
Antti Kalevi Hakala

Tool Integration in Eclipse

Master’s Thesis
in Software Engineering
2nd November 2005

University of Jyväskylä

Department of Mathematical Information Technology

Jyväskylä

Author: Antti Kalevi Hakala
Contact information: antti.hakala@gmail.com
Title: Tool Integration in Eclipse
Työn nimi: Työkaluintegraatio Eclipsessä
Project: Master’s Thesis in Software Engineering
Page count: 134
Abstract: In this thesis, Eclipse is studied as a platform for tool integration. As a
theoretical framework, a tool-centric point of view to CASE systems is presented.
This includes classification of CASE systems, tool interfacing paradigms, levels of
integration, and the key challenges of CASE systems. Eclipse is placed in this frame-
work. Also, tool encapsulation mechanisms in Eclipse are examined. As a practical
example, a case study of tool integration in Eclipse is provided. This is a small open
source project administered by the author.
Suomenkielinen tiivistelmä: Tämä pro gradu -työ tutkii Eclipseä alustana työkaluin-
tegraatiolle. Teoreettisena kehyksenä esitetään työkalupainotteinen näkökulma CASE-
järjestelmiin. Tämä kehys tutkii CASE-järjestelmien luokittelua, työkalujen liittämistä
CASE-järjestelmiin, integroinnin eri tasoja sekä CASE-järjestelmien olennaisia haas-
teita. Myös Eclipse sijoitetaan tähän kehykseen. Tämän lisäksi tutkitaan kuinka
työkalu kapseloidaan Eclipsessä. Käytännön esimerkkinä esitetään tapaustutkimus
työkaluintegraatiosta Eclipsessä. Tämä on pieni kirjoittajan ylläpitämä avoimen
lähdekoodin projekti.
Keywords: Eclipse, CASE, tool integration, tool interfacing
Avainsanat: Eclipse, CASE, työkaluintegraatio

Acknowledgements

I want to thank Jonne Itkonen and Tommi Kärkkäinen, who supervised this the-
sis and gave me good instructions regarding the content, structure, and writing in
general. Your ciriticism spurred me on to write better. Additional thanks to Jonne
Itkonen for the subject of the case study. Integrating UMLGraph into Eclipse was
a subject of right proportion. I also want to thank Diomidis Spinellis, the author of
UMLGraph, for answering my queries and wishing me good luck on my integra-
tion attempt. And last but not least, I want to thank Sami Nieminen for running and
debugging LightUML in Windows environment.

i

Contents

Acronyms vi

List of Figures viii

1 Introduction 1

2 CASE Systems 3
2.1 CASE Classification . 4

2.1.1 Breadth of Support for Software Process 4
2.1.2 Relative level of Integration . 9
2.1.3 IDE Point of View . 10
2.1.4 Discussion . 11

2.2 Separation of Concerns - Tool Interfacing 12
2.2.1 Interfacing paradigms . 12
2.2.2 Discussion . 13

2.3 Integration of Concerns - Levels of Tool Integration 16
2.3.1 Presentation Integration . 16
2.3.2 Data Integration . 17
2.3.3 Control Integration . 17
2.3.4 Other Levels of Integration . 18
2.3.5 Discussion . 19

2.4 Key Challenges . 21
2.4.1 Permanently Malleable Software 21
2.4.2 Separation and Integration of Concerns 23
2.4.3 Meeting the Challenges . 24
2.4.4 Discussion . 24

2.5 Summary . 25

3 An Introduction to Eclipse 26
3.1 Basic Concepts and Facilities . 28

3.1.1 Workspace and Resources . 28

ii

3.1.2 Workbench User Interface . 28
3.1.3 Facilities . 29

3.2 Architecture . 30
3.2.1 Packaging . 31
3.2.2 UI Frameworks . 31

3.3 License Model . 33
3.4 Discussion . 33
3.5 Summary . 34

4 Eclipse as a CASE System 35
4.1 Classification . 35
4.2 Tool Interfacing . 35
4.3 Levels of Tool Integration . 37
4.4 Discussion: Key Challenges . 40
4.5 Summary . 40

5 Eclipse Platform: A Technical Overview 42
5.1 Basic Concepts . 42

5.1.1 Extension Points and Extensions 42
5.1.2 Platform Runtime . 43

5.2 Plug-ins . 43
5.2.1 Logical level . 44
5.2.2 Physical level . 45

5.3 Processing Extensions of an Extension Point 47
5.4 Design Decisions - Extension Object Pattern 48
5.5 Rules of Eclipse . 51
5.6 Summary . 52

6 Case Study: Integrating UMLGraph into Eclipse 54
6.1 Background . 54
6.2 Toolchain . 55
6.3 Structure . 56

6.3.1 Features . 56
6.3.2 Plug-ins . 56
6.3.3 Packages . 58
6.3.4 Classes . 59

iii

6.3.5 Directories . 62
6.4 Design Rationale and Development Notes 65

6.4.1 Design Rationale . 65
6.4.2 General Plug-in Development Notes 66
6.4.3 LightUML Development Notes 67

6.5 Web Resources . 68
6.6 Summary . 69

7 Conclusion 74

8 References 76

Appendices

A LightUML Source 83
A.1 Feature manifest (feature.xml) . 83
A.2 org.lightuml.core . 84

A.2.1 Plug-in Manifest (plugin.xml) 84
A.2.2 Ant Buildfile (build.xml) . 84
A.2.3 Graph Build Properties (graph.ini) 86
A.2.4 IBuildConstants . 87
A.2.5 IErrorMessages . 87
A.2.6 IGraphBuildProperties 88
A.2.7 IGraphConverter . 89
A.2.8 LightUMLCoreException 90
A.2.9 LightUMLCorePlugin . 91
A.2.10 LocalGraphConverter . 97
A.2.11 AddGraphToProject . 99
A.2.12 DotToGraphics . 102
A.2.13 Initialize . 103
A.2.14 JavaToDot . 107
A.2.15 LightUMLJob . 109
A.2.16 LightUMLSchedulingRule 112

A.3 org.lightuml.ui . 113
A.3.1 Plug-in Manifest (plugin.xml) 113
A.3.2 LightUMLUIPlugin . 115

iv

A.3.3 GenerateClassDiagram . 117
A.3.4 RestoreSettings . 119
A.3.5 DotAndPic2PlotPage . 120
A.3.6 LightUMLPage . 121
A.3.7 UMLGraphPage . 123

v

Acronyms

AOSD Aspect-Oriented Software Development

API Application Programming Interface

AWT Abstract Window Toolkit

BSD Berkeley Software Distribution

CVS Concurrent Versions System

DTD Document Type Definition

EAI Enterprise Application Integration

EMF Eclipse Modeling Framework

EPL Eclipse Public License

GUI Graphical User Interface

HCI Human-Computer Interaction

HTML HyperText Markup Language

I-CASE See ICASE.

ICASE Integrated CASE environment

IDE Integrated Development Environmet

IEEE The Institute of Electrical and Electronics Engineers

IPSE Integrated Project Support Environment

JAR Java Archive

JDT Java Development Tooling

JNI Java Native Interface

vi

JVM Java Virtual Machine

PDE Plug-In Development Environment

RCP Rich Client Platform

SDE Software Development Environment

SDK Software Developer’s Kit

SEE Software Engineering Environment

SUA Eclipse Foundation Software User Agreement

SW Software

SWT Standard Widget Toolkit

TDD Test-Driven Development

UI User Interface

UML Unified Modeling Language

XML eXtensible Markup Language

vii

List of Figures

2.1 Illustration of Fuggetta’s CASE classification. 8
2.2 Information flow in the uncoupled interfacing paradigm [59]. 13
2.3 Information flow in the tightly-coupled interfacing paradigm [59]. . . 14
2.4 Information flow in the loosely-coupled interfacing paradigm [59]. . 14
2.5 CASE system interfacing and roles. 15
2.6 Current relationship of software and change [33]. 22

3.1 Eclipse Platform and Eclipse Project [34]. 27
3.2 Eclipse Resource Perspective . 28
3.3 Typical extensible IDE architecture vs. Eclipse architecture [26]. . . . 31
3.4 Eclipse packaging and feature management. 32

4.1 Tool interfacing in Eclipse. 36
4.2 Eclipse APIs and levels of integration. 38

5.1 Plug-in dependency relationship. 44
5.2 Plug-in extension relationship. 44
5.3 Sample plug-in extension scenario. 45
5.4 Basic structure of Extension Object pattern [28]. 48
5.5 Extension Object pattern in Eclipse [26]. 50
5.6 Sequence diagram of Extension Object pattern in Eclipse. 51

6.1 LightUMLJobs. 56
6.2 LightUML plug-in dependency and extension relationships. 57
6.3 Package diagram of LightUML. 58
6.4 Class structure of org.lightuml.core plug-in. 60
6.5 Class structure of org.lightuml.ui plug-in. 61
6.6 LightUML directory structures. 63
6.7 LightUML pulldown menu contribution. 70
6.8 LightUML popup menu contribution. 70
6.9 LightUML preference page contribution, general preferences. 71

viii

6.10 LightUML preference page contribution, preferences for the dot exe-
cutable. 72

6.11 LightUML preference page contribution, UMLGraph preferences. . . 73

ix

1 Introduction

A single distinct tool can help a software developer only to some extent. There exists
no “tool-of-all-trades” that handles every task—a developer has to use several tools
on the process. As the different development tasks are not completely distinct or
isolated, transferring data between tools, or more generally tool interoperability,
becomes an issue. If a high level of interoperability is required, tools have to be
integrated into some common framework that provides the ground rules for tool
interaction. Integrating a tool into a framework brings many benefits, but it also has
its price.

The theoretical basis of this thesis is provided in Chapter 2. Firstly, the classifi-
cation of different tools is discussed. This clarifies the meaning of the word “tool”,
which on this general level of discussion can mean any product that is used to aid in
software engineering. Examination of tool integration is divided into tool interfac-
ing, which describes the manner in which a tool is connected to a framework, and
the levels of tool integration, which describe the conceptual levels of integration that
are achieved. These are examined separately. The key challenges underlying tool in-
tegration are discussed last. These challenges are fundamental and not yet risen to.
They could also be considered the reason why another interpretation of the title of
this thesis, “Tool Integration in Eclipse”, is valid. This interpretation suggests that
tool integration is in eclipse (as in eclipse of the sun).

Eclipse, a modern open source tool integration framework, is introduced in Chap-
ter 3. The introduction includes the basic concepts and an architectural overview.
Also, the rather original license model and the pros and cons of the architecture are
briefly discussed. Chapter 4 considers Eclipse and the introduced Eclipse concepts
in terms of the theoretical framework provided earlier. Furthermore, in Chapter 5,
Eclipse is discussed from a technical point of view. This discussion considers Eclipse
tool encapsulation and construction mechanisms, a brief glance into Eclipse design
decisions, and the general guidelines for tool construction in Eclipse. Lastly, Chapter
6 provides a case study of tool integration in Eclipse. This case study is an example
of how the Eclipse mechanics for tool encapsulation and construction can be used
in practice. It also demonstrates how to achieve the different conceptual levels of

1

integration discussed earlier by providing a real usable application that has been
achieved with tool integration in Eclipse.

2

2 CASE Systems

Computer-aided software engineering (CASE) means automated support for the soft-
ware engineering process [48]. Like computer-aided engineering and design tools
that are used by engineers in other disciplines, CASE tools help to ensure that the
quality is designed in before the product is built [44]. IEEE Standard Glossary of
Software Engineering Terminology [35] describes CASE as follows:

computer-aided software engineering (CASE). The use of computers to aid in the
software engineering process. May include the application of software tools
to software design, requirements tracing, code production, testing, document
generation, and other software engineering activities.

In this thesis, the term CASE is used in the above sense. However, CASE as a term is
somewhat ambiguous. Gane [30] suggests that the distinguishing characteristic of
a CASE product is that it builds itself a design database, at a higher level than code
statements or physical data element definitions. This definition disqualifies tools
such as compiler and debugger. The term “CASE system” is used in this thesis in
the same sense as Sommerville [48] uses it, meaning anything from a single tool to
an entire environment (discussed in Section 2.1.1).

This chapter discusses CASE systems on a general level, using a tool-centric ap-
proach. The chapter begins with an examination of CASE classification in Section
2.1. The integration itself is an essential subject when discussing any “integrated
environments”, which consist of various separate tools. To investigate integration,
it is reasonable to first discuss how the separation of separate tools is achieved in a
CASE system, and at what levels the separation occurs. This is done in Section 2.2.
After that, integration can be investigated more clearly, which is done in Section 2.3,
in terms of tool (or intertool) integration. Section 2.4 deals with key challenges of
CASE systems.

Various standards of CASE systems, including tool interfacing and tool integra-
tion related ones, are not discussed. Also, the more philosophical issues, what prob-
lems CASE systems solve and what they do not solve, are not assessed.

3

2.1 CASE Classification

CASE classification is examined from two different viewpoints: the breadth of sup-
port for software process provided, and the relative level of CASE integration. The
first one is presented by Fuggetta [24] and the second is shortly described by Press-
man [44] and much referenced in the literature on the part of ICASE and IPSE. See
for example [9], [10], [47], [60], and [55]. Fuggetta’s classification is used later as a
reference model.

2.1.1 Breadth of Support for Software Process

The breadth of support for software process offered by CASE technology can be
used as a criterion for classification. This section is based on such classification pro-
vided by Fuggetta [24], which classifies CASE technology into tools, workbenches,
and environments. As Fuggetta points out, an ideal classification should define an
equivalence relation on the considered domain, to make it possible to partition the
domain in equivalent classes and assign each element in the domain to just one class.
However, this is often not possible with CASE products.

The software process can be thought of as consisting of two subprocesses: a pro-
duction process and a metaprocess. Production process consists of the “actual” pro-
duction activities, rules, and so on, which are often very concrete for a software
developer. The metaprocess is used to define and systematically assess, evolve, and
improve the production process. It is also used to acquire and exploit new prod-
ucts. The metaprocess can also be supported by CASE technology. This CASE clas-
sification considers products in both the production process and the metaprocess
technologies.

Fuggetta describes the terms task and activity as follows: “A production process
may be viewed as a set of elementary tasks to be accomplished to produce a software
application. Examples of tasks are compiling, editing, and generating test cases from
the requirements specification. Tasks are grouped to from activities, sets of tasks
supporting coarse-grained parts of the software-production process. For example,
coding is an activity that includes editing, compiling, debugging, and so on.”

A CASE tool is a software component supporting a specific task in the software-
production process. Tools can be stand-alone products or components of work-
benches or environments. CASE tools are classified into seven classes, which are

4

described below.

� Editing tools contain two subclasses: textual editors and graphical editors. Tex-
tual editors include text editors, word processors, etc. Graphical editors in-
clude various drawing, painting, and diagramming tools.

� Programming tools are subclassed into coding and debugging tools, code gen-
erators, and code restructurers. First subclass includes compilers, interpreters,
debuggers, etc. Second subclass contains tools that generate code starting from
a high-level description, and third subclass contains tools for restructuring ex-
isting programs.

� Verification and validation tools include static and dynamic analyzers, compara-
tors, symbolic executors, emulators and simulators, correctness proof assis-
tants, test-case generators and test-management tools.

� Configuration management toolsare tools for version management, item identifi-
cation, configuration building, change control, and library management.

� Metrics and measurement tools collect data on programs and program execution
and include analyzers and monitors.

� Project management toolsare tools such as cost-estimation, project-planning, con-
ference desk, e-mail, bulletin board, project agenda, and project notebook tools.

� Miscellaneous tools consist of tools which are difficult to classify. For example,
hypertext systems and spreadsheets.

A Workbench integrates in a single application several tools supporting specific
software-process activities. A workbench achieves a homogeneous and consistent
interface (presentation integration, see Section 2.3.1), easy invocation of tools and
tool chains (control integration, see Section 2.3.3), and access to common data set,
managed in a centralized way (data integration, see Section 2.3.2). Workbench classes
are described below.

� Business planning and modeling workbenches are used to build high-level enter-
prise models to assess the general requirements and information flow, and
identify priorities in the development of information systems. Tools that are
integrated include diagram editors, report generators, cross-reference genera-
tors, etc.

5

� Analysis and design workbenches contain “upper” CASE tools used in the early
stages of software process that automate analysis and design methodologies.

� User-interface development workbenches let the developer easily create and test
user-interface components and integrate them with the application program.

� Programming workbenches contain the usual programming tools such as a text
editor, a compiler, a linker, and a debugger.

� Verification and validation workbenches, including tools from metrics and mea-
surement class and verification and validation class to jointly analyze the qual-
ity of code and support actual verification and validation.

� Maintenance and reverse-engineering workbenches include tools like a code re-
structurer, a flowcharter and a cross-reference generator.

� Configuration management workbenches integrate tools for version control, con-
figuration building, and change control.

� Project management workbenches include tools for distributed agenda, memo-
distribution, distributed to-do lists, meeting schedule, project planning, task-
assignment, etc.

An Environment is a collection of tools and workbenches that support the software
process. Environment classes are described below.

� Toolkits are loosely integrated collections of products easily extended by aggre-
gating different tools and workbenches. Support of toolkits is often limited to
programming, configuration management, and message handling in project
management.

� Language-centered environments are centered around a specific language such as
Lisp or Smalltalk. The environment is often written in the same language for
which it was developed, letting the user customize and extend it.

� Integrated environments provide uniform, consistent, and coherent tool and work-
bench interfaces. They have a specialized database managing all information
produced and accessed in the environment. Control integration is achieved
through powerful mechanisms to invoke tools and workbenches from within
other components of the environment. Integrated environments do not explic-
itly tackle process integration.

6

� Fourth generation environments are sets of tools and workbenches supporting
the development of a specific class of program, e.g. electronic data processing
and business-oriented applications.

� Process-centered environments are based on a formal definition of the software
process. These usually handle process-model production and process-model
execution. Process-centered environments can be thought as environment gen-
erators, since they can create different, customized environments that follow
the procedures and policies enforced by the process model.

Specific tool, workbench, and environment classes, and to which specific class a
given CASE system should be classified, is not so interesting in the context of this
thesis. The point is to introduce the diversity of CASE systems and to describe the
classification with some level of detail. The division of CASE technology into tools,
workbenches, and environments itself is more interesting. Figure 2.1 illustrates this
division.

7

Figure 2.1: Illustration of Fuggetta’s CASE classification.

8

2.1.2 Relative level of Integration

Pressman [44] uses four levels to describe CASE systems via the relative level of
integration achieved. This is, however, not a complete classification in the sense of
previous section.

1. Invidual tool. No integration.

2. Tool bridges & partnership. Invidual tools that provide facilities for data ex-
change. For example, standard data format for input/output.

3. Single source integration. Single CASE tool vendor integrates a number of
different tools, usually in a closed architecture, and sells them as a package.
Also called ICASE or I-CASE.

4. IPSE (Integrated Project Support Environment). IPSE creates standards for
portability services and an integration framework (see Section 2.3.4, platform
and framework integration) on top of the operating system and hardware plat-
form. IPSE standards are used to build compatible tools with the IPSE and
therefore compatible to one another.

There has been much juxtaposition between ICASE and IPSE. Sharon and Bell [47]
explain the distinction between them:

� IPSEs are open, extensible environments and are intended to support multiple
methods. ICASE environments support a single method and are not as readily
extensible.

� IPSEs are targeted at teams working together on multiple projects. ICASE en-
vironments are designed primarily for teams working on a single project.

� IPSEs have evolved from scientific and engineering application development,
ICASE environments are more common for information-system development.

� IPSEs are offered by single vendors with many integrated third-party compo-
nents. ICASE environments are also sold by a single vendor, but most of the
tool components are also from the same vendor.

9

Sharon and Bell also underscore that IPSE is a diverse environment including pro-
cess management, project management, requirements management, configuration
management, document management, repository, and project verification and val-
idation components. Thus, there is a huge gap for open “environments” that can’t
reach the IPSE level, but are not single vendor products either. This can be a source
of confusion, but as said, this is not a complete classification. If IPSE and ICASE
are classified with Fuggetta’s classification, IPSE would definitely classify as an en-
vironment. ICASE, on the other hand, could be just a workbench, e.g., for analysis
and design, or an environment of some kind.

As terms, ICASE and IPSE have become at least somewhat outdated. By whom
the CASE system is offered is not a very reasonable criterion for classification of
CASE systems. At present, larger systems are very often composed of components
offered by multiple vendors. Also, modern CASE systems can usually be extended
almost without limits.

2.1.3 IDE Point of View

IDE stands for Integrated Development Environment. An IDE is generally a pro-
gramming environment that has been packaged as an application program, typi-
cally consisting of a code editor, compiler, debugger, and graphical user interface
(GUI) builder [54]. IDE might not be a scientific term, but it is widely used when
discussing wide variety of programming or development “environments”. An IDE
is usually programming language specific, e.g. a Java development environment.
IDE’s aims are to increase its user’s productivity and improve the quality of soft-
ware produced. Achieving these goals is a sum of many things—different levels of
tool integration discussed in Section 2.3 play an important role in it.

Using Fuggetta’s CASE classification, IDE would be classified as a programming
workbench in most cases, as IDEs do not usually support a large part of the software
process activities. Usually commercial IDEs are closed source single-vendor appli-
cations, consisting of CASE products of one organization (ICASE). Non-commercial
IDEs are often open source, but they are mainly not used by the masses, because
effective usage tends to require more technical knowledge. An example of a non-
commercial IDE of that nature is Emacs1. D’Anjou et. al [12] point out a problem

1Emacs manual says: ”Emacs is the extensible, customizable, self-documenting real-time display
editor.”. Emacs has extensions for a wide variety of programming languages and many other ”IDE-
features”.

10

concerning the production of IDEs:

“It is no longer practical for vendors to produce the base application and
IDE infrastructure upon which to deliver their product-specific function-
ality. Not only is it a wasteful use of programmer time, but it also has led
to islands of tools and applications that are disjointed and inconsistent.”

2.1.4 Discussion

So far, we have described the terms CASE and CASE system, examined CASE clas-
sification from two different viewpoints, and discussed how the term IDE relates
to these classifications. However, the two different points of view to CASE classifi-
cation discussed are not the only ones out there. For example, Wallnau and Feiler
[55] discuss CASE coalition and CASE federation environments as evolutionary suc-
cessors of IPSE. CASE coalition environments are characterized by ad hoc, control-
oriented integration and CASE federation environments are characterized by flexi-
ble, services oriented integration (integration is discussed in Section 2.3).

In addition, there are terms like SEE (Software Engineering Environment) [8],
SDE (Software Development Environment) [58], and a dozen others, not to forget
different interpretations of them. The terminology has without doubt become an ob-
stacle of some sort. Ironically, a non-scientific term like IDE seems to be a term with
the clearest meaning, at least for a nonprofessional software engineer. It is some-
thing everybody with some software engineering experience is familiar with, and
as a term it contains few built-in limits or requirements for its features, behaviour,
or mechanics.

11

2.2 Separation of Concerns - Tool Interfacing

Fuggetta’s classification (see Section 2.1.1) provides the following separate concerns:
tools, workbenches, and environments. In this section, it is examined how the sepa-
ration itself is carried out in a (host) CASE system consisting of multiple tools. This
leads us to tool interfacing2. Pressman uses the terms tools management services
and tools layer [44]. Conformity means that the software must conform to already
existing interfaces and human institutions [7]. Our discussion on tool interfacing
concerns one type of conformity, the conformity between the separate parts of a
CASE system. However, one should note that the separation used in this section
is only one way to achieve separation of concerns. A different separation could be
achieved by using different kind of concern, e.g. a function of a CASE system.

Cohesion and coupling are often discussed when dividing a program into mod-
ules. They are also relevant on another (higher) level—when interfacing and in-
tegrating tools in a CASE system. Cohesion is not so much an issue on the tool
level, as a tool usually supports a specific task, but when discussing cohesion of
tools in a workbench or environment, it could be an issue. Coupling, on the other
hand, is essential to tool interfacing. Yang and Han [58] use the level of coupling
as a defining characteristic of tool interfacing. They describe tool interfacing in SDE
(Software Development Environment) with a three level classification: uncoupled,
tightly-coupled, and loosely-coupled interfacing paradigms. These are examined
next. Figures 2.2, 2.3, and 2.4 describe tool interfacing using a conceptual archi-
tecture where there’s one generic front-end, multiple back-end tools, and a generic
interface between front-end and back-ends. These figures have been redrawn from
[59].

2.2.1 Interfacing paradigms

In the uncoupled interfacing paradigm, all communication among tools is via oper-
ating system facilities and each tool has its separately executable code. This class of
tool interfacing reduces the need for user input between tool activations and allows
the feedback from the tools to be associated with the relevant sections of the input.
See Figure 2.2.

In the tightly-coupled interfacing paradigm, all communication among tools is

2When tool interfacing is discussed in this section, discussion can also include interfacing work-
benches when appropriate.

12

Figure 2.2: Information flow in the uncoupled interfacing paradigm [59].

computer generated and the tools are combined in a single system by linking com-
patibly compiled modules. In addition to the benefits of the previous class, tightly-
coupled interfacing improves productivity by eliminating tool-generated delay, by
exploiting techniques such as incremental data processing and concurrent execution
of tools and, hence, by reducing the user’s “thinking time”. See Figure 2.3.

In the loosely-coupled interfacing paradigm, tools communicate in some man-
ner smart enough to achieve user satisfaction, but each tool has sufficient separation
to maintain system flexibility, e.g. by using database, object base, or message pass-
ing paradigm (data and control integration, see Sections 2.3.2 and 2.3.3). This is
illustrated in Figure 2.4. [58]

2.2.2 Discussion

Yang et al. [59] discuss supporting multiple tool integration paradigms within a sin-
gle environment, and conclude that in most SDEs tools are integrated via a tool inter-
face based on a single interfacing paradigm. Whereas, Sharon and Bell [47] present a
model of levels of tool integration, where single-vendor tool integration (ICASE) has
some tightly integrated core tools (tightly-coupled interfacing paradigm) and an-
other vendor’s tools are integrated via a separating interface (uncoupled or loosely

13

Figure 2.3: Information flow in the tightly-coupled interfacing paradigm [59].

Figure 2.4: Information flow in the loosely-coupled interfacing paradigm [59].

14

Figure 2.5: CASE system interfacing and roles.

coupled interfacing paradigm). In this model, IPSE uses only loosely-coupled in-
terfacing paradigm with all the tools on the same side of repository manager and
integration facilities (the tool interface). Figure 2.5 presents a simplified illustration
of the possible roles of a CASE system, using Fuggetta’s CASE classification. Simple
tool-bridge interconnections between CASE systems are not considered. The roles
are:

� Host. This is the hosting CASE system which defines the agreements or me-
chanics of integration—the infrastructure. A host can be an environment or
a workbench and it includes the core tools and workbenches which are con-
nected to it using the tightly-coupled interfacing paradigm.

� Extension. These tools all share the same interface with the host, each tool
with a workbench, or each tool or workbench with an environment (see Figure
2.5). Extensions are connected using uncoupled or loosely-coupled interfacing
paradigm.

15

2.3 Integration of Concerns - Levels of Tool Integration

“Any separation of concerns mechanism must include powerful integra-
tion mechanisms, to permit the selective integration of the separate con-
cerns.” [33]

Integration includes front-end integration, which consists of presentation or user-
interface integration, and back-end integration, which consists of data and control
integration [59]. These are presented in the light of properties provided by Thomas
and Nejmeh [52], which characterize the various integration relationships between
tools. A matter to note is that Thomas and Nejmeh consider binary relationships,
relationships between two tools, and believe that the properties in integration of
many tools can be derived as aggregate properties. Presentation, data, and control
integration are conceptual levels of integration, and they do not describe the actual
mechanics of integration, which are left mostly out of consideration.

Brown et al. [9] say that there are two distinct approaches to integration. First
is based on providing a common infrastructure in which tools can be embedded
(framework integration, see 2.3.4), the other concentrating on the tools themselves.
They refer to the first as IPSE approach and latter as CASE approach.

Different types of integration are often encapsulated into services such as user
interface services, data integration services, and message server services. CASE sys-
tem can then provide invidual (tool) interfaces for particular services, and tools can
integrate with services relevant to their needs. [55]

2.3.1 Presentation Integration

The aim of presentation integration is to reduce user’s cognitive load by letting
users interact with tools consistently. This makes new tools much easier to learn and
leads to reduced training and support costs. Presentation integration deals almost
exclusively with window-based graphical user interfaces nowadays, as text-based
user interfaces are becoming rare. Window-based tools have four levels to encapsu-
late presentation integration: the window system, the window manager, the user-
interface-development tool kit, and the look-and-feel guidelines. User interface also
has to meet the user’s response time expectations and ensure that the information it
presents to user is useful and correct. [11, 52, 55, 61]

Essential properties of presentation integration, and the questions they answer,
are [52]:

16

� Appearance and behaviour, “How easy is it to interact with one tool, having al-
ready learned to interact with the other?”

� Interaction paradigm, “How easy is it to interact with one tool having already
learned the interaction paradigm of the other?”

2.3.2 Data Integration

Data integration means that tools can transfer information, and keep the informa-
tion consistent. This data includes persistent and nonpersistent data. Nonpersistent
data is information that does not survive the execution of the tools that are shar-
ing and exchanging it. Information sharing methods between tools can be divided
into four categories: direct, file-based, communication-based, and repository-based.
Sharing metadata between tools can be used to achieve a higher degree of data in-
tegration. [11, 52]

The properties of data integration and questions they answer, given by Thomas
and Nejmeh [52], are :

� Interoperability, “How much work must be done to make the data used by one
tool manipulable by the other?”

� Nonredundancy, “How much data managed by a tool is duplicated in or can be
derived from the data managed by the other?”

� Data consistency, “How well do the tools indicate the actions they perform on
data that is subject to some semantic constraint so that other parts of the envi-
ronment can act appropriately?”

� Data exchange, “How much work must be done to make the data generated by
one tool usable by the other?”

� Synchronization, “How well does a tool communicate changes it makes to the
values of nonpersistent, common data so that other tools it is cooperating with
may synchronize their values for the data?”

2.3.3 Control Integration

Control integration is concerned with providing mechanisms for one tool to control
the activation of other tools in the CASE system. Ideally, all the functions offered

17

by all the tools in an environment should be accessible (as appropriate) to all other
tools, and the tools that provide functions need not know what tools will be con-
structed to use their functions. Mechanisms for control integration include methods
such as explicit message passing, time- or access-activated triggers, and message
servers. [11, 48, 52]

Essential properties of control integration, and the questions they answer are
[52]:

� Provision, “To what extent are a tool’s services used by other tools in the envi-
ronment?”

� Use, “To what extent does a tool use the services provided by other tools in the
environment?”

2.3.4 Other Levels of Integration

Integration occurs also on some other levels with CASE systems. These levels can
be considered as concerning the CASE system as a whole, and not so much invid-
ual tools themselves. This is not intended to be an exhaustive list, but it describes
shortly some commonly discussed levels of integration:

� Framework Integration. “The integration framework is a collection of spe-
cialized programs that enables invidual CASE tools to communicate with one
another, to create project data base, to exhibit the same look and feel to the
end-user (the software engineer).” [44] Tool integration frameworks define the
mechanics for the conceptual levels of integration discussed earlier (presenta-
tion, data, and control). Frameworks define how these levels of integration are
provided and utilized. This is achieved partially by providing means to regis-
ter and encapsulate tools. Encapsulation establishes a “wrapper” that presents
the essential aspects of the tool that is to be integrated [47].

� Platform Integration. A CASE system is built on hardware platform and oper-
ating system facilities. Platform integration is concerned with integrating the
CASE system in a reasonable way to these facilities. This usually demands the
use of portability services. Pressman [44] describes portability services as fol-
lows: “A set of portability services provides a bridge between CASE tools and

18

their integration framework and the environment architecture. Portability ser-
vices allow CASE tools and their integration framework to migrate across dif-
ferent hardware platforms and operating systems without significant adaptive
maintenance.” Platform integration also includes migrating between different
versions of the same operating system.

� Process Integration. Process integration means that the CASE system has em-
bedded knowledge about the (software) process activities, their phasing, their
constraints, and the tools needed to support these activities [48]. Aim of pro-
cess integration is to make the conceptual task-execution chain explicit, flexi-
ble, and reusable; in a process-driven environment (or process-centered envi-
ronment, described in Section 2.1.1), the process integration is achieved by a
formal software process model and a process driver that interprets and exe-
cutes it [39].

� Organizational Integration. A CASE system also has to work on an organi-
zational context for it to be effective. Organizational integration can be di-
vided into three levels; first and the highest level is enterprise level, which
includes planning how development processes should be managed; second
level is project level, which includes project and process management, impact
analysis and change management, documentation, and reuse; lowest level is
team and invidual level, which includes the execution of software process (see
above) [11]. The lifecycle of a CASE system usually includes the introduction
of a CASE system into an organization, customization, removal, and many
activities in between. All these activities can also be thought of as part of or-
ganizational integration.

2.3.5 Discussion

Brown and McDermid [10] have a different way to look at tool integration than the
one presented earlier. They divide tool integration into five levels, from low to high:
carrier level, lexical level, syntactic level, semantic level, and method level. These
levels progress from low to high in their ability to record, share, and transfer infor-
mation among tools. Carrier level integration provides a common view on the data,
like a byte stream on Unix, but each tool must analyze and process its entire input.
On lexical level tools share data formats and operating conventions, but the conven-
tions are embedded in the tools and tools don’t understand operations carried out

19

by other tools. On syntactic level tools agree on the rules governing formation of
data structures and avoid repeating actions of analyzing, validating and converting
them. On semantic level tools agree on the data structure definitions, as well as the
meanings of the operations on those structures. On method level tools agree not only
on the data structures and operations, but also the specific development process
(process integration). [8, 10]

Viewers in different roles have different points of view to integration. Thomas
and Nejmeh [52] describe the environment user’s and the environment builder’s
points of view. User is concerned with the perceived integration, which is a seam-
less collection of tools, hopefully. The builder is concerned with the feasibility and
effort needed to achieve this integration. Wallnau and Feiler [55] also mention these
and add the vendor’s perspective, who is looking for platform availability of inte-
gration mechanics. All these perspectives are important and must be assessed when
designing a CASE system.

Tool integration (and interfacing) in CASE systems has some similarities with
EAI (Enterprise Application Integration). Linthicum [37] describes EAI as follows:
“Put briefly, EAI is the unrestricted sharing of data and business processes among
any connected applications and data sources in the enterprise.” He also continues:
“The demand of the enterprise is to share data and processes without having to make
sweeping changes to the applications or data structures. Only by creating a method
of accomplishing this integration can EAI be both functional and cost effective.” Al-
though EAI may use the same mechanics of integration that are used to integrate
tools in a CASE systems, and the integration occurs on the same conceptual levels
(presentation, data, and control), the goals are different. As EAI tries to share data
and processes between applications without having to make sweeping changes to
them, the goal of tool integration in CASE systems is to produce a coherent “envi-
ronment”, a single application, which utilizes tools seamlessly and in a consistent
manner, so that no tool it integrates has to be used as a separate application. Also,
the scope of tool integration in CASE systems is smaller than in EAI, and concerns
mostly CASE tools.

Brown et al. [8] discuss integration and reuse, and argue that these “twin goals”
are fundamentally in conflict. They say that the tighter the integration between
tools, the harder the tools are to be reused in another environment. This is an inter-
esting point, as tight integration tends to make a tool specific to a particular context.
This thought leads us to the next section.

20

2.4 Key Challenges

Harrison et al. [33] discuss the key challenges of software engineering tools and
environments. This section is based on their discussion. Software engineering tools
and environments in their discussion are considered equivalent to CASE systems.
Section 2.4.4 provides some discussion on the matters examined.

The need for integration has been the driving force for new lines of research, and
integration has been accomplished in many ways (integration was discussed in Sec-
tion 2.3). Also, a vast collection of tools have been prototyped or marketed, some
in the context of environments, some as stand-alone applications. But the state-
of-the-practice in software engineering has not advanced as much as the tools and
integration mechanisms would imply. The key reason for this is that each tool or
environment is highly specific to some context—it might require the software it ma-
nipulates to be written in a particular language, or it might run only on a particular
hardware or operating system, etc. Context-specific software is a common problem
already mentioned with IDEs (see Section 2.1.3). A major challenge is to find ways
to build and integrate tools so that they, or capabilities within them, can easily be
adapted for use in new contexts.

Figure 2.6 illustrates the current relationship of software and change. Change
forces software to integrate and interact with other pieces of software, and to evolve
and adapt to new contexts, e.g. new hardware, business practices, etc. Brooks [7]
explains the cause of change as follows: “In short, the software product is embedded
in a cultural matrix of applications, users, laws, and machine vehicles. These all
change continually, and their changes inexorably force change upon the software
product.” Current technology offers only an opportunity to anticipate and pre-plan
for change, by building “open points” using techniques such as frameworks and
design patterns [29]. However, it is impossible to anticipate all future needs, and
the pressure to market and publish in many areas of business is too great to allow
careful pre-planning and, hence, stable reuse.

2.4.1 Permanently Malleable Software

“In a nutshell, software is currently like clay, and it needs to become like
gold. Clay is soft and malleable initially, but then it hardens. After that,
bumps can be added to it, but it cannot be changed or reshaped without
breakage. Attempts to force a hardened clay peg into a hole of a different

21

Software Change

Evolve & Adapt

Anticipate & Pre-Plan Pressure to market
and publish

Impossible to anticipate
all future needsFrameworks &

Design Patterns

Integrate & Interact

Figure 2.6: Current relationship of software and change [33].

22

shape are likely to lead to breakage. Gold, on the other hand, remains
malleable for life. It can be reshaped as needed, and will assume the
shape of a hole into which it is hammered.” [33]

Harrison et al. [33] also introduce the term morphogenic3 software which refers to
software that is malleable for life: sufficiently adaptable to allow context mismatch
to be overcome with acceptable effort, repeatedly, as new, unancticipated contexts
arise. Morphogenic software requires a commitment to integration, but not to any
particular approach.

“In other words, the challenge is to find ways to write software, and tools
to manipulate software, that will facilitate both rapid initial development
and later adaptation and integration in new contexts, without up-front
knowledge of what those contexts will be.” [33]

Brooks [7] says that all successful software gets changed, and as software is pure
thought-stuff, it is infinitely malleable. However, making software adaptable with
acceptable effort—or morphogenic, can be difficult.

2.4.2 Separation and Integration of Concerns

Major barrier for morphogenic software and software altogether is inadequate sep-
aration of concerns. Traditionally, separation is carried out through one dimension,
e.g., functional or data decomposition. However, as described earlier, it should be
carried out using multiple (often unorthogonal or overlapping) dimensions, includ-
ing, for example, feature, aspect, role, viewpoint, and unit of change. This is called
multi-dimensional separation of concerns [51]. Some concerns can be identified early
in the development, some are identified later. As was mentioned in Section 2.3, af-
ter separation the separate concerns must also be integrated in a meaningful way.
Fundamental requirements for morphogenesis are to identify the concerns in the
software, to be able extract them as components, and to later integrate them into
new contexts.

3“morphogenic” is derived from “morphogenesis” which means the development of form and
structure in an organism during its growth from embryo to adult." [Collins English Dictionary, 5th
Edition]

23

2.4.3 Meeting the Challenges

CASE systems play a crucial role in meeting the challenges discussed above. Multi-
dimensional separation of concerns requires support of CASE system to make the
separation an ongoing and consistent process of identifying new concerns, encap-
sulating them using modularization mechanisms, and finally integrating them by
matching and reconciliating. Also, visualization of concerns and their relationships
is essential for understanding, and for developers to be able to focus on particular
concerns relevant for a specific situation.

“Fully achieving the goal of multi-dimensional separation of concerns will re-
quire new research and the synthesis of existing research in a variety of software
engineering and other areas. These include software architecture, refactoring and
reengineering, component based software engineering, software analysis, software
specification, methodologies, programming (and other) languages, HCI, and visu-
alization.” [33]

CASE systems can also provide other kinds of support for engineering of mor-
phogenic software. This includes managing dependencies and interactions, adapta-
tion, and correctness and consistency management. Support for morphogenic soft-
ware in CASE systems should cause minimum intrusion to development of soft-
ware, or the market pressures will render it unacceptable. Adaptation is necessary
after the software is extracted from its context. Software has to meet new needs in
new contexts before it can be integrated. After it has been integrated, diverse check-
ing and testing must be performed to ensure that the result is correct and consistent.
All these tasks need desperately support from CASE systems.

2.4.4 Discussion

The concept of morphogenic software is relevant to CASE systems for two reasons.
Firstly, tight integration of tools into a CASE system, which is a key theme with
CASE systems, tends to make tools specific to the (host) CASE system in question.
If a tool is to be used in a different CASE system, a new encapsulation “by hand” is
needed with current technology. The new encapsulation might not even be possible
without reconstructing the tool from scratch. Morphogenic extraction and adap-
tation mechanisms could be used instead. Secondly, support of CASE systems is
needed in building of morphogenic software. A key challenge essential to mor-
phogenic software, the multi-dimensional separation of concerns, and especially

24

managing the multiple dimensions, their dependpencies, etc., can not be done with-
out support of CASE systems.

An example of a programming technique that takes multi-dimensional separa-
tion of concerns into practice is AOSD (Aspect-Oriented Software Development)
[22]. AOSD increases the expressiveness of object-oriented programming by provid-
ing mechanisms for simplifying and localizing the expressions of crosscutting con-
cerns, working towards simpler system evolution, more comprehensive systems,
adaptability, customizability, and easier reuse.

2.5 Summary

In this chapter, CASE systems were reviewed from various points of view. First,
CASE classification was discussed from two different viewpoints, breadth of sup-
port for software development and relative level of integration, and the former clas-
sification was used as a reference framework. This classification provided us with
the separate concerns: tools, workbenches, and environments, or the identification
of concerns. Also, it was discussed how the term IDE relates to CASE classification.
A separation of concerns in CASE systems was discussed, using a three-level clas-
sification of tool interfacing, which divides tool interfacing into uncoupled, tightly-
coupled, and loosely-coupled levels. This was considered in respect of the CASE
classification. After that, integration of the separate concerns, the “Holy Grail” of
CASE technology, was discussed in terms of conceptual levels of tool integration:
presentation, data, and control. Also, other research-based views to integration were
discussed, with issues concerning integration in general. And finally, key challenges
of CASE systems were discussed, which included achieving permanently malleable
software and multi-dimensional separation of concerns, which are in fact challenges
for software altogether, but need support from CASE systems.

This chapter has also been an introduction to the complexity of CASE systems.
Complexity is an issue that concerns all software [7], but especially CASE systems
as they can consist of several integrated tools. A role of a CASE system is to help
software developers see relevant matters of software more clearly in a particular
development situation. Also for clarity’s sake, this discussion has not been tied to
the dozens of standards and standardization attempts that have (in a way) burdened
CASE systems throughout their history.

25

3 An Introduction to Eclipse

This chapter provides an introduction to Eclipse, including an explanation of the
basic concepts, an architectural overview, and a description of the license model.

Eclipse is often identified as three different things [12]:
� an integration platform for tools and applications. Eclipse’s plug-in1 based

framework provides an easy way for developers to construct and utilize their
software tools in a cohesive way and provide them with a consistent look and
feel. Eclipse platform works on various operating systems contributing a ro-
bust set of different application development tools. Eclipse platform was orig-
inally produced to solve the lack of interoperability among tools.

� an open source community. “Eclipse Foundation is non-profit corporation
formed to advance the creation, evolution, promotion, and support of the
Eclipse Platform and to cultivate both an open source community and an ecosys-
tem of complementary products, capabilities, and services.” [18] Eclipse.org
is the website of the Eclipse Foundation, and it contains information about
Eclipse projects and various additional issues, including technical articles writ-
ten by Eclipse developers. It was formed in November 2001 by Borland, IBM,
MERANT, QNX Software Systems, Rational Software, Red Hat, SuSE, Togeth-
erSoft, and Webgain. Later eclipse.org has been joined by many more, and
now it consists of over a hundred member companies.

� Java development environment. Eclipse is also an efficient Java development
environment (Java IDE). The Java development side is called Java Develop-
ment Tooling (JDT). It contains tools for editing, debugging, refactoring, and
much more. It also has integrated support for Apache Ant tool and unit test-
ing with JUnit. One highly useful feature for developers is that Eclipse has ad-
vanced search facilities that allow the developer to search through the source
code. Eclipse also ships with its own source code.

For our purposes the first is the most interesting, so from hereafter Eclipse is mostly
considered as an integration platform. However, Eclipse is much more than just

1plug-in is basically an extension, see Section 2.2.2.

26

Figure 3.1: Eclipse Platform and Eclipse Project [34].

these three things. Eclipse is language-independent in the sense that IDEs for vari-
ous languages can be, and have been built on Eclipse. Eclipse is also used for web
technologies, modeling, version control, and various other things. Eclipse is not tied
down to just extending the platform capabilities, as parts of Eclipse platform can be
used to produce stand-alone applications. These are called Rich Client Platform
(RCP) applications. [12, 18, 42]

The development of Eclipse is divided into projects which are hosted by the
Eclipse Foundation. The platform itself is developed in the Eclipse Project, which
also contains subprojects for JDT and PDE (Plug-in Development Environment).
These three pieces form the Eclipse SDK (Software Developer’s Kit), a complete
environment for developing Eclipse tools. Coarse-grained components of Eclipse
platform and Eclipse Project are depicted in Figure 3.1.

27

Figure 3.2: Eclipse Resource Perspective

3.1 Basic Concepts and Facilities

This section describes basic concepts and facilities of Eclipse Platform.

3.1.1 Workspace and Resources

Workspace is the “root” container of resources that the user, or the tools, interact
with when using Eclipse. Workspace can contain only projects on the root level,
and Eclipse uses a single workspace when running. Projects are top-level containers
under the workspace which map into user-specified directories in the file system
and contain the necessary files and folders. Projects, folders, and files are called
resources.

3.1.2 Workbench User Interface

Workbench is the user interface of Eclipse which provides a consistent front-end to
Eclipse tools. From user’s point of view workbench and Eclipse are basically the
same thing. Main components of workbench are editors, views, and perspectives.

� Editor is used to edit or browse resources.

28

� View is a visual component used mainly to navigate the hierarchy of informa-
tion and to open editors, e.g. a tree view.

� Perspective is a group of views and editors in the workbench, a meaningful
configuration for a specific purpose, e.g. Java development.

Figure 3.2 is a screenshot of the Eclipse resource perspective, a perspective for basic
management of resources. The largest (top right) window is the editor area and
the other three windows are different views. All four form the resource perspective
in its default configuration. Perspectives can be customized to user’s needs, for
example by adding additional views.

Note: Workbench in Eclipse refers to the user-interface, whereas workbench discussed
when examining CASE classification in Section 2.1.1 referred to several tools integrated in
a single application.

3.1.3 Facilities

Eclipse platform provides various facilities in addition to the base platform, consis-
tent user interface, and resource model. These are described below.

� Ant. Eclipse/Ant integration. Ant is a Java based build tool.

� Compare. Universal compare facility. For example, provides support for com-
paring and merging resources with local history.

� CVS. Platform CVS Integration. A pure Java client for CVS, which is tightly
integrated into Eclipse.

� Debug. Generic execution debug framework. Provides language independent
facilities for launching programs, defining and registering breakpoints, a lan-
guage independent debug model and UI, etc.

� Help. Platform help system. Provides mechanisms for handling online docu-
mentation using native browser of the operating system.

� Search. Integrated search facility. Defines an extensible infrastructure for pro-
viding search functionality to the workbench.

� Text. Text editor framework. Provides basic building blocks for text and text
editors.

29

� Update. Dynamic Update/Install/Field Service. The Update Manager of Eclipse,
see Section 3.2.1.

� Team. Generic team support framework. Provides mechanisms for repository
tools to integrate functionality of their repository solution into Eclipse.

These are all managed as separate components of the Platform subproject.[18]

3.2 Architecture

“The architecture of Eclipse, like its development, is community ori-
ented. A plug-in is a unit of functionality in a neighborhood of other
plug-ins. Like a real community, one bad neighbor affects all of its resi-
dents.” [36]

Eclipse’s architecture differs somewhat from a typical extensible IDE. Eclipse was
built with architectural top priorities in extensibility and integration. In Eclipse,
there are no core tools in the platform itself, all tools are implemented as extensions,
including the graphical user interface. Birsan [4] calls an architecture like this a pure
plug-in architecture. In Eclipse, the only component that has to be always loaded is
the run-time kernel (or Platform Runtime), which handles the activating of exten-
sions equally. In a typical extensible IDE, there are tightly integrated or “built-in”
core tools in the IDE in addition to extensions. Figure 3.3 illustrates the difference.
[12, 42]

The Eclipse platform runs on a single Java virtual machine, and is built using ob-
ject oriented architecture. The extensions in Eclipse are called plug-ins, and basically
a plug-in consists of a declarative manifest file and Java JAR-files, which contain the
functionality. With the manifest, Eclipse makes a distinction between public and
published interfaces. Plug-ins explicitly declare their “open points”, where other
plug-ins can connect to, and they must do so by using uniform mechanics. Without
uniform mechanics, it would be unlikely that Eclipse could function as a coherent
whole, as every public method would be a potential point of extension. Plug-ins are
examined more thoroughly in Chapter 5. [23, 26]

30

Figure 3.3: Typical extensible IDE architecture vs. Eclipse architecture [26].

3.2.1 Packaging

Eclipse has three kinds of installable components: plug-ins, fragments, and features.
The basic component is plug-in, which is the smallest unit of function. Fragments
are parts which provide additional functionality or content to existing plug-ins, like
tongue or operating system dependent behaviour. Plug-ins and fragments are pack-
aged into deliverable and maintainable units called features, which are managed by
the Update Manager of Eclipse. Update Manager is used to install new features
from update sites which can reside on web locations or on local filesystems. Up-
date Manager installs features into an install location and Eclipse can use features
from multiple install locations when run. Plug-ins (separate from features) can be
installed into Eclipse without the use of Update Manager, but this can easily lead
to problems with updating and uninstalling. Update Manager and features are the
answer to efficient package management mechanics demanded by Eclipse’s pure
plug-in architecture. Components of package management and their relationships
are illustrated in Figure 3.4.

3.2.2 UI Frameworks

Workbench is built using two frameworks, SWT and JFace, which are the means to
provide presentation integration into Eclipse.

� SWT stands for Standard Widget Toolkit. Eclipse does not build its user-

31

Figure 3.4: Eclipse packaging and feature management.

interface on traditional Java AWT (Abstract Window Toolkit) and Swing wid-
get sets, it ships with a widget set of its own—SWT. More precisely, SWT is
a Java API (Application Programming Interface) to operating system’s native
widget toolkit, so Eclipse looks like a native application depending on the op-
erating system it was built for. SWT uses JNI (Java Native Interface) to ac-
cess the native toolkit and enforces a one-to-one mapping between Java native
methods and operating system calls. If no native widget is available for a spe-
cific task, SWT emulates the widget in Java. [12, 40]

� JFace builds itself upon SWT and is a set of frameworks for common UI tasks
to be used in conjunction with, and to enhance SWT widgets. JFace provides
helper classes such as viewers, actions, contributions, image and font reg-
istries, dialogs, and wizards. JFace does not try to hide SWT, or replace its
functionality. [12, 14]

32

3.3 License Model

Eclipse’s architecture is highly modular as it is based on features, plug-ins, and frag-
ments. An Eclipse installation typically consists of parts authored and distributed
by multiple parties with different licenses for their content. Collecting all the dif-
ferent licenses and notices into a single license file, which is sometimes done with
less modular applications, is not very reasonable, readable, or maintainable with
Eclipse.

The convention for delivering Eclipse based content is to use one umbrella agree-
ment on the top (installation or root feature) level. This agreement is called Eclipse
Foundation Software User Agreement (SUA) [20]. SUA does not grant any rights,
it only describes the potential layout of legal documentation and references other
invidual licenses that may reside in plug-in and feature directories. However, SUA
states that if no invidual licenses are provided, Eclipse Public License (EPL) [21] ap-
plies for the content. Usually, SUA is displayed when installing a feature using the
Eclipse Update Manager. Simply, SUA states that the user is responsible for reading
the licenses in specific locations of installation directories of the invidual features
and plug-ins, and must accept the terms and conditions if intending to use them.
[17]

3.4 Discussion

A pure plug-in architecture, like the architecture of Eclipse, provides a way to offer
modular functionality to customers, respond quickly to changes in requirements,
and offer upgradeability. This assesses the pressure to market and publish that ex-
ists on many areas of business (mentioned in Section 2.4). But there is a price to pay.
Birsan [4] describes four challenging issues of pure plug-in architectures. These are
installing and updating, security, concurrent plug-in version support, and scalabil-
ity. Installing and updating is a major issue, as users can install and use plug-ins
from various sources, and there is a possibility that the resulting configuration has
never been tested. The three other challenges follow (more or less directly) from
installing and updating. Security is an issue as plug-in providers have to be trusted
and plug-ins with serious bugs can do serious damage. Managing concurrent plug-
in versions is not simple—if two different versions of the same plug-in are installed
(on different install locations that are both used), it must be decided which one to

33

use. Plug-in dependencies make the decision more difficult, as some plug-ins might
require a specific version of another. Scalability is a challenge since the architecture
should scale up to large systems of thousands of plug-ins and down to devices with
limited resources like cell phones.

3.5 Summary

In this chapter, a short introduction to Eclipse was provided. First, three differ-
ent things that Eclipse is usually associated with, were described: an integration
platform for tools and applications, an open source community, and a Java devel-
opment environment. The first, Eclipse platform, was chosen as a subject for closer
inspection. Basic concepts of Eclipse were described, including the workspace, the
resources, and the workbench user interface. Eclipse architecture was reviewed,
and it was explained how it differs from a normal extensible IDE—by being a pure
plug-in architecture. The packaging in Eclipse was described, including plug-ins
as functional components and features as units of deployment. Also, the two user
interface frameworks used to build workbench, SWT and JFace, were introduced.
The license model was described and some discussion on pure plug-in architectures
in general was provided.

34

4 Eclipse as a CASE System

This chapter considers how Eclipse relates to discussion on Chapter 2. This dis-
cussion considers only Eclipse Platform, with a few remarks to Eclipse SDK. First,
Eclipse is discussed in respect of CASE classification by Fuggetta [24], which was
introduced in Section 2.1.1. After that, tool interfacing and integration in Eclipse
are examined. The key challenges of CASE systems in the context of Eclipse are
discussed last.

4.1 Classification

IDEs for various languages are build on top of the Eclipse Platform, and in fact
Eclipse SDK ships with two IDEs of its own: Java Development Tooling (JDT) and
Plug-in Development Environment (PDE). An IDE should be classified as a pro-
gramming workbench in most cases (see Section 2.1.3), so supporting multiple IDEs
makes Eclipse an environment.

It is proposed that Eclipse should be classified as an integrated environment (see
Section 2.1.1). Even though Eclipse does not have a proprietary database, it provides
a common resource model that provides an opportunity for relatively tight data
integration of invidual tools. Consistent presentation integration is provided by two
UI frameworks: SWT and JFace. In addition, tools encapsulated using Eclipse plug-
in model utilize powerful mechanics of control integration. However, Eclipse can
be used to build stand-alone applications which have a select part of the building
blocks of the environment itself and possible extensions in addition. This is clearly
beyond the normal notion of any type of CASE environment.

4.2 Tool Interfacing

Basically, a tool can be interfaced into Eclipse by using the Eclipse APIs, or on in-
vocation level without using the APIs. Besides that, the tool can be interfaced from
inside or outside the Java virtual machine. Naturally, the most efficient way to con-
nect to Eclipse is to connect via Eclipse APIs, but it requires encapsulating the tool

35

Figure 4.1: Tool interfacing in Eclipse.

using the plug-in model (discussed in Section 5.2.2). This is not always reasonable
as using the plug-in model requires providing Java interface(s) for the tool, which
is nontrivial when the tool is implemented in a different programming language.
External tools can, however, be integrated with some level of integration without
encapsulation.

The Eclipse APIs are also used to abstract operating system dependent concepts
that Java virtual machine does not abstract adequately. An example is the Jobs API,
which provides the responsiveness and concurrency framework of Eclipse.

The resulting four different cases for tool interfacing are (see Figure 4.1):

1. An external tool is interfaced, but not through the APIs. This is usually the case
when user wants to associate a familiar external tool with a specific filetype
in Eclipse. Eclipse uses an operating system independent registry mechanism
that can launch an existing tool in an external process when appropriate. An-
other possibility is to use the integrated Apache Ant support of Eclipse, and
launch external tools via Ant.

2. A Java tool is interfaced, but not through the APIs. A Java tool is not encapsulated

36

as a plug-in, but is used with Eclipse. If the tool is a complete Java application,
then it can be launched from Eclipse in at least three ways (in addition to using
Ant)—by using java.lang.RuntimeAPI, by using API provided by Eclipse
launching plug-in, or by using Eclipse launch configuration; launch configura-
tions abstract many tedious details that must be assessed with the lower level
APIs [57]. If the tool is not a complete Java application, it has to be packaged
as a plug-in (or in a plug-in) before it can be used.

3. An external tool is interfaced into Eclipse APIs through JNI. A non-Java tool can
also be encapsulated as a plug-in by providing implementations of the tool’s
interfaces through Java Native Interface. This way an external non-Java tool
can also access the Eclipse APIs.

4. A Java tool is encapsulated as a plug-in, and interfaced through Eclipse APIs. This is
the usual way to connect tools into Eclipse—by using Eclipse’s plug-in model
after encapsulating the tool in a plug-in and connecting it to relevant APIs.
A tool in Eclipse is implemented in one or more plug-ins. However, the tool
must be implemented in Java. Plug-in model is discussed in Chapter 5.

Cases 1 and 2 can be thought of as uncoupled interfacing. Cases 3 and 4 are con-
sidered loosely-coupled as they both use the APIs (tool interfaces). However, if the
Java virtual machine (JVM) is considered a single system, then everything inside it
would be considered tightly-coupled.

4.3 Levels of Tool Integration

Amsden [1] describes five levels of tool integration in Eclipse. These are: none,
invocation, data, API, and UI. This is a bit confusing division since Eclipse API
integration contains also APIs for data and UI integration. In this section, the levels
of tool integration introduced in Section 2.3 (presentation, data, and control) are
used as the basis for discussion.

Presentation integration in Eclipse can be achieved with or without using the
Eclipse APIs, as SWT and JFace can be used entirely separately from Eclipse. Of the
two frameworks, JFace concentrates on providing consistent interaction paradigm,
while SWT concentrates on consistent appearance and behaviour (See Section 2.3.1).
Cross-platform presentation integration requires using these frameworks. How-
ever, consistency in appearance differs from operating system to another, because

37

Figure 4.2: Eclipse APIs and levels of integration.

38

the native widget set is different on different platforms. Behaviour is attempted to
keep as consistent as possible. Regardless, the tightest presentation integration with
Eclipse requires using the workbench API, which enables the Eclipse workbench to
be easily extended with additional menus and other UI components. Integrating
with the workbench API uses a stack of APIs and frameworks: Workbench, JFace,
SWT, JNI, and the operating systems native widget set (see Figure 4.2).

Data integration in Eclipse is achieved mainly by using the workspace API.
Workspace has two views: a physical and a logical view. Physical view is a directory
in the user’s hard-drive, containing projects and project related information. Logi-
cal view is the internal in-memory representation of the contents of workspace—the
internal resource model. Workspace API is the means to provide tighter data inte-
gration to Eclipse tools and keep the physical and logical views synchronized. A
tool developer can use the components of the internal resource model to handle the
processing of resources. This is not compulsory, but when the API is used, tools are
integrated more tightly. Eclipse has no repository, but it has built-in client support
for CVS. Externally launched tools can also make use of the Eclipse team and ver-
sion control facilities when they are working with files in the Eclipse workspace. It
is rather difficult to discuss the distinct features of data integration in the context of
Eclipse. These features, introduced in Section 2.3.2, are: interoperability, nonredun-
dancy, data consistency, data exchange, and synchronization. Eclipse provides facilities
to utilize some of these, but does not enforce them. There is no common view of
the data that tools must use, and nonredundancy and data consistency are not han-
dled as these are mostly database issues. Eclipse platform or SDK doesn’t provide a
database or support for one. Data exchange happens largely on method level using
the published interfaces of distinct tools. Eclipse also provides resource change lis-
teners, persistent and nonpersistent resource properties, and much more. Still, data
integration is probably the “weakest” conceptual level of integration of the three
(presentation, data, and control). However, there already exists Eclipse Data Tools
Platform project [13].

Control integration in Eclipse is achieved by using the Eclipse plug-in model (see
Chapter 5). The plug-in model provides means for tools to offer services in a way
standard to Eclipse, which promotes provision and use. This is what Eclipse builds
upon. The Platform Runtime component handles the matching of service provider
plug-ins and service user plug-ins. A low level of control integration (invocation)
can also be achieved without the API by associating a tool with a specific type of re-

39

source, by using integrated Apache Ant support, or by using the internal launching
framework for Java applications.

Eclipse integration mechanics concentrate on providing several frameworks for
tool integration (the IPSE approach, see Section 2.1.2). These frameworks also pro-
vide portability services that allow Eclipse to be used on various platforms. Eclipse
Platform (or even SDK) provides no process integration framework for its tools, but
the platform can be used to build mechanics for one.

4.4 Discussion: Key Challenges

Eclipse promotes separation of concerns in many ways. By default, plug-ins are
identified as units of function and features as units of deployment. Tools for multi-
dimensional separation of concerns and management of concerns have also been de-
veloped for Eclipse, e.g. the AspectJ project [2], which is a seamless aspect-oriented
extension to the Java programming language. AspectJ promises to enable “clean
modularization of crosscutting concerns, such as error checking and handling, syn-
chronization, context-sensitive behavior, performance optimizations, monitoring and
logging, debugging support, and multi-object protocols.” Eclipse has proven to be
a platform that promotes easy integration of such new technologies. The vision of
permanently malleable software has not been achieved, and might never be. When
a tool is encapsulated as an Eclipse plug-in, the encapsulating mechanisms make the
encapsulated tool specific to Eclipse. Also, the encapsulation is not fully automated,
although Eclipse provides good tools for the encapsulation. Although Eclipse is
said to be language-neutral, using Eclipse APIs requires providing Java interfaces
for tools. If the tool itself is not implemented with Java, connecting it to the API
can be too difficult or clumsy to be worth the trouble. Tools and complete IDEs for
different languages can be constructed, but doing it through Eclipse APIs requires
using Java. In any case, new and interesting directions in software development are
researched using Eclipse technologies (e.g. [2], [6], and [46]).

4.5 Summary

In this chapter, it was proposed that Eclipse should be classified as an integrated
environment. Tool interfacing and integration in Eclipse were also discussed. Dis-
cussion included different ways tools can be connected to Eclipse platform and the

40

levels of integration that can be achieved. This discussion considered both Java and
non-Java tools. The key challenges of CASE systems were also considered in the
context of Eclipse.

41

5 Eclipse Platform: A Technical Overview

Everything is a contribution.
— Contribution Rule

This chapter discusses some essential Eclipse platform concepts, components,
and design decisions. Two essential concepts on which the Eclipse plug-in model
builds are explained first—extension points and extensions. The Platform Runtime
component is introduced after that. Plug-ins are examined on logical and physical
levels. Design decisions of Eclipse platform are discussed by introducing the Exten-
sion Object pattern, a design pattern used in Eclipse. Also, the rules of Eclipse are
introduced.

This chapter illustrates different relationships using the UML (Unified Modeling
Language) [41] notation. UML component, class, and sequence diagrams are used.
UML diagrams are also used in Chapter 6 to illustrate relationships in a practical
application.

5.1 Basic Concepts

This section describes the basic concepts of extensions, extension points, and the
Platform Runtime. Extensions and extension points are the glue that is used to bind
plug-ins together, whereas Platform Runtime is the component responsible for load-
ing and binding the plug-ins.

5.1.1 Extension Points and Extensions

An extension point defines a place where other plug-ins can introduce new capabili-
ties by contributing extensions. These capabilities can include additional functional-
ity or content of some sort. An extension point is a published interface to the world
outside the plug-in. There are no private extension points in Eclipse. An extension
point can be thought of as a service provided by an invidual plug-in, whereas an
extension is a contribution of a plug-in to some plug-in’s extension point. An exten-
sion “extends” a plug-in. Gamma and Beck [26] compare extension point to a power

42

strip and extensions to the power plugs that are plugged into the strip. [12, 26]
Typically, providing an extension to an extension point means introducing a class

that implements particular interface or interfaces that the use of the extension point
presumes. The extension point provider plug-in (host plug-in) can then process the
extensions when appropriate.

Extension points provided by Eclipse platform are described in the Eclipse Plat-
form Plug-in Developer Guide [14]. These extension points can be used to add
functionality or content to the Eclipse platform. This includes, but is not limited
to, workbench extensions such as menus and wizards, and core functionality such
as new resource types.

Extension points are the means of Eclipse-based tools to provide control integra-
tion. Providing an extension point promotes provision and providing an extension
to some other plug-in’s extension point promotes use (See Section 2.3.3).

5.1.2 Platform Runtime

The Platform Runtime component handles the activation of plug-ins in Eclipse. Ac-
tivating a plug-in means loading a plug-in’s runtime class and instantiating and
initializing its instance [5]. The Platform Runtime uses lazy loading (or late binding)
of plug-ins. On startup, it loads representatives of plug-ins into the memory us-
ing plug-ins’ manifest files. Every plug-in is treated equally. These representatives
contain the minimal information needed about the plug-ins. The plug-in classes
themselves are created only when needed. [26]

Eclipse 3.0 introduced a new Platform Runtime based on the OSGi framework
[43]. The new platform made it possible to load new plug-ins dynamically while
running Eclipse. With the old Platform Runtime, Eclipse had to be restarted for it to
recognize new plug-ins [12]. The new platform presents a plug-in from two different
points of view: in terms of Eclipse plug-in and in terms of the OSGi framework.
Basically, the latter considers only installation and packaging related issues and the
former everything else.

5.2 Plug-ins

Plug-ins are considered on two different levels. On the logical level, the different
relationships between plug-ins are considered. On the physical level, it is discussed

43

how plug-ins can be introduced and how the logical relationships can be declared
for the Platform Runtime.

5.2.1 Logical level

On the logical level, Eclipse has an in-memory representation of each plug-in, an
instantiation of the plug-in class or a representative of it. Each plug-in has its own
class loader and a separate namespace.

There are two kinds of plug-in relationships in Eclipse: Dependency relation-
ships and extension relationships. These relationships are defined in the plug-in
manifests of plug-ins involved (see Section 5.2.2). The relationships and the roles
they impose on plug-ins are examined next.

Prerequisite Plug-in Dependent Plug-in

requires

Figure 5.1: Plug-in dependency relationship.

Figure 5.1 depicts a dependency relationship, in which a dependent plug-in
reguires a prerequisite plug-in. Plug-in dependency relationships are very common
as the overall plug-in architecture forces a certain level of dependency. However,
the plug-ins are not very fine-grained—largest Eclipse (SDK) feature (excluding the
platform itself), JDT, consist of eleven plug-ins.

Host Plug-in

Extension Point

Extender Plug-in extends

Figure 5.2: Plug-in extension relationship.

Figure 5.2 depicts an extension relationship. In an extension relationship, an ex-
tender plug-in extends a host plug-in via an extension point. There can be multiple
extenders to each extension point and a host can have multiple extension points. A
plug-in can also extend an extension point multiple times and a host plug-in can

44

even extend its own extension point. Extending one’s own extension point is uti-
lized for example in the workbench pull-down menus. Workbench declares an ex-
tension point for adding menus and uses its own extension point to add the default
menu actions. This way, every menu element is treated uniformly. [5, 38]

Figure 5.3 gives a sample extension scenario on the logical level, considering
five plug-ins: A, B, C, D, and E. Plug-in D is dependent on plug-in A and extends
extension point 1 of plug-in B and extension point 3 of plug-in C. Plug-in D also
provides an extension point 4, which in part is extended by plug-in E. Extension
point 4 could be a derived service of services provided by extension points 1 and 3.

A

B

C

1

2

3

D

requires

extends

extends

4

E
extends

Figure 5.3: Sample plug-in extension scenario.

5.2.2 Physical level

On the physical level each plug-in is represented by a unique plug-in directory. The
plug-in directory uses the Java package naming convention to avoid name clashes.
This directory resides under the plugins-directory of Eclipse installation. The
plug-in directory usually contains:

� plugin.xml (the plug-in manifest);

� Java JAR-files;

� additional resources (icons, etc.).

45

The only obligatory file for describing a plug-in is the plug-in manifest file. Since
Eclipse 3.0, as a new Platform Runtime component was introduced, there have been
two kinds of manifests: plug-in manifests and bundle manifests. A plug-in manifest
is an XML-file which describes the extensions and extension points of a plug-in.
In the versions of Eclipse previous to 3.0, the plug-in manifest was also the only
place to describe plug-in dependencies and other related information. Since Eclipse
3.0, a second manifest file, bundle manifest, is used to describe the contents and
dependencies of a plug-in to the new OSGi-based runtime, but a plug-in manifest
is still needed to describe the extension relationships. If the Platform Runtime finds
only a plug-in manifest, it transparently generates a bundle manifest from it and
saves it in a configuration directory. Only the contents of a plug-in manifest are
examined in this thesis. The simplest plug-in can contain only a plug-in manifest
and use it to contribute some content to Eclipse. The possible functionality itself
provided by the plug-in is contained in Java JAR-files. A plug-in directory can also
contain some additional resources like icons, templates, and so on. Eclipse 3.1 also
enables the developer to ship a plug-in packaged as a single JAR file.

In a dependency relationship, the dependent plug-in could declare its depen-
dency in the following way in its plug-in manifest:

1 <r e q u i r e s>
2 <import plugin=" org . example . PreRequis i te " />
3 </ r e q u i r e s>

In an extension relationship, the host plug-in could have the following element
in its plug-in manifest for declaring the extension point:
<extension-point id="ExamplePoint"name="An example extension point"/>

And an extender plug-in could have in its plug-in manifest:
<extension point="org.foo.ExamplePoint"class="org.bar.AnExtension"/>

This is the extension relationship in its simplest form on the physical level. The
extension points and extensions have unique identifiers, and the extender plug-in
has to provide a class that conforms to the defined interface of an extension point.
This interface is often called the callback interface. In the example above, these identi-
fiers are org.foo.ExamplePoint and org.bar.AnExtension. Some extension
points may require more than one callback interface and some others do not require
any [4]. See Appendix A.2.1 or A.3.1 for a complete plug-in manifest.

The DTD (Document Type Definition) of the plug-in manifest can be found in
[14].

46

A host plug-in can also define an extension point schema for a given extension
point that can be used to check that the extension declaration contains valid ele-
ments. Often declaring an extension to an extension point requires providing some
structured information with XML-elements, some attributes and their expected val-
ues. [12]

5.3 Processing Extensions of an Extension Point

Eclipse platform provides API calls for plug-in developers to handle processing the
extensions of their extension points. Platform provides parsed representations of
extensions to the developer’s extension point, which were declared in the manifests
of the extender plug-ins. The following code snippet shows an example how exten-
sions can be processed (adapted from [12]):

1 I E x t e n s i o n R e g i s t r y er = Platform . getExtens ionRegis t ry () ;
2 IExtens ionPoint ep =
3 er . ge tExtens ionPoint (myPluginId , myExtensionPointId) ;
4 IExtens ion [] ex tens ions = ep . getExtens ions () ;
5
6 for (i n t i =0; i < extens ions . length ; i ++) {
7 IConfigurat ionElement [] ces =
8 extens ions [i] . getConfigurat ionElements () ;
9 / / h a n d l e c o n f i g u r a t i o n e l e m e n t s . . .

10 }

The methods in the example are quite self-explanatory. The essential classes are
listed below.

� Platform is the central class of Eclipse Platform Runtime, providing a facade
for the general platform services. Platform.getExtensionRegistry()-
method1 is used to get a hold of the extension registry.

� IExtensionRegistry is the interface of the extension registry. The exten-
sion registry contains all information specified by extensions to the extension
points.

� IExtensionPoint is an interface to an extension point of a host plug-in.

1In the versions of Eclipse previous to 3.0, Platform.getPluginRegistry()-method was
used.

47

Subject

+getExtension()

ConcreteSubject

+getExtension()

Extension

owner

SpecificExtension

 SpecificInterface()

ConcreteSpecificExtension

 SpecificInterface()

Figure 5.4: Basic structure of Extension Object pattern [28].

� IExtension is an interface to an extension of an extension point.

� IConfigurationElement is an interface to the parsed version of an exten-
sion element in a plug-in manifest of an extender plug-in.

The extensions to an extension point defined by a plug-in can be processed when
the plug-in class is loaded, or when the plug-in actually needs information about
the extensions. Former can cause some overhead when loading the plug-in. The
latter is the preferred way in Eclipse (Lazy Loading Rule, rule 2 of Table 5.1). [5, 12]

5.4 Design Decisions - Extension Object Pattern

Eclipse’s object-oriented design uses frameworks and a variety of design patterns.
These were mentioned in Section 2.4 as present techniques used to prepare software
for change. SWT and JFace are examples of (UI) frameworks used. An essential
pattern used in Eclipse, the Extension Object Pattern [28], is described next.

Extension Object pattern (a.k.a. Extension Interface) [28] is utilized throughout
the Eclipse architecture. The pattern’s intent is to: “Anticipate that an object’s in-
terface needs to be extended in the future. Extension Object lets you add interfaces
to a class and lets clients query whether an object has a particular extension.” As
consequences of using this pattern, bloated class interfaces for key abstractions can
be avoided and different roles in different subsystems for key abstractions can be

48

supported. A negative side effect is that clients become more complex, as using
an extended interface itself is more complex. Also, the subject’s interface does not
express all of its behaviour anymore, and thus it may become more difficult to un-
derstand. In addition, there is a tension to abuse extensions for concepts that should
be explicitly modeled.

Figure 5.4 illustrates the basic structure of Extension Object pattern. Subject
declares an operation to return a particular extension given a specification, and de-
fines how a specification is mapped to an extension. Extension is a base class
for all extensions of a subject. ConcreteSubject implements getExtension

for retrieving extensions, whereas SpecificExtension declares an interface for
a specific extension. ConcreteSpecificExtension implements an extension for
a particular ConcreteSubject and stores implementation- and extension-specific
state. ConcreteSpecificExtension knows its owning subject.

A similar querying of interfaces is often used in object broker architectures and
some programming languages provide extension facilities as default. For example,
object-oriented scripting language called Ruby [45] provides means to extend ob-
jects dynamically. Objects can also be queried if they implement a specific interface
(a mixin module in Ruby).

In Eclipse, the extension support is class-based. Behavior can be added to exist-
ing classes but not to specific existing instances of classes. Eclipse’s adapted version
of the Extension Object pattern includes the following classes (see Figure 5.5) :

� IAdaptable is the basic interface which defines the getAdapter-method for
retrieving a specific extension. getAdapter is passed the class literal of the
extension as an argument. A class can implement this interface, or subclass
PlatformObject to get the default bahaviour.

� IAdapterFactory is an interface to an adapter factory, which encapsulates
specific extensions for a particular type or types.

� IAdapterManager is an interface to an Adapter Manager which registers
adapter factories for specific types. An Adapter Manager is provided by the
Platform class.

� PlatformObject is a class provided by Eclipse platform which implements
IAdaptable and can be subclassed. PlatformObject provides a dynamic
implementation of Extension Object pattern using interfaces described above.
See Figure 5.6 for collaboration details.

49

Figure 5.5: Extension Object pattern in Eclipse [26].

In Eclipse, there is no common parent class for extensions, nor a specific inter-
face that all extensions must implement. The getAdapter-method (analogous to
getExtension) is passed the class literal of the extension to be retrieved. Follow-
ing code snippet illustrates usage of the pattern in Eclipse:

1 PlatformObject po = . . . / / g e t a P l a t f o r m O b j e c t
2 SomeInterface i f a c e = (SomeInterface) po . getAdapter (SomeInterface . c l a s s) ;
3 i f (i f a c e != null)
4 {
5 / / do S o m e I n t e r f a c e r e l a t e d t h i n g s
6 }

Figure 5.6 provides a sequence diagram illustrating the collaboration of objects
with the code above. PlatformObject po is asked for an adapter to interface
SomeInterfaceby passing the class literal of SomeInterface as an argument for
getAdapter. The class literal is abbreviated to cl in the figure. po asks Platform
for an adapter manager, and receives a handle of adapter manager am. po forwards
the call getAdapter to am and passes itself as the first argument and cl as the
second. am looks for an adapter factory for the given combination, and if it is found,

50

po: PlatformObject Platform am: AdapterManager AdapterFactory

getAdapter(cl)

getAdapterManager()

am

getAdapter(po, cl)

getFactory(po, cl)

getAdapter(po,cl)

a: adapter or null
a

a

cl =

 SomeInterface.class

Figure 5.6: Sequence diagram of Extension Object pattern in Eclipse.

the call of getAdapter is forwarded to it. If it is not found, null is returned. Finally,
adapter factory returns a, which is the requested adapter or null if none is found.
am in part returns a to po, which returns it to the caller of the getAdapter-method.
The adapter is an object castable to SomeInterface.

A common use of this pattern in Eclipse is to provide IResource adapters for
different domain objects (e.g., for a Java project). Providing IResource adapters is
a rule of Eclipse, which leads us to next section. [26]

5.5 Rules of Eclipse

Gamma and Beck [26] present a set of rules of Eclipse. Following these rules when
developing plug-ins make the plug-ins themselves and the platform as a whole safer
to use. As mentioned in the beginning of Section 3.2, a bad neighbor affects all the
residents in the neighborhood. These rules also characterize matters that plug-in
developers must take into account when developing plug-ins, and as such charac-

51

terize the nature of developing plug-ins for Eclipse. The rules are listed in Table 5.1.

5.6 Summary

In this chapter Eclipse platform was examined from a more technical point of view.
Basic concepts of Eclipse plug-in model were explained: extension points, exten-
sions, and the Platform Runtime. After that, plug-in relationships were examined
on logical and physical levels. This clarified how Eclipse-based tools interact and
are encapsulated using the Eclipse plug-in model. It was also described how a plug-
in developer can process the extensions of extension points. Design decisions in
Eclipse were briefly discussed by introducing an essential pattern used in Eclipse,
the Extension Object pattern, which largely contributes to the flexibility of the plat-
form. Also, the rules of Eclipse were introduced, which are general guidelines that
plug-in developers should follow.

52

Nr Rule Explanation

1 Contribution Everything is a contribution.

2 Lazy Loading Contributions are only loaded when they are needed.

3 Sharing Add, don’t replace.

4 Conformance Contributions must conform to expected interfaces.

5 Monkey see /

monkey do

Always start by copying the structure of a similar plug-in.

6 Relevance Contribute only when you can successfully operate.

7 Safe platform As the provider of an extension point, you must protect yourself

against misbehaviour on the part of extenders.

8 Invitation Whenever possible, let others contribute to your contributions.

9 Fair play All clients play by the same rules, even me.

10 Explicit extension Declare explicitly where a platform can be extended.

11 Diversity Extension points accept multiple extensions.

12 Good fences When passing control outside your code, protect yourself.

13 License Always supply a license with every contribution.

14 Program to API

contract

Check and program to the Eclipse API contract

15 Integration Integrate, don’t separate.

16 Responsibility Clearly identify your plug-in as the source of problems.

17 User arbitration When there are multiple applicable contributions, let the user de-

cide which one to use.

18 Other Make all contributions available, but the ones that don’t typically

apply to the current perspective appear in an Other? dialog.

19 Explicit API Separate the API from internals.

20 Stability Once you invite others to contribute, don’t change the rules.

21 Defensive API Reveal only the API in which you have confidence, but be pre-

pared to reveal more API as clients ask for it.

22 User Continuity Preserve the user interface state across sessions.

23 Adapt to

IResource

Whenever possible, define an IResource adapter for your do-

main objects

24 Strata Separate language-neutral functionality from language-specific

functionality and separate core functionality from UI functional-

ity.

Table 5.1: The rules of Eclipse [26]

53

6 Case Study: Integrating UMLGraph into Eclipse

This chapter provides a case study of tool integration in Eclipse. This specific case of
tool integration includes integrating an external Javadoc-based tool and an external
non-Java tool into a consistent customizable toolchain that can be controlled via the
Eclipse UI.

6.1 Background

UMLGraph [53] is a Javadoc doclet1 that is used to generate UML class diagrams from
Java source files. The generation of class diagrams can be directed with Javadoc
comments. The idea behind UMLGraph is that design models should be composed
textually and graphs should be automatically generated from the textual declara-
tions [49]. UMLGraph can also be used to generate sequence diagrams using a
declarative syntax, but support for this is out of the scope of this case study. Al-
though, some preliminary support has been developed to LightUML. The current
features of UMLGraph are part of an ongoing effort aiming to provide support for
all types of UML diagrams. UMLGraph produces a GraphViz diagram specification
that can be converted into graphical format using GraphViz tools.

GraphViz [32] is an open source graph visualization software consisting of sev-
eral graph layout programs. One of these programs is dot. It produces drawings of
directed graphs and can be used to convert UMLGraph-generated diagram specifi-
cations into graphical format, such as Portable Network Graphics, PostScript, etc.

Most existing UML tools for Eclipse use two subprojects of the Eclipse Tools
Project: EMF (Eclipse Modeling Framework) [16] and UML2 (an EMF-based imple-
mentation of the UML 2.0 metamodel for the Eclipse platform) [19]. This makes
them quite “heavy-duty”, as various prerequisite plug-ins are needed. On the con-

1Javadoc is a tool that parses the declarations and documentation comments in a set of source files
and produces a set of HTML pages describing the classes, interfaces, constructors, methods, and
fields. You can use Javadoc doclets to customize Javadoc output. A doclet is a program written with
the Doclet API that specifies the content and format of the output to be generated by the Javadoc
tool. [50]

54

trary, the intent here is to integrate a lightweight UML tool into Eclipse that can be
used in retrospect to generate a class diagram from a Java project or package. This
is achieved by integrating UMLGraph doclet and external GraphViz dot tool via
Apache Ant integration of Eclipse. The resulting Eclipse feature is called LightUML.

6.2 Toolchain

The toolchain to be executed involves four sequential steps. The steps are encapsu-
lated into Eclipse Job-classes. Eclipse Job-classes are part of the org.eclipse.-
core.runtime package, which provides an infrastructure for scheduling, execut-
ing, and managing concurrently running operations [14].

A common parent class for jobs in LightUML is LightUMLJob. Figure 6.1 illus-
trates the class structure of the jobs. LightUMLJob uses a scheduling rule (Light-
UMLSchedulingRule) that prevents two LightUMLJobs from running concur-
rently, as they should be run in a sequential manner. However, they can be run
concurrently with other jobs that might be running in Eclipse. The steps and their
corresponding jobs are:

1. Initializing the plug-in state location (encapsulated in Initialize). Plug-in
state location is a specific location on local harddrive that the plug-in is free
to write to. This step involves copying the necessary files there if needed (see
Section 6.3.5).

2. Running UMLGraph doclet with a run of Javadoc (encapsulated in JavaToDot).
The Java source files of a Java project or package in question are used as input
for UMLGraph. UMLGraph produces a graph.dot-file.

3. Running GraphViz dot tool to convert the graph.dot to a graphical format
of choice that is supported by dot (encapsulated in DotToGraphics). The
converted file is stored in the state location. This step requires that GraphViz
is installed.

4. Adding the class diagram to the selected Java project (encapsulated in AddGraph-

ToProject). The class diagram is added to the preferred folder under the
project by using the Eclipse resource model.

55

AddGraphToProject

- project
- packageName

- getGraphFileName()
- getGraphFile()
run()

LightUMLJob

- refTime
- familyId
corePlugin
- errorAndCancelStatusRegister

- init()
errorStatus()
cancelStatus()
+ shouldRun()
+ belongsTo()

DotToGraphics

run()

Initialize

BUFFER_SIZE
- forceInitialize
- checkUMLGraph
+ CHECK_UMLGRAPH_NONE
+ CHECK_UMLGRAPH_JAR
+ CHECK_UMLGRAPH_PIC_MACROS

+ nonWSCopy()
- initializeStateLocation()
- needInitialize()
- checkUMLGraph()
run()

JavaToDot

- sourcePath
- packageName

- deliverAntRunSettings()
run()

LightUMLSchedulingRule

- rule

+ getDefault()
+ contains()
+ isConflicting()

uses

Job

Figure 6.1: LightUMLJobs.

6.3 Structure

The structure of LightUML is examined from the following points of view in a top-
down manner: feature structure, plug-in structure, package structure of plug-ins,
and class structure of plug-ins. Directory structures of install locations and state
locations of plug-ins are also examined. Complete source codes for the Java classes
can be found in Appendix A.

6.3.1 Features

LightUML is packaged into a single deployable feature called org.lightuml. It
can be installed using the Update Manager of Eclipse. It also contains the copyright
notice and license agreement (License Rule, rule 13 of Table 5.1).

6.3.2 Plug-ins

The UMLGraph integration is divided into two plug-ins: org.lightuml.core

and org.lightuml.ui. Former consists of the core functionality, and latter has

56

org.lightuml.core

org.lightuml.ui

org.eclipse.ant.core

org.eclipse.core.runtime

org.eclipse.core.resources

org.eclipse.ui

org.eclipse.jdt.core

org.eclipse.help

< extensions >
org.eclipse.ui.actionSets

org.eclipse.ui.popupMenus

org.eclipse.ui.preferencePagesorg.eclipse.help.toc

Figure 6.2: LightUML plug-in dependency and extension relationships.

the user interface related functionality. This division follows the Strata Rule (see
Table 5.1, rule number 24). The plugin dependency and extension relationships are
illustrated in Figure 6.2.

The core plug-in is kept as independent as possible from other plug-ins. It de-
pends on three other plug-ins: org.eclipse.ant.core,org.eclipse.core.-
resources, and org.eclipse.core.runtime. Plug-in org.eclipse.ant.-

core defines the Apache Ant integration of Eclipse, which is needed for running the
external tools (UMLGraph doclet and GraphViz dot tool). Plug-in org.eclipse.-
core.resources defines the Eclipse resource model, which is used to add the
generated class diagram into the project. Plug-in org.eclipse.core.runtime

is needed for the Job support.
The UI plug-in depends on the core plug-in in addition to org.eclipse.-

core.resources (see above), org.eclipse.core.runtime (see above), org.-
eclipse.jdt.core, and org.eclipse.ui. Plug-in org.eclipse.jdt.core

defines the Java model of Eclipse. It is used when associating the contributed ac-
tion (GenerateClassDiagram) with Java projects and packages. Plug-in org.-

eclipse.ui is needed for adding the actions and the prefererence pages to the
Workbench user interface.

The LightUML UI plug-in extends four extension points of the Eclipse platform:

57

org.lightuml.ui

org.lightuml.core

org.lightuml.ui.actions

org.lightuml.core.jobs

org.lightuml.ui.preferences

Figure 6.3: Package diagram of LightUML.

� org.eclipse.ui.actionSets. This extension point is used to add the
RestoreSettings action to the workbench pulldown menu. See Figure 6.7.

� org.eclipse.ui.popupMenus. This extension point is used to add
GenerateClassDiagram action to popup menu when a Java project or pack-
age is selected. Adding the action only when a Java project or package is se-
lected follows the Relevance Rule (rule 6 of Table 5.1). See Figure 6.8.

� org.eclipse.ui.preferencePages. This extension point is used to add
the preference pages of LightUML. See Figures 6.9, 6.10, and 6.11.

� org.eclipse.help.toc. This extension point is used to provide help con-
tent for the plug-in. LightUML help is added to the Eclipse help table of con-
tents.

6.3.3 Packages

The core plug-in of LightUML has one subpackage, org.lightuml.core.jobs.
The Job-classes contained were discussed in Section 6.2.

The UI plug-in has two subpackages: org.lightuml.ui.actions, which
contains the actions added to workbench, and org.lightuml.ui.preferences,
which contains the preference pages of LightUML.

Figure 6.3 is a package diagram of LightUML.

58

6.3.4 Classes

Figure 6.4 is a class diagram of org.lightuml.core plug-in (does not include
Job-classes which were described earlier). The classes are described below.

� Plugin. The abstract superclass of all plug-in runtime class implementations.
Provided by Eclipse.

� LightUMLCorePlugin. The core of LightUML. Directs the execution of jobs
and runs of Apache Ant. Extends Plugin, and has one instance of IGraph-
Converter. Can throw instances of LightUMLCoreException.

� IGraphConverter. An interface for converting diagram specifications into
graphical form.

� LocalGraphConverter. Implementation of IGraphConverter that uses
locally installed GraphViz via Apache Ant.

� LightUMLCoreException. An exception thrown by LightUML core. Ex-
tends Exception.

� Exception. The basic Java exception class.

Figure 6.5 is a class diagram of org.lightuml.ui plug-in. The classes are de-
scribed below.

� AbstractUIPlugin. Abstract base class for plug-ins that integrate with the
Eclipse platform UI. Provides capabilites for preferences, dialogs, and images.
Provided by Eclipse.

� LightUMLUIPlugin. The plug-in class of org.lightuml.ui. Extends
AbstractUIPlugin and adds the provided actions and preference pages to
the Eclipse workbench.

� GenerateClassDiagram. The popup menu action that is used to trigger
the generation of a class diagram. Implements IObjectActionDelegate,
so that this action can be associated with Java projects and packages (Confor-
mance Rule, rule 4 of Table 5.1).

59

«interface»
IGraphConverter

dotToGraphics()
getGraphicsFilePath()

LocalGraphConverter

instance

instance()
dotToGraphics()
getGraphicsFilePath()

LightUMLCoreException

serialVersionUID

Exception

serialVersionUID

LightUMLCorePlugin

plugin
graphConverter
graphBuildProperties

getBuildFilePath()
getPropertiesFilePath()
getDotFilePath()
start()
getDefault()
getGraphConverter()
setGraphConverter()
loadProperties()
getGraphBuildProperties()
getGraphBuildProperty()
setGraphBuildProperty()
getBuildFileRunner()
restoreSettings()
generateClassDiagram()

1

1
throws

*

1

Plugin

Figure 6.4: Class structure of org.lightuml.core plug-in.

60

LightUMLUIPlugin

- plugin

initializeDefaultPluginPreferences()
+ initPreferences()
+ getDefault()

GenerateClassDiagram

- project
- packagePath
- packageName

+ setActivePart()
+ run()
+ selectionChanged()

adds to UI

RestoreSettings

+ run()
+ dispose()
+ init()
+ selectionChanged()

adds to UI

LightUMLPage

+ createFieldEditors()
+ init()

adds to UI

AbstractUIPlugin

DotAndPic2PlotPage

+ createFieldEditors()
+ init()

UMLGraphPage

+ createFieldEditors()
+ init()

FieldEditorPreferencePage

Figure 6.5: Class structure of org.lightuml.ui plug-in.

61

� RestoreSettings. The action for restoring default settings of
LightUML. Implements IWorkbenchWindowActionDelegate, so that this
action can be contributed to workbench window menu (pulldown menu) or
toolbar.

� FieldEditorPreferencePage. A special abstract preference page to host
field editors. A field editor presents the value of a preference to the end user.
The value is loaded from a preference store; if modified by the end user, the
value is validated and eventually stored back to the preference store. A field
editor reports an event when the value, or the validity of the value, changes.
Provided by Eclipse.

� DotAndPic2PlotPage. Is a subpage of LightUMLPage (defined via the
plug-in manifest of LightUML UI plug-in), providing preferences for the dot
executable. Extends FieldEditorPreferencePage.

� UMLGraphPage. Is a subpage of LightUMLPage, providing preferences for
UMLGraph. Extends FieldEditorPreferencePage.

� LightUMLPage. This class provides the preference page for general prefer-
ences of LightUML. Extends FieldEditorPreferencePage.

6.3.5 Directories

LightUML has data on the following locations in the harddrive: install location of
both plug-ins (org.lightuml.core and org.lightuml.ui), state location of
the core plug-in, and install location of the feature (org.lightuml). Figure 6.6
depicts these directory structures.

Install location of the core plug-in contains the following files:

� to_statelocation. A directory containing the build.xml and graph.ini
files which are copied to the state location of the core plug-in because plug-in
install locations have read-only permissions.

� about.html. Contains the copyright note and license agreement.

� about.ini. Contains a short description of the purpose of the LightUML
feature. Core plug-in is chosen as the branding plug-in of the feature, so this

62

Figure 6.6: LightUML directory structures.

63

file is stored here. Discussing feature branding is out of the scope of this case
study.

� about.properties. Contains externalized strings for about.ini.

� build.xml. An Ant buildfile generated by Eclipse.

� core.jar. Contains the Java classes of the plug-in.

� plug-in.xml. The plug-in manifest. See Appendix A.2.1.

State location of the core plug-in contains the following files and directories (after it
has been initialized by the core plug-in):

� graph/ A directory where the temporary files in graph building are stored
before the class diagram is added to the Java project.

� build.xml. The Ant buildfile (used by JavaToDot and LocalGraphConverter).
See Appendix A.2.2.

� graph.ini. The properties file for properties used in graph building.

� runsettings.ini. Contains information delivered to Ant about a specific
run of UMLGraph.

Install location of the UI plug-in contains the following files and directories:

� help/A directory containing the following help files: introduction.html,
legal.html,resources.html,toc.xml, and using.html. The toc.xml
file is a table of contents file that is added to the Eclipse help system using the
org.eclipse.help.toc extension point. The other files provide the help
content.

� about.html. Contains the copyright notice and the license agreement.

� plugin.xml. The plug-in manifest of the UI plug-in. See Appendix A.3.1.

� ui.jar. JAR-package containing the Java implementation classes of the plug-
in.

Install location of the feature contains following files:

64

� feature.properties. Contains text version of the top-level user agree-
ment, which is SUA (see Section 3.3).

� feature.xml. The feature manifest (see Appendix A.1).

� license.html. Contains the top-level user agreement in HTML (HyperText
Markup Language).

6.4 Design Rationale and Development Notes

This section provides some discussion on the rationale of LightUML’s design, some
general issues about plug-in development, and a few development notes about
LightUML that came across during the development process.

6.4.1 Design Rationale

The division of LightUML into two distinct plug-ins follows the Eclipse convention,
other plug-in containing the core functionality and the other containing UI related
functionality. See Strata Rule (see Table 5.1, rule number 24). Packaging these plug-
ins into a feature is a convenient way to deploy LightUML. Thus, LightUML can be
installed and updated with the Update Manager of Eclipse when hosted on a web
site.

Dividing the toolchain into sequential steps gives more control over the execu-
tion. Encapsulating these steps into Eclipse Job-classes is a convenient way to en-
able concurrency with other operations that might be running and adding respon-
siveness to the user interface, including a progress monitor with the chance to cancel
the execution of the toolchain.

To keep the Eclipse workspace synchronized, the Eclipse resource model has
been used to add the generated class diagram into the project. Before adding the
class diagram, the project has to be locked as multiple jobs might want to access the
same resource. This has been achieved by providing an additional scheduling rule
on AddGraphToProject-class. The generated file is marked as derived, so it will
not get included in possible version controlling.

Using Apache Ant integration of Eclipse to run the external tools, the dot exe-
cutable and the UMLGraph doclet, seems to be the most convenient way available,
opposed to using a built-in execution mechanisms of Java. At least, it gives a more

65

experienced end-user the possibility to customize the Ant buildfile.
Using the plug-in state location for storing the Ant buildfile, the properties used

in graph generation, and the temporary files created, seems quite natural. At least
the user’s workspace will not get polluted with temporary files.

Preference pages are a good place to allow the customization of LightUML be-
haviour. Almost everything is parameterized in the buildfile used in Ant runs, and
corresponding preferences are provided on a preference page for customization to
achieve higher flexibility of use.

LightUML does not deliver UMLGraph as part of its content. It has to be down-
loaded separately and the path to the doclet has to be provided via LightUML pref-
erence pages. Another option would have been to deliver UMLGraph encapsulated
as its own plug-in. However, there are some problems with this approach. Updat-
ing the UMLGraph plug-in as new versions of UMLGraph appear would have been
needed. Also, delivering the UMLGraph doclet path from the UMLGraph plug-in
to the LightUML core plug-in would have been an issue to assess. Delivering UML-
Graph with LightUML is a bit questionable anyway, as UMLGraph is developed
completely separate from LightUML.

6.4.2 General Plug-in Development Notes

� The install location of an Eclipse plug-in should not be referenced in any way
in the source code. Plugin.openStream can be used to access files under the
plug-in install location. This also works well when using PDE—openStream

opens a stream relative to the development location of the plug-in.

� Eclipse resource model can be used only for file handling under the workspace.
Basic Java file handling can be used elsewhere.

� Location of a resource should be accessed with IResource.getLocation.
A resource is not always under the workspace directory.

� If a job is canceled can be detected only via progress monitors, Job does not
provide a method for checking this.

� Testing a plug-in on different operating system platform can reveal undetected
problems. Especially Apache Ant seems to work slightly differently on differ-
ent platforms.

66

6.4.3 LightUML Development Notes

� LightUML provides no extension points of its own. This does not fulfill the In-
vitation Rule (rule 8 of Table 5.1). No obvious ways to invite other developers
were found. Because of this, no extension processing of extension points was
examined in practice.

� Dependency on the previously installed GraphViz is a bit awkward. One way
around this would be to use a WebDot server for the “dot to graphics” conver-
sion. WebDot is a CGI program that converts a graph description from a .dot
file into an image that can be included on a web page [56]. However, using a
remote WebDot server would add a dependency on a functioning server. On
the other hand, integrating a non-Java tool was also examined now.

� The preferences shown in Figures 6.9, 6.10, and 6.11 are preferences in the pref-
erence store of the UI plug-in. When UI plug-in is loaded, it restores default
preferences from the graph build properties file (see Appendix A.2.3). To cas-
cade the properties changed in the preference page into properties used by
Ant runs, a property listener is used (see Appendix A.3.2, line 39).

� LightUML uses SUA as its top-level agreement for the feature org.lightuml.
The plug-ins are delivered with the original BSD license, which is also used
with UMLGraph. Using SUA is the Eclipse convention and it provides some
licensing flexibility if other developers want to contribute only to a specific
part of LightUML, e.g. the UI.

� The “Monkey see / monkey do”-rule (see rule 5 of Table 5.1) could not be
fulfilled properly. No similar plug-ins were found which used a Javadoc doclet
as part of the toolchain to be executed.

� LightUML is still under development, so some inconsistencies and targets for
refactoring exist.

LightUML was developed through numerous iterations by debugging, refactoring,
and adding more functionality after each iteration. However, the importance of test-
ing during development became clear only after practicing a few months of plug-in
development. Especially detecting platform dependent code seems to require thor-
ough testing. As plug-in development also seems to be very iterative by nature,

67

using an agile methodology like test-driven development (TDD) [3] would seem to
be a natural way to develop plug-ins. Also, the plug-in development environment
of Eclipse (PDE) provides a specific JUnit plug-in unit test framework (see [27] for
test-driven plug-in development).

6.5 Web Resources

� LightUML is hosted at SourceForge.

– The home page is at:
http://lightuml.sourceforge.net

– The SourceForge project page is at
http://sourceforge.net/projects/lightuml

� UMLGraph (and its very useful documentation) can be found at
http://www.spinellis.gr/sw/umlgraph/

� GraphViz, a prerequisite for using LightUML, can be found at
http://www.graphviz.org/

68

6.6 Summary

This chapter provided a case study of Eclipse tool integration called LightUML.
LightUML integrated UMLGraph doclet and GraphViz dot tool, producing a seam-
less toolchain that generates a UML class diagram in a graphical format from a Java
project or package. The capability to generate class diagrams was made available to
an Eclipse user only when it is relevant, that is, when the user has selected a Java
project or package. Also, the user was provided with the chance to customize the
behaviour of LightUML via preference pages. The structure of LightUML was ex-
amined from feature, plug-in, Java package, and Java class points of view. Also,
the directory structures and the design rationale of LightUML were examined and
some development notes were listed. And lastly, a list of relevant web resources
was given.

LightUML is a practical example of tool construction and integration in Eclipse.
LightUML is constructed using the Eclipse plug-in model and thus it interfaces into
Eclipse using loosely-coupled interfacing paradigm (see sections 2.2 and 4.2). LightUML
achieves presentation integration by adding elements into the Eclipse workbench.
These elements include additions in the menus and the preference pages. Data in-
tegration is achieved by adding the generated diagram into the project in question
via the workspace API. LightUML does not provide any means for other tools to
use the services provided by it. Thus, only one-way control integration is achieved
by running Ant scripts to execute the external tools (no provision, see Section 2.3.3).
LightUML should be classified as a tool, as it supports only a single task of gener-
ating class diagrams from Java source files. The Fuggetta’s classification presented
earlier in Section 2.1.1 does not consider reverse-engineering tools by themselves,
but LightUML could be forged into a reverse-engineering workbench if support for
UMLGraph sequence diagrams would be developed and integrated tightly with
the Eclipse workbench. Connecting Eclipse Java model with the declarative syntax
of UMLGraph’s sequence diagrams could be an interesting task altogether. With
the support of proper UI components the integration could propably enable rela-
tively effortless reverse engineering of selected message sequences via UMLGraph
sequence diagrams. However, LightUML support for sequence diagrams is still on
experimental level and not considered in this case study.

69

Figure 6.7: LightUML pulldown menu contribution.

Figure 6.8: LightUML popup menu contribution.

70

Figure 6.9: LightUML preference page contribution, general preferences.

71

Figure 6.10: LightUML preference page contribution, preferences for the dot exe-
cutable.

72

Figure 6.11: LightUML preference page contribution, UMLGraph preferences.

73

7 Conclusion

As a theoretical framework, a tool-centric point of view to CASE systems was pro-
vided. This framework considered CASE classification, tool interfacing, the levels
of tool integration, and the key challenges of CASE systems. Eclipse was introduced
as a state-of-the-art CASE system to be placed in this framework. Tool interfacing
and the levels of integration were considered in respect of tool encapsulation in
Eclipse. As there exists no exact CASE system classification criteria, it was proposed
that Eclipse should be classified as an integrated environment. It was found to be
the best match characteristic-wise. The technical point of view to tool construction
and encapsulation in Eclipse was also examined. Plug-ins, their relationships, and
declaring and processing those relationships were examined from the plug-in devel-
oper’s point of view. In addition, a big contributor to Eclipse’s flexibility, the Exten-
sion Object pattern, was introduced. The general plug-in development guidelines
were also given as a table. As a practical example, a case study of tool integration
and construction in Eclipse was provided. This case study took the technical consid-
erations into practice by introducing a tool called LightUML. Also, multiple points
of view to the structure of an Eclipse extension were considered. Furthermore, Ligh-
tUML was considered in terms of the earlier theoretical framework.

Integrating a tool into a framework brings many benefits, but it also has its price. Many
benefits can be gained by integrating tools into Eclipse, including consistent appear-
ance, behaviour, and interaction paradigm with other integrated tools, a common
resource model, a common way to offer and use tool services, a huge selection of
tool services to derive from, portability to various operating system platforms with
(almost) no additional effort, the ability to deploy integrated tools as stand-alone
applications, millions of potential users, a huge community to ask help from, etc.
The price to pay is an old acquaintance: context-specific result. The integration can
not be easily reused in other environments. In addition, the integration has to be
done in Java. Besides, getting to know all the various frameworks needed in the
integration takes time and is quite hard work.

Eclipse evolves fast. During the writing of this thesis, Eclipse has evolved from
version 3.0 to 3.1.1, and it has also become dominant as a Java IDE [31]. So much

74

is happening that it is virtually impossible to keep up with the development. This
thesis has provided an introduction to Eclipse as a state-of-the-art tool integration
platform built on a pure plug-in architecture, and it has been put into a context.
Thousands of pages of guides have been written about Eclipse, so work presented
here has only been able to pinpoint some issues that are relevant in tool integra-
tion practice. However, after a few years time it is possible that many things have
changed so much in Eclipse that parts of this thesis regarding Eclipse have only
some historical value.

75

8 References

[1] Anderson, J. Levels of Integration: Five ways you can integrate with the
Eclipse Platform. Object Technology International, Mar. 2001. URL http:

//www.eclipse.org/articles/Article-Levels-Of-Integration/

Levels%20Of%20Integration.html

[2] AspectJ Project Home Page. URL http://www.eclipse.org/aspectj/

[3] Beck, K. Test-Driven Development By Example. Addison Wesley, 2002.

[4] Birsan, D. “On Plug-ins and Extensible Architectures” in Queue, Volume 3, Is-
sue 2. pp. 40 - 46. ACM Press, Mar. 2005.

[5] Bolour, A. Notes on the Eclipse Plug-in Architecture. Bolour Com-
puting, Jul. 2003. URL http://www.eclipse.org/articles/

Article-Plug-in-architecture/plugin_architecture.html

[6] Bouillon, P., Krinke, J. Using Eclipse in Distant Teaching of Software Engineer-
ing in Proceedings of the 2004 OOPSLA workshop on eclipse technology eXchange.
pp. 22 - 26. ACM Press, 2004.

[7] Brooks, F. No Silver Bullet: Essence and Accidents of Software Engineering in
Computer, Volume 20, Issue 4. pp. 10 - 19. ACM Press, Apr. 1987.

[8] Brown, A. W., Earl, A. N., McDermid J. A. Software Engineering Environments:
Automated Support for Software Engineering. McGraw-Hill, 1992.

[9] Brown, A. W., Feiler, P. H., Wallnau, K. C. Understanding Integration in a Soft-
ware Development Environment. Technical Report CMU/SEI-91-TR-31 ESD-
TR-91-31. Software Engineering Institute, 1992.

[10] Brown, A. W., McDermid, J. A. “Learning from IPSE’s Mistakes” in IEEE Soft-
ware, Volume 9, Issue 2. pp. 23 - 28. IEEE Press, Mar. 1992.

[11] Chen, M., Norman, R. J. ”A Framework for Integrated CASE” in IEEE Software,
Volume 9 Issue 2. pp. 18 - 22. EEE Press, Mar. 1992.

76

[12] D’Anjou, J., Fairbrother, S., Kehn, D., Kellerman, J., McCarthy, P. The Java De-
veloper’s Guide to Eclipse, 2nd Ed. Addison-Wesley, 2005.

[13] Eclipse Foundation. Eclipse Data Tools Platform Project. Homepage URL
http://www.eclipse.org/datatools

[14] Eclipse Foundation. Eclipse Platform Plug-in Developer Guide. Available
via Eclipse platform help system. Also available at URL http://help.

eclipse.org

[15] Eclipse Foundation. Eclipse Project FAQ. URL http://www.eclipse.org/

eclipse/faq/eclipse-faq.html

[16] Eclipse Foundation. EMF - Eclipse Modeling Framework. Homepage URL
http://www.eclipse.org/emf/

[17] Eclipse Foundation. Guide to Legal Documentation for Eclipse-based
Content. Available at URL http://www.eclipse.org/legal/

guidetolegaldoc.html

[18] Eclipse Foundation. Homepage of the Eclipse Foundation. URL http://www.

eclipse.org/

[19] Eclipse Foundation. UML2 - EMF-based UML2.0 Metamodel Implementation.
Homepage URL http://www.eclipse.org/uml2/

[20] Eclipse Foundation Software User Agreement. URL http://www.eclipse.

org/legal/epl/notice.html

[21] Eclipse Public License Version 1.0. URL http://www.eclipse.org/

legal/epl-v10.html

[22] Elrad, T., Filman, R. E., Bader, A. “Aspect-oriented programming: Introduc-
tion” in Communications of the ACM, volume 44, issue 10. pp. 29 - 32. ACM
Press, Oct. 2001.

[23] Fowler, M. ”Public versus Published Interfaces” in IEEE Software, Volume 19,
Issue 2. pp. 18 - 19. IEEE Press, Mar. - Apr. 2002.

[24] Fuggetta, A. ”Classification of CASE Technology” in IEEE Computer, Volume 26
Issue 12. pp. 25 - 38. IEEE Press, Dec. 1993.

77

[25] Gallardo, D., Burnette, E., McGovern, R. Eclipse In Action: A guide for Java
developers. Manning, 2003.

[26] Gamma, E., Beck, K. Contributing to Eclipse: Principles, Patterns, and Plug-Ins.
Addison-Wesley, 2004.

[27] Gamma, E., Beck, K. “Test-Driven Plug-In Development” in Contributing to
Eclipse: Principles, Patterns, and Plug-Ins. Chapter 12. Addison-Wesley, 2004.
URL http://today.java.net/today/2004/02/02/ch12Eclipse.

pdf

[28] Gamma, E. “Extension Object”, in Pattern Languages of Program Design 3, eds.
R. Martin, D. Riehle, F. Buschmann. Addison Wesley Longman, 1998.

[29] Gamma et al. Design Patterns: elements of reusable object-oriented software.
Addison-Wesley, 1995.

[30] Gane, C. Computer-aided Software Engineering: the Methodologies, the Prod-
ucts, and the Future. Prentice-Hall, 1990.

[31] Geer, D. Eclipse Becomes the Dominant Java IDE in IEEE Computer, Volume 38,
Issue 7. pp. 16 - 18. IEEE, July 2005.

[32] GraphViz. Homepage URL http://www.graphviz.org

[33] Harrison, W., Ossher, H., Tarr, P. ”Software Engineering Tools and Environ-
ments: A Roadmap” in Proceedings of the Conference on The Future of Software
Engineering. pp. 261 - 277. ACM Press, 2000.

[34] IBM Corporation and others. Eclipse project briefing materials. Eclipse.org,
2002, 2003. URL http://eclipse.org/eclipse/presentation/

eclipse-slides.pdf

[35] IEEE Standard Glossary of Software Engineering Terminology. IEEE Press,
1990.

[36] Kestler, M. Factoring for Eclipse: Plug-in design techniques. Dr. Dobb’s Journal,
Nov. 2004. pp. 78 - 82.

[37] Linthicum, D. S. Enterprise Application Integration. Addison-Wesley, 2000.

78

[38] McAffer, J. Inside and Beyond the Eclipse 3.0 Runtime. IBM OTI Labs, Jan. 2004.
URL http://dev.eclipse.org/viewcvs/index.cgi/%7Echeckout%

7E/platform-core-home/runtime/runtime.html

[39] Mi, P., Scacchi, W. ”Process Integration in CASE environments” in IEEE Soft-
ware, Volume 9, Issue 2. pp. 45 - 53. IEEE Press, Mar. 1992.

[40] Northover, S. SWT: The Standard Widget Toolkit, Part 1: Implementa-
tion Strategy for Java Natives. Object Technology International, Mar. 2001.
URL http://www.eclipse.org/articles/Article-SWT-Design-1/

SWT-Design-1.html

[41] Object Management Group. Unified Modeling Language. URL http://www.

uml.org

[42] Object Technology International, Inc. Eclipse Platform Technical
Overview. Feb. 2003. URL http://www.eclipse.org/whitepapers/

eclipse-overview.pdf

[43] OSGi Alliance Home page. URL http://www.osgi.org

[44] Pressman, R. S. Software Engineering: A Practitioner’s Approach (European
adaptation, 5th ed.). McGraw-Hill, 2000.

[45] Programming Ruby: The Pragmatic Programmer’s Guide, First Edition. URL
http://www.rubycentral.com/book/

[46] Shaik, S., Corvin, R., Sudarsan, R., Javed, F., Ijaz, Q., Roychoudhury, S., Gray,
J., Bryant, B. SpeechClipse: an Eclipse speech plug-in in Proceedings of the 2003
OOPSLA workshop on eclipse technology eXchange. pp. 84 - 88. ACM Press, 2003.

[47] Sharon, D., Bell, R. ”Tools that Bind: Creating Integrated Environments” in
IEEE Software, Volume 12 Issue 2. pp. 76 - 85. IEEE Press, Mar. 1995.

[48] Sommerville, I. Software Engineering (5th ed.). Addison-Wesley, 1995.

[49] Spinellis, D. “On the Declarative Specification of Models” in IEEE Software, Vol-
ume 20, Issue 2. pp. 96 - 95. IEEE Press, Mar. - Apr., 2003.

79

[50] Sun Microsystems Inc. “Javadoc 5.0 Tool” in JDK 5.0 Documenta-
tion. URL http://java.sun.com/j2se/1.5.0/docs/guide/javadoc/

index.html

[51] Tarr, P., Ossher, H., Harrison, W., Sutton, S. M. Jr. “N Degrees of Separation:
Multi-Dimensional Separation of Concerns” in Proceedings of the 21st interna-
tional conference on Software engineering. pp. 107 - 119. IEEE Computer Society
Press, 1999.

[52] Thomas, I., Nejmeh, B. A. ”Definitions of Tool Integration for Environments”
in IEEE Software, Volume 9 Issue 2. pp. 29 - 35. IEEE, Mar. 1992.

[53] UMLGraph Home Page. URL http://www.spinellis.gr/sw/

umlgraph/

[54] Vaughan-Nichols, S. J. ”The Battle over the Universal Java IDE” in IEEE Com-
puter, Volume 36 Issue 4. pp. 21 - 23. ACM Press, Apr. 2003.

[55] Wallnau, K. C., Feiler, P. H. Tool Integration and Environment Architectures.
Technical Report CMU/SEI-91-TR-011 ESD-91-TR-011. Software Engineering
Institute, May 1991.

[56] WebDot Home page. URL http://www.graphviz.org/webdot/

[57] Wright, D. Launching Java Applications Programmatically. IBM OTI
Labs, Aug. 2003. URL http://www.eclipse.org/articles/

Article-Java-launch/launching-java.html

[58] Yang, Y., Han, J. ”Classification of and Experimentation on Tool Interfacing in
Software Development Environments” in Proceedings of the Software Engineering
Conference, 1996. pp. 56 - 65. IEEE Press, Dec. 1996.

[59] Yang, Y., Welsh, J., Allison, W. ”Supporting Multiple Tool Integration
Paradigms within a Single Environment” in CASE ’93, Proceedings of the Sixth
International Workshop on Computer-Aided Software Engineering. pp. 364 - 374.
IEEE Press, Jul. 1993.

[60] Zarrella, P.F. CASE Tool Integration and Standardization. Technical Report
CMU/SEI-90-TR14, ESD-TR-90215. Software Engineering Institute, Dec. 1990.

80

[61] Zarrella, P. F., Smith, D. B., Morris, E. J. Issues in Tool Acquisition. Technical
Report CMU/SEI-91-TR-008 ESD-TR-91-008. Software Engineering Institute,
Sep. 1991.

All URLs have been checked to be valid on 30th of August, 2005.

81

82

A LightUML Source

This appendix provides LightUML source code, including contents of plug-in man-
ifests, Java source files, and some other essential files. The feature manifest is pre-
sented first. The source code is listed per plug-in basis, first for the core plug-in and
then for the UI plug-in. Source code in the base package is listed first, then subpack-
ages are listed breadth-first style in the alphabetical order. Some source files contain
UMLGraph control elements that were used in generating the class diagrams in this
thesis and the license notes have been omitted. Also, some preliminary support for
UMLGraph sequence diagrams has been developed.

A.1 Feature manifest (feature.xml)

1 <?xml version=" 1 . 0 " encoding="UTF� 8" ?>
2 < f e a t u r e
3 id=" org . l ightuml "
4 l a b e l ="LightUML"
5 version=" 1 . 2 . 1 "
6 provider � name=" Ant t i Hakala "
7 plugin =" org . l ightuml . core ">
8 < i n s t a l l � handler/>
9

10 < d e s c r i p t i o n>
11 LightUML provides a l ightweight option f o r generat ing c l a s s diagrams out of a Java

p r o j e c t or package . I t i n t e g r a t e s UmlGraph d o c l e t (by Diomidis S p i n e l l i s) via
Apache Ant and uses e x t e r n a l GraphViz &apos ; dot&apos ; t o o l to convert . dot f i l e s
to graphica l form . Read: you need to have GraphViz i n s t a l l e d .

12 </ d e s c r i p t i o n>
13
14 < l i c e n s e ur l ="%licenseURL ">
15 %l i c e n s e
16 </ l i c e n s e >
17
18 < ur l >
19 <update l a b e l ="LightUML" ur l =" h t t p ://l ightuml . source forge . net/updates i te "/>
20 </ ur l >
21
22 < r e q u i r e s>
23 <import plugin =" org . e c l i p s e . ant . core "/>
24 <import plugin =" org . e c l i p s e . core . runtime "/>
25 <import plugin =" org . e c l i p s e . core . resources "/>
26 <import plugin =" org . e c l i p s e . ui "/>

83

27 <import plugin =" org . e c l i p s e . j d t . core "/>
28 </ r e q u i r e s>
29
30 <plugin
31 id=" org . l ightuml . core "
32 download � s i z e =" 0 "
33 i n s t a l l � s i z e =" 0 "
34 version=" 1 . 2 . 1 "/>
35
36 <plugin
37 id=" org . l ightuml . ui "
38 download � s i z e =" 0 "
39 i n s t a l l � s i z e =" 0 "
40 version=" 1 . 2 . 1 "/>
41
42 </ f e a t u r e >

A.2 org.lightuml.core

A.2.1 Plug-in Manifest (plugin.xml)

1 <?xml version=" 1 . 0 " encoding="UTF� 8" ?>
2 <? e c l i p s e version=" 3 . 0 " ?>
3 <plugin
4 id=" org . l ightuml . core "
5 name="LightUML"
6 version=" 1 . 2 . 1 "
7 c l a s s =" org . l ightuml . core . LightUMLCorePlugin"
8
9 provider � name=" Ant t i Hakala ">

10
11 <runtime>
12 < l i b r a r y name=" core . j a r ">
13 <export name=" � "/>
14 </ l i b r a r y >
15 </runtime>
16 < r e q u i r e s>
17 <import plugin =" org . e c l i p s e . ant . core "/>
18 <import plugin =" org . e c l i p s e . core . runtime "/>
19 <import plugin =" org . e c l i p s e . core . resources "/>
20 </ r e q u i r e s>
21 </plugin>

A.2.2 Ant Buildfile (build.xml)

1 <?xml version=" 1 . 0 " ?>
2 < ! ��� ==
3 Ant b u i l d f i l e f o r LightUML plug � in .
4 == ��� >
5
6 < p r o j e c t name=" l ightuml . b u i l d f i l e " defaul t=" java � to � dot " basedir=" . ">
7 < d e s c r i p t i o n>

84

8 This ant b u i l d f i l e i s f o r running the UmlGraph d o c l e t
9 and GraphViz dot � t o o l .

10 </ d e s c r i p t i o n>
11
12 < ! ��� S e t t h e p r o p e r t i e s in t h e p r o p e r t y f i l e graph . i n i ��� >
13 <property f i l e =" graph . i n i " />
14
15 < ! ��� g e t $ { s t a t e l o c a t i o n } from l o c a t i o n o f a n t f i l e ��� >
16 <dirname property=" s t a t e l o c a t i o n " f i l e =" $ { ant . f i l e } "/>
17
18 < ! ��� =================================
19 t a r g e t : j ava � to � d o t
20 run UmlGraph t o c o n v e r t . j a v a f i l e s
21 t o a . d o t f i l e
22
23 n e e d s $ { s o u r c e � pa th }
24
25 ================================= ��� >
26
27 < t a r g e t name=" java � to � dot ">
28 < ! ��� l o a d s e t t i n g f o r t h i s run ��� >
29 <property f i l e =" r u n s e t t i n g s . i n i " />
30 < ! ��� run J a v a d o c ��� >
31 <javadoc
32 doc le tpath=" ${ umlgraph � j a r � path } "
33 access =" $ { javadoc � access � l e v e l } "
34 u s e e x t e r n a l f i l e=" yes "
35 addit ionalparam=" ${ umlgraph � extra � param } "
36 f a i l o n e r r o r =" t rue ">
37
38 <d o c l e t name="UmlGraph">
39 <param name=" � output " value=" ${ s t a t e l o c a t i o n }/ graph/graph . dot "/>
40 </d o c l e t>
41
42 < f i l e s e t d i r =" $ { source � path } ">
43 <include name=" ${ scope } "/>
44 </ f i l e s e t >
45 </javadoc>
46 </ t a r g e t>
47
48 < ! ��� =================================
49 t a r g e t : dot � to � g r a p h i c s
50
51 c o n v e r t . d o t t o some g r a p h i c s form
52 us ing l o c a l l y i n s t a l l e d d o t t o o l
53 ================================= ��� >
54
55 < t a r g e t name=" dot � to � graphics ">
56 <property environment=" env "/>
57 <exec
58 executab le=" dot "
59 searchpath=" t rue "
60 errorproper ty =" dot . e r r o r ">

85

61
62 <env key="PATH" path=" ${ extra � lookup � path } : $ { env .PATH} "/>
63 <arg l i n e =" ${ dot � extra � param } "/>
64 <arg value=" � T${ graphics � format } "/>
65 <arg value=" � ograph/graph . $ { graphics � format } "/>
66 <arg value=" graph/graph . dot "/>
67 </exec>
68 < f a i l message=" Error executing Graphviz ’ dot ’ ����� ${ dot . e r r o r } ">
69 <condi t ion>
70 <length s t r i n g=" ${ dot . e r r o r } " when=" g r e a t e r " length =" 0 "/>
71 </condi t ion>
72 </ f a i l >
73 </ t a r g e t>
74
75 < ! ��� =================================
76 t a r g e t : p i c � to � g r a p h i c s
77
78 c o n v e r t . p i c t o some g r a p h i c s form
79 us ing l o c a l l y i n s t a l l e d p i c 2 p l o t t o o l
80 ================================= ��� >
81
82 < t a r g e t name=" pic � to � graphics ">
83 <property environment=" env "/>
84 <property f i l e =" r u n s e t t i n g s . i n i " />
85 <copy f i l e =" $ { pic � macros � path } " t o f i l e =" sequence . p ic "/>
86 <exec
87 executab le=" p i c 2 p l o t "
88 searchpath=" t rue "
89 output=" graph/graph . $ { graphics � format } "
90 errorproper ty =" pic . e r r o r ">
91
92 <env key="PATH" path=" ${ extra � lookup � path } : $ { env .PATH} "/>
93 <arg l i n e =" ${ p ic2plot � extra � param } "/>
94 <arg value=" � T${ graphics � format } "/>
95 <arg value=" ${ pic � f i l e � path } "/>
96 </exec>
97 < f a i l message=" Error executing p l o t u t i l s ’ p ic2plot ’ ����� ${ p ic . e r r o r } ">
98 <condi t ion>
99 <length s t r i n g=" ${ p ic . e r r o r } " when=" g r e a t e r " length =" 0 "/>

100 </condi t ion>
101 </ f a i l >
102 </ t a r g e t>
103
104 </ p r o j e c t>

A.2.3 Graph Build Properties (graph.ini)

1 dot � extra � param=
2 extra � lookup � path=
3 graph � f i l e � name=graph
4 graphics � format=png
5 javadoc � access � l e v e l =p r i v a t e
6 pic � macros � path=

86

7 pic2plot � extra � param=
8 p r o j e c t � output � dir =
9 recurse � packages = f a l s e

10 umlgraph � extra � param=� operat ions � a t t r i b u t e s
11 umlgraph � j a r � path=
12 use � package � name=true

A.2.4 IBuildConstants

1 package org . l ightuml . core ;
2
3 import org . e c l i p s e . core . runtime . IPath ;
4 import org . e c l i p s e . core . runtime . Path ;
5
6 / ���
7 � <p>
8 � Constant f i l e n a m e s and p a t h s .
9 � </p>

10 �

11 � @author A n t t i Hakala
12 � @hidden
13 � /
14 public i n t e r f a c e IBui ldConstants {
15 public IPath BUILD_FILE_NAME = new Path (" bui ld ")
16 . addFileExtension (" xml ") ;
17
18 / / w i t h o u t t h e e x t e n s i o n which i s dynamic
19 public IPath INTERNAL_GRAPH_FILE_NAME = new Path (" graph ") ;
20
21 / / Graph f i l e name used i n t e r n a l l y when g e n e r a t i n g graphs .
22 / / When t h e graph i s added t o t h e p r o j e c t , t h e name i s t a k e n
23 / / f rom t h e p r e f e r e n c e s .
24 public IPath INTERNAL_DOT_FILE_NAME = INTERNAL_GRAPH_FILE_NAME
25 . addFileExtension (" dot ") ;
26
27 / / t h i s i s d e f i n e d in b u i l d . xml t o o . .
28 public IPath GRAPH_BUILD_PROPERTIES_FILE_NAME = new Path (
29 " graph ") . addFileExtension (" i n i ") ;
30
31 / / f i l e s t o be c o p i e d t o s t a t e l o c a t i o n a r e s t o r e d h e r e
32 public IPath TO_STATELOCATION_DIR = new Path (" t o _ s t a t e l o c a t i o n ") ;
33
34 / / s t a t e l o c a t i o n r e l a t e d s t u f f
35 public IPath STATELOC_OUTPUT_DIR = new Path (" graph ") ;
36 public IPath STATELOC_RUNSETTINGS = new Path (" r u n s e t t i n g s ")
37 . addFileExtension (" i n i ") ;
38
39 }

A.2.5 IErrorMessages

1 package org . l ightuml . core ;
2

87

3 / ���
4 � <p>
5 � E r r o r messages .
6 � </p>
7 �

8 � @author a n t h a k a l
9 � @hidden

10 � /
11 public i n t e r f a c e IErrorMessages {
12 public S t r i n g ERRMSG_NO_UMLGRAPH_JAR = "No UmlGraph . j a r found . See t h a t you have s e t

the UmlGraph . j a r path in Preferences > Java > LightUML > UMLGraph . " ;
13
14 public S t r i n g ERRMSG_NO_PIC_MACROS = "No sequence . p ic found ! See t h a t you have s e t the

sequence . p ic path in Preferences > Java > LightUML > UMLGraph . " ;
15 }

A.2.6 IGraphBuildProperties

1 package org . l ightuml . core ;
2
3 / ���
4 � <p>
5 � P r o p e r t y names used in t h e graph b u i l d p r o p e r t i e s f i l e .
6 � </p>
7 �

8 � @author A n t t i Hakala
9 � @hidden

10 � /
11 public i n t e r f a c e IGraphBuildPropert ies {
12
13 / / p r o p e r t y names (used in b u i l d . xml a l s o)
14 public S t r i n g P_GRAPHICS_FORMAT = " graphics � format " ;
15
16 public S t r i n g P_GRAPH_FILE_NAME = " graph � f i l e � name" ;
17
18 public S t r i n g P_PROJECT_OUTPUT_DIR = " p r o j e c t � output � dir " ;
19
20 public S t r i n g P_EXTRA_LOOKUP_PATH = " extra � lookup � path " ;
21
22 public S t r i n g P_DOT_EXTRA_PARAM = " dot � extra � param " ;
23
24 public S t r i n g P_PIC2PLOT_EXTRA_PARAM = " pic2plot � extra � param " ;
25
26 public S t r i n g P_UMLGRAPH_EXTRA_PARAM = " umlgraph � extra � param " ;
27
28 public S t r i n g P_USE_PACKAGE_NAME = " use � package � name" ;
29
30 public S t r i n g P_RECURSE_PACKAGES = " recurse � packages " ;
31
32 public S t r i n g P_JAVADOC_ACCESS_LEVEL = " javadoc � access � l e v e l " ;
33
34 public S t r i n g P_UMLGRAPH_JAR_PATH = " umlgraph � j a r � path " ;
35

88

36 public S t r i n g P_PIC_MACROS_PATH = " pic � macros � path " ;
37
38 public S t r i n g [] [] OUTPUT_FORMATS = { { " f i g (XFIG Graphics) " , " f i g " } ,
39 { " g i f (Graphics Interchange Format) " , " g i f " } ,
40 { " hpgl (HP pen p l o t t e r s) " , " hpgl " } ,
41 { " pc l (L a s e r j e t p r i n t e r s) " , " pc l " } ,
42 { " png (Por tab le Network Graphics) " , "png" } ,
43 { " ps (P o s t S c r i p t) " , " ps " } ,
44 { " svg (St ruc tured Vector Graphics) " , " svg " } } ;
45
46 public S t r i n g [] [] ACCESS_LEVELS = { { " p r i v a t e " , " p r i v a t e " } ,
47 { " protec ted " , " protec ted " } , { " package " , " package " } ,
48 { " publ i c " , " publ i c " } } ;
49 }

A.2.7 IGraphConverter

1 package org . l ightuml . core ;
2
3 import org . e c l i p s e . core . runtime . IPath ;
4 import org . e c l i p s e . core . runtime . IProgressMonitor ;
5
6 / ���
7 � <p>
8 � An i n t e r f a c e f o r c o n v e r t i n g . d o t and . p i c f i l e s t o g r a p h i c a l form
9 � </p>

10 � <p>
11 � Output has t o be o f f o r m a t
12 � LightUMLCorePlugin . g e t G r a p h B u i l d P r o p e r t y (P_GRAPHICS_FORMAT) .
13 � P_GRAPHICS_FORMAT i s found in i n t e r f a c e I G r a p h B u i l d P r o p e r t i e s .
14 � </p>
15 � <p>
16 � A c l a s s imp l ement ing t h i s i n t e r f a c e a l s o has t o r e t u r n t h e l o c a t i o n o f
17 � g e n e r a t e d g r a p h i c s f i l e w i th g e t G r a p h i c s F i l e P a t h () .
18 � </p>
19 � <p>
20 � P r o g r e s s moni t o r i s p r o v i d e d f o r c a n c e l i n g s u p p o r t .
21 � </p>
22 �

23 � @author A n t t i Hakala
24 � /
25 public i n t e r f a c e IGraphConverter {
26 / ���
27 � <p>
28 � Conver t . d o t f i l e t o some g r a p h i c a l form f o r v i ewing .
29 � </p>
30 �

31 � @param pm
32 � A p r o g r e s s moni t o r t o use .
33 � @throws LightUMLCoreExcept ion
34 � /
35 public void dotToGraphics (IPath dotF i lePath , IProgressMonitor pm)
36 throws LightUMLCoreException ;

89

37
38 / ���
39 � <p>
40 � Conver t a . p i c f i l e t o g r a p h i c a l form .
41 � </p>
42 �

43 � @param pm
44 � A p r o g r e s s moni t o r t o use .
45 � @throws LightUMLCoreExcept ion
46 � @hidden
47 � /
48 public void picToGraphics (IPath picF i lePath , IProgressMonitor pm)
49 throws LightUMLCoreException ;
50
51 / ���
52 � <p>
53 � Get pa th t o t h e c o n v e r t e d g r a p h i c s f i l e .
54 � </p>
55 �

56 � @return t h e pa th t o t h e (c o v e r t e d) g r a p h i c s f i l e
57 � /
58 public IPath getGraphicsF i lePath () throws LightUMLCoreException ;
59 }

A.2.8 LightUMLCoreException

1 package org . l ightuml . core ;
2
3 / ���
4 � <p>
5 � An e x c e p t i o n o f LightUMLCorePlugin .
6 � </p>
7 �

8 � @author A n t t i Hakala
9 � /

10 public c l a s s LightUMLCoreException extends Exception {
11 private s t a t i c f i n a l long serialVersionUID = � 7915803826993423881 L ;
12
13 / ���
14 � <p>
15 � C o n t r u c t o r .
16 � </p>
17 �

18 � @param e
19 � The c a u s e .
20 � /
21 public LightUMLCoreException (Throwable e) {
22 super (e) ;
23 }
24
25 / ���
26 � <p>
27 � C o n s t r u c t o r wi th a message .

90

28 � </p>
29 �

30 � @param message
31 � E x c e p t i o n message .
32 � /
33 public LightUMLCoreException (S t r i n g message) {
34 super (new Throwable (message)) ;
35 }
36 }

A.2.9 LightUMLCorePlugin

1 package org . l ightuml . core ;
2
3 import j ava . io . F i le InputSt ream ;
4 import j ava . io . FileOutputStream ;
5 import j ava . io . IOException ;
6 import j ava . u t i l . P r o p e r t i e s ;
7
8 import org . e c l i p s e . ant . core . AntRunner ;
9 import org . e c l i p s e . core . resources . I F i l e ;

10 import org . e c l i p s e . core . resources . I P r o j e c t ;
11 import org . e c l i p s e . core . runtime . IPath ;
12 import org . e c l i p s e . core . runtime . Plugin ;
13 import org . e c l i p s e . core . runtime . j o b s . I JobChangeListener ;
14 import org . l ightuml . core . j o b s . AddGraphToProject ;
15 import org . l ightuml . core . j o b s . DotToGraphics ;
16 import org . l ightuml . core . j o b s . I n i t i a l i z e ;
17 import org . l ightuml . core . j o b s . JavaToDot ;
18 import org . l ightuml . core . j o b s . PicToGraphics ;
19 import org . osg i . framework . BundleContext ;
20
21 / ���
22 � <p>
23 � The " c o r e " o f LightUML . A plug � in t h a t d i r e c t s t h e e x e c u t i o n o f UmlGraph and
24 � o t h e r e x t e r n a l t o o l s .
25 � </p>
26 �

27 � @author A n t t i Hakala
28 � @has 1 � 1 org . l i g h t u m l . c o r e . I G r a p h C o n v e r t e r
29 � @navassoc 1 throws � org . l i g h t u m l . c o r e . LightUMLCoreExcept ion
30 � /
31 public c l a s s LightUMLCorePlugin extends Plugin implements IBui ldConstants ,
32 IErrorMessages {
33 / ���
34 � <p>
35 � The s t a t i c p l u g i n i n s t a n c e .
36 � </p>
37 � /
38 private s t a t i c LightUMLCorePlugin plugin = null ;
39
40 / ���
41 � <p>

91

42 � The graph c o n v e r t e r t o use .
43 � </p>
44 � /
45 private IGraphConverter graphConverter ;
46
47 / ���
48 � <p>
49 � P r o p e r t i e s f o r graph b u i l d i n g .
50 � </p>
51 � /
52 private P r o p e r t i e s graphBui ldProper t ies ;
53
54 / ���
55 � <p>
56 � Get t h e pa th t o b u i l d f i l e .
57 � </p>
58 �

59 � @return A path t o b u i l d f i l e .
60 � /
61 public IPath g e t B u i l d F i l e P a t h () {
62 return g e t S t a t e L o c a t i o n () . append (BUILD_FILE_NAME) ;
63 }
64
65 / ���
66 � <p>
67 � Get t h e pa th t o graph b u i l d p r o p e r t i e s .
68 � </p>
69 �

70 � @return A path t o p r o p e r t i e s f i l e .
71 � /
72 public IPath g e t P r o p e r t i e s F i l e P a t h () {
73 return g e t S t a t e L o c a t i o n () . append (GRAPH_BUILD_PROPERTIES_FILE_NAME) ;
74 }
75
76 / ���
77 � <p>
78 � Conven i ence method
79 � </p>
80 �

81 � @throws LightUMLCoreExcept ion
82 � @return pa th r e p r e s e n t i n g t h e l o c a t i o n where t h e . d o t f i l e i s (t o be)
83 � g e n e r a t e d .
84 � /
85 public IPath getDotF i lePath () {
86 return g e t S t a t e L o c a t i o n () . append (STATELOC_OUTPUT_DIR) . append (
87 INTERNAL_DOT_FILE_NAME) ;
88 }
89
90 / ���
91 � <p>
92 � C o n s t r u c t o r .
93 � </p>
94 � /

92

95 public LightUMLCorePlugin () {
96 super () ;
97 plugin = t h i s ;
98 setGraphConverter (LocalGraphConverter . i n s t a n c e ()) ;
99 graphBui ldProper t ies = new P r o p e r t i e s () ;

100 }
101
102 / ���
103 � <p>
104 � Try t o l o a d t h e graph b u i l d p r o p e r t i e s when t h e plug � in i s s t a r t e d .
105 � </p>
106 �

107 � @see P lug in # s t a r t (o rg . o s g i . f ramework . Bund l eContex t)
108 � /
109 public void s t a r t (BundleContext context) throws Exception {
110 super . s t a r t (context) ;
111 t r y {
112 loadProper t i es () ;
113 } catch (LightUMLCoreException e) {
114 / / E x c e p t i o n w h i l e l o a d i n g p r o p e r t i e s � > f o r c e an I n i t i a l i z e
115 (new I n i t i a l i z e (System . currentTimeMil l i s () , true ,
116 I n i t i a l i z e .CHECK_UMLGRAPH_NONE)) . schedule () ;
117 }
118 }
119
120 / ���
121 � <p>
122 � The s t a t i c a c c e s s o r t o g e t a h a n d l e t o t h e s i n g l e t o n . Note : t h i s plug � in
123 � c l a s s s h o u l d be c r e a t e d on ly by t h e p l a t f o r m .
124 � </p>
125 �

126 � @return The LightUMLCorePlugin .
127 � /
128 public s t a t i c LightUMLCorePlugin getDefaul t () {
129 i f (plugin == null)
130 plugin = new LightUMLCorePlugin () ;
131 return plugin ;
132 }
133
134 / ���
135 � <p>
136 � A c c e s s o r f o r g r a p h C o n v e r t e r
137 � </p>
138 �

139 � @return I G r a p h C o n v e r t e r
140 � /
141 public IGraphConverter getGraphConverter () {
142 return graphConverter ;
143 }
144
145 / ���
146 � <p>
147 � S e t t e r f o r g r a p h C o n v e r t e r

93

148 � </p>
149 �

150 � @param c
151 � The g r a p h c o n v e r t e r .
152 � /
153 public void setGraphConverter (IGraphConverter c) {
154 graphConverter = c ;
155 }
156
157 / ���
158 � <p>
159 � Load p r o p e r t i e s f o r graph b u i l d i n g .
160 � </p>
161 �

162 � @throws LightUMLCoreExcept ion
163 �

164 � /
165 public synchronized void loadProper t ie s () throws LightUMLCoreException {
166 t r y {
167 graphBui ldProper t ies . load (new Fi le InputSt ream (
168 g e t P r o p e r t i e s F i l e P a t h () . t o F i l e ())) ;
169 } catch (IOException e) {
170 throw new LightUMLCoreException (e) ;
171 }
172 }
173
174 / ���
175 � <p>
176 � G e t t e r f o r g r a p h B u i l d P r o p e r t i e s .
177 � </p>
178 �

179 � @return g r a p h B u i l d P r o p e r t i e s
180 � @throws LightUMLCoreExcept ion
181 � /
182 public P r o p e r t i e s getGraphBuildPropert ies () throws LightUMLCoreException {
183 return graphBui ldProper t ies ;
184 }
185
186 / ���
187 � <p>
188 � G e t t e r f o r a graph b u i l d p r o p e r t y .
189 � </p>
190 �

191 � @param p r o p e r t y
192 � Name o f t h e p r o p e r t y .
193 � @return v a l u e o f t h e p r o p e r t y .
194 �

195 � /
196 public S t r i n g getGraphBuildProperty (S t r i n g property) {
197 return graphBui ldProper t ies . getProperty (property) ;
198 }
199
200 / ���

94

201 � <p>
202 � S e t t e r f o r a graph b u i l d p r o p e r t y .
203 � </p>
204 �

205 � @param key
206 � Key (name) o f t h e p r o p e r t y .
207 � @param v a l u e
208 � The new v a l u e f o r t h e p o r p e r t y .
209 � @throws LightUMLCoreExcept ion
210 � /
211 public void setGraphBuildProperty (S t r i n g key , S t r i n g value)
212 throws LightUMLCoreException {
213 graphBui ldProper t ies . se tProper ty (key , value) ;
214 t r y { / / a lways s t o r e so t h a t ant b u i l d s a r e up t o d a t e wi th
215 / / p r o p e r t i e s
216
217 graphBui ldProper t ies
218 . s t o r e (new FileOutputStream (g e t P r o p e r t i e s F i l e P a t h ()
219 . t o F i l e ()) , " Graph Build P r o p e r t i e s ") ;
220 } catch (IOException e) {
221 throw new LightUMLCoreException (e) ;
222 }
223 }
224
225 / ���
226 � <p>
227 � G e t t e r f o r t h e runner t h a t i s used t o run t a r g e t s in BUILD_FILE .
228 � </p>
229 �

230 � @return A new Antrunner f o r BUILD_FILE .
231 � /
232 public AntRunner getBuildFi leRunner () {
233 AntRunner runner = new AntRunner () ;
234 runner . s e t B u i l d F i l e L o c a t i o n (g e t B u i l d F i l e P a t h () . t o S t r i n g ()) ;
235 / / d e v e l t ime
236 runner . addBuildLogger (" org . apache . t o o l s . ant . DefaultLogger ") ;
237 runner . setMessageOutputLevel (4) ;
238 return runner ;
239 }
240
241 / / ������������������� Methods be l ow t h i s l i n e can be c a l l e d from t h e UI �������������������
242 / ���
243 � <p>
244 � This method i s used t o r e s t o r e d e f a u l t s e t t i n g s . C a l l e d from t h e UI .
245 � </p>
246 � <p>
247 � A J o b C h a n g e L i s t e n e r i s needed i f t h e UI wants t o upda t e i t s p r e f e r e n c e s
248 � t h a t depend on g r a p h B u i l d P r o p e r t i e s (t h a t g e t r e s e t wi th I n i t i a l i z e) .
249 � </p>
250 �

251 � /
252 public synchronized void r e s t o r e S e t t i n g s (I JobChangeListener l i s t e n e r) {
253 / / 1 � i n i t s t a t e l o c a t i o n (& r e a d d e f a u l t p r o p e r t i e s)

95

254 I n i t i a l i z e i n i t J o b = new I n i t i a l i z e (System . currentTimeMil l i s () , true ,
255 I n i t i a l i z e .CHECK_UMLGRAPH_NONE) ;
256 i f (l i s t e n e r != null)
257 i n i t J o b . addJobChangeListener (l i s t e n e r) ;
258 i n i t J o b . schedule () ;
259 }
260
261 / ���
262 � <p>
263 � G e n e r a t e a c l a s s diagram f o r a g i v e n p r o j e c t . C a l l e d from t h e UI .
264 � </p>
265 �
266 � < l i > LightUMLSchedul ingRule p r e v e n t s LightUMLJobs from running
267 � c o n c u r r e n t l y (t h e y s h o u l d be run s e q u e n t i a l l y) . </ l i >
268 � < l i > A l l j o b s a r e s c h e d u l e d a t once . Th i s i s mainly b e c a u s e o t h e r w i s e
269 � g e n e r a t i n g two c l a s s d i agrams " a t t h e same t ime " c o u l d c o n f u s e t h e
270 � diagram f i l e s (in . d o t and in g r a p h i c s form) . </ l i >
271 � < l i > J o b s s u p p o r t c a n c e l i n g => r e s p o n s i v e n e s s . </ l i >
272 � < l i >Note t h a t E c l i p s e J a v a model i s used on ly a t UI � l e v e l . < / l i >
273 � </ ul >
274 �

275 � @param p r o j e c t
276 � The p r o j e c t t o g e n e r a t e a c l a s s diagram f o r .
277 � @param p a c k a g e P a t h
278 � A p r o j e c t r e l a t i v e pa th under which t h e s o u r c e f i l e s w i l l b e
279 � l o o k e d f o r .
280 � @param packageName
281 � Name o f t h e p a c k a g e or n u l l i f g e n e r a t i n g a diagram f o r a
282 � whole p r o j e c t .
283 �

284 � /
285 public synchronized void generateClassDiagram (I P r o j e c t p r o j e c t ,
286 IPath packagePath , S t r i n g packageName) {
287 f i n a l long refTime = System . currentTimeMil l i s () ;
288 IPath sourcePath = p r o j e c t . ge tLocat ion () ;
289 i f (packagePath != null)
290 sourcePath = sourcePath . append (packagePath) ;
291
292 / / 1 � i n i t i a l i z e i f ne eded
293 (new I n i t i a l i z e (refTime , fa lse , I n i t i a l i z e .CHECK_UMLGRAPH_JAR))
294 . schedule () ;
295
296 / / 2 � run t h e UmlGraph d o c l e t t o c o n v e r t . j a v a f i l e s t o a s i n g l e . d o t
297 / / f i l e
298 (new JavaToDot (refTime , sourcePath , packageName)) . schedule () ;
299
300 / / 3 � c o n v e r t . d o t f i l e t o a g r a p h i c s f i l e
301 (new DotToGraphics (refTime)) . schedule () ;
302
303 / / 4 � add g r a p h i c s f i l e t o t h e p r o j e c t
304 (new AddGraphToProject (refTime , p r o j e c t , packageName)) . schedule () ;
305 }
306

96

307 / ���
308 � <p>
309 � G e n e r a t e a s e q u e n c e diagram from a . p i c f i l e .
310 � </p>
311 �

312 � @param p i c F i l e
313 � The . p i c f i l e t o g e n e r a t e from .
314 � @hidden
315 � /
316 public synchronized void generateSequenceDiagram (I F i l e p i c F i l e) {
317 f i n a l long refTime = System . currentTimeMil l i s () ;
318
319 / / 1 � i n i t i a l i z e i f ne eded
320 (new I n i t i a l i z e (refTime , fa lse , I n i t i a l i z e .CHECK_UMLGRAPH_PIC_MACROS))
321 . schedule () ;
322
323 / / 2 � c o n v e r t . p i c t o g r a p h i c s
324 (new PicToGraphics (refTime , p i c F i l e . ge tLocat ion ())) . schedule () ;
325
326 / / 3 � add g r a p h i c s f i l e t o t h e p r o j e c t
327 (new AddGraphToProject (refTime , p i c F i l e . g e t P r o j e c t () , null)) . schedule () ;
328 }
329 }

A.2.10 LocalGraphConverter

1 package org . l ightuml . core ;
2
3 import j ava . io . FileOutputStream ;
4 import j ava . io . IOException ;
5 import j ava . u t i l . P r o p e r t i e s ;
6
7 import org . e c l i p s e . ant . core . AntRunner ;
8 import org . e c l i p s e . core . runtime . CoreException ;
9 import org . e c l i p s e . core . runtime . IPath ;

10 import org . e c l i p s e . core . runtime . IProgressMonitor ;
11
12 / ���
13 � <p>
14 � Imp l ements I G r a p h C o n v e r t e r us ing l o c a l l y i n s t a l l e d GraphViz t o o l s (d o t) .
15 � </p>
16 �

17 � @author A n t t i Hakala
18 � /
19 public c l a s s LocalGraphConverter implements IGraphConverter , IBui ldConstants ,
20 IGraphBuildProper t ies {
21 / ���
22 � <p>
23 � S t a t i c i n s t a n c e o f L o c a l G r a p h C o n v e r t e r .
24 � </p>
25 � /
26 private s t a t i c LocalGraphConverter i n s t a n c e = null ;
27

97

28 / ���
29 � <p>
30 � P r o t e c t e d c o n s t r u c t o r (s i n g l e t o n p a t t e r n) .
31 � </p>
32 � /
33 private LocalGraphConverter () {
34 } ;
35
36 / ���
37 � <p>
38 � S t a t i c a c c e s s o r .
39 � </p>
40 �

41 � @return L o c a l G r a p h C o n v e r t e r
42 � /
43 s t a t i c public LocalGraphConverter i n s t a n c e () {
44 i f (i n s t a n c e == null)
45 i n s t a n c e = new LocalGraphConverter () ;
46 return i n s t a n c e ;
47 }
48
49 / ���
50 � <p>
51 � Conver t . d o t f i l e t o g r a p h i c s f o r m a t .
52 � </p>
53 �

54 � @param d o t F i l e P a t h
55 � UNUSED atm .
56 � @param pm
57 � The p r o g r e s s moni t o r t o be used .
58 � @throws LightUMLCoreExcept ion
59 � @see I G r a p h C o n v e r t e r# d o t T o G r a p h i c s (I P r o g r e s s M o n i t o r)
60 � /
61 public void dotToGraphics (IPath dotF i lePath , IProgressMonitor pm)
62 throws LightUMLCoreException {
63 AntRunner runner = LightUMLCorePlugin . getDefaul t () . getBuildFi leRunner () ;
64 runner . se tExecut ionTargets (new S t r i n g [] { " dot � to � graphics " }) ;
65 t r y {
66 runner . run (pm) ;
67 } catch (CoreException e) {
68 throw new LightUMLCoreException (e) ;
69 }
70 }
71
72 / ���
73 � <p>
74 � Path t o t h e g r a p h i c s f i l e t o be g e n e r a t e d .
75 � </p>
76 �

77 � @see org . l i g h t u m l . c o r e . I G r a p h C o n v e r t e r# g e t G r a p h i c s F i l e P a t h ()
78 � @return The pa th t o t h e g r a p h i c s f i l e (t o be) g e n e r a t e d .
79 � /
80 public IPath getGraphicsF i lePath () throws LightUMLCoreException {

98

81 LightUMLCorePlugin cp = LightUMLCorePlugin . getDefaul t () ;
82 return cp . g e t S t a t e L o c a t i o n () . append (STATELOC_OUTPUT_DIR) . append (
83 INTERNAL_GRAPH_FILE_NAME) . addFileExtension (
84 cp . getGraphBuildProperty (P_GRAPHICS_FORMAT)) ;
85 }
86
87 / ���
88 � <p>
89 � D e l i v e r s t h e pa th t o t h e . p i c f i l e t o Ant .
90 � </p>
91 �

92 � @throws IOExcep t i on
93 � @hidden
94 � /
95 private void d e l i v e r P i c F i l e P a t h (IPath p i c F i l e P a t h) throws IOException {
96 P r o p e r t i e s prop = new P r o p e r t i e s () ;
97
98 prop . se tProper ty (" pic � f i l e � path " , p i c F i l e P a t h . t o S t r i n g ()) ;
99 IPath p = LightUMLCorePlugin . getDefaul t () . g e t S t a t e L o c a t i o n () . append (

100 STATELOC_RUNSETTINGS) ;
101 prop . s t o r e (new FileOutputStream (p . t o F i l e ()) , " Ant run s e t t i n g s ") ;
102 }
103
104 / ���
105 � <p>
106 � Conver t . p i c t o g r a p h i c s .
107 � </p>
108 � @throws IOExcep t i on
109 � @hidden
110 � /
111 public void picToGraphics (IPath picF i lePath , IProgressMonitor pm)
112 throws LightUMLCoreException {
113
114 t r y {
115 d e l i v e r P i c F i l e P a t h (p i c F i l e P a t h) ;
116 AntRunner runner = LightUMLCorePlugin . getDefaul t () . getBuildFi leRunner () ;
117 runner . se tExecut ionTargets (new S t r i n g [] { " pic � to � graphics " }) ;
118 runner . run (pm) ;
119 } catch (IOException e) {
120 throw new LightUMLCoreException (e) ;
121 } catch (CoreException e) {
122 throw new LightUMLCoreException (e) ;
123 }
124 }
125 }

A.2.11 AddGraphToProject

1 package org . l ightuml . core . j o b s ;
2
3 import j ava . io . F i le InputSt ream ;
4 import j ava . io . FileNotFoundException ;
5

99

6 import org . e c l i p s e . core . resources . I F i l e ;
7 import org . e c l i p s e . core . resources . IFo lder ;
8 import org . e c l i p s e . core . resources . I P r o j e c t ;
9 import org . e c l i p s e . core . runtime . CoreException ;

10 import org . e c l i p s e . core . runtime . IPath ;
11 import org . e c l i p s e . core . runtime . IProgressMonitor ;
12 import org . e c l i p s e . core . runtime . I S t a t u s ;
13 import org . e c l i p s e . core . runtime . Path ;
14 import org . e c l i p s e . core . runtime . S t a t u s ;
15 import org . l ightuml . core . IGraphBuildProper t ies ;
16 import org . l ightuml . core . LightUMLCoreException ;
17
18 / ���
19 � <p>
20 � This j o b adds t h e g e n e r a t e d g r a p h i c s f i l e t o p r o j e c t .
21 � </p>
22 �

23 � @author A n t t i Hakala
24 � /
25 public c l a s s AddGraphToProject extends LightUMLJob implements
26 IGraphBuildProper t ies {
27 / ���
28 � <p>
29 � P r o j e c t t o add t h e graph t o .
30 � </p>
31 � /
32 private I P r o j e c t p r o j e c t ;
33
34 / ���
35 � <p>
36 � Package name , o r n u l l i f no p a c k a g e s e l e c t e d
37 � </p>
38 � /
39 private S t r i n g packageName ;
40
41 / ���
42 � <p>
43 � C o n s t r u c t o r .
44 � </p>
45 �

46 � @param p
47 � P r o j e c t t o add t h e graph t o .
48 � @param t
49 � R e f e r e n c e t ime . Graph t o add has t o be newer than t h i s .
50 � @param pn
51 � Package name , o r n u l l i f no p a c k a g e s e l e c t e d .
52 � /
53 public AddGraphToProject (long t , I P r o j e c t p , S t r i n g pn) {
54 / / Ge t s a l o c k t o p r o j e c t p
55 / / A l o c k t o t h e whole p r o j e c t i s ok , s i n c e we might need t o c r e a t e a
56 / / f o l d e r .
57 super (t , " Adding a graph to p r o j e c t " + p . getName () , p) ;
58 p r o j e c t = p ;

100

59 packageName = pn ;
60 }
61
62 / ���
63 � <p>
64 � I n t e r n a l method f o r g e t t i n g t h e name o f t h e graph f i l e .
65 � <p>
66 �

67 � @return name o f t h e graph f i l e in t h e p r o j e c t
68 � @throws LightUMLCoreExcept ion
69 � /
70 private IPath getGraphFileName () throws LightUMLCoreException {
71 IPath graphFileName ;
72
73 / / c h e c k i f t h e graph s h o u l d be named l i k e t h e p a c k a g e
74 i f ((packageName != null)
75 && corePlugin . getGraphBuildProperty (P_USE_PACKAGE_NAME) . equals (
76 " t rue "))
77 graphFileName = new Path (packageName) ;
78 else
79 graphFileName = new Path (corePlugin
80 . getGraphBuildProperty (P_GRAPH_FILE_NAME)) ;
81 / / add e x t e n s i o n
82 graphFileName = graphFileName . addFileExtension (corePlugin
83 . getGraphBuildProperty (P_GRAPHICS_FORMAT)) ;
84
85 return graphFileName ;
86 }
87
88 / ���
89 � <p>
90 � I n t e r n a l method f o r g e t t i n g t h e graph f i l e .
91 � I f a f o l d e r i s c r e a t e d , i t i s marked as d e r i v e d .
92 � </p>
93 �

94 � @return t h e graph f i l e in t h e p r o j e c t t h a t r e p r e s e n t s t h e g e n e r a t e d
95 � diagram
96 � @throws C o r e E x c e p t i o n
97 � @throws LightUMLCoreExcept ion
98 � /
99 private I F i l e getGraphFile () throws CoreException , LightUMLCoreException {

100 IPath graphFileName = getGraphFileName () , projPath = p r o j e c t
101 . ge tFul lPath () , outDirPath = new Path (corePlugin
102 . getGraphBuildProperty (P_PROJECT_OUTPUT_DIR)) ;
103 I F i l e f ;
104
105 / / c h e c k where t o add t h e graph
106 i f (projPath . append (outDirPath) . equals (projPath))
107 f = p r o j e c t . g e t F i l e (graphFileName) ;
108 else {
109 IFo lder f o l d e r = p r o j e c t . ge tFo lder (outDirPath) ;
110 i f (! f o l d e r . e x i s t s ()) {
111 f o l d e r . c r e a t e (true , true , null) ;

101

112 f o l d e r . setDerived (t rue) ;
113 }
114 f = f o l d e r . g e t F i l e (graphFileName) ;
115 }
116 return f ;
117 }
118
119 / ���
120 � <p>
121 � Adds t h e g e n e r a t e d graph f i l e t o t h e p r o j e c t , marking i t a d e r i v e d
122 � r e s o u r c e .
123 � </p>
124 �

125 � @see org . e c l i p s e . c o r e . runt ime . j o b s . J o b # run (org . e c l i p s e . c o r e . runt ime . I P r o g r e s s M o n i t o r
)

126 � @param moni to r
127 � The p r o g r e s s moni t o r t o be used .
128 � @return S t a t u s wi th OK s e v e r i t y i f s u c c e s s f u l , o t h e r w i s e ERROR s e v e r i t y .
129 � /
130 protected I S t a t u s run (IProgressMonitor monitor) {
131 t r y {
132 I F i l e f = getGraphFile () ;
133 F i le InputSt ream f i s = new Fi le InputSt ream (corePlugin
134 . getGraphConverter () . ge tGraphicsF i lePath () . t o F i l e ()) ;
135
136 i f (f . e x i s t s ())
137 f . se tContents (f i s , true , fa lse , monitor) ;
138 else
139 f . c r e a t e (f i s , true , monitor) ;
140
141 f . setDerived (t rue) ;
142 monitor . done () ;
143
144 } catch (LightUMLCoreException e) {
145 return e r r o r S t a t u s (e) ;
146 } catch (CoreException e) {
147 return e r r o r S t a t u s (e) ;
148 } catch (FileNotFoundException e) {
149 return e r r o r S t a t u s (e) ;
150 }
151 i f (monitor . isCanceled ())
152 return c a n c e l S t a t u s () ;
153 return S t a t u s . OK_STATUS;
154 }
155 }

A.2.12 DotToGraphics

1 package org . l ightuml . core . j o b s ;
2
3 import org . e c l i p s e . core . runtime . IProgressMonitor ;
4 import org . e c l i p s e . core . runtime . I S t a t u s ;
5 import org . e c l i p s e . core . runtime . S t a t u s ;

102

6 import org . l ightuml . core . IErrorMessages ;
7 import org . l ightuml . core . LightUMLCoreException ;
8
9 / ���

10 � <p>
11 � Conver t s . d o t f i l e t o g r a p h i c a l form . D e l e g a t e s t h e a c t u a l c o n v e r s i o n t o
12 � g r a p h C o n v e r t e r o f LightUMLCorePlugin .
13 � </p>
14 �

15 � @author A n t t i Hakala
16 � /
17 public c l a s s DotToGraphics extends LightUMLJob implements IErrorMessages {
18 / ���
19 � C o n s t r u c t o r
20 �

21 � @param t
22 � R e f e r e n c e t ime . The . d o t f i l e used has t o be newer than t h i s .
23 � /
24 public DotToGraphics (long t) {
25 super (t , " Converting to graphics ") ;
26 }
27
28 / ���
29 � @see org . e c l i p s e . c o r e . runt ime . j o b s . J o b # run (org . e c l i p s e . c o r e . runt ime . I P r o g r e s s M o n i t o r

)
30 � /
31 protected I S t a t u s run (IProgressMonitor monitor) {
32 t r y {
33 corePlugin . getGraphConverter () . dotToGraphics (corePlugin . getDotF i lePath () ,

monitor) ;
34 monitor . done () ;
35 } catch (LightUMLCoreException e) {
36 return e r r o r S t a t u s (e) ;
37 }
38 i f (monitor . isCanceled ())
39 return c a n c e l S t a t u s () ;
40 return S t a t u s . OK_STATUS;
41 }
42 }

A.2.13 Initialize

1 package org . l ightuml . core . j o b s ;
2
3 import j ava . io . F i l e ;
4 import j ava . io . FileOutputStream ;
5 import j ava . io . IOException ;
6 import j ava . io . InputStream ;
7
8 import org . e c l i p s e . core . runtime . IPath ;
9 import org . e c l i p s e . core . runtime . IProgressMonitor ;

10 import org . e c l i p s e . core . runtime . I S t a t u s ;
11 import org . e c l i p s e . core . runtime . S t a t u s ;

103

12 import org . l ightuml . core . IBui ldConstants ;
13 import org . l ightuml . core . IErrorMessages ;
14 import org . l ightuml . core . IGraphBuildProper t ies ;
15 import org . l ightuml . core . LightUMLCoreException ;
16
17 / ���
18 �

19 � <p>
20 � I n i t i a l i z e s t h e plug � in s t a t e l o c a t i o n by unz ipp ing t h e s t a t e l o c a t i o n . z i p i n t o
21 � t h e plug � in s t a t e l o c a t i o n . Th i s i s done on ly i f f o r c e d or needed .
22 � </p>
23 �

24 � @author A n t t i Hakala
25 � /
26 public c l a s s I n i t i a l i z e extends LightUMLJob implements IBui ldConstants ,
27 IGraphBuildPropert ies , IErrorMessages {
28 f i n a l s t a t i c i n t BUFFER_SIZE = 2048 ;
29
30 private boolean f o r c e I n i t i a l i z e ;
31
32 private i n t checkUMLGraph;
33
34 public f i n a l s t a t i c i n t CHECK_UMLGRAPH_NONE = 0 , CHECK_UMLGRAPH_JAR = 1 ,
35 CHECK_UMLGRAPH_PIC_MACROS = 2 ;
36
37 / ���
38 � <p>
39 � C o n s t r u c t o r .
40 � </p>
41 �

42 � @param t ime
43 � The r e f e r e n c e t ime .
44 � @param f o r c e I n i t i a l i z e F l a g
45 � F o r c e i n i t i a l i z a t i o n ?
46 � @param checkUMLGraphFlag
47 � Check i f UMLGraph i s found ?
48 � /
49 public I n i t i a l i z e (long time , boolean f o r c e I n i t i a l i z e F l a g ,
50 i n t checkUMLGraphFlag) {
51 super (time , " I n i t i a l i z i n g LightUML") ;
52 f o r c e I n i t i a l i z e = f o r c e I n i t i a l i z e F l a g ;
53 checkUMLGraph = checkUMLGraphFlag ;
54 }
55
56 / ���
57 � <p>
58 � Used f o r non � workspace copy ing .
59 � </p>
60 �

61 � @param i s
62 � i n p u t s t r e a m t o copy from
63 � @param p
64 � pa th t o t h e d e s t i n a t i o n

104

65 � @throws IOExcep t i on
66 � /
67 public s t a t i c void nonWSCopy (InputStream is , IPath p) throws IOException {
68 byte data [] = new byte [1 0 2 4] ;
69 F i l e f = p . t o F i l e () ;
70 f . createNewFile () ;
71 FileOutputStream fos = new FileOutputStream (f) ;
72 i n t count ;
73 while ((count = i s . read (data)) != � 1)
74 fos . write (data , 0 , count) ;
75 i s . c l o s e () ;
76 fos . c l o s e () ;
77 }
78
79 / ���
80 � <p>
81 � I n i t i a l i z e s s t a t e l o c a t i o n . O v e r w r i t e s p r o p e r t i e s / p r e f e r e n c e s f o r graph
82 � g e n e r a t i o n .
83 � </p>
84 �
85 � < l i > C r e a t e s t a t e l o c a t i o n output d i r e c t o r y where g e n e r a t e d graphs w i l l b e
86 � s t o r e d . </ l i >
87 � < l i >copy " b u i l d . xml" t o s t a t e l o c a t i o n </ l i >
88 � < l i >copy " graph . i n i " t o s t a t e l o c a t i o n </ l i >
89 � </ ul >
90 � <p>
91 � TODO: r e f a c t o r : copy e v e r y t h i n g in t h e d i r t o s t a t e l o c a t i o n ?
92 � </p>
93 � @throws IOExcep t i on
94 � /
95 private void i n i t i a l i z e S t a t e L o c a t i o n () throws IOException {
96 corePlugin . g e t S t a t e L o c a t i o n () . append (STATELOC_OUTPUT_DIR) . t o F i l e ()
97 . mkdir () ;
98 nonWSCopy (corePlugin . openStream (TO_STATELOCATION_DIR
99 . append (BUILD_FILE_NAME)) , corePlugin . g e t S t a t e L o c a t i o n ()

100 . append (BUILD_FILE_NAME)) ;
101 nonWSCopy (corePlugin . openStream (TO_STATELOCATION_DIR
102 . append (GRAPH_BUILD_PROPERTIES_FILE_NAME)) , corePlugin
103 . g e t S t a t e L o c a t i o n () . append (GRAPH_BUILD_PROPERTIES_FILE_NAME)) ;
104 }
105
106 / ���
107 � <p>
108 � Check i f i n i t i a l i z e i s needed . Checks i f t h e n e c e s s a r y f i l e s a r e found
109 � and i f t h e l a s t i n i t i a l i z e was wi th t h e same v e r s i o n o f plug � in , i . e .
110 � f i l e s a r e up t o d a t e .
111 � </p>
112 �

113 � @return t r u e i f i n i t i a l i z e i s needed , f a l s e o t h e r w i s e .
114 � @throws LightUMLCoreExcept ion
115 � /
116 private boolean n e e d I n i t i a l i z e () throws LightUMLCoreException {
117 S t r i n g i n i t V e r s i o n ;

105

118 i f (! corePlugin . g e t B u i l d F i l e P a t h () . t o F i l e () . e x i s t s ()
119 || ! corePlugin . g e t P r o p e r t i e s F i l e P a t h () . t o F i l e () . e x i s t s ()
120 || ((i n i t V e r s i o n = corePlugin
121 . getGraphBuildProperty (" bundle � vers ion ")) == null)
122 || ! i n i t V e r s i o n . equals (corePlugin . getBundle () . getHeaders () . get (
123 " Bundle � Version ")))
124 return true ;
125 return f a l s e ;
126 }
127
128 / ���
129 � <p>
130 � Check i f UMLGraph i s found .
131 � </p>
132 �

133 � @throws LightUMLCoreExcept ion
134 �

135 � /
136 private void checkUMLGraph() throws LightUMLCoreException {
137 i f ((checkUMLGraph & CHECK_UMLGRAPH_JAR) != 0) {
138 S t r i n g pathToDoclet = corePlugin
139 . getGraphBuildProperty (P_UMLGRAPH_JAR_PATH) ;
140 i f ((pathToDoclet == null) || ! new F i l e (pathToDoclet) . e x i s t s ())
141 throw new LightUMLCoreException (ERRMSG_NO_UMLGRAPH_JAR) ;
142 }
143 i f ((checkUMLGraph & CHECK_UMLGRAPH_PIC_MACROS) != 0) {
144 S t r i n g pathToMacros = corePlugin
145 . getGraphBuildProperty (P_PIC_MACROS_PATH) ;
146 i f ((pathToMacros == null) || ! new F i l e (pathToMacros) . e x i s t s ())
147 throw new LightUMLCoreException (ERRMSG_NO_PIC_MACROS) ;
148 }
149 }
150
151 / ���
152 � @see org . e c l i p s e . c o r e . runt ime . j o b s . J o b # run (org . e c l i p s e . c o r e . runt ime . I P r o g r e s s M o n i t o r

)
153 � /
154 protected I S t a t u s run (IProgressMonitor monitor) {
155 t r y {
156 i f (f o r c e I n i t i a l i z e || n e e d I n i t i a l i z e ()) {
157 / / Unzip t h e f i l e s in t h e s t a t e l o c a t i o n .
158 i n i t i a l i z e S t a t e L o c a t i o n () ;
159 / / Load d e f a u l t p r o p e r t i e s .
160 corePlugin . loadProper t i es () ;
161 / / S t o r e t h e bund l e v e r s i o n t o p r o p e r t i e s .
162 corePlugin . setGraphBuildProperty (" bundle � vers ion " , corePlugin
163 . getBundle () . getHeaders () . get (" Bundle � Version ")
164 . t o S t r i n g ()) ;
165 }
166
167 checkUMLGraph() ;
168
169 } catch (LightUMLCoreException e) {

106

170 return e r r o r S t a t u s (e) ;
171 } catch (IOException e) {
172 return e r r o r S t a t u s (e) ;
173 }
174 i f (monitor . isCanceled ())
175 return c a n c e l S t a t u s () ;
176 return S t a t u s . OK_STATUS;
177 }
178 }

A.2.14 JavaToDot

1 package org . l ightuml . core . j o b s ;
2
3 import j ava . io . FileOutputStream ;
4 import j ava . io . IOException ;
5 import j ava . u t i l . P r o p e r t i e s ;
6
7 import org . e c l i p s e . ant . core . AntRunner ;
8 import org . e c l i p s e . core . runtime . CoreException ;
9 import org . e c l i p s e . core . runtime . IPath ;

10 import org . e c l i p s e . core . runtime . IProgressMonitor ;
11 import org . e c l i p s e . core . runtime . I S t a t u s ;
12 import org . e c l i p s e . core . runtime . S t a t u s ;
13 import org . l ightuml . core . IBui ldConstants ;
14 import org . l ightuml . core . IGraphBuildProper t ies ;
15 import org . l ightuml . core . LightUMLCoreException ;
16
17 / ���
18 � <p>
19 � Conver t s j a v a s o u r c e f i l e s t o a s i n g l e . d o t f o r m a t f i l e .
20 � </p>
21 �

22 � @author A n t t i Hakala
23 � /
24 public c l a s s JavaToDot extends LightUMLJob implements IBui ldConstants ,
25 IGraphBuildProper t ies {
26 / ���
27 � <p>
28 � Path under which t o f i n d s o u r c e f i l e s .
29 � </p>
30 � /
31 private IPath sourcePath ;
32
33 / ���
34 � <p>
35 � Package name .
36 � </p>
37 � /
38 private S t r i n g packageName ;
39
40 / ���
41 � C o n s t r u c t o r .

107

42 �

43 � @param t ime
44 � The r e f e r e n c e t ime .
45 � @param sp
46 � Path under which t o f i n d s o u r c e f i l e s .
47 � @param pn
48 � Package name or n u l l .
49 � /
50 public JavaToDot (long time , IPath sp , S t r i n g pn) {
51 super (time , " Running UmlGraph") ;
52 sourcePath = sp ;
53 packageName = pn ;
54 }
55
56 / ���
57 � The s o u r c e pa th and t h e s c o p e o f t h e graph g e n e r a t i o n i s d e l i v e r e d v i a a
58 � p r o p e r t y f i l e . Argument � D<path > t e n d s t o g e t b r o k e n .
59 �

60 � @throws IOExcep t i on
61 � @throws LightUMLCoreExcept ion
62 � /
63 private void deliverAntRunSett ings () throws IOException ,
64 LightUMLCoreException {
65 P r o p e r t i e s prop = new P r o p e r t i e s () ;
66 S t r i n g scope ;
67
68 / / d e f i n e t h e s c o p e o f t h e graph g e n e r a t i o n
69 i f ((packageName == null)
70 || corePlugin . getGraphBuildProperty (P_RECURSE_PACKAGES) . equals (
71 " t rue "))
72 scope = " ��� / � . j ava " ;
73 else
74 scope = " � . j ava " ;
75
76 prop . se tProper ty (" scope " , scope) ;
77 prop . se tProper ty (" source � path " , sourcePath . t o S t r i n g ()) ;
78 IPath p = corePlugin . g e t S t a t e L o c a t i o n () . append (STATELOC_RUNSETTINGS) ;
79 prop . s t o r e (new FileOutputStream (p . t o F i l e ()) ,
80 " Ant run s e t t i n g s f o r java � to � dot ") ;
81 }
82
83 / ���
84 � @see org . e c l i p s e . c o r e . runt ime . j o b s . J o b # run (org . e c l i p s e . c o r e . runt ime . I P r o g r e s s M o n i t o r

)
85 � /
86 protected I S t a t u s run (IProgressMonitor pm) {
87 t r y {
88 del iverAntRunSett ings () ;
89 AntRunner runner = corePlugin . getBuildFi leRunner () ;
90 runner . se tExecut ionTargets (new S t r i n g [] { " java � to � dot " }) ;
91 runner . run (pm) ;
92 pm. done () ;
93

108

94 } catch (CoreException e) {
95 return e r r o r S t a t u s (e) ;
96 } catch (IOException e) {
97 return e r r o r S t a t u s (e) ;
98 } catch (LightUMLCoreException e) {
99 return e r r o r S t a t u s (e) ;

100 }
101 i f (pm. isCanceled ())
102 return c a n c e l S t a t u s () ;
103 return S t a t u s . OK_STATUS;
104 }
105 }

A.2.15 LightUMLJob

1 package org . l ightuml . core . j o b s ;
2
3 import j ava . u t i l . C o l l e c t i o n ;
4 import j ava . u t i l . Vector ;
5
6 import org . e c l i p s e . core . runtime . I S t a t u s ;
7 import org . e c l i p s e . core . runtime . S t a t u s ;
8 import org . e c l i p s e . core . runtime . j o b s . ISchedulingRule ;
9 import org . e c l i p s e . core . runtime . j o b s . Job ;

10 import org . e c l i p s e . core . runtime . j o b s . MultiRule ;
11 import org . l ightuml . core . LightUMLCorePlugin ;
12
13 / ���
14 � <p>
15 � The a b s t r a c t p a r e n t c l a s s o f LightUML j o b s .
16 � </p>
17 �

18 � @author A n t t i Hakala
19 � @navassoc � u s e s � org . l i g h t u m l . c o r e . j o b s . LightUMLSchedul ingRule
20 � /
21 public a b s t r a c t c l a s s LightUMLJob extends Job {
22 / ���
23 � <p>
24 � R e f e r e n c e t ime (t ime t h i s t o o l c h a i n was c r e a t e d) .
25 � </p>
26 � /
27 private long refTime ;
28
29 / ���
30 � <p>
31 � S t r i n g r e p r e s e n t i n g t h e i d o f t h i s f a m i l y o f j o b s .
32 � </p>
33 � /
34 private S t r i n g familyId ;
35
36 / ���
37 � <p>
38 � s t a t i c i n s t a n c e o f LightUMLCorePlugin (f o r c o n v e n i e n c e)

109

39 � </p>
40 � /
41 protected s t a t i c LightUMLCorePlugin corePlugin = null ;
42
43 / ���
44 � <p>
45 � A r e g i s t e r f o r e r r o r and c a n c e l s t a t u s e s t h a t have been r e t u r n e d
46 � by LightUMLJobs . Used t o s e e i f a j o b in a s p e c i f i c t o o l c h a i n s h o u l d
47 � run , o r i f an e a r l i e r j o b in t h e c h a i n has a l r e a d y been c a n c e l e d or
48 � has r e t u r n e d an e r r o r s t a t u s .
49 � </p>
50 � /
51 private s t a t i c C o l l e c t i o n errorAndCance lSta tusRegis ter = null ;
52
53 / ���
54 � <p>
55 � I n t e r n a l i n i t method .
56 � </p>
57 �

58 � @param t ime
59 � r e f e r e n c e t ime o f t h i s j o b
60 � @param r u l e
61 � S c h e d u l i n g r u l e f o r t h i s j o b .
62 � /
63 private void i n i t (long time , ISchedulingRule ru le) {
64 refTime = time ;
65 familyId = new S t r i n g B u f f e r (" org . l ightuml . core ") . append (refTime) . t o S t r i n g () ;
66 se tRule (ru le) ;
67 i f (corePlugin == null)
68 corePlugin = LightUMLCorePlugin . getDefaul t () ;
69 i f (e r rorAndCancelS ta tusRegister == null)
70 errorAndCancelS ta tusRegister = java . u t i l . C o l l e c t i o n s
71 . synchronizedCol lec t ion (new Vector ()) ;
72 }
73
74 / ���
75 � <p>
76 � Return an e r r o r s t a t u s f o r t h i s j o b . Only one e r r o r (f i r s t one)
77 � s h o u l d o c c u r from a t o o l c h a i n .
78 � </p>
79 � <p>
80 � Uses r e f e r e n c e t i m e s o f j o b s as t o o l c h a i n i d e n t i f i e r s . I f j o b s have t h e
81 � same r e f e r e n c e t ime , t h e y b e l o n g t o t h e same t o o l c h a i n . C a n c e l s t h e o t h e r
82 � j o b s t h a t b e l o n g t o same t o o l c h a i n .
83 � </p>
84 �

85 � @param e
86 � E x c e p t i o n t h a t c a u s e d t h e e r r o r .
87 � @return I S t a t u s t h a t can be r e t u r n e d in t h e run () o f LightUMLJob (i f an
88 � e x c e p t i o n o c c u r e d) .
89 � /
90 protected I S t a t u s e r r o r S t a t u s (Exception e) {
91 errorAndCance lStatusRegis ter . add (familyId) ;

110

92 / / r e t u r n t h e e r r o r s t a t u s
93 return new S t a t u s (S t a t u s .ERROR, " org . l ightuml . core " , S t a t u s .OK, e
94 . getMessage () , e) ;
95 }
96 / ���
97 � <p>
98 � Return a c a n c e l s t a t u s and add f a m i l y I d t o r e g i s t e r . See above .
99 � </p>

100 � @return c a n c e l s t a t u s
101 � /
102 protected I S t a t u s c a n c e l S t a t u s () {
103 errorAndCance lStatusRegis ter . add (familyId) ;
104 return S t a t u s .CANCEL_STATUS ;
105 }
106 / ���
107 � <p>
108 � Run only i f f a m i l y no t c a n c e l e d or e r r e d .
109 � </p>
110 � /
111 public boolean shouldRun () {
112 i f (e r rorAndCance lSta tusRegis ter . conta ins (familyId))
113 return f a l s e ;
114 return true ;
115 }
116
117 / ���
118 � <p>
119 � c o n s t r u c t o r
120 � </p>
121 �

122 � @param s t r
123 � Name p a s s e d t o p a r e n t c l a s s J o b .
124 � /
125 public LightUMLJob(long time , S t r i n g s t r) {
126 super (s t r) ;
127 i n i t (time , LightUMLSchedulingRule . ge tDefaul t ()) ;
128 }
129
130 / ���
131 � <p>
132 � A l t e r n a t i v e c o n s t r u c t o r wi th an a d d i t i o n a l s c h e d u l i n g r u l e .
133 � </p>
134 �

135 � @param t ime
136 � The r e f e r e n c e t ime .
137 � @param s t r
138 � Name p a s s e d t o p a r e n t c l a s s J o b .
139 � @param r u l e
140 � A d d i t i o n a l s c h e d u l i n g r u l e f o r t h i s j o b .
141 � /
142 public LightUMLJob(long time , S t r i n g s t r , ISchedulingRule ru le) {
143 super (s t r) ;
144 i n i t (time , MultiRule . combine (rule , LightUMLSchedulingRule . ge tDefaul t ())) ;

111

145 }
146
147 / ���
148 � @see org . e c l i p s e . c o r e . runt ime . j o b s . J o b # b e l o n g s T o (j a v a . l ang . O b j e c t)
149 � /
150 public boolean belongsTo (Object family) {
151 return (family . equals (familyId)) ;
152 }
153 }

A.2.16 LightUMLSchedulingRule

1 package org . l ightuml . core . j o b s ;
2
3 import org . e c l i p s e . core . runtime . j o b s . ISchedulingRule ;
4
5 / ���
6 � <p>
7 � S c h e d u l i n g r u l e o f LightUMLJobs . P r e v e n t s c o n c u r r e n t e x e c u t i o n o f
8 � LightUMLJobs .
9 � </p>

10 �

11 � @author A n t t i Hakala
12 � /
13 public c l a s s LightUMLSchedulingRule implements ISchedulingRule {
14 / ���
15 � <p>
16 � S t a t i c i n s t a n c e o f LightUMLSchedul ingRule .
17 � </p>
18 � /
19 private s t a t i c LightUMLSchedulingRule ru le = null ;
20
21 / ���
22 � C o n s t r u c t o r .
23 � /
24 private LightUMLSchedulingRule () {
25 ru le = t h i s ;
26 }
27
28 / ���
29 � S t a t i c a c c e s s o r (s i n g l e t o n p a t t e r n) .
30 �

31 � @return LightUMLSchedul ingRule
32 � /
33 public s t a t i c LightUMLSchedulingRule getDefaul t () {
34 i f (ru le == null)
35 ru le = new LightUMLSchedulingRule () ;
36 return ru le ;
37 }
38
39 / ���
40 � @see org . e c l i p s e . c o r e . runt ime . j o b s . I S c h e d u l i n g R u l e # c o n t a i n s (o rg . e c l i p s e . c o r e . runt ime

. j o b s . I S c h e d u l i n g R u l e)

112

41 � /
42 public boolean conta ins (ISchedulingRule ru le) {
43 return ru le == t h i s ;
44 }
45
46 / ���
47 � @see org . e c l i p s e . c o r e . runt ime . j o b s . I S c h e d u l i n g R u l e # i s C o n f l i c t i n g (org . e c l i p s e . c o r e .

runt ime . j o b s . I S c h e d u l i n g R u l e)
48 � /
49 public boolean i s C o n f l i c t i n g (ISchedulingRule ru le) {
50 return ru le == t h i s ;
51 }
52
53 }

A.3 org.lightuml.ui

A.3.1 Plug-in Manifest (plugin.xml)

1 <?xml version=" 1 . 0 " encoding="UTF� 8" ?>
2 <? e c l i p s e version=" 3 . 0 " ?>
3 <plugin
4 id=" org . l ightuml . ui "
5 c l a s s =" org . l ightuml . ui . LightUMLUIPlugin "
6 name="LightUML UI "
7 version=" 1 . 2 . 1 "
8 provider � name=" Ant t i Hakala ">
9

10 <runtime>
11 < l i b r a r y name=" ui . j a r ">
12 <export name=" � "/>
13 </ l i b r a r y >
14 </runtime>
15
16 < r e q u i r e s>
17 <import plugin =" org . e c l i p s e . ui "/>
18 <import plugin =" org . l ightuml . core "/>
19 <import plugin =" org . e c l i p s e . core . resources "/>
20 <import plugin =" org . e c l i p s e . core . runtime "/>
21 <import plugin =" org . e c l i p s e . j d t . core "/>
22 <import plugin =" org . e c l i p s e . j f a c e . t e x t "/>
23 <import plugin =" org . e c l i p s e . ui . workbench . t e x t e d i t o r "/>
24 <import plugin =" org . e c l i p s e . ui . e d i t o r s "/>
25 </ r e q u i r e s>
26
27 <extens ion
28 point=" org . e c l i p s e . ui . popupMenus">
29 <o b j e c t C o n t r i b u t i o n
30 o b j e c t C l a s s =" org . e c l i p s e . j d t . core . I J a v a P r o j e c t "
31 id=" org . l ightuml . ui . j a v a p r o j e c t c o n t r i b u t i o n ">
32 <menu l a b e l ="LightUML" path=" addi t ions " id=" org . l ightuml . ui . popupmenu " />
33 <a c t i o n

113

34 l a b e l =" LightUML: Generate a Class Diagram "
35 c l a s s =" org . l ightuml . ui . a c t i o n s . GenerateClassDiagram"
36 menubarPath=" org . l ightuml . ui . popupmenu"
37 enablesFor =" 1 "
38 id=" org . l ightuml . ui . a c t i o n s . GenerateClassDiagram">
39 </a c t i o n>
40 </o b j e c t C o n t r i b u t i o n>
41
42 <o b j e c t C o n t r i b u t i o n
43 o b j e c t C l a s s =" org . e c l i p s e . j d t . core . IPackageFragment "
44 id=" org . l ightuml . ui . j avapackagecontr ibut ion ">
45 <menu l a b e l ="LightUML" path=" addi t ions " id=" org . l ightuml . ui . popupmenu " />
46 <a c t i o n
47 l a b e l =" LightUML: Generate a Class Diagram "
48 c l a s s =" org . l ightuml . ui . a c t i o n s . GenerateClassDiagram"
49 menubarPath=" org . l ightuml . ui . popupmenu"
50 enablesFor =" 1 "
51 id=" org . l ightuml . ui . a c t i o n s . GenerateClassDiagram">
52 </a c t i o n>
53 </o b j e c t C o n t r i b u t i o n>
54
55 <o b j e c t C o n t r i b u t i o n
56 o b j e c t C l a s s =" org . e c l i p s e . core . resources . I F i l e "
57 nameFil ter =" � . p i c "
58 id=" org . l ightuml . ui . p i c f i l e c o n t r i b u t i o n ">
59 <menu l a b e l ="LightUML" path=" addi t ions " id=" org . l ightuml . ui . popupmenu " />
60 <a c t i o n
61 l a b e l =" LightUML: Generate a Sequence Diagram "
62 c l a s s =" org . l ightuml . ui . a c t i o n s . GenerateSequenceDiagram"
63 menubarPath=" org . l ightuml . ui . popupmenu"
64 enablesFor =" 1 "
65 id=" org . l ightuml . ui . a c t i o n s . GenerateSequenceDiagram ">
66 </a c t i o n>
67 </o b j e c t C o n t r i b u t i o n>
68 </extens ion>
69
70 <extens ion point=" org . e c l i p s e . ui . a c t i o n S e t s ">
71 < a c t i o n S e t id=" org . l ightuml . ui . a c t i o n S e t " l a b e l ="LightUML" v i s i b l e =" t rue ">
72 <menu id=" org . l ightuml . ui . menu" l a b e l ="LightUML" path=" addi t ions ">
73 <separator name=" group "/>
74 </menu>
75 <a c t i o n
76 l a b e l =" Restore Default S e t t i n g s "
77 c l a s s =" org . l ightuml . ui . a c t i o n s . R e s t o r e S e t t i n g s "
78 menubarPath=" org . l ightuml . ui . menu/group "
79 id=" org . l ightuml . ui . a c t i o n s . R e s t o r e S e t t i n g s ">
80 </a c t i o n>
81 </ a c t i o n S e t >
82 </extens ion>
83
84 <extens ion point=" org . e c l i p s e . ui . preferencePages ">
85 <page
86 c l a s s =" org . l ightuml . ui . pre ferences . LightUMLPage"

114

87 name="LightUML"
88 id=" org . l ightuml . ui . pre ferences . LightUMLPage"
89 category =" org . e c l i p s e . j d t . ui . pre ferences . JavaBasePreferencePage " />
90 <page
91 c l a s s =" org . l ightuml . ui . pre ferences . UMLGraphPage "
92 name="UMLGraph"
93 id=" org . l ightuml . ui . pre ferences . UMLGraphPage "
94 category =" org . l ightuml . ui . pre ferences . LightUMLPage" />
95 <page
96 c l a s s =" org . l ightuml . ui . pre ferences . DotAndPic2PlotPage "
97 name=" dot and p i c 2 p l o t "
98 id=" org . l ightuml . ui . pre ferences . DotAndPic2PlotPage "
99 category =" org . l ightuml . ui . pre ferences . LightUMLPage" />

100 </extens ion>
101
102 <extens ion point=" org . e c l i p s e . help . toc ">
103 <toc f i l e =" help/toc . xml " primary=" t rue " />
104 </extens ion>
105
106 <extens ion point=" org . e c l i p s e . ui . e d i t o r s ">
107 < e d i t o r
108 id=" org . l ightuml . ui . e d i t o r . p i c e d i t o r "
109 name=" Pic Edi tor "
110 icon=" icons/pic . g i f "
111 extens ions =" pic "
112 c l a s s =" org . l ightuml . ui . e d i t o r . P i c E d i t o r "
113 defaul t=" t rue " />
114 </extens ion>
115
116 </plugin>

A.3.2 LightUMLUIPlugin

1 package org . l ightuml . ui ;
2
3 import j ava . u t i l . I t e r a t o r ;
4 import j ava . u t i l . P r o p e r t i e s ;
5
6 import org . e c l i p s e . j f a c e . pre ference . I P r e f e r e n c e S t o r e ;
7 import org . e c l i p s e . j f a c e . u t i l . IPropertyChangeListener ;
8 import org . e c l i p s e . j f a c e . u t i l . PropertyChangeEvent ;
9 import org . e c l i p s e . ui . plugin . AbstractUIPlugin ;

10 import org . l ightuml . core . LightUMLCoreException ;
11 import org . l ightuml . core . LightUMLCorePlugin ;
12
13 / ���
14 � <p>
15 � Plug � in c l a s s o f o rg . l i g h t u m l . u i .
16 � </p>
17 �

18 � @author A n t t i Hakala
19 �

20 � @navassoc � " adds t o UI" � org . l i g h t u m l . u i . a c t i o n s . Genera t eC las sDiagra m

115

21 � @navassoc � " adds t o UI" � org . l i g h t u m l . u i . a c t i o n s . R e s t o r e S e t t i n g s
22 � @navassoc � " adds t o UI" � org . l i g h t u m l . u i . p r e f e r e n c e s . LightUMLPage
23 �

24 � /
25 public c l a s s LightUMLUIPlugin extends AbstractUIPlugin {
26
27 private s t a t i c LightUMLUIPlugin plugin ;
28
29 / ���
30 � <p>
31 � A p r o p e r t y change l i s t e n e r f o r t h e p r e f e r e n c e s t o r e o f t h i s plug � in .
32 � T e l l s o rg . l i g h t u m l . c o r e plug � in t o upda t e i t s p r o p e r t i e s i f t h e y ’ r e
33 � changed in t h e UI (v i a p r e f e r e n c e page) .
34 � </p>
35 �

36 � @see org . e c l i p s e . j f a c e . u t i l . I P r o p e r t y C h a n g e L i s t e n e r # proper tyCha ng e (org . e c l i p s e . j f a c e
. u t i l . Proper tyChangeEvent)

37 � @hidden
38 � /
39 private c l a s s Proper tyLis tener implements IPropertyChangeListener {
40 / ���
41 � @see I P r o p e r t y C h a n g e L i s t e n e r # proper tyCha nge (org . e c l i p s e . j f a c e . u t i l .

Proper tyChangeEvent)
42 � /
43 public void propertyChange (PropertyChangeEvent event) {
44 LightUMLCorePlugin cp = LightUMLCorePlugin . getDefaul t () ;
45
46 t r y {
47 i f (cp . getGraphBuildPropert ies () . getProperty (
48 event . getProperty ()) != null)
49 cp . setGraphBuildProperty (event . getProperty () ,
50 (S t r i n g) event . getNewValue () . t o S t r i n g ()) ;
51 } catch (LightUMLCoreException e) {
52 e . pr intS tackTrac e () ;
53 }
54 }
55 }
56
57 / ���
58 � <p>
59 � Overr idden from A b s t r a c t U I P l u g i n .
60 � </p>
61 � /
62 protected void i n i t i a l i z e D e f a u l t P l u g i n P r e f e r e n c e s () {
63 i n i t P r e f e r e n c e s () ;
64 g e t P r e f e r e n c e S t o r e () . addPropertyChangeListener (new Proper tyLis tener ()) ;
65 }
66
67 / ���
68 � <p>
69 � I n i t i a l i z e p r e f e r e n c e s . Adds graph b u i l d p r o p e r t i e s o f LightUMLCorePlugin
70 � i n t o p r e f e r e n c e s t o r e o f t h i s plug � in .
71 � </p>

116

72 � /
73 public void i n i t P r e f e r e n c e s () {
74 I P r e f e r e n c e S t o r e s t o r e = g e t P r e f e r e n c e S t o r e () ;
75 P r o p e r t i e s p ;
76 t r y {
77 p = LightUMLCorePlugin . getDefaul t () . getGraphBuildPropert ies () ;
78 I t e r a t o r i = p . keySet () . i t e r a t o r () ;
79 S t r i n g propName ;
80 while (i . hasNext ()) {
81 propName = (S t r i n g) i . next () ;
82 s t o r e . s e t D e f a u l t (propName , p . getProperty (propName)) ;
83 s t o r e . setValue (propName , p . getProperty (propName)) ;
84 }
85 } catch (LightUMLCoreException e) {
86 e . pr intS tackTrace () ;
87 }
88 }
89
90 / ���
91 � C o n s t r u c t o r .
92 � /
93 public LightUMLUIPlugin () {
94 super () ;
95 plugin = t h i s ;
96 }
97
98 / ���
99 � <p>

100 � s t a t i c a c c e s s o r .
101 � </p>
102 �

103 � @return LightUMLUIPlugin
104 � /
105 public s t a t i c LightUMLUIPlugin getDefaul t () {
106 i f (plugin == null)
107 plugin = new LightUMLUIPlugin () ;
108 return plugin ;
109 }
110 }

A.3.3 GenerateClassDiagram

1 package org . l ightuml . ui . a c t i o n s ;
2
3 import org . e c l i p s e . core . resources . I P r o j e c t ;
4 import org . e c l i p s e . core . resources . IResource ;
5 import org . e c l i p s e . core . runtime . IPath ;
6 import org . e c l i p s e . j d t . core . I J a v a P r o j e c t ;
7 import org . e c l i p s e . j d t . core . IPackageFragment ;
8 import org . e c l i p s e . j f a c e . a c t i o n . IAction ;
9 import org . e c l i p s e . j f a c e . viewers . I S e l e c t i o n ;

10 import org . e c l i p s e . j f a c e . viewers . S t r u c t u r e d S e l e c t i o n ;
11 import org . e c l i p s e . ui . IOb jec tAct ionDelegate ;

117

12 import org . e c l i p s e . ui . IWorkbenchPart ;
13 import org . l ightuml . core . LightUMLCorePlugin ;
14
15 / ���
16 �

17 � <p>
18 � The popup menu a c t i o n t h a t i s used t o t r i g g e r g e n e r a t i o n o f a c l a s s diagram .
19 � </p>
20 �

21 � @author A n t t i Hakala
22 �

23 � /
24 public c l a s s GenerateClassDiagram implements IOb jec tAct ionDelegate {
25 / ���
26 � <p>
27 � The p r o j e c t t o g e n e r a t e a c l a s s diagram f o r .
28 � </p>
29 � /
30 private I P r o j e c t p r o j e c t = null ;
31
32 / ���
33 � <p>
34 � The J a v a p a c k a g e pa th (i f a p a c k a g e i s s e l e c t e d) .
35 � </p>
36 � /
37 private IPath packagePath = null ;
38
39 / ���
40 � <p>
41 � Name o f t h e J a v a p a c k a g e (i f a p a c k a g e i s s e l e c t e d) .
42 � </p>
43 � /
44 private S t r i n g packageName = null ;
45
46 / ���
47 � <p>
48 � C o n s t r u c t o r f o r Genera t eC las sDiagram .
49 � </p>
50 � /
51 public GenerateClassDiagram () {
52 super () ;
53 }
54
55 / ���
56 � @see I O b j e c t A c t i o n D e l e g a t e # s e t A c t i v e P a r t (o rg . e c l i p s e . j f a c e . a c t i o n . IAc t i on ,
57 � org . e c l i p s e . u i . IWorkbenchPar t)
58 � /
59 public void s e t A c t i v e P a r t (IAct ion ac t ion , IWorkbenchPart t a r g e t P a r t) {
60 }
61
62 / ���
63 � @see I A c t i o n D e l e g a t e # run (org . e c l i p s e . j f a c e . a c t i o n . I A c t i o n)
64 � /

118

65 public void run (IAction a c t i o n) {
66 LightUMLCorePlugin . getDefaul t () . generateClassDiagram (p r o j e c t , packagePath ,
67 packageName) ;
68 }
69
70 / ���
71 � @see I A c t i o n D e l e g a t e # s e l e c t i o n C h a n g e d (org . e c l i p s e . j f a c e . a c t i o n . IAc t i on ,
72 � org . e c l i p s e . j f a c e . v i e w e r s . I S e l e c t i o n)
73 � /
74 public void select ionChanged (IAction ac t ion , I S e l e c t i o n s e l e c t i o n) {
75
76 Object t a r g e t = ((S t r u c t u r e d S e l e c t i o n) s e l e c t i o n) . ge tF i rs tE lement () ;
77
78 / / t a r g e t s e l e c t i o n i s a j a v a p r o j e c t
79 i f (t a r g e t ins tanceof I J a v a P r o j e c t) {
80 p r o j e c t = ((I J a v a P r o j e c t) t a r g e t) . g e t P r o j e c t () ;
81 packagePath = null ;
82 packageName = null ;
83 }
84 / / t a r g e t s e l e c t i o n i s a j a v a p a c k a g e
85 else i f (t a r g e t ins tanceof IPackageFragment) {
86 IPackageFragment pf = (IPackageFragment) t a r g e t ;
87 IResource resource = pf . getResource () ;
88
89 p r o j e c t = resource . g e t P r o j e c t () ;
90 packagePath = resource . g e t P r o j e c t R e l a t i v e P a t h () ;
91 packageName = pf . getElementName () ;
92 }
93 }
94 }

A.3.4 RestoreSettings

1 package org . l ightuml . ui . a c t i o n s ;
2
3 import org . e c l i p s e . core . runtime . j o b s . IJobChangeEvent ;
4 import org . e c l i p s e . core . runtime . j o b s . JobChangeAdapter ;
5 import org . e c l i p s e . j f a c e . a c t i o n . IAction ;
6 import org . e c l i p s e . j f a c e . viewers . I S e l e c t i o n ;
7 import org . e c l i p s e . ui . IWorkbenchWindow ;
8 import org . e c l i p s e . ui . IWorkbenchWindowActionDelegate ;
9 import org . l ightuml . core . LightUMLCorePlugin ;

10 import org . l ightuml . ui . LightUMLUIPlugin ;
11
12 / ���
13 � <p>
14 � Act i on f o r r e s t o r i n g d e f a u l t s e t t i n g s .
15 � </p>
16 �

17 � @author A n t t i Hakala
18 �

19 � /
20 public c l a s s R e s t o r e S e t t i n g s implements IWorkbenchWindowActionDelegate {

119

21
22 / ���
23 � <p>
24 � Runs t h e r e s t o r e S e t t i n g s () � method in LightUMLCorePlugin .
25 � </p>
26 � <p>
27 � J obChangeAdapt e r i s used t o t e l l LightUMLUIPlugin t o i n i t i t s p r e f e r e n c e s
28 � when LightUMLCorePlugin i s done r e s e t t i n g d e f a u l t p r o p e r t i e s f o r graph
29 � b u i l d i n g . Thus , UI p r e f e r e n c e s a r e k e p t in sync wi th c o r e p r o p e r t i e s .
30 � J obChangeAdapt e r i s an a d a p t e r f o r I J o b C h a n g e L i s t e n e r i n t e r f a c e .
31 � </p>
32 �

33 � @see org . e c l i p s e . u i . I A c t i o n D e l e g a t e #run (org . e c l i p s e . j f a c e . a c t i o n . I A c t i o n)
34 �

35 � /
36 public void run (IAction a c t i o n) {
37 LightUMLCorePlugin . getDefaul t () . r e s t o r e S e t t i n g s (new JobChangeAdapter () {
38 public void done (IJobChangeEvent event) {
39 LightUMLUIPlugin . getDefaul t () . i n i t P r e f e r e n c e s () ;
40 }
41 }) ;
42 }
43
44 / �	�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���
�
�
�
���
�
�
�
���
�
�
�
���
�
�
���
�
�
�
���
�
�
�
���
�
�
�
���
�
�
���
�
�
45 � @see org . e c l i p s e . u i . IWorkbenchWindowAct i onDel ega te # d i s p o s e ()
46 � /
47 public void dispose () {
48 }
49
50 / ���
51 � @see org . e c l i p s e . u i . IWorkbenchWindowAct i onDel ega te # i n i t (o rg . e c l i p s e . u i .

IWorkbenchWindow)
52 � /
53 public void i n i t (IWorkbenchWindow window) {
54 }
55
56 / ���
57 � @see org . e c l i p s e . u i . I A c t i o n D e l e g a t e # s e l e c t i o n C h a n g e d (org . e c l i p s e . j f a c e . a c t i o n .

IAc t i on ,
58 � org . e c l i p s e . j f a c e . v i e w e r s . I S e l e c t i o n)
59 � /
60 public void select ionChanged (IAction ac t ion , I S e l e c t i o n s e l e c t i o n) {
61 }
62 }

A.3.5 DotAndPic2PlotPage

1 package org . l ightuml . ui . pre ferences ;
2
3 import org . e c l i p s e . j f a c e . pre ference . D i r e c t o r y F i e l d E d i t o r ;
4 import org . e c l i p s e . j f a c e . pre ference . F ie ldEdi torPre ferencePage ;
5 import org . e c l i p s e . j f a c e . pre ference . RadioGroupFieldEditor ;
6 import org . e c l i p s e . j f a c e . pre ference . S t r i n g F i e l d E d i t o r ;

120

7 import org . e c l i p s e . ui . IWorkbench ;
8 import org . e c l i p s e . ui . IWorkbenchPreferencePage ;
9 import org . l ightuml . core . IGraphBuildProper t ies ;

10 import org . l ightuml . ui . LightUMLUIPlugin ;
11
12 / ���
13 � <p>
14 � P r e f e r e n c e subpage f o r d o t e x e c u t a b l e .
15 � </p>
16 �

17 � @author A n t t i Hakala
18 � /
19 public c l a s s DotAndPic2PlotPage extends Fie ldEdi torPre ferencePage implements
20 IWorkbenchPreferencePage , IGraphBuildProper t ies {
21 / ���
22 � <p>
23 � C o n s t r u c t o r .
24 � </p>
25 � /
26 public DotAndPic2PlotPage () {
27 super (GRID) ;
28 s e t P r e f e r e n c e S t o r e (LightUMLUIPlugin . getDefaul t () . g e t P r e f e r e n c e S t o r e ()) ;
29 s e t D e s c r i p t i o n (" Pre ferences f o r dot and p i c 2 p l o t : ") ;
30 }
31
32 / ���
33 � <p>
34 � C r e a t e s t h e f i e l d e d i t o r s .
35 � </p>
36 � /
37 public void c r e a t e F i e l d E d i t o r s () {
38 addField (new S t r i n g F i e l d E d i t o r (P_DOT_EXTRA_PARAM,
39 " dot e x t r a commandline parameters : " , g e t F i e l d E d i t o r P a r en t ())) ;
40 addField (new S t r i n g F i e l d E d i t o r (P_PIC2PLOT_EXTRA_PARAM,
41 " p i c 2 p l o t e x t r a commandline parameters : " , g e t F i e l d E d i t o r P a r en t ())) ;
42
43 addField (new D i r e c t o r y F i e l d E d i t o r (P_EXTRA_LOOKUP_PATH , " Extra lookup path (s) : " ,
44 g e t F i e l d E d i t o r P a r e nt ())) ;
45 addField (new RadioGroupFieldEditor (P_GRAPHICS_FORMAT,
46 " Graphics format : " , 1 , OUTPUT_FORMATS, g e t F i e l d E d i t o r P a r e nt ())) ;
47 }
48
49 / ���
50 � @see I W o r k b e n c h P r e f e r e n c e P a g e # i n i t (o rg . e c l i p s e . u i . IWorkbench)
51 � /
52 public void i n i t (IWorkbench workbench) {
53 }
54 }

A.3.6 LightUMLPage

1 package org . l ightuml . ui . pre ferences ;
2

121

3 import org . e c l i p s e . j f a c e . pre ference . BooleanFie ldEdi tor ;
4 import org . e c l i p s e . j f a c e . pre ference . F ie ldEdi torPre ferencePage ;
5 import org . e c l i p s e . j f a c e . pre ference . S t r i n g F i e l d E d i t o r ;
6 import org . e c l i p s e . ui . IWorkbench ;
7 import org . e c l i p s e . ui . IWorkbenchPreferencePage ;
8 import org . l ightuml . core . IGraphBuildProper t ies ;
9 import org . l ightuml . ui . LightUMLUIPlugin ;

10
11 / ���
12 � <p>
13 � Note : most comments from E c l i p s e t e m p l a t e f o r p r e f e r e n c e page e x t e n s i o n
14 � p o i n t .
15 � </p>
16 � <p>
17 � This c l a s s r e p r e s e n t s a p r e f e r e n c e page t h a t i s c o n t r i b u t e d t o t h e
18 � P r e f e r e n c e s d i a l o g . By s u b c l a s s i n g <samp> F i e l d E d i t o r P r e f e r e n c e P a g e </ samp > ,
19 � we can use t h e f i e l d s u p p o r t b u i l t i n t o J F a c e t h a t a l l o w s us t o c r e a t e a page
20 � t h a t i s s m a l l and knows how t o save , r e s t o r e and a p p l y i t s e l f .
21 � </p>
22 � <p>
23 � This page i s used t o mod i fy p r e f e r e n c e s on ly . They a r e s t o r e d in t h e
24 � p r e f e r e n c e s t o r e t h a t b e l o n g s t o t h e main plug � in c l a s s . That way ,
25 � p r e f e r e n c e s can be a c c e s s e d d i r e c t l y v i a t h e p r e f e r e n c e s t o r e .
26 � </p>
27 � <p>
28 � G e n e r a l p r e f e r e n c e s f o r LightUML .
29 � </p>
30 �

31 � @has ���� org . l i g h t u m l . u i . p r e f e r e n c e s . DotAndPic2PlotPage
32 � @has ���� org . l i g h t u m l . u i . p r e f e r e n c e s . UMLGraphPage
33 � @author A n t t i Hakala
34 � /
35 public c l a s s LightUMLPage extends Fie ldEdi torPre ferencePage implements
36 IWorkbenchPreferencePage , IGraphBuildProper t ies {
37 / ���
38 � <p>
39 � C o n s t r u c t o r . S e t s t h e p r e f e r e n c e s t o r e t o p r e f e r e n c e s t o r e o f
40 � LightUMLUIPlugin .
41 � </p>
42 �

43 � /
44 public LightUMLPage () {
45 super (GRID) ;
46 s e t P r e f e r e n c e S t o r e (LightUMLUIPlugin . getDefaul t () . g e t P r e f e r e n c e S t o r e ()) ;
47 s e t D e s c r i p t i o n (" General pre ferences f o r LightUML : ") ;
48 }
49
50 / ���
51 � C r e a t e s t h e f i e l d e d i t o r s . F i e l d e d i t o r s a r e a b s t r a c t i o n s o f t h e common
52 � GUI b l o c k s needed t o m a n i p u l a t e v a r i o u s t y p e s o f p r e f e r e n c e s . Each f i e l d
53 � e d i t o r knows how t o s a v e and r e s t o r e i t s e l f .
54 � /
55

122

56 public void c r e a t e F i e l d E d i t o r s () {
57 addField (new S t r i n g F i e l d E d i t o r (P_GRAPH_FILE_NAME, " Graph f i l e name : " ,
58 g e t F i e l d E d i t o r P a r e nt ())) ;
59 addField (new S t r i n g F i e l d E d i t o r (P_PROJECT_OUTPUT_DIR,
60 " Output d i r e c t o r y (r e l a t i v e to p r o j e c t root) : " ,
61 g e t F i e l d E d i t o r P a r e nt ())) ;
62 addField (new BooleanFie ldEdi tor (P_USE_PACKAGE_NAME,
63 " Use package name as graph f i l e name" , g e t F i e l d E d i t o r P a r e nt ())) ;
64 addField (new BooleanFie ldEdi tor (P_RECURSE_PACKAGES,
65 " Recurse i n t o subpackages " , g e t F i e l d E d i t o r P a r e nt ())) ;
66 }
67
68 / ���
69 � @see I W o r k b e n c h P r e f e r e n c e P a g e # i n i t (o rg . e c l i p s e . u i . IWorkbench)
70 � /
71 public void i n i t (IWorkbench workbench) {
72 }
73 }

A.3.7 UMLGraphPage

1 package org . l ightuml . ui . pre ferences ;
2
3 import org . e c l i p s e . j f a c e . pre ference . F ie ldEdi torPre ferencePage ;
4 import org . e c l i p s e . j f a c e . pre ference . F i l e F i e l d E d i t o r ;
5 import org . e c l i p s e . j f a c e . pre ference . RadioGroupFieldEditor ;
6 import org . e c l i p s e . j f a c e . pre ference . S t r i n g F i e l d E d i t o r ;
7 import org . e c l i p s e . ui . IWorkbench ;
8 import org . e c l i p s e . ui . IWorkbenchPreferencePage ;
9 import org . l ightuml . core . IGraphBuildProper t ies ;

10 import org . l ightuml . ui . LightUMLUIPlugin ;
11
12 / ���
13 � <p>
14 � P r e f e r e n c e subpage f o r UMLGraph d o c l e t .
15 � </p>
16 �

17 � @author A n t t i Hakala
18 � /
19 public c l a s s UMLGraphPage extends Fie ldEdi torPre ferencePage implements
20 IWorkbenchPreferencePage , IGraphBuildProper t ies {
21 / ���
22 � <p>
23 � C o n s t r u c t o r .
24 � </p>
25 � /
26 public UMLGraphPage () {
27 super (GRID) ;
28 s e t P r e f e r e n c e S t o r e (LightUMLUIPlugin . getDefaul t () . g e t P r e f e r e n c e S t o r e ()) ;
29 s e t D e s c r i p t i o n (" Pre ferences f o r UMLGraph d o c l e t : ") ;
30 }
31
32 / ���

123

33 � <p>
34 � C r e a t e s t h e f i e l d e d i t o r s .
35 � </p>
36 � /
37 public void c r e a t e F i e l d E d i t o r s () {
38 addField (new S t r i n g F i e l d E d i t o r (P_UMLGRAPH_EXTRA_PARAM,
39 " Extra commandline parameters : " , g e t F i e l d E d i t o r P a r e nt ())) ;
40 addField (new F i l e F i e l d E d i t o r (P_UMLGRAPH_JAR_PATH, "UmlGraph . j a r path : " ,
41 true , g e t F i e l d E d i t o r P a r e nt ())) ;
42 addField (new F i l e F i e l d E d i t o r (P_PIC_MACROS_PATH , " sequence . p ic path : " ,
43 true , g e t F i e l d E d i t o r P a r e nt ())) ;
44 addField (new RadioGroupFieldEditor (P_JAVADOC_ACCESS_LEVEL,
45 " access l e v e l : " , 4 , ACCESS_LEVELS, g e t F i e l d E d i t o r P a r e nt ())) ;
46 }
47
48 / ���
49 � @see I W o r k b e n c h P r e f e r e n c e P a g e # i n i t (o rg . e c l i p s e . u i . IWorkbench)
50 � /
51 public void i n i t (IWorkbench workbench) {
52 }
53 }

124

