evaluation software

FIGURE 5.3 Example of the Hierarchical Domain Model.

107

5.4.2 Define Sub-Domain

As stated earlier, one of the hardest tasks is to define boundaries for domain and
this is the aim of the second phase of HDA. The second phase has three steps:

1. Define the boundaries of the current development project
2. Find information sources for the sub-domain

3. Specity the problems and requirements in the sub-domain

In the first step we use the created HDM as a starting point and try to fig-
ure out where in the sub-domains the current development is. Boundary set-
ting should be easier because we can see which business areas are outside of the
sub-domain and which are inside. The second step finds possible information
sources. Finding out who are the domain experts can start this. The selected
experts can point out more relevant information sources in the company. Also,
we have to scan the literature and perhaps study the similar software products
in the market.

The third step specifies the problems and requirements that are particular
in the identified sub-domain. We already have the overall picture of the software
project’s objectives because otherwise we could not been able to do the first step
in this phase at all. In this step we try to figure out the similarities that are be-
tween the programs in the sub-domain and try to define also the variation points
that are needed. As a result of the second phase we have defined our sub-domain
and perhaps refined the overall HDM in this sub-domain area (cf. Figure 5.3).

5.4.3 Analyze Business Aspect

In this phase domain analyzers concentrate on the identified sub-domain and try
to find reusable information inside of it. When we refine the sub-domain we are
looking for the services that the software in the sub-domain must have in order
to be useful for its users (cf. Jaaksi et al., 1999; Jacobson et al., 1999). The third
phase is comprised from the following steps:

1. Define the business processes
Define the key concepts
Define the needed services

Analyze the identified services

AN BN

Classify the services (first according to Common Process and second, locate
services into hierarchy)

108

The first step defines business processes. After we have defined the sub-
domain of interest we gather more information about the problem area. In order
to understand the work in the sub-domain we have to create functional descrip-
tions of it. This can be done with UML's activity diagrams.

The second step defines sub-domain’s key concepts. After the domain an-
alyzers possess understanding about of what kind of business processes are ex-
ecuted in the sub-domain they can identify the key concepts in it. Identified
concepts are described with the class diagram. There is no point in identifying
definite set of attributes for the classes and attributes should be described only if
there is a danger that the attributes and concepts (classes) can be mixed. In any
case the operations for classes are not described.

In the third step the analyzers define the services that the software must
offer for the user. When analyzers are dealing with the business aspect of the
sub-domain they should try to find services that users of the software need in
order to accomplish their every day tasks (see Jacobson et al., 1999). Users of
the software are not interested how particular service is implemented but rather
what is the gain to them using the implemented software.

The services are described with packages (UML). The service packages has
following characteristics, among other things, (Jacobson et al., 1999):

1. it contains a set of functionally related classes,
it is indivisible,

it often has very limited dependencies toward other service packages,

Ll

the functionality defined by a service package can, when designed and im-
plemented, be managed as a separate delivery unit,

5. they may be mutually exclusive, or they may represent different aspects or
variants of the same service, and

6. they constitute an essential input to subsequent design and implementa-
tion activities, in that they will help structure the design and implementa-
tion models.

The fourth step analyzes the found services. In this step the analyzers iden-
tify relationships between service packages and their functionality. Each service
package is analyzed and its core functionality, i.e., the functionality that does not
vary, is separated from the modifiable functionality. These help create adaptation
points in the later use of these service packages (i.e., components). Relationships
between service packages help define also the service package’s interfaces.

The fifth step classifies the services. As stated earlier, the classification
makes the difference between domain analysis and development method’s anal-
ysis and for this reason we also emphasize the classification step. In HDA clas-
sification involves two stages. The first classification stage is done according to

109

Common Process, that is: cluster descriptions, abstract descriptions, classify de-
scriptions, generalize descriptions and construct vocabulary. The aim is to find
service packages the user of the software needs. Basically this means that identi-
tied key concepts (classes) are located into preferably one package.

In the second classification stage found service packages are located into
the hierarchy of sub-domains. This is the most important task in the HDA and
this makes its hierarchy useful to later development projects. In this stage ser-
vices that can be recognized as useful in other sub-domains are located into the
hierarchy, that is, if we can see that certain kind of service can be used in the
whole company we locate this service to the company level in the hierarchy. If
we see that the service is useful, for example, in the development of project re-
lated software (see Figure 5.4) we locate the service in the project level. The
domain analyzer finds the appropriate sub-domain level from the hierarchy by
asking himself (a) where these kinds of services are needed, and (b) is it possi-
ble to create a more general service that could be used more widely inside the
organization. According to the answer, the analyzer locates the service package
inside the appropriate level of the hierarchy. This way we try to predict where
the identified service can be (re-) used, thus making it easier to find.

After the third phase we have defined within the specified sub-domain the
service packages and requirements for the application. HDM is filled with the
found service packages so that each component is put into the hierarchical level
where it is potentially seen as (re-) usable (see figure 5.4). The identified domain
experts should validate the results.

Project 1
Business
- > Aspect
Project Task
> ~
SO B N N
—— - ’ T
= 1,]
has td achieve produces Administration Technical Project Education
support | Ly services services
Objective mea- Result N oy yY v,
sured by - I N
L~ 1
Project Project Project
m' planning implementation evaluation
Resource
. Zp .
Time Money Person

FIGURE 5.4 Example How to Locate Found Services into the HDM.

110

5.4.4 Analyze Software Aspect

In the fourth phase the software aspect of the HDM is refined. Here we try to
tind the functionality that the existing software systems offer for the basis of the
solution. It is quite usual that this phase is straightforward and it should not cre-
ate any noticeable difficulties. The domain experts in this phase are those people
inside the organization who are familiar with the existing technical solutions and
they can say what might happen to the technology in the future. These people
are most often system designers and programmers. The steps two to five of Com-
mon Process are used in this phase although they are not explicitly shown here.
The fourth phase has three steps:

1. Define the layers for the software aspect
2. Define the used software solutions

3. Classity the found solutions

The structure of the software aspect can be based on the layered architec-
ture (cf. Jacobson et al., 1997) where middleware and system software are the
lowest layers. The middleware layer is independent of the operating system and
examples of the middleware components are interfaces to DBMS, graphical user
interface toolkits, and object request brokers. Java as a programming language
gives the same kind of independence and is a good way to create a corporate
wide standard for inter-process communication. The system software layer in-
cludes such components as an operating system, data communication protocols,
and device drivers.

It is not always that easy to draw the line between the middleware and sys-
tem software components (Jacobson et al., 1997) but in many cases it is obvious.
If different opinions about the location of a specific component occur, the crite-
ria of operating system independence should be used, i.e., if the component is
operating system dependent it is a system software component, otherwise it is
a middleware component. After the fourth phase we have a completed HDA.
The results from the fourth phase serve as a basis for constraint identification.
We also have an extensive set of requirements and constraints that the domain’s
software has to follow. The identified domain experts should validate the results.

5.4.5 Use Hierarchical Domain Analysis Results

Although we call this the fifth phase of HDA it is not exactly a phase. Here we
present how results of the HDA can be used to foster company wide reuse and
how they contribute to every day software development. First of all, the hier-
archical sub-domain structure eases the phase of defining sub-domains. When
we have created company-wide HDM we can use this model to identify where
our software exactly belongs, that is, we can identify the sub-domain into which
our software belongs. Furthermore, we can easily determine what is outside of a

111

particular sub-domain. Thirdly, because of the second stage classification (i.e., lo-
cating the found services or components into the hierarchy of sub-domains) we
can find the services and components that were created in other sub-domains.
Moving from the sub-domain at hand upwards the hierarchy can do this. In
this way we can find services that other domain analyzers have seen as useful in
other domains. Of course this does not imply that every general service identi-
tied is always useful. The fourth way to use results is to classify the services. As
a matter of fact this classification is used when we scan through the hierarchy for
the available services.

HDA results can also be used to define the software architectures. Many
other authors have also presented that DA results can be used this way (e.g.,
Tracz, 1995) and HDA does not differ in this sense. In the following we present
three steps to create software architecture but on the contrary to many other DA
methods that produce software architectures, we see that this has to be done ev-
ery time when new software is created. This means that we are not aiming to
produce any kind of reference architecture. The first step to define software ar-
chitecture creates layered component architecture. Jacobson et al. (1997) have
defined a layered component architecture that can be used to separate service
packages and software components to different layers. These layers are applica-
tion, component, middleware, and system software layer.

The second step defines the potential solutions. It is not feasible to deter-
mine all the possible solution alternatives, thus only the most interesting ones
should be explored. What makes a solution interesting depends on company’s
existing solutions, technologies and, of course, experts’ judgment.

The third step defines software architecture. The HDM can serve as a basis
for the design of the software architecture. The software architecture shows the
architecturally significant components and their connections (Shaw and Garlan,
1996). Kruchten (1995) argues that the software architecture should be modeled
from multiple viewpoints and suggests the logical, process, implementation, de-
ployment, and scenario views. The scenarios should be based on the identified
services (cf. Jaaksi et al., 1999; Jacobson et al., 1999).

Each one of the views provides different point of view to the structure of
a system (Clements and Northrop, 1996). The logical view defines the logical
structure of the software. It gives overall structure of the software and shows
main parts of it and defines the main solutions for it. Logical structure descrip-
tion can be based on the layered component architecture. The logical view model
can be based on the service packages that were identified during the analyzing
the business aspect phase. In the development view the components and their
relations are described explicitly. This view should also serve as basis for the sep-
aration of the development units. Here the whole HDM should be scanned to get
information but the resulting development view needs to be further refined. The
software developers use the development view and it can be described with the
package and class diagrams.

The process view illustrates what components belong to the system and
how these components communicate with each other. This can be described

112

with the component diagram. The reader should note that components could
not communicate by any other means than what is defined in the software as-
pect of the domain model. The components have to use always some existing
means to communicate, for example, via middleware or by some programming
language specific feature (e.g., Java RMI).

The physical view presents how the components are located to the different
machines and processors. The deployment diagram can describe this. This view
is quite software specific and it cannot be aided by the results of the domain
analysis.

After the third step of the software architecture modeling we have quite
complete logical and process views and drafts for the development and physical
views (see figure 5.5). These models are further refined by the software develop-
ment method’s own architectural design phase.

Business
Aspect]

-

Technical
support

Administration Project | Education

services services

-

Project
planning

Project
implementation

Project
evaluation

System
software

Logical View

(Scenarios)

Process View Physical View

L3

Development Vle\g_

FIGURE 5.5 A Sketch How to Use Hierarchical Domain Analysis Results in the
Creation of the Software Architecture.

5.5 Conclusions

We started this study by asking: “How should the domain(s) be analyzed so that
all solutions readily available could be part of the resulting software solution,
and that results can be produced and used in everyday software development?”
We suggest that the answer to the first part of the question could be: by adding a
phase to model the whole company as a hierarchy of sub-domains and by using

113

this hierarchy to preserve reusable information at the level where we can see
the reuse opportunities for it. In hierarchical domain analysis (HDA) the most
important task is the classification of the components into the hierarchy of sub-
domains. This way the (re-) use of the components can happen in the other
sub-domains without experience in, or a priori knowledge about it.

We propose that the answer to the latter part of the question could be that
by using HDA as part of the software development (see Prieto-Diaz, 1987). HDA
produces a hierarchical domain model (HDM) that is used and refined during
every software development project. This makes a HDM dynamic. It evolves
with the environment and it allows HDM to be refined when experience over
some sub-domain grows. Furthermore, we added a phase to HDA where the
results of HDA are used during the software development project.

HDA is not biased towards any particular implementation technology (e.g.,
object-oriented) or method (e.g.,Unified Process or SA/SD) apart from the fact
that we have used UML to create our models. A HDM can be used in the orga-
nizations that want to apply domain analysis to facilitate the reuse. The initial
experiences have been positive from the companies that have utilized our HDA
approach.

There are still many open questions in HDA approach. The drawbacks of
HDA are that it does not contribute to the documentation of the components and
it also neglects the testing of the components. Also, UML-based notation may be
improved when empirical evidence conserving its suitability is at hand. One
quite fruitful area of research would be to define the different views for domain
analysis (cf. Kruchten, 1995 and software architectures). Nevertheless, we think
that a HDM is useful in the classification of the components, although it was not
shown explicitly here. We see these aspects very important and further research
is still needed in these areas.

Acknowledgements

Tekes Technology Development Centre, Finland and companies participating in
the PISKO project supported this research. Veikko Halttunen, Tero Pdivéarinta,
and Jarmo Ahonen from the Information Technology Research Institute at the
University of Jyvdskyld, and Jaroslaw Skwarek and Ari Hirvonen from the Ti-
etoEnator Corporation gave number of valuable comments during earlier drafts
of this paper. I would also like to thank the anonymous reviewers whose com-
ments helped improve the focus and clarity of this paper.

References

Arango, G. “Domain analysis - From Art Form to Engineering Discipline,” Pro-
ceedings of the 5th International Workshop on Software Specifications and
Designs, 1989, pp. 152-159.

114

Arango, G. "Domain analysis methods,” in (eds.) Schéfer, W., Prieto-Diaz, R.,
Matsumoto, M. Software Reusability, Ellis Horwood Ltd., 1994, pp. 17-49.

Arango, G., Prieto-Diaz, R. "Domain Analysis Concepts and Research Direc-
tions,” in (eds.) Prieto-Diaz, R., Arango, G. Domain Analysis and Software
Systems Modeling. IEEE Computer Society Press Tutorial, 1991, pp. 9-32.

Bayer, J., Flege, O., Knauber, P., Lagua, R., Muthig, D., Schmid, K., Widen,
T., DeBaud,]J.-M. "PuLSE: A Methodology to Develop Software Product

Lines,” Proceedings of the 1999 Symposium on Software Reusability, pp.
122-131.

Biggerstaff, T., Richter, C. "Reusability Framework, Assessment, and Direc-
tions,” IEEE Software, March 1987, pp. 41-49.

Booch, G., Rumbaugh, J., Jacobson, I. The Unified Modeling Language User
Guide, Addison Wesley Longman Inc., 1999.

Clements, P.,, Northrop, L. "Software Architecture: An Executive Overview,”
Technical Report, CMU/SEI-96-TR-003, Software Engineering Institute,
Carnegie Mellon University, 1996.

Codenie, W., De Hondt, K., Steyaert, P., Vercammen, A. ”"From Custom Applica-
tions to Domain-Specific Frameworks,” Communications of the ACM, Vol.
40, No. 10, October 1997, pp. 70-77.

D’Souza, D., Wills, A. Objects, Components, and Frameworks with UML: The
Catalysis Approach, Addison-Wesley, 1999.

Forsell, M., Halttunen, V., Ahonen,]J. “Use and Identification of Components in
Component-based Software Development Methods,” To appear in the Pro-
ceedings of the Sixth International Conference on the Software Reusability,
Vienna, Austria, June 27-29, 2000.

Freeman, P. "Reusable Software Engineering: Concepts and Research Direc-
tions,” ITT Proceedings of the Workshop on reusability in Programming,
1983, pp. 129-137.

Horowitz, E., Munson,]J. “An Expansive View of Reusable Software,” IEEE
Transactions on Software Engineering, Vol. 10, No. 5 September 1984, pp.
477-487.

Jaaksi, A., Aalto, J.-M., Aalto, A., Vittd, K. Tried & True Object Develop-
ment: Industry-Proven Approaches with UML, Cambridge University
Press, Cambridge, 1999.

Jacobson, 1., Griss, M., Jonsson, P. Software Reuse: Architecture, Process and
Organization for Business Success, ACM Press, New York, 1997.

115

Jacobson, 1., Booch, G., Rumbaugh, J. The Unified Software Development Pro-
cess, Addison Wesley Longman, Inc., 1999.

Jackson, M. ”"Problems, Methods and Specialisation,” Software Engineering
Journal, Vol. 9, No. 6, November 1994, pp. 249-255.

Jarzabek, S. "Modeling Multiple Domains in Software Reuse,” Proceedings of
the 1997 Symposium on Software Reusability, 1997, pp. 65-74.

Karlsson, E. (ed.) Software Reuse: A Holistic Approach, John Wiley & Sons
Ltd., Chichester, 1995.

Krueger, C. "Software Reuse,” ACM Computing Surveys, Vol. 24, No. 2, June
1992, pp. 131-183.

Kruchten, P. "The 4+1 View Model of Architecture,” IEEE Software, Vol. 12, No.
6, November 1995, pp. 42 - 50.

Lam, W., McDermid, J. ”A Summary of Domain Analysis Experience by Way of
Heuristics,” Proceedings of the 1997 Symposium on Software Reusability,
1997, pp. 54-64.

McCain, R. “Reusable Software Component Construction: A Product-Oriented
Paradigm,” Proceedings of the 5th AIAA/ACM/NASA /IEEE Computers
in Aerospace, 1985, pp. 125-135.

Mcllroy, M. "Mass-produced Software Components,” in (eds.) Buxton,].M.,
Naur, P, Randell, B. Software Engineering Concepts and Techniques, 1968
NATO conference on Software Engineering, Petrocelli/Charter, Belgium,
1976, pp. 88-89.

Mintzberg, H. Structure in Fives: Designing Effective Organizations, Prentice-
Hall, Inc., Englewood Cliffs, N.J., 1983.

Mintzberg, H. ” A Typology of Organizational Structure,” in Miller, D., Friesen,
P. Organizations A Quantum View, Prentice-Hall Inc., 1984, pp. 68 - 86.

Moore, J., Bailin, S. “Domain Analysis: Framework for Reuse,” in (eds.) Prieto-
Diaz, R., Arango, G. Domain Analysis and Software Systems Modeling,
IEEE Computer Society Press, 1991, pp. 179-203.

Neighbors, J. “Software Construction Using Components,” Ph.D. Thesis, De-
partment of Information and Computer Science, University of California,
Irvine, 1980.

Neighbors, J. "DRACO: A Method for Engineering Reusable Software Sys-
tems,” in (eds.) Biggerstaff, T., Perlis, A. Software Reusability, Volume I,
Concepts and Models, ACM Press1989, pp. 295-319.

116

Parnas, D. ”On the Design and Development of Program Families,” IEEE Trans-
actions on Software Engineering, Vol. SE-2, No. 1, March 1976, pp. 1-9.

Prieto-Diaz, R. “Domain Analysis for Reuse,” Proceedings of COMPSAC ’87,
1987, pp. 23-29.

Prieto-Diaz, R. “Domain Analysis: An Introduction,” Software Engineering
Notes, Vol. 15, No. 2, April 1990, pp. 47-54.

Prieto-Diaz, R., Arango, G. (eds.) Domain Analysis and Software Systems Mod-
eling. IEEE Computer Society Press Tutorial, 1991.

Prieto-Diaz, R. “Historical Overview,” in (eds.) Schéfer, W., Prieto-Diaz, R.,
Matsumoto, M. Software Reusability, Ellis Horwood Limited, 1994, pp.1-
16.

Shaw, M., Garlan, D. Software Architecture: Perspectives on an Emerging Dis-
cipline, Prentice-Hall Inc., New Jersey, 1996.

Simos, M. “Organization Domain Modeling (ODM) Guidebook, Version 2.0,”
Informal Technical Report for Software Technology for Adaptable, Reliable
Systems (STARS), STARS-VC-A025/001/00, June 14, 1996.

Tracz, W. Confessions of a Used Program Salesman: Institutionalizing Software
Reuse, Addison-Wesley Publishing Company, 1995.

Villarreal, E., Batory, D. "Rosetta: A Generator of Data Language Compil-
ers,” Proceedings of the 1997 Symposium on Software Reusability, Boston,
United States, May 17 - 20 1997, pp.146-156

Wartik, S., Prieto-Diaz, R. ”Criteria for Comparing Reuse-Oriented Domain
Analysis Approaches,” International Journal of Software Engineering and
Knowledge Engineering, Vol. 2, No. 3, September 1992, pp. 403 - 433.

Wegner, P. ”Varieties of Reusability,” ITT Proceedings of the Workshop on
Reusability in Programming, 1983, pp. 30-44.

Whittle, B. “Reusing requirement specifications: Lessons Learnt,” Proceedings
of the 7th Annual Workshop on Software Reuse, Andersen Consulting Cen-
ter in St. Charles, Illinois, August 28-30 1995.

6 A MODEL FOR DOCUMENTING REUSABLE
SOFTWARE COMPONENTS

Forsell, M.t, Pdivirinta, T.}, “A Model for Documenting Reusable Software Com-
ponents”, Re-submitted for publication to Database for Advances in Information
System’s special issue on Component Based Development. Copyright may be
transferred without further notice and the accepted version may be posted by
the publisher.

'Chydenius Institute, University of Jyvaskyld, Finland.
tAgder University College, Department of Information Systems, Norway.

Abstract

Effective reuse of software components requires effective means for document-
ing and communicating several kinds of related information among many stake-
holders in the reuse process of those components. The existing models for com-
ponent documentation pay little attention to the issue of how the documents are
processed and communicated among the stakeholders during the reuse process.
We address the need and sketch an abstract model for an explicated genre system
for this component documentation. Our model highlights the communication
viewpoint to component documentation, elaborating on the traditional models
that have mainly provided suggestions for the documentation’s content. We give
an example of how the model was used in defining documentation for a reusable
component in a software company. The model provides a theoretically informed
basis for research on documentation practices related to the component-based
software industry. It can be used as a starting point to develop and implement
organization-specific component documentation and to enhance the related com-
municative practices in a software company.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distri-
bution, Maintenance, and Enhancement — documentation; D.2.13 [Software Engi-
neering]: Reusable Software — reusable libraries, reuse models; K.6.3. [Management

118

of Computing and Information Systems]: Software Management — software de-
velopment, software process

General Terms: Design, Documentation, Management, Standardization,
Theory

Additional Key Words and Phrases: Component documentation, genre the-
ory, genre system, reuse process, software component

6.1 Introduction

In the 1960’s, Mcllroy (1968) introduced the idea of software development based
on code components. Currently, the notion of a software component may in-
clude, apart from plain code, other artifacts of the software development pro-
cess as well: for instance, requirements, design documents, test scripts, and
user manuals (e.g., Freeman, 1983; Krueger, 1992; Lim, 1997). The whole idea
of component-based software development (CBD) thus pursues an efficient and
effective reuse process; i.e., the activities of managing, producing, brokering, and
consuming all kinds of software components (Lim, 1997; STARS, 1992), beyond
any single software development process at hand (Figure 6.1).

7
Consuming)
Components ’

e
4
7
7

FIGURE 6.1 Model for reuse-oriented software development. In the model es-
sential features of reuse processes are tied up to the software development pro-
cess.

119

In the reuse process (Lim, 1997; STARS, 1992), the managing tasks set gen-
eral goals and rules for the reuse support. The production of a component is
rather similar to an ordinary software development project. However, some ex-
tra effort is involved, for example, in testing the component as such and creating
documentation for potential reusers of the component. In connection to produc-
tion, domain analysis is needed for defining components (Arango, 1989, Lam &
McDermid, 1997, Prieto-Diaz, 1994). Brokering includes procedures for selecting
appropriate components to a repository, certifying the need for the components,
and assuring their quality. Brokering information should convince the reusers
that a component is relevant for the declared purpose in the first place, and that
it can be trusted. Consuming takes place, on the one hand, when reuse-oriented
developers are searching for, trying to understand, and integrating a component
in a software product. The reused component may be either black-box or white-
box component because in both cases all these steps appear to be necessary, for
example in the adaptation phase we may alter the implementation of a white-
box component but to a black-box component we may alter the functionality
only by parameters. On the other hand, components are also consumed in the
subsequent phases of the development project. For instance, besides the use of a
design component in the design phase, it will be used also in the implementation
and testing phases.

A reusable component thus should be made usable in multiple software
implementations and development processes along time. If we agree on Lim’s
(1997) conceptualization of the reuse process above, the following differences
between conventional software development and CBD can be identified: a com-
ponent must be made reusable in different projects from that for which it was
created, a creator of a component is often a different person or development
group than its potential user, and the creator may reside in a different location
geographically and/or work for different organization. The idea of CBD thus
includes a number of special temporal, geographical, logical, and organizational
characteristics and challenges if compared to the conventional software develop-
ment process.

These challenges suggest that a software component must include docu-
mentation of its relevant characteristics for reuse, since one cannot assume that
the original producers and potential reusers of a particular component can (or
should) communicate directly with each other in all circumstances. For in-
stance, the geographical, temporal, or organizational boundaries may prevent
direct communication. The development process based on the reuse of soft-
ware components thus involves an interesting communicative process in which
documents play a significant role. This paper addresses the viewpoint of orga-
nizational communication as a means for elaborating the contemporary mod-
els of this documentation, hereinafter referred to as component documenta-
tion. Throughout the reuse process, component documentation involves sev-
eral stakeholder roles that can be assigned to individuals: the producer(s) of the
component (and documentation), the user(s) of the component, and the brokers
and managers who facilitate the transmission of the component from the pro-

120

duction activity to software development efforts that consume it. Accordingly;,
component documentation should support varying communication needs. Al-
though the literature has suggested a few models for component documenta-
tion (Prieto-Diaz and Freeman, 1987, NATO, 1992; Karlsson, 1995; Basili and
Abd-El-Hafiz, 1996; Sametinger, 1997), it has generally been a neglected area
of research (Dusink and Katwijk, 1995). The existing models do not explicitly
build on any theoretical base that would consider the communicative or orga-
nizational aspects of component documentation. Rather, they are mainly based
on ad hoc recommendations of information content to be included. Our con-
tribution to research and practice is twofold. Firstly, this paper elaborates from
the existing models for component documentation by addressing the communi-
cation viewpoint and organization context with regard to component documen-
tation. Secondly, these viewpoints are illustrated further with an abstract-level
model of component documentation. Our model draws on Lim’s (1997) model
of the reuse process adding the theoretical viewpoint of genre of organizational
communication (Yates & Orlikowski 1992) and especially the related concept of
a genre system (Bazerman, 1994, Orlikowski & Yates 1998). Recently, Spinuzzi
& Zachry (2000) have suggested genre theory as a basis for designing software
documentation intended for the end user. Our paper denotes the communicative
role of documentation in the reuse process for software developers.

The next section introduces genre theory, with a justification to use it for
the analysis of component documentation and a genre-system-based framework
for doing so. Section three scrutinizes three previous models for component doc-
umentation according to the framework. The elaborated model is presented in
section four with an example that illustrates its use in a software-producing orga-
nization. Section five discusses implications of the model on research and prac-
tice. Section six concludes with suggestions for further research.

6.2 Genre Theory: A Basis for Analyzing Component Documen-
tation

The notion of genre originates in the Greek word genos meaning 'race’, 'kind’,
‘sort’, or “class’ (Zimmerman 1994). The concept has been used through centuries
for analyzing pieces of literature and rhetorical utterances (Bakhtin 1952/53).
In the 1950’s, Bakhtin (1952/53) introduced the concept of speech genre, which
he considered useful for analyzing everyday communication, e.g. the docu-
ments used in contemporary organizations. More recently, Yates and Orlikowski
(1992, Orlikowski & Yates 1994, Yates, Orlikowski & Okamura 1999), drawing
on Miller’s (1984) seminal discussion on rhetorical genre, elaborated the con-
cept of genre of organizational communication. They defined it as a typified and
recurrent communicative action characterized primarily by its substance in an
organizational context and, to some extent, by its form. Typically, a genre is ex-
plicitly identified and enacted as an established way to communicate within a
particular community (Yates & Orlikowski 1992). A group of stakeholders in-

121

volved in a CBD process (including the reuse process) could be regarded as such
a community.

The genre theory of organizational communication was chosen as it com-
plements the process-based viewpoint to CBD, from which we started to concep-
tualize our research in the first place. Bazerman (1994) denoted that particular
genres may interrelate in recurrent communicative settings forming systems of
genre or, as simply expressed by Yates, Orlikowski, and Rennecker (1997), genre
systems. The concept of genre system thus corresponds directly to the idea of
process (Conger & Schultze 1999): both of them focus on recurrent actions in
organizational context, the former from the viewpoint of communication pat-
terns and the latter from the viewpoint of meaningful tasks that are interrelated.
Hence, if one can speak of the generic reuse process, as Lim (1997) does, one
should be also capable of conceptualizing a generic genre system of communica-
tion needed in the related tasks as well. As soon as a genre system is identified,
it becomes possible for the stakeholders to discuss further about desired socio-
organizational practices and norms for that communication; concerning the gen-
res involved and their actual technical implementations (Brown & Duguid, 1994,
Péivarinta, 2001). Yates & Orlikowski (1992) note that genres can be analyzed
and depicted at various levels of abstraction. Alike Lim’s abstract and generic
model of the reuse process can be operationalized in organizations in varying
detail, one should thus be as well able to discuss about generic aspects of a com-
municative genre system in the reuse process and to specify it further in any
organizational context. The discussion could proceed until an actual implemen-
tation of a communication system and repository implementation for CBD, as
necessary.

Moreover, the notion of genre system provides a more general-level basis
for the generic discussion for our purposes than the definitions of single genres
would give. As the field of component documentation is a novel and evolving
one, it makes sense first to start with requirements for a genre system in total,
which could be later on specified towards more detailed genres related to partic-
ular organizational settings. Representing a start for an effort of this kind, this
article will stay mostly on the level of discussing this genre system as a whole
instead of going into detailed definitions of individual genres. Orlikowski and
Yates (1998) have elaborated a pragmatic framework for analyzing genre systems
according to six aspects: why, what, how, who/m, when, and where (Table 6.1).
We will use this framework in the subsequent analysis of existing models for
component documentation as well as in our effort to elaborate them.

Among the myriad of theories on organizational communication, few op-
tions to scrutinize communication itself with regard to organizational processes
exist. Among those, the theories drawing on the concept of speech act (Auramaki
& Lyytinen, 1996), originating in Austin’s (1962) work on linguistics, have been
used for analysing and creating documentation systems (Auramaéki, Lehtinen &
Lyytinen, 1988; Gordon & Moore, 1999). However, speech acts deal most es-
sentially with an analysis of particular instances of documents and the effects
intended by the producer and received by the perceiver of that particular doc-

122

TABLE 6.1 A Framework for Analyzing and Describing Genre Systems. (Or-
likowski & Yates 1998)

Why? Declares the ultimate purpose of the whole genre system in ques-
tion and the purposes of the genres that constitute it. For instance,
the genre system of “scheduling documentation in the project” aims
at effective timing and organization of project tasks. Among these
documents, the “Gantt-chart” carries a specific purpose for provid-
ing a rough overview of the whole project, etc.

What? Declares the expectations about the information content of the
whole genre system, and the sequence and information content of
the genres that constitute the whole.

How? Declares what is expected from the form of the genre system as well
as from each of the constituent genres; including communication
media, ways to structure information within the genre system, and
linguistic features specific both for the genre system and for its par-
ticular genres.

Who/m? Declares the stakeholders using the genre system and its constituent
genres for communication; i.e., the primary and secondary roles of
producers and users of that information.

When? Declares the temporal expectations on the genre system and the par-
ticular genres. For instance, specified time periods to read and com-
ment on a documented genre, or specified deadlines to produce in-
stances of a particular document genre.

Where? Declares the expectations on locations and places where the genre
system in question and its constituent genres should appear physi-
cally and logically.

ument, instead of serving our purposes for a type-level modeling of an area of
interest. Typical occurrences of diverging speech acts could, however, be ana-
lyzed from a set of identified genres in a domain with regard to identified stake-
holders (Pdivdrinta, 2001). The concepts of traditional data modeling, (related
to component documentation), could also be identified relevant with our discus-
sion. However, they focus mostly on the actual implementation of the informa-
tion content in question; for instance, the concepts entity or object (of component
documentation) do not necessarily capture the context of a communicative situ-
ation in which a piece of documentation is produced or used. Again, one could
well proceed towards the technical entities and objects of component documen-
tation from a genre-based scrutiny of the documentation’s meaningfulness in an
organizational context.

123

6.3 Previous Models for Component Documentation in Light of
the Genre-Based Framework

Dusink and Katwijk (1995), in their survey on the reuse literature, argued that
component documentation was a neglected area of research. However, a few
models for component documentation have been published. We chose the fol-
lowing ones for more detailed analysis: Sametinger’s (1997), Karlsson’s (1995),
and the NATO model (1992). We naturally recognize a wide base of literature
concerning the documentation of code components (Frakes & Pole, 1994; Hen-
ninger, 1997). However, the emphasis in these is on finding and retrieving com-
ponents, or they address other narrow and specific areas: e.g., how to document
loops (Basili & Abd-El-Hafiz, 1996). We considered the three models mentioned
earlier appropriate for enlightening the state-of-art in general and for fulfilling
the purposes of this paper. We analyzed and compared Sametinger’s, Karls-
son’s and NATO’s models in light of Orlikowski’s and Yates” (1998) genre sys-
tem framework. Appendix 1 presents a detailed comparison of the models. This
section attempts to summarize these models and their shortcomings as a basis
for our model to be elaborated in section 4.

6.3.1 The NATO Model for the Reusable Software Component Documenta-
tion (NATO, 1992)

The NATO standard for the development of reusable software components (RSC)
pursues maximum potential for software reuse. Documentation of a reusable
component provides a key part of its reuse value, playing a dual role. First of all,
it must conform to the needs of the immediate software system under prepara-
tion. Secondly, it must give explicit guidance for reusers. A reuser must be able
to access quickly the information s/he needs.

Documentation must comply with accepted standards of the user commu-
nity, being consistent in organization and in format, and reflecting changes in the
code. Documentation should be self-contained and possibly accompanied with
the reusable component. Finally, documentation should be in machine-readable
form and understandable by others.

Reuse library emerges as a special concern. Documentation must support
the classification, identification and retrieval of components. A component’s
functionality should be easily viewable through abstracted summaries. The de-
pendencies must be explicitly described and there should be classification infor-
mation.

Also the assessment of RSC should be described. Different kinds of metrics
about the reusability and quality should be stated as well as known problems
and recommended enhancements. The potential reuser should also be aware of
any commercial or legal restrictions, and how to access the component if it is not
physically in the reuse library.

124

REUSER’S MANUAL

1. INTRODUCTION
e purpose of the document
¢ overview of the component
2. FUNCTION
e operation
® scope
3. INTERFACES
o RSC specification (identify all externally visible operations)
o external references and parameters
o interfaces by class
4. PERFORMANCE
e assumptions
e resource requirements
o exeptions (how the RSC responds to incorrect inputs)
o test results (any performance measurements)
e known limitations
5. INSTALLATION
¢ how to instantiate the component (e.g., generic parameters)
e interfaces (enumerate and use)
e partial reuse provisions
e diagnostic procedures (what to do if a problem occurs)
e usage examples
6. PROCUREMENT AND SUPPORT
e source (if not in library)
e ownership (any legal or contractual restrictions)
e maintenance (what support is available; points of contact)
7. REFERENCES (any available documentation)
8. APPENDICES (as appropriate)

FIGURE 6.2 Information content of the NATO reuser’s manual. (1993, p. 8-5)

Normal documentation does not fully meet the needs of the RSC reuser;
additional support should be provided in a reuser’s manual for every component
(Figure 6.2). The manual should follow a standard format.

6.3.2 The REBOOT Component Model (Karlsson, 1995)

According to Karlsson, a reusable component is a part of a product at some level
of development (requirements, design, code), together with information about
the component to make reuse feasible. The reusable component must be self-
contained. Hence, when a company has decided on which components to reuse,
a decision on how these components should be packaged for reuse must follow.
The component model describes the information needed for a packaged reusable
component.

Karlsson provides an entity-relationship-based description of his compo-
nent model (Figure 6.3). With small components only parts of the model may be
regarded as useful.

The classification information aids component identification and retrieval.
The component qualification information describes the quality and reusability
of the component. Information is used while deciding whether the candidate
component fulfils requirements for quality and reusability. This information also

125

— HasQual Component
Classification qualification
HasClass HasAdm Component
adm. info
HasDoc| Documentation
Reusable
Includes component
HasIterf Component
i — asInterface T ——
Component
HasBody body
Adapts)
RCEvolution
Test support
HasTest

FIGURE 6.3 The REBOOT component (documentation) model. (Karlsson, 1995,
p- 82)

tracks the reuse history of the component, i.e., the experiences and problems.
The component administrative information includes general information about
the component, including authorization and prizing. Documentation comprises
two kinds of information. First of all, it holds documentation to support the reuse
of the component. Secondly, it holds information intended for the documenta-
tion of the product in which the component will be included. Documentation
supporting reuse a) enables the evaluation of each component, b) enables the
understanding of the functionality of the component, and c) enables the adapta-
tion of the component for specific needs. The component interface describes the
boundaries of the component. The component body describes the internal work-
ings of the component. The test support includes readily available test suites for
the component.

The component model also defines relationships between different ele-
ments of the model. The realizes-relationship relates analysis, design and the
resulting code of a component and this way reflects the possibility of compo-
nents existing on different levels of abstraction. The includes-relationship relates
one or more code components to form a composite object. The RCEvolution-
relationship shows components version history by linking different versions of a
component.

126

REUSE MANUAL

1. GENERAL INFORMATION
1.1. Introduction
1.2. Classification
1.3. Functionality
1.4. Platforms
1.5. Reuse status
2. REUSE INFORMATION
2.1. Installation
2.2. Interface descriptions
2.3. Integration and usage
2.4. Adaptation
3. ADMINISTRATIVE INFORMATION
3.1. Procurement and support
3.2. Commercial and legal restrictions
3.3. History and versions
4. EVALUATION INFORMATION
4.1. Specification
4.2. Quality
4.3. Performance and resource requirements
4.4. Alternative components
4.5. Known bugs/problems
4.6. Limitations and restrictions
4.7. Possible enhancements
4.8. Test support
5. OTHER INFORMATION
5.1. System documentation
5.2. References
5.3. Reading aids

FIGURE 6.4 Outline of Sametinger’s (1997) Reuse Manual (pp. 206-209).

6.3.3 Sametinger’s (1997) Reuse Documentation

In addition to the documentation of software there must be reuse documentation
for software components. To effectively and correctly reuse a software compo-
nent there should be information that enables

e the evaluation of component
e the understanding of the components functionality,
e the use of the component in a certain environment, and

e the adaptation of the component for specific needs.

Regular software documentation does not fulfill these needs. The compo-
nent is not reusable without proper documentation. Thus, documentation must
be valued as an essential part of a software component. Sametinger has elabo-
rated his Reuse Manual on NATO'’s (1993) standard and Karlsson’s book (Karls-
son, 1995) (Figure 6.4). Additionally, he has used also Krueger (1992) and Meyer
(1994) as the main references.

127

6.3.4 Shortcomings of the models

Each model basically recognizes the same general purpose for component doc-
umentation that supports the reuse process. However, some differences can be
found in how the models relate to the overall field of software documentation.
The NATO (1992) model emphasizes that, in addition to explicit guidance to the
potential reuser, component documentation must fulfil “the traditional role of
documentation” (p. 8-1). Sametinger (1997) clearly distinguishes between other
software documentation and his component reuse manual. In Karlsson’s (1995)
REBOOT model, the reuse-related aspects are partially embedded in the compo-
nent documentation, and partially documented elsewhere. That is, in addition to
documentation explicitly tagged as “reuse documentation supporting the reuse
of the component” (p. 84), Karlsson introduces separate documents for qual-
ifying or administering components (which naturally support the reuse of the
component as well). It seems that no clearly enacted demarcation yet exists for
the genre system of component documentation.

All three models concentrate mainly on depicting the information content
of component documentation. Sametinger and the NATO model provide thor-
ough guidelines about what information should be included, whereas Karlsson’s
model stays on a more abstract level. Anyhow, differences exist, especially on
how documentation is structured and what kinds of information are included
under particular topics. Hence, a standardized structure for and a detailed set
of document genres to be included in this genre system remain to be enacted.
Moreover, these three models shed practically no light on how, by whom, and
in what order the parts of component documentation should be created and up-
dated. The sequence of the parts of component documentation thus needs to be
better illustrated in order to increase general understanding of this (obviously
rather complex) genre system.

Little is said about what is expected from communication media and other
issues of the actual form concerning this genre system. The models seem to as-
sume that component documentation mostly consist of digital text. NATO (1992)
explicitly emphasizes that the documentation should be in a machine-readable
form, independent of any particular word processor. Sametinger (1997) and
NATO (1992) both highlight conformance with existing general-level documen-
tation standards, and emphasize the fact that the writing should generally be
clear, understandable, and complete. The lack of detailed responses to the how-
aspect (especially communication media) seems natural because this aspect con-
cretizes only when actual component repositories with adequate documentation
are implemented and studied in real organizational contexts.

In all models, the primary stakeholder is “the reuser” (NATO, 1992, Karls-
son, 1995) or “the software engineer” (Sametinger, 1997). In addition, Karlsson
and the NATO model explicate, respectively, that “the library staff” and “the
repository managers” also need to use component documentation. However,
these models consider the question of who should produce the documentation
either selfevident (i.e., the producer of the component is always assumed to pro-

128

duce the documentation as well) or otherwise too trivial to be discussed. Karls-
son, however, adds that the reuser should produce comments on previous use
of a component to be included in the documentation, thus implying the possi-
bility for various contributing stakeholders. The who-aspect of component doc-
umentation remains rather unproblematized. Furthermore, none of the models
explicates temporal aspects of component documentation.

With regard to the physical and logical location of the information, all
three models denote that a component documentation should constitute a self-
contained unit, i.e., it should not be embedded in one big document describ-
ing a set of components (Sametinger, 1997) or other surrounding documentation
(NATO, 1992). The models also assume that a component documentation should
be placed in a logically organized (digital) repository. Interestingly, NATO (1992)
points out that the actual (code) component can also be physically located else-
where, for instance in a separate organization, as long as the documentation in-
cludes information about this location.

To summarize, the three models have focused mainly on the information
content to be included in component documentation, neglecting the communica-
tive viewpoint to a large extent (which, however, represents the major rationale
for the documentation in the first place). The next section attempts to elaborate
this viewpoint by the means of genre theory.

6.4 Genre System of Component Documentation

This section first elaborates component documentation model based on Lim’s
(1997) reuse process. We apply the concept of genre system to extract require-
ments for communication in the reuse process. A result from this scrutiny re-
sides in the argument that documentation needs two parts: 1) reusable part, and
2) part that enables reuse. To illustrate our abstract model we also give a short
example of using it in a real world context.

6.4.1 Elaboration of the model for documenting components

This section elaborates an abstract-level genre system of component documen-
tation. To demarcate the why-aspect of this genre system, we refer to Lim’s
(1997) typology of the reuse activities: production, brokering, and consuming
a component, and managing the reuse process. These activities necessitate that
component documentation should not only cover the reusable part of a com-
ponent. In addition, documentation that supports communication in the whole
reuse process is needed. In the following, we first declare the issues related to
documenting the reusable part of the component (conducted in the production
activity to support the consuming activity). After this we outline the documen-
tation needed for supporting reuse in the activities of brokering, consuming, and
managing components. Finally, we summarize our model in light of the frame-

129

work for analyzing genre systems, and discuss the model with regard to the
shortcomings of the previous models.

The reusable part of a software component becomes embedded in future
software systems to be developed, i.e. it ends up as a part of the design doc-
umentation and/or programming code. It can be used in three separate ways
during a component-based development effort (Table 6.2). When a component
becomes a part of software under development it also serves as an input for the
next phase of development. For example, if the software developer in the analy-
sis phase decided to include an analysis component as a part of the solution, they
would seek similar information from an existing component as they would from
a component created from scratch. The developers in the design phase could
also utilize the analysis component as an input. Finally, the analysis component
can be tested in the testing phase as a part of the whole software. In order to use
a component as a part of software, the developers must, therefore, comprehend
the objective of the component. They also need information about alternative
solutions that were considered but rejected and, of course, the rationale for the
rejections, i.e., the design rationale for the component (Freeman, 1983).

Besides the reusable part, a component should also include documentation
that supports its reuse in the activities of consuming, brokering, and managing
the reuse process in the software development organization. Table 6.3 summa-
rizes the tasks, stakeholders, and documentation elements required.

130

TABLE 6.2 The ways to use component, stakeholders and documentation ele-

ments of the reusable part of software component.

Reuse ac- Component use Stakeholders Documentation el-
tivity ements
Using - As a part of the - software devel- - the objective of
compo- solution in the de- oper using the the reusable com-
nent velopment phase component as part ponent,

at hand,

- As an input for
the subsequent de-
velopment phase,
and

- As an input
for testing the
software.

of the solution

- software devel-
oper using the
component in
the sub-sequent
phase of the devel-
opment process,
and - software
tester who tests
the results from
the development
process.

- the design ratio-
nalization to create
the component

- the reusable com-
ponent as such,
i.e., the results of
the production
work, and

- the test proce-
dures to certify the
correctness of the
component (used
to certify that
the component
works correctly
— not how the
component has
been tested for
the purposes of
reuse).

TABLE 6.3 Tasks, stakeholders and documentation elements to support the reuse

of a component.

131

Reuse ac- Tasks in the reuse Stakeholders Documentation el-
tivity process ements
Consuming - find the suitable The software - information to
component(s), developer who find the suitable
- select the most wants to utilize a component(s),
suitable = compo- component uses - information to
nent for use, consuming doc- select the most
- adapt the compo- umentation. The suitable compo-
nent for use, and producers of the nent for use,
- integrate the reusable part of - information how
component into the component to adapt the com-
the software so- (or other closely ponent for wuse,
lution(Biggerstaff — related stake- and
and Richter, 1987, holders) should - information
Taivalsaari, 1993; initially create about integration
Lim, 1997). this information. of the compo-
However, the nent as a part
consumers of the of the software
component may solutions.
update consum-
ing information
when they find
new ways to
use, adapt, and

integrate the com-
ponent (Karlsson,
1995).

continues

132

TABLE 6.3 (continued)

Reuse ac- Tasks in the reuse Stakeholders Documentation el-

tivity process ements

Brokering - assessing a com- The broker can - information
ponent, be an individual about assessing
- procuring a com- who is assigned to the component,
ponent, these tasks. More - information
- certifying a com- often, broker- about procuring
ponent, ing may involve the component,
- adding a compo- several people - information
nent, and and even sepa- about certifying
- deleting a com- rate groups of thecomponent,
ponent(Lim, 1997; people. For ex- - procedures to

see also STARS,
1993).

ample, one group
assesses and pro-
cures components
whereas another
one is assigned
to the certifying
task. Usually,
the maintainer
of a repository is
responsible for
adding compo-
nents into the
repository or
deleting compo-
nents from the
repository. In
case of deletion
or addition there
are also other
stakeholders who
should be in-
formed about the
changes; there
should thus exist
defined proce-
dures these
cases.

for

add the compo-
nent, and

- procedures to
delete the compo-
nent.

continues

TABLE 6.3 (continued)

133

Reuse ac- Tasks in the reuse Stakeholders Documentation el-
tivity process ements
Managing Managing the The managing ac- - information
the Reuse reuse process tivity can involve about the creator,
Process includes tasks several stake- - information
that set goals and holders closely about the support,
rules to support related with the - information
reuse (Lim, 1997). reuse process. The about the pricing
Management tasks producers of a policy,
vary in companies component may - information
but they should re- set the security about the security
flect the objectives level of a compo- level, and
for the reuse, e.g. nent so that only - information

establishing reuse

people inside one

metrics (Frakes department are
and Terry, 1996) allowed to use
and following the the component.
reuse level (Free- The wusers of a
man, 1983). It is component can

also important to
monitor the users

add their name to
the list of wusers.

of a component Furthermore,

so that, in case of other people may
deleting a com- be responsible
ponent, relevant for pricing the
people could be components and
informed, for ex- monitoring their
ample. Looking use.

after the price

and security of a

component also

involve informa-

tion related to the
management of
reuse.

about the users.

We outline further our model in light of the analytical framework of genre
systems (Orlikowski & Yates, 1998), and compare it with our analysis of the pre-
vious documentation models.

Why? Component documentation should support communication in and
among all activities of the reuse process. This view is more or less equivalent to
the previous documentation models (as it naturally should be). However, our
model explicates a demarcation of this communicative genre system based on

134

Reusable Software Component

Reusable Part

- Objectives for the component

- Design rationale for the component
- Result of the work

- Test procedures

Part Supporting Reuse
Brokering Consuming Management
Information Information Information

Information about:

Infromation to
- find

Information about:
- creator

- assesing

- procuring - select - support
- certifying - adapt - pricing

- adding - integrate - security
- deleting a component - users

a component - etc.

FIGURE 6.5 Information structure for component documentation.

Lim’s (1997) concise model of the generic reuse process. This sharpens under-
standing of the general nature and sphere of this genre system compared to the
previously ad hoc structured and diverging declarations of component docu-
mentation.

What? Figure 6.5 illustrates a general-level information structure for docu-
menting reusable software components. Our model does not bring in any new
information in the sense that the subparts (or constituting genres at a topic level)
are already more or less identified and divergently emphasized in the previous
models — our model just draws the issues mentioned in each of them together
(see Appendix 1). Moreover, unlike any of those, our model explicitly covers in-
formation needed in all activities of Lim’s (1997) generic reuse process, and the
general-level structure of documentation draws on these activities, providing
a simple but covering structure to continue scrutiny about their organization-
specific implementations. The earlier models followed no specified logical basis
for structuring component documentation.

If we consider more closely communicative actions related to the subparts
of component documentation, we can observe the following sequence. First, the
producer creates the reusable part. After this the producer tries to envision how
this component can be made usable for potential consumers. Next, the compo-

135

nent is analyzed by the broker. The broker assesses, procures, and certifies the
component. If the component is accepted and added to the repository, then rel-
evant stakeholders, such as the manager, are informed. The reuser (consumer)
utilizes all parts. Moreover, the role of a reuser is also emphasized when con-
suming and management information are updated. In some cases, the producer
may (re)use consuming information as a basis for developing a new version of
the component etc. Even this coarse sketch might illustrate the manifold needs
for using component documentation according to the varying stakeholder tasks
and roles, which should be considered when these kinds of communicative docu-
mentation systems are implemented in practice — a fact that is not sufficiently em-
phasized in the previous literature. As the roles of actual stakeholders may vary
organization-by-organization, the detailed genres included in this genre system
could be defined contextually by checking their content against the generic in-
formation structure in the figure 6.5. This is illustrated further in the example
below.

How? Even our, thus far, abstract model clearly implies a few requirements
for implementing this genre system in a software-producing organization. Sev-
eral stakeholders, potentially scattered across large global organizations, can be
involved in producing information for and using it from different subparts of this
genre system. The implementation should thus support the clarification of access
rights and the authentication of the editors and readers of the documents. The re-
visions of consuming and management information, and the reusable part itself,
require also technological support for managing the consistency of the whole
package of this information. Some of the elements in the documentation may
be identical among several components, for example, information about pric-
ing policies. In these cases it is natural that this kind of information is kept in
one place and a component only refers to this information (cf. Karlsson, 1995).
Hence, e.g., hypertext solutions supporting links between a component docu-
mentation and more general-level documents in a repository may be needed.
Since a large proportion of components is often produced in other organiza-
tional units, or even in other companies, intra- and extranet applications are not
out of scope here. In conclusion, the ideal technological solution for this field
would operationalize the functionality of modern content management systems
(cf. Boiko, 2001); including standardized document structures and technologies
for processing structured and semi-structured content, high-level information se-
curity, effective version and configuration management (combining documenta-
tion and software), and effective sharing practices via intra-/extranet solutions.
The more detailed aspects of the actual forms and implementations remain to
be scrutinized further elsewhere. Still, this discussion has already significantly
concretized this problem area compared to the earlier models of component doc-
umentation.

Who? The producers of a component (or stakeholders closely related
to them, such as specialized documenting staff) create documentation for the
reusable part. They also create information for consuming and partly for man-
agement. The brokers create brokering information. The reusers create addi-

136

tional consuming information and partly information for the reuse management
(in addition to distinguished repository managers).

To whom? Documentation is evidently created primarily for the reusers,
but also for the brokers and reuse management. The reusable part is used by the
reuse-oriented developer who first utilizes the component, potentially by the de-
velopers in the subsequent phase of the software development effort, and by the
software testers. A detailed and context-dependent explication of these stake-
holder roles is needed to implement component documentation in practice in
any target organization — this aspect has been left unproblematized in the previ-
ous literature on the topic.

When? No component exists without component documentation. Hence
the first version of the documentation has to be made in immediate connection
with the reusable part. After this, a component documentation should be flexible
enough to evolve continuously along with actual reuse occasions and revisions
of the reusable part. Actual implementations of this genre system might reveal
more detailed and context-dependent temporal rules and expectations, for ex-
ample, deadlines for assessing the component and expectations connected to re-
visions. This aspect must be kept in mind when implementing instances of this
genre system. Since the previous models explicated no temporal aspects, even
this abstract-level recommendation contributes to the field.

Where? Not much can be said at an abstract level about the spatial or log-
ical locations to organize a component documentation — except the fact already
stated in the previous models that they should be stored in a (digital) repository.
This dimension must be considered in more detail when implementing actual
instances of this genre system. Organizational boundaries and geographical dis-
tribution of a particular organization especially affect the actual physical storage
place of this documentation. Still, the logical location in the “cyberspace” will
emerge as the most important question.

6.4.2 An example of the model use

The component documentation model was applied within a project at TietoE-
nator Ltd, Finland, the leading supplier of value-added IT services in Europe.
The project in question applied Hierarchical Domain Analysis (HDA) (Forsell
2001a, 2001b) that aims at improving the creation and use of reusable compo-
nents. One crucial part in HDA is to document the components properly to make
them reusable. In 2001, the project had documented four components according
to the model. Three of them, ‘Job Queue’, 'Rule-based Processing of a Transac-
tion’, and “Sales Ledger” are at the design level. The fourth, named "Contract’ is
currently released as a stateless Enterprise Java Bean. The model was used for
discussing whether all necessary information elements of component documen-
tation had been taken into account. First we describe the reuse process involved
with creating the component and accompanying documentation. After this we
show, as an example, how the specific genre of “design pattern documentation”
was emerging as a part of the component documentation.

137

The reuse process starts with a domain analysis (DA), in which a group
of domain analyzers looks for appropriate components and creates a domain
model. The group first searches for candidate components, to be reviewed by a
steering committee. The steering committee decides on which candidate com-
ponents should be refined further. The approved candidates become the actual
reusable components, being documented as design patterns by the DA group. A
component is considered ready after the DA group’s evaluation and approval. It
is also possible to use a third party evaluation. The resulting reusable software
component is placed into the domain model as well as to the component repos-
itory (this represents the brokering task of the component). In the case of con-
suming task, the reusers browse the domain model or conduct key word searches
to the repository. The reusers decide, based on the documentation, whether the
component fulfils their needs. If the component is regarded as usable, the com-
ponent documentation aids reusers in adapting it to the software.

The roles of stakeholders are identified based on the reuse process. The
reuse process defined by the target organization states that there are people cre-
ating components (DA group), brokering it (steering committee, repository rep-
resentative), and consuming it (reuser, and implicitly the customer). Most proba-
bly, these roles vary in different organizations, according to a number of options
to implement the reuse process in practice.

We identified five genres of component documentation in connection to
the target organization’s (rather fresh) reuse process thus far: '‘Domain model’,
"Design pattern documentation’, ‘Steering committee approval’, ‘Review’, and
"Expert evaluation’. In addition to those, the repository was used also to retrieve
information for some tasks dynamically during the reuse process: i.e., we could
not yet identify explicitly structured genres in all tasks, although the repository
was to be used in those tasks. This implies that the reuse process as such is
only on its way toward a fully defined one in the target organization (another
question is whether it never could or should reach such fully defined status).
Table 6.4 summarizes how the tasks of the reuse process relate to the genres of
(and the ad hoc information needs for) component documentation identified in
the target organization.

As a more detailed example, let us discuss one genre of the overall docu-
mentation, that is, the design pattern documentation for a component (Appendix
2). A design pattern document is typically written with MS Word and the struc-
ture follows Gamma’s et al. (1995) idea of design pattern documentation. A
design pattern is a named solution to a recurring problem in a particular con-
text of object-oriented design (Vlissides, 1998). The basic design pattern form of
Gamma et al. (1995) was, however, slightly altered here. The "Where to use”
section was based on the DA, describing for the possible reusers where the com-
ponent was seen usable within that domain by the DA group. Furthermore, the
“Example use” section is based on the domain analysis as well.

The reusable part, which becomes a part of the resulting system, is pre-
sented in the section ”Structure”. The other sections comprise the part that en-
ables the use of the component. Information for component retrieval can be

138

TABLE 6.4 Tasks of reuse process and corresponding genres in the example case.

TASK of the reuse process

GENRE (Repository(*) means that
no specific genre was identifiable
for that task, but documented
content was retrieved dynamically
from the repository in an ad hoc
manner)

Creating component

- analyzing domain

- producing component

- Maintaining and enhancing com-
ponent

Domain model

Design pattern documentation
Repository(*)/Design pattern doc-
umentation

Brokering component

- Assessing components for broker-
ing

- Procuring components

- Certifying components

Steering Committee Approval

Steering Committee Approval
Reviews, Expert evaluation

- Adding components Repository(*)
- Deleting components Repository(*)
Consuming component

-identifying System and compo- N/A

nent requirements

- locating components Domain

- assessing components for con-
sumption

- understanding components

- integrating components

model/Repository(*)/Design
pattern documentation
Design pattern documentation

Design pattern documentation
Design pattern documentation

139

TABLE 6.5 A summary of the genre system for component documentation

model.

Why?

What?

How?

Who/m?

When?

Where?

Documentation is created to support the reuse process so that
all relevant documentation for supporting reuse would be
supplemented.

Documentation has two parts: the reusable part and part sup-
porting reuse. The reusable part includes the component that
comes as part of the new software. The part supporting reuse
includes information about managing, brokering, and using
the component. Five genres could be identified ("Domain
model’, ‘Design pattern documentation’, ‘Steering commit-
tee approval’, ‘Review’, and "Expert evaluation’), which con-
tribute to the different tasks of the reuse process. Moreover,
the repository is used in ad hoc ways in some tasks, for which
no enacted genres could be identified at the moment

The documentation about the component includes informa-
tion about the reusable part and part supporting the use of
the component. The related documents are attached automati-
cally by the repository to the information about managing and
brokering the component.

The component documentation is created for the reusers,
reuse managers and people responsible for brokering the com-
ponent. Each of these groups has specific information needs of
its own.

Component reuse takes place in connection to software devel-
opment projects.

Component documentation is kept in a repository.

found in the section "Where to use”. The sections “Purpose” and “Motivation”
support the selection task. The reusable part, i.e., the structure, can also help in
the selection. The adaptation and integration is guided with the section “Exam-

ple use”.

Table 6.5 summarizes the genre system of component documentation in the
target organization.

6.5 Implications

In summary, our model implies that at least the following dimensions should be
considered in connection with inquiring and implementing the genre system of
component documentation in practice:

1. Process: our model denotes that a component documentation is not a static
entity, but rather a communicative process of several stakeholders, contin-
uously evolving with time alongside the uses and revisions of the com-

140

ponent. Instead of ad hoc structuring of this genre system, the explicated
activities of the reuse process (Lim, 1997) offer a solid conceptual ground
to structure and implement documentation systems for software compo-
nents. In our example we illustrated the document model in a real world
context, demonstrating how certain genres could already be identified and
recognized in connection to certain tasks. This helps structure the work,
communication, and related information production and retrieval in the
reuse process and CBD in general.

. Stakeholder roles: our model offers a motivation and basis for explicating

stakeholder roles, with their rights and responsibilities, related to compo-
nent documentation at a detailed level before implementing a system of
this kind in the organizational context in question. The explication of pro-
cesses and roles together constitutes a challenge to organizational design
related to the component documentation system before its practical imple-
mentation. The example illustrates that component documentation affects
a number of stakeholders: the creators, reusers, and brokers of a compo-
nent, and a steering group to accept the components to be included in a
repository. Moreover, information about the costs and uses of a component
are needed at the management level.

. Detailed structuring and standardization of the information content of

component documentation. As the production of software components
(especially code components) increasingly takes place outside the admin-
istrative borders of those organizational units potentially consuming the
components, the need to standardize the contents of component documen-
tation at the corporate level, or even at the industry-level, seems obvious.
This standardization process would not necessarily emerge as an easy one
even within one organization, let alone within an organization network of
CBD. Our difficulties to identify genres to utilize the repository in connec-
tion to the tasks of maintaining, adding, deleting and locating components
in the target organization might illustrate this issue. The component docu-
mentation model that is explicitly based on the reuse process model could,
however, offer a solid conceptual basis for negotiating this standardization
in and among software development organizations further, without forget-
ting the viewpoint of different stakeholders and their needs for communi-
cation. More experience on the repository-level vis-a-vis component-level
documentation would be needed for crystallizing this aspect in the future.

Several technological challenges seem to relate particularly to the utiliza-
tion of content management functionality, such as version and communica-
tion management, automatic publishing, access rights management and in-
formation security, link management, and all the other challenges of man-
aging heterogeneous information content in the digital era (e.g., Boiko,
2001) with regard to component documentation. In the target organiza-
tion, a repository was definitely considered useful and necessary for stor-

141

ing and restoring the components. A challenging issue, however, would
be its management along time in varying reuse processes and for varying
kinds of more or less accepted genres of component documentation among
the varying assemblies of stakeholders.

6.6 Conclusion

Our genre system based analysis of previous literature revealed that several as-
pects of component documentation have remained implicit in the literature, and
thus need further elaboration. We have elaborated a genre-system based model
for component documentation, drawing explicitly on the generic model of the
reuse process (Lim, 1997), as it supports the reuse of all kinds of software ele-
ments (requirements, design models, code). The reuse-process-based documen-
tation model supports the reuse of white-box components as well as black-box
components. The model can be applied as a basis for designing component doc-
umentation solutions for CBD in software-producing organizations. Specifically,
our model implies that the following aspects should be explicitly scrutinized and
contextually tailored: the reuse process, stakeholder roles, standardized contents
and structures for the subdocuments included, and several technological chal-
lenges related to this complex genre system. Special characteristics of document-
ing different kinds of components that result from the different phases of soft-
ware development should be investigated further — as well as relationships be-
tween component-level and repository-level genres aimed at supporting reuse.
Also, the versioning of a component documentation as a holistic genre system,
with varying potential genres and their relationships, should be studied further.
We regard our model as a theoretically grounded foundation for further research
and elaboration; for instance, for proactive action research initiatives aimed at
establishing better documentation practices in actual software-producing orga-
nizations, or for industry-wide initiatives to define documentation standards for
component-based software development.

References

Arango, G. (1989), “Domain Analysis — From Art Form to Engineering Disci-
pline,” Proceedings of the 5th International Workshop on Software Specifi-
cations and Designs, 1989, pp. 152-159.

Auramadki, E., Lehtinen, E., Lyytinen, K. (1988), “A speech-act-based office mod-
eling approach,” ACM Transactions on Office Information Systems, Vol. 6,
No. 2, 126-152.

Auramdki, E., Lyytinen, K. (1996), “On the Success of Speech Acts and Ne-
gotiating Commitments,” in Dignum, E., Dietz,]J., Verharen, E., Weigand,
H. (eds.), Communication Modeling — The Language/Action Perspective:

142

Proceedings of the First International Workshop on Communication Mod-
eling (LAP "96), London: Springer.

Austin, J.L. (1962), How to do things with words. Clarendon Press, London.

Bakhtin, M., (1952/53), “The Problem of Speech Genres,” in Emerson, C.,,
Holmquist, M. (eds.) (1986), Speech Genres and Other Late Essays, English
transl. from Russian by McGee, V.W., Austin: University of Texas Press,
60-102.

Basili, V., Abd-el-Hafiz K. (1996),” A Method for Documenting Code Compo-
nents,” Journal of Systems Software, Vol. 34, 89-104.

Bazerman, C. (1994), “Systems of Genres and the Enactment of Social Inten-
tions,” in Freedman A., Medway, P. (Eds.), Genre and the New Rhetoric
London: Taylor & Francis, 79-101.

Biggerstaff, T., Richter C. (1987), “Reusability Framework, Assessment, and Di-
rections,” IEEE Software, March, Vol. 4, No. 2, 41-49.

Boiko, B. (2001). Content Management Bible, New York: Hungry Minds.

Brown,].S., Duguid, P. (1994),”Borderline Issues: Social and Material Aspects
of Design,” Human-Computer Interaction, Vol. 9, No. 1, 3-36.

Conger, S., Schultze, U. (1999), “Understanding e-Commerce through Genre
Theory: The Case of the Car-Buying Process,” in Ngwenyama O., Introna
L.D., Myers M.D., DeGross]J.I. (Eds.), New Information Technologies in
Organizational Processes: Field Studies and Theoretical Reflections on the
Future of Work, Boston, Kluwer, 219-239.

Daft, R.L., Lengel, R.H. (1986), “Organizational Information Requirements, Me-
dia Richness and Structural Design,” Management Science, Vol. 32, No. 5,
554-571.

Dusink, L., van Katwijk, J. (1995), “Reuse Dimensions,” Software Engineering
Notes, August 1995, Proceedings of the Symposium on Software Reusabil-
ity, Seattle, Washington, April 28-30 1995, 137-149.

Forsell, M. (2001a), “Using Hierarchies to Adapt Domain Analysis in Software
Development,” in Sein, M.K., Munkvold, B.E., Orvik, T.U., Wojtkowski,
W., Wojtkowski, W.G., Zupanci¢, J. (eds.), Contemporary Trends in Sys-
tems Development, Papers presented at ISD2000, the Ninth International
Conference on Infomation Systems Development: Methods and Tools, The-
ory and Practice, held August 14-16, 2000 in Kristiansand, Norway, Kluwer
Academic/Plenum Publishers, New York, 105-118.

143

Forsell, M. (2001b), “Adding Domain Analysis to Software Development
Method,” Accepted for presentation at Tenth International Conference on
Information Systems Development, ISD2001, London, United Kingdom, 5-
7 September 2001. To be published by Kluwer Academic/Plenum Publish-
ers 2001.

Frakes, W., Pole, T. (1994), “ An Empirical Study of Representation Methods for
Reusable Software Components,” IEEE Transactions on Software Engineer-
ing, August, Vol. 20, No. 8, 617-630.

Frakes, W., Terry, C. (1996),”Software Reuse: Metrics and Models,” ACM Com-
puting Surveys, June, Vol. 28, No. 2, 415-435.

Freeman, P. (1983), “Reusable Software Engineering: Concepts and Research
Directions,” ITT Proceedings of the Workshop on Reusability, 129-137.

Fulk, J., Schmitz, J., Steinfield, C.W. (1990),”A Social Influence Model of Tech-
nology Use,” In Fulk, J., Steinfield, C. (eds.) Organizations and Communi-
cation Technology, Newbury Park: Sage, 117-140.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995), Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley Publishing
Company.

Gordon, M.D., Moore, S.A. (1999), “Depicting the Use and Purpose of Docu-
ments to Improve Information Retrieval,” Information Systems Research,
Vol. 10, No. 1, 23-37.

Henninger, S. (1997), “An Evolutionary Approach to Constructing Effective
Software Reuse Repositories,” ACM Transactions on Software Engineering
and Methodology, April, Vol. 6, No. 2, 111-140.

Karlsson, E. (1995), Software Reuse: A Holistic Approach, Chichester: John Wi-
ley and Sons.

Krueger C. (1992), “Software Reuse,” ACM Computing Surveys, June, Vol. 24,
No. 2, 131-183.

Lam, W., McDermid, J. (1997) “A Summary of Domain Analysis Experience
by Way of Heuristics,” Proceedings of the 1997 Symposium on Software
Reusability, 1997, pp. 54-64.

Lim, W. (1998), Managing Software Reuse, Upper Saddle River: Prentice Hall.

Markus, M.L. (1994), “Electronic Mail as the Medium of Managerial Choice,”
Organization Science, Vol. 5, No. 4, 502-527

144

Mcllroy, D. (1968), “Mass Produced Software Components,” Report on a con-
ference by the NATO Science Committee, Garmish, Germany, October 7-11
1968, in Naur, P, Randel, B., Buxton,]. (eds.) (1976), Software Engineering;:
Concepts and Techniques, New York: Petrocelli/Charter, 88-98.

Meyer, B. (1994), Reusable Software: The Base Object-Oriented Libraries. Pren-
tice Hall Object-Oriented Series.

Miller, C.R. (1984), “Genre as Social Action,” Quarterly Journal of Speech, 70:
151-167, reprinted in Freedman, A., Medway, P. (Eds.) (1994), Genre and
the New Rhetoric, London: Taylor & Francis, 23-42.

Mintzberg, H., (1983), Structure in Fives: Designing Effective Organizations.
Prentice Hall, Inc., Englewood Cliffs, N.J.

NATO (1992), NATO Standard for the Development of Reusable

Software Components, Volume 1 (of 3 Documents),
(http:/ /www.asset.com/WSRD/abstracts/archived / ABSTRACT_528 . html),
(accessed 1 June 2000).

Orlikowski, W.J., Yates, J. (1994), “Genre repertoire: The structuring of Com-
municative Practices in Organizations,” Administrative Science Quarterly,
Vol. 39, No. 4, 541-574.

Orlikowski, W.J., Yates, J. (1998). Genre Systems: Structuring Interaction
through Communicative Norms. Sloan School of Management Working
Paper #4030, MIT, http://ccs.mit.edu/papers/CCSWP205), (accessed 12
July 1999).

Prieto-Diaz, R. (1994), “Historical Overview” in (eds.) Shafer, W., Prieto-Diaz,
R., Matsumoto, M., Software Re-usability, Ellis Horwood Limited, pp. 1-16.

Prieto-Diaz, R., Freeman, P. (1987), “Classifying Software for Reusability,” IEEE
Software, January, 6-16.

Pdivdrinta, T. (2001), “The Concept of Genre within the Critical Approach to
Information Systems Development,” Information & Organization, Vol. 11,
No. 3, 207-234.

Sametinger, J. (1997). Software Engineering with Reusable Components. Berlin:
Springer.

Shannon, C.E., Weaver, W. (1949), The mathematical theory of communication,
Urbana: University of Illinois Press.

Sillince, J.A.A. (1997), “A Media-Attributes and Design-Choices Theory of the
Information Technology-Organization Relation”, Journal of Organizational
Computing and Electronic Commerce, Vol. 7, No. 4, 279-303.

145

Spinuzzi, C., Zachry, M. (2000), “Genre Ecologies: An Open-System Approach
to Understanding and Con structing Documentation,” ACM Journal of
Computer Documentation, Vol. 24, No. 3, 169-181.

STARS (1993), STARS Conceptual Framework for Reuse
Processes (CERP), Volume I: Definition, Version 3.0,
STARS-VC-A018/001/00, Informal Technical Report.
(http:/ /www.asset.com/WSRD/ASSET /A /495// ASSET_A _495.tar.gz),
(accessed 1 June 2000).

Taivalsaari, A. (1993), A Critical View of Inheritance and Reusability in Object-
oriented Programming, Ph.D. Thesis, Jyvédskyld Studies in Computer Sci-
ence, Economics and Statistics 23, Jyvéaskyld: University of Jyvaskyla.

Vlissides, J. (1998), Pattern Hatching: Design Patterns Applied. AddisonWesley
Longman, Inc., Reading, Massachusetts.

Yates,]., Orlikowski, W.J. (1992), “Genres of Organizational Communication:
A Structurational Approach to Studying Communication and Media,”
Academy of Management Review, Vol. 17, No. 2, 299-326.

Yates, J., Orlikowski, W.J., Okamura, K. (1999), “Explicit and Implicit Structur-
ing of Genres in Electronic Communication: Reinforcement and Change of
Social Interaction,” Organization Science, Vol. 10, No. 1, 83-103.

Yates, J., Orlikowski, W.]., Rennecker, J. (1997), “Collaborative Genres for Col-
laboration: Genre Systems in Digital Media,” Proc. of the 30th Annual

Hawaii International Conference on System Sciences: Digital Documents,
Los Alamitos CA: IEEE Computer Society Press, Vol. VI, 50-59.

Zimmerman, E.N. (1994). “On Definition and Rhetorical Genre,” in Freedman,
A. and Medway, P. (Eds.), Genre and the New Rhetoric, London: Taylor &
Francis, 125-132.

Zmud, R.W,, Lind, M.R., Young, EW. (1990), “An Attribute Space for Organi-
zational Communication Channels,” Information Systems Research, Vol. 1,
No. 4, 440-457.

146

Appendix 1

TABLE 6.6 Comparison of three models for component documentation (to support reuse).

NATO (1992, Section
8): “Documentation of
reusable software”

Karlsson (1995, pp. 81-
87): “The REBOOT com-
ponent model”

Sametinger (1997, pp.
203-210): “Reuse doc-
umentation / Reuse
manual”

Why?

"

serves a dual role; it
fills the traditional role of
documentation, and also
provides explicit guidance
to the reuser.”

“...information about the
component to make reuse
feasible.” ”...describes
the information needed
for a packaged reusable
component.”

I

to effectively and
correctly reuse a software
component”

continues

TABLE 6.6 (continued)

147

NATO (1992, Section
8): “Documentation of
reusable software”

Karlsson (1995, pp. 81-
87): “The REBOOT com-
ponent model”

Sametinger (1997, pp.
203-210): “Reuse doc-
umentation / Reuse
manual”

What?

= the
content
(the se-
quence

not ex-
plicated
in any
of these
models)

- “Normal project docu-
mentation” useful to the

reuser
- Documentation for
the Reuse Library (to

help the library support
classification, identifica-
tion, and retrieval of the
component) (An abstract
describing the function,
a list of dependencies,
classification informa-
tion, available reusability
and quality metrics, out-
standing problem reports,

recommended enhance-
ments, commercial or
legal restrictions, access
information)

- The Reuser’s manual
(Introduction: ~ purpose,
overview; Function:

operation, scope; Inter-
faces: RSC specification,
external references and
parameters, interfaces
by «class; Performance:
assumptions, resource
requirements, exceptions
in responding incorrect
inputs, test results, known
limitations; Installation:
instantiation, interfaces,
partial reuse provisions,
modification provisions,
diagnostic ~ procedures,
usage examples; Procure-
ment and support: source,
ownership, maintenance;
References, Appendices)

Relationships (e.g. a col-
lection of links) to the fol-
lowing information rele-
vant for a particular com-
ponent

- Classification informa-
tion (to aid identification
and retrieval)

- Component quali-
fication information
(describes the quality and
reusability of the compo-
nent to decide whether a
candidate fulfils quality
and reusability require-
ments, also the reuse
history of the component)
- Component administra-
tive information (general:
attributes of the devel-
oper, time when devel-
oped, inserted, or mo-
tivated etc.; authoriza-
tion: reuse rights, pay-
ment methods; pricing)

- Documentation (to sup-
port the reuse of the com-
ponent: evaluation in a
set of candidates, under-
standing the functional-
ity, the adaptation for
specific needs; a part
intended for the docu-
mentation of the product
in which the component
will be included)

- Component interface
and component body

- Test support

An outline consists of:
- General information (in-
troduction, classification,

functionality, platforms,
reuse status)

- Reuse information
(installation, interface

descriptions, integration
and usage, adaptation)

- Administrative infor-
mation (procurement and
support, commercial and
legal restrictions, history
and versions)

- Evaluation information
(specification, quality,
performance and re-
source requirements,
alternative components,
known bugs/problems,
limitations and restric-
tions, possible enhance-
ments, test support,
interdependencies)

- Other information (sys-
tem documentation about
the implementation of the
component, references,
reading aids etc.)

continues

148

TABLE 6.6 (continued)

NATO (1992, Section Karlsson (1995, pp. 81- Sametinger (1997, pp.

8): “Documentation of 87): “The REBOOT com- 203-210): “Reuse doc-

reusable software” ponent model” umentation / Reuse
manual”

How? Machine-readable form. Not explicated “compliance with ac-
Not dependent on a par- cepted documentation
ticular word processor. standards; use of con-
Completeness, clarity, sistent structures, styles,
and understandability and formats; consistency
particularly important with the code; writing in

clear and understandable
form; etc.”

Who/m? Who: not explicated Who: the reuser may doc- Who: not explicated
Whom: the library staff , ument experiences, the Whom: “The software
the reuser producer not explicated engineers who decide

Whom: The reuser, the whether a certain compo-
repository manager nent fits their needs”

When? No temporal aspects dis- No temporal aspects dis- No temporal aspects dis-
cussed. cussed. cussed.

Where? Documentation for each Self-contained package Each component has its

component should be self-
contained. Possibly lo-
cated in the Reuse Li-
brary (the reusable part
may as well be located
somewhere else).

for reuse. Located in
a repository (under a
conceptual classification).

self-contained documen-
tation — not in big docu-
ments describing a set of
components! Located in a
repository.

149

Appendix 2
An example of the “Design Pattern Documentation” genre
Intent

Contract design pattern describes common concepts and services that must be
used while providing solution to deal with a contract. Also, pattern provides
common framework to solve this problem, and gives examples how the solution
may be adapted for a specific use.

Motivation

A contract may be for example a contract of sale, a contract of purchase, or a
contract for billing. While a contract is under preparation it is assumed that
different parties and possible products (i.e., the subjects of a contract) are pre-
defined and they can be referenced.

This design pattern separates the contract’s form (e.g., electronic document
or paper) and its basic information and functionality that are independent of
it. This enables flexibility to add for example electronic signature. Inheriting
from core-implementation may extend design pattern. Inheriting the interface
the basic implementation may be broaden.

Where to use
Contract is usable in domains that need management of contracts, e.g. labour

contract, contract of payment, contract of assignment, and issuing different kinds
of permits.

Structure

Figure 1. The Contract design pattern and example how to use inheritance to
adapt it in a specific need.

Classes

In this part all of the classes are described more closely. Due to the limited space
this part is omitted.

Class Name

Here is the name of the class.

150

Attributes

Here all of the attributes of the class are described more closely.

Operations

Here all of the operations of the class are described more closely.

Conclusions

Contract design patterns helps understanding the basic concepts and function-
ality when dealing with different kinds of contracts. Design pattern also defines
adaptation and possibilities to broaden either the interface or functionality.

Example

The owner of a vehicle is subject to taxation, e.g., he or she pays the use tax
for a vehicle that she or he possesses. If needed the subject to taxation may be
transferred to another party. Anyhow, he contract must include this information
so that the tax payment is sent to its rightful payer.

To the problem described above, the Contract design pattern is applicable
(see Figure 1). The needed roles for Transferor and Receiver, and the contract
type Transfer of Subject to Taxation are added with inheritance. There is no need
to make any further alternations to the Contract design pattern.

Used design patterns

Core-Representation: Payer and BasicContract are adapted from this design pat-
tern.

References

David C. Hay, Data Models. Dorset House Publishing, 1996, Contracts pp. 95-
116 Martin Fowler, Analysis Patterns. Addison Wesley Longman, 1997, Contract
pp- 175-180 Hans-Erik Eriksson, Magnus Penker, Business Modeling with UML.
Wiley, 2000, Contract pp. 215-218

7 ADDING DOMAIN ANALYSIS TO SOFTWARE
DEVELOPMENT METHOD

Forsell, M.T,” Adding Domain Analysis to Software Development Method”. Pro-
ceedings of the Tenth International Conference on Information Systems Devel-
opment, ISD2001, Royal Holloway University of London, 4-6 September, 2001.
(To be published by Kluwer Press in 2002)

©Kluwer Academic/Plenum Publishers, 2002. Reprinted with permission.

fChydenius Institute, University of Jyvdskyls, Finland

Abstract

The researchers in the field of software development regard the reuse of com-
ponents as one possible approach when creating quality software in less time
and with fewer people. When components are used and created in the software
development, one critical success factor is the use of domain analysis (DA). We
report an action case study where the DA technique is first integrated into an ex-
isting software development method and then refined based on the experience
of using it in a pilot project. The results indicate that our approach produces
reusable components across a company-wide domain and eases the use of them
in other development projects within domain.

7.1 Introduction

The studies to improve the pace, quality, and cost effectiveness of software de-
velopment continuously introduce new theories, approaches, tools, and frame-
works, among other things. One possible approach is the reuse of software. To
put it simply, in software reuse ‘the same thing’ is used more than once [4]. This
‘same thing’ can vary depending on the type and the level of the reuse a com-
pany practices. Reuse can be divided into generative and composite techniques

152

[5]. In composition techniques the developer composes software from atomic
parts, i.e., from components. In generation techniques the software is generated
from higher-level descriptions or specifications that are produced by a developer.
In this study we concentrate on component-based reuse.

Reuse community has introduced one specific approach, domain analysis,
to foster reuse in software development [21] (see also [2, 3, 23]). In domain analy-
sis (DA), a group of problems are analyzed in order to find reusable components
to solve similar problems in a certain domain. Approaches to domain analysis
are not only used to foster generative or component-based reuse but also, for ex-
ample, to understand a problem domain and to learn about it [23]. A domain
may be understood from two quite distinct points of view: as a group of pro-
grams or as a business domain. Depending on the point of view, similar prob-
lems may be identified by studying existing programs and their similarities, or
by examining businesses. [23.]

DA is seen as a prerequisite in successful reuse not only by the researchers
in the reuse community but also by the methodologists who have introduced
component-based development methods (see e.g., [6, 12, 13]). In these meth-
ods, domain analysis comes as one of the first steps in the development process.
However, there are two problems. First of all, component-based methods present
DA superficially and DA is used only to identify components. Successful reuse
implies that software is built from components; it is not enough only to create
them. Secondly, textbook approaches are not used as presented and most of the
software companies practice local method development [8]. If we integrate DA
into existing textbook approach it is most likely useless to software organiza-
tions. Ideally we should add DA to company’s existing development methods.

Hierarchical Domain Analysis (HDA) technique addresses the problems
mentioned above [9]. A short summary of HDA is given in Section 2.3. But
HDA is only a conceptual solution and if we are to believe research methods
proposed for information systems and software engineering, we should also in-
corporate new ideas into practice and validate them (see e.g., [16, 18, 22]). Thus,
we want to apply HDA in industrial setting. The research question is: “"How
HDA works in practice and should it be enhanced?” The question implies that
tirst we integrate HDA into an existing development method and then find out
its practicality in a software development project. Possible flaws in thought and
resulting enhancements must be documented. In this study we first integrate
HDA into an existing development method, namely Tieto Object. After this we
use HDA technique in a pilot project.

The structure of this study is as follows. Section 2 focuses on the research
methods and the study environment, and gives an overview of HDA as well.
Section 3 starts with the introduction of the Tieto Object method. After this, we
present the results. Because the study is conducted in two parts, it produces
two types of results: Local method development and the use of HDA in a pilot
project. We also reflect on our experiences about both of these results at the end
of Section 3. Finally, the conclusions are presented in Section 4.

153

7.2 Research Method and Environment of the Study

In this Section we first describe our approach to the research question. After
this we describe the organization of the research and the research environment.
Finally, we summarize the HDA technique.

7.2.1 Research Method

The objective of this study is to give evidence of the practicality of HDA. Ac-
tion research gains understanding about some phenomena and it can be used to
prove new theories and refine them in practice. We use the action case approach
[22] applying it to HDA in industrial setting. Vidgen and Braa argue that action
case approach differs from action research in the following ways. First of all, du-
ration of the study is shorter in the former. Most often an action case study takes
only a few months whereas a full fledged action research may take several years
to conduct. In addition, action case usually concerns a small-scale intervention
that is focused and deliberate. Action case approach produces practical knowl-
edge and at the same time gains understanding of the context of the change. In
contrast to case research the most dominant feature is that the researcher is an
active participant in the research process.

The study was conducted in two parts. In the first part, local method de-
velopment, DA method was integrated into TietoEnator’s in-house development
method Tieto Object. This took place from August 1999 to May 2000. The second
part, a pilot project, uses HDA technique. This took place from September 2000 to
December of the same year. In the first part we used local method development
framework as proposed by Tolvanen [20]. Action research approach suits well
for this purpose [20]. In the pilot project we followed the technique defined. We
collected experience in line with Leavitt’s [14] diamond model. Leavitt’s model
suits to identify changes in organization.

7.2.2 Organization and Environment of the Study

This study is a part of the PISKO project that aims to improve component-based
reuse in participating software organizations. The project started in January 1999
and it will end in December 2001. Tekes Technology Development Centre and
four participating companies fund the project. This study takes place in one of
the participating organizations, TietoEnator Corporation . With a staff of 10,000
and an annual turnover of 1.2 billion euros, TietoEnator is a leading supplier
of value-added IT services in Europe and it is the largest software company in
Scandinavia. This pilot project is integrated within one of the TietoEnator’s own.
The customer of this project is the Finnish Administrative Centre of Vehicles,
AKE (Finnish acronym).

AKE is a nation wide organization, that handles large amount of data re-
lated to vehicles and drivers licenses in Finland. AKE has subcontracted Tieto-
Enator to modernize its current programs to take advantage of new WWW and

154

mobile technologies. New systems have to be adaptable for the challenges of
this millennium. Within five years all data systems in the AKEs environment are
supposed to be modernized.

TietoEnator has an in-house development method called Tieto Object.
TietoEnator has done a substantial amount of work in the area of reuse. Processes
needed have been created and software acquired to foster reuse in the organiza-
tion. Now the point have been reached where domain analysis could bring some
advantage in finding more relevant components, and where hierarchical domain
analysis could aid in using these components.

This study has been conducted by the author together with an expert from
TietoEnator. The expert participates in the work of a TietoEnator’s task force to
enhances and further develop Tieto Object.

The research environment and objectives are optimal to try out HDA ap-
proach for number of reasons. First of all, there exists a system to teke care of
the current data manipulation. Secondly, new system will be built on integrated
middleware. Thirdly, all current systems will be changed within the next five
years so we can collect data about HDA from quite a long period. In this study;,
however, we present the results from the first pilot project.

7.2.3 Summary of Hierarchical Domain Analysis

Hierarchical domain analysis (HDA) is a domain analysis technique that helps
company-wide reuse [9]. It is planned to be useful not only in defining compo-
nents but also in the process of finding and using these components during de-
velopment. Thus HDA should be part of every development project that wants
to take an advantage of the component reuse. HDA is based on the Common
Process of Domain Analysis as proposed by Arango [3]. In HDA, a domain is
seen company-wide. This means that target organization as a whole is a basis
for the domain model. HDA has five phases, and these are further divided into
separate steps (Table 7.1).

The first phase is done only once in each organization. Here a company-
wide domain model is created. In the domain model we have the business aspect
and the software aspect. The business aspect reflects the company’s structure
and its way of doing business. The structure of the company forms a hierarchy
of sub-domains. A sub-domain is part of some larger domain, and sub-domain
identification is based on company’s structure. A company can group its units
in two ways: by function performed or by market served [17]. With this, HDA
wants to point out that software should serve company’s objectives, and that
software supports and adds value to the company. The software aspect reflects
the structure the software-solutions must be based on. Often the business soft-
ware structure consists of middleware and system software.

The second phase focuses on the current development effort and identifies
the sub-domain it belongs to. Because we have already modeled the company-
wide domain, determining current project and its sub-domain should be easier.
This phase is, however, argued to be one of the hardest part of DA (e.g., [19]).

TABLE 7.1 Hierarchical domain analysis” phases and steps.

1. Create domain model for the
company

1.1 Identify company’s key pro-
cesses

1.2 Determine the rationale for
software development

1.3 Create the hierarchy of sub-
domains for the business aspect
1.4 Create the hierarchy of sub-
domains for the software aspect

2. Define sub-domain
2.1 Define the boundaries of the
current development project

3. Analyze business aspect

3.1 Define the business pro-
cesses

3.2 Define the key concepts

3.3 Define the needed services
3.4 Analyze the identified ser-
vices

3.5 Classify the services

4. Analyze software aspect

4.1 Define the layers for the soft-
ware aspect

4.2 Define the used software so-
lutions

155

2.2 Find information sources for
the sub-domain

2.3 Specity the problems and re-
quirements in the sub-domain

4.3 Classify the found solutions

5. Use domain analysis results

The third phase identifies components based on the services that software
must offer in defined sub-domain in order to support software users” and busi-
ness’ needs. Also, components are classified so that any subsequent projects
can find and use them. The objectives of this phase are twofold. First, reusable
components are identified and defined. Second, possible reuse opportunities are
identified from the domain hierarchy. The hierarchy is traversed backwards with
each identified component to find out if an opportunity for reuse exists in other
sub-domains. We raise the component in the hierarchy to the level where we can
see reuse opportunities.

The fourth phase explores possible solutions more carefully. Software solu-
tions, that are used to create and are bases for new software system, are identi-
tied. The reason for this phase is that software solutions used limit the possible
communication between components, i.e., components can not communicate by
any other means than what middleware or system software allow. Pre-existing
middleware and system software solutions must be used when we want to create
code components and interaction between them. The fifth phase is not exactly a
phase but it is presented here because we want to emphasize the importance of
separating the creation and the use of components. The results can be used in
the subsequent phases of the software development process.

156
7.3 Results

The results of the method integration part and pilot use part are reported sep-
arately in their own sub-sections. Sub-section 3.1 presents the way HDA tech-
nique was integrated into Tieto Object. We start by summarizing Tieto Object.
Then we describe the steps we took during the integration of HDA into Tieto Ob-
ject. Sub-section 3.2 describes our experience of using HDA in the pilot project.
We explain how we conducted each phase of HDA and what was altered in the
original approach. In sub-section 3.3 we point out some relevant experiences
about the method integration and the pilot project, which we think might be
useful when implementing similar projects in other organizations.

7.3.1 Integration of Hierarchical Domain Analysis into Tieto Object

Tieto Object is an object-oriented method and it covers a large portion of systems
development phases:

1. Business Process Reengineering/Requirements Engineering
2. Analysis
3. Design

4. Implementation

The phases of Tieto Object method require some explanation. First of all,
testing is an essential part of every phase. The results are formally checked before
they can be used in a subsequent phase. Second, maintenance is an operational
mode in itself and it does not belong to Tieto Object method. Finally, first phase
may be reduced to include requirements engineering only. Requirements engi-
neering may be part of the analysis phase depending on the expected difficulties
in the task. Further, a project may only be an analysis or a design project and
subsequent phases may be omitted.

Tieto Object is a toolbox method in contrast with cookbook methods. This
means that Tieto Object does not rigidly prescribe the steps and in which order
they must be taken. Tieto Object gives a number of techniques that may be used
during systems development and shows how these relate to each other. The
toolbox approach eases the task of integrating HDA into Tieto Object. We have
to find the place for HDA in the overall process and define its inputs and outputs.

The first task when deploying any domain analysis method is to define
why, in the first place, we are trying to achieve the reuse of the components. Sec-
ond, we must define what kind of components we want to use. These two con-
siderations influence later on to the integration of the domain analysis method
into a development method. Depending on the answers, we may choose between
different domain analysis methods and we can know what kind of components
we should find and use.

157

HDA is used to support compositional reuse (see [5, 3]). The components
we want to find are business components. A business component represents ap-
propriate business concept in the information system, and it gives some relevant
contribution to the organization [7].

The integration of HDA into Tieto Object must be dealt with as well. When
designing a method, or when integrating a technique into an existing method,
it is known as local method development [20]. Tolvanen has distinguished five
steps that an organization may consider while developing methods in-house.
The steps are:

1. Selection of methods

2. Method construction

3. Tool selection and adaptation
4. Introduction of methods

5. Method use

Steps are not mandatory in that one can omit some of them. Further, one
can retract any of the steps. Basically one can iterate between steps as necessary.

The first step selects methods and techniques that an organization wants to
follow and use [20]. TietoEnator decided to use Hierarchical Domain Analysis
as part of Tieto Object. Here it was obvious that HDA should be only one of the
techniques that are available for developers and if reuse is not the objective for
the development effort it may be omitted.

The second step composes the selected methods and techniques to meet
specific objectives of ISD [20]. We linked HDA with Tieto Object and defined
their relationships. HDA can use information created in the Business Process
Reengineering phase. HDA produces usable information for subsequent phases
of the development process. Information is obtained in documents. Document
can be organization, project, or component specific.

Organization-specific documentation originates from the first phase of
HDA. It describes company-wide domain and gives information about the hier-
archy of sub-domains. Also, the description of the company-wide domain serves
as a holding place for the identified components. The phases from two to four
produce project- and component-specific information. The project-specific doc-
umentation contains information about the relationships and communication of
the components. The component-specific information describes the component’s
interface, content, and adaptation.

The third step in the local method development selects and adapts tools for
the use. We selected Rational Rose because HDA was presented with UML and
TietoEnator uses Rational Rose as one of their CASE tools. Although it was ar-
gued that UML is not necessarily the best description language [9], this selection
led us back to define some features of the technique and documentation of the
results (this point is further elaborated in following sub-section).

158

The fourth step of the local method development introduces newly devel-
oped method into an organization, and in the fifth step we use the method in
an organization. Both of these steps were seen through during our pilot project.
These steps are described in more detail in the following sub-section.

7.3.2 Results Applying Hierarchical Domain Analysis

This sub-section describes our experience in using HDA technique. We describe
each phase of HDA in turn in the way we found it best to perform them during
the pilot project. After every phase we point out the differences between HDA in
this study and HDA as presented in [9], see also Section 2.3. At the end of each
phase we report the impact of the tool usage.

Phase One

The first phase of HDA determines the company hierarchy. As it was argued
in Section 2.3, HDA presents hierarchy from the point of view of the organiza-
tion, i.e., does organization group its units by function performed or by market
served? In the case of TietoEnator this is not straightforward. TietoEnator has six
key business areas:

1. Finance Sector

Services

Public Sector

Process & Manufacturing

Processing & Network Support

AL T

Application Services

Further, every business area provides a number of services and also serves
specific customers. In the case of the Public Sector business area, the services (or
function performed, in Mintzberg’s vocabulary) are:

1. Development
2. Integration

3. Business related consulting
4. Software
5

. Maintenance and support

Public Sector serves also some specified customers, i.e., business areas (or
market served, in Mintzberg’s vocabulary). The customers are:

159

1. Government
2. Local authorities

3. Health care

We had a number of options to start modeling our overall hierarchy for
the TietoEnator. Among possible solutions were modeling each of TietoEnator’s
key business area as a domain, modeling each service inside business area or
modeling each customer as a domain. After a careful analysis of the problem we
chose to model customer as a domain. The main reasons for this were:

1. AKE has outsourced development work to TietoEnator so TietoEnator is
seen as AKEs software department.

2. AKE invests to find components to use in its environment.

We modeled the overall domain that includes all the software TietoEnator
will make for AKE. Business Process Reengineering phase took place prior to the
domain analysis so that we could use its results to determine AKE’s functions
and to find outhow AKE perceives its software.

AKE'’s structure supports the services it produces for the community, i.e.
this is a market served based structure. Also, software is explicitly mentioned to
support the processes AKE performs. Based on these facts we produced hierar-
chical domain model (Figure 7.1). The results of this phase can be used later on
when components are organized for other projects in the domain.

This phase does not need refinement. We are waiting eagerly to see how
any ensuing development efforts may alter the model.

We used Rational Rose’s package diagram to present organizational struc-
ture in a tree-like form. The lower levels of the structure are dependent on the
higher levels and they are part of the higher level. Each package is an orga-
nizational unit stereotype (strawman inside a circle in Figure 7.1). Further, each
package is described with English text so that the reader gets a general idea about
the services the organizational unit gives. In this way, knowledge can be spread
out in the organization.

Phase Two

Here we define into which sub-domain the current project belongs to and we set
boundaries for it. Also, we determine what kind of software systems are needed
inside that sub-domain to support it. This proved to be an easy task in contrast to
the opinion of other researchers (see e.g., [1, 2]). After picking up the sub-domain
we refined it according to the results from Business Process Reengineering.

This phase of HDA was not altered. However, we asked ourselves whether
it should be a phase of its own. We kept it as a phase because we believe that
boundary setting is an important and in this way its importance is emphasized.

160

Anyway;, it is not useful to formally inspect results from this phase because in-
spection can be performed as part of the previous or the following phase.

Again we used package diagrams to depict the software systems needed
and to show how they relate to each other. This time, however, we had a different
point of view of the package. When, in the first phase, the package depicts an
organizational unit (see the stereotype in the Figure 7.1) here the package depicts
software needs in the chosen domain. One of the software systems most likely
appears as the system we are currently working with.

4> Rational Rose - Example.mdl - [Class Diagram: Business Aspect / Business Aspect]
Filz Edit View Fomat Browse Heport Guerw Took Addn: Window Help =181 x|

bR ' =8g¥OpERERB @« aann

5 Erancle = = L =
-0 Use Case iew AL @

i -[EH Main = 7 N
§ ey Associations) e Business Aspect
71 3 Logical Wicw £ i T

1 [Business Aspect B) . k
i

-[8] Financial &dministation

[8] 1T User Services

51| Legal and Perzoncl Services
A Transact Business Services
"2, Associations ,
Diriver A S ‘? M
-] Ciivers Licence g S
8] Pormit:

I v : L \ :.‘j ! ;,'
e 0O [@) Y)

=-[@] Administiation
Dr\\telR Infarmatinn &

IEEE

5 Muehicle 2

B35

= Associations

Registration; SUPEMison 1 afiop
Information 3 ervices :

Mork .
rases Frofessional, Traffic Peimits

B Authority Services & i LY

A Commercial Services (\;\’_\/ O i i ' — ;
7] Commurications Services ‘ i Y It
5] Research and Statistics Inspectlen suppe and Technical Approvement | ! Vol ;
education . i

-3y Associations b '\ Teaching Qualification Diivers Licancs
Wehicl LY

@ E3aE]

71 Inspection support and education i

-] Mortgage [B j 1 :
8] Registration (’E\\‘/ | @ @
i8] Supervisory i y

IT Uer Semices Communicabens Service

5| Tawation Leyal snd Frspiel Semives

A Technical Aoprovement R N !
&)

Research and Statistics

TEE@HHDE .

~[H
T Transact Business SEVISES Finanial Administiation
~[E] Main

_:)’. Azzociations
-3 Companent Yiew —
~|ci) Deployment Yiew

il [l

&

4 | » [

Traverses from the cunent diagram to its parent diagram HUM

FIGURE 7.1 Resulting Hierarchy from the First Phase of HDA (partial) and Ex-
ample of Tool Usage.

Phase Three

At this point we have defined the sub-domain where we belong to and our
project is most likely to be one of the identified software systems. Now we move
our focus inside that software system and look for services it must provide for
the users of the software. Services identified are the starting point in defining
useful components (Example of a resulting component is in Figure 7.2).

We use the following steps in order to find components that are useful out-
side our sub-domain:

1. Choose one specific area inside the sub-domain

2. Find services in that area

161

3. Figure out whether it is general enough to be useful outside the area (e.g.

sub-domain specific)

4. Determine boundaries for the service, i.e., what it will solve (general) and
what is left open for refinement in realizations of it (variation points)

5. Define the interface (how it is used from outside)

6. Create a class diagram (or other illustrative models)

%> Rational Rose - Example. mdl

File Edit “iew Format EBrowse Fepot Queny Tools Addine window Help

M ES

|D@E\$%EI§\§?EI@IE«|Q@

fammation Services

ehicle

~[t8] Inspection suppart and education
& Mortgage

-] Registration

1] Supervisory

-[@] Tawation

-[d| |Taxatian

5
=, Associations

m-&=-H-EE
ST h m o

=11 sdminister Customer Relations
[P Handle Customer Conbiact
E1-F9 Contract
--[B) Cantract
[B) Example
@ M ativation
Example
&-E Contract
1+~ ContractType
0 B Customer
B Party
B Paper

[

|_|‘:.,,L,,

1

Ei Class Diagram: Taxation / Taxation

“esubsystems=

Contract

(frorm Handle Customer Contracts)

Ei Class Diagram: Contract / Contract

Paly

)

-8 Product
- Fole
0 B Supplicr

F‘I--j, Azsociations

-~ |_Conract

-2, Asvociations

1+ [Make Payment Schedules

0 9 Marage Customer Informa
- Associations

- [5] Make Tax Decree

-1 ddminister Accounts Receivat
[Administer Customer Printouts

11 P Support Sorvices

Al Techrical Approvement

-3, Associations

Business Aspect |
=
| | Bl

.

£
B
L.

-

Payar

makies

makies

| Contract |
[1

‘ Supplier |
[1

[]
Contract
Type

L
ac\ogeama

Product

For Help, press Fi

|_Contract

(frorm Contract)

*24d()
*set)
*Remavef)
®approval]
Closer)
SGatvalid])

FIGURE 7.2 Example of One Defined Component with Rational Rose.

The first step implies that we should divide our software system into
smaller and more manageable areas. After this we analyze each area more closely
in turn. From the area chosen we define the services users of the software expect
to have. As the result from the second step we have a list of services provided
in a defined area of the software system. In the third step we figure out if an
identified service is needed outside our software system. If this is the case, we
have found a candidate component. The fourth step analyzes each candidate
component from the perspective of other sub-domains. The objective here is to
find out the general service that can be applied in all sub-domains. Further, we

162

must define what kind of variations each sub-domain needs in order to define
the variation points of the component. Based on the results from the fourth step
we define the interface for the component (step 5) and the contents of the com-
ponent (step 6).

The defined components are located into organization hierarchy inside a
sub-domain under which the reuse opportunities for the component can be iden-
tified. It should be noted that organization hierarchy serves as a holding point
for the components, i.e., other project can browse the organization hierarchy and
see the components, that are identified as useful. Of course, it is obligatory to
use the components found.

This phase was most altered from the point of view of our starting point. It
seemed clear to us that if the components should be business components there
would be no need for all of the tasks originally proposed in HDA. One reason for
this is that the original model was biased towards the Domain Specific Software
Architecture (DSSA) [21] technique.

We began to use Rational Rose after we had identified a candidate compo-
nent. The candidate component was first modeled with Use Cases. After this
we depicted the component as a package and decided what kind of services it
should offer. This involves first drawing a package diagram and its interface.
Then each component package opens to a class diagram where general solution
is presented (See Figure 7.2). Finally, there exist one or more examples on how to
adapt the component.

Documentation of the component follows design pattern documentation
(see [11]). We created our own script for Rational Rose so that documentation
could be generated from the diagrams.

Phase Four

Here we determine the components in the middleware and system software
layers. This phase is quite straightforward. Because we stayed at the level of
defining business components, roughly analysis level results, we concluded that
these results should be used only in the subsequent phases of the overall project,
namely at the design and implementation phases. Results from this phase are
used at the design level of the project to define how components may interact
with each other.

This phase does not need enhancements.

Here we use Rational Rose and its package diagram to depict hierarchy in
the software aspect of HDA (Figure 7.3). Package diagrams describe software
systems that are used, and diagrams show connections between systems.

Phase Five

As we noted in Section 2.3 this is not a phase exactly, but we want to point out
that using the found and defined components is the key in reuse. The defined

4> Rational Rose - Example.mdl - [Class Diagram: Logical View / Software Aspect]

File Edt ‘iew Fomat EBrowse Fepot Cuery Tools Adddns 'window Help =& x|
|Dm-’“ﬂ\ rEEE R 0RERRER |G« aaDm®
o Fonct B i B
D Use Case View (ks fram S nfhaare e e ek
B3 Logical Wiew =

1+ [B] Business Aspect

1 £3 Software Aepoct e
=03 Middlzware =] HTML Java
-0 G5M esm (from Middleware) (from Middleware) itrom Middleware)
- - (from hliddlerare)
=] 5MS
|—>

T Mssociations

SMS
m (3 HTHL (from G3M) WAF JZEE JBDG

FI[:I Java Irfrom Middleware)) (from J awa) ffrom Java)
a3 3 J2EE =
{3 JeoC a
3y mesociations
m 3 TCPAP 4
F-C3 wWap 4
-

_—‘L Azsociations
=-3 System Software
1+-C3 DB2
[0 O3 Selaris
B0 WinNT 4.0
- _ﬁ, Azsociations i
-, Associations W
~[d] Software Aspect]
3, Associalions System Softmare
- Companent View (from Sofbware Aspect)
Deployment Wiew
{28 Model Properties

— |

Taz Solaris Win HT 4.0 b

(fram System Software) i Syslem Sullwaiy) o Syl Sullwaie)

For Help, press F1 [[NUM

FIGURE 7.3 Sample Screen Shot from Software Aspect.

business components are roughly at an analysis level. As such they point at so-
lutions to some identified problems. These components are used in the analysis
and design phases of the software project. Because we also give examples of
how to adapt these components for use, incorporating them should be easier.
The third phase of HDA tells us where the sub-domains might be useful.

7.3.3 Summary

Method construction and utilization can also be seen as a change in organization.
This is why we reflect our experiences through the Leavitt’s [14] diamond (Fig-
ure 7.4). According to Leavitt [14] one can view organization as complex systems
that have at least four interacting variables: task, structure, technology, and peo-
ple. The task is the reason why an organization exists. It includes the production
of goods and services and large numbers of operationally meaningful subtasks.
The actors mainly refers to people. The structure includes the systems of com-
munication, authority and work flows. The technology refers to direct problem
solving inventions, for example, measurement techniques or computers. Both
machines and programs are in this category. Each of the element is highly de-
pendent on the other three. Change in one of the elements usually results in a
change in the others.

164

/ Structure \
¥
Task < —»[Technology

\d
\People (Actor /

FIGURE 7.4 Leavitt's diamond.

We elaborate each of these components first from the point of view of
method construction and secondly, from the point of view of the experience us-
ing HDA.

Method Construction

During the method construction we did not define the objectives for reuse. Also,
we did not specify what kind of components we want to create with HDA. We
tirst tried using Tracz DSSA [21] for the task. This turned out to be a mistake.
Only when we started to apply HDA in the pilot project we noticed our flaw. We
then had to come back to define our objectives for reuse and to specify the com-
ponents to use. This resulted in the redesign of our HDA and in the integration
of it into Tieto Object.

Reuse processes should define the creation, brokering and use of compo-
nents [15]. HDA aids the use and creation of components. Thus there should
exist process for brokering components. TietoEnator has defined a brokering
process that is repository process in their vocabulary, so we could rely on this.
Also, we need materials to teach the newly developed method in the organiza-
tion. Thus, one part of the pilot project should be the creation of course material.
In the method construction we need at least three types of expertise: people who
know the development method, people who know the domain analysis tech-
nique and people who know about the method construction. Naturally we have
to have the support of the top management in order to get the resources needed.

From the technological point of view we need an organization-wide repos-
itory where the components found are maintained. We also have to define docu-
mentation that is needed in the organization and project levels.

Method Use

The purpose of the pilot project was twofold. First of all we set out to prove
the practicality of the technique in finding and using components. Secondly, we
were to create course materials to disseminate the technique within TietoEnator.
Both of these requirements were fulfilled. We enhanced the technique to make it
useful for TietoEnator. We found number of usable business components that can
be used more widely inside the domain. Within this pilot project we refined three
of them: Contract, Job Queue, and Sales Ledger. Also, we were able to create

165

course material which includes the process description of HDA and examples
on its use. One point to ponder is the cost of a developed component. People
most likely to use HDA are experts in the domain area and skilled developers.
When these people create a reusable component, it is done faster by them than
by an average developer and, most likely, the quality of the work is also better.
The question arises: if a less skilled developer creates a one-time solution, is the
process faster overall?

In HDA, we need people to fulfill three different roles: a domain analyzer,
a domain expert, and a steering committee. Persons who have knowledge about
the domain are called domain analyzers. We also need developers who closely
interact with the actual environment so that they can comment on component
requirements from the point of view of technology. A steering committee can
validate components. It should include people from each major sub-domain so
that it could also point out if a candidate component would be useful in other
sub-domains.

The structure of HDA, i.e., the defined phases, proved practical. The sec-
ond phase of HDA, i.e., defining the sub-domain, was easy to conduct. We be-
lieve that this is due to the fact that we use organization’s structure to find sub-
domains. When we have to define boundaries there is an expert from the target
organization who can tell whether something belongs to the domain or not. Fur-
ther, sub-domain, most likely, has already been defined in the organization.

It is interesting to notice that the third phase of HDA involves two levels
of refinement. The first one deals with the project level data and the second
one with component level data. We found it quite useful to do two kinds of
descriptions about the component. First, we described what the component does
and rationalized design decisions into these descriptions. Second, we showed
how to adapt components in the sub-domain we worked with. We expect to
have more of these adaptation descriptions when components are used in other
sub-domains.

In our choice of technology we ended up with Rational Rose as our CASE
tool. As it is often argued, tool selection impacts the work process and resulting
documentation (e.g. [14]). We were constantly fighting against the semantics of
UML and how it should be employed in our approach. The usual way to use it
is to create a package diagram which may include other packages and diagrams.
However, a need for semantical representation within our models soon arose.

The tool did not directly support the documentation of the results. We
used component documentation model presented by Forsell and Péividrinta [10]
where relevant information clusters about component are identified. After defin-
ing documentation we had to create a standard format to describe each model
within the Rational Rose. Also, we had to create our own scripts to produce
documentation from the models presented with Rational Rose.

166
7.4 Conclusions

We presented here an action case study where hierarchical domain analysis
(HDA) was integrated into Tieto Object software development method and then
used for a software development project in an industrial setting. HDA aids find-
ing, designing and reusing components in software development. This should
ease the workload in those projects and result in high quality software with fewer
resources needed. Results of the pilot project show some improvements that can
be made to the original HDA method.

We believe that results gained in this project would not have been possi-
ble with the original Tieto Object method. In our opinion the pilot project was
successful in three major ways. First of all it produced reusable business com-
ponents. Secondly, it showed that HDA is an approach that is useful. Third, we
gained understanding for the refinement of the HDA and we now have experi-
ence and material to educate developers inside TietoEnator Corporation.

We want to point out four other contributions this study makes. First, here
we have shown how we integrated HDA into Tieto Object. We believe that our
comments about the integration should be taken into account whenever practi-
tioners intend to integrate DA into a development process. Developers must first
identify any need for reuse and objectives for it. Then one must determine the
kinds of components to be used. Only after this, one can select a domain analysis
method. We also listed the steps we took during local method development. Sec-
ond, we showed that with HDA on can find reusable business components and
get an idea about where in the domain they can be reused. Third, we presented
how to document and model the results. Fourth, we found out what kinds of
roles are needed to take advantage of the results.

The results are usable for practitioners who want to create software from
reusable components in an organization with domain analysis. Also, develop-
ment methodologist can use these results when further developing existing do-
main analysis methods.

Currently HDA is used in other sub-domains with encouraging results.
Here we have quite ideal environment to apply HDA. It would be interesting
to try it out in more complex environments. Further work is needed in improv-
ing documentation and links with repository processes.

Acknowledgments

This research was supported by Tekes Technology Development Centre, Finland,
and companies participating in PISKO project. I would also like to point out my
gratitude to TietoEnator Corporation and Jaroslaw Skwarek and Ari Hirvonen
there especially.

167

References

1.

10.

11.

12.

13.

Arango, G., Domain analysis - from art form to engineering discipline, Pro-
ceedings of the 5th International Workshop on Software Specifications and
Design, 152-159 (1989).

. Arango, G., Prieto-Diaz, R., Introduction and overview: domain analysis

concepts and research directions. Edited by Prieto-Diaz, R., Arango, G.,
Domain Analysis and Software Systems Modeling (IEEE Computer Society
Press, Los Alamitos, California, 1991).

. Arango, G., Domain analysis methods. Edited by Schéfer, W., Prieto-Diaz,

R., Matsumoto, M. Software Reusability, 17-49, (Ellis Horwood Ltd., 1994),.

Basili, V., Caldiera, G., Cantone, G., A reference architecture for the com-
ponent factory, ACM Transactions on Software Engineering and Method-
ology, Vol. 1, No. 1, 53-80 (January 1992).

. Biggerstaff, T., Richter, C., Reusability framework, assessment, and direc-

tions, IEEE Software, 41-49 (March 1987).

. D’Souza, D., Wills, A., Objects, Components, and Frameworks with UML:

The Catalysis Approach (Addison-Wesley, 1999).

. Eriksson, H-E., Penker, M., Business Modeling with UML: Business Pat-

terns at Work (John Wiley & Sons, Inc., Reading, Massachusetts, 2000).

. Fitzgerald, B., The use of systems development methodologies in practice:

a field study, Information Systems Journal, Vol. 7, No. 3, 201-212 (1997).

. Forsell, M., Using hierarchies to adapt domain analysis in software devel-

opment. Ninth International Conference on Information Systems Develop-
ment, ISD2000, Kristiansand, Norway, 14-16 August 2000 (To be published
by Kluwer / Plenum Press at Spring 2001).

Forsell, M., Pdivarinta, T., A model to document reusable software compo-
nents. Sent for refereeing. 2001.

Gamma, E., Helm, R, Johnsson, R., Vlissides, J., Design Patterns: Elements
of Reusable Object-Oriented Software (Addison-Wesley Publishing Com-
pany, Reading Massachusetts, 1995).

Jaaksi, A., Aalto, J-M., Aalto, A., Vitts, K., Tried & True Object Devel-
opment: Industry-Proven Approaches with UML (Cambridge University
Press, 1999).

Jacobson, 1., Booch, G., Rumbaugh, J., The Unified Software Development
Process (Addison-Wesley, 1999).

168

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

Leavitt, H., Applied Organizational change in industry: structural, tech-
nological and humanistic approaches. Edited by March, J., Handbook of
Organizations (Rand McNally & Company, 1965, 3rd printing 1970).

Lim, W., Managing Software Reuse (Prentice Hall PTR, Upper Saddle River,
NJ, 1998).

Mathiassen, L., Reflective systems development, Scandinavian Journal of
Information Systems, Vol. 10, No. 1 & 2, 67-118, (1998).

Mintzberg, H., Structure in Fives: Designing Effective Organizations
(Prentice-Hall, Inc., Englewood Cliffs, N.J., 1983).

Nunamaker, J., Chen, M., Purdin, T., Systems development in information
systems research, Journal of Management Information Systems, Vol. 7, No.
3, 89-106, (1991).

Prieto-Diaz, R., Domain analysis for reusability, Proceedings of COMP-
SAC’87,23-29, (1987).

Tolvanen, J-P,, Incremental Method Engineering with Modeling Tools: The-
oretical Principles and Empirical Evidence (Ph.D. Thesis, University of
Jyvaskyld, Jyvaskyld University Printing House, Jyvaskyld and ER-Paino
Ky, Lievestuore, 1998).

Tracz, W., Confessions of a Used Program Salesman: Institutionalizing Soft-
ware Reuse (Addison-Wesley Publishing Company, 1995).

Vidgen, R., Braa, K., Balancing interpretation and intervention in informa-
tion system research: the action case approach. Edited by Lee, A., Liebe-
nau, J., DeGross, J., Information Systems and Qualitative Research (IFIP,
Chapman & Hall, London, 1997).

Wartik, S., Prieto-Diaz, R., Criteria for comparing reuse-oriented domain
analysis approaches. International Journal of Software Engineering and
Knowledge Engineering, Vol. 2, No. 3, 403-432, (September 1992).

169

YHTEENVETO (FINNISH SUMMARY)

Ohjelmistotuotanto pyrkii tuottamaan laadukkaita ohjelmistoja mahdollisim-
man kustannustehokkaasti. Yksi tapa tehostaa ohjelmistojen kehittdmistd on
uudelleenkédyttdd aiemmin tuotettuja ohjelmistokomponentteja. Tama tutkimus
osoittaa keinoja, joilla komponenttien uudelleenkdyttéd voidaan ohjelmistoyri-
tyksissd tehostaa.

Tutkimuksen aluksi perehdytddn ohjelmistotuotannon nykytilaan tieteel-
listen julkaisujen perusteella sekd tekemadlld ohjelmistoprosessikartoituksia
ohjelmistotuotantoa harjoittavissa yrityksissd. Naissd tutkimusmenetelmina
kdytetddn kirjallisuuskatsauksia sekd yrityksissd suoritettavia tapaustutkimuk-
sia. Ndiden tutkimusten perusteella voitiin osoittaa ongelmia kohdealueana-
lyysin kdytossd ohjelmistotuotannossa sekd komponenttien dokumentoinnissa.
Seuraavaksi tutkimuksessa suunnitellaan ratkaisuja 16ydettyihin ongelmiin.
Téassd vaiheessa hyodynnettiin késitteellisteoreettista tutkimusta, jonka tulok-
sena kehitettiin hierarkkinen kohdealueanalyysimenetelmd sekd kehys kompo-
nenttien dokumentoinnille. Viimeiseksi esitetddn tapaustutkimus, jossa kehitet-
tyjd malleja kokeiltiin kdytannossd ohjelmistoyrityksessa.

Tutkimuksen tuloksista voidaan nostaa esiin nelja keskeistd tulosta. En-
sinndkin tutkimuksessa vertaillaan keskenddn kolmea komponenttipohjaista
ohjelmistonkehitysmenetelmaéad, joista arvioidaan kuinka hyvin ne tukevat kom-
ponenttien uudelleenkédyttoon liittyvid toimenpiteitd. Toiseksi tutkimuksessa es-
itetddn yksinkertainen mutta tehokas tapa mallintaa ohjelmistoprosesseja. Pro-
sessien mallintamistekniikka on kevyt, mutta kuitenkin tuottaa varsin hyvia
tuloksia. Kolmanneksi tutkimuksessa esitetddn kohdealueen mallintamistek-
niikka, joka voidaan liittdd osaksi yrityksen olemassa olevaa ohjelmistonkehitys-
menetelmdd. Neljanneksi esitetddn tapa dokumentoida komponentit niin, ettd
dokumentointi tukee uudelleenkédyttdd. Tutkimuksen tulokset ovat hyodyllisid
ohjelmistoyrityksille, jotka haluavat kehittdd omaa ohjelmistoprosessiaan tuke-
maan komponenttien uudelleenkdyttoa.

JYVASKYLA

ROPPONEN, JANNE, Software risk management
- foundations, principles and empirical
findings. 273 p. Yhteenveto 1 p. 1999.
KuzmiN, Dmitri, Numerical simulation of
reactive bubbly flows. 110 p. Yhteenveto 1 p.
1999.

Karsten, HELENA, Weaving tapestry:
collaborative information technology and
organisational change. 266 p. Yhteenveto 3 p.
2000.

KoskmNeN, Jussi, Automated transient
hypertext support for software maintenance.
98 p. (250 p.) Yhteenveto 1 p. 2000.
Ristaniemr, TapaN, Synchronization and blind
signal processing in CDMA systems. -
Synkronointi ja sokea signaalinkasittely

CDMA jarjestelmassa. 112 p. Yhteenveto 1 p.

2000.

LAITINEN, MIKA, Mathematical modelling of
conductive-radiative heat transfer. 20 p.

(108 p.) Yhteenveto 1 p. 2000.

KoskiNEN, MINNA, Process metamodelling.
Conceptual foundations and application.
213 p. Yhteenveto 1 p. 2000.

SMOLIANSKI, ANTON, Numerical modeling of
two-fluid interfacial flows. 109 p. Yhteenveto
1p. 2001.

Nanar, NazmuN, Information technology
supported technology transfer process. A
multi-site case study of high-tech enterprises.
377 p. Yhteenveto 3 p. 2001.

STUDIES

10

11

12

13

14

15

16

IN COMPUTING

FomIN, ViapisLav V., The process of standard
making. The case of cellular mobile
telephony. - Standardin kehittamisen pro-
sessi. Tapaustutkimus solukkoverkkoon
perustuvasta matkapuhelintekniikasta.

107 p. (208 p.) Yhteenveto 1 p. 2001.
PavaRINTA, TERO, A genre-based approach
to developing electronic document
management in the organization. 190 p.
Yhteenveto 1 p. 2001.

HakxINeN, Erkki, Design, implementation and
evaluation of neural data analysis
environment. 229 p. Yhteenveto 1 p. 2001.
HirvoneN, KuLLERVO, Towards better
employment using adaptive control of
labour costs of an enterprise. 118 p.
Yhteenveto 4 p. 2001.

Majava, Kirst, Optimization-based techniques
for image restoration. 27 p. (142 p.)
Yhteenveto 1 p. 2001.

SAARINEN, KaRI, Near infra-red measurement
based control system for thermo-mechanical
refiners. 84 p. (186 p.) Yhteenveto 1 p. 2001.
ForseLL, MARKO, Improving component reuse
in software development. 169 p. Yhteenve-
to 1 p. 2002.

	ABSTRACT
	ACKNOWLEDGMENTS
	CONTENTS
	1 INTRODUCTION AND BACKGROUND
	1.1 Introduction
	1.1.1 Background and Motivation
	1.1.2 Research Questions
	1.1.3 Research Approach
	1.1.4 Outline of Thesis

	1.2 Software Reuse in Software Engineering
	1.2.1 Approaches to Software Reuse
	1.2.2 Reuse Process
	1.2.3 Domain Analysis for Software Reuse

	1.3 Summary of Papers
	1.3.1 Evaluation of Component-Based Software Development Methodologies
	1.3.2 Use and Identi cation of Components in Component-Based Software Development Methods
	1.3.3 A Modest but Practical Software Process Modeling Technique for Software Process Improvement
	1.3.4 Using Hierarchies to Adapt Domain Analysis to Software Development
	1.3.5 A Model for Documenting Reusable Software Components
	1.3.6 Adding Domain Analysis to Software Development Method
	1.3.7 About the Joint Articles

	1.4 Limitations of This Study
	1.5 Conclusions

	2 EVALUATION OF COMPONENT-BASED SOFTWARE DEVELOPMENT METHODOLOGIES
	2.1 Introduction
	2.2 Evaluation framework
	2.3 Evaluation
	2.3.1 Element 1: Methodology context
	2.3.2 Element 2: Methodology User
	2.3.3 Element 3: Methodology
	2.3.4 Element 4: Evaluation
	2.3.5 Summary of Evaluation

	2.4 Implications and further research
	2.5 Conclusions

	3 USE AND IDENTIFICATION OF COMPONENTS IN COMPONENT-BASED SOFTWARE DEVELOPMENT METHODS
	3.1 Introduction
	3.2 Crucial Features of a Reuse Process
	3.3 The Lim's Model of the Reuse Process
	3.4 Evaluation of Reuse Processes in Three Known Methods
	3.4.1 Catalysis
	3.4.2 OMT++
	3.4.3 Uni ed Process
	3.4.4 Evaluation of Methods

	3.5 Discussion and Further Research

	Bibliography
	4 A MODEST BUT PRACTICAL SOFTWARE PROCESS MODELING TECHNIQUE FOR SOFTWARE PROCESS IMPROVEMENT
	4.1 Introduction
	4.2 PISKO Process Modeling Technique
	4.2.1 The Wall-Chart Sessions
	4.2.2 Problem De nitions
	4.2.3 Process Documentation and Inspection of Documentation
	4.2.4 Analyzing the Process and Inspecting Results

	4.3 Evaluation of the Technique
	4.3.1 Background for Evaluation
	4.3.2 Evaluation

	4.4 Discussion

	APPENDIX: QUESTIONNAIRE
	5 USING HIERARCHIES TO ADAPT DOMAIN ANALYSIS TO SOFTWARE DEVELOPMENT
	5.1 Introduction
	5.2 Background for Domain Analysis
	5.2.1 Domain Analysis Concepts
	5.2.2 Common Domain Analysis Process

	5.3 Hierarchical Domain Analysis Concepts
	5.4 Hierarchical Domain Analysis Process
	5.4.1 Create a Domain Model for the Company
	5.4.2 De ne Sub-Domain
	5.4.3 Analyze Business Aspect
	5.4.4 Analyze Software Aspect
	5.4.5 Use Hierarchical Domain Analysis Results

	5.5 Conclusions

	6 A MODEL FOR DOCUMENTING REUSABLE SOFTWARE COMPONENTS
	6.1 Introduction
	6.2 Genre Theory: A Basis for Analyzing Component Documentation
	6.3 Previous Models for Component Documentation in Light of the Genre-Based Framework
	6.3.1 The NATO Model for the Reusable Software Component Documentation (NATO, 1992)
	6.3.2 The REBOOT Component Model (Karlsson, 1995)
	6.3.3 Sametinger's (1997) Reuse Documentation
	6.3.4 Shortcomings of the models

	6.4 Genre System of Component Documentation
	6.4.1 Elaboration of the model for documenting components
	6.4.2 An example of the model use

	6.5 Implications
	6.6 Conclusion

	Appendix 1
	Appendix 2
	7 ADDING DOMAIN ANALYSIS TO SOFTWARE DEVELOPMENT METHOD
	7.1 Introduction
	7.2 Research Method and Environment of the Study
	7.2.1 Research Method
	7.2.2 Organization and Environment of the Study
	7.2.3 Summary of Hierarchical Domain Analysis

	7.3 Results
	7.3.1 Integration of Hierarchical Domain Analysis into Tieto Object
	7.3.2 Results Applying Hierarchical Domain Analysis
	7.3.3 Summary

	7.4 Conclusions

	References
	YHTEENVETO (FINNISH SUMMARY)
	J Y V Ä S K Y L Ä S T U D I E S I N C O M P U T I N G

