






Copyright ©       , by University of Jyväskylä



ABSTRACT

Kalvine, Viktor
Scattering and point spectra for elliptic systems in domains with cylindrical ends
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In the present work we consider a class of dissipative and self-adjoint elliptic prob-
lems for systems of differential equations of arbitrary order in domains with finitely
many cylindrical ends. One can treat the cylindrical ends as waveguides and intro-
duce families of incoming and outgoing “waves.” The amplitudes of these waves
may grow with exponential rate at infinity. Taking into account finitely many
waves, we introduce (augmented) scattering matrices. The scattering matrices
turn out to be of use in many applications. In particular, such effects as surface
waves in diffraction gratings, trapped water waves in channels, and bound states in
quantum waveguides can be characterized in terms of the matrices. We suggest and
justify a numerical method for the computation of the matrices. The results allow
to study acoustic and electromagnetic diffraction gratings, quantum waveguides,
various problems in elasticity and hydrodynamics.
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1 Introduction and main results

1.1 Introduction

We consider a class of dissipative and self-adjoint elliptic problems for systems
of differential equations of arbitrary order in domains with finitely many cylindrical
ends. Under certain assumptions on the coefficients of the problem one can treat
the cylindrical ends as waveguides and introduce incoming and outgoing “waves”.
The amplitudes of such waves can grow with power or even exponential rate at
infinity. Owing to the classification of waves, the boundary value problems admit
well-posed statements with intrinsic radiation conditions; in connection with this
the scattering matrices appear. These matrices can take into account not only
the oscillating modes but also finitely many modes with growing amplitudes. The
norm of such a matrix turns out to be less or equal to one; the scattering matrix
of a formally self-adjoint problem is unitary. In terms of scattering matrices one
can find the number of linearly independent solutions to the homogeneous problem
decreasing at infinity with a given rate.

We suggest and justify a numerical method for computing such scattering ma-
trices. The computation of a row of scattering matrix reduces to the minimization
of a quadratic functional. We cut off the cylindrical ends at a finite distance R.
Then we use the optimization of the mentioned functional to match a solution in
the truncated domain to a predetermined combination of waves at the truncation
boundary. At this part of the boundary we set a condition of the impedance type.
To obtain the functional, we numerically solve auxiliary boundary value problems
in the truncated domain. The minimizer of the quadratic functional tends expo-
nentially to the corresponding row of the scattering matrix as R goes to infinity.
We emphasize that the method is developed for augmented scattering matrices
which take into account finitely many waves with growing amplitudes.

In applications, the obtained results allow to include into consideration, in
particular, acoustic and electromagnetic diffraction gratings, quantum waveguides,
various problems in elasticity and hydrodynamics. In the “classical” situation,
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where the Sommerfeld or Mandelstam radiation principles can be employed, the
above conception of the waves coincides with that in the principles, and the scat-
tering matrix coincides with the classical one. The augmented scattering matrices
turn out to be of use in different applications. For example, such effects as surface
waves in diffraction gratings, trapped water waves in channels, and bound states
in quantum waveguides can be characterized in terms of augmented scattering ma-
trices.

Let G ⊂ Rn be a domain with cylindrical ends; this means that outside
of a large ball the domain G coincides with the union of semi-infinite cylinders
Π1

+, . . . , ΠN
+ . The boundary ∂G of G is smooth. In the domain G we consider

the general elliptic boundary value problems {L(x,Dx), B(x,Dx))} with matrix
L(x,Dx) of differential equations and matrix B(x, Dx) of boundary conditions.
The operator {L,B} is assumed to be dissipative. In particular, operators that
are self-adjoint with respect to the Green formula are dissipative. The coefficients
of differential operators stabilize at infinity with exponential rate to functions that
are constant along the axis of the cylinder Πj

+, j = 1, . . . , N . The limit bound-
ary value problem in the infinite cylinder Πj is supposed to be self-adjoint with
respect to the Green formula. This allows us to extract by a known method
(cf. [1]–[5]) two families of asymptotic solutions to the homogeneous equations
{L(x, Dx),B(x,Dx)}u(x) = 0 in the semicylinders Π1

+, . . . , ΠN
+ . One of these fami-

lies plays the role of incoming waves, whereas the other consists of outgoing waves.
The families can contain not only bounded asymptotic solutions but also those
growing exponentially in amplitude at infinity. Taking into account a finite num-
ber of the waves, one can introduce the (augmented) scattering matrices. If the
problem is not strictly dissipative then the norm of the scattering matrix is less
or equal to one, and the number of linearly independent solutions to the homoge-
neous problem that decrease at infinity with a given rate can be found in terms of
the scattering matrices (existence criterion for the point spectrum). In the case of
strictly dissipative problem, the norm of the scattering matrix is strictly less then
one, and there are no decreasing solutions to the homogeneous problem. We discuss
the problem statement with the so-called radiation conditions. This is a way of
choosing solutions (possibly with a certain arbitrariness). The intrinsic radiation
conditions (only outgoing “waves” occur in asymptotic formulas for solutions) can
be applied anyway. Other admissible radiation conditions for the problem under
consideration are connected with the intrinsic ones via scattering matrices.

For formally self-adjoint problems, similar results were obtained in [1]–[5].
The general self-adjoint elliptic systems with “impedance” boundary conditions
were considered in [6], where, in particular, properties of scattering matrices were
discussed. All these topics are studied in the first part of the thesis; here we follow
the paper [7].

The second part of the work is devoted to the method for numerical computa-
tion of the augmented scattering matrices. This method was originally suggested
for acoustic and electromagnetic non-absorbing diffraction gratings in [8] and there
was given an outline of the justification of the method. A numerical implemen-
tation was employed in [8, 9] to detect families of surface waves in a number of
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diffraction gratings. In [6, 10, 11] the method was developed for general elliptic
formally self-adjoint boundary value problems in domains with cylindrical ends,
some examples of numerical realization can be found in [11, 12]. In the thesis we
present and justify the method for computing scattering matrices to the arbitrary
dissipative and self-adjoint elliptic problems; this part of the thesis is based on the
paper [13]. We give a detailed proof of the convergence of the method. In particu-
lar, an essential part of the proof is new for the problems considered in [8, 9]. Let
us describe the method.

First we assume that the homogeneous problem {L(x,Dx),B(x,Dx)}u(x) = 0
in the domain G has no nontrivial solutions that exponentially decrease at infinity.
To compute a scattering matrix means to find the asymptotics of some solutions
to the homogeneous problem that, in general, exponentially grow as |x| → ∞.
(Emphasize that the method is developed not only for the “classical” scattering
matrices but also for the “augmented” matrices, which take into account finitely
many waves with growing amplitudes.) To this end we cut off the cylindrical ends
of Π1

+, . . . , ΠN
+ at a finite distance R. Thus, we obtain the bounded domain GR.

As an approximation of a solution Y to the problem in the domain G we choose
a solution Y R to the problem in GR such that Y R satisfies some special boundary
conditions with unknown numerical coefficients on the truncation boundary. To
compute the coefficients, we construct a quadratic functional JR. As coefficients
we take the components of the minimizer of the functional JR. We prove that the
minimizer tends exponentially to a row of the scattering matrix as R → +∞.

Now, instead of the above assumption, we suppose that the problem
{L(x, Dx),B(x,Dx)}u(x) = 0 in the domain G may have nontrivial solutions that
exponentially decrease at infinity. In this case, we can assert that the method
converges exponentially provided that these nontrivial solutions decrease “not too
rapidly”. These additional requirements may be caused not by the method for com-
puting scattering matrices itself but by the way of justification of the convergence
of this method. Nevertheless, in the papers [6, 8, 9, 10, 11] it is necessary to assume
that there are no nontrivial decreasing solutions to the homogeneous problem. Or,
allowing such solutions vanishing exponentially at infinity, we should require, as
above, that such solutions decrease “not too rapidly.” One of applications of the
method is the search of the point spectrum of the operator {L(x,Dx)−µ, B(x,Dx)}
with spectral parameter µ; see [8, 9, 11]. This is based on the above-mentioned
existence criterion for the point spectrum.

In Chapter 2 we study the dissipative problems. In particular, we define
the (augmented) scattering matrices. Such matrices were already used to study
self-adjoint elliptic problems. The matrices were introduced in [1], [2], and [4] for
self-adjoint boundary value problems in a cone. In [1], [2], and [4], an existence
criterion for nontrivial solutions to the homogeneous problem was obtained in terms
of scattering matrices provided that the behavior of the solutions in a neighborhood
of the vertex of the cone is prescribed. These results can be easily adapted for
the self-adjoint problems in domains with cylindrical ends [5], [15]. The above-
mentioned criterion becomes the existence criterion for the point spectrum of the
corresponding problems (trapped modes in waveguides, surface waves in diffraction
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gratings). In [15] and [16], this criterion was used to prove the existence of surface
waves for some diffraction gratings described by the Helmholtz equation (cf. also
[5]).

For a dissipative problem, the norm of the matrices is less or equal to one.
Although the fact could be expected from an analogy to the classical situation, we
have to prove this all the same; recall that we deal with the “nonclassical” scattering
matrices and the waves involved may grow in the amplitude. In definition and in
the study of the scattering matrices, the relative index formula for the Fredholm
operator of the boundary value problem in weighted function spaces plays a crucial
role (the operator of the problem acts in weighted spaces; as usual by the relative
index is meant the difference between the indices of the operator in the two distinct
weight spaces). The dissipation allows us to obtain some additional information
about asymptotics of the elements in the kernel.

We study the well-posed statements of boundary value problems with “radia-
tion conditions”: in the domain of the operator of the problem only functions with
special asymptotics are admissible. For example, this approach is reasonable if the
statement of problem in the standard weighted space scales does not lead to the
unique solvability (see e.g. [1, 2]). Furthermore, the results are used in Chapter 3,
where we justify the method for the computation of scattering matrices.

A substantial step in the justification of the method consists in obtaining an
approximate solution to the problem in the truncated domain GR for large R. We
find the approximate solution compounded of solutions to ”limit problems”. In
other words, we employ the compound expansion method (see [17]). The roles of
the limit problems are played by the initial boundary value problem in the domain
G and some problems in the semi-infinite cylinders Π1

+, . . . , ΠN
+ . If all the limit

problems are uniquely solvable in certain classes of functions exponentially decaying
at infinity, then the applicability of the compound expansion method is provided by
Theorem 5.6.3 in [17]. However, generally the problem in G can have a nontrivial
kernel and (or) a nontrivial cokernel, and other limit problems can have nontrivial
cokernels. Such a situation occurs, for instance, in the theory of diffraction gratings
(the Helmholtz equation with large wave number k). Another example is given by
the Stokes system (see [18] where the compound expansions method was used and
an estimate for the norm of the inverse operator of the problem in GR was obtained
as R → +∞). The compound expansions method is applicable provided that the
nontrivial solutions to the homogeneous problem in G decrease “not too rapidly”,
and some system of linear algebraic equations is solvable. (That is why we are
forced to require that these solutions decrease “not too rapidly”.) The solvability
of the system requires a special investigation. The matrix of the system is expressed
in terms of scattering matrices of the limit problems. On the truncation boundaries
of the domain GR, we set “impedance”-like boundary conditions. Owing to this
fact, the limit problems in the semicylinders Π1

+, . . . , ΠN
+ turn out to be strictly

dissipative and the norms of the corresponding scattering matrices are strictly less
than 1. The norm of the scattering matrix of the problem in the domain G does
not exceed 1. This implies that the determinant of the above-mentioned algebraic
system does not vanish. We construct an approximate solution to the problem in
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GR and prove an estimate for the norm of the inverse operator of the problem in
GR as R → +∞. Note that this part of the proof is new for the Helmholtz equation
as well (the corresponding assertion in [8] was given without proof).

The remaining part of the proof is an adaption of the scheme suggested in
[8]. We show that the quadratic functional JR does not degenerate for any R <
∞. (Recall that the computation of a row of scattering matrix reduces to the
minimization of JR.) There exists a unique minimizer a(R). The minimal value
JR(a(R)) decreases exponentially as R → +∞. Having obtained this information
and taking account of the asymptotic behavior of the waves, we verify that the
difference between a(R) and the corresponding row of the scattering matrix is of
order O(exp(−εR)) with certain positive ε as R → +∞.

In Appendix we develop an approach that allows us to extend the theory
of elliptic problems in domains with cylindrical ends, well-developed earlier for
the case of exponentially stabilizing coefficients (see e.g. [1, 2]), to the case of
slowly stabilizing coefficients. These results are obtained in collaboration with
Pekka Neittaanmäki and Boris A. Plamenevskii and published for the first time.
Some results for a class of formally self-adjoint problems with slowly stabilizing
coefficients were presented in [14] without proofs. The approach announced in [14]
was developed in [25], where the formally self-adjoint problems were studied.

1.2 Main results

Here we cite some results of the thesis. Consider an elliptic boundary value
problem

L(x,Dx)u(x) = f(x), x ∈ G,

B(x,Dx)u(x) = g(x), x ∈ ∂G,
(1.1)

where k × k-matrix L = ‖Lij‖ and m× k-matrix B = ‖Bqj‖ consist of differential
operators; moreover, ord Lij = τi+τj and ord Bqj = max τi+σq+τj, τ1+· · ·+τk = m.
As usual, τj and σq are integers appearing in the definition of an elliptic problem
in the sense of Petrovskii, τj > 0, and σq < 0; see e.g. [21]. Let the Green formula

(Lu, v)G + (Bu, Qv)∂G − (u, L∗v)G − (Q∗u, B∗v)∂G = 0

be valid for all u, v ∈ C∞
c (G). Here, Q, B∗, and Q∗ are some m × k-matrices of

differential operators, L∗ is the formally adjoint operator of L. We denote by (·, ·)G

and (·, ·)∂G the inner product in the spaces L2(G) and L2(∂G) respectively. Let
the problem (1.1) be dissipative in the following sense:

Im{(Lu, u)G + (Bu, Qu)∂G} > 0 ∀u ∈ C∞
c (G).

We assume that in every semicylinder Πr
+ = {(yr, tr) : yr ∈ Ωr, tr > 0}, the

coefficients of the operators L(yr, tr, Dyr , Dtr) and L∗(yr, tr, Dyr , Dtr) stabilize to
the coefficients of a limit operator Lr(yr, Dyr , Dtr) at an exponential rate as tr →
+∞. The operators B and B∗ stabilize to Br (Q and Q∗ stabilize to Qr) in the
same manner as L stabilizes to Lr. The limit operator {Lr, Br} in the cylinder
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Πr = Ωr × R is formally self-adjoint, r = 1, . . . , N . In the cross-section Ωr of
Πr we define the operator pencil C 3 λ 7→ Ar(λ) = {Lr(y,Dy, λ), Br(y, Dy, λ)}.
The spectrum of Ar consists of normal eigenvalues and is symmetric about the real
axis. The total algebraic multiplicity of the eigenvalues of the pencil in the strip
{λ ∈ C : | Im λ| < γ} is always even and will be denoted by 2M r. As is known
[1]–[5], in the space of solutions to the homogeneous problem {Lr, Br}u = 0 in the
cylinder Πr such that |u(yr, tr)| 6 C exp(γ|tr|), there exists a basis u±j satisfying

qr(χu±j , χu±k ) = ∓iδjk, qr(χu±j , χu∓k ) = 0, j, k = 1, 2, . . . ,M r;

here χ ∈ C∞(R), χ(tr) = 1 for tr > 2 and χ(tr) = 0 for tr 6 1, and

qr(u, v) = (Lru, v)Πr + (Bru,Qrv)∂Πr − (u, Lrv)Πr + (Qru,Brv)∂Πr

(see e.g. [5]). We introduce a through numeration in the union of such bases, first
indicating the elements of a basis in Π1 and then in Π2, Π3, . . . , ΠN , and obtain
the set of functions χu±1 , χu±2 , . . . , χu±M where M = M1 + · · · + MN . We extend
χu±j , j = 1, . . . , M by zero to the domain G. The elements χu+

j (χu−j ) are called
incoming (outgoing) waves.

Theorem 1.1. Let γ > 0 and let 2M be the total algebraic multiplicity of the
eigenvalues of the pencils A1,A2, . . . , AN in the strip {λ ∈ C : | Im λ| < γ}. Denote
by K(γ) the linear space of all solutions to the homogeneous (dissipative) problem
(1.1) satisfying u(x) = O(exp(γ|x|)) as |x| → ∞. In the space K(γ) there exists a
basis Y1, Y2, . . . , YM modulo K(−γ) such that

Yj(x) = u+
j +

M∑

k=1

Sjku
−
k + O(exp(−γ|x|)), j = 1, . . . , M, (1.2)

as |x| → ∞. The norm of the matrix S = ‖Sjk‖M
j,k=1 is less or equal to one.

The matrix S is called the (augmented) scattering matrix (corresponding to
γ). Generally speaking, the M ×M scattering matrix S(γ) is not a block of the
M ′ × M ′ matrix S(γ′) for γ′ > γ and M ′ > M . If the operator {L, B} of the
problem (1.1) is formally self-adjoint then the scattering matrix S is unitary (see
[1]–[5]).

The following theorem describes the statement of dissipative problem with
intrinsic radiation conditions. Here, for simplicity, we assume that the right-hand
side {f, g} of the problem (1.1) consists of smooth functions with compact supports;
Theorem 2.16 contains a general assertion.

Theorem 1.2. Suppose that
i. γ > 0 and the line {λ ∈ C : Im λ = γ} is free from the eigenvalues of the pencils
A1, . . . , AN ;
ii. the set {Z1, . . . Zd} consists of all linearly independent solutions to the problem

L∗(x,Dx)z(x) = 0, x ∈ G,

B∗(x,Dx)z(x) = 0, x ∈ ∂G,
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satisfying Zj(x) = O(e−γ|x|), x ∈ G;
iii. the right-hand side {f, g}, where f ∈ C∞

c (G) and g ∈ C∞
c (∂G), satisfies

(f, Xj)G + (g, QXj)∂G = 0, j = 1, . . . , d.

Then there exists a solution to the problem (1.1) such that

u(x) = a1u
−
1 (x) + a2u

−
2 (x) + · · ·+ aMu−M(x) + O(e−γ|x|), x ∈ G,

where

aj = −i(f, Zj)G − i(g, QZj)∂G, j = 1, . . . , M.

The solution u, u(x) = O(eγ|x|), is determined up to a solution v to the homogeneous
problem (1.1) such that v(x) = O(e−γ|x|).

Now we formulate the method for computing scattering matrices. We intro-
duce the sets

Πr,R
+ = {(yr, tr) ∈ Πr : tr > R}, GR = G \ ∪N

r=1Π
r,R
+

for large R. Then ∂GR \ ∂G = ΓR = ∪rΓ
r,R, where Γr,R = {(yr, tr) ∈ Πr : tr = R}.

In addition to the above assumptions we suppose that the operator {L,B} differs
from a formally self-adjoint operator only on a compact set in G (in other words
L∗(x,Dx) = L(x,Dx), B∗(x,Dx) = B(x,Dx) and Q∗(x,Dx) = Q(x,Dx) for |x| > R
with some large R). The scheme can be applied (with obvious modifications) to
some other classes of dissipative operators (for example, to operators of the form
L + q, where L = L∗ and q is the operator of multiplication by a complex-valued
function q that exponentially decreases at infinity). We have

(Lu, v)GR + (Bu, Qv)∂GR\ΓR + (Nu, Dv)ΓR

= (u, L∗v)GR + (Q∗u, B∗v)∂GR\ΓR + (Du, Nv)ΓR , (1.3)

where D and N stand for m × k-matrices of differential operators, D being a
Dirichlet system (cf. [21]). As an example of the Dirichlet system we can take the
matrix consisting of m rows of the form e(j)∂h

ν , where j = 1, . . . , k, h = 0, . . . , τj−1,
e(j) = (δ1,j, . . . , δk,j), and ν is the outward normal to ΓR. If in particular k = 1,
then D is the usual Dirichlet system of order τ (see [26]–[29]).

Consider the boundary value problem in the truncated domain GR:

L(x,Dx)X
R
l = 0, x ∈ GR,

B(x,Dx)X
R
l = 0, x ∈ ∂GR \ ΓR, (1.4)

(N + iζD)XR
l = (N + iζD)

(
u+

l +
M∑

j=1

aju
−
j

)
, x ∈ ΓR,

where ζ ∈ R\{0}, the complex numbers a1, . . . , aM are arbitrary, and the operators
D and N are the same as in formula (1.3).
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As an approximation of the row (S`1, S`2, . . . , S`M) of the scattering matrix
S = S(γ), we take the minimizer a0(R) = (a0

1(R), . . . , a0
M(R)) of the functional

JR
l (a1, . . . , aM) =

∥∥∥D(XR
l − u+

l −
M∑

j=1

aju
−
j )(·, R); L2(Γ

R)
∥∥∥

2

, (1.5)

where XR
l (·, R) is the trace on ΓR of the solution to the problem (3.6) depending

on (a1, a2, . . . , aM).
Let us explain the origin of the problem (1.4). It is obvious that the solution

Yl to the homogeneous problem (1.1) satisfies the first two equations in (1.4). Since
the asymptotic equality (1.2) can be differentiated, we have

(N + iζD)Y` = (N + iζD)
(
u+

` +
M∑

j=1

aju
−
j

)
+ O(e−γR)

for aj = S`j, i.e. the function Y` leaves an exponentially small discrepancy in the
last equation of (1.4). Therefore, one can expect that a0

j → Slj with exponential
rate as R →∞ and j = 1, . . . , M .

The following theorem justifies the above method:

Theorem 1.3. Let ζ be a fixed positive number and let the homogeneous problem
(1.1) have no nontrivial solutions that exponentially decrease at infinity. Then for
any R > R0 there exists a unique vector

a0(R) = (a0
1(R), . . . , a0

M(R))

minimizing the functional JR
l in (1.5). The inequalities

|a0
j(R)− Slj| 6 C(ε) exp(−εR)

hold for j = 1, . . . , M with a positive ε and a constant C(ε) independent of R.

A more general assertion (that includes the case of existence of exponentially
decreasing solutions to the homogeneous problem (1.1)) is given in Theorem 3.21.

1.3 Numerical detection of trapped modes

As was mentioned in Introduction, one of the possible applications of (aug-
mented) scattering matrices concerns the use of the existence criterion for expo-
nentially decreasing solutions. Let us discuss this in detail. Let 0 < γ < γ′, and let
the waves u±M+1, . . . , u

±
M ′ be chosen in such a way that u+

j + u−j = O(exp−γ|x|),
j = M + 1, . . . , M ′ (such a choice is possible; cf., for example, [5]). To con-
struct S(γ′) we complete the set {u±1 , . . . , u±M} with the waves u±M+1, . . . , u

±
M ′ and

the set {Y1, . . . , YM} with the solutions YM+1, . . . , YM ′ . In the general case, S(γ)
does not coincide with the block of the matrix S(γ′). Denote by N(γ) (N(γ′) re-
spectively) the dimension of the space of solutions u to the homogeneous problem
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(1.1) satisfying the estimate u(x) = O(exp(−γ|x|)) (u(x) = O(exp(−γ′|x|)) respec-
tively) as |x| → ∞. We write the scattering M ′ × M ′-matrix S(γ′) in the form
S(γ′) = ‖S(ij)‖i,j=1,2, where the block S(22) is of size (M ′ −M)× (M ′ −M). Then
we have

N(γ)−N(γ′) = dim ker (S(22) − 1), (1.6)

where the right-hand side is equal to the dimension of the eigenspace of S(22)

corresponding to the eigenvalue 1.
We now explain the equality (1.6). Suppose that there exist M and M ′ such

that N(γ)−N(γ′) > 0. Then there exists a solution u to the homogeneous problem
(1.1) such that u(x) = O(exp(−γ|x|)) as |x| → ∞, and the estimate u(x) =
O(exp(−γ′|x|)) is not valid. Thus, formula (1.6) yields not only the existence of a
nontrivial solution u but also some information about the behavior of this solution
at infinity.

Here, as an example, we implement our method to detect a Neumann trapped
mode for the Helmholtz equation in a plane domain with two cylindrical ends.

Let G consist of the points (x, y) ∈ R2 satisfying the inequalities

|y| < d1/2 for x ∈ (−∞,−0.5),

|y| < (d2 − d1)x/2 + (d2 + d1)/4 for x ∈ [−0.5, 0.5],

|y| < d2/2 for x ∈ (0.5, +∞),

where d1 and d2 are the widths of the left and right outlets, and d2 > d1. In the
domain G we also put a circle hole Br of radius r < d1/2, centered at the point
(0, 0). Let us consider the problem

(∆ + k2)u(x, y) = 0, (x, y) ∈ G \Br;
∂u

∂ν
(x, y) = 0, (x, y) ∈ ∂G∪ ∂Br, (1.7)

where ν is the outward normal to ∂G ∪ ∂Br.
We look for a wavenumber k for which there exists an exponentially decaying

solution to the problem (1.7), see Fig. 1 and Fig. 2. In particular, in the case
d1 = d2, the results obtained are in good agreement with those in [19]. To solve the
auxiliary problems in the truncated domain GR we employ finite element technique.
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Figure 1: Trapped modes for r = 0.8 (solid line) and r = 0.5 (dashed line) while
d1 = 2, wavenumber k and width d2 are variable. The dash-dot line corresponds
to the threshold π/d2.
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Figure 2: Trapped mode for d1 = 2, d2 = 3, r = 0.8, and the wavenumber
k = 0.988.



2 Dissipative and accretive problems, scattering

matrices, and radiation conditions

This chapter contains a scattering theory of dissipative elliptic systems. The
operator {L,B} of the problem is supposed to be dissipative (or accretive) in
the sense of Definition 2.1 below. The operator acts in weighted spaces of func-
tions exponentially growing at infinity. Thanks to the dissipativity one can ob-
tain some additional information about asymptotics of the elements in the kernel
(Lemma 2.10). This allows to prove a relation for the dimensions of the kernel and
cokernel of the operator of the problem (Proposition 2.9). Then we prove the exis-
tence of a special basis in the kernel of the operator of the problem and thereby we
introduce (augmented) scattering matrices (Proposition 2.11 and Definition 2.12).
Proposition 2.13 asserts that the matrices are contractions. In terms of matrices we
compute the number of linearly independent solutions to the homogeneous problem
with a given behavior at infinity (Proposition 2.14).

In Sec. 3, we discuss the statement of a problem with radiation conditions: the
domain of the operator contains only functions with special asymptotics (Theorem
2.16). The natural radiation conditions (the solution mainly consists of outgoing
waves for dissipative waves and of incoming waves for accretive ones) can be utilized
in every case. To verify whether given radiation conditions can be used, it is
required to know the scattering matrix (cf. Proposition 2.17). As is shown in
Sec. 4, the dissipative problem with intrinsic radiation conditions is associated
with the maximal extension of a dissipative operator. The chapter is based on the
paper [7].

2.1 Statement of the Problem. Preliminaries

2.1.1 Domain and boundary value problem.

We denote by Πr, r = 1, . . . , N , the cylinder in Rn+1 with cross-section Ωr.
In Πr, we introduce the Cartesian coordinates (yr, tr) so that Πr = {(yr, tr) : yr ∈
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Ωr, tr ∈ R}. We suppose that the cross-section Ωr is a domain in Rn with compact
closure Ω

r
and smooth boundary ∂Ωr. Assume that the domain G in Rn+1 has

smooth boundary ∂G and, outside a ball of sufficiently large radius, coincides with
the union Π1

+ ∪ . . . ∪ ΠN
+ of disjoint semicylinders Πr

+ = {(yr, tr) ∈ Πr, tr > 0}.
In the domain G, we consider the elliptic boundary value problem

L(x,Dx)u(x) = f(x), x ∈ G,

B(x,Dx)u(x) = g(x), x ∈ ∂G,
(2.1)

where k × k-matrix L = ‖Lij‖ and m× k-matrix B = ‖Bqj‖ consist of differential
operators; moreover, ord Lij = τi+τj, ord Bqj = max τi+σq +τj, and τ1+ · · ·+τk =
m, where τj > 0 and σq < 0.

We assume that for u, v ∈ C∞
c (G) the Green formula holds:

(Lu, v)G + (Bu, Qv)∂G − (u, L∗v)G − (Q∗u, B∗v)∂G = 0. (2.2)

Here, Q, B∗, and Q∗ are some m × k-matrices of differential operators, L∗ is the
formally adjoint operator of L. We denote by (·, ·)G and (·, ·)∂G the inner product
in the spaces L2(G) and L2(∂G) respectively. We assume that the coefficients of
all the operators are smooth and the operator {L∗,B∗} is elliptic.

We equip an operator with superscript r if it is written in the coordinates
(yr, tr) inside the semicylinder Πr

+. Assume that there exist matrices Lr, Br, and

Qr, r = 1, . . . , N , of differential operators whose coefficients are smooth in Ω
r

and
are constant with respect to tr; moreover, the coefficients of the differences Lr−Lr,
Br−Br, Qr−Qr, and Lr

∗−Lr, Br
∗−Br, Qr

∗−Qr, together with all their derivatives,
decrease like O(exp(−δtr)), δ > 0, as tr → +∞.

Among all operators {L,B} of the problem (2.1), we extract classes of dissi-
pative and accretive operators in accordance with the following definition.

Definition 2.1. The operator {L,B} is said to be dissipative if for all u ∈ C∞
c (G)

Im{(Lu, u)G + (Bu, Qu)∂G} > 0 (2.3)

and accretive if the sign 6 is realized in (2.3) instead of >.

Remark 2.2. The self-adjoint Green formula

(Lv, w)G + (Bv, Qw)∂G − (v, Lw)G − (Qv, Bw)∂G = 0, v, w ∈ C∞
c (G), (2.4)

holds if and only if
Im{(Lu, u)G + (Bu, Qu)∂G} = 0 (2.5)

for all u ∈ C∞
c (G). Indeed, from (2.5) we get

(Lu, u)G + (Bu, Qu)∂G − (u, Lu)G − (Qu, Bu)∂G = 0, u ∈ C∞
c (G). (2.6)

Substituting v+iw, v−iw, v+w, and v−w for u in (2.6) and using the polarization
identity

(Lv, w)G = 1/4{(L(v + w), (v + w))G − (L(v − w), (v − w))G

+i(L(v + iw), (v + iw))G − i(L(v − iw), (v − iw))G}
(and the similar expressions for (Bv, Qw)∂G, (v, Lw)G, and (Qv, Bw)∂G), we arrive
at (2.4). The converse assertion follows from (2.4) immediately.
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2.1.2 Function spaces

Denote by eβ, β ∈ R, a smooth positive function in G that is equal to exp βtr

in the semicylinder Πr
+. Introduce the space W `

β(G) as the completion of the set

C∞
c (G) in the norm

‖u; W `
β(G)‖ ≡ ‖eβu; H`(G)‖,

where H`(G) is a Sobolev space. Let W
`−1/2
β (∂G) be the trace space on ∂G of

functions in W `
β(G). We set

D`
βW (G) =

k∏
j=1

W
`+τj

β (G),

R`
βW (G) =

k∏
i=1

W `−τi
β (G)×

m∏
q=1

W
`−τ−σq−1/2
β (∂G),

(2.7)

where τ = max{τj} and ` > τ . By the assumptions in subsection 2.1, we have

ord Lij = ord Lr
ij = ord L∗ij,

ord Bij = ord Br
ij = ord B∗ij.

The following mappings are continuous:

A(β) = {L,B} : D`
βW (G) → R`

βW (G), (2.8)

A∗(β) = {L∗,B∗} : D`
βW (G) → R`

βW (G). (2.9)

2.1.3 Operator pencils

From the equality (2.2) we obtain the Green formula in the cylinder Πr:

(Lru, v)Πr + (Bru,Qrv)∂Πr = (u, Lrv)Πr + (Qru,Brv)∂Πr , (2.10)

where u, v ∈ C∞
c (Π

r
), r = 1, . . . , N . We consider the formally self-adjoint operator

Ar(Dt) = {Lr(y,Dy, Dt), B
r(y,Dy, Dt)},

where (y, t) ≡ (yr, tr) ∈ Πr. Introduce the operator pencil

C 3 λ 7→ Ar(λ) = {Lr(y,Dy, λ), Br(y, Dy, λ)} (2.11)

in the domain Ωr. The spectrum of the pencil Ar consists of normal eigenvalues and
is symmetric with respect to the real axis. Each strip {λ ∈ C : | Im λ| < h < ∞}
contains at most finitely many eigenvalues.

Proposition 2.3 (see [1], [2]). The operator (2.8) of the problem (2.1) is a Fred-
holm operator if and only if the line R+ iβ = {λ ∈ C : Im λ = β} is free from the
spectra of the pencils Ar, r = 1, . . . , N .
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We denote by λ−ν0 , . . . , λν0 , ν0 > 0, all real eigenvalues of the pencil Ar (if
the number of real eigenvalues is even, then λ0 is absent). We enumerate nonreal
eigenvalues so that

0 < Im λν0+1 6 Im λν0+2 6 . . .

and λν = λ−ν , where ν = ν0 + 1, ν0 + 2, . . .. Suppose that

{ϕ(0,j)
ν , . . . , ϕ(κjν−1,j)

ν ; j = 1, . . . , Jν := dim ker Ar(λν)}
is a canonical system of Jordan chains of the pencil Ar corresponding to the eigen-

value λν . Here, ϕ
(0,j)
ν is an eigenvector and ϕ

(1,j)
ν , . . . , ϕ

(κjν−1,j)
ν are associated vec-

tors [1],[2], [20]. The functions

u(σ,j)
ν (y, t) = exp(iλνt)

σ∑

`=0

1

`!
(it)`ϕ(σ−`,j)

ν (y), (2.12)

where σ = 0, . . . ,κjν − 1, satisfy the homogeneous problem

Lr(y, Dy, Dt)v(y, t) = 0, (y, t) ∈ Πr,

Br(y, Dy, Dt)v(y, t) = 0, (y, t) ∈ ∂Πr.
(2.13)

We introduce the form

qr(u, v) := (Lru, v)Πr + (Bru,Qrv)∂Πr − (u, Lrv)Πr − (Qru,Brv)∂Πr . (2.14)

If u, v ∈ C∞
c (Π

r
), then qr(u, v) = 0 in view of (2.10). Let χ ∈ C∞(R), χ(t) = 1 for

t > 2 and χ(t) = 0 for t 6 1. The form qr is extended to the pairs {χu
(σ,j)
ν , χu

(τ,p)
µ },

and the following assertion holds.

Proposition 2.4 (see [1],[2]). Jordan chains {ϕ(σ,j)
ν } can be chosen in such a

way that for any cut-off function χ (χ ∈ C∞(R), χ(t) = 1 for t > 2 and χ(t) = 0
for t 6 1) the following conditions are satisfied.

1. If |ν|, |µ| > ν0, then qr(χu
(σ,j)
ν , χu

(τ,p)
µ ) = iδ−ν,µδj,pδκjν−1−σ,τ .

2. If |ν|, |µ| 6 ν0, then qr(χu
(σ,j)
ν , χu

(τ,p)
µ ) = ±iδν,µδj,pδκjν−1−σ,τ , where the

choice of the sign depends on ν and j (but it cannot be chosen arbitrarily).

3. If |ν| 6 ν0 and |µ| > ν0, then qr(χu
(σ,j)
ν , χu

(τ,p)
µ ) = 0 for arbitrary choice of

Jordan chains and for any superscripts.

2.1.4 The space of waves

We extend by zero the functions χu
(σ,j)
ν defined (cf. Sec. 1.3) in the semicylin-

der Πr
+ to the domain G. Consider the form

q(u, v) := (Lu, v)G + (Bu, Qv)∂G − (u, L∗v)G − (Q∗u, B∗v)∂G. (2.15)

As was shown in [1],[2], the equality q(χu
(σ,j)
ν , χu

(τ,p)
µ ) = qr(χu

(σ,j)
ν , χu

(τ,p)
µ ) is valid

if the corresponding eigenvalues λν and λµ of the pencil Ar belong to the strip
{λ ∈ C : | Im λ| < γ}, where γ 6 δ/2 (the parameter δ is responsible for the
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stabilization rate of the coefficients of the operator; cf. Sec. 1.1). As is known
[1],[2],[4], the total algebraic multiplicity of all the eigenvalues of the pencil that
belong to the strip is even. We denote it by 2M r(≡ 2M r

γ ). Let Wr
γ(G) be the

linear span of functions representable in the form χu
(σ,j)
ν + w, where w ∈ D`

γW (G)
and | Im λν | < γ 6 δ/2. We define the space of waves Wγ(G) with the indefinite
metric ρ(u, v) := iq(u, v) as the lineal spanned by the spaces W1

γ(G), . . . , WN
γ (G).

It is obvious that ρ(u, v) = ρ(v, u) and ρ(u, u) ∈ R.
The quantity ρ(u, u) plays the role of the total energy flow transferred by the

wave u through the infinitely far cross-sections of cylindrical ends. Positive vectors
(i.e., such that ρ(u, u) > 0) are called incoming waves, whereas negative vectors
(ρ(u, v) < 0) are said to be outgoing waves. The space Wγ(G) is degenerate in
the sense that ρ(u, v) = 0 for any u ∈ D`

γW (G) and v ∈ Wγ(G). (Indeed, the
Green formula (2.2) can be extended by continuity to functions u ∈ D`

γW (G) and
v ∈ D`

−γW (G); it is clear that Wγ(G) ⊂ D`
−γW (G).) For the quotient space

Wγ(G)/D`
γW (G) of dimension 2M , M = M1 + . . .+MN , one can choose the basis

(cf. [1]–[5])

u+
1 , . . . , u+

M , u−1 , . . . , u−M (2.16)

such that

ρ(u±h , u±j ) = ±δh,j, ρ(u±h , u∓j ) = 0, h, j = 1, . . . , M. (2.17)

The space Wγ(G) is represented as the ρ-orthogonal direct sum

Wγ(G) = S+[+̇]S−[+̇]D`
γW (G), (2.18)

where S+ and S− are the linear spans of the functions u+
1 , . . . , u+

M and u−1 , . . . , u−M
respectively. The decomposition (2.18) and the choice of the bases (2.16), (2.17)
are not unique.

To conclude the section, we formulate the following assertion.

Proposition 2.5 (see [1],[2]). Let 0 < γ < δ/2, and let the line R + iγ = {λ ∈
C : Im λ = γ} be free from the spectra of the pencils Ar, r = 1, . . . , N . For any
solution u ∈ D`

−γW (G) to the homogeneous problem (2.1) the following inclusion
holds:

u−
M∑

j=1

(aju
+
j + bju

−
j ) ∈ D`

γW (G) (2.19)

with some complex coefficients aj and bj, j = 1, . . . , M . (In other words, any
element of ker A(−γ) of the operator (2.8) belongs to the space of waves Wγ(G).)

2.2 Dissipative and Accretive Problems

2.2.1 Properties of the operator {L,B}
Let us also use another definition of a dissipative operator.
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Definition 2.6. An operator {L, B} is said to be dissipative if for all u ∈ C∞
c (G)

(
L− L∗

2i
u, u

)

G

+

(
B−B∗

2i
u,

Q + Q∗
2

u

)

∂G

−
(

B + B∗
2

u,
Q− Q∗

2i
u

)

∂G

> 0

(2.20)

and accretive if the the left-hand side is nonpositive.

Proposition 2.7. 1. The definitions 2.1 and 3.1 are equivalent.
2. An operator {L,B} is dissipative (accretive) if and only if the adjoint

operator with respect to the Green formula (2.2) {L∗, B∗} is accretive (dissipative).
3. On elements u of the space of waves Wγ(G), we have

Im{(Lu, u)G + (Bu, Qu)∂G} = −1

2
ρ(u, u) +

(
L− L∗

2i
u, u

)

G

+

(
B−B∗

2i
u,

Q + Q∗
2

u

)

∂G

−
(

B + B∗
2

u,
Q− Q∗

2i
u

)

∂G

. (2.21)

4. The inequality (2.20) is extended by continuity from the set C∞
c (G) to the

space D`
−γW (G) (⊃ Wγ(G)).

Proof. Assertions 1–3 immediately follow from definitions and the Green
formula (2.2). We prove assertion 4.

The coefficients of the operators L − L∗, B − B∗, and Q − Q∗ decrease, to-
gether with all their derivatives, like O(exp(−δ|x|)) as |x| → ∞. Consequently, the
following mappings are continuous:

{L− L∗,B−B∗} : D`
−γW (G) → R`

δ−γW (G),

{Q− Q∗} : D`
−γW (G) →

m∏
q=1

W
`+τ+σq+1/2
δ−γ (∂G),

(2.22)

where
ord Qqj = ord Qqj = − ord Bqi + τi + τj − 1 = τj − σq − τ − 1

in view of the assumptions in Sec. 1.1. We recall that 0 < γ < δ/2. Let u ∈ C∞
c (G).

Each inner product on the left-hand side of the inequality (2.20) is estimated in
terms of ‖u; D`

−γW (G)‖ (it suffices to use Cauchy–Bunyakowski–Schwarz inequality
and take into account the continuity of the mappings (2.22)). To complete the
proof, we complete the set C∞

c (G) with respect to the norm of the space D`
−γW (G).

¤

Corollary 2.8. 1. Let the operator {L, B} of the problem (2.1) be dissipative. Then
{L, B} is dissipative on “nonincoming” waves in the sense that the inequality (2.3)
holds on the set {u ∈ Wγ(G) : ρ(u, u) 6 0}.

2. Let the operator {L,B} be accretive. Then {L,B} is accretive on “non-
outgoing” waves and the inequality (2.3) holds on {u ∈ Wγ(G) : ρ(u, u) > 0} with
the sign > replaced by 6.
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2.2.2 The kernel of the operator A(−γ). Scattering matrices

We first establish the relation (2.23) for the dimensions of the kernel and
cokernel of the operator (2.8). Then we prove the existence of special bases modulo
D`

γW (G) in the space ker A(−γ) and thereby we introduce the scattering matrices
S and T (cf. Proposition 2.11). In Proposition 2.13, we show that the matrices
S and T are contractions. One can express in terms of the matrices S and T the
dependence of the dimension of ker A(γ) on the parameter γ (cf. Proposition 2.28).
Finally, we clarify how scattering matrices of adjoint operators with respect to the
Green formula (2.2) are connected (cf. Proposition 2.29). The arguments of this
section are close to those in [6].

Proposition 2.9. Let 0 < γ < δ/2, and let the line R+ iγ be free from the spectra
of the pencils A1, . . . , AN in (2.11). We assume that the operator {L,B} of the
problem (2.1) is dissipative or accretive. Then

dim ker A(−γ)− dim ker A(γ) = dim coker A(γ)− dim coker A(−γ) = M, (2.23)

where 2M is the total algebraic multiplicity of all eigenvalues of the pencils
A1, . . . , AN in the strip {λ ∈ C : | Im λ| < γ}.

We start by proving the following assertion.

Lemma 2.10. Let the assumptions of Proposition 2.9 be valid, and let, for defi-
niteness, the operator {L, B} be dissipative. The following assertions hold.

1. For any u ∈ ker A(−γ) the inequality ρ(u, u) > 0 holds.

2. For any u ∈ ker A∗(−γ) the inequality ρ(u, u) 6 0 holds.

3. If

u ∈ ker A(−γ), u−
M∑

j=1

aju
−
j ∈ D`

γW (G) (2.24)

with some complex coefficients aj, then a1 = a2 = . . . = aM = 0, u ∈ ker A(γ).

4. If

u ∈ ker A∗(−γ), u−
M∑

j=1

bju
+
j ∈ D`

γW (G) (2.25)

with some bj ∈ C, then b1 = b2 = . . . = bM = 0, u ∈ ker A∗(γ).

Proof. 1. We note that for u ∈ ker A(−γ) (⊂ Wγ(G)) the (indefinite) metric
ρ(u, u) is well defined. By Proposition 2.7, the equality (2.21) holds. Assume the
contrary: u ∈ ker A(−γ), ρ(u, u) < 0. Then the left-hand side of the equality
(2.21) vanishes, whereas the right-hand side is strictly positive. Indeed, it suffices
to note that the estimate (2.20) holds (cf. assertions 1 and 4 of Proposition 2.7).
We arrive at a contradiction, which proves assertion 1. The proof of assertion 2 is
similar.
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3. Let (2.24) hold. We compute ρ(u, u). We use the equality (2.17) and the
fact that the lineal D`

γW (G) is ρ-orthogonal to the space Wγ(G). We have

ρ(u, u) = ρ

( M∑

k=1

aku
−
k ,

M∑
j=1

aju
−
j

)
= −

M∑
j=1

|aj|2. (2.26)

By assertion 1, we have the inequality ρ(u, u) > 0. From (2.26) it follows that
a1 = a2 = . . . = aM = 0. Hence

u ∈ D`
γW (G), u ∈ ker A(γ).

Assertion 3 is proved. Assertion 4 is proved in a similar way. ¤

Proof of Proposition 2.9. We consider, for example, the case of a dissipative
operator {L,B}. From Proposition 2.5 we have

τ := dim ker A(−γ)− dim ker A(γ) 6 2M.

We show that τ 6 M . If τ > M , then there is an element u 6∈ ker A(γ) satisfying
the inclusions (2.24). We obtain a contradiction with assertion 3 of Lemma 2.10.
Similarly, using assertion 4 of Lemma 2.10, one can show that

τ∗ := dim ker A∗(−γ)− dim ker A∗(γ) 6 M.

As usual, the cokernel of the operator is described in terms of the kernel of
the adjoint operator with respect to the Green formula (cf., for example, [1],[2]).
We have

dim ker A∗(−γ) = dim coker A(γ),

dim ker A∗(γ) = dim coker A(−γ).
(2.27)

By (2.27), to complete the proof it remains to exclude the possibility τ < M or
τ∗ < M . For this purpose, we consider the index

Ind A(γ) = dim ker A(γ)− dim coker A(γ)

of the operator A(γ). As is known [1],[2],

Ind A(−γ)− Ind A(γ) = 2M.

We write the left-hand side of the last equality in the form

(dim ker A(−γ)− dim ker A(γ)) + (dim coker A(γ)− dim coker A(−γ)) = τ + τ∗.

Thus, we have τ + τ∗ = 2M , τ 6 M , and τ∗ 6 M . But, in this case, τ = τ∗ = M .

To consider the case of an accretive {L,B}, it suffices to exchange the roles
of the operators {L,B} and {L∗,B∗} (cf. assertion 2 of Proposition 2.7). ¤
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Proposition 2.11. Let 0 < γ < δ/2, and let the line R+ iγ be free of the spectra
of the pencils A1, . . . , AN .

1. If the operator {L,B} is dissipative, then the space ker A(−γ) possesses a
basis Z1, . . . , ZM modulo D`

γW (G) such that

Zk −
(

u+
k +

M∑
j=1

Tkju
−
j

)
∈ D`

γW (G), k = 1, . . . ,M. (2.28)

2. If the operator {L,B} is accretive, then the space ker A(−γ) possesses a
basis X1, . . . , XM modulo D`

γW (G) such that

Xk −
(

u−k +
M∑

j=1

Skju
+
j

)
∈ D`

γW (G), k = 1, . . . , M. (2.29)

Proof. Let an operator {L,B} be dissipative or accretive. By Propositions
2.9 and 2.5, the space ker A(−γ) possesses a basis Y1, . . . , YM modulo D`

γW (G)
such that

Yk −
M∑

j=1

(akju
+
j + bkju

−
j ) ∈ D`

γW (G), k = 1, . . . , M, (2.30)

with some complex coefficients akj and bkj.

To prove assertion 1, it suffices to show that rank ‖akj‖M
k,j=1 = M , if {L, B}

is dissipative.

Assume the contrary: rank ‖akj‖M
k,j=1 < M . Then there exists a linear com-

bination u = c1Y1 + . . . + cMYM such that u 6∈ ker A(γ) and the inclusions (2.24)
hold. We arrive at a contradiction with assertion 3 of Lemma 2.10. Assertion 1 is
proved.

Assertion 2 is proved in a similar way. Let the operator {L,B} be accretive,
and let rank ‖bkj‖M

k,j=1 < M . There exists a linear combination u = c1Y1 + . . . +
cMYM such that u 6∈ ker A(γ) and the inclusions (2.25) hold with A∗(−γ) replaced
by A(−γ) and A∗(γ) replaced by A(γ).

To arrive at a contradiction, it suffices to formulate assertion 4 of Lemma
2.10 in terms of the operators A(γ) and A(−γ), where {L, B} is accretive. Thus,
rank ‖bkj‖M

k,j=1 = M , and assertion 2 is proved. ¤

Definition 2.12. The matrices S = ‖Skj‖M
k,j=1 and T = ‖Tkj‖M

k,j=1 from Proposi-
tion 2.11 are called scattering matrices.

Proposition 2.13. The scattering matrices S and T are contractions.

Proof. Let {L, B} be a dissipative operator. We denote by Z1, . . . , ZM the
basis from Proposition 2.11. We set u = α1Z1 + . . . + αMZM , where α ∈ CM and
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‖α;CM‖ = 1. We compute ρ(u, u). We have

ρ(u, u) = ρ

( ∑

k

αk

{
u+

k +
∑

j

Tkju
−
j

}
,
∑
m

αm

{
u+

m +
∑

`

Tm`u
−
`

})

= 1 + ρ

( ∑
j

( ∑

k

αkTkj

)
u−j ,

∑

`

( ∑
m

αmTm`

)
u−`

)
= 1− ‖αT;CM‖2 (2.31)

(cf. (2.26) from the proof of Lemma 2.10). It is clear that u ∈ ker A(−γ). By
assertion 1 of Lemma 2.10, we have ρ(u, u) > 0. Together with (2.31), this leads
to the estimate ‖αT;CM‖ 6 1.

Similarly, one can prove that the matrix S is a contraction. ¤

Proposition 2.14. Let 0 < γ < γ′ < δ/2, and let the lines R + iγ and R + iγ′

be free from the spectra of the pencils A1, . . . , AN . We construct the basis (2.16),
(2.17) by parameter γ and complete it to the basis {u±j }M ′

j (corresponding to γ′) so

that u+
s + u−s ∈ D`

γW (G) for s = M + 1, . . . ,M ′ and the relations (2.17) hold for
h, j = 1, . . . , M ′ (cf., for example, [5]). If {L,B} is dissipative, then

dim ker A(γ)− dim ker A(γ′) = dim ker(T2,2 − I),

and if {L,B} is accretive, then

dim ker A(γ)− dim ker A(γ′) = dim ker(S2,2 − I).

Here, T2,2 and S2,2 denote (M ′ − M) × (M ′ − M)-submatrices of the scattering
matrices T = ‖Tk,`(γ′)‖k,`=1,2 and S = ‖Sk,`(γ′)‖k,`=1,2 respectively.

Proof. In fact, the proof is contained in [5], where similar arguments are
given for problems that are self-adjoint relative to the Green formulas. In the case
of a dissipative operator {L, B}, we use the contraction matrix T instead of the
unitary scattering matrix S. If the operator is accretive, the same arguments are
valid for the matrix S. ¤

Proposition 2.15. Let the assumptions of Proposition 2.11 hold.
1. If the operator {L,B} is dissipative, then in ker A∗(−γ) of the operator

(2.9) there exists a basis X1, . . . , XM modulo D`
γW (G) satisfying (2.29); moreover,

S = T∗, where T is the scattering matrix from Proposition 2.11.
2. If the operator {L,B} is accretive, then in the space ker A∗(−γ) there exists

a basis Z1, . . . , ZM modulo D`
γW (G) satisfying the relation (2.28); moreover, T =

S∗, where S is the scattering matrix from Proposition 2.11.

Proof. 1. The existence of a basis of the form (2.29) modulo D`
γW (G) for

the subspace ker A∗(−γ) follows from the Proposition 2.11 and the fact that the
operator {L∗,B∗} is accretive. We prove that S = T∗. Let α, β ∈ CM . It is clear
that ∑

αkZk ∈ ker A(−γ),
∑

β`X` ∈ ker A∗(−γ).
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Therefore,

ρ

( ∑
αkZk,

∑
β`X`

)
= 0.

On the other hand, by (2.28), (2.29), and (2.17), we have

ρ

( ∑

k

αkZk,
∑

`

β`X`

)
= ρ

( ∑

k

αk

(
u+

k +
∑

j

Tkju
−
j

)
,
∑

`

β`

(
u−` +

∑

h

S`hu
+
h

))

=
∑

k`

αkβ`S`k −
∑

k`

αkβ`Tk` = (α(S∗ − T), β)CM .

Thus, for any α, β ∈ CM we have (α(S∗ − T), β)CM = 0. Therefore, T = S∗. The
proof of assertion 2 is similar. ¤

2.3 Problem with Radiation Conditions

As above, we suppose that the line R+iγ is free from the spectra of the pencils
A1, . . . , AN and 0 < γ < δ/2. Denote by Wγ(G) the space of waves (2.18). Now,
for the quotient space Wγ(G)/D`

γW (G) we take an arbitrary basis u1, u2, . . . , u2M .
We consider the restriction A of the operator A(−γ) in (2.8) to the subspace
h[+̇]D`

γW (G), where h is the linear span of the functions u1, . . . , uM (cf. (2.18)).
The mapping A : h[+̇]D`

γW (G) → R`
γW (G) is continuous.

Theorem 2.16. Suppose that the operator {L,B} of the problem (2.1) is dissipative
or accretive, η1, . . . , ηT∗ is a basis of the kernel ker A∗(γ) of the operator (2.9),
and the right-hand side {f, g} ∈ R`

γW (G) satisfies the orthogonality conditions
(f, ηj)G + (g, Qηj)∂G = 0, j = 1, . . . , T∗. We assume that for the space ker A∗(−γ)
one can choose a basis V1, . . . , VM modulo D`

γW (G) that is compatible with the basis
u1, . . . , u2M for the quotient space Wγ(G)/D`

γW (G) in the following sense:

ρ(uj, Vk) = δkj, k, j = 1, . . . , M. (2.32)

Then the following assertions hold.
1. There exists a unique up to an arbitrary element of ker A(γ) solution u ∈

h[+̇]D`
γW (G) to the problem (2.1).

2. The following inclusion holds:

v ≡ u− a1u1 − a2u2 − . . .− aMuM ∈ D`
γW (G), (2.33)

where aj = i(f, Vj)G + i(g, QVj)∂G, j = 1, . . . ,M .
3. The solution u satisfies the inequality

‖v; D`
γW (G)‖+ |a1|+ |a2|+ . . . + |aM | 6 C(‖{f, g}; R`

γW (G)‖+ ‖eγv; L2(G)‖).
(2.34)

4. Let ζ1, . . . , ζT be a basis for ker A(γ). The solution u satisfying the addi-
tional conditions (u, ζj)G = 0, j = 1, . . . , T , is unique and satisfies the estimate
(2.34) with the right-hand side replaced by the expression ‖{f, g}; R`

γW (G)‖.
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Proof. The operator A(−γ) is a Fredholm operator (cf. Proposition 2.3).
Therefore, the orthogonality conditions (f, ηj)G + (g, Qηj)∂G = 0, j = 1, . . . , T∗,
provide the existence of a solution u ∈ D`

−γW (G) to the problem (2.1). By Propo-
sition 2.9, the equalities (2.23) hold. Suppose that {U1, . . . , UM} is a basis modulo
D`

γW (G) for ker A(−γ) and {ζ1, . . . , ζT} is a basis for ker A(γ). A general solution
to the problem has the form

u = u0 +
M∑

j=1

cjUj +
T∑

k=1

dkζk, (2.35)

where u0 is some special solution in the space of waves Wγ(G), whereas the con-
stants cj and dk are arbitrary. The relation (2.33) can be provided by the choice of
constants c1, . . . , cM . Indeed, in the opposite case, there are constants A1, . . . , AM

and C1, . . . , CM such that

M∑
j=1

AjUj −
M∑

j=1

Cjuj ∈ D`
γW (G); (2.36)

moreover, |A1|+ . . . + |AM | > 0. It is clear that

M∑
j=1

AjUj ∈ ker A(−γ)

and

ρ

( M∑
j=1

AjUj, Vk

)
= 0, k = 1, . . . , M. (2.37)

On the other hand, the inclusion (2.36) and relation (2.32) imply

ρ

( M∑
j=1

AjUj, Vk

)
= ρ

( M∑
j=1

Cjuj, Vk

)
= Ck, k = 1, . . . , M, (2.38)

where we used the ρ-orthogonality of Wγ(G) and D`
γW (G). Together with (2.37),

this yields the equalities C1 = C2 = . . . = CM = 0, which contradicts the linear
independence of U1, . . . , UM modulo D`

γW (G).
Thus, we have established the inclusion (2.33) with some constants aj. As-

sertion 1 is proved. To obtain explicit formulas for the coefficients aj, we compute
ρ(u, Vj). As in the case (2.38), we find

ρ(u, Vj) = ρ

( M∑

k=1

akuk, Vj

)
= aj, j = 1, . . . , M.

It remains to note that ρ(u, Vj) = iq(u, Vj) = i(f, Vj)G + i(g, QVj)∂G. Assertion 2
is proved.
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Finally, assertions 3 and 4 are direct consequence of the formulas for aj (for
details we refer to [1, Remark 3.2.2] ). ¤

Inclusions of the form (2.33) are usually called radiation conditions. In the
classical case, such a definition agrees with the Sommerfeld and Mandelstam princi-
ples (energy radiation). By Theorem 2.16, to list all possible radiation conditions is
the same as to list all the bases u1, . . . , u2M for the quotient space Wγ(G)/D`

γW (G)
and bases V1, . . . , VM modulo D`

γW (G) for the subspace ker A∗(−γ) compatible in
the sense of (2.32).

Proposition 2.17. Suppose that the operator {L,B} of the problem (2.1) is dissi-
pative and for the quotient space Wγ(G)/D`

γW (G) the basis (2.16), (2.17) is taken.
Let {X1, . . . , XM} be a set of solutions to the homogeneous problem {L∗,B∗}v = 0
satisfying the inclusions (2.29). Then the following assertions hold.

1. If R is arbitrary and S is an invertible operator in CM , then

Vk =
M∑

m=1

(S−1)mkXm,

uj =
M∑

m=1

(
Sjmu−m +

M∑
p=1

Rjp

{
u+

p +
M∑
i=1

S∗
piu

−
i

})
,

(2.39)

where j, k = 1, . . . , M , satisfy the condition (2.32).
2. If a basis V1, . . . , VM modulo D`

γW (G) for the space ker A∗(−γ) and a basis
u1, . . . , u2M for the quotient space Wγ(G)/D`

γW (G) satisfy (2.32), then there exist
operators R and S such that the equalities (2.39) hold.

Proof. Assertion 1 is established by direct computations of the left-hand
side of the equalities (2.32) on the elements (2.39). Let us prove assertion 2.
Since V1, . . . , VM and X1, . . . , XM are bases for the same space of solutions to the
homogeneous problem {L∗,B∗}v = 0, we obtain the first equality in (2.39) with
some invertible matrix S. (The existence of the basis X1, . . . , XM is guaranteed by
Propositions 2.7 and 2.11.) We set

uj =
M∑

m=1

Sjmu−m.

It is easy to see that ρ(uj, Vk) = δkj, k, j = 1, . . . , M . Suppose that ρ(wj, Vk) = δkj

for some w1, . . . , wM . Then ρ(uj−wj, Vk) = 0 for all j, k = 1, . . . ,M . In particular,

uj − wj =
M∑

p=1

Rjp

{
u+

p +
M∑
i=1

S∗
piu

−
i

}
, (2.40)

where R is some matrix. Indeed, the sums u+
p +

∑
S∗

piu
−
i yield asymptotic formulas

for the elements Zp of the basis Z1, . . . , ZM modulo D`
γW (G) for the subspace
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ker A(−γ) (cf. Proposition 2.15) and the following equalities hold:

ρ

(
u+

p +
M∑
i=1

S∗
piu

−
i , Vk

)
= ρ(Zp, Vk) = 0, p, k = 1, . . . , M.

The quotient space Wγ(G)/D`
γW (G) has dimension 2M . Therefore, the arbitrari-

ness is exhausted by the equality (2.40). ¤

Remark 2.18. If the operator {L,B} of the problem (2.1) is accretive, then all the
collections {V1, . . . , VM} and {u1, . . . , u2M} that are compatible in the sense (4.1)
are defined by the transformations (2.39) with Xm replaced by Zm and S∗ replaced
by T∗. Here, {Z1, . . . , ZM} is a family of solutions to the problem {L∗,B∗}v = 0
such that the inclusions (2.28) hold (such a family exists in view of Proposition
2.11). The proof is the same as that of Proposition 2.17.

Remark 2.19. If the operator {L,B} of the problem (2.1) is dissipative and

uj =
M∑

m=1

Sjmu−m, j = 1, . . . , M,

where S is some invertible matrix, then the existence of a compatible in the sense
(2.32) basis V1, . . . , VM modulo D`

γW (G) for the space ker A∗(−γ) is guaranteed by
Propositions 2.17, 2.11 and assertion 2 of Proposition 2.7. Similarly, if {L,B} is
accretive and

uj =
M∑

m=1

Sjmu+
m, j = 1, . . . , M,

where S is some nonsingular matrix, then there exist V1, . . . , VM , compatible in the
sense (4.1) (cf. Remark 2.18 and Propositions 2.11, 2.7). Theorem 2.16 justifies
the statement of the problem (2.1) with the radiation conditions (2.33). In the
general case, in order to verify the existence of suitable V1, . . . , VM , it is necessary
to know the scattering matrix.

2.4 Dissipative Operators in Spaces with Weight Norm

2.4.1 Relationship with the classical definition of a dissipative operator.
The adjoint operator

Here we assume that the elliptic system {L,B} is homogeneous. In other
words, τ1 = τ2 = . . . = τk ≡ τ and D`

γW (G) :=
∏k

i=1 W 2τ
γ (G). With the problem

(2.1) we associate an operator M with the domain

D(M) = {u ∈ D`
γW (G) : B(x,Dx)u(x) = 0, x ∈ ∂G}

that acts in the Hilbert space

L2(G; e−γ) ≡
k∏

i=1

W 0
−γ(G)
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by the formula
(Mu)(x) = eγ(x)2L(x,Dx)u(x). (2.41)

We denote by (·, ·)−γ the inner product

(u, v)−γ =

∫

G

e−γ(x)2u(x)v(x) dx (2.42)

in the space L2(G; e−γ).

Proposition 2.20. Suppose that the operator of the problem (2.1) is dissipative in
accordance with Definition 2.1 and the line R + iγ does not contain the spectra of
the pencils A1, . . . , AN and 0 < γ < δ/2. Then the following assertions hold.

1. The operator M is closed.
2. For elements u ∈ D(M) the following estimate holds:

Im(Mu, u)−γ > 0 (2.43)

(in other words, the operator M is dissipative in the classical sense).
3. The following equality holds:

ker M = ker A(γ),

where A(γ) is the operator (2.8).
4. For the coker M one can choose a basis X1, . . . , XM modulo D`

γW (G) such
that the inclusions (2.29) hold.

Proof. Let us check that the operator M is closed. Let {wj} and {Fj} be
sequences convergent in L2(G; e−γ), and let wj ∈ D(M) and Mwj = Fj. By (2.41),
the function wj satisfies the problem (2.1) with the right-hand side {f j, gj} =
{e2
−γF

j, 0}. The estimate (2.34) (where v = wj, a1 = a2 = . . . = aM = 0 and
{f, g} = {f j, 0}) and the convergence of the sequence {f j} in L2(G; eγ) imply the
convergence of {wj} in D`

γW (G). Therefore, u = lim wj ∈ D(M) and Mu = lim Fj.
Assertion 1 is proved.

Let us prove assertion 2. We consider (2.41), (2.42) and write the equality

Im(Mu, u)−γ = Im{(Lu, u)G + (Bu, Qu)∂G} (2.44)

for u ∈ D(M). By Corollary 2.8, the inequality (2.3) holds for functions in the
set {u ∈ Wγ(G) : ρ(u, u) > 0} ⊃ D(M). Together with (2.44), this leads to the
estimate (2.43).

The proof of assertion 3 is obvious, and assertion 4 is a direct consequence of
Proposition 2.11. ¤

Proposition 2.21. The operator M∗, adjoint to M in the space L2(G; e−γ), is
defined on the set

D(M∗) = {v ∈ Wγ(G) : B∗(x,Dx)v(x) = 0, x ∈ ∂G} (2.45)

and acts by the formula

(M∗v)(x) = eγ(x)2L∗(x,Dx)u(x). (2.46)
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Proof. Consider the equality (2.15). Let u ∈ D(M)(⊂ D`
γW (G)), and let

v ∈ D(M∗)(⊂ Wγ(G)). Then q(u, v) = 0 and

(Mu, v)−γ = (u, M∗v)−γ. (2.47)

It remains to show that if for v, h ∈ L2(G; e−γ)

(Mu, v)−γ = (u, h)−γ ∀ u ∈ D(M), (2.48)

then v ∈ D(M∗) and M∗v = h.
Let ζ1, . . . , ζT be a basis for the space ker M = ker A(γ). By (2.48), we have

(ζj, h)−γ = 0, j = 1, . . . , T . Therefore, there exists a solution v′ to the problem
{L∗, B∗}v′ = {e2

−γh, 0} in the space of waves Wγ(G). We have

(u, h)−γ = (u, M∗v′)−γ = (Mu, v′)−γ.

Together with (2.48), this leads to the relation

(Mu, v − v′)−γ = 0 ∀ u ∈ D(M).

Consequently, v − v′ ∈ coker M ⊂ Wγ(G) and the function v belongs to the set
(2.45). We note that M∗v = M∗v′ = h. ¤

2.4.2 Maximal extension of a dissipative operator

We extend the dissipative operator M from Sec. 4.1 by adjoining representa-
tives of waves to the domain. Suppose that the assumptions of Theorem 2.16 hold
and u1 = u−1 , u2 = u−2 , . . . , uM = u−M , h = S− (then the relations (2.32) automati-
cally hold; cf. Remark 2.19). With the problem (2.1) with the radiation conditions
(2.33) we associate an operator M with the domain

D(M) = {u : u ∈ S−[+̇]D`
γW (G),B(x,Dx)u(x) = 0, x ∈ ∂G} (2.49)

that acts by formula (2.41) with M replaced by M. We recall that the parameter
γ is chosen in such a way that the line R+ iγ is free from the spectra of the pencils
A1, . . . , AN . We also recall that A(γ) and A∗(γ) denote the operators (2.8) and
(2.9) respectively.

Proposition 2.22. The closed operator M is dissipative (i.e., Im(Mu, u)−γ > 0
for all u ∈ D(M)); moreover, kerM = ker M = ker A(γ) and cokerM = ker A∗(γ).

Proof. The fact that the operator is dissipative is established in the same
way as in Proposition 2.20. The remaining assertions follow from Theorem 2.32.¤

Proposition 2.23. The operator M∗, adjoint to M in the space L2(G; e−γ), is
defined on the set

D(M∗) = {v : v ∈ S+[+̇]D`
γW (G),B∗(x,Dx)u(x) = 0, x ∈ ∂G}

and acts by formula (2.46) with M∗ replaced by M∗. The operator M∗ is accretive
(i.e., Im(M∗v, v)−γ 6 0 for all v ∈ D(M∗)).
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Proof. The operator M∗ is accretive. By Corollary 2.8, we have

Im(M∗v, v)−γ = Im{(L∗v, v)G + (B∗v, Q∗v)∂G} 6 0

for v ∈ D(M∗)(⊂ {v : v ∈ Wγ(G), ρ(v, v) > 0}). The proof of the fact that M∗ is
the adjoint of M is almost the same as the proof of Proposition 2.21. We only note
that

(i) ρ(u, v) = 0 for u ∈ D(M) and v ∈ D(M∗) (cf. (2.18));
(ii) a solution v′ ∈ S+[+̇]D`

γW (G) to the problem

{L∗,B∗}v′ = {e2
−γh, 0}

exists in view of Theorem 2.16. ¤

Corollary 2.24. The operator M is maximally dissipative.



3 On the method for computing scattering ma-

trices

The structure of this chapter is the following. The statement of the prob-
lem and preliminaries are given in Section 3.1. In particular, we discuss in detail
the method for computing scattering matrices. In Section 3.2, we study auxiliary
problems in the truncated domain GR, the limit problems in the domain G and
semi-infinite cylinders Πj

+, and scattering matrices for these limit problems. In Sec-
tion 3.3 an approximation solution to the problem in the domain GR is constructed
and an estimate for the norm of the inverse operator of the problem is given. The
convergence of the method for computing scattering matrices is established in Sec-
tion 3.4. In Section 3.5, we briefly discuss applications of the method to problems
with spectral parameter.

We rely heavily on the theory of dissipative problems as developed in Chap-
ter 2 and the notions used there in. This chapter is based on the paper [14].

3.1 Statement of the Problem. Preliminaries

3.1.1 Boundary value problem

Let us recall some of the notation. We denote by Πr, r = 1, . . . , N , the
cylinder in Rn+1 with cross-section Ωr. In Πr, we introduce the Cartesian coordi-
nates (yr, tr) so that Πr = {(yr, tr) : yr ∈ Ωr, tr ∈ R}. We assume that Ωr is a
domain in Rn with compact closure Ω

r
and smooth boundary ∂Ωr. Suppose that

the domain G in Rn+1 coincides with the union Π1
+ ∪ · · · ∪ΠN

+ of the semicylinders
Πr

+ = {(yr, tr) ∈ Πr : tr > 0} outside a ball BR of sufficiently large radius R,
the semicylinders Πr

+ do not intersect, and the boundary ∂G of the domain G is
smooth. We consider the elliptic boundary value problem

L(x,Dx)u(x) = F(x), x ∈ G,

B(x,Dx)u(x) = G(x), x ∈ ∂G,
(3.1)
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where L = ‖Lij‖ and B = ‖Bqj‖ are k × k- and m × k-matrices of differential
operators; moreover ord Lij = τi + τj and ord Bqj = max τi + σq + τj, where τj and
σq are integers, τj > 0, and τ1 + · · ·+ τk = m. It is assumed that the Green formula

(Lu, v)G + (Bu, Qv)∂G − (u, L∗v)G − (Q∗u, B∗v)∂G = 0 (3.2)

holds for u, v ∈ C∞
c (G) and the operator {L, B} of the problem (3.1) is dissipative

in the sense of Definition 2.1, i.e.

Im{(Lu, u)G + (Bu, Qu)∂G} > 0 ∀u ∈ C∞
c (G). (3.3)

Here, Q, B∗, and Q∗ are some m × k-matrices of differential operators, L∗ is the
formally adjoint to L. The coefficients of all the operators are assumed to be
smooth, and the operator {L∗,B∗} is elliptic.

In addition to the assumptions of the previous chapter we suppose that the
operator {L,B} differs from a formally self-adjoint operator only on a compact set
in G. In other words, L∗(x,Dx) = L(x,Dx), B∗(x, Dx) = B(x,Dx) and Q∗(x,Dx) =
Q(x,Dx) outside a fixed compact set. The scheme below can be applied (with
obvious modifications) to some other classes of dissipative operators (for example,
to operators of the form L+q, where L = L∗ and q is the operator of multiplication
by a complex-valued function q that exponentially decreases at infinity).

We write the superscript r at L, B, and other operators if they are written
in the coordinates (yr, tr) inside the semicylinder Πr

+. It is supposed that there

exist matrices Lr, Br,Qr, r = 1, . . . , N , of differential operators with smooth in Ω
r

and constant over tr coefficients such that the coefficients of differences Lr − Lr,
Br −Br, Qr −Qr together with all the derivatives are of order O(exp(−δtr)) with
some δ > 0 as tr → +∞.

3.1.2 Method for computing scattering matrices

Let 0 < γ < δ/2, and let the total algebraic multiplicity of eigenvalues of the
pencils A1, . . . , AN in the strip {λ ∈ C : | Im λ| < γ} be equal to 2M > 0; see
section 2.1.3. Suppose that the line {λ ∈ C : Im λ = γ} is free from the spectrum
of the pencils. As was shown in the previous chapter, in the space of solutions u
to the homogeneous problem (3.1) satisfying the estimate u(x) = O(exp γ|x|) as
x →∞, there exist elements Y1, . . . , YM such that

Yj(x) = u+
j (x) +

M∑

k=1

Sjku
−
k (x) + O(e−γ|x|), (3.4)

see Proposition 2.11. By Proposition 2.13 the scattering matrix S = S(γ) =
‖Sjk‖M

j,k=1 is a contraction. In the self-adjoint case, the scattering matrix is unitary.
The amplitudes of waves u±j may grow with exponential rate at infinity. However,
if the strip {λ ∈ C : | Im λ| < γ} contains only simple real eigenvalues of the pencils
then our definition of s-matrix coincides with the classical one.

We introduce the sets

Πr,R
+ = {(yr, tr) ∈ Πr : tr > R}, GR = G \ ∪N

r=1Π
r,R
+
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for large R. Then ∂GR \ ∂G = ΓR = ∪rΓ
r,R, where Γr,R = {(yr, tr) ∈ Πr : tr = R}.

Recall that the operator {L,B} is self-adjoint outside some compact set. Therefore,
for large R we have

(Lu, v)GR + (Bu, Qv)∂GR\ΓR + (Nu, Dv)ΓR

= (u, L∗v)GR + (Q∗u, B∗v)∂GR\ΓR + (Du, Nv)ΓR , (3.5)

where D and N stand for m × k-matrices of differential operators, D being a
Dirichlet system (cf. [21]). As an example of the Dirichlet system we can take the
matrix consisting of m rows of the form e(j)∂h

ν , where j = 1, . . . , k, h = 0, . . . , τj−1,
e(j) = (δ1,j, . . . , δk,j), and ν is the outward normal to ΓR.

We look for the l-th row (Sl1, . . . , SlM) of the scattering matrix S(= S(γ)).
As an approximation of the row we take a vector minimizing some quadratic func-
tional. To construct the functional, we introduce the boundary value problem in
the truncated domain GR:

L(x,Dx)X
R
l = 0, x ∈ GR,

B(x,Dx)X
R
l = 0, x ∈ ∂GR \ ΓR, (3.6)

(N + iζD)XR
l = (N + iζD)

(
u+

l +
M∑

j=1

aju
−
j

)
, x ∈ ΓR,

where ζ ∈ R\{0}, the complex numbers a1, . . . , aM are arbitrary, and the operators
D and N are the same as in formula (3.5).

As an approximation of the row (Sl1, . . . , SlM) it is natural to take the mini-
mizer a0(R) = (a0

1(R), . . . , a0
M(R)) of the functional

JR
l (a1, . . . , aM) =

∥∥∥D(XR
l − u+

l −
M∑

j=1

aju
−
j ); L2(Γ

R)
∥∥∥

2

, (3.7)

where XR
l is a solution to the problem (3.6) (for motivation see Introduction). One

can expect that a0
j → Slj with exponential rate as R → ∞ and j = 1, . . . , M . In

order to explicitly write the dependence of XR
l on the parameters a1, . . . , aM , we

consider the auxiliary problems

L(x,Dx)v
±
j = 0, x ∈ GR,

B(x,Dx)v
±
j = 0, x ∈ ∂G \ ΓR,

(N + iζD)v±j = (N + iζD)u±j , x ∈ ΓR, j = 1, . . . , M.

(3.8)

Then XR
l can be expressed in terms of the solutions v±j = v±j,R to the problem (3.8).

We have XR
l = v+

l,R +
∑

j ajv
−
j,R. Introduce M ×M -matrices E and F, where

ER
ij = (D(v−i − u−i ),D(v−j − u−j ))ΓR ,

FR
ij = (D(v+

i − u+
i ),D(v−j − u−j ))ΓR .

(3.9)

Besides, we put
GR

i = (D(v+
i − u+

i ), D(v+
i − u+

i ))ΓR .
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We write the functional (3.7) in the form

JR
l (a) = 〈aER, a〉+ 2 Re 〈FR

l , a〉+ GR
l ,

where FR
l is the l-th row of the matrix FR and 〈·, ·〉 is the inner product in CM . Then

the minimum is attained at the vector a0 (row) satisfying the system a0(R)ER +
FR

l = 0. For an approximation SR of the scattering matrix S we can take the
solution to the equation SRER + FR = 0.

In the above scheme, we mean that the problem (3.8) is uniquely solvable for
ζ ∈ R\{0} and large R. Moreover, to justify the algorithm, it is necessary to show
that the matrix ER is nonsingular and the minimizer a0(R) of the functional JR

l

tends to the row (Sl1, . . . , SlM) of the scattering matrix as R →∞.

3.2 Problems in GR. Limit Problems

We discuss the solvability of the problem

L(x,Dx)u(x) = f(x), x ∈ GR,

B(x,Dx)u(x) = g(x), x ∈ ∂GR \ ΓR,

(N(x, Dx) + iζD(x,Dx))u(x) = h(x), x ∈ ΓR,

(3.10)

where ζ ∈ R \ 0. With the problem (3.10) we associate “limit” problems that will
be studied in this section.

3.2.1 On the unique solvability of the problem in GR

From the equality (3.5) we obtain the Green formula

(Lu, v)GR + (Bu, Qv)∂GR\ΓR + ((N + iζD)u, Dv)ΓR

= (u, L∗v)GR + (Q∗u, B∗v)∂GR\ΓR + (Du, (N − iζD)v)ΓR (3.11)

for the problem (3.10). If w is a solution to the homogeneous problem (3.10), then,
substituting u = v = w into (3.11), we have

−2iζ‖(Dw; L2(Γ
R)‖ = (w, L∗w)GR + (Q∗w, B∗w)∂GR\ΓR . (3.12)

Since the operator {L,B} is dissipative (cf. (3.3)), taking into account the Green
formula (3.2), we obtain the inequality

Im{(u, L∗u)G + (Q∗u, B∗u)∂G} > 0 ∀u ∈ C∞
c (G). (3.13)

Since L = L∗, B = B∗ and Q = Q∗ outside some compact set, the integration in
the inner products in (3.13) is extended only over this compact set. This yields the
inequality

Im{(w, L∗w)GR + (Q∗w, B∗w)∂GR\ΓR} > 0. (3.14)
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For ζ > 0 from (3.12) and (3.14) it follows that

D(x,Dx)w(x) = 0, x ∈ ΓR. (3.15)

An assertion like the Holmgren theorem, together with the conditions (3.15), pro-
vides the uniqueness of a solution to the problem (3.10). It is obvious that the
same arguments are valid for the adjoint problem relative to the Green formula
(3.11), which allows us to establish the solvability of the problem (3.10).

The boundary of the domain GR contains edges ∂ΓR. Therefore, one has to
use either generalized statement of the problem or proper weighted function spaces.
The implementation of such a plan is a part of the well-developed theory of elliptic
boundary value problems. Further, restricting ourselves to the above remarks, we
postulate the unique solvability of the problem (3.10). Let V(GR) and W(GR)
be function spaces where the operator AR of the problem (3.10) implements an
isomorphism

AR : V(GR) →W(GR). (3.16)

The procedure of constructing such spaces is well understood in the theory of elliptic
problems in domains with piecewise smooth boundary (cf. [1], [2]). The required
spaces (generally speaking, with weight norms) exist for all classical problems in
mathematical physics. We give two examples.

Example 3.1. We specify the spaces V(GR) and W(GR) for the problem

(∆ + k2)u(x) = F(x), x ∈ G,

u(x) = G(x), x ∈ ∂G.

Define the space V `
β (GR) as the completion of the set C∞

0 (GR \ ∂ΓR) in the norm

‖v; V `
β (GR)‖ =

( ∑

|α|6`

‖ρβ−`+|α|Dα
xv; L2(G

R)‖2
)1/2

,

where β ∈ R, ` = 0, 1, . . . , and ρ is a smooth positive function on GR \ ∂ΓR

coinciding with the distance function from the edge ∂Γr,R in a neighborhood of
∂Γr,R. We denote by V

`+1/2
β (∂GR\ΓR) and V

`+1/2
β (ΓR) the trace spaces on ∂GR\ΓR

and on ΓR of functions in V `+1
β (GR). Consider the operator

AR(β; ζ) : V 2
β (GR) → V 0

β (GR)× V
3/2
β (∂GR \ ΓR)× V 1/2(ΓR) (3.17)

of the problem

(∆ + k2)u(x) = f(x), x ∈ GR,

u(x) = g(x), x ∈ ∂GR \ ΓR,

(∂ν + iζ)u(x) = h(x), x ∈ ΓR,

(3.18)

where ν is the outward normal. If u is a solution to the homogeneous problem
(3.18), then from the Green formula

((∆ + k2)v, w)GR + (v, ∂νw)∂GR\ΓR + ((∂ν + iζ)v, w)ΓR

= (v, (∆ + k2)w)GR + (∂νv, w)∂GR\ΓR + (v, (∂ν − iζ)w)ΓR
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for v = w = u we find
u(x) = 0, x ∈ ΓR. (3.19)

By the Holmgren theorem, together with the conditions (3.19), the equality
ker AR(β; ζ) = 0 holds. The same arguments are valid for the adjoint problem.
Therefore, ker AR(2− β;−ζ) = 0. If the number |β − 1| is sufficiently small, then
the operator (3.17) is a Fredholm operator; moreover, coker AR(β; ζ) = {(u, ∂νu) :
u ∈ ker AR(2 − β;−ζ)} (cf., for example, [1], [2]). Thus, if |β − 1| is sufficiently
small, then the mapping (3.17) is an isomorphism.

Example 3.2. We give an example of truncated domain with smooth boundary.
Consider the Neumann problem

L(x,Dx)u(x) = F(x), x ∈ G,

N(x,Dx)u(x) = G(x), x ∈ ∂G.

Denote by Π̃r,R a domain with smooth boundary such that

{(yr, tr) ∈ Πr : tr < R} ⊂ Π̃r,R ⊂ {(yr, tr) ∈ Πr : tr < R + 1}.
Let GR be the same domain as in (3.1). We set

G̃R = GR ∪N
r=1 {(yr, tR) ∈ Π̃r,R, tr > R}.

We choose a cut-off function χ on ∂G̃R such that supp χ ⊂ ∪r∂Π̃r,R \ ∂GR and
mes supp χ > 0.

The role of the problem (3.10) is played by the problem

L(x, Dx)u(x) = f(x), x ∈ G̃R,

(N(x,Dx) + iζχD(x,Dx))u(x) = g(x), x ∈ ∂G̃R,
(3.20)

in a bounded domain with smooth boundary. The Green formula holds:

(Lu, v)G̃R + ((N + iζχD)u, Dv)∂G̃R = (u, Lv)G̃R + (Du, (N − iζχD)v)∂G̃R .

Now we can set

V(G̃R) =
k∏

j=1

H`+τj(G̃R),

W(G̃R) =
k∏

j=1

H`−τj(G̃R)×
m∏

h=1

H`−τ−σh−1/2(∂G̃R),

(3.21)

where τ = max{τ1, . . . , τk}, ord Nhj = σh + τ + τj and ` > τ . From (3.21) it
follows that the solution to the homogeneous problem (3.20) satisfies the equation

χD(x,Dx)u(x) = 0 on ∂G̃R. As {L, B} one can take, among others, the operator
{E(Dx) + k2,N(x,Dx)}in elasticity theory. Here,

E(Dx) = −µ∇x · ∇x − (λ + µ)∇x∇x·
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is the Lamé system with parameters λ and µ, N(x,Dx)u(x) := σ(u; x)ν(x), and
σ(u; x) is the stress tensor,

σjk(u; x) = µ

(
∂uj

∂xk

+
∂uk

∂xj

)
+ λδjk∇x · u.

The operator
AR : V(G̃R) →W(G̃R) (3.22)

is Fredholm. The Holmgren theorem implies the uniqueness of a solution to the
problem (3.20) and to the adjoint problem. The mapping (3.22) is an isomorphism.

3.2.2 Limit problems

To estimate the norm of the inverse operator (AR)−1, we use the compound
expansion method. For this purpose we introduce and study the limit problems
in the domain G and semicylinders Πr,0

− , r = 1, . . . , N , where Πr,R
− = {(yr, tr) ∈

Πr, tr < R}. The role of the limit problem in G is played by the problem (3.1).
The limit problem in Πr,0

− is as follows:

Lr(y,Dy, Dt)u(y, t) = F r(y, t), (y, t) ∈ Πr,0
− ,

Br(y,Dy, Dt)u(y, t) = Gr(y, t), (y, t) ∈ ∂Πr,0
− \ Γr,0,

(Nr(y, Dt) + iζDr(y, Dt))u(y, t)|t=0 = Hr(y), y ∈ Ωr.

(3.23)

We denote by Nr and Dr the limit operators for N and D. The operators N and
D stabilize to Nr and Dr (in the same sense as L to Lr) as x →∞ in Πr.

We note that in Example 3.2, instead of (3.23), we have a problem in the

domain Π̃r,0
− = {(yr, tr + R) ∈ Π̃r,R} with smooth boundary.

3.2.3 Limit problems in semicylinders

In this subsection, we assume that a number r = 1, . . . , N is fixed and omit
the corresponding subscripts in the notation Πr,R

− , Γr,R, etc. The spaces V(Π−) and
W(Π−) satisfy the following conditions. We set

‖u;Vγ(Π−)‖ = ‖e−γu;V(Π−)‖
and

‖{F, G,H};Wγ(Π−)‖ = ‖e−γ{F, G,H};W(Π−)‖,
where e−γ : (y, t) 7→ e−γ(y, t) = exp (−γt). The operator

A(γ, ζ) : Vγ(Π−) →Wγ(Π−) (3.24)

of the problem (3.23) is a Fredholm operator if and only if the line R + iγ =
{λ ∈ C : Im λ = γ} is free from the spectrum of the operator pencil A(λ) =
{L(y,Dy, λ),B(y, Dy, λ)} (cf. [1],[2]).

Proposition 3.3. For any real ζ 6= 0 the problem (3.23) has at most one solution
in the space Vγ(Π−), where γ > 0.
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Proof. The Green formula

(Lu, v)Π− + (Bu,Qv)∂Π−\Γ + ((N + iζD)u,Dv)Γ

− (u,Lv)Π− − (Qu,Bv)∂Π−\Γ − (Du, (N− iζD)v)Γ = 0
(3.25)

holds for all u, v ∈ Vγ(Π−), γ > 0. If a function u ∈ Vγ(Π−) satisfies the ho-
mogeneous problem (3.23), then formula (3.25) with v = u implies the equality
D(y,Dt)u(y, t) = 0 on Γ. Using the Holmgren theorem, we complete the proof.

Proposition 3.4. Let γ < 0, and let the line R + iγ be free from the spectrum
of the pencil A. Then for any right-hand side {F, G,H} ∈ Wγ(Π−) the problem
(3.23) has a solution in the space Vγ(Π−).

Proof. The problem adjoint with respect to the Green formula (3.24) is given
by the equation (3.23) with ζ replaced by −ζ. By Proposition 3.3, the kernel of
this problem in the space V−γ(Π−), γ < 0, is trivial. Since the operator (3.24) is
Fredholm, it follows that its range coincide with the space Wγ(Π−).

To the problem (3.23) there corresponds the operator pencil (2.11). Therefore
the asymptotics of solutions can be expressed in terms of the functions (2.12).
Introduce the form

p(u, v) :=(Lu, v)Π− + (Bu,Qv)∂Π−\Γ + (Nu,Dv)Γ

− (u,Lv)Π− − (Qu,Bv)∂Π−\Γ − (Du,Nv)Γ,

which coincides with the left-hand side of (3.25). This enables us to classify the
waves as incoming and outgoing in the same way as in the case of the problem
(3.1); see section 2.1.4. Denote by W the linear span of the functions u

(σ,j)
ν (σ =

0, . . . ,κjν − 1; j = 1, . . . , Jν) given in (2.12) and corresponding to the eigenvalues
λ−µ, . . . , λµ of the pencil A in the strip {λ ∈ C : | Im λ| < γ}. Let the total
algebraic multiplicity of λ−µ, . . . , λµ be equal to 2M . In the space W we choose
the basis

v+
1 , . . . , v+

M , v−1 , . . . , v−M (3.26)

consisting of incoming and outgoing waves, i.e.

p(v±j , v±h ) = ∓iδh,j, p(v±j , v∓h ) = 0, j, h = 1, . . . , M. (3.27)

Proposition 3.5. Let γ > 0 and ζ > 0. Suppose that either

u ∈ ker A(−γ,−ζ) and u−
M∑

j=1

ajv
+
j ∈ Vγ(Π−) (3.28)

or

u ∈ ker A(−γ, ζ) and u−
M∑

j=1

bjv
−
j ∈ Vγ(Π−), (3.29)

where aj and bj are some complex coefficients. Then u ≡ 0.
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Proof. Let, for example, the assumption (3.28) be satisfied. Let us compute
the value p(u, u). Taking into account (3.27) and the second inclusion in (3.28), we
find

p(u, u) = p
( M∑

j=1

ajv
+
j ,

M∑
j=1

ajv
+
j

)
= −i

M∑
j=1

|aj|2. (3.30)

The first inclusion in (3.28) implies the equality

p(u, u) = −(Du, 2iζDu)Γ = 2iζ‖Du; L2(Γ)‖2. (3.31)

Comparing (3.30) and (3.31), we arrive at the relation

2ζ‖Du; L2(Γ)‖2 = −
M∑

j=1

|aj|2,

where ζ > 0. Consequently, aj = 0 and u ∈ Vγ(Π−). This means u ≡ 0 by
Proposition 3.3.

In the case of the assumption (3.29), the assertion is proved in a similar
way.

Proposition 3.6. Suppose that γ > 0, the line R + iγ be free from the spectrum
of the pencil A, and the strip {λ ∈ C : | Im λ| < γ} contains the eigenvalues
λ−ν , . . . , λν of the pencil A. The following assertions hold.

1. dim ker A(−γ, ζ) = M for ζ 6= 0, where 2M is the total algebraic multi-
plicity of λ−ν , . . . , λν.

2. For an arbitrary basis Z1, . . . , ZM for the space ker A(−γ, ζ) we have

Zk −
M∑

j=1

akjv
+
j −

M∑
j=1

bkjv
−
j ∈ Vγ(Π−) (3.32)

with some complex coefficients akj and bkj. Moreover,

rank a = M for ζ > 0,

rank b = M for ζ < 0,

where a = ‖akj‖M
k,j=1 and b = ‖bkj‖M

k,j=1.

Proof. Any solution Z ∈ V−γ(Π−) to the homogeneous problem (3.23) satis-
fies the inclusion

Z −
M∑

j=1

ajv
+
j −

M∑
j=1

bjv
−
j ∈ Vγ(Π−).

Taking into account Proposition 3.3, we arrive at the inequality dim ker A(−γ, ζ) 6
2M , the representation (3.32) holds for any basis Z1, . . . , ZM .

Let us show that τ± = dim ker A(−γ,∓ζ) 6 M (for ζ > 0). In the case
τ+ > M , there is an element u 6= 0 satisfying the relations (3.28), which contradicts
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to Proposition 3.5. The case τ− > M can be treated in a similar manner with (3.29)
instead of (3.28).

It remains to eliminate the inequalities τ+ < M and τ− < M . For this purpose
we consider the index Ind A(γ, ζ) of the operator A(γ, ζ). We have

Ind A(γ, ζ) = dim ker A(γ, ζ)− dim coker A(γ, ζ)

= dim ker A(γ, ζ)− dim ker A(−γ,−ζ)

= − dim ker A(−γ,−ζ) (3.33)

since dim ker A(γ, ζ) = 0 by Proposition 3.3. Moreover,

Ind A(−γ, ζ) = dim ker A(−γ, ζ)− dim ker A(γ,−ζ)

= dim ker A(−γ, ζ). (3.34)

As is known, Ind A(γ, ζ) = Ind A(−γ, ζ)−2M (cf. [1], [2]). From (3.33) and (3.34)
we find

dim ker A(−γ, ζ) + dim ker A(−γ,−ζ) = 2M.

As was shown, each term on the left-hand side does not exceed M . Therefore each
of them is equal to M . The first assertion of the proposition is proved.

Suppose that ζ > 0 and rank a < M . Then there exists a nonzero element
u satisfying the inclusions (3.29), which contradicts Proposition 3.5. The equality
rank a = M is proved. In a similar way, one can prove that rank b = M for
ζ < 0.

Corollary 3.7. Let ζ > 0. For the space ker A(−γ, ζ) there exists a basis
Z1, . . . , ZM such that

Zj −
(

v+
j +

M∑

k=1

Tjkv
−
k

)
∈ Vγ(Π−). (3.35)

In the case ζ < 0, there exists a basis X1, . . . , XM such that

Xj −
(

v−j +
M∑

k=1

Sjkv
+
k

)
∈ Vγ(Π−). (3.36)

Definition 3.8. The matrices S = ‖Skj‖M
k,j=1 and T = ‖Tkj‖M

k,j=1 are called
scattering matrices.

Proposition 3.9. The matrices

S = ‖Skj‖M
k,j=1, T = ‖Tkj‖M

k,j=1

are contractions such that

‖αS‖CM < 1, ‖αT‖CM < 1

for any row α ∈ CM , ‖α‖CM = 1.
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Proof. Let ζ < 0, and let X1, . . . , XM be the basis (3.36). We set u =∑
αkXk ∈ ker A(−γ, ζ) for α ∈ CM , ‖α‖CM = 1. We have

p(u, u) = p
( ∑

k

αk{v−k +
∑

j

Skjv
+
j },

∑
m

αm{v−m +
∑

`

Sm`v
+
` }

)

= i + p
( ∑

j

(
∑

k

αkSkj)v
+
j ,

∑

`

(
∑
m

αmSm`)v
+
`

)
= i− i‖αS‖2

CM .

Moreover, formula (3.31) holds with ζ replaced by −ζ. We obtain the equality

1− ‖αS‖2
CM = −2ζ‖Du; L2(Γ)‖2.

If D(y, Dt)u(y, t) = 0 on Γ, then u ≡ 0, which contradicts the condition ‖α‖CM = 1.
Therefore, 1− ‖αS‖2

CM > 0 for all α ∈ CM , ‖α‖CM = 1.
Similarly, we can verify that T is a contraction for ζ > 0.
To conclude this subsection, we prove the existence of a unique solution to

the problem (3.23) satisfying the radiation conditions. This result will be used in
the following subsection for constructing an approximate solution to the problem
(3.10) in GR.

Proposition 3.10. 1. Suppose that the assumptions of Proposition 3.6 hold,
{F, G,H} ∈ Wγ(Π−), and ζ < 0. Then there exists a unique solution u to the
problem (3.23) satisfying the inclusion

u−
∑

16j6M

ajv
+
j ∈ Vγ(Π−) (3.37)

with some coefficients aj ∈ C. The following inequality holds:∥∥∥u−
∑

16j6M

ajv
+
j ;Vγ(Π−)

∥∥∥ +
∑

16j6M

|aj| 6 C‖{F, G,H};Wγ(Π−)‖. (3.38)

In the case ζ > 0, formula (3.37) is replaced with the inclusion

u−
∑

16j6M

bjv
−
j ∈ Vγ(Π−), (3.39)

the inequality (3.38) holds for bj and v−j instead of aj and v+
j ; here aj and bj are

some complex coefficients, j = 1, . . . , M .
2. If the pencil A has no real eigenvalues, then for sufficiently small γ the

operator (3.24) implements an isomorphism.

Proof. Let, for example, ζ < 0. By Proposition 3.4, there exists a solution
u ∈ V−γ(Π−) to the problem (3.23). Since {F,G, H} ∈Wγ(Π−), we have

u−
∑

16j6M

(d+
j v+

j + d−j v−j ) ∈ Vγ(Π−)

with some d+
j , d−j ∈ C (cf. [1],[2]). By Corollary 3.7, the function u + c1X1 +

· · · + cMXM is a solution to the same problem for any cj ∈ C. We set cj = −d−j
for j = 1, . . . ,M . Taking into account (3.36), we obtain (3.37) with coefficients
aj = d+

j −
∑

d−k Skj, where j = 1, . . . , M . This proves the existence of a solution.
Proposition 3.5 yields the uniqueness.
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3.2.4 On the limit problem (3.1)

Let eβ be a smooth positive function on G, equal to exp(βtr) in Π
r

+. We
equip the space W `

β(G) of functions in G with the norm ‖eβ·; H`(G)‖ and denote

by W
`−1/2
β (∂G) the space of traces on ∂G of functions in W `

β(G). Replacing G̃R

and H with G and Wβ in (3.21) (and using the notation σh = ord Bhj − τ − τj), we
introduce the spaces Vβ(G) and Wβ(G) of vector-valued functions. As is known
[1], [2], the continuous operator

A(β) = {L,B} : Vβ(G) →Wβ(G)

of the problem (3.1) is a Fredholm operator if and only if the line R + iβ is free
from the spectrum of the pencils A1, . . . , AN ; moreover, coker A(β) = {(u, Qu) :
u ∈ ker A∗(−β)}, where Q is defined by formula (3.2) and the operator

A∗(−β) = {L∗, B∗} : V−β(G) →W−β(G)

is adjoint to A(β) with respect to the Green formula (3.2).
Recall that the functions Y1, . . . , YM (cf. (3.4)) make up the basis in ker A(−γ)

modulo Vγ(G). By virtue of Proposition 2.15 there exists a basis Y∗1, . . . , Y∗M in
the space ker A∗(−γ) modulo Vγ(G) such that

Y∗k −
(

u−k +
M∑

j=1

S∗kju
+
j

)
∈ Vγ(G), k = 1, . . . , M ; (3.40)

moreover, the matrix S∗ is adjoint to the scattering matrix S from (3.4) and is a
contraction. As was mentioned in the beginning of this chapter, we will assume
that

dim ker A(γ) = 0, dim ker A∗(γ) = 0 (3.41)

for some γ < δ/2, where the number δ is responsible for the stabilization rate of
coefficients. Under this assumption, it is clear that the functions (3.4) and (3.40)
form bases of the spaces ker A(−γ) and ker A∗(−γ) respectively. We note that the
conditions (3.41) are satisfied, for example, if ker A(γ) = 0 and ker A∗(γ′) = 0 for
some number γ′ < δ/2. To see this, it suffices to apply Proposition 2.14 to the
original problem and to the formally adjoint problem taking into account that their
scattering matrices are mutually adjoint.

The problem (3.1) with the right-hand side {F, G} ∈ Wγ(G) is (uniquely)
solvable in the space Vγ(G) if and only if

(F, Y∗k)G + (G,QY∗k)∂G = 0, k = 1, . . . , M. (3.42)

3.3 Estimate on the Norm of the Inverse Operator of Prob-
lem (3.10)

The estimate is based on the construction of an approximate solution sat-
isfying the problem (3.10) with a discrepancy decaying exponentially as R → ∞.
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Such a solution can be obtained by the compound expansion method (cf. [17]): the
approximate solution is “composed” from solutions to the limit problems (3.1) and
(3.23) in the domain G and in the semicylinders Πr,0

− , r = 1, . . . , N . This scheme
is standard, one should only check its availability.

We assume that the strip {λ ∈ C : | Im λ| < γ} contains some eigenvalues of
the pencils A1, . . . , AN . If this strip is free from the spectrum of the pencils, then
the arguments below can be modified in an obvious way.

Constructing an approximate solution, we obtain a linear algebraic system.
The method can be applied if this system is solvable. The matrix of the system is
expressed in terms of the scattering matrices of the limit problems. The norm of the
scattering matrix of the problem (3.1) in the domain G does not exceed 1, whereas
the norms of the scattering matrices of the problems (3.23) in the semicylinders
Πr,0
− are strictly less than 1. Owing to this fact, the determinant of the system

differs from zero.

3.3.1 Constructing an approximate solution

The procedure comprises of several steps.

1) Calculation of right-hand sides of the limit problems in semicylinders. For
a given right-hand side of the problem (3.10) in GR we find the right-hand sides of
the limit problems in the semicylinders.

2) Solving of the problems (3.23) with determined right-hand sides. The
problems are considered in the spaces V−γ(Π

r,0
− ) with γ > 0, where the operator

Ar(−γ, ζ) (cf. (3.24)) has kernel of dimension M r (Proposition 3.16).

3) Calculation of right-hand side of the problem (3.1) in the domain G.

4) Verification of the solvability of the problem (3.1) in the class Vγ(G) of
functions exponentially decaying at infinity. (Since dim ker Ar(−γ, ζ) = M r and
M = M1 + · · ·+ MN , it is possible to find the right-hand side at the previous step
so that the conditions (3.42) are satisfied and the problem is solvable.)

Let us implement this plan.

1) The right-hand sides of the problems in semicylinders. In the cylinder Πr,
we introduce the shift operator (URu)(yr, tr) = u(yr, tr − R). Let ρR ∈ C∞

c (GR),
ρR(x) = 1 for x ∈ GR−2 and ρR(x) = 0 for x ∈ GR \ GR−1. We choose the right-
hand side {F r, Gr, Hr} of the problem (3.23) in such a way that Hr = h|Γr,R. The
function F r coincides with U−1

R (1 − ρR)f on the set {(yr, tr) ∈ Πr,0
− , tr > −2} and

vanishes on the remaining part of the semicylinder Πr,0
− . The function Gr coincides

with U−1
R (1 − ρR)g on {(yr, tr) ∈ ∂Πr,0

− \ Γr,0, tr > −2} and vanishes outside this
set.

2) Solution of the problems in semicylinders. In Subsection 2.3, we introduced
the waves {vr,±

j }Mr

j=1 in Πr,0
− , r = 1, . . . , N (cf. (3.26)), bases {Xr

j }Mr

j=1, and {Zr
j }Mr

j=1

in ker Ar(−γ, ζ) (here, ζ ≶ 0), and scattering matrices Sr, Tr (cf. Corollary 3.7).
It is convenient to enumerate the elements of set ∪r{vr,±

j }Mr

j=1 in such a way that the

waves v±1 , . . . , v±M1 correspond to the semicylinder Π1,0
− and the waves {v±j : j ∈ Mr}
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with subscripts from the set

Mr =
{ r−1∑

k=1

Mk + 1,
r−1∑

k=1

Mk + 2, . . . ,
r−1∑

k=1

Mk + M r
}

, (3.43)

correspond to the semicylinder Πr,0
− , r = 1, . . . , N . We also enumerate elements of

the sets ∪r{Xr
j }Mr

j=1 and ∪r{Zr
j }Mr

j=1 in such a way that

Xk ∈ ker Ar(−γ,−ζ), Xk −
(

v+
k +

∑

`∈Mr

S0
k`v

−
`

)
∈ Vγ(Π

r,0
− ), k ∈ Mr,

Zk ∈ ker Ar(−γ, ζ), Zk −
(

v−k +
∑

`∈Mr

T0
k`v

+
`

)
∈ Vγ(Π

r,0
− ), k ∈ Mr,

(3.44)

where ζ > 0, r = 1, . . . , N , and

S0 = diag{S1,S2, . . . , SN},
T0 = diag{T1,T2, . . . , TN} (3.45)

(cf. (3.44), (3.35), and (3.36)). It is clear that the set {URZj : j ∈ Mr} for ζ > 0
({URXj : j ∈ Mr} for ζ < 0) forms a basis in the kernel of the shifted limit problem

Lr(y, Dy, Dt)u(y, t) = (URF r)(y, t), (y, t) ∈ Πr,R
− ,

Br(y, Dy, Dt)u(y, t) = (URGr)(y, t), (y, t) ∈ ∂Πr,R
− \ Γr,R,

(Nr(y,Dt) + iζDr(y,Dt))u(y, t)|t=R = Hr(t), y ∈ Ωr,

(3.46)

in the space V−γ(Π
r,R
− ) equipped with the norm ‖·;V−γ(Π

r,R
− )‖ = ‖U−1

R ·;V−γ(Π
r,0
− )‖.

For the same kernel we choose the basis {ZR
j : j ∈ Mr} if ζ > 0 (the basis

{XR
j : j ∈ Mr} if ζ < 0); moreover,

ZR
j −

(
v+

j +
∑

k∈Mr

TR
jkv

−
k

)
∈ Vγ(Π

r,R
− ), j ∈ Mr,

XR
j −

(
v−j +

∑

k∈Mr

SR
jkv

+
k

)
∈ Vγ(Π

r,R
− ), j ∈ Mr,

(3.47)

where the block-diagonal M × M -matrices TR and SR consist of the scattering
matrices Tr,R and Sr,R of the shifted limit problems (3.46) (as in the case of (3.45)).
To prove the existence of such bases, it suffices to repeat the arguments from
Subsection 2.3 replacing (3.23) with (3.46). The bases {ZR

j : j ∈ Mr}, {XR
j : j ∈

Mr} and the matrices Tr,R, Sr,R depend on R. The norms ‖Tr,R‖ and ‖Sr,R‖ are
less than 1 for all R.

Let, for example, ζ > 0. The general solution wr ∈ V−γ(Π
r,0
− ) to the limit

problem (3.23) with the right-hand side {F r, Gr, Hr} admits the representation

wr = ur +
∑

j∈Mr

cjU
−1
R ZR

j , (3.48)
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where the coefficients cj are arbitrary and the partial solution ur ∈ V−γ(Π
r,0
− )

satisfies the condition (3.39), which takes the form

ur −
∑

k∈Mr

bkv
−
k ∈ Vγ(Π

r,0
− ) (3.49)

due to the new enumeration of the waves.

3) A right-hand side for the limit problem (3.1) in the domain G. Introduce
a cut-off function ηR ∈ C∞(R) such that ηR(t) = 0 for t < R/2 and ηR(t) = 1 for
t > R/2+1. We clarify the contribution of the function wr from (3.48) to the right-
hand side of the problem (3.10). We extend the restriction (ηRURwr)|(GR ∩ Πr,R

− )
by zero to GR and preserve the same notation for the extension. We have

{L,B}
∑

r

(ηRURwr) =
∑

r

{Lr,Br}ηR

(
URur +

∑

j∈Mr

cjZ
R
j

)
(3.50)

(the right-hand side is assumed to be given on GR×{∂GR\ΓR} since supp ηRURur ⊂
GR ∩ Πr,R

− ).

Denote by {F,G} the vector {f, g} minus the right-hand side of the equality
(3.50), where f and g are taken from (3.10). Suppose that the function {F,G}
is extended to the domain G; moreover, {F, G} ∈ Wγ(G). If the problem (3.1)
with the right-hand side {F, G} has a solution Y ∈ Vγ(G), then the sum Y +∑

ηRURwr satisfies the problem (3.10), perhaps, except for the equation on ΓR.
The discrepancy on ΓR exponentially decreases as R → ∞. The above solution
Y exists only if the orthogonality conditions (3.42) are satisfied. We intend to
provide the validity of these conditions by an appropriate choice of the coefficients
c1, . . . , cM . To simplify the linear algebraic system for {cj}, we eliminate from
{F,G} some “nonessential” terms such that the new approximate solution

YR = Y +
∑

r

ηRURwr (3.51)

leaves an exponentially decaying (as R → ∞) discrepancy not only in the third
equation of (3.10) but also in the first and second equations. In Proposition 3.11, we
estimate the eliminated terms. Recall that eβ denotes a smooth positive function
on G that coincides with x = (yr, tr) 7→ exp(βtr) in Πr

+ for r = 1, . . . , N .

Proposition 3.11. Suppose that the assumptions of Proposition 3.6 are satisfied
and

Im λ−ν 6 Im λ−ν+1 6 · · · 6 Im λν .

Let ur ∈ V−γ(Π
r,0
− ) be the solution to the problem (3.23) (with ζ > 0) subjected to
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the condition (3.49) and let the set {ZR
j , j ∈ Mr} be the bases (3.47). Then

∥∥∥eβ{Lr,Br, 0}ηRUR

(
ur −

∑

`∈Mr

b`v
−
`

)
− eβUR{F r, Gr, 0};W(GR)

∥∥∥

6 C exp(−µR)‖{F r, Gr, Hr};Wγ(Π
r,0
− )‖, (3.52)∥∥∥eβ{Lr,Br, 0}ηR

(
ZR

j − v+
j −

∑

k∈Mr

TR
jkv

−
k

)
;W(GR)

∥∥∥

6 C exp(−µR + Im λνR)Rκ−1, (3.53)

where µ = (γ − β)/2 > 0 and κ denotes the length of the longest Jordan chain
among those corresponding to the eigenvalues {λ : Im λ = Im λν} of the pencil Ar.

In the case ζ < 0, we have (3.52) and (3.53) with bj, v+
j , v−j , ZR

j , TR replaced
with aj, v−j , v+

j , XR
j , SR respectively.

Proof. We have

{Lr,Br}ηRURur = ηR{Lr, Br}URur + [{Lr, Br}, ηR]URur

= ηR{Lr − Lr,Br −Br}URur + UR{F r, Gr}+ [{Lr,Br}, ηR]URur. (3.54)

Recall that {Lr,Br}v−j = 0 for j ∈ Mr. Hence

[{Lr, Br}, ηR]URur = [{Lr,Br}, ηR]UR

(
ur −

∑

`∈Mr

b`v
−
`

)

+ {Lr,Br}ηRUR

∑

`∈Mr

b`v
−
` − ηR{Lr − Lr,Br −Br}UR

∑

`∈Mr

b`v
−
` . (3.55)

The coefficients of the operator ηR{Lr − Lr,Br − Br} are decreasing of order
O(e−δR/2) as R → +∞. Further,

∥∥∥eβηR{Lr − Lr,Br −Br, 0}UR

(
ur −

∑

`∈Mr

b`v
−
`

)
;W(GR)

∥∥∥

6 Ce(β−δ)R/2
∥∥∥ur −

∑

`∈Mr

b`v
−
` ;Vγ(Π

r,0
− )

∥∥∥

6 Ce(β−δ)R/2‖{F r, Gr, Hr};Wγ(Π
r,0
− )‖ (3.56)

(at the last step, we used the inequality from Proposition 3.10).
We estimate the first term on the right-hand side of (3.55). The supports of

the coefficients of the operator [{Lr,Br}, ηR] are located inside the set {(yr, tr) ∈
Πr : R/2 6 tr 6 R/2 + 1}. Using the inequality from Proposition 3.10, we find

∥∥∥eβ[{Lr,Br, 0}, ηR]UR

(
ur −

∑

`∈Mr

b`v
−
`

)
;W(GR)

∥∥∥

6 Ce(β−γ)R/2
∥∥∥ur −

∑

`∈Mr

b`v
−
` ;Vγ(Π

r,0
− )

∥∥∥

6 Ce(β−γ)R/2‖{F r, Gr, Hr};Wγ(Π
r,0
− )‖. (3.57)
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By (3.54)–(3.57), we obtain (3.52), where µ = 1/2 min{γ − β, δ − β} = (γ − β)/2.
We proceed by proving the estimate (3.53). We set

ZR
j = ZR

j − v+
j −

∑

k∈Mr

TR
jkv

−
k , j ∈ Mr. (3.58)

We have ZR
j ∈ Vγ(Π

r,R
− ) (cf. (3.47)). Note that

{Lr,Br}
(
v+

j +
∑

k∈Mr

TR
jkv

−
k

)
= 0.

We have

{Lr, Br}ηRZR
j = {Lr, Br}ηR

(
v+

j +
∑

k∈Mr

TR
jkv

−
k

)

+ {Lr − Lr,Br −Br}ηRZR
j + [{Lr,Br}, ηR]ZR

j . (3.59)

To repeat the arguments used in (3.56) and (3.57), it is necessary to estimate the
norm ‖ZR

j ;Vγ(Π
r,R
− )‖ as R → +∞. For this purpose we note that the function ZR

j

satisfies the problem (3.46), where F r = 0, Gr = 0, and Hr = (Nr + iζDr)(v+
j +∑

k∈Mr TR
jkv

−
k ). The operator of the problem (3.46) is a Fredholm operator, its

kernel in the space Vγ(Π
r,R
− ) is trivial (Proposition 3.3). Consequently,

‖ZR
j ;Vγ(Π

r,R
− )‖ 6 c

∥∥∥{0, 0, (Nr + iζDr)
(
v−j +

∑

k∈Mr

TR
jkv

+
k

)
};Wγ(Π

r,R
− )

∥∥∥, (3.60)

where the constant c is independent of R. We emphasize that the waves v±j are
linear combinations (with coefficients independent of R) of the functions (2.12) and
the norm of the matrix TR is less than 1 for all R > 0. Therefore, the right-hand
side of (3.60) does not exceed C exp(Im λνR)Rκ−1 (here, λν and κ are the same as
in the formulation of the proposition). Repeating the arguments used in the proof
of the estimate (3.52), we find

‖eβ{Lr−Lr,Br−Br, 0}ηRZR
j ;W(GR)‖ 6 c exp((β−δ)R/2+Im λνR)Rκ−1. (3.61)

Moreover,

‖eβ[{Lr,Br, 0}, ηR]ZR
j ;W(GR)‖ 6 ce(β−γ)R/2‖ZR

j ;Vγ(Π
r,R
− )‖

6 c exp((β − δ)R/2 + Im λνR)Rκ−1. (3.62)

The inequalities (3.59), (3.61), and (3.62) lead to the estimate (3.53).
In the case ζ > 0, for the right-hand side of the limit problem (3.1) we take

{F,G} = ρR{f, g} − {L,B}
N∑

r=1

ηR

( ∑

`∈Mr

b`URv−` +
∑

j∈Mr

cj

(
v+

j +
∑

k∈Mr

TR
jkv

−
k

))
,

(3.63)
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where the function ρR{f, g} is extended by zero to the set G × ∂G. Necessary
modifications in the case ζ < 0 are listed in Proposition 3.11.

4) Solvability of the problem (3.1) in the class Vγ(G). (Verification of the
orthogonality conditions (3.42) for the right-hand side (3.63).) Substituting (3.63)
into (3.42), we obtain the following system for the constants c1, . . . , cM :

q
( N∑

r=1

ηR

∑

j∈Mr

cj

(
v+

j +
∑

k∈Mr

TR
jkv

−
k

)
, Y∗`

)
= (ρRf, Y∗`)G + (ρRg, QY∗`)∂G

−q
( N∑

r=1

ηR

∑

k∈Mr

bkURv−k , Y∗`
)
, ` = 1, . . . ,M ; (3.64)

the definition and properties of the form q are given in Subsection 2.1.4. By (3.40),
the system (3.64) can be written in the form

q
( N∑

r=1

ηR

∑

j∈Mr

cj

(
v+

j +
∑

k∈Mr

TR
jkv

−
k

)
, u−` +

M∑
m=1

S∗`mu+
m

)
= (ρRf, Y∗`)G

+(ρRg, QY∗`)∂G − q
( N∑

r=1

ηR

∑

k∈Mr

bkURv−k , u−` +
M∑

m=1

S∗`mu+
m

)
. (3.65)

In the case ζ < 0, instead of (3.65) we obtain the system

q
( N∑

r=1

ηR

∑

j∈Mr

cj

(
v−j +

∑

k∈Mr

SR
jkv

+
k

)
, u−` +

M∑
m=1

S∗`mu+
m

)
= (ρRf, Y∗`)G

+(ρRg, QY∗`)∂G − q
( N∑

r=1

ηR

∑

k∈Mr

akURv+
k , u−` +

M∑
m=1

S∗`mu+
m

)
, (3.66)

where ` = 1, . . . , M . Thus, to verify if the compound expansion method can be
used, it suffices to check the solvability of the systems (3.65) and (3.66) for the
coefficients c1, . . . , cM .

Recall that the wave u±j in Π+ is defined by the equality u±j = χw±
j , where

w±
j is a linear combination of the functions (2.12) and χ is a cut-off function. The

bases {w±
j } and {v±j } were introduced independently. Now, to compute the left-

hand sides of the equalities (3.65) and (3.66), we choose consistently {w±
j } and

{v±j }. Namely, let w±
j be chosen in such a way that w±

j = v∓j . Then the left-hand
side of (3.65) takes the form

q
( N∑

r=1

ηR

∑

j∈Mr

cj

(
u−j +

∑

k∈Mr

TR
jku

+
k

)
, u−` +

M∑
m=1

S∗`mu+
m

)
. (3.67)

From the Green formula (3.2) it follows that the value of the expression (3.67)
remains unchanged if we omit the cut-off function ηR. By (2.17) (where ρ = iq) we
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have

q
( N∑

r=1

∑

j∈Mr

cj

(
u−j +

∑

k∈Mr

TR
jku

+
k

)
, u−` +

M∑
m=1

S∗`mu+
m

)
= ic` − i

M∑

k=1

Sk`

M∑
j=1

cjTR
jk.

(3.68)
Comparing (3.65) and (3.68), we arrive at a linear system relative to the constants
cj = cj(R) in the case ζ > 0:

i(c1, . . . , cM)(I − TRS) = H, (3.69)

where the row H = (H1(R), . . . ,HM(R)) is composed of the values of the right-
hand side of (3.65) for ` = 1, . . . ,M . For ζ < 0 we obtain, instead of (3.69), the
system

i(c1, . . . , cM)(SR − S) = H. (3.70)

The norms of the matrices SR and TR are less than 1 (it suffices to note that the
norms of the blocks Sr,R and Tr,R of the block-diagonal matrices SR and TR are
less than 1 for R < ∞, cf. Proposition 3.9). The norm of the scattering matrix S
does not exceed 1. Therefore, the matrix I − TRS is nonsingular for all R < ∞.
In the general case, we can say nothing about the matrix SR − S. For example,
if the matrix S turns out to be unitary, then det(SR − S) 6= 0 (in particular, the
scattering matrix of the self-adjoint problem is unitary, cf. [1]–[5]). If the limit
problem (3.1) coincides with the problem (3.23) after the replacement of ζ with −ζ
(ζ < 0), then SR − S = 0. Thus, we have proved the following assertion.

Proposition 3.12. The determinant of the system (3.69) does not vanish, and
there exists a solution Y ∈ Vγ(G) to the problem (3.1) with the right-hand side
(3.63), where the coefficients c1, . . . , cM satisfy Eq. (3.69). Therefore, the compound
expansions method can be used in the case ζ > 0.

Thus, we have obtained an approximate solution (3.51) to the problem (3.10)
with the right-hand side {f, g, h} and positive ζ. In the case ζ < 0, the coefficients
c1, . . . , cM in formula (3.63), where the replacements have been made in accordance
with Proposition 3.11, must satisfy the system (3.70) whose determinant may van-
ish. We do not know if the compound expansions method can be used in this case.
In order to estimate the discrepancies left in Eqs. (3.10), we study the behavior of
solution (c1(R), . . . , cM(R)) to the system (3.69) as R →∞.

3.3.2 The behavior of the solution (c1(R), . . . , cM(R)) to the system (3.69)
as R → +∞

We estimate the norm of the inverse operator (I − TRS)−1 and the norm of
the right-hand side ‖H(R)‖ of the system (3.69) as R → +∞. Thereby we estimate
the vector (c1(R), . . . , cM(R)).

We first assume that the strip {λ ∈ C : | Im λ| < γ} contains only simple real
eigenvalues of the pencils.
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Proposition 3.13. Let the strip {λ ∈ C : | Im λ| < γ} contain only simple real
eigenvalues of the pencils A1, . . . , AN . Then the solution

(c1(R), . . . , cM(R))

to the system (3.69) for ζ > 0 admits the estimate

|c1(R)|+ · · ·+ |cM(R)| 6 C‖{eβf, eβg, h};W(GR)‖

with any β ∈ (0, γ).

Proof. Denote by λ+
1 , . . . , λ+

M the eigenvalues of the pencils A1, . . . , AN cor-
responding to the incoming waves v+

j (y, t) = exp(iλ+
j t)ϕj(y), (y, t) ∈ Πr, j ∈ Mr.

Let λ−1 , . . . , λ−M correspond to outgoing waves v−j (y, t) = exp(iλ−j t)ϕj(y) (the defini-
tion of the set Mr see in (3.43)). It is clear that URv±j = exp(−iλ±j R)v±j . Introduce
the matrices

V +
R = diag{e−iλ+

1 R, . . . , e−iλ+
MR}, V −

R = diag{e−iλ−1 R, . . . , e−iλ−MR}.

By (3.44) and (3.47), we find

TR = (V −
R )∗T0V +

R .

Recall that ‖T0‖ < 1 (cf. (3.45) and Proposition 3.9) and ‖S‖ 6 1. The following
inequality holds:

‖(I − TRS)−1‖ < C < ∞.

We estimate the right-hand side of the system (3.69). We have

|H`| 6
∣∣∣q

( N∑
r=1

ηR

∑

k∈Mr

bke
−iλ−k Ru+

k , u−` +
M∑

m=1

S∗`mu+
m

)∣∣∣

+ |(ρRf, Y∗`)|+ |(ρRg, QY∗`)| 6 C
(
‖{eβf, eβg, 0};W(GR)‖+

M∑

k=1

|bk|
)

(3.71)

(the form q is immediately computed as in (3.68)). Taking into account Proposition
3.10 and the fact that supp {F r, Gr, Hr} is bounded and is independent of R, we
find

∑
|bk| 6 C‖{F r, Gr, Hr};Wγ(Π

r,0
− )‖ 6 C‖{F r, Gr, Hr};W0(Π

r,0
− )‖

6 C‖{f, g, h};W(GR)‖ 6 C‖{eβf, eβg, h};W(GR)‖. (3.72)

Now, formulas (3.71) and (3.72) lead to the estimate

‖H‖ 6 C‖{eβf, eβg, h};W(GR)‖, (3.73)

where the constant C is independent of R.
In the general case, the following assertion holds.
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Proposition 3.14. The solution (c1(R), . . . , cM(R)) to the system (3.69) satisfies
the estimate

|c1(R)|+ · · ·+ |cM(R)| 6 c exp{3ℵR}R2κ−2‖{eβf, eβg, h};W(GR)‖. (3.74)

Here, ℵ = Im λmax(γ) and λmax(γ) is the eigenvalue with the largest imaginary part
among all the eigenvalues of the pencils A1, . . . , AN in the strip {λ ∈ C : | Im λ| <
γ} and κ denotes the number of elements of the longest Jordan chain corresponding
to the eigenvalues located on the line {λ : Im λ = ℵ}. Finally, β ∈ (ℵ, γ).

Proof. We first assume that the strip {λ ∈ C | Im λ| < γ} contains a single
eigenvalue of the pencil; moreover, it is an eigenvalue of the pencil A1. Since the
spectrum is symmetric, this eigenvalue is real. We assume that there is a unique
Jordan chain {ϕ(0), . . . , ϕ(2m−1)} corresponding to this eigenvalue. Under these
assumptions, the matrix TR coincides with the block T1,R.

We estimate the norm of the inverse matrix of the system (3.69). We outline
a further consideration. Let the functions Z1

1 , . . . , Z
1
M satisfy the inclusions (3.35)

and form a basis for the space of solutions to the homogeneous problem (3.23) in
Π1,0
− . As above, (URϕ)(t) = ϕ(t−R). It is clear that

URZ1
n ∼ URv+

n +
∑

j

T1
njURv−j (3.75)

(i.e. the left-hand side coincides with the right-hand side up to a summand in
V−γ(Π

1,R
− ); in the sequel, the notation ∼ is understood in the same sense). The

collection {URZ1
n}M

n=1 forms a basis for the space of solutions to the homogeneous
problem (3.46); moreover,

URZ1
n =

M∑
j=1

αnj(R)Z1,R
j , n = 1, . . . , M, (3.76)

where Z1,R
j are solutions to the same problem with asymptotics

Z1,R
j ∼ v+

j +
∑

T1,R
jk v−k . (3.77)

By (3.77), we have

M∑
j=1

αnj(R)Z1,R
j ∼

M∑
j=1

αnj(R)(v+
j +

M∑

k=1

T1,R
jk v−k ). (3.78)

The functions URv+
n and URv−n are linearly expressed in terms of v±n ; moreover, the

role of coefficients are played by polynomials in R. We write formula (3.75) in the
form

URZ1
n ∼

∑

k

Pnk(R)v+
k +

∑

k

Qnk(R)v−k , (3.79)
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where Pnk(R) and Qnk(R) are some polynomials. From formulas (3.76)–(3.79) it
follows that

M∑

k=1

Pnk(R)v+
k +

M∑

k=1

Qnk(R)v−k ∼
M∑

j=1

αnj(R)(v+
j +

M∑

`=1

T1,R
j` v−` ).

The vectors {αn(R) = (αn1(R), . . . , αn M(R)) : n = 1, . . . , M} in (3.76) are linearly
independent for all finite R. Therefore, to estimate the norm

‖T1,R‖ = sup
α

‖αT1,R‖
‖α‖ (3.80)

as R → +∞, we can represent the vector α ∈ Cm in the form α =
∑

anαn. Since
αnk = Pnk and (αnT

1,R)k = Qnk, the right-hand side of the equality (3.80) as
R → +∞ behaves itself as the ratio of two polynomials in R. To prove the relation
(1 − ‖T1,R‖)−1 = O(Rν) as R → +∞ with some ν > 0, it suffices to find a vector
α = α(R) such that ‖αT1,R‖/‖α‖ → 1 (recall that ‖T1,R‖ < 1 for all R < ∞).
This leads to the estimate

‖(I − TRS)−1‖ 6 (1− ‖TR‖)−1 6 cRν

for the inverse matrix of the system (3.69). Now, we follow the above scheme.
To express URv+

n and URv−n in terms of {v±k }, we represent the waves as linear
combinations of the functions (2.12). By the above assumptions, the canonical
system of Jordan chains contains only one chain {ϕ0, . . . , ϕ2m−1}. The functions
(2.12) have the form

u(σ)(y, t) = exp(iλt)
σ∑

`=0

1

`!
(it)`ϕ(σ−`)(y), σ = 0, . . . , 2m− 1. (3.81)

As is known [1], [2], a Jordan chain can be chosen in such a way that

p(u(σ), u(τ)) = ±iδ2m−1−τ,σ. (3.82)

We set
V ±

n = 2−1/2(u(n−1) ± u(2M−n)), (3.83)

where n = 1, . . . , M and M = m. By (3.82), we have p(V +
k , V +

n ) = ±iδk,n (the sign
is the same as in (3.82)) and p(V −

k , V −
n ) = ∓iδk,n (the sign is opposite to the sign in

(3.82)). We set v+
n = V +

n if we have the sign “−” in (3.82) (for k = n) and v+
n = V −

n

if we have the sign “+” in (3.82). Finally, v−n = V −
n (v−n = V +

n respectively) if
the sign “+” (“−” respectively) takes place in (3.82) Thus, {v+

n }M
n=1 consists of

incoming waves and {v−n }M
n=1 consists of outgoing waves. Recalling (3.81), we find

(URu(σ))(y, t) = exp(iλ(t−R))
σ∑

`=0

1

`!
i`(t−R)`ϕ(σ−`)(y)

= exp(−iλR) exp(iλt)
σ∑

k=0

(−iR)k

k!

σ−k∑
n=0

(it)n

n!
ϕ(σ−n−k)(y)

= exp(−iλR)
σ∑

k=0

(−iR)k

k!
u(σ−k)(y, t).



59

Let, for example, v+
n = V +

n and v−n = V −
n for n = 1, . . . ,M (otherwise, obvious

modifications of the formulas are required). By (3.83),

URv±n = 2−1/2 exp(−iλR)
( n−1∑

k=0

(−iR)k

k!
u(n−k−1)(y, t)

±
2M−n∑

k=0

(−iR)k

k!
u(2M−n−k)(y, t)

)
. (3.84)

We note that

u(n−1) = 2−1/2(v+
n + v−n ), n = 1, . . . , M,

u(n−1) = 2−1/2(v+
2M−n+1 − v−2M−n+1), n = M + 1, . . . , 2M.

Now, we rewrite (3.84) in the form

URv±n =
1

2
exp(−iλR)

( n−1∑

k=0

(−iR)k

k!
(v+

n−k + v−n−k)±
M−n∑

k=0

(−iR)k

k!
(v+

n+k − v−n+k)

±
2M−n∑

k=M−n+1

(−iR)k

k!
(v+

2M−n−k+1 + v−2M−n−k+1)
)

=
1

2
exp(−iλR)

( n∑

k=1

(−iR)n−k

(n− k)!
(v+

k + v−k )±
M∑

k=n

(−iR)k−n

(k − n)!
(v+

k − v−k )

±
M∑

k=1

(−iR)2m−n−k+1

(2M − n− k + 1)!
(v+

k + v−k )
)
. (3.85)

Substituting (3.85) into (3.75), we arrive at the relation

URZ1
n =

1

2
exp(−iλR)

{ n∑

k=1

(−iR)n−k

(n− k)!
v+

k +
M∑

k=n

(−iR)k−n

(k − n)!
v+

k

+
M∑

k=1

(−iR)2M−n−k+1

(2M − n− k + 1)!
v+

k +
M∑

j=1

T1
nj

( j∑

k=1

(−iR)j−k

(j − k)!
v+

k −
M∑

k=j

(−iR)k−j

(k − j)!
v+

k

−
M∑

k=1

(−iR)2M−j−k+1

(2M − j − k + 1)!
v+

k

)
+

n∑

k=1

(−iR)n−k

(n− k)!
v−k −

M∑

k=n

(−iR)k−n

(k − n)!
v−k

+
M∑

k=1

(−iR)2M−n−k+1

(2M − n− k + 1)!
v−k +

M∑
j=1

T1
nj

( j∑

k=1

(−iR)j−k

(j − k)!
v−k +

M∑

k=j

(−iR)k−j

(k − j)!
v−k

−
M∑

k=1

(−iR)2M−j−k+1

(2M − j − k + 1)!
v−k

)}
. (3.86)

From (3.76), (3.78), and (3.86) it follows that the right-hand side of (3.78)
differs from the right-hand side of (3.86) by a summand in V−γ(Π

1,R
− ).
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It remains to find a vector α such that ‖αT1,R‖/‖α‖ → 1 as R → ∞. Let
α = α1 = (α11, . . . , α1M). By (3.86), the coefficient at R2M−1 in α11 is equal to
exp(−iλR)(1− T1

11)/2(2M − 1)!. Since ‖T1‖ < 1, this coefficient does not vanish.
Using (3.86) again, we see that the coefficient at the same power R2M−1 in the
component (α1T

1,R)1 of the vector α1T
1,R = ((α1T

1,R)1, . . . , (α1T
1,R)M) coincides

with the coefficient obtained for α11. We have ‖α1T
1,R‖/‖α1‖ → 1 as R →∞ and

(1− ‖T1,R‖)−1 = O(R2m−1).

For simple eigenvalues an estimate for the right-hand side H = H(R) of the
system (3.69) is obtained via the inequality (3.73). In the case of multiple eigenval-
ues, one can use formula (3.85) in order to obtain the following inequalities instead
of (3.71) – (3.73):

|H`| 6 |(ρRf, Y∗`)G|+ |(ρRg, Y∗`)∂G|+ CRκ−1
∑

16k6M

|bk|

6 CRκ−1‖{eβf, eβg, h};W(GR)‖. (3.87)

Thus, the estimate (3.74) is proved in the case where the strip {λ ∈ C : | Im λ| < γ}
contains a single eigenvalue of the pencils and this eigenvalue is real. In the case
of several real eigenvalues, the necessary modifications are obvious.

Now, we assume that the strip {λ ∈ C : | Im λ| < γ} can contain nonreal
eigenvalues of the pencils A1, . . . , AN . For the sake of simplicity, we consider the
case where only the eigenvalues λ1 and λ−1(= λ1 6∈ R) of the pencil A1 lie in the
strip. Assume that with λ1 (and, consequently, with λ−1) only one Jordan chain is
associated. We argue as above (cf. formulas (3.75)–(3.80) and comments), but the
coefficients in the expressions of URv±n in terms of v±n , as well as Pnk(R) and Qnk(R),
are not polynomials. We describe the necessary modifications. Let a Jordan chain
be chosen in such a way that

p(u(σ)
ν , u(τ)

µ ) = iδ−ν,µδκ−σ−1,τ ,

where u
(σ)
ν are the functions in (2.12) (the subscript j is omitted); cf. [1]–[5].

Introduce 2M(= 2κ) waves by the equalities

v+
n = 2−1/2(u

(n−1)
1 − u

(M−n)
−1 ), v−n = 2−1/2(u

(n−1)
1 + u

(M−n)
−1 ), n = 1, . . . , M.

Instead of (3.85), we have

URv±n =
1

2

(
e−iλ1R

n∑

`=1

(−iR)n−`

(n− `)!
(v+

` +v−` )±e−iλ1R

M∑

`=n

(−iR)`−n

(`− n)!
(v+

` −v−` )
)
. (3.88)
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Substituting (3.88) into (3.75), we obtain the relation

URZ1
n ∼

1

2

{
e−iλ1R

n∑

`=1

(−iR)n−`

(n− `)!
(v+

` + v−` )

+e−iλ1R

M∑

`=n

(−iR)`−n

(`− n)!
(v+

` − v−` )

+
M∑

j=1

T1
nj

(
e−iλ1R

j∑

`=1

(−iR)j−`

(j − `)!
(v+

` + v−` )

−e−iλ1R

M∑

`=j

(−iR)`−j

(`− j)!
(v+

` − v−` )
)}

. (3.89)

Let, for example, λ1 = λmax. By (3.89), the coefficient at

exp(−iλ1R)(−iR)M−1/(M − 1)!

in αM1 and (αMT1,R)1 is equal to 1 + T1
MM and does not vanish. Therefore,

‖α1T
1,R‖/‖α1‖ → 1 as R →∞ and

(1− ‖T1,R‖)−1 = O(exp{2ℵR}Rκ−1).

Instead of (3.87), we have

‖H`‖ 6 C exp{ℵR}Rκ−1‖{eβf, eβg, h};W(GR)‖.
The proposition is proved.

3.3.3 Example

Let P be a “half-plane” in R2 with smooth periodic boundary ∂P, i.e., x =
(x1, x2) ∈ ∂P if and only if (x1 + 2π, x2) ∈ ∂P. We assume that ∂P ⊂ {x ∈
R2 : |x2| < a} for some positive a. Let G = {x ∈ P : (x1, x2), |x1| < π} be the
“periodicity cell.” We set Γ± = {x ∈ P : x1 = ±π} and Γ0 = ∂G \ {Γ+ ∪ Γ−}.
Instead of (x1, x2) in G, we write (y, t).

Consider the Helmholtz equation

(∆ + k2)u(y, t) = 0, (y, t) ∈ G, (3.90)

with the quasiperiodicity condition

∂j
yu(π, t) = e2πiα∂j

yu(−π, t), (±π, t) ∈ Γ±, j = 0, 1, (3.91)

and the boundary condition

Bu(y, t) = 0, (y, t) ∈ Γ0; (3.92)

here, k and α are real parameters, ∂j
y = ∂j/∂yj, and B is an operator with smooth

coefficients such that ord B 6 1 and the boundary value problem (3.90)–(3.92) is
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elliptic and formally self-adjoint. As is known, such a problem appears in the theory
of diffraction gratings. We derive an explicit formulas for waves and scattering
matrices SR and TR which were discussed in Subsection 3.1.

In the interval −π < y < π, we introduce the operator pencil λ 7→ A(λ) =
{d2/dy2 + (k2 − λ2)} for functions v satisfying the quasiperiodicity condition
∂j

yv(π) = e2πiα∂j
yv(−π), j = 0, 1. The spectrum of the pencil A consists of eigen-

values ±(k2− (n+α)2)1/2 for n = 0,±1, . . . . As above, we denote by λ−ν0 , . . . , λν0 ,
where ν0 > 0, all the real eigenvalues of the pencil A; moreover, λ−ν0 < λ−ν0+1 <
· · · < λν0 , λ0 = 0 and λ0 are absent if zero is an eigenvalue. We enumerate nonreal
eigenvalues in such a way that 0 < Im λν0+1 < Im λν0+2 < . . . and λν = λ−ν , where
ν = ν0 + 1, ν0 + 2, . . . . The eigenvalue λ±ν = ±(k2 − (n + α)2)1/2, ν 6= 0, is simple
and the eigenvector ϕ±ν , ϕ±ν(y) = exp(i(n + α)y) corresponds to this eigenvalue.

The eigenvalue λ0 = 0 appears in the case k2 = (n+α)2 and has algebraic mul-
tiplicity 2. With this eigenvalue we associate the eigenvector ϕ0

0 and the adjoined
vector ϕ1

0, ϕ0
0(y) = exp(i(n + α)y), ϕ1

0(y) ≡ 0. We set

uν(y, t) = (4π|λν |)−1/2 exp(iλνt)ϕν(y), ν > −ν0, ν 6= 0,

uν(y, t) = −i(4π|λν |)−1/2 exp(iλνt)ϕν(y), ν < −ν0,

u0
0(y, t) = (2π)−1/2ϕ0

0(y), u1
0(y, t) = −i(2π)−1/2tϕ0

0(y)

(3.93)

(cf. (2.12)). The functions (3.93) satisfy the homogeneous Helmholtz equation in
the strip {(y, t) ∈ R2 : −π < y < π} and the quasiperiodicity condition. Moreover,
these functions satisfy the relations in Proposition 2.4, where for qr we take the
form

q(u, v) = ((∆ + k2)u, v)G + (Bu, Qv)Γ0 − (u, (∆ + k2)v)G − (Qu, Bv)Γ0 . (3.94)

We introduce incoming and outgoing waves {u±ν }. We first introduce the functions

w±
ν = u±ν , 0 < ν 6 ν0; w±

ν = 2−1/2(uν ∓ u−ν), ν > ν0,

w±
0 = 2−1/2(u0

0 ∓ u1
0).

Take χ ∈ C∞(R) such that χ(t) = 1 for t > C + 1 and χ(t) = 0 for t 6 C, where
the constant C is chosen in such a way that χ(t) = 0 for (y, t) ∈ Γ0. The waves
u±ν = χw±

ν satisfy the conditions (2.17) with ρ = iq (q is given by (3.94)).
The role of the problem (3.10) in the bounded domain GR is played by the

problem

(∆ + k2)u(x) = f(x), x ∈ GR,

Bu(x) = g(x), x ∈ Γ0,

∂j
yu(π, t) = e2πiα∂j

yu(−π, t), x = (±π, t) ∈ Γ± ∩GR,

(∂t + iζ)u(y, t) = h(y, t), x = (y, t) ∈ ΓR.

(3.95)

For f ∈ L2(G
R), g ∈ Hµ(Γ0), where µ = 3/2− ord B, and h ∈ H1/2(ΓR) there

exists a unique solution u ∈ H2(ΓR) to the problem (3.95) (cf., for example, [22]).
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The functional (3.7) takes the form

JR
` (a1, . . . , aM) =

∥∥∥XR
` − u+

` −
M∑

j=1

aju
−
j ; L2(Γ

R)
∥∥∥

2

,

where XR
` is a solution to the problem (3.95) with the right-hand side

{
0, 0, (∂t + iζ)

(
u+

` +
M∑

j=1

aju
−
j

)}
.

Instead of (3.46), we have

(∆ + k2)u(x) = f(x), x ∈ ΠR
−,

∂j
yu(π, t) = e2πiα∂j

yu(−π, t), x = (±π, t) ∈ ∂ΠR
− \ ΓR,

(∂t + iζ)u(y, t) = h(y), x = (y, t) ∈ ΓR.

(3.96)

Suppose that the strip {λ ∈ C : | Im λ| < γ} contains only real eigenvalues of the
pencil A. The total algebraic multiplicity of all such numbers is denoted by 2T .
For the problem (3.96) it is easy to compute explicitly the T × T -matrices SR and
TR. Indeed, assume that λ0 does not belong to the spectrum of the pencil A and
T = ν0. Note that

(∂t + iζ)w+
ν |ΓR =

ζ + λν

ζ − λν

e2iλνR(∂t + iζ)w−
ν |ΓR , ν = 1, . . . , ν0. (3.97)

Therefore, the functions

XR
ν = w+

ν −
ζ + λν

ζ − λν

e2iλνRw−
ν , ν = 1, . . . , T,

ZR
ν = w−

ν −
ζ − λν

ζ + λν

e−2iλνRw+
ν , ν = 1, . . . , T,

(3.98)

are solutions to the homogeneous problem (3.96). We choose the basis (3.26) in
such a way that v±ν = w∓

ν . Comparing (3.47) with the first row in (3.98), we find

SR = diag

(
λ1 + ζ

λ1 − ζ
e2iλ1R,

λ2 + ζ

λ2 − ζ
e2iλ2R, . . . ,

λT + ζ

λT − ζ
e2iλT R

)
. (3.99)

Similarly, we introduce the equality

TR = diag

(
λ1 − ζ

λ1 + ζ
e−2iλ1R,

λ2 − ζ

λ2 + ζ
e−2iλ2R, . . . ,

λT − ζ

λT + ζ
e−2iλT R

)
. (3.100)

If there is the zero eigenvalue of the pencil A then, in addition to the equalities
(3.97), we have

(∂t + iζ)w+
0 |ΓR =

i + iζ − ζR

−i− iζ + ζR
(∂t + iζ)w−

0 |ΓR .
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Then T = ν0 + 1 and

SR = diag

(
i + iζ − ζR

i− iζ − ζR
,
λ1 + ζ

λ1 − ζ
e2iλ1R, . . . ,

λT + ζ

λT − ζ
e2iλT R

)
,

TR = diag

(
i− iζ − ζR

i + iζ − ζR
,
λ1 − ζ

λ1 + ζ
e−2iλ1R, . . . ,

λT − ζ

λT + ζ
e−2iλT R

)
.

(3.101)

Let the strip {λ ∈ C : | Im λ| < γ} contain some imaginary eigenvalues of
the pencil A. The total algebraic multiplicity of these eigenvalues in the strip is
denoted by 2M . For ν > ν0 we have

(∂t + iζ)w+
ν |ΓR =

i(λν + ζ)e2iλνR + (λν − ζ)

i(λν + ζ)e2iλνR − (λν − ζ)
(∂t + iζ)w−

ν |ΓR . (3.102)

Therefore, the scattering M ×M -matrices SR and TR are diagonal. If zero is not
an eigenvalue of the pencil A, then the first ν0 diagonal entries of the matrix SR

are the same as in formula (3.99), where T = ν0 (or the same as on the right-hand
side of the first equality in (3.101), where T = ν0, if zero is an eigenvalue of the
pencil). From (3.102) it follows that the remaining diagonal entries of SR are as
follows:

λν0+1 − ζ + i(λν0+1 + ζ)e2iλν0+1R

λν0+1 − ζ − i(λν0+1 + ζ)e2iλν0+1R
, . . . ,

λM − ζ + i(λM + ζ)e2iλMR

λM − ζ − i(λM + ζ)e2iλMR
. (3.103)

Similarly, using (3.100) and the second row in (3.101), we can construct the matrix
TR; its diagonal entries corresponding to the waves v−ν0+1, . . . , v

−
M are obtained from

(3.103) by replacing the fractions with the inverse ones.
By the inequalities λν > 0, ν = 1, . . . , ν0, the norm of the matrix (3.99) does

not exceed q < 1 for all R and ζ < 0, the number q is independent of R. The same
assertion is true for the matrix (3.100) for ζ > 0 (instead of ζ < 0).

From the formulas obtained we see that if the strip {λ ∈ C : | Im λ| < γ}
contains multiple and (or) imaginary eigenvalues of the pencil A, then the norm of
the matrix SR is less than 1 only for finite values of R and tends to 1 as R → ∞
and ζ < 0; the same is true for the matrix TR in the case ζ > 0.

3.3.4 Estimating the discrepancy of the approximate solution to the
problem (3.10).

We prove the following assertion.

Proposition 3.15. Let γ be such that the following conditions hold:
1) dim ker A(γ) = dim ker A∗(γ) = 0,
2) δ/2 > γ > 11ℵ (here, ℵ = ℵ(γ), cf. Proposition 3.14),
3) the line R+ iγ is free from the spectrum of the pencils A1, . . . , AN .
Then for ζ > 0 the function (3.51) is an approximate solution to the problem

(3.10) in the sense that for β ∈ (3ℵ, γ − 8ℵ) the following estimate holds:

‖{eβL, eβB,N + iζD}YR − {eβf, eβg, h};W(GR)‖
6 ce−µR‖{eβf, eβg, h};W(GR)‖, (3.104)
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where µ > 0.

Remark 3.16. Let us explain the assumptions of Proposition 3.15, for example,
in the case of self-adjoint problems under the assumption that the domain G has a
single end at infinity, Π+.

The number γ satisfying the assumptions of Proposition 3.15 can be chosen in
the case where all the nontrivial solutions to the homogenous problem {L,B}u = 0
in the domain G decrease at infinity not too rapidly. In the best situation, where
there are no nontrivial decreasing solutions, we set ℵ = Im λmax = 0. The assump-
tions of Proposition 3.15 are satisfied for sufficiently small positive γ.

Let u1, . . . , uT be all linearly independent decreasing solutions to the homoge-
neous problem

uj(y, t) = eiλjtPj(y, t) + o(exp− Im λjt),

where (y, t) ∈ Π+, t → +∞, and Pj(y, t) is a nonzero polynomial in t whose
coefficients depend on y. Let Im λT > Im λj, j = 1, . . . , T − 1. The parameter γ
satisfying the conditions of Proposition 3.15 can be found provided that there exists
an eigenvalue λmax of the pencil A such that Im λmax > Im λT and the inequality
Im λ > 11 Im λmax holds for all those eigenvalues λ of A that are located above the
line {ν ∈ C : Im ν = ℵ}, ℵ = Im λmax.

Proof of Proposition 3.15. Recall that (cf. Subsection 3.1) the discrepancy
{F,G,H} of the function (3.51) in the problem (3.10) satisfies

{F,G} = {L,B}
∑

r

ηR

(
UR

(
ur −

∑

`∈Mr

b`v
−
`

)

+
∑

j∈Mr

cj

(
ZR

j − v−j −
∑

k∈Mr

TR
jkv

+
k

))
−

∑
r

UR{F r, Gr},

H =
∑

r

(Nr −Nr + iζ(Dr −Dr))
(
URur +

∑
cjZ

R
j

)

+ (N + iζD)Y on ΓR.

(3.105)

By Propositions 3.11 and 3.14, we have

‖eβ{F,G, 0};W(GR)‖
6 Ce−(γ−β)R/2 exp{4ℵR}(Rκ−1)3‖{eβf, eβg, h};W(GR)‖.

We now turn to (3.105). The strip {λ ∈ C : β < Im λ < γ} is free from the
spectrum of the pencils A1, . . . , AN . Hence the operator A(β) has the bounded left
inverse operator (ker A(γ) = ker A(β) and coker A(γ) = coker A(β); cf. [1],[2])
and Y ∈ Vβ(G). The following estimates hold:

‖{0, 0,N+iζD}Y;W(GR)‖ 6 ce−βR‖Y;Vβ(G)‖ 6 ce−βR‖{F,G};Wβ(G)‖. (3.106)

Now, (3.63), (3.85), (3.88) and Proposition 3.14 lead to the estimate

‖{F, G};Wβ(G)‖ 6 C exp{3ℵR}(Rκ−1)2‖{eβf, eβg, h};W(GR)‖. (3.107)
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Repeating the arguments of the proof of Proposition 3.11, we obtain the inequality
∥∥∥
{

0, 0,
∑

r

(Nr −Nr + iζ(Dr −Dr))
(
URur +

∑

j∈Mr

cj(R)ZR
j

)}∥∥∥

6 ce−δR exp{4ℵR}(Rκ−1)3‖{eβf, eβg, h};W(GR)‖.
We can assume that the number µ in the estimate (3.104) is positive provided that
(γ − β)/2− 4ℵ > 0 and β − 3ℵ > 0. Since γ > 11ℵ, both these conditions can be
satisfied in view of the choice of β.

3.3.5 Estimating the norm of the inverse operator (AR)−1 of problem
(3.10) as R →∞

Let ζ > 0, and let the operator Υ : W(GR) → V(GR) associate with the triple
{f, g, h} an approximate solution YR to the problem (3.10), cf. (3.51). We consider
the composition ARΥ : W(GR) →W(GR). We set

‖{f, g, h};W(GR; β)‖ := ‖{eβf, eβg, h};W(GR)‖
for elements in W(GR). It is clear that for a fixed R the norms ‖·;W(GR)‖ and
‖·;W(GR; β)‖ are equivalent. Let the assumptions of Proposition 3.15 be satisfied.
By this proposition, for ζ > 0 and R > R0 we have

‖I −ARΥ;W(GR; β) →W(GR; β)‖ 6 Ce−µR,

where the constant C is independent of R and µ > 0. Therefore, for sufficiently
large R the norm of the continuous mapping

(ARΥ)−1 : W(GR; β) →W(GR; β)

is uniformly bounded with respect to R. The operator (3.16) is invertible for ζ > 0.
Hence there exists Υ−1. It is clear that (AR)−1 = Υ(ARΥ)−1. Denote by W(GR)0

the subspace of W(GR) formed by triples {0, 0, h}. Let (AR)−1
0 be the restriction

of (AR)−1 to W(GR)0.

Theorem 3.17. Let the assumptions of Proposition 3.15 be satisfied. Then for
ζ > 0 and sufficiently large R the following estimate holds:

‖(AR)−1
0 ;W(GR)0 → V(GR)‖ 6 C exp{4ℵR}R3κ−2, (3.108)

where the constant C is independent of R and the numbers ℵ and κ are the same
as in Proposition 3.14.

If for some number γ ∈ (0, δ/2) conditions 1 and 3 of Proposition 3.15 are
satisfied and the strip {λ ∈ C : | Im λ| < γ} does not contain the spectrum of the
pencils A1, . . . , AN , then for ζ > 0 and sufficiently large R the following estimate
holds:

‖(AR)−1
0 ;W(GR)0 → V(GR)‖ 6 C,

where C is independent of R (cf. [17, Theorem 5.6.3]).
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Proof. Let us prove the inequality (3.108). We have

‖(AR)−1
0 ;W(GR)0 → V(GR)‖

6 ‖Υ;W(GR; β) → V(GR)‖‖(ARΥ)−1;W(GR)0 →W(GR; β)‖
6 C‖Υ;W(GR; β) → V(GR)‖.

(3.109)

It remains to estimate the norm of the operator Υ. Using (3.51), (3.106), (3.107)
and the inequality

‖Y;V(GR)‖ 6 ‖Y;Vβ(GR)‖,
we obtain the estimate

‖Y;V(GR)‖ 6 C exp{3ℵR}(Rκ−1)2‖{f, g, h};W(GR; β)‖.
Moreover, using (3.48) and (3.49), we find
∥∥∥
∑

r

ηRURwr;V(GR)
∥∥∥ 6

∥∥∥
∑

j∈Mr

ηRcj(R)ZR
j ;V(GR)

∥∥∥

+
∑

r

( ∥∥∥ur −
∑

j∈Mr

bjv
−
j ;Vγ(Π

r,0
− )

∥∥∥ +
∥∥∥

∑

j∈Mr

ηRURbjv
−
j ;V(GR)

∥∥∥
)
. (3.110)

Consider the first term on the right-hand side. The coefficients cj were estimated
in Proposition 3.14. To estimate ZR

j , we use (3.58), (3.60) and the arguments after
formula (3.60). For j ∈ Mr we find

‖ηRZR
j ;V(GR)‖ 6

∥∥∥ηR

(
vj +

∑

k∈Mr

TR
jkv

+
k

)
;V(Πr,R

− )
∥∥∥ + ‖ZR

j ;V(Πr,R
− )‖

6 C exp{ℵR}Rκ. (3.111)

Thus,
∥∥∥

∑

j∈Mr

ηRcj(R)ZR
j ;V(GR)

∥∥∥ 6 C exp{4ℵR}R3κ−2‖{f, g, h};W(GR; β)‖. (3.112)

The estimate ∥∥∥ur −
∑

j∈Mr

bjv
−
j ;Vγ(Π

r,0
− )

∥∥∥ 6 C‖{f, g, h};W(GR; β)‖ (3.113)

for the second term in (3.110) is verified with the help of Proposition 3.10 and the
same arguments as in (3.72). Finally, we estimate the last term

∥∥∥
∑

j∈Mr

ηRURbjv
−
j ;V(GR)

∥∥∥ 6 C exp{ℵR}Rκ
∑

j∈Mr

|bj|

6 C exp{ℵR}Rκ‖{f, g, h};W(GR; β)‖ (3.114)

(we again used (3.72)). From (3.51), (3.109)-(3.114) we obtain the inequality

‖Υ;W(GR; β) → V(GR)‖ 6 C exp{4ℵR}R3κ−2

which, together with (3.109), yields (3.108).
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3.4 Justification of the Algorithm for Computing Scatter-
ing Matrices

To justify the method, it remains to verify the nonsingularity of the matrix
ER (cf. (3.9)) and stabilization of the vector a(R) minimizing the functional (3.7)
to the row of the scattering matrix S as R →∞.

Proposition 3.18. The matrix ER in formula (3.9) is nonsingular for all R > R0.

Proof. Suppose that the assertion fails. Then for any R0 there is a number
R > R0 such that the matrix ER is singular and the functions U :=

∑
cju

−
j and

V :=
∑

cjv
−
j satisfy the equality

DU = DV on ΓR, (3.115)

where v−j are solutions to the problems (3.8), c = (c1, . . . , cM), and |c| = 1. We use
the equation on ΓR from (3.8). We have

NU = NV on ΓR. (3.116)

In the Green formula (3.5), we set u = v = V. Taking into account the first two
equations in (3.8), the inequality (3.14) for w = v−j , and the equalities (3.115),
(3.116), we find

Im{(NU,DU)ΓR − (DU,NU)ΓR} > 0. (3.117)

On the other hand, since the coefficients of the operators N − N r and D − Dr

decrease as O(exp(−δtr)) in Πr
+ and U = O(exp(γtr)) as tr →∞ and γ < δ/2, we

have

(NU, DU)ΓR − (DU, NU)ΓR =
N∑

r=1

{(NrU,DrU)Γr,R − (DrU,NrU)Γr,R}+ o(1)

(3.118)
as R →∞. A direct computation shows that

N∑
r=1

{(NrU,DrU)Γr,R − (DrU,NrU)Γr,R} = −i

M∑
j=1

|cj|2 = −i. (3.119)

From (3.117), (3.118), and (3.119) it follows that −1 > o(1). A contradiction
obtained completes the proof.

Recall that ℵ(γ) = Im λmax(γ), where λmax(γ) is the eigenvalue of the pencils
A1, . . . , AN in the strip {λ ∈ C : | Im λ| < γ} with the maximal imaginary part.

Proposition 3.19. Suppose that for some number γ′ the assumptions of Proposi-
tion 3.15 are satisfied and the parameter ζ in the problem (3.10) is positive. Assume
that the vector a(R) = (a1(R), . . . , aM(R)) is a minimizer of the functional JR

m in
(3.7). The following assertions hold.
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1. The following estimate holds:

JR
m(a(R)) = O(exp{−2ΛR}), R →∞,

with any Λ ∈ (0, γ − 4ℵ(γ′)), where γ is the number taken from formula (3.4).
2. If γ > ℵ(γ)+4ℵ(γ′), then for all R > R0 the components of the vector a(R)

are uniformly bounded,

|aj(R)| 6 const < ∞, j = 1, . . . , M.

Proof. 1. Denote by Y R
m the solution to the problem (3.6), where for aj,

j = 1, . . . , M , we take the entries Smj of the scattering matrix S = S(γ) of the
problem (3.1). Since we can differentiate (3.4), we have

(N + iζD)(Y R
m − Ym)|ΓR = O(e−γR).

By Theorem 3.17, we find

‖D(Y R
m − Ym); L2(Γ

R)‖ 6 c‖Y R
m − Ym;V(GR)‖

6 ‖(AR)−1
0 ‖‖{0, 0,N + iζD}(Y R

m − Ym);W(GR)‖ 6 ce−ΛR.

Together with (3.4), this leads to the estimate

JR
m(Sm) =

∥∥∥D
(
Y R

m −
(
u+

m +
M∑

j=1

Smju
−
j

))
; L2(Γ

R)
∥∥∥

2

6 ce−2ΛR,

where the constant c is independent of R. It remains to note that JR
m(a(R)) 6

JR
m(Sm). Assertion 1 is proved.

2. Let ZR
m be the solution to the problem (3.6) corresponding to the vector

a(R) = (a1(R), . . . , aM(R)). In the Green formula (3.5), we set u = v = ZR
m. We

have
Im{(NZR

m, DZR
m)ΓR − (DZR

m,NZR
m)ΓR} > 0. (3.120)

By Assertion 1, we have
∥∥∥D

(
ZR

m −
(
u+

m +
∑

aju
−
j

))
; L2(Γ

R)
∥∥∥ = O(e−ΛR), R →∞. (3.121)

Since

(N + iζD)ZR
m|ΓR = (N + iζD)

(
u+

m +
M∑

j=1

aju
−
j

)
|ΓR ,

from (3.121) we find

∥∥∥N
(
ZR

m −
(
u+

m +
M∑

j=1

aju
−
j

))
; L2(Γ

R)
∥∥∥ = O(e−ΛR) (3.122)

as R →∞. Using (3.121) and (3.122), we reduce (3.120) to the form

Im{(Nϕm,Dϕm)ΓR − (Dϕm,Nϕm)ΓR}+ O(e−εR)
( ∑

|aj(R)|2 + 1
)

> 0,
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where ε = γ − ℵ(γ) − 4ℵ(γ′) and ϕm = u+
m +

M∑
n=1

anu−n . Taking into account the

stabilization of the coefficients of the operators N and D, we obtain the inequality

Im
{ N∑

r=1

{(Nrϕm,Drϕm)Γr,R − (Drϕm,Nrϕm)Γr,R}
}

+ O(e−εR)
( ∑

j

|aj(R)|2 + 1
)

> 0.

Here, the sum over r is immediately calculated and is equal to i− i
∑

j |aj|2. Thus,

M∑
j=1

|aj(R)|2 = 1 + O(e−εR), R →∞, (3.123)

where ε > 0.

Remark 3.20. If the domain G has more than one end at infinity, we can weaken
the restriction γ > ℵ(γ) + 4ℵ(γ′) by defining the parameter ε in (3.123) for each
of the semicylinders Π1

+, . . . , ΠN
+ . Namely, let λr

max be an eigenvalue of the pencil
Ar such that Im λ 6 Im λr

max 6 γ for all eigenvalues λ of the pencil Ar in the strip
{λ ∈ C : | Im λ| 6 γ}. We set εr = min{Im(λ−λr

max) : Im λ > γ}. For ε in (3.123)
we can take the number

ε < ε0 = min
r

min{εr, δ/2− λr
max} − 4ℵ(γ′). (3.124)

As above, the number δ characterizes the stabilization rate of the coefficients of the
problem (3.1) (cf. Subsection 1.1).

We pass to the proof of the main result.

Theorem 3.21. Let ζ > 0, and let the number γ in (3.4) satisfy the following
conditions:

1) there exists a number γ′ 6 γ such that dim ker A(γ′) = dim ker A∗(γ′) = 0,
the line R+iγ′ is free from the spectrum of the pencils A1, . . . , AN and γ′ > 11ℵ(γ′),

2) γ − ℵ(γ)− 4ℵ(γ′) > 0.

Then for all R > R0 there exists a unique vector

a(R) = (a1(R), . . . , aM(R))

that minimizes the functional JR
l in (3.7). The following estimates hold:

|aj(R)− Slj| 6 C(ε) exp (−εR), j = 1, . . . ,M,

where ε > 0 satisfies (3.124) and the constant C(ε) is independent of R.
If the homogeneous problem has no nontrivial decreasing solutions, then the

conditions 1 and 2 are automatically satisfied for sufficiently small γ′ > 0, ℵ(γ′) =
0.

Condition 2 follows from 1 if γ′ = γ.
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Proof. As above, we denote by ZR
m a solution to the problem (3.6) corre-

sponding to (a1(R), . . . , aM(R)). Recall that Ym has the asymptotic behavior (3.4)
and satisfies the homogeneous problem (3.1). We substitute u = v = Um, where
Um = Ym − ZR

m, into the Green formula (3.5). Since Um satisfies the first two
equations in (3.6), we have

Im{(NUm,DUm)ΓR − (DUm,NUm)ΓR} > 0. (3.125)

We set

ϕm = u+
m +

M∑
n=1

an(R)u−n , ψm = u+
m +

M∑
n=1

Smnu
−
n (3.126)

and write Um in the form

Um = Ym − ZR
m = (Ym − ψm) + (ψm − ϕm) + (ϕm − ZR

m).

We note that (Ym − ψm)|ΓR = O(exp(−γR)) in view of (3.4). Taking into account
the estimates (3.121), (3.122) and Proposition 3.19, we can pass from (3.125) to
the inequality

Im{(N(ψm − ϕm), D(ψm − ϕm))ΓR

− (D(ψm − ϕm), N(ψm − ϕm))ΓR} > O(exp(−εR))
(3.127)

with the same ε as in Remark 3.20. The coefficients of the operators N − N r

and D − Dr decrease in the semicylinder Π+
r as O(exp(−δtr)), where δ > 2γ.

Consequently, (3.127) implies the estimate

Im
{ N∑

r=1

{(Nr(ψm − ϕm),Dr(ψm − ϕm))Γr,R

− (Dr(ψm − ϕm),Nr(ψm − ϕm))Γr,R

}
> O(exp(−εR)).

(3.128)

Here, the left-hand side is immediately calculated and is equal to (−
M∑

n=1

|an(R) −
Smn|2) (it suffices to use the representations (3.126) and the definition of the waves
u±j ). Finally, we have

M∑
n=1

|an(R)− Smn|2 = O(exp(−εR)).

The theorem is proved.

3.5 Operators Depending on Parameter

We now turn to formally self-adjoint problems {L(x,Dx)− µ, B(x,Dx)} with
parameter µ. A number µ is an eigenvalue of the operator {L,B} if there exists
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a function u in L2(G) that is smooth in G and satisfies the homogeneous problem
{L(x, Dx) − µ, B(x,Dx)}u(x) = 0. The authors do not know if eigenvalues can
accumulate at a finite distance under our assumptions on the operator {L, B} (the
coefficients stabilize at infinity at exponential rate). However, from [14] (where the
operators {L,B} are considered under less rigid assumptions on the stabilization of
the coefficients) it follows that accumulation points can be only “threshold” values
of the parameter µ. We give some consequences of the results of [14]. For the sake
of simplicity, we assume that the domain G has a single end at infinity, Π+. The
number µ0 is said to be threshold for the operator {L,B} if there exists a sequence
{µk} ⊂ R, µk → µ0, and a sequence {λ(µk)} ⊂ C such that

(a) λ(µk) is an eigenvalue of the pencil λ 7→ A(λ; µ) := {L(λ)− µ,B(λ)},
(b) Im λ(µk) > 0,

(c) Im λ(µk) → 0 as k →∞.

1) Eigenvalues of the operator {L,B} can accumulate only in a neighborhood
of the thresholds and at infinity.

2) Let µ0 be an accumulation point of the sequence {µk} of eigenvalues of the
operator {L,B}. Then for µk, where k is sufficiently large, there exist numbers
λk = λ(µk) satisfying conditions (a)–(c) of the definition of a threshold.

3) For the sake of simplicity, we additionally assume that the sequence λk

possessing the above properties is unique for a given sequence of eigenvalues µk.
Then the eigenfunction uk corresponding to the eigenvalues µk admits the following
representation in Π+:

uk(y, t) = eiλktPk(y, t) + o(exp{− Im λkt})

as t → +∞. Here, Pk(y, t) denotes a nonzero polynomial in t whose coefficients
depend on y.

We say that µ ∈ R is a number of the first kind if the operator {L − µ, B}
satisfies the assumptions of Theorem 3.21 (cf. also Remark 3.16); otherwise, µ
is called a number of the second kind. In particular, µ is a number of the first
kind if there are no nontrivial decreasing solutions to the homogeneous problem
{L − µ, B}u = 0. By Theorem 3.21, the method converges at a point of the first
kind.

Let µ0 be a threshold value of the operator {L,B}. If µ0 is a number of
the first (second) kind, there exists a neighborhood of the point µ0 (a punctured
neighborhood of µ0) containing only numbers of the first kind. Therefore, numbers
of the second kind can accumulate only at infinity.



4 Appendix: Elliptic problems with slowly sta-

bilizing characteristics

In domain G ⊂ Rn+1 with finitely many cylindrical ends we consider general
elliptic boundary value problems. As x →∞, x ∈ G, the coefficients of the problem
tend to limits too slow to allow obtaining an asymptotic of solution at infinity.
Using the results of the paper [23] (see also [24, Section 8.5]), one can get some
“structure” of solutions to the problem: far from the origin a solution is represented
as a linear combination of functional series plus a remainder. The coefficients in
the linear combination remain unknown. Here we suggest an approach that allows
to derive the expressions for the coefficients in the structure of solutions. This
enables one to extend the theory of elliptic problems in domains with cylindrical
ends, well-developed earlier for the case of exponentially stabilizing coefficients
(see e.g. [1, 2, 24]), to the case of slowly stabilizing coefficients. These results
are obtained in collaboration with Pekka Neittaanmäki and Boris A. Plamenevskii
and published for the first time. Some results for a class of formally self-adjoint
problems with slowly stabilizing coefficients were announced in [14]. The formally
self-adjoint problems were studied in [25].

4.1 Statement of the problem and preliminaries

Let us recall some of the notation. We denote by G ⊂ Rn+1 a domain with
smooth boundary ∂G coinciding, outside a large ball, with the union Π1

+∪· · ·∪ΠN
+

of non-overlapping semicylinders; here Πr
+ = {(yr, tr) : yr ∈ Ωr, tr > 0}, (yr, tr) are

local coordinates, and the section Ωr is a bounded domain in Rn.
In domain G we consider the elliptic boundary value problem

L(x,Dx)u(x) = f(x), x ∈ G,

B(x,Dx)u(x) = g(x), x ∈ ∂G,
(4.1)

where L = ‖Lij‖ and B = ‖Bqj‖ are k × k and m × k matrices of differential
operators respectively, and ord Lij = si + tj, ord Bqj = σq + tj, 2m = s1 + t1 + · · ·+
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sk + tk. (As usual, si, tj, and σq are the integers appearing in the definition of an
elliptic problem in the sense of Douglis-Nirenberg.)

Let {Lr, Br} be the operator of a problem in the cylinder Πr = Ωr × R with
coefficients independent of tr, ord Lr

ij = ord Lij, and ord Br
qj = ord Bqj. We denote

by W `
β(Πr) the space with norm ‖eβ·; H`(Πr)‖, where H`(Πr) is the Sobolev space,

eβ : (yr, tr) 7→ exp βtr, and β ∈ R. Set

D`
βW (G) =

k∏
j=1

W
`+tj
β (G),

R`
βW (G) =

k∏
i=1

W `−si
β (G)×

m∏
q=1

W
`−σq−1/2
β (∂G),

(4.2)

where ` > max{−tj, si, σq + 1}. The map {Lr, Br} : D`
βW (G) → R`

βW (G) is con-

tinuous. The coefficients of {L,B} are supposed to be smooth in G and stabilizing
at infinity in the sense that

lim
T→∞

‖ηT ({L,B} − {Lr, Br}); D`
β(Πr) → R`

β(Πr)‖ = 0, (4.3)

where ηT (tr) = η(tr−T ), η ∈ C∞(R), η(tr) = 0 for tr < 1, and η(tr) = 1 for tr > 2.
In particular it follows that the operator

A(β) = {L,B} : D`
β(G) → R`

β(G)

is continuous, the spaces D`
β(G) and R`

β(G) being defined by (4.2) with Πr replaced

by G; the space W `
β(G) is endowed with the norm ‖eβ·; H`(G)‖, where eβ is a

smooth positive function in G equal to exp βtr in Πr, r = 1, . . . , N . We suppose
that the operators {Lr, Br} are elliptic. Let the Green formula

(Lu, v)G + (Bu, Qv)∂G − (u, L∗v)G − (Q∗u, B∗v)∂G = 0 (4.4)

be valid for all u, v ∈ C∞
c (G); here L∗ is the operator formally adjoint to L, while

Q, Q∗, and B∗ are certain m×k matrices of differential operators, ord B∗qj = si+ρq,
ord Q∗qj = tj − ρq − 1, and ord Qqi = si − σq − 1. We assume that the problem
{L∗, B∗} adjoint to {L, B} with respect to the Green formula (4.4) has all the
properties of the problem (4.1). The correspondent limit operators will be denoted
by {Lr

∗, B
r
∗}, r = 1, . . . , N . In particular the coefficients of {L∗,B∗} are stabilizing

at infinity in the sense that

lim
T→∞

‖ηT ({L∗,B∗} − {Lr
∗, B

r
∗}); D`

β(Πr)∗ → R`
β(Πr)∗‖ = 0, (4.5)

where

D`
βW (Π)∗ =

k∏
i=1

W `+si
−β (Π),

R`
βW (Π)∗ =

k∏
j=1

W
`−tj
−β (Π)×

m∏
q=1

W
`−ρq−1/2
−β (∂Π)
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with ` > max{tj,−si, ρq + 1}.
Introduce the operator pencil

C 3 λ 7→ Ar(λ) = {Lr(y,Dy, λ), Br(y, Dy, λ)} (4.6)

in the domain Ωr. It is known [30] that the spectrum of the pencil Ar consists of
normal eigenvalues, which are located on the set {λ ∈ C : |Re λ| < c| Im λ|} with
finitely many exceptions. From now on we choose a certain r and do not indicate
it in notation. Let

{ϕ(0,j)
ν , . . . , ϕ(κjν−1,j)

ν ; j = 1, . . . , Jν := dim ker Ar(λν)}
be a canonical system of Jordan chains of the pencil A corresponding to the eigen-

value λν . Here, ϕ
(0,j)
ν is an eigenvector and ϕ

(1,j)
ν , . . . , ϕ

(κjν−1,j)
ν are associated vec-

tors [1],[2], [20]. The functions

u(σ,j)
ν (y, t) = exp(iλνt)

σ∑

`=0

1

`!
(it)`ϕ(σ−`,j)

ν (y), (4.7)

where σ = 0, . . . ,κjν − 1, satisfy the homogeneous problem

{L(y, Dy, Dt), B(y,Dy, Dt)}u(y, t) = 0, (y, t) ∈ Π.

Proposition 4.1 (see [1, 2]). The map

A(β) = {L,B} : D`
β(Π) → R`

β(Π) (4.8)

is an isomorphism if and only if the line R+ iβ = {λ ∈ C : Im λ = β} is free from
the spectrum of the pencil A.

In the cylinder Π the Green formula

(Lu, v)Π + (Bu,Qv)∂Π − (u, L∗v)Π − (Q∗u,B∗v)∂Π = 0 (4.9)

holds for u, v ∈ C∞
c (Π). For the limit operator {L∗, B∗} we define the pencil

λ 7→ A∗(λ), A∗(λ) = {L∗(y, Dy, λ), B∗(y, Dy, λ)}. If λν is an eigenvalue of A then
λν is an eigenvalue of the pencil A∗. Moreover, dim ker A(λν) = dim ker A∗(λν),
and the partial zero multiplicities of the eigenvalues are coincident; see [1, 2].

Let {ψ(0,j)
ν , . . . , ψ

(κjν−1,j)
ν ; j = 1, . . . , Jν} be the canonical system of Jordan chains

of the pencil A∗. We introduce the solutions vσ,j
ν to the homogeneous problem

{L∗, B∗}v = 0 in Π by the formula (4.7), where u, ϕ, and λν are replaced by v, ψ,
and λν respectively.

Denote by q(u, v) the left-hand side of (4.9). As is known [1, 2] the chains

{ψ(σ,j)
ν } can be chosen such that the relations

q(χu(σ,j)
ν , χv(τ,p)

µ ) = iδµ,νδj,pδκµp−τ−1,σ (4.10)

are fulfilled, where δ is the Kronecker symbol, and χ ∈ C∞(R), χ(t) = 0 for t < 0
and χ(t) = 1 for t > 1. Emphasize that the left-hand side of (4.10) does not depend
on the choice of χ in view of (4.9).
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4.2 Structure of solutions to the model problem in a cylin-
der, formulas for the coefficients

Let {LT , BT} and {LT ∗,BT ∗} be differential operators depending on the pa-
rameter T such that the following conditions are satisfied: (i) operator {LT ,BT}
(operator {LT ∗, BT ∗}) coincides with {L,B} (with {L∗,B∗}) on the set {(y, t) ∈
Π : t > T +3} and with {L,B} (with {L∗, B∗}) on the set {(y, t) ∈ Π : t < T}; (ii)
the norms ‖∆T ; Dl

β(Π) → Rl
β(Π)‖ and ‖∆T ∗; Dl

β(Π)∗ → Rl
β(Π)∗‖ of the operators

∆T = {L,B} − {LT , BT}, ∆T ∗ = {L∗, B∗} − {LT ∗,BT ∗} (4.11)

tend to zero as T → +∞; (iii) for u, v ∈ C∞
c (Π) and sufficiently large T the Green

Formula

(LT u, v)Π + (BT u, QT v)∂Π − (u, LT ∗v)Π − (QT ∗u, BT ∗v)∂Π = 0 (4.12)

holds, where QT and QT ∗ are some m × k-matrices of differential operators such
that QT (QT ∗) coincides with Q (with Q∗) on the set {(y, t) ∈ Π : t > T + 3} and
with Q (with Q∗) on the set {(y, t) ∈ Π : t < T}.

In particular, if s1 = s2 = · · · = sk = 0 and the matrix B of boundary
conditions is t-normal (see e.g. [21]) then the Green formula (4.4) is fulfilled, the
existence of the operators {LT ,BT} and {LT ∗,BT ∗} is guarantied by the following
(rather strong) stabilization conditions:

lim
T→+∞

‖ηT (`νµ
ij − lνµ

ij ); C∞(Π+)‖ = 0, |ν|+ µ 6 tj,

lim
T→+∞

‖ηT (bνµ
qj − bνµ

qj ); C∞(∂Ω× R+)‖ = 0, |ν|+ µ 6 σq + τj,
(4.13)

where `νµ
ij and bνµ

qj are the coefficients of the operators

Lij(y, t,Dy, Dt) =
∑

|η|+µ6τj

`ηµ
ij (y, t)Dη

yD
µ
t ,

Bqj(y, t,Dy, Dt) =
∑

|η|+µ6σq+τj

bηµ
qj (y, t)Dη

yD
µ
t ,

and lνµ
ij , bνµ

qj are the correspondent limit coefficients. The formally self-adjoint
problems under the stabilization conditions (4.13) are studied in [25]; the standard
method for the Green formula construction permits one to get needed {LT ,BT}
and {LT ∗, BT ∗} in the nonself-adjoint case (see e.g. [26, 27, 28, 29]). We do not
describe the conditions ensuring the existence of {LT ,BT} and {LT ∗,BT ∗} in a
more general situation. In what follows we suppose that such operators exist (and
the above conditions (i)–(iii) are fulfilled). If the initial problem (4.1) is formally
self-adjoint (i.e. L = L∗, B = B∗, and Q = Q∗) then we assume in addition that
the operator {LT ,BT} is formally self-adjoint.

In the cylinder Π we consider the model problem

LT (y, t,Dy, Dt)u(y, t) = F(y, t), (y, t) ∈ Π,

BT (y, t,Dy, Dt)u(y, t) = G(y, t), (y, t) ∈ ∂Π.
(4.14)
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Proposition 4.2. Let the line R + iβ contains no eigenvalues of the pencil A.
Then for sufficiently large T the operator {LT ,BT} : D`

β(Π) → R`
β(Π) of the

problem (4.14) implements an isomorphism.

Proof. Since the norm of the operator ∆T tends to zero as T → +∞, the assertion
follows from Proposition 4.1.

For every eigenvalue λν of A we choose a real number αν such that the strip
αν 6 Im λ < Im λν is free from the spectrum of A. For sufficiently large T we set

z(σ,j)
ν = u(σ,j)

ν +
∞∑

q=1

(A(αν)
−1∆T )qu(σ,j)

ν , (4.15)

where the functions u
(σ,j)
ν are given in (4.7). Let us discuss the equality (4.15).

Note that ηT−2u
±
j ∈ Dl

αν
(Π) and ∆T u±j = ∆T ηT−2u

±
j . The norm of operator

A(αν)
−1∆T : Dl

αν
(Π) → Dl

αν
(Π) is small. The series

∑∞
q=1(A(αν)

−1∆T )qu±j con-

verges in the norm of Dl
αν

(Π). Consequently,

z(σ,j)
ν = u(σ,j)

ν mod Dl
αν

(Π). (4.16)

The functions z
(σ,j)
ν do not depend on the choice of αν ; indeed, A(α)−1{F, G} =

A(β)−1{F, G} provided that the strip α 6 Im λ 6 β is free from the spectrum of
the pencil A and {F, G} ∈ Rl

α(Π) ∩ Rl
β(Π) (see e.g. [2, Proposition 3.1.4]).

The next assertion is a version of Theorem 6.2 from [23]; see also [24, Theorem
8.5.7].

Theorem 4.3. (i) The functions z
(σ,j)
ν defined by (4.15) are linearly independent

solutions to the homogeneous problem (4.14).
(ii) Assume that β > γ and the lines R+ iβ and R+ iγ contain no eigenvalues of
the pencil A. Let λ1, . . . , λM be all the eigenvalues of A in the strip {λ ∈ C : γ <
Im λ < β}. Then a solution u ∈ D`

γ(Π) to the problem (4.18) with right-hand side
{F,G} ∈ R`

β(Π) ∩ R`
γ(Π) admits the representation

u =
M∑

ν=1

Jν∑
j=1

κjν−1∑
σ=0

d(σ,j)
ν z(σ,j)

ν + v, (4.17)

where v is a solution to the same problem in Dl
β(Π), and d

(σ,j)
ν are some complex

coefficients.

Define the solution w
(σ,j)
ν to the homogeneous problem {LT ∗,BT ∗}v = 0 in Π

by the formula

w(σ,j)
ν = v(σ,j)

ν +
∞∑

q=1

(A∗(−τν)
−1∆T ∗)

qv(σ,j)
ν , (4.18)

where A∗(β) = {L∗, B∗} : D`
β(Π)∗ → R`

β(Π)∗, and τν is such a number that the

strip τν 6 Im λ < Im λν is free from the spectrum of A∗ (λν is an eigenvalue of A∗).
Denote by pT (u, v) the left-hand side of the Green formula (4.12).
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Lemma 4.4. Let the functions u
(σ,j)
ν and v

(σ,j)
ν in (4.15) and (4.18) be subjected to

the conditions (4.10). Then

pT (χz(σ,j)
ν , χw(τ,p)

µ ) = iδµ,νδj,pδκpµ−τ−1,σ, (4.19)

where χ ∈ C∞(R), χ(t) = 0 for t < 0 and χ(t) = 1 for t > 1. The equalities (4.19)
do not depend on the choice of χ.

Proof. First we prove that pT (χz
(σ,j)
ν , χw

(τ,p)
µ ) = 0 if Im(λν + λµ) 6= 0.

Let Im(λν + λµ) > 0. In this case one can choose the numbers αν and τµ

in (4.15) and (4.18) such that αν + τµ > 0. It is easy to see that χz
(σ,j)
ν ∈

Dl
−τµ

(Π) and χw
(τ,p)
µ ∈ Dl

−τµ
(Π)∗. Since the Green formula (4.12) can be ex-

tended by continuity to the functions u ∈ Dl
−τµ

(Π) and v ∈ Dl
−τµ

(Π)∗, we have

pT (χz
(σ,j)
ν , χw

(τ,p)
µ ) = 0.

Let us consider the case Im(λν +λµ) < 0. We choose βν and βµ such that βν >

Im λν , βµ > Im λµ, and βν + βµ < 0. Then the inclusions (1 − χ)z
(σ,j)
ν ∈ Dl

−βµ
(Π)

and (1 − χ)w
(τ,p)
µ ∈ Dl

−βµ
(Π)∗ are fulfilled; see (4.16). For u := (1 − χ)z

(σ,j)
ν and

v := (1− χ)w
(τ,p)
µ the Green formula (4.12) holds. This implies

pT ((1− χ)z(σ,j)
ν , (1− χ)w(τ,p)

µ ) = 0. (4.20)

Using the equality pT (z
(σ,j)
ν , w

(τ,p)
µ ) = 0 and the Green formula (4.12), we transform

the left-hand side of (4.20). We have

pT ((1− χ)z(σ,j)
ν , (1− χ)w(τ,p)

µ ) = pT ((1− χ)z(σ,j)
ν , w(τ,p)

µ ) = −pT (χz(σ,j)
ν , χw(τ,p)

µ ).
(4.21)

Thus pT (χz
(σ,j)
ν , χw

(τ,p)
µ ) = 0 if Im(λν + λµ) 6= 0.

Now we suppose that Im(λν + λµ) = 0. It is easily seen that

D`
−τµ

(Π) 3 (1− χ)z(σ,j)
ν = (1− χ)u(σ,j)

ν mod D`
αν

(Π),

D`
αν

(Π)∗ 3 (1− χ)w(τ,p)
µ = (1− χ)v(τ,p)

µ mod D`
−τµ

(Π)∗.

From these relations it follows that

q((1− χ)z(σ,j)
ν , (1− χ)w(τ,p)

µ ) = q((1− χ)u(σ,j)
ν , (1− χ)v(τ,p)

µ ). (4.22)

Owing to the equality q(u
(σ,j)
ν , v

(τ,p)
µ ) = 0, the right-hand side of (4.22) is equal to

−q(χu
(σ,j)
ν , χv

(τ,p)
µ ). Taking into account (4.10), we have

q((1− χ)z(σ,j)
ν , (1− χ)w(τ,p)

µ ) = −iδµ,νδj,pδκpµ−τ−1,σ. (4.23)

Note that the left-hand side of (4.23) coincides with the left-hand side of (4.21)
(because every differential operator in (4.12) coincides with correspondent operator

from (4.9) on the support of (1−χ)z
(σ,j)
ν ). The equalities (4.19) are readily apparent

from (4.23) and (4.21).
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Corollary 4.5. The coefficients d
(σ,j)
ν in (4.17) can be found by the formula

d(σ,j)
ν = −i{(F, w(κjν−σ−1,j)

ν )Π + (G,QT w(κjν−σ−1,j)
ν )∂Π}, ν = 1, . . . , M, (4.24)

where w
(κjν−σ−1,j)
ν is defined by (4.18), and QT is the same as in the Green formula

(4.12).

Proof. Due to the equality {LT ∗,BT ∗}w(κjν−σ−1,j)
ν = 0 we get

(F, w(κjν−σ−1,j)
ν )Π + (G,QT w(κjν−σ−1,j)

ν )∂Π = pT (u,w(κjν−σ−1,j)
ν ), (4.25)

where u is from (4.17). The inclusions (1−χ)w
(κjν−σ−1,j)
ν ∈ D`

γ(Π)∗ and u ∈ D`
γ(Π)

imply pT (u, (1−χ)w
(κjν−σ−1,j)
ν ) = 0; here χ is the same as in Lemma 4.4. Together

with (4.17) this allows us to write the right-hand side of (4.25) in the form

pT (
M∑

ν=1

Jν∑
j=1

κjν−1∑
σ=0

d(σ,j)
ν z(σ,j)

ν + v, χw(κjν−σ−1,j)
ν ).

Note that pT (v, χw
(κjν−σ−1,j)
ν ) = 0 as far as v ∈ D`

β(Π) and χw
(κjν−σ−1,j)
ν ∈ D`

β(Π)∗.
Finally we have

(F, w(κjν−σ−1,j)
ν )Π + (G, QT w(κjν−σ−1,j)

ν )∂Π

= pT (
M∑

ν=1

Jν∑
j=1

κjν−1∑
σ=0

d(σ,j)
ν z(σ,j)

ν , χw(κjν−σ−1,j)
ν )

= pT (
M∑

ν=1

Jν∑
j=1

κjν−1∑
σ=0

d(σ,j)
ν χz(σ,j)

ν , χw(κjν−σ−1,j)
ν ).

By applying Lemma 4.4, we complete the proof.
As was mentioned in the beginning of Appendix, the results of Theorem 4.3,

Lemma 4.4, and Corollary 4.5 allow us to extend the theory of elliptic problems
with exponentially stabilizing coefficients (see e.g. [1, 2]) to the case of stabilization
in the sense of (4.3), (4.5). The idea is to use the structure of solutions (4.17) and
the formulas for the coefficients (4.24) instead of the asymptotic representations
and the corresponding formulas for the coefficients in the asymptotics. Thus all
the assertions and their proofs from [1, 2] can be easily adapted for the problems
with slowly stabilizing coefficients.
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