
Antti-Juhani Kaijanaho

The formal method known as B
and a sketch for its implementation

Master’s Thesis
in Information Technology (Software Engineering)
20th December 2002

University of Jyväskylä

Department of Mathematical Information Technology

Jyväskylä

Abstract

Kaijanaho, Antti-Juhani
The formal method known as B and a sketch for its implementation / Antti-Juhani
Kaijanaho
Jyväskylä: University of Jyväskylä, 2002
154 p.
Master’s Thesis

This thesis provides a reconstruction of the B-method and sketches an implementa-
tion of its tool support.

For background, this work investigates the field of formal methods in general
and the relevance of formal methods to software engineering in particular. Formal
(first-order) logic is also considered: both its development and important points
relevant to formal methods. Automated reasoning, particularly its theoretical limits
as well as unification and resolution, is discussed.

The main part of this thesis is a systematic reconstruction of the B-method, start-
ing from its version of untyped predicate calculus and typed set theory, continuing
with the Generalized Substitution Language (GSL) and finishing with the Abstract
Machine Notation (AMN). Specification, refinement and implementation of a sim-
ple example using the B-method is presented. Both validation and verification of
specifications, refinements and implementations using the B-method is discussed.

The thesis concludes with a report of the current state of the effort (by the author)
to implement the tool support of the B-method, as the Ebba Toolset. The main design
decisions are discussed. The use of Unicode as the primary input encoding of AMN
and GSL in Ebba is described.

ACM Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs — mechanical verifica-
tion, specification techniques, and B-method; D.2.4 [Software Engineering]: Soft-
ware/Program Verification — formal methods; F.4.1 [Mathematical Logic and For-
mal Languages]: Mathematical Logic — set theory, and mechanical theorem prov-
ing;
Keywords: formal logic — history

Tiivistelmä

Kaijanaho, Antti-Juhani
Formaali menetelmä nimeltä B ja sen toteutuksen hahmotelma / Antti-Juhani Kai-
janaho
Jyväskylä: Jyväskylän yliopisto, 2002
154 s.
pro gradu -tutkielma

Tässä pro gradu -työssä tarkastellaan B-menetelmää ja hahmotellaan sen työka-
lutuen toteutusta.

Työn taustaksi tarkastellaan formaalien menetelmien kokonaisuutta sekä rele-
vanssia ohjelmistotekniikassa, muodollisen logiikan kehitystä ja formaaleille menetelmille
tärkeitä tuloksia sekä automaattisen päättelyn teoreettisia rajoituksia ja samaistus-
ja resoluutiotekniikoita.

Työn pääasiallinen sisältö on B-menetelmän rekonstruointi alkaen sen käyttämästä
logiikan ja joukko-opin versiosta, jatkaen korvausten yleistämisellä ja päättäen ab-
straktien koneiden määrittelyyn, tarkennukseen ja toteutukseen. B-menetelmällä
tehtyjen määrittelyjen, tarkennusten ja toteutusten validointia ja verifiointia tarkastel-
laan. Esimerkkinä käydään läpi yksinkertaisen ongelman ratkaisun määrittely, tarken-
nus ja toteutus B-menetelmällä.

Työn lopuksi esitellään tekijän yritystä toteuttaa B-menetelmän tarvitsemat työka-
lut ohjelmistona nimeltä The Ebba Toolset. Tärkeimmät suunnittelupäätökset käy-
dään läpi. Unicoden käyttö pääasiallisena syötemenetelmänä esitellään.

Asiasanat (YSA): kuvauskielet — Abstract Machine Notation, kuvauskielet — Gen-
eralized Substitution Language, formaalinen logiikka — historia, ohjelmistotekni-
ikka — matemaattiset menetelmät — B, atk-ohjelmat — Ebba
Avainsanat: formaalit menetelmät — B, automaattinen päättely

Acknowledgements

I would like to thank my thesis supervisor, Tommi Kärkkäinen, for his advice and
guidance throughout my studies of formal methods, including the production of
this thesis. I am grateful to my friends and coworkers, Tuukka Hastrup, Janne V.
Kujala and Jonne Itkonen for their comments on the manuscript of this thesis in its
various forms, and for interesting discussions on and off topic.

Several acquaintances from Internet Relay Chat — especially Moshe Zadka, Ian
Lynagh and Ganesh Sittampalam — have given me invaluable feedback on various
(partial and complete) drafts of this thesis.

I would also like to thank Lauri Kahanpää, from the Department of Mathemat-
ics, for guiding my self-studies in mathematics before my entering the University
and also supporting (with kind words and advice) my studies in University, first
in Mathematics, and now later in Information Technology. He also deserves extra
mention for introducing me into the world of formal logic.

I would like to thank the rest of the Department staff (especially certain people
— you know who you are) for believing in me.

My teachers in Tampere Rudolf Steiner School, especially Timo Poranen (math-
ematics) and Esko Tallgren (physics), and my teachers in Jyväskylä Rudolf Steiner
School, especially Lea Blåfield, deserve thanks for guiding me during my formative
years (1984–1993 in Jyväskylä and 1993-1997 in Tampere).

My mother Maija Tuomaala and my father Kari Kaijanaho have always sup-
ported me in whatever I have been doing. Mother, Father — thank you.

Finally, I’d like to express my gratitude to Jean-Raymond Abrial — who I have
never met except through his book [1] — for inventing the B method and thus saving
me the work of doing that myself.

Jyväskylä, December 2002

Antti-Juhani Kaijanaho

i

Contents

Contents ii

List of Tables vi

1 Introduction 1

2 Formal methods in software engineering 5
2.1 The chronic software crisis . 5
2.2 Formal methods . 6
2.3 The Capability Maturity Model . 9
2.4 Classification of formal methods . 10

2.4.1 Axiomatic methods . 10
2.4.2 Algebraic methods . 11
2.4.3 Model-based methods . 12

3 A historically motivated review of formal logic and set theory 14
3.1 Aristotle’s syllogisms . 14
3.2 Logic as a calculus . 16
3.3 Frege’s successful failure . 18
3.4 Set theory emerges . 20
3.5 Interlude: Modern notation and terminology 22

3.5.1 Propositional logic . 22
3.5.2 Predicate logic . 25
3.5.3 Sets . 28

3.6 Axiomatizing set theory . 29
3.7 The dream torn asunder . 31

3.7.1 Primitive recursion . 31
3.7.2 Gödel . 32
3.7.3 Entscheidungsproblem . 33

ii

4 Automated reasoning 36
4.1 The limits of automated reasoning . 36
4.2 Normal forms for first-order formulae 37
4.3 Unification . 39
4.4 Resolution . 40

5 The B method 41
5.1 Overview . 41
5.2 The logic of B . 42

5.2.1 Schemata and metavariables 42
5.2.2 Inference . 42
5.2.3 Propositional calculus . 43
5.2.4 Predicate calculus with equality 44
5.2.5 Proof procedure . 47

5.3 Set notation . 49
5.3.1 Ordered pairs . 49
5.3.2 Sets . 51
5.3.3 Typechecking . 53
5.3.4 Better typechecking algorithms 56
5.3.5 Derived formulae for set notation 61

5.4 Recursively defined sets . 63
5.4.1 Fixpoints . 63
5.4.2 Finiteness and infiniteness . 66
5.4.3 Numbers . 67

5.5 Generalized substitution language . 70
5.5.1 Basic constructs . 71
5.5.2 Characteristic predicates and parallel composition 76
5.5.3 Healthiness conditions and a normal form 77
5.5.4 Iteration . 78

5.6 Abstract machine notation . 79
5.6.1 Abstract machines . 79
5.6.2 Typechecking an abstract machine 84
5.6.3 Verification of an abstract machine 87
5.6.4 Refinement . 89
5.6.5 Implementation . 89
5.6.6 A parallel between AMN and Object-Orientation 90

iii

6 The Ebba Toolset 92
6.1 Development history . 92
6.2 Abstract syntax . 93
6.3 The frontend . 94
6.4 Unicode input . 96
6.5 Backend . 99
6.6 Future plans . 99

7 Conclusion 101

8 Bibliography 102

Appendices

A Two formal theories 114
A.1 Preliminaries . 114
A.2 Alphabets, strings and substitutions 115
A.3 First-order logic . 116

A.3.1 Syntax . 116
A.3.2 Truth . 121
A.3.3 Inference . 122

A.4 Set theory . 123
A.4.1 Axiom of the universal class . 124
A.4.2 Axiom of extensionality . 124
A.4.3 Axiom schema of class comprehension 124
A.4.4 Axiom of separation . 127
A.4.5 Construction axioms . 127
A.4.6 Axiom of infinity . 127
A.4.7 Axiom of replacement . 127
A.4.8 Axiom of regularity . 128
A.4.9 Axiom of choice . 128
A.4.10 Models of set theory . 128
A.4.11 Arithmetic . 128

B A summary of AbstractSyntax.hs 131

C A description of TypeChecker.hs 133

iv

D Summary of the ebba-unicode library 138
D.1 Unicode.hs . 138
D.2 UnicodeDataDef.hs . 138
D.3 Octet.hs . 142
D.4 UTF.hs . 143

v

List of Tables

3.1 Aristotle’s syllogisms. 16
3.2 Summary (see [127]) of Boole’s logical calculus [14, 15]. 18
3.3 Truth table for implication. 23
3.4 Relationships between different classes of propositions. 24
3.5 Complementary pairs of different classes of propositions. 25

5.1 Inference rules for propositional calculus in B. 44
5.2 Non-freeness rules for predicate calculus with equality. 45
5.3 Rewrite rules for substitutions in predicate calculus with equality. . . 46
5.4 Additional inference rules for predicate calculus with equality. 47
5.5 Additional non-freeness rules for predicate calculus with equality and

pairs. 50
5.6 Non-freeness rules for set constructs. 51
5.7 Rewrite rules for substitution in set notation. 52
5.8 Axioms of set notation in B. 52
5.9 Typechecking rules for Algorithm 5.1. 55
5.10 Modified typechecking rules for Algorithm 5.4. 61
5.11 Abstract syntax productions for relation and function constructs. . . 64
5.12 Rewrite rules for relation and function constructs. 65
5.13 Abstract syntax productions for natural number constructs. 68
5.14 Rewrite rules for natural number constructs. 69
5.15 Abstract syntax productions for arithmetical constructs. 70
5.16 Rewrite rules for arithmetical constructs. 71
5.17 Abstract syntax productions for basic generalized substitutions. . . . 72
5.18 Rewrite rules for basic generalized substitutions (cont.) 73
5.18 (cont.) Rewrite rules for basic generalized substitutions. 74
5.19 Abstract syntax productions for additional substitution constructs. . 76
5.20 Rewrite rules for additional substitution constructs. 76
5.21 Abstract syntax production for the opening of a substitution. 78
5.22 Rewrite rule for the opening of a substitution. 78
5.23 Abstract syntax productions for abstract machines. 80

vi

5.24 Abstract syntax productions for the AMN counterparts for GSL con-
structs. 81

5.25 Rewrite rules for the AMN counterparts for GSL constructs. 82

6.1 Operator precedence and associativity for Ebba H. 95
6.2 Unicode code unit assignments for Ebba input characters (cont.) . . . 97
6.2 (cont.) Unicode code unit assignments for Ebba input characters. . . . 98

A.1 Logical constants . 117
A.2 Shorthand definitions for first-order logic. 120
A.3 Shorthand definitions for set theory(cont.) 125
A.3 (cont.) Shorthand definitions for set theory. 126
A.4 Shorthand definitions for arithmetic. 129

vii

1 Introduction

The modern magic, like the old, has its boastful practitioners: “I can write
programs that control air traffic, intercept ballistic missiles, reconcile bank ac-
counts, control production lines.” To which the answer comes: “So can I, and so
can any man, but do they work when you do write them?”

— Frederick P. Brooks [16]

This thesis documents research done by the present author in the past year. The
original aim was to develop a full toolset for the formal method known as B for
software engineering.

Formal methods apply mathematical methods and formalisms to software con-
struction, in different phases of the development process. They can be used in the
specification phase, where they help in making the specification precise and in iden-
tifying areas where the development team lacks understanding of the problem to be
solved. Sometimes they are used in the code generation phase to guarantee the
correctness of the code with respect to the specification. Generally, the use of for-
mal methods, however insignificant, does have a positive effect on the reliability of
the software in question, if other software engineering practices are not abandoned.
Formal methods research has also helped mainstream software engineering to effect
many changes for the better (structured programming being one example).

The B method is a formal method designed to be used in the specification and
code generation phases of software development, and it has extensive tool support.
It was originally developed by Jean-Raymond Abrial. Eventually, a company called
B-Core was formed to commercialize the method and the original B toolkit [6]. Later,
a French group developed another commercial toolset, Atelier B [113], again in close
collaboration with Abrial. Both toolsets are proprietary, which makes them very bad
starting points for independent research on the B method. Both are scarcely docu-
mented in scientific literature and in other freely available media. Without applying
for a commercial or academic license for these products, it is nearly impossible to
find out how they work. For the research described in this thesis, obtaining such a
license was not an option.

The present author has a strong ethical commitment to free software
�

. According
to this position, it is unethical to use or produce proprietary software. In practice, if

1

there is no free implementation of something (which is the case with the B method),
one’s options are essentially limited to abandoning it altogether, or writing one’s
own implementation. When doing that, it will be necessary to avoid referring to any
proprietary materials, especially programs, in order to keep the legal situation clear.
Otherwise, the program could be construed as being a derivative work in the sense
of copyright law, and it would not be free software. This kind of an independent
reimplementation is often called a cleanroom reimplementation (not to be confused
with Cleanroom software engineering).

The original goal of a full reimplementation of B proved to be too ambitious, but
a starting point for one has been realized in the Ebba toolset, which is described in
the penultimate chapter. It is a cleanroom reimplementation: the only sources used
were publically available documentation in the form of books (such as [1, 107]) and
public web sites (such as [5]).

There were three incomplete attempts to write Ebba. The first implements an
incomplete lexer and parser based on a Unicode representation of the B notation,
along with a simple editor for this representation designed to run under a UTF-8-
capable XTerm. The second includes an X-based rewrite of the editor but little of the
other functionality. Both were written in C++. The third and final implementation is
written in Haskell, and includes much more of the core functionality (typechecking,
automated reasoning) than the previous ones but includes no editor.

The scientific contributions of this thesis are the following. First, it describes
an independent reimplementation of the tools for the B method based on public
sources; the problems encountered draw a picture of the completeness (or lack
thereof) of the documentation of the B method. Second, as far as the present au-
thor knows, the early prototypes of Ebba were the first to employ a Unicode-based
input format for B. Thus, this thesis contributes a design for this format. Finally, and
less importantly, it provides an anecdotal analysis of the strengths and weaknesses
of C++ compared to Haskell.

The thesis is roughly organized in two parts. The first part, Chapters 2–4, gives
the general backround for the research discussed in this thesis: Chapter 2 is an in-
troduction to formal methods in general and to their relationship to conventional
software engineering; Chapter 3 is a historically motivated review of formal logic
and set theory, culminating in two important results in the feasibility of mechanized
logic; Chapter 4 introduces the basic mechanisms used in automated reasoning. The
second part, Chapters 5 and 6, discusses the research itself: Chapter 5 is a sketch of
a reconstruction of the B method from public sources, and Chapter 6 documents the

2

Ebba toolset and the process of its development.
The thesis contains lots of logical and set-theoretical formulae. The notation used

in the first part is a variant of established notation. It is built rigorously in Ap-
pendix A, but the appendix is not a prerequisite for the rest of the thesis. The second
part uses another variant, that which Abrial uses in his B-Book [1]; it is described in
Chapter 5.

Due to the vastness of the subject matter (Chapter 5 alone covers much of the
material of the 800-page B-Book [1]), it was necessary to omit a lot of material. Even
though large parts of this thesis are mathematical in nature, no proofs are presented.
Most of the mathematical propositions expressed or implied have been given proofs
in the cited sources. The huge disproportionality between the available space and
the size of the material has also had an adverse effect on the readability of the thesis:
the whole thesis, but especially Chapter 5, introduces lots of new notation and con-
cepts, and this may give a reader the feeling of being shot at with a machine gun.
This is, unfortunately, unavoidable given the constraints of this thesis.

Notes

�

The word “free” refers to freedom, not zero cost. Specifically, a piece of soft-
ware is free, if the following freedoms are guaranteed to the user with respect to the
software [112]:

0 the freedom to run the program, for any purpose;

1 the freedom to study how the program works, and adapt it to one’s needs;

2 the freedom to redistribute copies (this is necessary so that one can fulfill the
fundamental ethical maxim of helping those one is near: neighbours and rela-
tives being the obvious examples); and

3 the freedom to improve the program, and release the improvements to the
public (this is necessary so that one’s work can benefit the whole community).

Access to source code is necessary to guarantee the freedoms 1 and 3.

3

Free software is sometimes called “Open Source Software”, but that term fails to
communicate the ethical aspects of free software, which the current author considers
essential.

4

2 Formal methods in software engineering

Professional Engineers are expected to use discipline, science, and mathematics
to assure that their products are reliable and robust. We should expect no less of
anyone who produces programs professionally.

— David Lorge Parnas [91]

This chapter discusses formal methods in general: first, the problems that they try to
solve, and then what formal methods are and the range of existing formal methods.

2.1 The chronic software crisis

Software is in a crisis. This fact was acknowledged in the first NATO conference on
software engineering [85] more than thirty years ago, and it is still said to be true
(cf. eg. [37, 49, 73]). Software projects finish late, they run over budget and their
products are unreliable [37]. The conference was held in 1968 as an attempt to ad-
dress these problems. The two most lasting contributions of that conference are the
term “software engineering” itself, which was deliberately chosen as provocative,
and the definition of the term provided by Fritz Bauer:

[Software engineering is] the establishment and use of sound engineer-
ing principles in order to obtain economically software that is reliable
and works efficiently on real machines.

�

The understanding was that there is a “need for software manufacture to be based
on the types of theoretical foundations and practical disciplines, that are traditional
in the established branches of engineering.” [85]

Now, thirty-four years since the conference, the software crisis, especially soft-
ware unreliability, is still an acute problem (cf. eg. [54]). Several “silver bullets” have
been proposed in the mean time, promising to end the crisis, but none have suc-
ceeded. Structured programming [33], literate programming [71], CASE tools (cf. [54]),
object-orientation [13] and open source software [99] have all been said to deliver re-
liable software. Many of them have already contributed enormously to the state of

5

the art in software engineering — for example, Hoare [60] credits structured pro-
gramming for the current relative clarity of contemporary source code. It is clear,
however, that software failures are commonplace today [54].

2.2 Formal methods

Formal methods is one of those subdisciplines of software engineering that are
claimed to be the ultimate silver bullet, a cure for all diseases in software produc-
tion [54]. In the words of Frederick Brooks [16], there is no silver bullet. However, a
study [96] suggests that the use of formal methods, when combined with effective
testing, does actually have a dramatic effect on the number of bugs in a delivered
software product, although a similar effect was not observed before testing. The
most likely reason for this is that the formal specification led into relatively simple
and independent components, which allowed for straightforward unit testing.

According to Rushby [102], the use of mathematics in design and construction to
ensure product quality is common practice in established engineering disciplines,
such as bridge or aircraft building, and even computer (hardware) construction,
where one applies mathematically expressed physical and other natural laws to
model a problem that deals with the behaviour of concrete systems in the physi-
cal world. These models are continuous in nature. In particular, small changes in
the parameters usually generate relatively small changes in the models.

The problems of software engineering are, in contrast, discrete. The theoretical
foundation on which all software development is laid is that of the random access
machine (RAM)

�

. The state of the machine changes abruptly at each instruction, so
there is no smoothness like in the changes of most physical systems. This creates a
similar effect in software to that which is popularly known as the “butterfly effect”
from chaos theory: small changes can cause large effects [121, p. 9]. A striking ex-
ample of this is that a small typo in a program or in the specification of a program
can cause a catastrophic failure, which was what happened to the Mariner 1 mission
to Venus [50, 81, 82].

Since the domain of software engineering is discrete, it is apt that discrete math-
ematics, as well as modern logic, forms the basis of the mathematics of software
engineering. Programs can be described as predicate transformers (see eg. [34] and
Chapter 5), or as functions (see eg. [10]).

Formal methods are the mathematics of software engineering. The NASA formal
methods guidebook [84] characterizes formal methods thus:

6

Formal Methods cionsist of a set of techniques and tools based on math-
ematical modeling and formal logic that are used to specify and verify
requirements and designs for computer systems and software.

It is important to note the two distinct meanings of the word “formal” in software
engineering parlance: first, it is used to describe the nature of the software process
and certain meetings common in proper software processes (eg. formal inspections);
second, it is used to describe a manner of computation, where the meaning of sym-
bols is intentionally ignored and all computation is done using specified computa-
tional rules. In this thesis, we will distinguish these two meanings by reserving the
word “formal” for the second meaning; when we speak of the first meaning, we use
the term “formalized”.

John Rushby [102] suggests a four-level classification of the usage of formal
methods in software development processes:

Level 0 Formal methods are not used. Most software development is on Level 0,
but this need not be a bad thing. Even if formal methods are not used at all,
the development processes themselves can be very formalized (see eg. [97]).
Typical of this level of development are specifications written in natural lan-
guages such as English, the use of formalized meetings for code inspection,
and extensive and well-planned testing.

Level 1 Concepts and notation from discrete mathematics is used as a substitute
of natural language in specifications and other documents. All proofs and
checks are done manually in a style reminiscent of the way mathematics is
conventionally done, and also of the way mathematics is used in traditional
engineering. Many formal methods (including Z [65]) started out at Level 1
and were then formalized for the benefit of tool support.

The advantage of this level of usage is that the notation is flexible: it is pos-
sible to invent on the spot new notation for concepts that cannot be easily
expressed using existing notation. A disadvantage is that there is really no
guarantee that the mathematical parts of specifications and other documents
are any more correct (or even meaningful) than their natural language counter-
parts, since there are no tool support for checking syntactic or semantic errors
in the documents. However, as Hoare [60] points out, people who are familiar
with mathematical notation and methodology are usually capable of creating
correct proofs — apart from trivial typos — efficiently by hand.

7

The Cleanroom process model (see eg. [76]) is an example of a Level 1 formal
method.

Level 2 Formal specification languages with some automated tools are used. Usu-
ally, there are tools for checking the syntax and some semantic properties of
formal documents written in some formal notation. These tools require com-
mitting to one concrete syntax and semantics for the notation, which sacrifices
flexibility for partial guarantees of correctness.

Most proofs in a Level 2 formal method are done by hand without the aid
of automation. However, the notation usually is accompanied by a fully-
developed logic that can be used in proofs.

The Z notation [65] is a well-known example of a Level 2 formal method,
although it is slowly working its way up to Level 3. Tools for it include
CaDi

�
[116] and ZETA [53], and many more. Both parse and typecheck docu-

ments written in Z. CaDi
�

also contains some support for automated reason-
ing, and ZETA is able to animate specifications.

Level 3 Formal specification languages with extensive automated tools are used,
including advanced tools for automated reasoning. Tool support for this level
is sufficiently advanced so that all or almost all proofs can be conducted me-
chanically, or at least can be mechanically verified. This level of software de-
velopment can be called “fully formal“.

An example of a Level 3 formal method is the refinement calculus [9]. Tools
for it include The Refinement Calculator [20] and PRT [26].

As the level of formality rises in a software development project, one gets better
and better guarantees for correctness. However, no unconditional guarantees are
possible. Formal software development at all levels is handicapped by having to
translate informal requirements into a (more or less) formal specification, and it is
never possible to prove the correctness of this translation. Additionally, reliance
on automated tools in the higher levels of formality induces a new risk: that of
accidental or intentional incorrectness of the tools. The tools themselves are going
to have bugs, and trying to ensure their correctness using formal methods will not
eliminate that risk completely.

There are also no guarantees that the tools used with a formal method are free
of malicious misfeatures. As Ken Thompson [115] has pointed out, malicious mis-
features can be intentionally planted in any software development toolchain so that

8

their presence is hard to detect and their absence cannot be proven mechanically. In
practice, however, most of them will be detectable and removable by software sim-
ilar to standard antivirus software once the misfeatures become widely circulated
and their existence becomes known.

According to Rushby [102], higher levels of formality can cause increased costs,
since one will have to formalize things that one takes for granted in lower levels.
This may become a lesser issue once formal methods become more widely accepted
and verified libraries of formalizations become generally available.

2.3 The Capability Maturity Model

The level of formality in software development is independent of the level of for-
malization in the processes of software development. Most formal methods can be
used in any kind of environment, but, as always, the best results can be expected
from an organization which has very formalized processes. A common measure of
formalization is the Capability Maturity Model (CMM) [92]), which classifies orga-
nizations into five levels:

1. On the initial level, the organization produces software in an ad hoc way, and
the processes can occasionally be even chaotic. Success on this level depends
on individual effort.

2. On the repeatable level, basic project management processes exist and track
cost, schedule and functionality. There is enough discipline to repeat prior
successes in similar projects.

3. On the defined level, management and engineering processes are documented,
standardized, integrated and used in all projects.

4. On the managed level, detailed measures of process and product quality are
collected and the processes are understood and controlled quantitatively.

5. On the optimizing level, quantitative feedback from processes and innovative
pilot projects is used to improve the processes.

Naturally, all levels require the successful adoption of previous levels.
Although the cleanroom software engineering methodology is classified at Level 1

of formality, it is quite possible for an organization to achieve level 4 of the CMM

9

measure of formalization using cleanroom. Thus, the levels of formality and formal-
ization are two independent dimensions. Ideally, we would have tools that support
methods which take part in a process, which would lead into a situation where an
organization can be at Level 5 of CMM and on Level 3 in formality.

2.4 Classification of formal methods

Formal methods can be classified into two categories. The first category is property-
based methods, which are based on the indirect specification of properties. Property-
based methods are, in turn, divided into two subcategories: axiomatic and algebraic
methods. The second category is model-based methods, which are based on forming a
formal model of the software system.

2.4.1 Axiomatic methods Axiomatic treatment of software may well be the oldest
kind of formal methods. The earliest paper on it seems to be by Floyd in 1967 [39],
on which Hoare built the now famous Floyd-Hoare logic [58]. The basic construct
in the logic is the Hoare triple

�
Q � P � R ���

which consists of a program statement P preceded by a precondition assertion Q
and followed by a postcondition assertion R. The triple itself is an assertion that,
if Q is true at the initiation of P, then R will be true at the end of P. Programs
are specified by defining what shall hold at the end of the program being specified
(ie. what is its postcondition) given certain assumptions about the input and the
initial state of the program (ie. its precondition). Programs are proven correct by
proving a Hoare triple consisting of the program, its specified precondition and its
specified postcondition, using the axioms and inference rules of Floyd-Hoare logic.
An example of an inference rule in Floyd-Hoare logic is the rule of iteration

�
I � E � P

�
I ��� �

I � while E do P od
���

E � I ���
which states that in order to prove that the loop while E do P od preserves the
loop invariant I and makes the loop condition E false, it suffices to prove that the
loop body P preserves the invariant I as long as the loop condition E is true at the
beginning of the loop body.

The hard part of the axiomatic method lies in the fact that lots of assertions need

10

to be generated. For example, loop invariants need to be come up with. Fortunately,
there have been attempts at automating this process since the 1970’s (cf. eg. [38]).

In the 1970’s Dijkstra developed his guarded commands and weakest precon-
dion style for formal software development and programming language seman-
tics [34]. The axiomatic style evolved and spawned also such things as Hoare’s
communicating sequential processes [59] and the refinement calculus [9]. All three
have had an important effect on later formal methods.

2.4.2 Algebraic methods � Algebraic methods emerged in the 1970’s. The basic
idea, informally speaking, is to define a mathematical set of things in the following
manner. First, some elements of the set are named as constants: for example, one
could name two constants, true and false, in a set of truth values. Then, one names
one or more functions (of different arities) between elements of this set: for example,
for a set of truth values, it makes sense to name the function nand (also denoted
by

�
and called the Sheffer stroke), which maps pairs of truth values to truth values.

Finally, one gives one or more equations that relate the functions and constants to
each other. For example, in the set of truth values, one would have the following
equations:

true
�
true � false

true
�
false � true

false
�
true � true

false
�
false � true

Now we sever the connection between the set we are describing with these con-
stants, functions and equations, and call the system which consists of

• the names of the constants,

• the names and the signature of the functions, and

• the equations

an abstract data type or an ADT. In principle, any set of things complemented with a
set of functions between its elements and a mapping (called an interpretation) of the
ADT names to the actual elements and functions, satisfying certain requirements,
is a valid implementation of the ADT. The requirement is that the constants must

11

be mapped to distinct elements of the set and the ADT function names must be
mapped to the actual functions in such a way that the equations hold.

For example, the set
��� ��� � complemented by the function � a � b ���� �
	 ab does form

an implementation of the ADT of truth values described above under the interpre-
tation where true maps to � , false maps to

�
and nand maps to the given function,

since the equations hold:

��	����� �
�

��	��� � ���
��	 � �� ���
��	 � � ���

Another valid implementation is the set of integers
�

complemented by the above-
mentioned function.

In algebraic methods, the ADTs are specifications and their implementations are
programs. Program construction in algebraic methods is about finding executable
implementations to the ADTs of the specification. Program verification is proving
that the proposed implementations are really implementations of the ADTs.

An example of the algebraic method is the Extended ML language [67], which
allows the specification of programs and their refinement, leading to an implemen-
tation in Standard ML.

2.4.3 Model-based methods The basic idea of model-based specification of ADTs
is to build an abstract mathematical structure that models the ADT together with a
set of operations whose behaviour with respect to the model is described, for exam-
ple, using preconditions and postconditions.

Typically, a model-based specification of an ADT contains zero or more abstract
variables, an invariant which constrains the possible values of the variables (more
generally than the equations used in algebraic methods), an initialization operation
and other operations. The specifics vary depending on the actual method.

The best known model-based methods are Z [65] and the Vienna Development
Method (VDM) [62]. The B method discussed in Chapters 5 and 6 is also model-
based.

12

Notes

�

Curiously, this quote does not seem to be in the conference report [85], although
several textbooks (at least Pressman [97] and Vliet [121]) cite the report as the source
for this definition.

�

A RAM has countably infinite number of registers Xi (i �
�
), any of which

can store any integer whatsoever. The instruction set of a RAM consists of Xi �
c (constant store), Xi � Xj � Xk (summation), Xi � Xj 	 Xk (subtraction), Xi �
XXj (indirect access), XXi � Xj (indirect store), if Xi �

�
goto m (conditional jump

to line m), read Xi (input) and write Xi (output). Negative addresses in indirect
access and store halt the machine. RAMs are computationally equivalent to Turing
machines. [28, 109]

� This exposition of algebraic methods is a simplified synthesis by the present
author. A more rigorous treatment is given, for example, in Ehrig and Mahr’s
book [36].

13

3 A historically motivated review of formal logic and
set theory

Hardly anything more unfortunate can befall a scientific writer than to have one
of the foundations of his edifice shaken after the work is finished.

— Gottlob Frege on Russell’s paradox [45]

The B method, and formal methods in general, are based on formal logic and set
theory. This chapter traces the important points of development of classical modern
formal logic. When we talk about “classical” logic, we exclude modal and deontic
logic and other such more philosophical logics. By modern, we mean logic as it has
been developed since the 1850s. By formal, we mean logic where all deductions can
be mechanically verified and sometimes even mechanically generated.

Until the twentieth century, logic and the theory of classes (sets) have been un-
derstood as pretty much the same thing. Consequently, this chapter also traces the
development of set theory.

We will conclude with an overview of two important results in effective com-
putability: Gödel’s result on the undecidability of arithmetic and Church’s result on
the undecidability of first-order logic.

In composing this chapter up to Frege, von Wright’s treatises on analytical phi-
losophy [127, 129] have been greatly useful. Jech’s book on set theory [66] helped
in tracing the history of the ZF theory, and a term paper by Dirk Schlimm [106] was
helpful in tracing the development of primitive recursion.

We assume that the reader is familiar with the basic notions of modern logic. The
variant of modern formal notation used is discussed at length in Appendix A.

3.1 Aristotle’s syllogisms

It could be said that Aristotle founded formal logic. He wrote six texts which were
later collectively named “Organon”, instrument, based on the idea that they to-
gether formed a common thinking tool for philosophers working on diverse sub-
jects. The organon consists of “Categories”, “On interpretation”, “Prior analytics”,
“Posterior analytics”, “Topics” and “On sophistical refutations”.

14

In Prior analytics [4]
�

, Aristotle introduced the concept of a syllogism. Syllo-
gisms deal with propositions of the forms “A is predicated of every B”, “A is predi-
cated of no B”, “A is predicated of some B” and “A is not predicated of some B”. In
these propositions, the “A” is called a predicate and “B” is called a subject. For ex-
ample, in the proposition “Mortality is predicated of every man”, “mortality” is the
predicate and “man” is the subject. The phrase “is predicated of” can be understood
as class membership or subclassness, and the subjects and the predicates as classes;
thus, the example above could be understood as “the class of all men is a subclass
of the class of mortals”, or equivalently, “all men are mortal”.

A syllogism is a form of inference consisting of three propositions: two premisses
�

and a conclusion. An example would be

Mortality is predicated of every man (ie. men are mortal)
Manhood is predicated of some Athenians (ie. some Athenians are men)
Mortality is predicated of some Athenians (ie. some Athenians are mortal)

Medieval logicians started the practice of labelling syllogisms systematically.
Each proposition is labelled with a three-letter acronym, where the first letter (up-
percase) denotes the predicate and the third letter (also uppercase) denotes the sub-
ject. The middle letter (lowercase) is either “a”, “e”, “i” or “o”, and it denotes the
logical constants (“is predicated of”, “every” and so on) of the proposition. The
acronym “AaB” refers to a proposition of the form “A is predicated of every B”,
the acronym “AeB” refers to “A is predicated of no B”, the acronym “AiB” refers to
“A is predicated of some B”, and the acronym “AoB” refers to “A is not predicated
of B”. The syllogisms are represented by schemata where the premisses (denoted by
three-letter acronyms) are separated by commas and followed by a semicolon and
the conclusion (also denoted by a three-letter acronym). Thus, the above syllogism
would be rendered as the schema “AaB, BiC; AiC”.

Medieval logicians also gave mnemonic names to syllogisms. The vowels of a
name are the lowercase letters of the syllogism schema, and the rest of the name is
chosen to aid memory. For example, the syllogism above is called Darii.

What makes syllogistic logic formal is the fact that valid syllogisms are valid re-
gardless of which particular predicates and subjects are used in them, as long as
the form of the syllogism is explicit and obeyed. In the case of the Darii syllogism,
the form states that the first premiss should have the form “A is predicated of ev-
ery B”, the second premiss should have the form “B is predicated of some C”, and
the conclusion should have the form “A is predicated of some C”. As indicated by

15

Name Form Name Form

Barbara AaB, BaC; AaC Baroco BaA, BoC; AoC
Celarent AeB, BaC; AeC Darapti AaB, CaB; AiC
Darii AaB, BiC; AiC Felapton AeB, CaB; AoC
Ferio AeB, BiC; AoC Datisi AaB, CiB; AiC
Cesare BeA, BaC; AeC Disamis AoB, CaB; AiC
Camestres BaA, BeC; AeC Bocardo AoB, CaB; AoC
Festino BeA, BiC; AoC Ferison AeB, CiB; AoC

Table 3.1: Aristotle’s syllogisms.

the choice of the uppercase letters, the predicate of the first premiss should be the
predicate of the conclusion and the subject of the first premiss should be the predi-
cate of the second premiss, for the syllogism to qualify as Darii. Altogether, Aristotle
listed fourteen valid syllogisms; they are listed in Table 3.1.

Aristotle’s Organon remained as the definitive books on logic for more than two
millennia, until the nineteenth century. There were some work on logic after Aristo-
tle, but nothing spectacular. In fact, Immanuel Kant wrote about logic in 1787 [70]:
“. . . since Aristotle, it has been unable to advance a step and, thus, to all appearance
has reached its completion.”

3.2 Logic as a calculus

The first hints of the coming revolution in logic were given by Leibniz, who con-
tributed a new perspective on it in the latter part of the seventeenth century. Aris-
totle’s logic is, according to von Wright [127], an instance of the axiomatic method,
which is exemplified by Euclid’s geometry. The other corner stone of mathematics
is calculation, the mechanical manipulation of symbols to produce a desired result,
of which algebra is the prime example. Leibniz’s idea was to make logic calculable,
or in other words, create a calculus of logic.

For example, in Rules from which a decision can be made, by means of numbers, about
the validity of inferences and about the forms and moods of categorical syllogisms [75], Leib-
niz proposes a kind of arithmetic of logic, where subjects and predicates of syllogis-
tic propositions are denoted by pairs of relatively prime integers, one positive and
one negative. The idea was to calculate the truth of a universal affirmative propo-

16

sition (such as “Every wise man is pious”) by dividing the positive number of the
subject by the positive number of the predicate, and respectively for the negative
numbers. If there are no remainders, then the proposition was to be true. Leibniz
developed also other numerical and symbolic calculi for logic.

Unfortunately, Leibniz’s work on logic was mostly unknown to his contempo-
raries and early successors, although he was recognized as one of the great geniuses
of philosophy and mathematics even while he lived. The reason seems to be that
most of his written works were published posthumously. Only in the twentieth cen-
tury was it finally recognized that Leibniz was perhaps the greatest logician after
Aristotle [127]. This explains why Kant could give his remarks on nothing having
happened in logic since Aristotle, some one hundred years after Leibniz.

In 1847, George Boole published the essay The Mathematical Analysis of Logic, Be-
ing an Essay Towards a Calculus of Deductive Reasoning [14], where he discussed a
calculus of logic (not to be confused with modern Boolean algebra �). He developed
it further in the next years, and published a more mature version of it in 1854 as the
book An Investigation of the Laws of Thought, on Which Are Founded the Mathematical
Theories of Logic and Probabilities [15].

Boole’s basic idea was to try and map logic to (high-school) algebra. In his log-
ical calculus, letters such as x and y denote classes of things (such as “(all) men”
or “(all) good (things)”), operation signs such as � , 	 and � (which is often omit-
ted in formulae) represent operations that combine things to form new things, and
the identity sign � represents equality. From these building blocks formulae are
constructed in the familiar way of high-school algebra. Multiplication (xy or x � y)
denotes the class of those things where all the formulas apply; for example, the for-
mula xy denotes the class of things where both x and y apply. In modern terms,
then, juxtaposition denotes class intersection. For example, if x denotes “(all) good
(things)” and y denotes “(all) men”, then xy denotes “(all) good men”. As a special
case, xx (or “(all) good (things) (that are) good (things)”) denotes the same thing as
x, and so we may as well write x

�

� x. Thus, we can start building an algebra of
classes.

Boole noted that this algebra of logic or classes (which, for him, was the same
thing) behaves identically to the algebra of numbers: addition (denoting “and”
or “or”, does not matter which) is commutable and associative. The multiplica-
tion (juxtaposition) described above and addition are also distributive: if x denotes
“men”, y denotes “women” and z denotes “European”, then z � x � y � would denote
“European men and women”, which naturally is the same thing as “European men

17

Modern name Modern notation Boole’s notation

negation
�

x � 	 x
conjunction x � y xy

(inclusive) disjunction x
�

y x � y 	 xy
exclusive disjunction � x �

y � � � � x � y � x � � 	 y � � y � ��	 x �
implication x � y � 	 x � xy
equivalence x � y ��	 x ��� 	 y � 	 y ��� 	 x �

Table 3.2: Summary (see [127]) of Boole’s logical calculus [14, 15].

and European women”, or zx � zy. In the same manner, one can continue building
this algebra. The algebra would still work like normal algebra of numbers, except
that one peculiar thing: xn � x for all natural numbers n. It will be possible to calcu-
late logic using this algebra in the same manner as one calculates with numbers.

Von Wright summarized the relation of Boole’s algebra to modern logical termi-
nology [127]; the summary is reproduced here in Table 3.2 � .

According to Burris [19], Boole’s discovery was not well received. Most of his
contemporaries did not understand it — it seemed to give correct results but nobody
knew why. For a long time, authors mistreated Boole’s work, and as a consequence,
what is currently known as Boolean algebra bears little resemblance to Boole’s actual
work.

3.3 Frege’s successful failure

The first truly modern writing on logic was Gottlob Frege’s Begriffsschrift, a for-
mula language, modeled upon that of arithmetic, for pure thought [43], published in 1879.
Frege’s notation is idiosyncratic from the modern point of view (see Figure 3.1 for
an example). Nevertheless, it is the first logical system that could be called modern.
Begriffsschrift includes notational elements for implication, negation and universal
quantification, which together are enough to form the full system of predicate logic.
Frege’s aim was to develop a logical theory of mathematics, in essence show that
mathematics is based on logic. He later developed this idea in his two books, Grund-
lagen der Arithmetik [41] and Grundgesetze der Arithmetik begriffsschriftlich abgeleitet [42].

In Grundgesetze (and in some degrees, in his earlier works), Frege attempted to
construct an Euclidean theory of arithmetic: to create a work where mathematics is

18

� �� � � � �
� ��� �
� ��� �

Figure 3.1: Frege’s Begriffsschrift-notation for the predicate which would be denoted
by

� ��� � �	� ��
 � � ��� ��� � � � � � � in modern notation.

derived out of a couple of axioms and explicitly given rules of inference. However,
when the second volume of Grundgesetze was already in press, Bertrand Russell
wrote to him about a fundamental flaw in his system.

In Begriffsschrift [43], Frege abandons the traditional Aristotelian terminology of
subject and predicate, preferring instead argument and function. For example, in the
Fregian assertion �� � A ��� , we call � ��� � the function (the Aristotelian predicate) and
A the argument (the Aristotelian subject). He even goes so far as to allow the function
part (� in the example) to be variable — in Frege’s words, “we can also regard � � A �
as a function of the argument � ” [43, p. 24]. It should be noted that in modern
terms, Frege’s function is a predicate, while his argument is still called argument. Thus,
his functions are truth-functions � .

The famous Russell’s antinomy (also known as Russell’s paradox) is the follow-
ing [103]. Let � be the function described as “ � ��� � is true if � ��� � is false”. � Now,
is � ��� � true or false? An alternative formulation given by Russell in his letter to
Frege is more familiar to modern people: “Likewise, there is no class (as a totality)
of those classes which, each taken as a totality, do not belong in themselves.” �

The discovery of Russell’s antinomy shook the basis of modern logic as it was
about to be formed. New theories of classes and logic would have to take it into
account. Frege attempts to salvage his work in an appendix that he added at the last
moment to the second volume of his Grundgesetze. Russell himself later proposed
type theory as a solution in Principia mathematica [122] and other writings (such as
Mathematical logic as based on the theory of types [104]). His basic idea is that objects are
grouped into a hierarchy of types: individual things are of the zeroth type, classes of
individual types are of the first type, and, in general, classes of type n contain objects
of type n 	 � . Russell allows only objects of type n to be members of objects of type
n � � . The usual solution today is to use first-order logic, where this cannot happen,
and then give axioms for set theory in it, usually using Zermelo and Fraenkel’s
axiom set, but other axiomatizations have been proposed (see Appendix A for an

19

example).

3.4 Set theory emerges

Giuseppe Peano started to work on founding mathematics on the basis of logic in-
dependently of Frege in the 1880s. His first work on the subject is his Arithmetices
principia, nova methodo exposita [93], where he states his axioms. He does not handle
them well from the formal point of view, though. He gives no rules of inference, and
so his proofs are just lists of formulae, with nothing that connects them logically. He
does introduce the separation of logic and classes (set theory), and he introduces
much notation that is still used, such as the “membership” operator � , which later
evolved into � .

Peano’s original axioms were the following (written in modern notation):

1. �����

2. a ��� � a � a

3. � a ��� � b ��� ��� � a � b � b � a �

4. � a ��� � b ��� � � c ��� � � � a � b � b � c � � a � c �

5. � a � b � b ��� � � a ���

6. a ��� � a � �����

7. � a ��� � b ��� ��� � a � b � a � � � b � � �

8. a ��� � a � ���� �

9. ��� k � � � x ���
 x � k � x � ��� k � � �	� k

Nowadays, axioms 2–5 would be omitted from the list on the grounds that they
more properly belong to the underlying logical system. Note that

� ��
� according
to this axiomatixation.

Earlier, in the 1870s, Georg Cantor was developing his ideas of infinity. Un-
til the publication of his 1874 paper Über eine Eigenschaft des Inbegriffes aller reellen
algebraischen Zahlen [24], all infinities were regarded as being of the same size. Can-
tor proved that algebraic real numbers (real roots of polynomial equations) can be
put into one-to-one correspondence with natural numbers, and vice versa, and also

20

that real numbers cannot be put into one-to-one correspondence with algebraic real
numbers. Thus, there seemed to be different magnitudes of infinity. Cantor pub-
lished in 1878 the paper Ein Betrag zur Mannigfaltigkeitslehre [25], where he suggested
the now current terminology of the power of a set and the equipotence of sets: in
this terminology, the set of algebraic real numbers is equipotent to the set of natural
numbers but less in power than the set of real numbers. Eventually it would lead
to the theory of aggregates (sets), and as an important part of it, to the concept of
transfinite numbers.

Cantor defines the cardinality or the cardinal number of a multiplicity � as “the
general notion that applies to it and to all multiplicities equivalent [equipotent] to
it” [23]. Natural numbers comprise the finite cardinals, and the smallest infinite
cardinal is

���
. An ordered set has a type, which is “the general notion that applies to

it and all ordered sets similar to it, and to these alone” [23], where similarity of sets
means that the sets can be brought to a one-to-one correspondence where the order
of the elements is preserved. Now, if all subsets of an ordered set have a smallest
element, then the set is well-ordered and its type is called an ordinal number. Ordinal
numbers are simply ordered [23].

Cantor’s set theory is naïve in the sense that its fundamentals are not precise.
Cantor defined an aggregate (set) as “any collection into a whole M of definite
and separate objects m of our intuition or our thought” [22]. Antinomies, of which
Russell’s antinomy described above is a famous example, began to appear. Cesare
Buriali-Forti published in 1897 two notes [18, 17] describing one that is perhaps the
earliest of the modern antinomies. The crux of the antinomy is this: What is the
ordinal number of the set of all ordinal numbers?

Cantor has proved that the set of ordinal numbers � is well-ordered. Thus, it has
an ordinal number; we’ll call it � . Now, since � is an ordinal number, it is a member
of the set of ordinal numbers. Cantor has also proved that each ordinal number
� is the ordinal number of the set of all ordinal numbers strictly smaller than �
(including zero, which Cantor does not regard as an ordinal number). Now, due to
this � is the ordinal number of the set ��� of all ordinal numbers strictly smaller than
� , which, naturally, does not include � itself. Thus, � is the cardinal number of both
� and � � , which is impossible since � � is not similar to � . We arrive thus into a
contradiction [23].

Cantor’s solution to the problem was to talk of multiplicities and sets. Every col-
lection of things is a multiplicity, but only those multiplicities that can, without con-
tradiction, be treated as objects in their own right, are sets. Thus, the multiplici-

21

ties � and � � of the previous paragraph are not actually sets. A similar distinc-
tion was made by von Neumann in 1925, when he distinguished between sets and
classes [87]. The distinction is also made in Appendix A.

3.5 Interlude: Modern notation and terminology

The formal basis of logic and set theory was developed in the first decades of the
twentieth century. Today, we talk about propositional (or sentential) logic, (first-
order) predicate logic and set theory. A formal reconstruction of predicate logic and
set theory is included as Appendix A. We will introduce all three here informally.

3.5.1 Propositional logic Propositional logic deals with the form of (certain kind
of) declarative sentences called propositions. To denote arbitrary propositions (whose
structure is not under discussion) we use metasyntactic variables (we will usually ab-
breviate that to metavariable). They are not part of the logic we are considering; rather
they are part of the metalanguage, in this case English, that we use to describe the
logic. When discussing propositional logic, metavariables denote arbitrary proposi-
tions. We will distinguish metavariables from the constructs of logic by typesetting
them in boldface.

Propositions have one distinctive feature: in any possible world, each of them is
either true or false (noth both at the same time). This is called its truth value. For any
proposition P, we denote its truth value as � P � . This is, of course, a function of the
possible world under discussion; unless the context implies otherwise, an arbitrary
possible world is assumed.

We set aside notation two special propositions: � (pronounced verum) denotes
some proposition that is true in all possible worlds and � (pronounced falsum) de-
notes some proposition that is false in all possible worlds (thus, ����� denotes truth
and ����� denotes falsity regardless of the possible world under discussion).

Given propositions P and Q, we can form the compound propositions

•
�

P (pronounced not P),

• P � Q (pronounced P and Q),

• P
�

Q (pronounced P or Q),

• P � Q (pronounced P xor (ex-or) Q),

22

� P � � Q � � P � Q �
true true true
true false false
false true true
false false true

Table 3.3: Truth table for implication.

• P � Q (pronounced P only if Q),

• P � Q (pronounced P if and only if Q),

• P � Q (pronounced neither P nor Q) and

• P
�
Q (pronounced not both P and Q).

A proposition which is not a compound proposition is called atomic.
The connectives

�
(pronounced negation), � (pronounced conjunction),

�
(pro-

nounced (inclusive) disjunction), � (pronounced exclusive disjunction), � (pronounced
implication), � (pronounced equivalence), � (pronounced Peirce’s arrow or nor) and

�

(pronounced Sheffer stroke or nand) are truth functions in that they map a pair of truth
values (or in the case of negation, a single truth value) into a truth value.

For most informal uses, the pronunciation guides are enough to describe the se-
mantics of the compound propositions, but there are some caveats. First, disjunction
is inclusive: If � P � � ��� � and � Q � � ��� � , then � P �

Q � � ��� � . In contrast, exclusive
disjunction is, well, exclusive: If � P � � ��� � and � Q � � � � � , then � P � Q � � ��� � . In
all other respects, inclusive and exclusive disjunction are identical. Second, a false
proposition implies everything: if � P � � ��� � , then regardless of which proposition
Q is, � P � Q � � � ��� .

A precise definition of the semantics of connectives is usually given using truth
tables

�
�
. Table 3.3 gives as an example the truth table of implication. In a truth table,

each row gives one combination of truth values for the independent (unknown)
component propositions (denoted by metavariables) and the corresponding truth
value for the compound proposition. There is a row for each possible combination,� n rows in all if there are n independent unknown components.

There are five classes of propositions:

23

If P is . . . then
�

P is. . .

tautological contradictory
contradictory tautological
contingent contingent
satisfiable refutable
refutable satisfiable

Table 3.4: Relationships between different classes of propositions.

1. The class of tautologies consists of those propositions that are true in every
possible world. Note that P � � if and only if P is a tautology. Tautologies are
sometimes called valid propositions.

2. The class of contradictions consists of those propositions that are false in every
possible world. Note that P � � if and only if P is a contradiction.

3. The class of contingencies consists of propositions that are true in at least one
possible world but not in all of them. Note that a proposition is contingent if
and only if it is neither a tautology nor a contradiction. Most propositions fall
into this category.

4. Classes 1 (the class of tautologies) and 3 (the class of contingencies) together
form the class of satisfiable propositions. Satisfiable propositions are true in at
least one possible world.

5. Classes 2 (the class of contradictions) and 3 (the class of contingencies) together
form the class of refutable propositions. Refutable propositions are false in at
least one possible world. Refutable propositions are sometimes called invalid
propositions.

Tables 3.4 and 3.5 show how these five classes of propositions are related and how
they complement each other.

Proof in propositional logic is a list of propositions that follows certain inference
rules. A complete set of inference rules for (predicate and hence propositional) logic
is given in Appendix A; here we skip them. What is worth to note here, however,
is that tautologies and only tautologies can be proven (this follows from the consis-
tency and completeness results for propositional logic). For this reason, the class of
theorems (which is a synonym for provable propositions) is the same as the class of

24

If P is . . . then P is not. . .

tautological refutable
contradictory satisfiable
satisfiable contradictory
refutable tautological

Table 3.5: Complementary pairs of different classes of propositions.

tautologies. Conditional proof of a proposition P given the assumptions Q (a con-
junction of the assumed propositions) is the (unconditional) proof of the proposition
Q � P.

3.5.2 Predicate logic Predicate logic can be seen as an extension of propositional
logic. The extension takes place in four parts: first, expressions are defined; second,
the form of atomary propositions is defined as relations between expressions; third,
propositions are renamed (well-formed) formulae; and fourth, two new forms of
nonatomary predicates is defined.

An expression is a description of a thing. In predicate logic, there are three kinds
of expressions: variables, constants and functions. We usually typeset variables as
lowercase greek letters and constants as lowercase latin letters. Functions map one
or more things into another thing; we will write function expressions as follows:
the name of the function (typeset like a constant) is followed in parentheses by the
argument expressions separated by commas. The number of arguments required by
a function (its arity) is, together with its name, part of its identity: if two functions
have the same name but different arity, they are different functions. Constants can
be regarded as nullary functions (functions whose arity is zero).

Sometimes binary functions are written differently: instead of f � a � b � (prefix no-
tation), one writes � afb � (infix notation). Parentheses can be omitted if it does not
endanger understandability. The difference is purely notational and has no effect on
the meaning of an expression.

Atomic formulae are predicates. A predicate has a name and it takes zero or
more expression arguments, like a function does. Unlike with functions, the name
of a predicate is typeset as an uppercase latin letter. Otherwise, predicates have
the same appearance as functions. Unary predicates (predicates whose arity is one)
are sometimes called properties. There are two nullary predicates: � and � . Binary

25

predicates, like binary functions, are sometimes written in infix notation.
The semantics of a predicate is that of a relation: a predicate denotes a relation

between things in a possible world. A predicate’s truth value is true if and only if
the things that its argument expressions denote are in the particular relation with
each other that the predicate denotes. Thus, if P is a binary predicate denoting the
relation is the father of, a is a constant denoting the current author, f is a unary func-
tion mapping people to their fathers, then in any possible world where the current
author has been fathered, � P � f � a � � a � � is true. Like with functions, the arity of a pred-
icate is part of its identity.

It should be noted that the notion of semantics is more complicated in predicate
logic than in propositional logic. For each possible world, there are many ways one
can interpret constants, functions and predicates. But once the possible world and
the interpretation are fixed, every construct of predicate logic has a fixed meaning:
constants denote particular things, functions denote particular mappings of things
to things and predicates denote relations between things. Like in propositional logic,
the possible world and the interpretation are usually treated as arbitrary.

The concept of a metavariable needs to be reconsidered. In propositional logic
every metavariable denotes a proposition. In predicate logic such simplicity won’t
do. Metavariables are needed to denote constants, function names, predicate names
and variables. We will continue the convention that metavariables are typeset in
boldface. Other properties of the metavariable decides what it denotes: a boldface
uppercase latin letter denotes an arbitrary well-formed formula, a bolface lowercase
latin letter denotes an arbitrary expression or an arbitrary function name (it will be
clear from the context)

Sometimes, however, full arbitrarity is too much, and for that reason, a side con-
dition given in plain English is sometimes attached to the use of a metavariable to
constrain the possible denotations of the metavariable. However, within that con-
straint the choice of denotation is arbitrary. We call formulae and expressions that
contain metavariables formula schemata and expression schemata, respectively.

It is customary to allow definitions. A definition is a metalinguistic mapping of a
particular constant or a function (where its argument are expression metavariables)
to an expression containing zero or more instances of the argument metavariables.
A definition can also be a metalinguistic mapping of a particular predicate (where
its arguments are expression metavariables) to a well-formed formula containing
the argument metavariables. A constant, function or predicate for which there is a
definition is called a derived construct. Constructs are not derived are called primitive

26

constructs.
In principle, whenever one sees a derived construct, one should substitute the

expression or formula that it is mapped to in the definition for the derived constant,
function or predicate. This allows, in principle, the complete removal of derived
constructs from formulae. In practice, this is rarely done in full. Usually one just
expands the definitions as necessary, leaving as many derived constructs as possible
alone.

It should be noted that most of the connectives can be seen as derived constructs.
For example,

• P � Q can be defined as
�

P
�

Q and

• P
�

Q can be defined as
�

P � �
Q.

In fact, it suffices to leave only either Peirce’s arrow or Sheffer stroke as primitive.
Two new kinds of compound formulae are added:

• ���
 P (pronounced for all � , P holds) and

•
� �
 P (pronounced there is an � for which P holds).

In the context of both formulae, the variable � is said to be bound throughout P. A
variable is said to have a free occurrence in a formula if it occurs in a formula and at
least in one of its occurrences it is not bound.

The symbol � is called the universal quantifier, and the symbol
�

is called the
existential quantifier. Both can be defined in terms of the other.

The five categories of propositions (tautological, contradictory, contingent, sat-
isfiable, refutable) extend easily to formulae of predicate logic. There is only one
caveat: when we talked about “possible worlds” before, we must now talk of “pos-
sible worlds and interpretations”. For example, a tautology is true in all possible
worlds and in all interpretations.

There are two additional types of compound formulae which are not commonly
used in predicate logic but which we use freely in this thesis:

• ���
 e (pronounced the function that maps � to e) and

• ���
 P (pronounced the unique � for which P holds).

In predicate logic these two would have to be primitive notions, but they can be
defined in set theory as derived constructs (this has been done in Appendix A).

27

3.5.3 Sets First-order set theory is an extension of predicate logic much in the
same way as predicate logic is an extension of propositional logic. The extension
proceeds as follows.

We will perform some naming:

• � is a constant.

• � and � are binary predicates.

• All expressions are called classes.

• Those classes c for which c ��� is a tautology, are called sets. In other words
� is the class of all sets.

We will define a new kind of an expression, called class comprehension. A class
comprehension has the form

�
�
 P � .

We will restrict ourselves to consider only those possible worlds and interpreta-
tions where the following statements hold:

• � e � f � is true if and only if � e � and � f � contain the same elements.

• � e � f � is true if and only if � e � is an element of � f � .
• � e � is an element of � � �
 P � � if and only if � P � is true when all free occurrences

of � in P are replaced by e.

There are several new (auxiliary) constants, functions and predicates:

• � (the empty class), the class that contains no things,

• e � f (union), the class of all things that are in e or f,

• e � f (intersection), the class of all things that are in both e and f,

• e � f (class difference), the class of all things that are in e but not in f,

• e � f (Cartesian product), the class of all pairs whose first element is in e and
whose second element is in f, and

• e � f (subclassness), pronounced all elements of e are in f or e is a subclass of f,
and

•
� e (power class) the class of all subsets of e.

28

Sets can encode arithmetic, so also the familiar numerals and arithmetic opera-
tors are available.

We will now actively forget the meaning of “function” and “predicate” as used
in predicate logic and, until now, in this subsection. We will replace them with new
meanings. A n-ary predicate, also known as a n-ary relation is a set of n-tuples. If r is
a n-ary relation, then the notation r � e � ������� � en � is a derived construct (meta)denoting
the construct � e � ������� � en � � r. We will reintroduce the convention of writing binary
predicates in infix as well as prefix form.

A n-ary function is a � n � � � -ary predicate for which it holds that for any two
� n � � � -tuples � e � ������� � en �

� � and � f � ������� � fn �
� � it holds that � e � ������� � en � � � f � ������� � fn �

only if en �
� � fn �

� . If f is a n-ary function, then the notation f � e � ������� � en � is a derived
construct (meta)denoting the construct � �
 f � e � ������� � en � � � . We will reintroduce the
convention of writing binary functions in infix as well as prefix form.

Note that the functions and predicates defined above (union and others) are not
functions in this new sense.

3.6 Axiomatizing set theory

The need for a solid basis for set theory produced several axiomatic systems. The
best known of them is nowadays called the Zermelo–Fraenkel set theory (sometimes
with the Axiom of Choice), abbreviated as ZF (ZFC).

Ernst Zermelo described his axioms in 1908 [130]. He lists seven axioms (re-
produced here in approximately the same form as in the original, alongside with a
reformulation in modern notation):

Axiom I (Axiom of extensionality) If every element of a set M is also an element of
N and vice versa, then always N � M.

Axiom II (Axiom of elementary sets) There exists a set, the null set � , that contains
no elements at all. If a is any object of the domain, there exists a set

�
a � con-

taining a and only a as element; if a and b are any two elements of the domain,
there always exists a set

�
a � b � containing as elements a and b but no object x

distinct from both.

Axiom III (Axiom of separation) Whenever the propositional function f � x � is defi-
nite for all elements of a set M, M possesses a subset Mf containing as elements
precisely those elements x of M for which f � x � is true.

29

Axiom IV (Axiom of the powerset) To every set T there corresponds another set�
T, the power set of T, that contains as elements precisely all subsets of T.

Axiom V (Axiom of the union) To every set T there corresponds a set � T, the union
of T, that contains as elements precisely all elements of elements of T.

Axiom VI (Axiom of choice) If T is a set whose elements all are sets that are differ-
ent from � and mutually disjoint, its union � T includes at least one subset S �

having one and only one element in common with each element of T.

Axiom VII (Axiom of infinity) There exists in the domain at least one set Z that
contains the null set as an element and is so constituted that to each of its
elements a there corresponds a further element of the form

�
a � .

There were some problems with this formulation. Skolem [111] criticized in a
conference of Scandinavian mathematicians in Helsinki in 1922 the idea of a “do-
main” of objects (some of which are sets) as the basis of the axiomatization. Skolem
pointed out that such an axiomatization cannot be privileged among axiomatic the-
ories, it cannot form the basis of all other mathematics.

The concept of definiteness of a propositional function used by Zermelo in the
axiom of separation is vague, and it was justly criticized by for example Abraham
Fraenkel [40] and Skolem [111]. The now-standard formulation resembles the one
given by Skolem: definite propositional functions are formulae of first-order logic
with the additional predicates “ � ” (set membership) and “=” (identity).

Fraenkel
� �

and Skolem [111] formulated also a new axiom, the axiom of replace-
ment, which is reproduced here in the form given by Skolem:

Axiom VIII (Axiom of replacement) Let U be a definite proposition that holds for
certain pairs � a � b � in the domain B; assume further, that for every a there exists
at most one b such that U is true. Then, as a ranges over the elements of a set
Ma, b ranges over all elements of a set Mb.

The final axiom of what is now commonly called the Zermelo-Fraenkel axioma-
tization of set theory

� �

was formulated by John von Neumann [87]. Von Neumann’s
axiomatization talked about functions, not sets, so the axiom is not very understand-
able in its orgininal form (axiom IV 2 of [87]). Therefore, we give a modern formu-
lation (after Jech [66] but using our notation):

Axiom IX (Axiom of regularity) � S � �
 S �� � � �
x � S
 S � x � �

Here � denotes the class of all sets.

30

3.7 The dream torn asunder

An important part of the program of the logicians of twentieth century was to find
the perfect axiomatization that will dictate the universal truth (tautologicity) or uni-
versal falsity (contradictionality), as appropriate, of all mathematical propositions.
One reason was the will to demonstrate that mathematics is universal, as philoso-
phers had maintained for millennia. The other was the will to manufacture an ulti-
mate mechanical decision procedure for all mathematics, much in the spirit of Leib-
niz. One hoped that with the right axiomatization, a decision procedure could be
manufactured.

In this section, we will describe how this dream was shown impossible. First,
however, we need some preliminaries.

3.7.1 Primitive recursion A problem with the Zermelo-Fraenkel axiomatization
of set theory is that its axiom set is not finite. The axioms of replacement and separa-
tion are really axiom schemata: when one plugs in any formula, one gets an axiom
of the system. Von Neumann [87] developed a different system of axioms for sets,
and this set is finite.

An important requirement for any set of axioms is that it should be expressible
using finite means. More generally, it should be possible to mechanically enumerate
all axioms. In essence, there should not be “too many” axioms. Fortunately, ZFC
does fulfill this condition.

A model of mechanically enumerable sets is called primitive recursive functions. In
1887 Richard Dedekind investigated, among other things, the recursive definition
of number-theoretic functions in his book Was sind und was sollen die Zahlen [31],
essentially defining the class of primitive-recursive functions. Skolem [110] and
Hilbert [57] used the concept of primitive recursive functions (although they didn’t
have the name for it) for certain developments in arithmetic. The name “primitive
recursive” was coined by Rósza Péter in 1934, who also essentially founded their
theory.

A function f
 � n � � is said to be defined by primitive recursion by the functions
g
 � n �

� � � and h
 � n �
� � � if for all k � x � � x � ������� � xn ��� the following hold:

f � � � x � ������� � xn � � g � x � ������� � xn � �
f � k � � � x � ������� � xn � � h � k � f � k � x � ������� � xn ��� x � ������� xn � �

A function f
 � n � � is called primitive recursive if it is a constant function or

31

the successor function (� �
 � � �), or it is derived by substitution from a primitive
recursive function, or by primitive recursion from two primitive recursive functions.
A relation R � � n � � m is primitive recursive if there is a primitive recursive function
f
 Nn � Nm � � such that R � a � b � is true iff f � a � b � �

�
is true. A set S � � n is

primitive recursive if there is a primitive recursive function f
 � n � N such that
� � ��� n
 � � S � f � x � �

�
.

Since formulae are strings which in turn are (when the alphabet is fixed) essen-
tially natural numbers (see Appendix A), then sets of formulae are essentially sets
of natural numbers. Thus, it is fairly easy to define a primitive recursive set of for-
mulae: a set S of formulae is primitive recursive if gödel

�
S� is primitive recursive.

3.7.2 Gödel Kurt Gödel showed in 1931 that there is no perfect axiomatization for
any formal system that includes arithmetic. Before we can state his result formally,
we need to introduce one more concept.

A set of formulae is � -consistent, if there is no well-formed formula � containing
exactly one free variable (�) for which � � ��� n� is a theorem for every natural number
n but for which the well-formed formula � � � �
 � is not a theorem. In other
words, in an � -consistent axiom system, if we can prove something individually
for each natural number, we can also prove a generalization of it stating that it holds
for all natural numbers.

We will now state Gödel’s result.

Theorem 3.1 (Kurt Gödel) For each � -consistent, primitive recursive set of formulae (in
a formal logic capable of expressing the natural numbers) there is a well-formed formula �
containing no free variables for which neither � nor

� � follows from the set of formulae.

We skip the proof (see eg. [48]), noting that the proof actually constructs such a
formula.

To put it succinctly but imprecisely
�

� , Gödel showed that

Every interesting formal theory contains contingent formulae.

Here, interesting obviously excludes everything that is incapable of encoding the
natural numbers and their elementary operations.

Another imprecise characterization of Gödel’s result is the following:

Every interesting formal theory has a nonstandard model.

32

Here, a standard model means the intended possible world and interpretation — the
one one has in mind when constructing the formal theory. In contrast, a nonstandard
model is a different possible world or interpretation, one where the axioms all hold
but where something (namely, one or more of the contingent formulae) is different
from the standard model. Nonstandard models for well-known theories include
non-Euclidean geometries and nonstandard analysis.

3.7.3 Entscheidungsproblem A related problem was posed in 1928 by Hilbert
and Ackermann [56] as the decision problem of predicate logic (commonly called
the Entscheidungsproblem): find a mechanical procedure that will determine whether
or not any given formula of predicate logic is a tautology.

To solve the problem, one needs to first define “a mechanical procedure”. Alonzo
Church defined � -calculus [27]. A little later Alan Turing came up independently
with his well-known machine, and after becoming aware of Church’s work, he
proved that � -calculus and Turing machines are able to solve the same set of prob-
lems [117]. They both, independently of each other, postulated that their respective
definitions characterize the class of mechanically solvable problems; this is known
as the Church–Turing thesis.

Both Church and Turing solved the Entscheidungsproblem. Their results can be
summarized as follows:

Theorem 3.2 (Alonzo Church) There is no � -expression D for which, the � -expression�
D � � P � has a normal form that indicates whether P is a tautology or not for all formulae P of

first-order logic (expressed as a � -expression).

Theorem 3.3 (Alan Turing) There is no Turing machine that will halt for all formulae of
first-order logic (encoded suitably for consumption of the machine), leaving an indicator of
whether the formula is a tautology or not on the tape.

These (equivalent) theorems showed that logic cannot be mechanized perfectly
in the more interesting cases. This gives a theoretical limit of what a Level 3 formal
method can do.

Notes

�

This exposition of Aristotle’s logic is partly based on Simo Knuuttila’s notes on
Prior analytics printed as an appendix to Finnish edition [4].

33

�

Premisses is the plural of premiss, and not a typo. Premiss is an alternative spelling
of premise but with a narrower meaning — premises can mean also “land and build-
ings together considered as a place of business” [125], but premisses has no such
second meaning.

� Burris [19] believes that the first reference to “Boolean algebras” was by Sheffer
in 1913 [108]; Sheffer’s use of the term refers to several symbolic, or algebra-like,
treatments of logic, including that of Whitehead and Russell in Principia mathemat-
ica [122], all of which are quite different from Boole’s original. Nowadays the term
refers, if one is allowed to simplify it a bit, to modulo

�
arithmetic, interpreted as

propositional logic (cf. eg. [72]).

� The modern names were rewritten to make them familiar to non-philosophers,
and some inessential lines were left out.

� Frege considers the sign � to be composite: he calls the vertical bar the judgment
stroke and the horizontal bar the content stroke. If we remove the judgment stroke, the
formula denotes a thought, but when the judgment stroke is present, the formula is
an assertion of truth.

� The term “truth-function” was apparently introduced by Wittgenstein in his
Tractatus logico-philosophicus [124].

� We deviate slightly here from Frege’s notation in order to be more understand-
able.

� Actually, as Frege noted in his reply to Russell [44], this formulation of the anti-
nomy is not correct. Frege’s notation does not allow a predicate to be predicated of
itself. However, this does not invalidate the problem. Frege calls the class of things
that are predicated of a predicate � ��� � the extension of the predicate, denoted by
`� � � � � . Now, we can redefine the function � ��� � above as “ � ��� � is true if

� � `� � � � � � ”.

� To Cantor, a multiplicity can be a set but not all of them are; this will become
apparent when we discuss Buriali-Forti’s antinomy.

�
�
Truth tables were apparently first used by Ludwig Wittgenstein in his Tractatus

logico-philosophicus [124, 4.31].
� �

According to Jech [66], Fraenkel published his version of the axiom in an article

34

in Mathematische Annalen in 1922; I have not been able to find either a copy or a
reprint of the article.

� �

It is unfortunate that this name fails to mention the contributions of Thoralf
Skolem and von Neumann.

�

� These characterizations of Gödel’s work are due to the current author (though
probably not unique to him). The current author lacks expertise on model theory
and logic to evaluate the uniqueness or correctness of these characterizations, but
Putnam’s [98] presentation of the Gödel theorem and of a remarkably simple proof
by Kripke does seem to validate the characterizations.

35

4 Automated reasoning
���

. As Will Rogers would have said, ”There is no such thing as a free variable.”
— Alan J. Perlis [94]

Level 3 formal methods require tool support for automated reasoning. In this chap-
ter, we’ll review the basic techniques. This chapter is not intended to be a compre-
hensive treatment of the subject.

The basic methods of automated reasoning are covered by standard university
textbooks on artificial intelligence, such as Nils Nilsson’s [88] and George Luger and
William Stubblefield’s [78]. More thoroghly it is described in Wos, Overbeek, Lusk
and Boyle’s book [126]. A thoroughly theoretical but a little outdated account is
given by Loveland [77]. The recent North-Holland handbook [100] is an advanced
treatment.

4.1 The limits of automated reasoning

The ultimate goal of research in the field of automated reasoning is to find an effi-
cient decision procedure for each interesting logical system. In practice, this is an
unattainable goal: In the case of propositional calculus, a decision procedure does
exist but it is efficient only if P � NP (this is the SAT problem which is NP com-
plete [90]), and predicate calculus is undecidable, as was mentioned in the previous
chapter.

Fortunately, there exist proof procedures for predicate calculus, ie. algorithms
which are able to accurately recognize tautologies but which do not terminate for
some refutable formulae. Similarly, there exist refutation procedures, ie. algorithms
which are able to accurately recognize contradictory formulae but which do not
terminate for some satisfiable formulae. Here is an important point: Although we
have these two equivalent

�

definitions of proof procedures, this does not allow us
to combine them to create a decision procedure by running a proof procedure on a
formula and a refutation procedure on its negation.

A proof procedure may fail to terminate if the formula it works on is a refutable
formula. Some refutable formulae are contradictory, but some are contingent. If it is

36

contradictory, then a refutation procedure will notice this. If it is contingent, then its
negation is also contingent, and a refutation procedure, too, may fail to terminate on
it. Thus there can exist well-formed formulae that cause both a proof procedure and
a refutation procedure to fail to terminate; some contingent formulae are such. The
fact that they indeed do exist follows from Church and Turing’s theorem discussed
in the previous chapter.

Note that this terminology (uniformly used in publications in automated reason-
ing, such as [88, 78, 126, 77, 100]) may be confusing. A “refutable formula” is one
that is not true in all possible worlds and interpretations. However, a “refutation
procedure” does not detect refutable formulae but contradictions!

Higher-order logic does not even have a proof procedure; this follows straight-
forwardly from Gödel’s incompleteness results discussed in the previous chapter.

We will only consider refutation procedures for first-order logic in this chapter.

4.2 Normal forms for first-order formulae

We call a term or a well-formed formula of first-order logic propositional if it contains
no quantifiers and no variables.

For the purposes of automated reasoning, a propositional formula is usually
written in a conjunctive normal form (CNF). We call a well-formed formula that con-
tains no quantifiers, variables or connectives a literal, and we call a set of literals
a clause. A set of clauses is a CNF-formula. Now, let

�
C � ������� � Cn � be a CNF-formula,

where each Ci �
�
Ti �

� ������� � Ti � mi � is a term and each Ti � j is a CNF-term. Then that CNF-
formula is understood to denote the propositional formula � T �

�
�

�
�����

�
T �

� m � � �
����� � � Tn �

�
�

�����

�
Tn � mn � . For every propositional formula there is a logically

equivalent CNF-formula (cf. eg. [105]).
A quantifier-free formula may be converted to CNF using the following proce-

dure (P, Q and R are well-formed formulae):

1. Remove any shorthands from the formula except
�

and � .

2. Recursively transform all occurrences of P � Q in the formula to
�

P
�

Q.

3. Recursively transform all occurrences of
� � P � Q � to

�
P

� �
Q, all occurrences

of
� � P �

Q � to
�

P � �
Q and all occurrences of

� �
P to P.

4. Recursively transform all occurrences of P
� � Q � R � to � P �

Q � � � P �
R � ,

and transform all occurrences of � P � Q � �
R � to � P �

R � � � Q �
R � .

37

For full first-order logic, CNF is not sufficient; we need Skolem conjunctive form
(SCF). This form is reminiscent of CNF in that it has the same basic form. The dif-
ferences are that variables are allowed in literals, and all quantifiers are universal
and are located at the very beginning of the formula. For each formula there is an
unsatisfiable SCF-formula if and only if it itself is unsatisfiable [77].

A formula can be converted to Skolem conjunctive form using the following pro-
cedure [77]:

Precondition: Input is a first-order formula.

1. For each variable � free in the formula, prepend “
� �
 ” to the formula.

�

2. Remove any shorthands from the formula except
�

and � .

3. Recursively transform all occurrences of P � Q in the formula to
�

P
�

Q.

4. Recursively transform all occurrences of
� � �
 P to

� �
 � P, all occurrences of� � �
 P to ���
 � P, all occurrences of
� � P � Q � to

�
P

� �
Q, all occurrences

of
� � P �

Q � to
�

P � �
Q and all occurrences of

� �
P to P.

5. If two quantifiers in the formula quantify over the same variable, rename one
of the variables in the following manner. Let us have a subformula generated
by � �
 P (or

� �
 P), where � needs to be renamed to
�

; then the formula gen-
erated by � �
 P

�
� � � � (or, respectively,

� �
 P
�
� � � �) is the result of the rename.

6. Each subformula generated by
� �
 P is replaced by P

�
� � t� , where t is a Skolem

function generated by u � �
� ������� �

n � , where u is an individual constant that does
not occur at this time in the formula being Skolemized, and each

�
i is a variable

for which it holds that the formula being Skolemized contains a subformula
� �

i

 Q, where the subformula being considered is a subformula of Q. If there

are no such variables, t is generated by u.

7. Transform all occurrences of � �
 P to P.

8. For each free variable � in the formula, prepend ���
 to the formula.

Postcondition: The output is in Skolem conjunctive form.
If we omit the last step of the algorithm, the result is called a matrix. In a matrix

there are no quantifiers and all variables are universally quantified implicitly.

38

4.3 Unification

At the core of any theorem proving algorithm is a unification algorithm. Unification
is a process which, by specializing variables, makes two terms identical, if it is at all
possible.

First we need a couple of definitions. A substitution � is a unifier of two formula
schemata � and � � , if ��� � � ��� holds. It is the most general unifier (mgu) of the
formula schemata, if for all unifiers � , there exists a substitution � such that ��� ��� .
We will denote the most general unifier of � and � � by mgu � � � � � � .

Thus formally, unification is the process of finding out if there is a unifier of two
formula schemata given as inputs, and if there is, constructing the mgu.

The standard recursive descent algorithm for unification [7] proceeds as follows:

Algorithm 4.1 (Recursive descent unification for first-order terms)
Precondition: Input is two formula schemata � and � � (order is significant), both

(SCF-)literals, and a substitution � (which is nonempty only in self-recursive invocations).

1. If � is a variable, let � � ��� .

2. If � ’ is a variable, let � � � � ��� .

3. If � is a variable and � � � � , output � and halt with success.

4. If � � f � t � ������� � tn � and � � � g � t �� ������� � t �m � for some function symbols f and g and
some terms t � ������� � tn � t � m ������� � t � m (n �

�
and m �

�
are allowed), go to step 8.

5. If � is not a variable, apply this algorithm to the inputs � � , � and � (note the order),
output what it outputs and halt with success if it was successful and with failure
otherwise.

6. If � occurs as a subformula in � � , halt with failure.

7. Output � � � � � � � � � � and halt with success.

8. If n �� m or f �� g, halt with failure.

9. Let i � � .
10. If i � n, output � and halt with success.

11. Apply this algorithm to the inputs ti, t �i and � . If it fails, halt with failure. Otherwise
let � be its result (destructively updating it).

39

12. Let i � i � � .

13. Go to step 10.

Postcondition: The output is
� � x � f �
 � x � dom � mgu � � � � � � ��� f � mgu � � � � � � � x � � �

� x �� dom � mgu � � � � � � � � f � � � x � � � .

4.4 Resolution

Resolution is a simple refutation procedure for propositional and predicate calculi.
It was introduced by J. A. Robinson [101] in 1960’s. The basic idea is to use of the
following two inference rules [8] repeatedly until neither can be used:

Binary resolution
P

�
R Q

� �
S

� P � Q � mgu � R � S �
Positive factoring

P
�

Q
�

R
� P �

Q � mgu � Q � R �
The input formula is unsatisfiable if a contradiction (a clause of the form � P �
�

Q � mgu � P � Q �) is produced. Otherwise it is satisfiable.
Resolution, when applied to Skolem conjunctive forms, is refutationally com-

plete, that is, it is a refutation procedure for first-order logic. The current author has
previously implemented a resolution-based theorem prover for a restricted (Prolog-
like) input language [68].

Notes

�

Proof procedures and refutation procedures are equivalent in the sense that one
can turn a proof procedure into a refutation procedure, and vice versa, by negating
every input formula.

�

If the SCF-formula would be given to a proof procedure, we’d prepend a uni-
versal quantification, but since we are assuming a refutation procedure, existential
quantifier is better. If an unsatisfiable formula has a free variable, this means that in
no model there are any objects that qualify as a value for the variable; if we were to
prepend a universal quantifier, we’d be saying that in no model does every object
qualify.

40

5 The B method

B is a method for specifying, designing, and coding software systems.
— Jean-Raymond Abrial [1]

This chapter sketches a reconstruction of the B method. We follow mainly Abrial [1],
but we deviate from his presentation in certain important points.

Syntax descriptions in this chapter are all for abstract syntax. Extended BNF as
standardized by ISO and IEC [63] is used

�

.

5.1 Overview

The B method is a Level 3 formal method in the model-based tradition, aiming to
cover the project lifecycle from design to code generation. The specification of a
program takes the form of an abstract machine, which roughly corresponds to the
modules in many programming languages such as Ada [61] and Haskell [95]. Ab-
stract machines can be composed of other abstract machines. Abstract machines can
be refined into other abstract machines. Ultimately, the chain of refinement ends at a
concrete machine, the implementation, which is still written in more or less the same
notation as the original abstract machine but which is mechanically translatable into
executable code. Implementations can be self-sufficient or they can depend on the
services of other abstract machines (which are separately refined into implementa-
tions).

The language for specification-in-the-large in B is Abstract Machine Notation, ab-
breviated as AMN. The language for specification-in-the-small is Generalized Substi-
tution Language, abbreviated as GSL. In specification, the two are intervowen with
the standard language of first-order logic and a restricted kind of set theory. It
should be noted that there is a B can be understood as being a composition on lay-
ers: at the bottom, we have first-order logic with equality; on top of it is constructed
a typed set theory; the next layer is the GSL; and the final layer is the AMN.

41

5.2 The logic of B

The B method is founded on a version of first-order logic and set theory specifically
tailored for it. For example, the set theory is weaker than the usual ZFC set theory.
This section is completely, apart from certain exceptions, based on Abrial’s book [1]
and its structure is loosely followed. Unfortunately, he only gives an abstract syntax
for his notation, and only gives faint hints on the concrete syntax. The concrete
syntax used by the B-Toolkit or Atelier B is not described at all by Abrial.

5.2.1 Schemata and metavariables We will often use schemata in place of actual
strings of the formal system. As in Appendix A, schemata are a way to generate
a set of valid strings with a common structure. A schema properly lives outside
the object language (the formal system) in the metalevel language (the language
used to describe the formal system). A schema is a string of the formal system with
one exception: it may include metavariables (roughly, variables of the metalevel
language). We typeset metavariables in boldface.

A schema is said to generate a given string in the formal system, if the schema
becomes that string when all its metavariables are systematically replaced by strings
of the formal system. For example, the schema s � t generates the string x � y � x � y,
but does not generate the string x � y (the membership operator is missing). A
schema may also include natural language directions. Often there are also natural-
language side conditions constraining the metavariables.

Generally, if we say that something holds for a schema (for example, that a cer-
tain schema is an inference rule), we mean that it holds for every valid string that
the schema generates.

5.2.2 Inference Abrial [1] starts his presentation by giving a generic formal model
of inference. At this point, the syntactic category Predicate is left abstract; no in-
stances are given. The syntactic category Sequent contains assertions of (syntactic)
consequence:

Sequent = [Predicate, {’,’, Predicate }], ’ � ’, Predicate

The syntactic category Inference rule is then given:

Inference rule =
�
Sequent �
Sequent

42

The sequents above the horizontal line are called antecedents of the rule, and the
sequent below the horizontal line is called the consequent of the rule. Note that there
might be no sequents above the horizontal rule, in which case the inference rule is
called an axiom.

Abrial gives the following general inference rule schemata
�

:

Entailment axiom
p � p

Monotonicity rule
H � p H is included in H �

H � � p

Entailment rule (derived)
p occurs in H

H � p

Lemma rule
H � p H � p � q

H � q
From now on, the metavariables p and q are restricted to strings that belong

to the syntactic category Predicate and the metavariables H and H � are restricted to
strings that are comma-separated (empty or nonempty) lists of Predicates.

5.2.3 Propositional calculus Conjunction, implication and negation are used as
the primitive connectives:

Predicate = Predicate, ’ � ’, Predicate�
Predicate, ’ � ’, Predicate�
’
�

’, Predicate

In concrete representations of this abstract syntax, parentheses are used in the usual
way to control grouping. Here

�
has the highest precedence, � the next highest and

� the lowest. All three connectives associate from the left.
Table 5.1 gives the inference rules that govern the propositional subsystem. The

� -introduction rule is also called the deduction rule.
There are also two derived connectives:

Predicate = Predicate, ’
�

’, Predicate�
Predicate, ’ � ’, Predicate

Their meaning is defined using two rewrite rules, which are to be applied repeatedly
to all subformulae of any formula until no rule can be applied before the formula is
submitted to any formal scrutiny.

p
�

q
 � �
p � q

p � q
 � � p � q � � � q � p �

43

� -introduction
H � p H � q

H � p � q

� -elimination L
H � p � q

H � p

� -elimination R
H � p � q

H � q
� -introduction

H � p � q
H � p � q

� -elimination
H � p � q

H � p � q

Modus ponens (derived)
H � p H � p � q

H � q

Reductio ad absurdum I
H � � q � p H � � q � �

p
H � q

Reductio ad absurdum II
H � q � p H � q � �

p
H � �

q

Table 5.1: Inference rules for propositional calculus in B.

From now on, the symbol
 � denotes the phrase “is to be rewritten as”. In concrete
representations, the precedence of

�
is the same as the precedence of � and the

precedence of � is lower than the precedence of � .

5.2.4 Predicate calculus with equality We now introduce several new syntactic
categories. One of the syntactic categories, Identifier, is left abstract � . We will as-
sume that all nonempty strings consisting of letters that are not reserved words are
identifiers.

For now, variables are identifiers. This will be expanded later on.

Variable = Identifier

Expressions will later denote mathematical objects such as sets and natural num-
bers. For now, we stay with a minimal definition.

Expression = Variable�
’[’, Variable, ’:=’, Expression, ’]’, Expression

The latter expression type denotes substitution of free occurrences of the variable
with the first expression in the second expression. The precedence of the second
production is higher than the precedence of the

�
connective. The second produc-

tion associates to the right

44

Non-freeness Condition

NF 1 x � y the variables that x and y stand for are distinct
NF 2 x � � p � q � x � p and x � q
NF 3 x � � p � q � x � p and x � q
NF 4 x � �

p x � p
NF 5 x � � x p
NF 6 x � � y p x � y and x � p
NF 7 x � � x
 � e� f x � e
NF 8 x � �y
 � e� f x � y and x � e and x � f
NF 9 x � � e � f � x � e and x � f

Table 5.2: Non-freeness rules for predicate calculus with equality.

We add universal quantification, substitution in a predicate and equality to the
Predicate syntactic category:

Predicate = ’ � ’, Variable, ’ ’, Predicate�
’[’, Substitution, ’]’, Predicate�
Expression, ’ � ’, Expression

The operator present in quantification has precedence equal to the precedence of
substitution and associates to the right. Abrial does not specify the precedence of
equality.

Note that here we use a new syntactic category, Substitution. This is because there
will be more than one kind of substitution in predicates. But more on that later.

Substitution = Variable, ’:=’, Expression

Non-freeness is an important kind of side condition constraining metavariables.
Informally speaking, a variable has a free occurrence in a formula if it occurs in the
formula and at least one of the occurrences is outside the scope of a quantifier where
it is the quantification variable. If a variable x has no free occurrences in a formula f,
it is said to be non-free in that formula, written x � f. The rules in Table 5.2 determine
whether a variable is non-free in a formula of predicate calculus with equality.

From now on, the metavariables e, f and g are restricted to strings that belong to
the syntactic category Expression, and the metavariables x, y and z are restricted to
strings that belong to the syntactic category Variable.

45

�
x
 � e� x
 � e (SUB 1)
�
x
 � e� y
 � y if x � y (SUB 2)

�
x
 � e� � p � q �
 � �

x
 � e� p � �
x
 � e� q (SUB 3)

�
x
 � e� � p � q �
 � �

x
 � e� p � �
x
 � e� q (SUB 4)

�
x
 � e� � p
 � � �

x
 � e� p (SUB 5)
�
x
 � e� � y p
 � � z � x
 � e� � y
 � z� p where z � e and z � p (SUB 6’)
�
x
 � e� � f � g �
 � �

x
 � e� f �
�
x
 � e� g (SUB 12)

Table 5.3: Rewrite rules for substitutions in predicate calculus with equality.

The meaning of substitutions is defined formally by the rewrite rules given in
Table 5.3. They must be applied every time they can be applied, during any formal
manipulation of any formula. The idea of SUB 6’ is that z can be chosen freely as long
as the side condition is honoured; in some cases it can be identical to y. Abrial lists
two rules (called SUB 6 and SUB 7 but not reproduced in this thesis) instead of our
SUB 6’, dealing separately with the cases where the substituted and the quantified
variables are the same and distinct, respectively. The problem with his rules is that
they assume implicitly that a quantified variable can be renamed at will; such an
assumption degrades the formality of the presentation in the opinion of the current
author. Abrial’s rules SUB 8 through SUB 11 are derived and hence inessential.

These substitutions are designed to mirror the customary metaoperation of sub-
stitution of an expression for a variable in a predicate, usually denoted by P � e � c �
(note: this syntax is not valid in B). In B, substitutions are moved into the formal sys-
tem itself, which allows their generalization, which will be done later in this chapter.
An operational intuititon for substitutions of the form

�
x
 � e� p (or

�
x
 � e� f) is that

p (or f) is evaluated in an environment where x is bound to e.
There are four new rules of inference, given in Table 5.4. They govern the use of

quantification and equality.
There are two derived constructs. As before with the derived connectives, we’ll

augment the syntax and give a rewrite rule.

Predicate = ’
�

’, Variable, ’ ’, Predicate�
Expression, ’ �� , Expression

46

� -introduction
h � p x � q for every q in h

h � � x p
� -elimination

h � � x p
h � �

x
 � e� p
Leibniz’s law

h � e � f h � �
x
 � e� p

h � �
x
 � f� p

Reflexivity
p � e � e

Table 5.4: Additional inference rules for predicate calculus with equality.

�
x p
 � � � x � p

e �� f
 � �
e � f

5.2.5 Proof procedure Abrial sketches a proof procedure for the logic of B in Sec-
tions 1.2.4 and 1.3.7 of the B-Book [1]. Unfortunately, this remains just a sketch:
although the predicate calculus proof procedure is easy enough to transcribe into a
working program, there is no help from Abrial for extending this to cover equality
or set theory.

The proof procedure consists of several derived rules together with certain fun-
damental rules, to be used backward in a certain order. The rules are, in order, �

1. Conditional entailment rule (BS1, derived)

r occurs in h
h � p � r

2. Entailment rule (BS2, derived)

p occurs in h
h � p

3. Simplified reductio ad absurdum I (DB1, derived)

p occurs in h
h � �

p � r

4. Simplified reductio ad absurdum II (DB2, derived)
�

p occurs in h
h � p � r

47

5. Double negation rule (DR1, derived)

h � p
h � � �

p

6. Negated implication rule (DR2, derived)

h � p h � �
q

h � � � p � q �

7. Negated conjunction rule (DR3, derived)

h � p � �
q

h � � � p � q �

8. Double-negated condition rule (DR 4, derived)

h � p � q
h � � �

p � q

9. Negated implication as condition rule (DR 5, derived)

h � p � � � q � r �
h � � � p � q � � r

10. Negated conjunction as condition rule (DR6, derived)

h � �
p � r h � �

q � r
h � � � p � q � � r

11. Implication as condition rule (DR7, derived)

h � �
p � r h � q � r

h � � p � q � � r

12. Conjunction as condition rule (DR8, derived)

h � � p � q � � r
h � p � q � r

48

13. Existential condition rule (DR9, derived)

x � r x � q for each q in h h � �
p � r

h � � � x p � r

14.
�

-introduction rule (DR10, derived)

h � �
x
 � e� � p

h � � � x p

15. Universal hypothesis particularization rule (DR11, derived)

� x p occurs in h h � �
x
 � e� p � r

h � r

16. � -introduction rule (CNJ)

h � p h � q
h � p � q

17. � -introduction rule (DED)

h � p � q
h � p � q

5.3 Set notation

In this section we will extend the logic to cover ordered pairs and sets.

5.3.1 Ordered pairs The logic is extended to cover ordered pairs. Defining them
this way instead of in the set theory has the advantage that quantification over vari-
able pairs is possible. The standard definition of a pair � e � f � as the set

� �
e � � � e � f � � is

counterintuitive and can even degrade to a unit set (when e � f).
There are two new productions for both Expression and Variable:

Expression = Expression, ’,’, Expression�
Expression, ’ �� ’, Expression

Variable = Variable, ’,’, Variable�
Variable, ’ �� ’, Variable

49

Non-freeness Condition

NF 10 � x � y � � e x � e and y � e
NF 11 x � � e � f � x � e and x � f
NF 12 x � � � y � z � p x � � y � z p

Table 5.5: Additional non-freeness rules for predicate calculus with equality and
pairs.

The precedence of the comma and �� is left unspecified by Abrial, but he notes that
they associate to the left. The �� operator is derived, and we give the following
rewrite rules for it:

x �� y
 � x � y
e �� f
 � e � f

The set of non-freeness rules need to be enlarged as given in Table 5.5. Similarly,
there needs to be one new substitution rule, dealing with simultaneous independent
substitution:

�
x � y
 � e � f� g
 � �

z
 � f� � x
 � e� �y
 � z� g if x � y and where z � � x � y � e � f � g �
(SUB 13)

The operational intuition for
�
x � y
 � e � f� g is the independent evaluation of e and

f in the initial environment and the evaluation of g in the environment obtained
from the initial environment by binding x to the resulting value of e and y to the
resulting value of f. Note that for this to make sense, x and y must be distinct (or
the evaluation results of e and f must be equal, but this is not allowed by Abrial’s
definition). As an example, consider

�
x � y
 � y � x� � x � y � :

�
x � y
 � y � x� � x � y � apply SUB 13 (choose z as z)
�
z
 � x� � x
 � y� � y
 � z� � x � y � apply SUB 12
�
z
 � x� � x
 � y� � � y
 � z� x �

�
y
 � z� y � apply SUB 2

�
z
 � x� � x
 � y� � x �

�
y
 � z� y � apply SUB 1

�
z
 � x� � x
 � y� � x � z � apply SUB 12
�
z
 � x� � � x
 � y� x �

�
x
 � y� z � apply SUB 1

50

Non-freeness Condition

NF 13 x � � e � s � x � e and x � s
NF 14 x � choice � s � x � s
NF 15 x � � s � t � x � s and x � t
NF 16 x ��� � s � x � s
NF 17 x � �

y
�
p � x � � y p

NF 18 x � BIG

Table 5.6: Non-freeness rules for set constructs.

�
z
 � x� � y �

�
x
 � y� z � apply SUB 2

�
z
 � x� � y � z � apply SUB 12

� � z
 � x� y �
�
z
 � x� z � apply SUB 2

� y �
�
z
 � x� z � apply SUB 1

� y � x � �

No new inference rules are needed.

5.3.2 Sets We add two new predicate productions and six new expression pro-
ductions:

Predicate = Expression, ’ � ’, Expression�
’infinite’, ’(’, Expression, ’)’

Expression = ’choice’, ’(’, Expression, ’)’�
Expression, ’ � ’, Expression�
’ � ’,’(’, Expression, ’)’�
’
�
’, Variable, ’

�
’, Predicate, ’ � ’�

’BIG’

The infinite predicate will be defined as a derived predicate using a rewrite rule in
Subsection 5.4.2. Abrial uses a separate syntactic category Set, but his usage of the
notation reveals that no such syntactic category really exists.

The rules for non-freeness need to be enlarged as given in Table 5.6. From now
on, the metavariables s, t and u are restricted to strings that belong to the syntactic
category Expression.

51

�
x
 � e� � f � s �
 � �

x
 � e� f � � x
 � e� s (SUB 14)
�
x
 � e� choice � s �
 �

choice � � x
 � e� s � (SUB 15)
�
x
 � e� � s � t �
 � �

x
 � e� s �
�
x
 � e� t (SUB 16)

�
x
 � e� � � s �
 � � � � x
 � e� s � (SUB 17)

�
x
 � e� � y

�
p �
 � �

y
�
p � if x occurs in y (SUB 18)

�
x
 � e� � y

�
p �
 � �

z
� �

x
 � e� � y
 � z� p � if y � x and where z � � x � e � (SUB 19’)
�
x
 � e� BIG
 �

BIG (SUB 20)

Table 5.7: Rewrite rules for substitution in set notation.

SET 1: Cartesian product
h � � e � f � � � s � t � � � e � s � f � t �

SET 2: Power set
h � s � � � t � � � x
 � x � s � x � t � where x � � s � t �

SET 3: Comprehension
h � e � �

x
�
p � �

�
x
 � e� p where x � s

SET 4: Extensionality
h � � x � x � s � x � t � � s � t

where x � � s � t �
SET 5: Choice

h � � x
 � x � s � �
choice � s � � s

where x � s

SET 6: Infinity
h � infinite � BIG �

Table 5.8: Axioms of set notation in B.

Substitution rules need enlargement too as given in Table 5.7. Rule SUB 19’ is
modified from the Abrial original for the same reasons rule SUB 6’ was.

Formulae using set notation are constrained by the requirement that they must
pass typechecking, which will be introduced in the next section. It is typechecking
which will disallow the paradoxes of naïve set theory.

Six new inference rule schemata (or rather, axiom schemata) are added as given
in Table 5.8. These are similar to the standard ZFC axioms presented in Chapter 3,
but they are simpler and weaker, since the full power of ZFC is not needed. Abrial
writes the comprehension axiom as e � �

x
�
x � s � p � � � x � s � �

x
 � e� p � , where
x � s. However, in the presence of typechecking, the additional constraint for the
form of the predicate p is redundant.

52

Axioms of pairing, replacement, union or foundation are not included. The ax-
iom of pairing is no longer necessary, as ordered pairs are part of the underlying
logic. The axiom of replacement is unnecessary as we are not interested in ordi-
nal numbers. Typechecking alleviates the need for the axiom of foundation. Abrial
notes that the axiom of union is “not indispensable”.

5.3.3 Typechecking As mentioned earlier, well-formed formulae of set notation
are restricted by typechecking as well as the syntax. The aim of types is to rule out
all forms of paradox in the formal system by restricting which formulae are well-
formed.

Typechecking operates with Types, Type predicates, Type assumptions and Type se-
quents. Type rules are also needed.

Type = ’type’, ’(’, Expression, ’)’�
’super’, ’(’, Expression, ’)’�
Type, ’ � ’, Type�
’ � ’, ’(’, Type, ’)’

Type predicate = ’check’, ’(’, Predicate, ’)’�
Type, ’ � ’, Type

Type assumption = ’given’, ’(’, (Identifier
�
’BIG’), ’)’�

Identifier, ’ � ’, Expression
Type sequent = [Type assumption, {Type assumption}], � , Type predicate

Type rule =
�
Type sequent �
Type sequent

Typechecking a predicate p containing no free variables consists of applying Al-
gorithm 5.1 to the type sequent given � BIG ��� check � p � . Typechecking an expression
e can be done by typechecking the predicate e � e. If there are free variables, then
appropriate type assumptions have to be prepended to the type sequent before type-
checking.

From now on, the metavariable i is restricted to those strings that belong to the
syntactic category Identifier. In this section, the metavariable E is restricted to those
strings that are comma-separated lists of strings that belong to the syntactic category
Type assumption, and the metavariables T and U are restricted to those strings that
belong to the syntactic category Type.

The typechecking algorithm given by Abrial proceeds as follows:

53

Algorithm 5.1 (Typechecking B according to Abrial) In this algorithm and in the names
of the typechecking rules, the apostrophe is a decoration of numbers, and i � denotes the num-
ber i decorated with an apostrophe. The algorithm uses unification (cf. Algorithm 4.1) as
tailored for the type language.

Precondition: Input is a string that belongs to the syntactic category Type sequent.

1. Use the rewrite rules to eliminate all derived constructs from the input.

2. Let i � � .
3. Unify the input with the consequent of rule T i, and assign the unifier to � . If unsuc-

cessful, go to step 7.

4. For each antedecent of rule T i, instantiate its variables using � .

5. Verify each non-type-sequent antedecent. (This may require further unification; if so,
instantiate the unified variables in all antecedents.) If at least one of them fail, go to
step 7.

6. Apply this algorithm recursively to each type sequent antedecent. If all succeed, halt
with success.

7. If there exists a rule T i � , let i � i � and go to step 3.

8. If i � j � for some j, let i � j and repeat this step.

9. If there is no number n strictly greater than i for which there exists a rule T n, halt
with failure.

10. Let i � j, where j is the least number strictly greater than i for which there exists a
rule T j, and go to step 3.

Postcondition: Output is an indication of success or failure.

The typing rules for Algorithm 5.1 are given in Table 5.9. Composite predi-
cates are decomposed using rules T 1–T 3. Quantification is removed by enlarging
the environment in rules T 4–T 6. Rules T 7 and T 8 transform the typechecking
of primitive predicates (“ � ” and “ � ”) to appropriate type equivalence conjectures.
Rules T 9–T 18 and their primed variants decompose the expressions involved in a
type equivalence conjecture (T 16 and T 16’ enlarge the environment in the process).
Rules T 19–T 20 decompose power set and cartesian product expressions. Rule T 21
acts as the base case.

54

T 1
E
�

check � p � E
�

check � q �
E
�

check � p � q �
T 2

E
�

check � p � E
�

check � q �
E
�

check � p � q �
T 3

E
�

check � p �
E
�

check ��� p �
T 4

i � s i � q for each q in E E � i 	 s
�

check � p �
E
�

check ��
 i �� i 	 s � p ���
T 5

E
�

check ��
 x ��� x 	 s ��
 y ��� y 	 t � p �����
E
�

check ��
�� x � y ����� x � y 	 s � t � p ���
T 6

E
�

check ��
 x ��� p � q � r ���
E
�

check ��
 x ��� p � q � r ���
T 7

E
�

type � e ��� type � f �
E
�

check � e � f �
T 8

E
�

type � e ��� super � f �
E
�

check � e 	 f �
T 9

i 	 s occurs in E E
�

super � s ��� U
E
�

type � i ��� U

T 10
E
�

type � e ��� type � f ��� U
E
�

type � e � f ��� U

T 11
E
�

super � s ��� U
E
�

type � choice � s ����� U

T 12
E
��� � super � s ����� U
E
�

type � s ��� U

T 13
i 	 s occurs in E E

�
super � s ��� � � U �

E
�

super � i ��� U

T 14
E
�

super � s ��� super � t ��� U
E
�

super � s � t ��� U

T 15
E
��� � super � s ����� U

E
�

super � � � s ����� U

T 16
E
�

check ��
 x ��� x 	 s � p � E
�

super � s ��� U
E
�

super ��� x � x 	 s � p ���� U

T 17
given i occurs in E E

�
i � U

E
�

super � i ��� U

T 18
E
�

super � s ��� � � U �
E
�

super � choice � s ���!� U

T 19
T � U

E
��� � T ��� � � U �

T 20 E
�

T � T " E
�

T "#� U "
E
�

T � U � T "$� U "
T 21 given � i � occurs in E

E
�

i � i
Rules % " – &(' " can be obtained from the corresponding rules % – &(' by applying to their consequents the
rewrite rule E

�
T � U) � E

�
U � T.

Table 5.9: Typechecking rules for Algorithm 5.1.

55

5.3.4 Better typechecking algorithms There are a couple of problems with the
typechecking procedure as reproduced above. For example, it halts with failure for
the type sequent given � s ��� given � t � � check � � x � y �� x � s � y � t � x � y � � , although
by the cartesian product axiom the predicate being checked is equivalent to � x � y
� x � y � s � t � x � y � , which does typecheck under the same environment. Abrial
himself uses predicates similar to the first one quite liberally. Another example is
given � s � � check � � x � x � s � x � x � � , for which the algorithm halts with failure
but where it (intuitively speaking) should halt with success. Even with given � s � �
check � � x x � s � , the algorithm halts with failure, since it expects to see a compound
predicate inside a quantification.

A solution to these problems was devised by the present author in the summer
of 2002 � . The basic idea is to introduce a preprocessing phase that rewrites the uni-
versal quantified predicates to a type-specifying normal form. To specify this normal
form, we’ll assume that there is a total ordering of identifiers, a canonical order. A
predicate or an expression is in this normal form if it contains no derived constructs
and all universal quantifications and all set comprehensions that it contains are in
this normal form. A universal quantification is in this normal form, if it is of the
form � x � p � q � , and all of the following conditions hold:

1. The variable x is sorted. A variable is sorted, if it is an identifier or it is of the
form � y � i � , where y is sorted and i is an identifier.

2. The predicate p is type-specifying. A predicate is type-specifying if it is in one
of the following forms:

(a) i � s (in which case i is specified by the predicate),

(b) i � s (in which case i is specified by the predicate), or

(c) r � r � , where r and r � are type-specifying and where all identifiers that
r specifies are strictly less than all identifiers that r � specifies in the total
ordering of identifiers (in which case the identifiers that are specified by
either r or r � are specified also by this predicate).

3. The predicate q is in this normal form.

The following algorithm will convert a predicate to the type-specifying normal
form. It is complicated, as it needs to consider many cases.

56

Algorithm 5.2 (Convert a predicate to the type-specifying normal form) In this al-
gorithm, statements in parentheses at the beginning of an item are assertions. If they contain
metavariables, then unification is used to make all the assertions true; the resulting bindings
for the metavariables are valid until the end of the item. If an assertion is false, then the
algorithm is broken.

Precondition: Input is a string that belongs to the syntactic category Predicate or Ex-
pression and contains no derived constructs.

1. If the input is of the form p � q, apply this algorithm to p to obtain p � and to q to
obtain q � , output p � � q � and halt with success. If any of this fails, halt with failure.

2. If the input is of the form p � q, apply this algorithm to p to obtain p � and to q to
obtain q � , and output p � � q � and halt with success. If any of this fails, halt with
failure.

3. If the input is of the form
�

p, apply this algorithm to p to obtain p � , and output
�

p �
and halt with success. If any of this fails, halt with failure.

4. If the input is of the form � x p, go to step 14.

5. If the input is of the form e � f, apply this algorithm to e to obtain e � and to f to obtain
f � , and output e � � f � and halt with success. If any of this fails, halt with failure.

6. If the input is of the form e � s, apply this algorithm to e to obtain e � and to s to obtain
s � , and output e � � s � and halt with success. If any of this fails, halt with failure.

7. If the input is of the form
�
x
 � e� p, apply this algorithm to e to obtain e � and to p to

obtain p � , and output
�
x
 � e � � p � , and halt with success. If any of this fails, halt with

failure.

8. If the input is of the form
�
x
 � e� f, apply this algorithm to e to obtain e � and to f to

obtain f � , and output
�
x
 � e � � f � , and halt with success. If any of this fails, halt with

failure.

9. If the input is of the form choice � s � , apply this algorithm to s to obtain s � and output
choice � s � � and halt with success. If any of this fails, halt with failure.

10. If the input is of the form � � s � , apply this algorithm to s to obtain s � and output � � s � �
and halt with success. If any of this fails, halt with failure.

57

11. If the input is of the form s � t, apply this algorithm to s to obtain s � and to t to obtain
t � and output s � � t � and halt with success. If any of this fails, halt with failure.

12. If the input is of the form
�
x

�
p � , halt with failure (there is no sensible way to apply

this algorithm to such input).

13. If the input is of the form BIG, output BIG and halt with success. If any of this fails,
halt with failure.

14. (Input is of the form � x p.) Replace input by � x � p, where x � is x sorted.

15. (Input is still of the form � x p and x is sorted.) If p is not of the form q � r, replace
input by � x � p � x � x � .

16. (Input is of the form � x � p � q � and x is sorted.) Use Algorithm 5.3 with p and q
with � as inputs. Let the output be p � and q � (both possibly empty).

17. If p � is empty, halt with failure.

18. If q � is empty, go to step 23.

19. (Input is of the form � x � p � q � and x is sorted.) Apply this algorithm to p � . Let
p � � be the result.

20. Apply this algorithm to q � . Let q � � be the result.

21. Rearrange p � � so that identifiers on the left-hand side of a “ � ” are in the canonical
order. Let p � � � be the result.

22. (Input is of the form � x � p � q � and x is sorted.) Output � x � p � � � � q � � � and halt
successfully.

23. (Input is of the form � x � p � q � and x is sorted and p � and q � are the output of
Algorithm 5.3 with p and q with � as the inputs, and p is nonempty and q is empty.)
Apply this algorithm to p � . Let p � � be the result.

24. Rearrange p � � so that identifiers on the left-hand side of a “ � ” are in the canonical
order. Let p � � � be the result.

25. (Input is of the form � x � p � q � and x is sorted.) Output � x � p � � � � x � x � and
halt successfully.

58

Postcondition: Output is a string that belongs to the same syntactic category as the
input, contains no derived constructs and is in the type-specifying normal form, or an indi-
cation of failure.

A helper algorithm is needed to work the predicates within quantifications.

Algorithm 5.3 In this algorithm, statements in parentheses at the beginning of an item are
assertions. If they contain metavariables, then unification is used to make all the assertions
true; the resulting bindings for the metavariables are valid until the end of the item. If an
assertion is false, then the algorithm is broken.

Precondition: Input is two strings that belong to the syntactic category Predicate. The
second string can also be empty. Order matters. Additionally, a logical constant, either �
or � , is given as input (denoted here by �).

1. If the first input string is of the form i � s, output the input and halt.

2. If the first input string is of the form e � f � s � t, apply this algorithm to e � s � f � t,
and output whatever it outputs, then halt.

3. If the first input string is of the form p � q, go to step 6.

4. If the second string is empty, output the empty string and the first string and halt.

5. (The first input string is p and the second input string is q.) Output the empty string
and the string p � q and halt.

6. (First input string is of the form p � q and the second input string is r.) Apply this
algorithm to p and r with � . Let p � be the first output string (possibly empty) and let
rp (possibly empty) be the second output string.

7. (First input string is of the form p � q and the second input string is r.) Apply this
algorithm to q and rp with � . Let q � be the first output string (possibly empty) and let
rq be the second output string (possibly empty).

8. If p � is empty, output q � and qr and halt.

9. If q � is empty, output p � and qr and halt.

10. Output p � � q � and qr and halt.

Postcondition: Output is two strings that belong to the syntactic category Predicate. Both
can also be empty. Order matters.

59

Now, the typechecking algorithm can be modified to read as follows:

Algorithm 5.4 (Typechecking B better) As before, in this algorithm and in the names of
the typechecking rules, the apostrophe is a decoration of numbers, and i � denotes the number
i decorated with an apostrophe.

Precondition: Input is a string that belongs to the syntactic category Type sequent.

1. Use the rewrite rules to eliminate all derived constructs from the input.

2. If the input is of the form E � check � p � , apply Algorithm 5.2 to p to obtain p � and
replace the input by E � check � p � � . If this fails, halt with failure.

3. Let i � � .
4. Unify the input with the consequent of rule Tm i, and assign the unifier to � . If

unsuccessful, go to step 8.

5. For each antedecent of rule Tm i, instantiate its variables using � .

6. Verify each non-type-sequent antedecent. (This may require further unification; if so,
instantiate the unified variables in all antecedents.) If at least one of them fail, go to
step 8.

7. Apply this algorithm recursively to each type sequent antedecent. If all succeed, halt
with success.

8. If there exists a rule Tm i � , let i � i � and go to step 4.

9. If i � j � for some j, let i � j and repeat this step.

10. If there is no number n strictly greater than i for which there exists a rule Tm n, halt
with failure.

11. Let i � j, where j is the least number strictly greater than i for which there exists a
rule Tm j, and go to step 4.

Typechecking rules stay largely the same, so for most rules T i, the corresponding
rule Tm i is identical. The exceptions are those rules that deal with quantification;
they are listed in Table 5.10.

This still does not solve the problem of � x � x � e � p � , but to solve that, a new
production for Type assumption would have to be added, and many rules would need
to be changed.

60

Tm 5
i and i " are distinct E

�
check ��
 x � i ��� p � q ��� E

�
check � i " 	 s �

E
�

check ��
 x � i ��� p � i "�	 s � q ���
Tm 6

E
�

check
 i �� i 	 s ��
 x ��� p � q ���
E
�

check ��
 x � i ��� p � i 	 s � q ���

Table 5.10: Modified typechecking rules for Algorithm 5.4.

Unfortunately, there is a huge problem with this approach. It is not possible to
rearrange the variable of a set comprehension, as the type of the set comprehension
itself is dependent on the structure of the variable. Another approach seems to be
going through the existing variable and searching the abstract syntax tree of the
type-constraining predicate for set membership or equality predicates from which a
type for each identifier in the type can be extracted, and then constructing a type for
the whole variable from those bits. This idea has been implemented in Ebba.

5.3.5 Derived formulae for set notation We define two derived predicates and
several derived expressions.

Predicate = Expression, ’
�

’, Expression�
Expression, ’ � ’, Expression

Expression = Expression, ’ � ’, Expression�
Expression, ’ � ’, Expression�
Expression, ’ 	 ’, Expression�
’
�
’, Expression, ’ � ’�

’ � ’�
’ � � ’, ’(’, Expression, ’)’�
’inter’, ’(’, Expression, ’)’�
’union’, ’(’, Expression, ’)’�
’ � ’, Variable, ’ ’, ’(’, Predicate, ’

�
’, Expression, ’)’�

’ � ’, Variable, ’ ’, ’(’, Predicate, ’
�
’, Expression, ’)’

s
�

t
 � s � � � t �
s � t
 � s

�
t � �

s � t

s � t
 � �
x

�
x � u � � x � s

�
x � t � � where s

�
u and t

�
u

s � t
 � �
x

�
x � u � � x � s � x � t � � where s

�
u and t

�
u

s 	 t
 � �
x

�
x � u � � x � s � �

x � t � � where s
�

u and t
�

u�
s �
 � �

x
�
x � u � x � s � where s

�
u

61

�
s � t �
 � �

s � � �
t �

�
 � u 	 u

� � � s �
 � � � s � 	 � � �
union � u �
 � �

x � s � � y � y � u � x � y � � where u � � � � � � s � �
inter � u �
 � �

x � s � � y � y � u � x � y � � where u � � � � � � s � �
�

x � p �
e �
 � union � � x

�
p � x � e � �

�
x � p �

e �
 � inter � � x
�
p � x � e � �

We deviate from Abrial in one point here: Abrial defines � as BIG 	 BIG. He
notes that by extensionality, � is equal to u 	 u for whatever set u. However,
typechecking is done before any proofs, so this cannot be used as an argument for
Abrial’s definition. Also, our definition of � and � are slightly simpler but equiva-
lent to Abrial’s.

Abrial’s definitions for s � t, s � t, s 	 t and
�
s � given here have one big disadvan-

tage. They require typechecking to find a u such that s
�

u and t
�

u both become
true. Clearly such a u can be found if the predicate s � t can be successfully type-
checked, and one candidate for u is the set counterpart of type � s � . In other words, it
requires typechecking to instantiate a metavariable permanently (which is not what
Algorithms 5.1 and 5.4 are designed to do). Also we need a fresh metavariable
for each rewrite, so to properly describe the rewrite rules, one would need meta-
metavariables!

A solution is inspired by Abrial and Mussat’s article [2] on conditional defini-
tions. The rewrite rules for set intersection and set difference could be given as
follows, too:

s � t
 � �
x

�
x � s � t � � x � s � x � t � �

s 	 t
 � �
x

�
x � s � t � � x � s � �

x � t � �

These definitions have the advantage that they don’t mention a mysterious new u
metavariable. However, unless set union is cleverly redefined in a way that does
not require u, we have made things more complicated. Fortunately, there is a way
to do this.

The important step is to make set union an undefined notion and use an axiom
to characterize it:

62

SET 7: Union
h � e � s � t � e � s

�
e � t

Naturally, new typing rules are needed, too:

T 22
E � super � s � � U E � super � t � � U

E � super � s � t � � U

T 22’
E � super � s � � U E � super � t � � U

E � U � super � s � t �
Similarly, the singular set can be made an undefined notion. It too needs an

axiom and typing rules. Here f must not be a pair.

SET 8: Singular set
h � e � �

f � � e � f

T 25
E � type � f � � U

E � super � � f � � � U

T 25’
E � type � f � � U

E � U � super � � f � �
After this, we can fix the typechecking to handle typing through equality by

rewriting, for the purposes of type checking, every equality predicate e � f as e ��
f � � f � �

e � . We will assume later on that this has been done.
Binary relations, functions and their operations are derived constructs, too. Their

abstract syntax productions are given in Table 5.11 and the corresponding rewrite
rules are given in Table 5.12.

5.4 Recursively defined sets

Many fundamental mathematical structures, such as the set of natural numbers,
the sets of finite sequences and the sets of finite trees are most aptly defined using a
recursive process. In this section, we will introduce definitions and results that allow
us to do this. Additionally, we will give a definition for some of the abovementioned
constructs.

5.4.1 Fixpoints The fundamental idea of recursive definition of a set s
�

t is to
find a set transformer f � � � t � � � � t � for which s is a fixpoint, f � s � � s. To use
this device, we will need a functional which will find us this fixpoint given a set
transformer.

Note first that f � s � � s can be decomposed to f � s � �
s and s

�
f � s � . This suggests

that one or more of the following sets might be fixpoints:

inter � � x
�
x � ��� t � � f � x � �

x � � (5.1)

63

Expression = Expression, ’ � ’, Expression (* binary relation *)�
Expression, ’ �

�

’ (* inverse *)�
’dom’, ’(’, Expression, ’)’ (* domain set *)�
’ran’, ’(’, Expression, ’)’ (* range set *)�
Expression, ’; ’, Expression (* forward composition *)�
Expression, ’ � ’, Expression (* composition *)�
’id’, ’(’, Expression, ’)’ (* identity relation *)�
Expression, ’ � ’, Expression (* domain restriction *)�
Expression, ’ � ’, Expression (* range restriction *)�
Expression, ’ 	 � ’, Expression (* domain subtraction *)�
Expression, ’ 	 � ’, Expression (* range subtraction *)�
Expression, ’

�
’, Expression, ’� ’ (* image of a set *)�

Expression, ’ ��� ’, Expression (* overriding *)�
Expression, ’ � ’, Expression (* direct product *)�
’prj � ’, ’(’, Expression, ’,’, Expression, ’)’ (* left projection *)�
’prj � ’, ’(’, Expression, ’,’, Expression, ’)’ (* right projection *)�
Expression, ’ � ’, Expression (* parallel product *)�
Expression, ’ �� ’, Expression (* partial function *)�
Expression, ’ � ’, Expression (* total function *)�
Expression, ’ �� ’, Expression (* partial injection *)�
Expression, ’ � ’, Expression (* total injection *)�
Expression, ’ �� � ’, Expression (* partial surjection *)�
Expression, ’ � � ’, Expression (* total surjection *)�
Expression, ’ �� � ’, Expression (* partial bijection *)�
Expression, ’ � � ’, Expression (* total bijection *)�
’ � ’, Variable, ’ ’, ’(’, Predicate, ’

�
’, Expression, ’)’ (* � -abstraction *)�

Expression, ’(’, Expression, ’)’ (* function application *)

Table 5.11: Abstract syntax productions for relation and function constructs.

64

s � t) � � � s � t �
r �

�
) � � y � x ��� y � x ��	 t � s � � x � y ��	 r where r 	 s � t

dom � r ��) ��� x � x 	 s � �
y ��� y 	 t � � x � y ��	 r � where r 	 s � t

ran � r ��) � dom � r �
�
�

q; r) ��� x � z ��� x � z ��	 s � u �
�

y ��� y 	 t � � x � y ��	 q � � y � z ��	 r � where q 	 s � t and r 	 t � u

r � q) � q; r where q 	 s � t and r 	 t � u

id � s �$) ��� x � y ��� x � y ��	 s � s � x � y
u � r) � id � u � ; r where r 	 s � t and u � s

r � v) � r; id � v � where r 	 s � t and v � t

u � � r) � � dom � r � � u �	� r where r 	 s � t and u � s

r � � v) � r � � ran � r � � v � where r 	 s � t and v � t

r
w�$) � ran � w � r � where r 	 s � t and w � s

q �� r) � � dom � r � � � q ��� r where q 	 s � t and r 	 s � t

f � g) � � x � � y � z �!��� x � � y � z ����	 s � � u � v �#�
� x � y ��	 f � � x � z ��	 g where f 	 s � u and g 	 s � v

prj � � s � t �$) � � x � y � z ��� x � y � z ��	 x � t � s � z � x
prj � � s � t �$) � � x � y � z ��� x � y � z ��	 x � t � s � z � y

h � k) � ��� x � y ��� � z � w ��� ��� x � y ��� � z � w ����	 � s � t ��� � u � v �#�
� x � z �!	 h � � y � w � 	 k where h 	 s � u and k 	 t � v

s �� t) � � r � r 	 s � t � � r �
�
; r ��� id � t �

s � t) � � f � f 	 s �� t � dom � f ��� s
s �� t) � � f � f 	 s �� t � f �

�
	 t �� s

s � t) � s �� t � s � t

s �� � t) � � f � f 	 s �� t � ran � f �!� t
s � � t) � s �� � t � s � t

s �� � t) � s �� t � s �� � t

s � � t) � s � t � s � � t
�

x ��� p � e �$) ��� x � y � y � e � p
f � e �$) � choice � f
 � e �� �

Table 5.12: Rewrite rules for relation and function constructs.

65

union � � x
�
x � � � t � � f � x � �

x � � (5.2)

inter � � x
�
x � ��� t � � x

�
f � x � � � (5.3)

union � � x
�
x � � � t � � x

�
f � x � � � (5.4)

Clearly, the set 5.2 is t and the set 5.3 is � . They are thus of no interest. Theorem 5.1
will show that the other two are indeed fixpoints (but not equal!) under a certain as-
sumption. To anticipate this, and to allow a more concise statement of the Theorem,
we will introduce two new derived constructs.

Expression = ’fix’, ’(’, Expression, ’)’�
’FIX’, ’(’, Expression, ’)’

fix � f �
 � inter � � x
�
x � � � s � � f � x � �

x � � if f � � � s ��� � � s �
FIX � f �
 � union � � x

�
x � � � s � � x

�
f � x � � � if f � � � s � � � � s �

Theorem 5.1 (Knaster and Tarski) Let f and s be sets such that f � � � s � � � � s � and
� � x � y � � � x � y � � � � s � � � � s � � x

�
y � f � x � �

f � y � � (in other words, f preserves
set containment), then fix � f � and FIX � f � are fixpoints of f, that is, f � fix � f � � � fix � f � and
f � FIX � f � � � FIX � f � .
A proof for this theorem can be found in [1] under the theorems 3.2.5 and 3.2.6.

5.4.2 Finiteness and infiniteness A nonempty finite set can be characterized as
a set which can be built from another finite set by adding one new element. If we
denote the set of finite subsets of a set s by ��� s � (we will define this notation soon),
we can write a characterization of that set as the following two formulae:

� ��� � s � (5.5)

� � u � x � � u � s � x ����� s � � �
u � � x ����� s � � (5.6)

Let’s go on a limb and declare a definition for � � :
Expression = ’ � ’, ’(’, Expression, ’)’�

’ � � ’, ’(’, Expression, ’)’

��� s �
 � fix � � z � z � � � s � � � � � � z ��
x

�
x

� ��� s � � �
y � u � y � z � u � s � y � �

u � � x � � � �
� � � s �
 � ��� s � 	 � � �

66

It is clear after a period of consideration that this definition satisfies the conditions
(5.5) and (5.6) and that � is indeed a fixpoint (the function fix is applied to is mono-
tonic). Thus, � is well-defined.

It is possible to use induction to prove properties of all finite subsets of a set, as
given in the next theorem.

Theorem 5.2 (Induction principle for �) Let s be a set. Let p be a predicate and let x be
a variable such that x � ��� s � � check � p � . Also, let u be a variable distinct from x. Now, if�
x
 � � � p and � x � x ����� s � � p � � u � u � s � �

x
 �
�
u � � x� p � � are formal theorems,

then � x � x ����� s � � p � is a formal theorem.

A proof for this theorem can be found in [1] under the theorem 3.3.1.
Now, we can define the finiteness and infiniteness of a set using the � construct:

Expression = ’finite’, ’(’, Expression, ’)’�
’infinite’, ’(’, Expression, ’)’

finite � s �
 � s ����� s �
infinite � s �
 � �

finite � s �

5.4.3 Numbers We will be defining the set of natural numbers:

Expression = ’
�

’�
’
�
’�

’succ’

The set of natural numbers is characterized by induction: zero is in the set and
every element of that set has a successor in the set. Formally we may express this as
a fixpoint construct as follows:

�
 �
BIG 	 BIG

succ
 � � n � n � � � BIG � � �
choice � BIG 	 n � � � n �

�
 � fix � � s � s � ��� BIG � � ��� � � succ
�
s� � �

Table 5.13 lists the abstract syntax productions for several conventional con-
structs involving natural numbers. Table 5.14 gives the corresponding rewrite rules.

Abrial proved in his book [1] that this definition of natural numbers satisfies the
Peano axioms.

We will now state without proof the two well-known induction theorems for
natural numbers.

67

Expression = ’ � ’�
’

�
� ’�

’pred’�
’gtr’�
’geq’�
’lss’�
’leq’�
’min’�
’genf’�
Expression, ’ � � ’, Expression

Predicate = Expression, ’ � ’, Expression�
Expression, ’ � ’, Expression�
Expression, ’ � ’, Expression�
Expression, ’ � ’, Expression

Table 5.13: Abstract syntax productions for natural number constructs.

Theorem 5.3 (Induction principle in
�

) Let p be a predicate and let n be a variable such
that n � � � check � p � . Now, if

�
n
 �

� � p and � n � n � � � p � �
n
 � succ � n � � p � are

formal theorems, then � n � n � � � p � is a formal theorem.

Theorem 5.4 (Strong induction principle in
�

) Let p be a predicate and let n be a vari-
able such that n � � � check � p � . Also, let m be a variable distinct from n. Now, if
� n � n � � � � m � m � � � m � n � �

n
 � m� p � � p � is a formal theorem, then
� n � n � � � p � is a formal theorem.

Many number-theoretic functions (including addition and multiplication) are
defined recursively. To this end, we defined in Tables 5.13 and 5.14 the functional
construct genf. The idea is that a function f � s �

�
which is defined by the recur-

sive equations�
f � � � � a

� n � n � � � f � succ � n � � � g � f � n � � �
where a � s and g � s � s, is fix � genf � a � g � � . However, fix � genf � a � g � � is not a
function for all possible a and g, so when this is used for real, its functionness should
be separately proved.

68

�
 � succ � � �
�

�
 � � 	 � � �
pred
 � succ �

�

� �

n � m
 � n
�

m if n � �
and m � �

n � m
 � n �� m � n � m if n � �
and m � �

n � m
 � m � n if n � �
and m � �

n � m
 � m � n if n � �
and m � �

gtr
 � �
m � n �

m � � � n � � � m � n �
geq
 � �

m � n �
m � � � n � � � m � n �

lss
 � �
m � n �

m � � � n � � � m � n �
leq
 � �

m � n �
m � � � n � � � m � n �

min
 � � s � s � � � � � � �
inter � s � �

max
 � � s � s ��� � � � � �
union � s � �

genf � a � g �
 � � h � h � �
� s

� ��� �� a � � � pred; h; g � �
m � � n
 � �

x
�
x ��� � m � x � x � n � if m ��� and n ���

Table 5.14: Rewrite rules for natural number constructs.

69

Expression = ’plus’�
’mult’�
’exp’�
Expression, ’ � ’, Expression�
Expression, ’ 	 ’, Expression�
Expression, ’ � ’, Expression�
Expression, ’ � ’, Expression�
Expression, ’mod’, Expression�
Expression, Expression

�
’log’, Expression, ’(’, Expression, ’)’�
’LOG’, Expression, ’(’, Expression, ’)’

Table 5.15: Abstract syntax productions for arithmetical constructs.

The definitions of arithmetic are given in Tables 5.15 (abstract syntax produc-
tions) and 5.16 (rewrite rules). Note that the abstract syntax productions for an
exponentation expression and a logarithm are not valid EBNF; it is, however, hoped
that the slight abuse of notation is understandable enough. Also note that the sym-
bol � is used for both cartesian products and natural number products; Abrial never
notes this problem and thus does not give a solution. It would be tempting to use the
type information to determine which meaning is to be used, but this would make
it impossible to use cartesian products on those sets that happen to be also natural
numbers. We will, for now, choose the path set up for us by Abrial: we will ignore
it and let the context decide.

Abrial also defines iteration of a relation, cardinal number of a finite set, tran-
sitive closures of a relation, sequences and trees. He also extends informally the
notation defined here for the set of integers (�). We will skip these for reasons of
space.

5.5 Generalized substitution language

The core of specification of operations in B is a generalization of syntactic substitu-
tions, modelled after Edsger W. Dijkstra’s weakest precondition calculus [34] and
its later generalizations by for example Nelson [86]. The presentation of generalized

70

plus
 � � m � m ��� �
fix � genf � m � succ � � �

mult
 � � m � m ��� �
fix � genf � � � plus � m � � � �

exp
 � � m � m ��� �
fix � genf � � � mult � m � � � �

m � n
 � plus � m � � n � if m ��� and n � �
m 	 n
 � plus � m � �

�

� n � if m � � and n ��� and m � n

m � n
 � mult � m � � n � if m ��� and n � �
n � m
 � min � � x

�
x ��� � n � m � succ � x � � � if m � � and n ��� �

n mod m
 � n 	 � m � � n � m � � if m ��� and n � � �

mn
 � exp � m � � n � if m ��� and n � �
logm � n �

� min � � x
�
x ��� � n � msucc � x � � � if m ��� 	 ��� ��� � and n ���

LOGm � n �
 � min � � x
�
x ��� � n � mx � � if m ��� 	 ��� ��� � and n ���

Table 5.16: Rewrite rules for arithmetical constructs.

substitutions given by Abrial is complicated. A simplified and more powerful the-
ory of generalized substitutions is given by Steve Dunne [35], and we will mainly
follow his presentation.

5.5.1 Basic constructs The specificational intuition for the syntactic substitution
in a predicate

�
x
 � e� p is the following:

The predicate
�
x
 � e� p is the weakest precondition under which the op-

eration x
 � e establishes the postcondition p.

Edsger W. Dijkstra [34] based his definition of an abstract programming language on
this intuition. His basic idea was to define the semantics of a programming construct
by giving its weakest precondition as a function of the postcondition. Thus, for
example, a guarded command p

�
s, where s is a command, can be defined by stating

that its weakest precondition given the postcondition q is the logical conjunction of
p and the weakest precondition of s given the postcondition q.

In this section, the metavariables s and t will exceptionally stand for substitu-
tions.

71

Substitution = Predicate, ’
�
’, Substitution�

Predicate, ’ � � ’, Substitution�
Substitution, ’

� � ’, Subsitution�
’@’, Variable, ’ ’, Substitution�
Substitution, ’; ’, Substitution�
’skip’

Variable = ’frame’, ’(’, Substitution, ’)’�
’normalizeframe’, ’(’, Variable, ’)’�
’subtractframe’, ’(’, Variable, ’,’, Variable ’)’�
’mergeframes’, ’(’, Variable, ’,’, Variable ’)’�
’emptyframe’

Table 5.17: Abstract syntax productions for basic generalized substitutions.

This wp-calculus (“wp” standing for “weakest precondition”) was later amended
by Carroll Morgan [83] and others to allow underspecification of programs. It is this
specificational wp-calculus that Abrial used as the basis for his generalized substi-
tutions.

We will extend the abstract syntax of the B notation as given in Table 5.17. If we
assume that the production Substitution is never parsed in isolation, but instead its
strings will always occur in the substituted predicate construct

�
s� p, then we may

consider these derived constructs and give them rewrite rules in Table 5.18. This is
contrast with Abrial’s definition; he considers these constructs primitive and gives
them typechecking rules and axioms.

You’ll notice that we have also added several new derived variable constructs
and one new primitive variable construct, emptyframe. These comprise a formal
definition of the frame of a substitution, originally introduced to the B notation by
Steve Dunne [35] and formalized by the present author. Intuitively, the frame of a
substitution is a set of those identifiers that the substitution operates on. It is defined
here using a set of rewrite rules and represented as a sorted list variable containing
no duplicates. Frames allow us to define a metalevel equivalence of substitutions: if
two substitutions have the same frame and equivalent weakest preconditions given
equivalent postconditions, then the substitutions are equivalent.

Non-freeness of a variable in a substitution needs an additional rule:

72

�
p

�
s� q
 � p � �

s� q
�
p � � s� q
 � p � �

s� q
�
s
� � t� q
 � �

s� q � �
t� q

�
@x s� q
 � � x � s� q where x � q
�
s; t� q
 � �

s� � t� q
�
skip� q
 � q

frame � x
 � e �
 � normalizeframe � x �
frame � p �

s �
 � frame � s �
frame � p � � s �
 � frame � s �

frame � s � � t �
 � mergeframes � frame � s ��� frame � t � �
frame � @x s �
 � subtractframe � frame � s � normalizeframe � x � � �

frame � s; t �
 � mergeframes � frame � s ��� frame � t � �
frame � skip �
 � emptyframe

emptyframe � x
 � x

x � emptyframe
 � x

� emptyframe p
 � p
�
emptyframe
 � e� p
 � p

normalizeframe � emptyframe �
 � emptyframe

normalizeframe � i �
 � i

normalizeframe � x � y �
 � mergeframes � normalizeframe � x ��� normalizeframe � y � �

Table 5.18: Rewrite rules for basic generalized substitutions (cont.)

73

mergeframes � i � i �
 � i

mergeframes � i � j �
 � i � j if i � j

mergeframes � i � j �
 � j � i if j � i

mergeframes � � x � i ��� i �
 � x � i
mergeframes � � x � i ��� j �
 � x � i � j if i � j

mergeframes � � x � i ��� j �
 � mergeframes � x � j ��� i if j � i

mergeframes � i �
� y � i � �
 � y � i
mergeframes � i �
� y � j � �
 � mergeframes � i � y ��� j if i � j

mergeframes � i �
� y � j � �
 � y � j � i if j � i

mergeframes � � x � i � �
� y � i � �
 � mergeframes � x � y ��� i
mergeframes � � x � i � �
� y � j � �
 � mergeframes � � x � i � � y ��� j if i � j

mergeframes � � x � i � �
� y � j � �
 � mergeframes � x �
� y � j � ��� i if j � i

subtractframe � i � i �
 � emptyframe

subtractframe � i � j �
 � i � j if i � j

subtractframe � i � j �
 � j � i if j � i

subtractframe � i �
� y � i � �
 � y

subtractframe � i �
� y � j � �
 � subtractframe � i � y ��� j if i � j

subtractframe � i �
� y � j � �
 � y � j � i if j � i

subtractframe � � x � i ��� i �
 � x

subtractframe � � x � i ��� j �
 � x � i � j if i � j

subtractframe � � x � i ��� j �
 � subtractframe � x � j ��� i if j � i

subtractframe � � x � i � �
� y � j � �
 � subtractframe � � x � i ��� y ��� j if i � j

subtractframe � � x � i � �
� y � j � �
 � subtractframe � x �
� y � j � ��� i if j � i

Here, the metavariables i and j stand for distinct identifiers, and the operator � stands for lexical
ordering of identifiers.

Table 5.18: (cont.) Rewrite rules for basic generalized substitutions.

74

Non-freeness Condition

x � s x � � s� � frame � s � � frame � s � � and x � frame � s �

The substitution p
�

s is a preconditioned substitution. Its operational intuition is
“if p is true, do s, otherwise abort”. In practice, users of this substitution will prove
that p is true before invoking the substitution. As a special case, the substitution�

BIG � BIG
�
skip will always abort.

The substitution p � � s is a guarded substitution. Its operational intuition is “if
p is true, do s, otherwise do whatever you like, even miracles”. When p is false,
the weakest precondition of this substitution is true regardless of the postcondition;
thus, when p is false, the substitution promises to find a state which satisfies the
impossible postcondition — hence it is potentially miraculous. The problem with
miracles is that we don’t know how to implement them, and thus any miraculous
substitution is unimplementable, also called infeasible.

The substitution s
� � t is a bounded choice substitution, also known as demonic choice.

Its operational intuition is “do either s or t; choose freely but don’t choose so that
the whole substitution becomes infeasible”. Here “the whole substitution” refers
to the maximal substitution that the bounded choice substitution being considered
is part of. We can view the bounded choice as being controlled by a demon who
makes the choice for us. The demon is constrained by feasibility, and in essence,
he will, before making the choice, look into the future and see if any of the choices
lead to infeasibility. If one or more do, then those choices are not considered by the
demon. An example is the substitution � x
 � � � � x
 �

� � ; � x
 � � � � skip � , which
is equivalent to the substitution x
 � � . For this reason, Dunne [35] describes the
demon’s behaviour as ”angelic with respect to feasibility”.

Essentially, the bounded choice substitution allows specificational nondetermin-
ism. Later, when the specification is refined into an implementation, the person
making the refinement takes the role of the demon, selecting some feasible alterna-
tive among the bounded choices.

Another nondeterminism construct is unbounded choice, @x s. Its operational
intuition is “choose a value for x freely but don’t choose so that the whole substitu-
tion becomes infeasible”. Here again the demon shows himself, and here, too, he is
constrained by feasibility. For this reason, and to satisfy typechecking, s invariably
takes the form of a guarded substitution.

The substitution s; t is sequential composition of substitutions. Its operational
intuition is obvious: “do s and then do t”.

75

Predicate = ’trm’, ’(’, Substitution, ’)’�
’abt’, ’(’, Substitution, ’)’�
’mir’, ’(’, Substitution, ’)’�
’fis’, ’(’, Substitution, ’)’�
’prd’, ’(’, Substitution, ’)’

Substitution = Substitution, ’ � ’, Substitution

Table 5.19: Abstract syntax productions for additional substitution constructs.

trm � s �
 � �
s� � BIG � BIG �

abt � s �
 � �
trm � s �

mir � s �
 � �
s� � BIG �� BIG �

fis � s �
 � �
mir � s �

prd � s �
 � � �
s� � x �� x � � if x � � s

s � t
 � trm � s � � trm � t � �
@x � � � y � � � �

s� � x �� x � � � � � �
t� � y �� y � � � � � x � y
 � x � � � y � �

Here, the metavariable x stands for frame � s � , the metavariable x " stands for x where a prime has
been appended to each identifier and the metavariable x " " stands for a variable that has the same
structure as x and is non-free in s. Similarly, the metavariable y stands for frame � t � , the metavariable
y " stands for y where a prime has been appended to each identifier and the metavariable y " " stands
for a variable that has the same structure as y and is non-free in t.

Table 5.20: Rewrite rules for additional substitution constructs.

5.5.2 Characteristic predicates and parallel composition Substitutions can be
characterized using the predicates trm, abt, mir, fis and prd defined in Tables 5.19
and 5.20. The predicate trm � s � is true for all initial states for which s terminates
successfully. The predicate abt � s � is true for all initial states for which s aborts. The
predicate mir � s � is true for all initial states for which s is miraculous (infeasible).
The predicate fis � s � is true for all initial states for which s is feasible. The predicate
prd � s � is the before-after predicate of the substitution s: it relates the initial values of
the frame of s to the corresponding final values of the frame (denoted by a vari-
able obtained from the frame by appending a prime to each identifier) under the
substitution s.

76

Using these new predicates, we can define a derived substitution construct: a
liberalized parallel composition of substitutions, s � t. The operational intuition of
this substitution is that, if the frame of s is non-free in the frame of t, then s and t are
independently performed in parallel. If the frames contain common identifiers, then
the substitution is feasible if and only if s and t yield the same value for the common
identifiers. We call this liberalized parallel substitution after Dunne [35], since Abrial’s
(rather clumsy) definition allows parallel composition only when the frames contain
no common identifiers.

5.5.3 Healthiness conditions and a normal form Dunne [35] gives three meta-
level healthiness conditions for constructs in the syntactic category Substitution. The
first is a version of Leibniz’s law of equality:

� x � p � q � � � x � � s� p �
�
s� q � (GS1)

for all predicates p and q, and all substitutions s, where � check � � x p � and �
check � � x q � . The second is the law of positive conjunctivity:

�
s� � p � q � �

�
s� p � �

s� q (GS2)

for all predicates p and q and all substitutions s. The third is the law of frame
circumscription:

� x � � s� p � trm � s � � � fis � s � � p � � (GS3)

for all substitutions s and all predicates p such that frame � s � � p and � check � � x p � .
The fact that the currently defined constructs obey these laws is easy to prove; we
will skip the proofs.

We will state the following two theorems without proof (which can be found in
Dunne [35]):

Theorem 5.5 (Normal form of generalized substitutions) Let s be a substitution and
let x be a variable whose structure is the same as the structure of frame � s � , and which has
no free occurrences in frame � s � . Then s is equivalent to

trm � s � �
@x prd � s � � � frame � s �
 � x �

Theorem 5.6 (Monotonicity of generalized substitutions) Let s be a substitution and
let p and q be predicates, where � check � � x p � and � check � � x q � . Then

� x � p � q � � � x � � s� p � �
s� q �

is a formal theorem.

77

Substitution = Substitution, ’^’

Table 5.21: Abstract syntax production for the opening of a substitution.

s^
 � � s; s^ � � � skip

Table 5.22: Rewrite rule for the opening of a substitution.

5.5.4 Iteration The fundamental iteration construction in GSL is the opening of a
substitution s^. Its operational intuition is “either do nothing or do s one or more
times, at your choice”. It is the third construct to use demonic nondeterminism,
and like with the others, the demon is constrained by feasibility. For example, the
substitution � p � � s � ^; � � p � � skip � is a traditional while-loop with p as the
condition and s as the loop body.

The formal definition of opening is tricky. Back and von Wright [9] use in their
higher-order logic framework a generalized form of the Knaster-Tarski theorem
(Theorem 5.1) to define a fixpoint operator for (their equivalent of) substitutions,
and then use that to define the opening. Abrial defines a “set-theoretic counterpart”
for substitutions and then proves that it is unique modulo variable typing — essen-
tially, to each substitution and each possible typing of its frame, there is a unique
function that maps sets of after-values to sets of before-values. Then he proceeds
by defining the set-theoretic counterpart of the opening as a fixpoint of a set trans-
former. Neither option is really satisfying, as the goal is to find a rewrite rule that
would remove openings from the formulae.

The problem with Abrial’s method is that it presupposes a context where the
frame is given a type that is invariant under the substitution. There is no problem
giving that type when a generalized substitution is used in the context of an abstract
machine (see Section 5.6), but we’d like to develop GSL independently of AMN, to
preserve the nice clean separation of the layers in B.

Tables 5.21 and 5.22 give a partial definition which does not satisfy typechecking
but does give a meaning to the construct, if the rewrite rule is applied lazily (that is,
only when needed). A rewrite rule based on fixpoints would be preferable, but no
satisfying version seems to be available.

78

5.6 Abstract machine notation

Software systems are specified in B as abstract machines: things that have a state
and one or more operations. The actual notation used is abstract machine notation
(AMN). It allows the complete specification of abstract machines, their refinement
and finally, their implementation.

5.6.1 Abstract machines The operational intuition for an abstract machine lies
somewhere between a traditional module and an abstract class in the sense of object-
orientation. Like abstract classes, abstract machines define the structure of the state
of their instances, and the signatures of its operations. Unlike normal abstract classes,
abstract machines specify the semantics of all their operations as substitutions. Like
a module, an abstract machine is not a type.

The abstract syntax for abstract machines is given in Table 5.23.
The state of a machine is specified by specifying a frame (a set of named, distinct

variables), which gives us a rough structure of the state as a cartesian product of
things, and an invariant, which is a predicate whose free variables are all in the
frame, giving a type to the frame and constraining further the values that it can get.
Furthermore, an initialization substitution that initializes the state must be provided.

Operations modify the state under the constraints of the invariant. They can
have zero or more parameters and return values. These are identifiers distinct from
the state variables of the machine. The operations are specified as substitutions
whose frames contain no variables apart from the state variables of the machine
and the parameters and the return values.

Operations are not usually written in the plain generalized substitution lan-
guage; rather certain derived constructs, more readable by programmers, are used.
Tables 5.24 and 5.25 specify these constructs formally. However, sequencing and
opening of substitutions (and any construct derived from these) may not be used in
abstract machines.

Abstract machines can also name given sets (new types). They are nonempty
finite sets, and their elements (represented by unique, specifier-chosen identifiers)
can be enumerated. If the elements are not enumerated, then the set is deferred,
and the cardinality of the set is indeterminate. The specifier can constrain the given
sets by giving a predicate, the properties predicate, whose free variables are the given
sets.

Concrete constants can also be specified in an abstract machine. Constants must

79

Machine = ’MACHINE’, Machine header, {Machine clause}, ’END’
Machine header = Identifier

� Identifier, ’(’, Identifier list, ’)’
Machine clause = ’CONSTRAINTS’, Predicate

� ’SETS’, Set declaration, {’;’, Set declaration}
� ’CONSTANTS’, Identifier list
� ’SEES’, Identifier list
� ’USES’, Identifier list
� ’ABSTRACT CONSTANTS’, Identifier list
� ’PROPERTIES’, Predicate
� ’INCLUDES’, Machine instantiation list
� ’PROMOTES’, Identifier list
� ’EXTENDS’, Machine instantiation list
� ’VARIABLES’, Identifier list
� ’CONCRETE VARIABLES’, Identifier list
� ’INVARIANT’, Predicate
� ’ASSERTIONS’, Predicate
� ’DEFINITIONS’, Definition declaration, {’;’, Definition declaration}
� ’INITIALIZATION’, Substitution
� ’OPERATIONS’, Operation declaration, {’;’, Operation declaration}

Set declaration = Identifier
� Identifier, ’=’, ’{’, Identifier list, ’}’

Definition declaration = Identifier, ’ �� ’, Formal text
� Identifier, ’(’, Identifier list, ’)’, ’ �� ’, Formal text

Operation declaration = Operation header, ’ �� ’, Substitution
Operation header = Identifier list, ’ � � ’, Identifier, ’(’, Identifier list, ’)’

� Identifier, ’(’, Identifier list, ’)’
� Identifier list, ’ � � ’, Identifier
� Identifier

Identifier list = Identifier, {’,’, Identifier}
Machine instantiation list = Machine instantiation, {’,’, Machine instantiation}
Machine instantiation = Identifier

� Identifier, ’(’, Expression list, ’)’
Expression list = Expression, {’,’, Expression}

The nonterminal Formal text refers to anything that can be parsed according to the B grammar when
taking the union of all nonterminals as the start symbol.

Table 5.23: Abstract syntax productions for abstract machines.

80

Substitution = ’BEGIN’, Substitution, ’END’
� ’PRE’, Predicate, ’THEN’, Substitution, ’END’
� ’IF’, Predicate, ’THEN’, Substitution,

{’ELSIF’, Predicate, ’THEN’, Substitution},
[’ELSE’, Substitution],
’END’

� ’CHOICE’, Substitution, {’OR’, Substitution}, ’END’
� ’ANY’, Variable, ’WHERE’, Predicate, ’THEN’, Substitution, ’END’
� ’SELECT’, Predicate, ’THEN’, Substitution,

{’WHEN’, Predicate, ’THEN’, Substitution},
[’ELSE’, Substitution],
’END’

� ’CASE’, Expression, ’OF’,
’EITHER’, Identifier or literal list, ’THEN’, Substitution,
{’OR’, Identifier or literal list, ’THEN’, Substitution},
[’ELSE’, Substitution],
’END’, ’END’

� ’VAR’, Variable, ’IN’, Substitution, ’END’
� ’LET’, Variable, ’BE’,

{Variable, ’=’, Expression, ’ � ’},
Variable, ’=’, Expression,
’IN’, Substitution,
’END’

� Variable, ’) � ’, ’bool’, ’(’, Predicate, ’)’
� Variable, ’) 	 ’, Expression
� Variable, ’(’, Expression, ’)’, ’) � ’, Expression
� Variable, ’) ’, Predicate
� Identifier (* invocation of an operation *)
� Identifier, ’(’, Expression list, ’)’ (* invocation of an operation *)
� Variable, ’ � � ’, Identifier (* invocation of an operation *)
� Variable, ’ � � ’, Identifier, ’(’, Expression list, ’)’ (* invocation of an operation *)

Identifier or literal list = Identifier list
� Literal number, {’,’, Literal number}

The members of an Identifier or literal list must be distinct. The double END in the CASE construct is
not a typo.

Table 5.24: Abstract syntax productions for the AMN counterparts for GSL con-
structs.

81

BEGIN s END) � s

PRE p THEN s END) � p � s
IF p0 THEN s0 ELSIF � � �

� � � ELSIF pn � 1 THEN sn � 1 ELSE sn END) � � p0 � � s0 �
 ��� p1 �#� s1 �
 ��� � �
� � �
 ����� � p0 � � � � � pn � 1 ��� � sn �

IF p THEN s END) � IF p THEN s ELSE skip END

CHOICE s0 OR � � � OR sn END) � s0
 ��� � �
 � sn

ANY x WHERE p THEN s END) � @x ��� p � � s �
SELECT p0 THEN s0 � � �

� � � WHEN pn THEN sn END) � CHOICE p0 � � s0 OR � � � OR pn �#� sn END

CASE e OF EITHER l0 THEN s0 OR � � �
� � � OR ln THENsn END) � SELECT e 	�� l0 THEN s0 � � �

� � � WHEN e 	 � ln THEN sn ELSE skip END

VAR x IN s END) � @x � s
LET x BE p IN s END) � @x ��� p �#� s �

x) � bool � p ��) � IF p THEN x) � true ELSE x) � false END

x) 	 e) � @y �� y 	 e � � x) � y � where y � x and y � e

x � e �$) � f) � x) � x � � x �� f
x) p) � @x " ���
 x ��� x ") � x � x " � p � � x) � x " �

Some of the rules are difficult to write down as textual rewrite rules (due to technical difficulties, not
due to any fundamental difficulty), but the abstract syntax tree rewrite algorithms should be fairly
obvious.
Here x � (note that the nought is not typeset in boldface) and x " are obtained from x by suffixing each
identifier in x with a nought subscript or a prime superscript, respectively.

Table 5.25: Rewrite rules for the AMN counterparts for GSL constructs.

82

be invariant over the operations (in essence, the constants may not occur in the
frames of the operations) and their types are constrained. Constants must be of one
of the following types: s, s � t or s � � � sn � t, where s, s � ������� sn and t are
either given sets of the machine or sets of the form m � � n, where m and n are numeric
constants or literals. The reason for this restriction is that concrete constants will
need to be implemented in the final program as initialized scalar constants or as
initialized array constants. The types of constants and any additional constraints
for them are given in the properties predicate.

Machines can contain abstract constants, too. They are useful to defining constants
that are not meant to be accessible to the implementation of the machine but are
useful in specifying the machine. The type of an abstract constant is not restricted,
but it needs to be specified in the properties predicate. Similarly, concrete variables can
be specified. Their types are restricted like the types of (concrete) constants, and
must be specified in the invariant predicate.

Machines may be parametrized over a finite set or a natural number. If the pa-
rameter name is in uppercase, the parameter is a set, and if it is in lowercase, the
parameter is a natural number � . Further constraints to the parameters can be speci-
fied in the constraints section.

There is an additional clause that can be used in abstract machines. The assertions
clause allows giving lemmas that may help in discharging the proof obligations for
an abstract machine (see Subsection 5.6.3).

It is possible to compose an abstract machine from several machines. This is
done by listing the component machines in the includes clause, giving values to their
parameters, if any. The composite machine’s clauses are formed by concatenation,
with a few exceptions. Properties, invariants and assertions are composed using
conjunction, and the initializations are composed using parallel composition. The
parameters of the component machines cannot be seen from the composite machine;
however, the sets and constants are visible. The invariant of the composite can see
the variables of the components. The inclusion relationship is transitive.

Operations are not composed by default; if some operations from the component
machines are to be used verbatim for the composite machine, they can be promoted.
The composite machine can contain additional operations — they will usually in-
voke the component machines’ operations. The operations have read-only access to
the component machines’ variables (that is, they can be used in the operations but
they cannot be used in their frames). If there is a component machine all of whose
operations need to be promoted, it can be mentioned in the extends clause of the

83

composite machine.
An operation invocation is treated as a macro invocation: parameters are re-

placed with the arguments in the operation text (we treat the return parametrs as
parameters), and the resulting text is used to replace the invocation.

Note that there are restrictions on the component machines — these can be de-
duced from the way the composite is formed and the restrictions on a machine in
general. For example, two components may not name the same variable, and an
operation of the composite may call at most one operation of a given component
machine � .

There is another way of using an abstract machine in another. The using machine
can name the machine to be used in the using clause. The effect is that all clauses of
the used machine except the operations are combined like in inclusion with those in
the using machine. The operations of the used machine are not visible at all in the
using machine. The intent is that the using and the used machine are both included
in another machine. The used machine is then shared by the using machine and the
including machine. The uses relationship is not transitive.

A third way is to see another machine. Seeing a machine means that the seen
machine will be imported (see Subsection 5.6.4) in a refinement or implementation
of the seeing machine. The seeing machine can see the given sets and (concrete
and abstract) constants of the seen machine in its includes, properties, invariants and
operations clauses. Additionally, the (concrete and abstract) variables of the seen
machine can be seen in a read-only fashion by the seeing machine’s operations. The
parameters of the seen machine are not instantiated by the seeing machine, and thus
it cannot see them.

5.6.2 Typechecking an abstract machine We add a new type assumption form
that records the parameter and return types of an operation.

Type assumption = Type list, ’ � 	 ’, Identifier�
Type list, ’ � 	 ’, Identifier, ’(’, Type list, ’)’

Type list = Type, {’,’, Type}

We add a typing rule for handling operation invocations:
s � 	 o � t � occurs in E E � check � x � s � e � t �

E � check � x � 	 o � e � �
The following algorithm, formalized by the current author based on Abrial’s [1]

semiformal description, typechecks abstract machines that do not contain a uses

84

clause. We will skip the case of a machine with a uses clause, as it would only
increase the notational clutter.

Algorithm 5.5 Typechecking an abstract machine
Precondition: Input is a Machine that does not contain an uses clause, where

• M � � A �
�

� ������� � Ah � �
� � a �

�
� ������� � ag � �

� ��������� � Ms � A �
� s ������� � Ahs � s � a �

� s ������� � ags � s � are the
included machines and their parameters;

• X � ������� � Xk are the uppercase parameters of the machine;

• S � ������� � Sl are those given sets whose elements are not enumerated;

• T � ������� � Tn are those given sets whose elements are enumerated;

• t �
�

� ������� � t �
� m � are the enumerated elements of T � ;

• t �
�

� ������� � t �
� m � are the enumerated elements of T � ; and so on until

• tn �
� ������� � tn � mn that are the enumerated elements of Tn;

• c � ������� � cp are the constants and abstract constants of the machine;

• x � ������� � xq are the lowercase parameters of the machine;

• v � ������� � vr are the variables and concrete variables of the machine;

• C is the constraints of the machine;

• P is the properties predicate of the machine;

• I is the invariant of the machine;

• U is the initialization substitution of the machine; and

• O is the operations of the machine.

For each included machine Mi, we denote its respective components by suffixing the appro-
priate notation with the superscript � i � . For example, C � � � is the constraints predicate of
M � .

1. Typecheck all included machines Mi, and let sig � Mi � be the output. If this fails, halt
with failure.

85

2. If the parameters, the given sets, the enumerated elements of given sets, (concrete
and abstract) constants and (concrete and abstract) variables of the machine and all
included machines are all not distinct identifiers, halt with failure.

3. If the operation names of the machine and all included machines are all not distinct,
halt with failure.

4. If the given sets, the enumerated elements of given sets, (concrete and abstract) con-
stants or (concrete and abstract) variables have free occurrences in the constraints
predicate, halt with failure.

5. If the parameters or the (concrete and abstract) variables have free occurrences in the
properties predicate, halt with failure.

6. For each i � � ������� � s, use one of the earlier algorithms for typechecking B with the
input

given � � ��� given � � ��� given � BOOL ��� maxint ��� � minint � � �
true � BOOL � false � BOOL � INT � � � � ���

INT � � � � � ��� NAT � � � � � � NAT � � � � � ���
given � X � ��������� � given � Xk ��� given � S � ��������� � given � Sl ��� given � T � � ������� � given � Tn ���

t �
�

� � T � ������� t �
� m � � T � ������� � tn �

� � Tn ������� � tn � mn � Tn �
given � S � � �

� ��������� � given � S � � �
l

�
s � ��������� � given � S � s �

� � ������� � given � S � s �
l

�
s � ���

given � T � � �
� ��������� � given � T � � �

n
� � � ��������� given � T � s �

� ��������� � given � T � s �
n

�
s � �

�
� x � ������� � xq � C � � c � ������� � cp � P � �

X � i �
� ������� � X � i �

k
�
i � ������� x � i �

� ������� � x � i �
q

�
i � �
 �

A �
� i ������� � Ahi � i ������� a �

� i ������� � sgi � i � C � i � � �

If not all succeed, halt with failure.

7. Use one of the earlier algorithms for typechecking B with the input

given � � ��� given � � ��� given � BOOL ��� maxint ��� � minint � � �
true � BOOL � false � BOOL � INT � � � � ���

INT � � � � � ��� NAT � � � � � � NAT � � � � � ���
given � X � ��������� � given � Xk ��� given � S � ��������� � given � Sl ��� given � T � ��������� � given � Tn ���

86

t �
�

� � T � ������� t �
� m � � T � ������� � tn �

� � Tn ������� � tn � mn � Tn

given � S � � �
� ��������� � given � S � � �

l
�
s � ��������� given � S � � �

� ��������� � given � S � s �
l

�
s � ���������

given � T � � �
� ��������� � given � T � � �

n
� � � ��������� given � T � s �

� ��������� � given � T � s �
n

�
s � ��

X � � �
� ������� � X � � �

k
� � � ������� x � � �

� ������� � x � � �
q

� � � �
 � A �
�

� ������� � Ah � �
� ������� a �

�
� ������� � sg � �

� � sig � M � ���������
�
X � s �

� ������� � X � i �
k

�
s � ������� x � s �

� ������� � x � s �
q

�
s � �
 � A �

� s ������� � Ahs � s ������� a �
� s ������� � sgs � s � sig � Ms �

�
� x � ������� � xq � C � � c � ������� � cp � P � � v � ������� � vr

� I � �
U; O� � frame � U; O � � frame � U; O � � � � �

with the modification that it keeps track of and outputs the types inferred for ci, xi,
vi and the signature of each operation in O (which can be obtained by replacing
each iidentifier in the operation header with their inferred type); we’ll denote them
by type � ci � , type � xi � , type � vi � and sig � O � . If it fails, halt with failure.

8. Output

x � � type � x � � ������� � xq � type � xq ��� t �
�

� � T � ������� � tn � mn � Tn �
c � � type � c � ��������� � cp � type � cp ��� v � � type � v � ��������� � vr � type � vr ��� sig � O �

and halt with success.

Postcondition: Output is an environment (a list of Type assumptions) or an indication of
failure.

We deviate from Abrial [1] in that we allow � and
�

in abstract machines. Abrial’s
reasoning is that machines should be implementable, and infinite sets are not imple-
mentable, but in the opinion of the current author, this should be ensured with proof
obligations, not by artificially restricting the range of numbers that can be expressed.
Schneider [107], too, allows the infinite number sets in abstract machines.

5.6.3 Verification of an abstract machine An abstract machine can be verified by
proving certain propositions about it. The propositions are traditionally called proof
obligations and proving them is traditionally called discharging them. To avoid the
notational baggage noticed above in typechecking, we describe them in words only.

There are three proof obligations for abstract machines.

Initialization establishes the invariant Prove the following:

87

Assuming that the uppercase parameters are finite sets of integers,
and assuming that the given sets are finite sets of integers, and as-
suming that the enumerated given sets comprise exactly the enu-
merated elements, which are distinct, and assuming that the con-
straint predicate holds, and assuming that the properties predicate
holds, then for the initialization substitution s and the invariant p,
the predicate

�
s� p holds.

Assertions hold Prove the following:

Assuming that the uppercase parameters are finite sets of integers,
and assuming that the given sets are finite sets of integers, and as-
suming that the enumerated given sets comprise exactly the enu-
merated elements, which are distinct, and assuming that the con-
straint predicate holds, and assuming that the properties predicate
holds, and assuming that the invariant holds, then the assertions
hold.

Operations preserve the invariant Prove the following for each operation q
�
v:

Assuming that the uppercase parameters are finite sets of integers,
and assuming that the given sets are finite sets of integers, and as-
suming that the enumerated given sets comprise exactly the enu-
merated elements, which are distinct, and assuming that the con-
straint predicate holds, and assuming that the properties predicate
holds, and assuming that the invariant p holds, and assuming the
assertions hold, and assuming that the precondition q holds, then
the predicate

�
s� p holds.

Existence proofs for actual machine parameters, concrete constants, variables or
actual parameters for operations are not required. This is to make proofs at this stage
feasible. This does not sacrifice correctness, however, since constructive proofs for
these matters will be provided in the implementation stage at the latest.

Additional proof obligations (as well as modifications to the ones presented
above) are needed for machines that include, use or see another machine. We skip
them here for reasons of space.

88

5.6.4 Refinement In B, specifications are refined in one or more steps, to reach an
implementation of the specification that can be mechanically translated to machine
language. The final result of this process, the implementation machine is discussed
later. The object of this subsection is to introduce the key concepts of refinement
and the intermediate result of the process, the refinement machine.

A refinement of a specification is a specification that, for all inputs for which the
original specification specifies normal termination, allows only behaviour that the
original specification allows. There are three ways it can differ from the original
specification: it can be more deterministic, it can specify normal termination in more
cases than the original, and it can be more algorithmic.

There is a metalevel relation between generalized substitutions, called refinement.
Informally speaking, a generalized substitution s refines another t when the frame
of t contains every variable contained in the frame of s and for every postcondi-
tion p, it holds that � � � t� p � �

s� p, where � contains every free variable of the
quantified predicate. Refinement of substitutions is a partial ordering, and all thus
far introduced generalized substitution constructs are monotonic with respect to re-
finement. This means that refinement of a large substitution can be done by refining
its components.

Refinement of an abstract machine consists of writing a different machine, writ-
ten in a special refinement syntax, which declares its refinement relationship to the
original machine. The refinement machine’s invariant is required to relate the origi-
nal machine’s (abstract) state to the state of the refinement machine. The refinement
machine is a ”patch” to the original machine for reaching the real refinement; es-
sentially, the refinement machine is combined with the original machine to reach a
different machine that is the actual refined machine.

We skip the formal development of refinements.

5.6.5 Implementation Implementation is the final stage of development of an ab-
stract machine. It is a refinement specification that is directly implementable by a
translation automaton. Its behaviour is specified fully algorithmically, it has no in-
determinism and all its variables and constants are concrete.

Like refinement, implementation is specified as an implementation machine that
has similar structure to a refinement machine. The implementation machine is com-
bined with the original abstract machine and its other refinements, if any.

Implementation machines can import abstract machines. The idea of importation
of abstract machines is similar to the idea of using the interfaces of other modules

89

in conventional programming.
We skip the formal development of implementations, too.

5.6.6 A parallel between AMN and Object-Orientation There is an obvious par-
allel between object-orientation and the Abstract Machine Notation. We can identify
a rough partial mapping between them � :

AMN OO

abstract machine 	 � abstract class
concrete variables 	 � attributes
operation 	 � method
refinement machine 	 � derived abstract class
refinement 	 � inheritance
implementation machine 	 � derived concrete class
importation 	 � aggregation

However, there are also concepts in AMN that do not have an obvious parallel
in OO. Abstract variables and abstract constants are such — even in object-oriented
systems that support programming by contract (such as Eiffel [80]) there is no way
to specify abstract state that will not be represented directly in the final program.
Also, there are deficiencies even in the mapping shown above. For example, refine-
ment and implementation machines do not have independent status: one cannot
use a refinement or implementation directly in other machines. Likewise, abstract
machines are not types.

Notes

�

We will deviate from the standard in two points. First, we allow incremen-
tal specification, ie. multiple definitions of the same nonterminal are concatenated.
Second, we do not require a terminating semicolon.

�

Abrial gives names to only some inference rules. The rest of the names are either
customary or coined up by the present author.

� In fact, Abrial never defines the Identifier syntactic category in his B-Book [1].

90

� The names have mostly been coined by the present author. The code names in
parentheses are from Abrial [1].

� It is clear that existing implementations solve these problems in some way, but
the algorithms are not publically available as far as the current author knows.

� We give here a different, and hopefully clearer, definition than Abrial.

� So which one a mixed-case identifier is? Abrial does not tell.

� Abrial [1] states the latter as a rule, without giving it any justification except
an example where not heeding the restriction will break the machine. However,
Dunne’s theory of general substitutions [35], which was used earlier in this chapter,
gives an intuitive explanation: parallel composition of substitutions with overlap-
ping frames is invalid unless the substitutions are equivalent with respect to the
overlap.

� The similarity of abstract machines and classes has been noted by Abrial [1].
However, the other parallels are due to the current author but they are not necessar-
ily unique to him.

91

6 The Ebba Toolset

The Ebba Toolset, also known simply as Ebba, is intended to be an independent
reimplementation of the B method based on public sources. The intent is to produce
a free implementation for research (and other) use. The purpose of this chapter is to
describe its development and current state.

6.1 Development history

The development of Ebba started in late 2001. The current author had studied the
B method for many months, and the lack of a free software implementation made it
harder than it has to be. This provided the motivation for building Ebba.

It was decided early on that no specific project model or software process was to
be used. In a one-person project, they would merely be unnecessary baggage, and
since the present author had no experience with writing such software, their benefits
were seen negligible, as software processes are generally meant to ensure repeating
earlier successes and not generating the first success. Experimentation was seen as
the best route.

There were three main choices for the principal programming language in which
Ebba was to be written. Haskell [95] was the author’s pet language, but his lack of
experience in it was deemed too big a risk factor at that time. Java [51], however,
looked promising. The author had recently worked in Java for one and a half years.
Also, it was clear that the front end of Ebba would strongly resemble the front end
of a compiler (cf. eg. [3]), and there was a promising compiler front end generator
available (SableCC, [46, 47]). However, using Java would have meant sacrificing
some of the freeness of the result, as the free implementations of Java have many
deficiences. The only remaining candidate, C++ [64], looked very good, as the au-
thor has experience in it and also has a rather deep understanding of it. Therefore,
C++ was initially chosen.

The first plans for Ebba included grandiose ideas of a metasystem: a system
where the B method could be embedded and dynamically extended. However, this
proved to be too hard.

92

The first implementation attempt, dubbed Ebba I
�

, consists of an editor for Uni-
code text and a lexer and a parser and inference engine for Unicode-encoded in-
ference rule collections (written in Prolog-like notation) and a subset of the abstact
machine notation. At that point, much of the effort was directed at making the use
of Unicode input as unobtrusive as possible. Unfortunately, the editor was written
for character-cell terminals, and thus its ability to show or read Unicode characters
is dependent not only on the correct fonts being available but also on correct con-
figuration of the terminal (or the terminal emulator). Its compile times were also
intolerable

�

.
The second attempt (dubbed Ebba II) tried to ease the use of the editor by taking

care of input and output of Unicode characters itself. For this, it includes a rewrite
of the editor, which runs under the X Windowing System, Version 11.

From the experience of Ebba I, it became increasingly clear that C++ was clumsy
for writing programs that operate on trees with many kinds of nodes. The final
attempt, dubbed Ebba H, was written in Haskell. The author felt that Haskell’s
support for algebraic data types would make it easier to write those parts of the
program that operate on abstract syntax.

Unlike its predecessors, Ebba H’s development focused on actually producing a
typechecker and prover for the B method. Unicode input was seen as a secondary
issue, and Ebba H used an ASCII notation for months. Recently, even Ebba H was
changed to support Unicode input.

All three implementation attempts of Ebba are available on the Ebba home page,
http://www.nongnu.org/ebba/. The rest of this chapter will describe Ebba H; any oc-
casional reference to Ebba I or Ebba II will be clearly marked.

6.2 Abstract syntax

Haskell programs are organized into modules. The central module in Ebba H is Ab-
stractSyntax which declares the types of the abstract syntax tree data structure for
the logic, set theory and GSL parts of the language. Appendix B shows (a simplified
version of) the module. It declares four new mutually recursive data types: Pred-
icate, Variable, Expression and Substitution. Each corresponds to a nonterminal in
the abstract syntax given in Chapter 5. The module also implements functions that
perform unification (over metavariables), removal of derived constructs and other
support functions.

There are certain points that should be noted:

93

• A value constructed using MetavariablePredicate, MetavariableVariable or Meta-
variableExpression denotes a metavariable that denotes a predicate, a variable
or an expression, respectively. They all list side conditions that constrain pos-
sible instantiations of the metavariables (for example, that the instantiation of
the metavariable should contain no free instances of a certain variable).

• The nullary constructor NoPredicate denotes the lack of a predicate in the con-
text. In all context, this is interpreted as the identity element of whatever con-
struct it is part of. For example, in the excerpt

result = simplify � p ‘LogicalAnd‘ NoPredicate � == p

the value of result is True for all values of p in the type Predicate (here simplify
is a function that removes all derived constructs from its arguments).

• Similarly, EmptyVariable is meant to represent the empty frame and is treated
appropriately by quantification constructs. Values constructed using the con-
structors IllFormedPredicate and IllFormedExpression denote the simplifica-
tions of ill-formed formulae (such as EmptyVariable used in an expression
context). The parameter to the two constructors is supposed to be a human-
readable error message describing the nature of the ill-formedness.

• The constructors PredicateApplication and FunctionApplication encode com-
mon patterns of behaviour of many derived constructs. For example, set union
and set intersection are encoded as FunctionApplications. The benefit is that
there is no need to add a separate case for all derived constructs to all func-
tions that operate on the abstract syntax tree by cases.

• Values constructed using PSubst denote the (delayed) substitution of a predi-
cate for a metavariable.

The abstract syntax of abstract machines is defined elsewhere and is not dis-
cussed in this thesis.

6.3 The frontend

The frontend of Ebba H is responsible for reading the Unicode characters, scanning
the input for tokens and parsing the stream of tokens into an abstract syntax tree.

94

Operators Associativity

 � �� � � � (substitution)
� � � � (function application) � �

� � �

� �� � �

� � �

� � 	 � �

� �
� � �

� �
� �

� � �

� � �

Higher precedence is depicted as position nearer the top.

Table 6.1: Operator precedence and associativity for Ebba H.

The Haskell 98 (revised) report [95] specifies that the built-in character subsys-
tem implements a version of Unicode. However, none of the Haskell implementa-
tions considered (Hugs, The Glorious Glasgow Haskell Compiler (GHC) and the
Nearly a Haskell Compiler (NHC)) implement Unicode in sufficient detail. For
this reason, a library of Unicode support modules (ebba-unicode) was written
for Ebba H. It is summarized in Appendix D.

The Unicode library converts any octet stream into a stream of Unicode char-
acters, following the UTF-8 transformation format. The characters are then passed
on to EbbaLexer, which turns the stream of characters into a stream of tokens. The
tokens are given to the parser, which was written using the Happy [79] parser gen-
erator. The parser generates an abstract syntax tree of the input based on the token
stream.

Writing the parser required fixing certain aspects of the concrete syntax left un-
specified by Abrial (and by ourselves in Chapter 5). The most important of these is
operator precedence and associativity, which is summarized in Table 6.1 for those
operators that Ebba H currently supports. The assignment of precedence levels and
associativity for operators was basically arbitrary, given the constraints specified by
Abrial. The assignment is hoped to be useful, but there has been very little testing.

95

6.4 Unicode input

Ebba’s frontend processes all input as Unicode [120] text. This gives it the abil-
ity to use the original publication language as the tool input instead of a hardcoded
”hardware” language which is limited by the abilities of decades-old 7-bit ASCII en-
coding. There are currently very few real reasons for such a restricted input method,
and as the Unicode support of systems software get better in the future, even the re-
maining reasons vanish. If the available input devices do have such a limitation,
the use of Unicode as the primary input language allows the use of a preprocessor
tailored to the specific limitations of the input device and the needs of the specific
user.

The use of Unicode was inspired primarily by the present author’s previous
work on CatDVI [69], a translator from TEX Device Indepedent (DVI) files to plain
text, which uses Unicode internally and as one of the output character sets. Secon-
darily it was inspired by the use of Unicode in programming languages such as Java,
and the use of ISO 10646 in specifying the primary input language of ISO Z [65].

The biggest problem with using Unicode is its poor support in systems software.
For example, Microsoft Windows 2000 supports Unicode version 2.0 [123]. A big
problem with this is that Unicode versions below 3.1 specified Unicode code points
to be representable in 16 bits (with a provision for extension using a baroque tech-
nique called “surrogates”), which requirement was lifted in 3.1 and made obsolete
by assigning code units beyond that range in 3.2. The documentation of version 2.0
of the GTK+ widget set for the X Windowing System does not specify the level of
Unicode support, but it is clear that it too is limited to supporting 16-bit characters.
This is a particularly bad problem for Ebba, as many of the characters it requires
were assigned in Unicode version 3.2 beyond the 16-bit range.

Early versions of Ebba (Ebba I and Ebba II) concentrated in working around de-
ficiences in systems software. Two simplistic editors were prototyped, one using the
Curses library [32] (in Ebba I), which allows writing full-screen software for a wide
variety of character-cell terminals, and one using Xt Intrinsics and the Athena wid-
gets [89] (in Ebba II), which are simple libraries that allow the writing of software
for the X Windowing System. The third and current version (Ebba H) concentrated
first on other issues, but Unicode support was recently implemented. This version
assumes proper support from systems software — it does not attempt to duplicate
their functionality — and failing that, it allows the use of compatibility preproces-
sors for using legacy input devices and deficient systems software.

96

Notation Code unit Character name
�

U+22A2 RIGHT TACK
� U+2227 LOGICAL AND
� U+21D2 RIGHTWARDS DOUBLE ARROW
� U+00AC NOT SIGN

�
U+2228 LOGICAL OR

�
U+21D4 LEFT RIGHT DOUBLE ARROW

 U+005B LEFT SQUARE BRACKET
� U+005D RIGHT SQUARE BRACKET

 U+2200 FOR ALL
� U+22C5 DOT OPERATOR
� U+003D EQUALS SIGN
) � U+2254 COLON EQUALS�

U+2203 THERE EXISTS
�� U+2260 NOT EQUAL TO
� U+002C COMMA
�� U+21A6 RIGHTWARDS ARROW FROM BAR
	 U+2208 ELEMENT OF
� U+0028 LEFT PARENTHESIS
� U+0029 RIGHT PARENTHESIS
� U+00D7 MULTIPLICATION SIGN (cartesian product)�

U+2119 DOUBLE-STRUCK CAPITAL P
� U+007B LEFT CURLY BRACKET
 U+007D RIGHT CURLY BRACKET
� U+007C VERTICAL LINE (comprehension separator, preconditioning)
� U+2261 IDENTICAL TO
� U+2286 SUBSET OF OR EQUAL TO
�

U+2282 SUBSET OF
� U+222A UNION
� U+2229 INTERSECTION
� U+2212 MINUS SIGN (set difference)

�
U+2205 EMPTY SET

�
U+22C3 N-ARY UNION

�
U+22C2 N-ARY INTERSECTION

� U+2194 LEFT RIGHT ARROW
; U+003B SEMICOLON (forward composition, sequencing)
� U+003C U+002B LESS-THAN SIGN, PLUS SIGN

Table 6.2: Unicode code unit assignments for Ebba input characters (cont.)

97

Notation Code unit Character name

� U+2218 RING OPERATOR
� U+25C1 WHITE LEFT-POINTING TRIANGLE
� U+25B7 WHITE RIGHT-POINTING TRIANGLE
� � U+2A64 Z NOTATION DOMAIN ANTIRESTRICTION
� � U+2A65 Z NOTATION RANGE ANTIRESTRICTION
� U+2297 CIRCLED TIMES
� U+2016 DOUBLE VERTICAL LINE (parallel product)
�� U+21F8 RIGHTWARDS ARROW WITH VERTICAL STROKE� U+2192 RIGHTWARDS ARROW
�� U+2914 RIGHTWARDS ARROW WITH TAIL WITH VERTICAL STROKE
� U+21A3 RIGHTWARDS ARROW WITH TAIL
�� � U+2900 RIGHTWARDS TWO-HEADED ARROW WITH VERTICAL STROKE� � U+21A0 RIGHTWARDS TWO HEADED ARROW
�� � U+2917 RIGHTWARDS TWO-HEADED ARROW WITH TAIL

WITH VERTICAL STROKE
� � U+2916 RIGHTWARDS TWO-HEADED ARROW WITH TAIL�

U+03BB GREEK SMALL LETTER LAMDA
�

U+1D53D MATHEMATICAL DOUBLE-STRUCK CAPITAL F
�

U+2115 DOUBLE-STRUCK CAPITAL N
� U+002E FULL STOP

�
U+002B PLUS SIGN

� U+002D HYPHEN-MINUS (number difference)
� U+002A ASTERISK (number product)

�
U+2215 DIVISION SLASH

� � U+27F9 LONG RIGHTWARDS DOUBLE ARROW

 � U+2AFE WHITE VERTICAL BAR
@ U+0040 COMMERCIAL AT
� U+2225 PARALLEL TO (parallel composition)
^ U+2303 UP ARROWHEAD

�� U+2259 ESTIMATES
� � U+27F5 LONG LEFTWARDS ARROW

Table 6.2: (cont.) Unicode code unit assignments for Ebba input characters.

98

The character mapping used (and partially planned to be used) by Ebba is sum-
marized in Table 6.2. All characters in that table are considered punctuation except
those whose general category is L&. Unicode identifier conventions are used — no
normalization is currently done. Those characters in Table 6.2 that are valid identi-
fiers, are reserved words. The usual numeric literal conventions are used.

In selecting Unicode code units for each notational atom in B, the mapping speci-
fied for ISO Z was used as a starting point. Whenever B and Z use the same notation
for the same thing, the character used in ISO Z was considered. In many cases, it
was decided to use the semantically correct character (for example, U+2215 DIVI-
SION SLASH) instead of a visually similar ASCII character (for example, U+002F
SOLIDUS). Although this may present problems in current environments, the ben-
efits in the long run were weighed more important. In some cases, it was deemed
necessary to use two different code units for the same character in differing seman-
tic contexts (for example, 	 is mapped to U+2212 MINUS SIGN when it denotes set
difference and to U+002D HYPHEN-MINUS when it denotes numeric difference).

6.5 Backend

The backend is responsible for doing something useful with the absrtact syntax tree
of the input. The backend contains a typechecker, a proof engine and a prettyprinter.
Planned features for the backend include a code generator for implementation ma-
chines.

The typechecker takes an abstract syntax tree and uses a typechecking algorithm
(a variant of the one described at the end of Subsection 5.3.4) to verify the type
soundness of the input. For now, the typechecker only handles raw set notation; no
generalized substitutions or machines can be checked at this time. The typechecker
is described in detail in Appendix C.

The proof engine is preliminary. It is capable of proving simple statements in
first-order logic and is based on the proof procedure given in 5.2.5).

6.6 Future plans

There are several issues with Ebba as it currently stands:

1. It does not understand the full language of the B method. Even not everything
presented in Chapter 5 is supported.

99

2. The typechecker does not support even the full language supported by the
frontend.

3. Proof obligations are not extracted from specifications.

4. It should be able to generate code from implementation machines.

5. The proof engine does not support set notation.

6. It is fragile and needs extensive testing.

The first four issues are mostly a matter of simple programming. The next issue
will require further study and perhaps even reseach.

Notes

�

We describe Release 1 of Ebba I.
�

A recent full build took 20 minutes with G++ 3.0 on an AMD Athlon XP 1,5 GHz,
although the SLOC count (excluding generated source) was only about 5000.

100

7 Conclusion

This thesis has presented a sketch for a formal reconstruction of the B method and
for a freely available realization of its tool support. In addition, we have presented,
as background, the role of formal methods in the general context of software engi-
neering, a historically motivated review of formal logic and set theory, and a quick
sketch of the main methods of automated reasoning.

This thesis has been hurt by its status. Its scope is so huge that a proper treatment
would have required far more time, resources and pages than can be reasonably
spent on a master’s thesis. As such, this thesis feels like a torso: there is a skeleton
for the whole thing, but only parts of the body has flesh. It is the hope of the author
that the thesis still has a purpose to serve, other than as the vehicle to a degree.

Even as it stands, this thesis makes technical contributions: most importantly, it
develops an input format for the B notation that is both efficiently implementable on
a computer and strongly resembles the notation used in this thesis and other printed
works on the B method. It also notes problems with the B method as publically
documented and proposes remedies to some of them. Most notably, a problem with
the typechecking algorithm was noted and resolved.

Many of the corrections and enhancements to the B method suggested in this the-
sis are not fully validated nor verified for correctness — examples are the improved
typechecking algorithm and the formalization of substitution frames.

It would be interesting to develop a formal method derived from the B method
that exploits the parallels between the concepts of AMN and Object-Orientation: is it
possible to make a programming language that is at the same time a formal method
to be reckoned with?

As a smaller matter, it would be good to find a rewrite rule for substitution open-
ing that does not depend on rule application order nor on a machine context.

101

8 Bibliography

[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge: Cam-
bridge University Press, 1996.

[2] Jean-Raymond Abrial and Louis Mussat. “On using conditional definitions in
formal theories”. In Bert et al. [12].

[3] Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques and Tools. Reading, MA: Addison-Wesley, 1986.

[4] Aristoteles. Kategoriat, Tulkinnasta, Ensimmäinen analytiikka ja Toinen analytiikka.
No. 1 in Teokset. Helsinki: Gaudeamus, 1994.

[5] B-Core. The B-Toolkit User’s Documentation. B-Core (UK) Ltd., Aug. 1999.
URL http://www.b-core.com/ONLINEDOC/Contents.html

[6] B-Core. “B-toolkit”, 2001.
URL http://www.b-core.com/btoolkit.html

[7] Franz Baader and Wayne Snyder. “Unification theory”. In Robinson and
Voronkov [100].

[8] Leo Bachmair and Harald Ganzinger. “Resolution theorem proving”. In
Robinson and Voronkov [100].

[9] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic
Introduction. New York: Springer, 1998.

[10] John Backus. “Can programming be liberated from the von Neumann style?
A functional style and its algebra of programs”. Communications of the ACM,
21 (8), pp. 613–641, Aug. 1978.

[11] Paul Bernays and Abraham A. Fraenkel. Axiomatic set theory with a historical in-
troduction. Studies in Logic and the Foundations of Mathematics. Amsterdam:
North-Holland, 1958.

102

[12] Didier Bert, Jonathan P. Bowen, Martin C. Henson and Ken Robinson (eds.).
ZB 2002: Formal Specification and Development in Z and B, 2nd International Con-
ference of Z and B Users, Grenoble, France, January 2002, no. 2272 in Lecture Notes
in Computer Science. Berlin: Springer, 2002.

[13] Grady Booch. Object-oriented analysis and design with applications. Reading,
MA: Addison-Wesley, 1994.

[14] George Boole. The Mathematical Analysis of Logic, Being an Essay Towards a Cal-
culus of Deductive Reasoning. London: Macmillan, Barclay & Macmillan, 1847.
Reprinted by Basil Blackwell, Oxford, 1965.

[15] —. An Investigation of the Laws of Thought, on Which Are Founded the Mathemat-
ical Theories of Logic and Probabilities. Dover, 1955. First American printing of
the 1854 edition with all corrections made within the text.

[16] Frederick P. Brooks, Jr. The Mythical Man-Month: Essays on Software Engineer-
ing. Addison-Wesley, 1995, anniversary ed.

[17] Cesare Buriali-Forti. “On well-ordered classes”. In van Heijenoort [55].

[18] —. “A question on transfinite numbers”. In van Heijenoort [55].

[19] Stanley Burris. “The laws of Boole’s thought”. Preprint, accessed on the 22th
of May, 2002.
URL http://www.thoralf.uwaterloo.ca/htdocs/MYWORKS/PREPRINTS/aboole.
pdf

[20] Michael Butler, Jim Grundy et al. “The refinement calculator: Proof support
for program refinement”. In Lindsay Groves and Steve Reeves (eds.), “Formal
Methods Pacific’97: Proceedings of FMP’97”, (pp. 40–61). Wellington, New
Zealand: Springer-Verlag, 1997.
URL http://citeseer.nj.nec.com/butler97refinement.html

[21] Georg Cantor. Gesammelte Abhandlungen mathematischen und philosophischen In-
halts mit erläuternden Anmerkungen sowie mit Ergänzungen aus dem Briefwechsel
Cantor–Dedekind, herausgaben von Ernst Zermelo nebst einem Lebenslauf Cantors
von Adolf Fraenkel. Berlin: Springer, 1932. Reprinted in 1990.

[22] —. Contributions to the Founding of the Theory of Transfinite Numbers. New York:
Dover, 1955. Translated by Philip E. B. Jourdain.

103

[23] —. “Letter to Dedekind”. In van Heijenoort [55].

[24] George Cantor. “Über eine Eigenschaft des Ingbegriffes aller reellen alge-
braischen Zahlen”. In “Gesammelte Abhandlungen mathematischen und
philosophischen Inhalts mit erläuternden Anmerkungen sowie mit Ergänzun-
gen aus dem Briefwechsel Cantor–Dedekind, herausgaben von Ernst Zermelo
nebst einem Lebenslauf Cantors von Adolf Fraenkel”, [21]. Reprinted in 1990.

[25] —. “Ein betrag zur mannigfaltigkeitslehre”. In “Gesammelte Abhandlungen
mathematischen und philosophischen Inhalts mit erläuternden Anmerkun-
gen sowie mit Ergänzungen aus dem Briefwechsel Cantor–Dedekind, her-
ausgaben von Ernst Zermelo nebst einem Lebenslauf Cantors von Adolf
Fraenkel”, [21]. Reprinted in 1990.

[26] D. Carrington, I. Hayes et al. A tool for developing correct programs by refinement.
Technical report 95-49, Software Verification Research Centre, School of Infor-
mation Technology, The University of Queensland, Brisbane 4072. Australia,
Oct. 1996.
URL http://svrc.it.uq.edu.au/Bibliography/svrc-tr.html?95-49

[27] Alonzo Church. “An unsolvable problem of elementary number theory”.
American Journal of Mathematics, 58 (2), pp. 345–363, Apr. 1936.

[28] Stephen A. Cook and Robert A. Reckhow. “Time-bounded random access ma-
chines”. In “Proceedings of the Fourth Annual ACM Symposium on Theory
of Computing”, ACM, 1972.

[29] Mark Davis. Unicode Newline Guidelines. Unicode Standard Annex 13, Unicode
Inc., 2002.
URL http://www.unicode.org/unicode/reports/tr13/tr13-9.html

[30] Mark Davis, Michael Everson et al. Unicode 3.1. Unicode Standard Annex 27,
Unicode Inc., May 2001.
URL http://www.unicode.org/unicode/reports/tr27/tr27-4.html

[31] Richard Dedekind. Was sind und was sollen die Zahlen & Stetigkeit und Irrationale
Zahlen. Braunschweig: Vieweg, 1969. Originally published in 1872 (Was sind
un was sollen die Zahlen) and in 1872 (Stetigkeit und Irrationale Zahlen).

104

[32] Thomas E. Dickey. “NCURSES — new Curses”. Accessed on 18th of Decem-
ber, 2002.
URL http://dickey.his.com/ncurses/

[33] E. W. Dijkstra. “Structured programming”. In J. N. Buxton and B. Randell
(eds.), “Software Engineering Techniques: Report on a conference sponsored
by the NATO Scuence Committee, Rome, Italy, 27–31 Oct. 1969”, (pp. 84–88).
Brussels: NATO Scientific Affairs Division, 1970.
URL http://www.cs.ncl.ac.uk/people/brian.randell/home.formal/NATO/

[34] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall Series in Auto-
matic Computation. Englewood Cliffs: Prentice-Hall, 1976.

[35] Steve Dunne. “A theory of generalised substitutions”. In Bert et al. [12].

[36] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification 1: Equa-
tions and Initial Semantics, vol. 6 of EATCS Monographs on Theoretical Computer
Science. Springer, 1985.

[37] Joseph Feller and Brian Fitzgerald. “A framework analysis of the open source
software development paradigm”. In Soon Ang, Helmut Krcmar et al. (eds.),
“Proceedings of the 21st international conference on Information systems”,
(pp. 58–69). Association for Information Systems, 2000.

[38] Cormac Flanagan and Shaz Qadeer. “Predicate abstraction for software verifi-
cation”. ACM SIGPLAN Notices, 37 (1), pp. 191–202, Jan. 2002. Proceedings of
the 2002 ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’02).

[39] Robert W. Floyd. “Assigning meanings to programs”. In J. T. Schwartz
(ed.), “Mathematical Aspects of Computer Science”, vol. XIX of Proceeding of
Symposia in Applied Mathematics. Providence: American Mathematical Society,
1967.

[40] Abraham A. Fraenkel. “The notion of “definite” and the independence of the
axiom of choice”. In van Heijenoort [55].

[41] G. Frege. Die Grundlagen der Arithmetik, eine logisch matematische Untersuchung
über den Begriff der Zahl. The Foundations of Arithmetic, a logico-mathematical en-
quiry into the concept of number. Oxford: Basil Blackwell, 1959. A reprint of Wil-

105

helm Koebner’s (Breslau) printing of 1884, with an English translation printed
en face.

[42] Gottlob Frege. Grundgesetze der Arithmetik begriffsschriftlich abgeleitet. Darm-
stadt: Wissenschaftliche Buchgesellschaft, 1962. An unaltered Reprint of the
1893 edition.

[43] —. “Begriffsschrift, a formula language, modeled upon that of arithmetic, for
pure thought”. In van Heijenoort [55].

[44] —. “Letter to Russell”. In van Heijenoort [55].

[45] —. “Frege on Russell’s paradox, Grundgesetze der Arithmetik, vol ii, ap-
pendix, pp. 253–65”. In Peter Geach and Max Black (eds.), “Translations from
the Philosophical Writings of Gottlob Frege”, Oxford: Basil Blackwell, 1970.

[46] Étienne Gagnon. SableCC — an object-oriented compiler framework. Master’s
thesis, School of Computer Science, McGill University, Mar. 1998.

[47] Etienne M. Gagnon and Laurie J. Hendren. “SableCC, an object-oriented com-
piler framework”. In “Proceedings of the Technology of Object-Oriented Lan-
guages and Systems”, 1998.

[48] Kurt Gödel. On formally undecidable propositions of Principia Mathematica and
related systems I. New York: Dover, 1992. Reprint of the 1931 paper.

[49] W. Wayt Gibbs. “Trends in computing: Software’s chronic crisis”. Scientific
American, 271 (3), Sep. 1994.

[50] John Gilmore. “Finally, a primary source on Mariner 1”. The Risks Digest:
Forum on Risks to the Public in Computers and Related Systems, 5 (73), Dec. 1987.
URL http://catless.ncl.ac.uk/Risks/5.73.html#subj2

[51] James Gosling, Bill Joy, Guy Steele and Gilad Bracha. The Java Language Speci-
fication. Addison-Wesley, 2000, 2nd ed.

[52] Jeremy Gray. “Did Poincaré say “set theory is a disease”?” The Mathematical
Intelligencer, 13 (1), pp. 19–22, 1991.

[53] Wolfgang Grieskamp et al. “The ZETA system: Overview (and other docu-
ments)”. Accessed on the 30th of April, 2002.
URL http://uebb.cs.tu-berlin.de/zeta/

106

[54] Les Hatton. “Software failures: follies and fallacies”. IEE Review, 43 (2), pp.
49–52, Mar. 1997.

[55] Jean van Heijenoort (ed.). From Frege to Gödel: A Source Book in Mathematical
Logic, 1879–1931. Cambridge, MA: Harvard University Press, 1967.

[56] D. Hilbert and W. Ackermann. Grundzüge der theoretischen Logik. Berlin:
Springer, 1967, 5th ed. First edition was published in 1928.

[57] David Hilbert. “On the infinite”. In van Heijenoort [55].

[58] C. A. R. Hoare. “An axiomatic basis for computer programming”. Communi-
cations of the ACM, 12 (10), pp. 576–583, Oct. 1969.

[59] —. “Communicating sequential processes”. Communications of the ACM, 21 (8),
pp. 666–677, Aug. 1978.

[60] —. “How did software get so reliable without proof?” In “FME’96: indus-
trial benefit and advances in formal methods: Third International Symposium
of Formal Methods Europe, Oxford, UK, March 18–22”, (pp. 1–17). Berlin:
Springer, 1996.

[61] International Organization for Standardization. Information technology — Pro-
gramming languages — Ada, 1995. ISO/IEC 8652:1995.

[62] —. Information technology — Programming languages, their environments and sys-
tem software interfaces — Vienna Development Method — Specification Language
— Part 1: Base language, 1996. ISO/IEC 13817-1:1996.

[63] —. Information technology — Syntactic metalanguage — Extended BNF, 1996.
ISO/IEC 14977:1996(E).

[64] —. Programming languages — C++, 1998. ISO/IEC 14882:1998(E).

[65] —. Information Technology — Z Formal Specification Notation — Syntax, Type
System and Semantics, 2002. ISO/IEC 13568:2002.

[66] Thomas Jech. Set Theory. New York: Academic Press, 1978.

[67] Stefan Kahrs, Donald Sannella and Andrzej Tarlecki. “The definition of Ex-
tended ML: A gentle introduction”. Theoretical Computer Science, 173 (2), pp.

107

445–484, 1997.
URL http://citeseer.nj.nec.com/kahrs95definition.html

[68] Antti-Juhani Kaijanaho. “PR — a Prolog-esque inference engine”, Jun. 2001.
URL ftp://ftp.jyu.fi/private/antkaij/pr-0.1.tar.gz

[69] Antti-Juhani Kaijanaho, Björn Brill and J. H. M. Dassen. “CatDVI: a DVI to
text/plain translator”, Nov. 2002.
URL http://catdvi.sourceforge.net/

[70] Immanuel Kant. The Critique of Pure Reason. Project Gutenberg, 2003. Released
ahead of schedule on 29th of December 2001. Translated by J. M. D. Meikle-
john. First publication in 1781.
URL ftp://ibiblio.org/pub/docs/books/gutenberg/etext03/cprrn10.txt

[71] Donald E. Knuth. Literate Programming. No. 27 in CSLI Lecture Notes. Center
for the Study of Language and Information, 1992.

[72] Pasi Koikkalainen and Pekka Orponen. Tietotekniikan perusteet. Jyväskylän
yliopisto, tietotekniikan laitos, 2002. Lecture notes on Fundamentals of Infor-
mation Technology.

[73] Robert E. Kraut and Lynn A. Streeter. “Coordination in software develop-
ment”. Communications of the ACM, 38 (3), Mar. 1995.

[74] Lassi Kurittu. Johdatus logiikkaan. Luentomoniste 47, Jyväskylän yliopisto,
Matematiikan laitos, Jyväskylä, 2000. Lecture notes on logic.

[75] Gottfried Wilhelm Leibniz. Logical papers. Oxford: Clarendon Press, 1966.

[76] Richard C. Linger. “Cleanroom process model”. IEEE Software, 11 (2), pp.
50–58, Mar. 1994.

[77] Donald W. Loveland. Automated Theorem Proving: A Logical Basis, vol. 6 of
Fundamental Studies in Computer Science. Amsterdam: North-Holland, 1978.

[78] George F. Luger and William A. Stubblefield. Artificial Intelligence: Structures
and Strategies for Complex Problem Solving. Redwood: Benjamin/Cummings,
1993, 2nd ed.

108

[79] Simon Marlow. “Happy: The parser generator for Haskell”. Accessed on the
19th of December, 2002.
URL http://www.haskell.org/happy/

[80] Bertrand Meyer. Eiffel: the language. New York: Prentice Hall, 1992.

[81] Doug Mink. “Mariner 1 from NASA reports”. The Risks Digest: Forum on Risks
to the Public in Computers and Related Systems, 5 (73), Dec. 1987.
URL http://catless.ncl.ac.uk/Risks/5.73.html#subj2

[82] Marty Moore. “Mariner I”. The Risks Digest: Forum on Risks to the Public in
Computers and Related Systems, 5 (73), Dec. 1987.
URL http://catless.ncl.ac.uk/Risks/5.73.html#subj2

[83] Carroll Morgan. “The specification statement”. ACM Transactions on Program-
ming Languages and Systems, 10 (3), pp. 403–419, Jul. 1988.

[84] National Aeronautics and Space Administration, Washington, DC. Formal
Methods Specification and Verification Guidebook for Software and Computer Sys-
tems, Volume I: Planning and Technology Insertion, Dec. 1998.
URL http://eis.jpl.nasa.gov/quality/Formal Methods/

[85] P. Naur and B. Randell (eds.). Software Engineering: Report of a conference spon-
sored by the NATO Science Committee, Garmisch, Germany, 7–11 Oct. 1968. Brus-
sels: NATO Scientific Affairs Division, 1969.
URL http://www.cs.ncl.ac.uk/people/brian.randell/home.formal/NATO/

[86] Greg Nelson. “A generalization of Dijkstra’s calculus”. ACM Transactions on
Programming Languages and Systems, 11 (4), pp. 517–561, Oct. 1989.

[87] John von Neumann. “An axiomatization of set theory”. In van Heijenoort
[55].

[88] Nils J. Nilsson. Artificial Intelligence: A New Synthesis. San Francisco, CA:
Morgan Kaufmann, 1998.

[89] Adrian Nye and Tim O’Reilly. X Toolkit Intrinsics Programming Manual for X11
Release 4, vol. 4 of The X Window System. Sebastopol: O’Reilly, 1990, 2nd ed.

[90] Pekka Orponen. Laskennan teoria, syksy 1997. Luentomoniste. Jyväskylä:
Jyväskylän yliopisto, matematiikan laitos, 1997.

109

[91] David Lorge Parnas. “Teaching programming as engineering”. In Jonathan P.
Bowen and Michael G. Hinchey (eds.), “ZUM ’95: The Z Formal Specification
Notation, 9th International Conference of Z Users, Limerick, Ireland, Septem-
ber 1995 Proceedings”, vol. 967 of Lecture Notes in Computer Science, (pp. 471–
481). Springer, 1995.

[92] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis and Charles V. Weber. Capability
Maturity Model™ for Software, Version 1.1. Tech. rep., Software Engineering
Institute, Carnegie Mellon University, 1996.

[93] Giuseppe Peano. “The principles of arithmetic, presented by a new method”.
In van Heijenoort [55].

[94] Alan J. Perlis. “Epigrams on programming”. SIGPLAN Notices, 17 (9), Sep.
1982.

[95] Simon Peyton Jones (ed.). Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, 2003. To appear.
URL http://research.microsoft.com/Users/simonpj/haskell98-revised/

[96] Shari Lawrence Pfleeger and Les Hatton. “Investigating the influence of for-
mal methods”. Computer, 30 (2), pp. 33–43, Feb. 1997.

[97] Roger S. Pressman and Darrel Ince. Software Engineering: A Practitioner’s Ap-
proach. London: McGraw-Hill, 2000, 5th ed.

[98] Hilary Putnam. “Nonstandard models and Kripke’s proof of the Gödel
theorem”. Notre Dame Journal of Formal Logic, 41 (1), 2000.
URL http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.ndjfl/
1027953483

[99] Eric S. Raymond. The Cathedral & the Bazaar: Musings on Linux and Open Source
by an accidental revolutionary. O’Reilly, 2001, revised ed.

[100] Alan Robinson and Andrei Voronkov (eds.). Handbook of Automated Reasoning.
Amsterdam: Elsevier (North-Holland), 2001.

[101] J. A. Robinson. “A machine-oriented logic based on the resolution principle”.
Journal of the Association for Computing Machinery, 12 (1), 1965.

110

[102] John Rushby. Formal Methods and the Certification of Critical Systems. Tech.
Rep. SRI-CSL-93-7, Computer Science Laboratory, SRI International, Menlo
Park, CA, Dec. 1993. Also issued under the title "Formal Methods and Digital
Systems Validation for Airborne Systems" as NASA Contractor Report 4551,
December 1993.
URL http://www.csl.sri.com/papers/csl-93-7/

[103] Bertrand Russell. “Letter to Frege”. In van Heijenoort [55].

[104] —. “Mathematical logic as based on the theory of types”. In van Heijenoort
[55].

[105] Hannele Salminen and Jouko Väänänen. Johdatus logiikkaan. Jyväskylä:
Gaudeamus, 1997. An introduction to logic.

[106] Dirk Schlimm. “A short history of primitive recursion”, May 1998.
URL http://www.phil.cmu.edu/dschlimm/texts/prim rec.dvi

[107] Steve Schneider. The B-Method: An Introduction. Cornerstones of computing.
Hampshire: Palgrave, 2001.

[108] Henry Maurice Sheffer. “A set of five independent postulates for Boolean
algebras, with application to logical constants”. Transactions of the American
Mathematical Society, 14 (4), Oct. 1913.

[109] J. C. Shepherdson and H. E. Sturgis. “Computability of recursive functions”.
Journal of the ACM, 10 (2), Apr. 1963.

[110] Thoralf Skolem. “The foundations of elementary arithmetic established by
means of the recursive mode of thought, without the use of apparent variables
ranging over infinite domains”. In van Heijenoort [55].

[111] —. “Some remarks on axiomatized set theory”. In van Heijenoort [55].

[112] Richard M. Stallman. “Free software definition”. In Joshua Gay (ed.), “Free
Software, Free Society: Selected Essays of Richard M. Stallman”, Boston:
GNU, 2002.
URL http://www.gnu.org/philosophy/free-sw.html

[113] Steria Méditerranée. “Atelier-B”, 2001.
URL http://www.atelierb.societe.com/index uk.html

111

[114] Alfred Tarski. “The concept of truth in formalized languages”. In “Logic, Se-
mantics, Metamathematics: Papers from 1923 to 1938”, Oxford: Oxford Uni-
versity Press, 1969.

[115] Ken Thompson. “Reflections on trusting trust”. Communications of the ACM,
27 (8), 1984.

[116] Ian Toyn. “Cadi
�

home page”. Accessed on the 30th of April, 2002.
URL http://www-users.cs.york.ac.uk/ � ian/cadiz/

[117] A. M. Turing. “On computable numbers, with an application to the Entschei-
dungsproblem”. Proceedings of the London Mathematics Society, Series 2, 42, 1936.

[118] Unicode Consortium. The Unicode Standard, Version 3.0.0. Reading, MA, MA:
Addison-Wesley, 2000.
URL http://www.unicode.org/unicode/uni2book/u2.html

[119] —. Unicode 3.2.0. Unicode Standard Annex 28, Unicode Inc., Mar. 2002.
URL http://www.unicode.org/unicode/reports/tr28/tr28-3.html

[120] —. “The Unicode standard, version 3.2.0”. Defined in [118], as amended by
[30] and [119], 2002.

[121] Hans van Vliet. Software Engineering: Principles and Practice. Chichester: Wiley,
2000, 2nd ed.

[122] Alfred North Whitehead and Bertrand Russell. Principia Mathematica. Cam-
bridge University Press, 1978. The work comprises three volumes, originally
published in 1910–1913.

[123] “Windows 2000 supports Unicode version 2.0, knowledge base -artikkeli —
227483”, oct 2002.
URL http://support.microsoft.com/default.aspx?scid=KB;en-us;q227483

[124] Ludwig Wittgenstein. Tractatus Logico-Philosophicus. Routledge Classics. Rout-
ledge, 2002. Originally published in 1921, translated by D. F. Pears and B. F.
McGuinness.

[125] “Web WordNet 1.7.1 search — overview for “premises””. Accessed on 21th
of April, 2002.

112

URL http://www.cogsci.princeton.edu/cgi-bin/webwn1.7.1?stage=1
�

word=
premises

[126] Larry Wos, Ross Overbeek, Ewing Lusk and Jim Boyle. Automated Reasoning:
Introduction and Applications. Englewood Cliffs, NJ: Prentice-Hall, 1984.

[127] Georg Henrik von Wright. “Logiikka, filosofia ja kieli: Ajattelijoita ja ajatus-
suunita nykyajan filosofiassa”. In “Logiikka ja humanismi”, [128].

[128] —. Logiikka ja humanismi. Helsinki: Otava, 1998.

[129] —. “Looginen empirismi”. In “Logiikka ja humanismi”, [128].

[130] Ernst Zermelo. “Investigations in the foundations of set theory I”. In van
Heijenoort [55].

113

A Two formal theories

Later generations will regard set theory as a disease from which one has recov-
ered.

— Henri Poincaré (according to rumours)
�

The purpose of this appendix is to build a fairly standard version of first-order logic
and a ZFCish set theory upon that logic. Proofs are omitted for reasons of space.

The mechanisms of this appendix are rather standard. This particular way of
building first-order logic and set theory is a synthesis by the present author based
on many sources, such as [1, 48, 66, 74, 105]. A partial record of sources for particular
definitions is given in the endnotes.

The set theory presented in this appendix deviates from the usual in that we
grant classes a proper place in the formalism. Both choices have necessitated mod-
ifications to the ZFC axiom system. The resulting axiom system is similar but not
identical to von Neumann, Bernays and Gödel’s axiomatization (cf. eg. [11]).

We assume that we work in a metalogical world where we do have the machin-
ery of mathematics such as sets, using an informal version of the notation that we
are developing. This should be just fine as we are interested more in the mecha-
nization of logic and set theory than in their phiolosophical and metamathematical
aspects.

A.1 Preliminaries

The set of natural numbers includes zero.
We say that a natural number n divides a natural number m if

� � � �
 � � m �
� n � m, and we denote this by n

�
m.

We call a natural number n � � prime (denoted by prime � n �), if � and n are the
only ones that divide it.

We define the function Pr
 � � � recursively as follows
�

:

Pr � � � �
�

Pr � n � � � � min
�
y ���
 prime � y � � y � Pr � n � �

114

A pair is an ordered set. The pair of a � A and b � B, in that order, is denoted
by � a � b � , which is a member of the cartesian product A � B. There are projection
functions pr � and pr � for which the following hold:

pr � � a � b � � a

pr � � a � b � � b

A.2 Alphabets, strings and substitutions

An alphabet � is a pair: the first element of the pair is a countably infinite set (de-
noted by symbols ��� � � pr � �����), whose elements are called symbols, and the second
element of the pair is a bijection numbering �����
 symbols ��� � � � � ��� � (note that
numbering ����� � pr � �����).

Let � be an alphabet. We define the following set:

��� �
� � � � � �
 � ��� � ����� � ��� � �
 ��� ���

prime �	� ��� � �	� � � � � � � � � �	� � � � � �	� � � � � � � �
We will call elements of the set � � strings of � . We will also define functions alphabet �
pr � and gödel � pr � . For S �
� � we call gödel � S � the Gödel number of the string S. �

We define a length function as l � � ��
 max
� � � �
 Pr � � � �

gödel � � � � .
The n � � th symbol of a string S is denoted by S � n � and is defined, when n is

a natural number less than l � S � , as numbering � alphabet � S � � �

� � k � , where k is the
largest natural number such that Pr � n � � � k �

gödel � S � .
Let � be an alphabet and let � � symbols ����� . We denote the string

� � � � numbering �� � ��� ���

by ����� . Furthermore, we denote by ��� the string ��� � � � . If the alphabet is clear
from the context, then the subscript � may be omitted.

Let S and T be strings where alphabet � S � � alphabet � T � . We define a sequence
of strings C

� ������� � Cl � T � :

C
�

� S

Ci �
� �

� � � gödel � Ci � Pr � l � Ci � � � � numbering �� � � T � i � � � where i � � � ������� � l � T � 	 � � �
Now, Cl � T � is the concatenation of S and T, denoted by ST.

115

If � � ������� � � n are symbols of an alphabet � , we denote the string ��� � � ��� n �
by � � � � n � . If the alphabet is clear from the context, then the subscript � may
be omitted.

If S, T, U and V are strings where alphabet � S � � alphabet � T � � alphabet � U � �
alphabet � V � , and S � TUV, then U is a substring of S, and T is an initial substring or
prefix of S, and V is a final substring or postfix of S.

Let � be an alphabet. A (string) substitution � is a partial function �
 symbols ��� � ��
� � . Let now S be a string where alphabet � S � � � . We will define a sequence of
strings C

� ������� � Cl � S � � � :

C
�

� �	�
Ci �

� �

�
Ci � S � i � � � if � is not defined for S � i � , and

Ci � � � S � i � � � � otherwise.

Now, Cl � S � � � is denoted by S � and called the application of � to S.
Let � be an alphabet. A partial function �
 � � �� � � is a generalized (string) sub-

stitution, if no member of its domain is an initial substring of another. Let S � � � .
We will define the application S � of a generalized string substitution with recursive
rewrite rules:

� ST � �
 �
� � S � � T � � if � is defined for S

� ����� S � �
 � ����� � S � � otherwise

A.3 First-order logic

Usually, by the term first-order logic we mean a family of similar logics with a com-
mon structure. In this section, we develop that common structure. We call the dif-
ferent members of the family of first-order logics an application of first-order logic.
We will only consider first-order logic with equality.

A.3.1 Syntax The set of symbols for first-order logic is a union of the set of logi-
cal constants, individual constants, predicate symbols, variables, metavariables and
additional symbols. The sets of logical constants, individual constants, predicate
symbols, variables, metavariables and additional symbols are disjoint. The sets
of individual constants, predicate symbols, variables and metavariables are speci-
fied by the application; there will be a countably infinite number of both variables

116

Character Code position Name

� U+0028 LEFT PARENTHESIS
� U+0029 RIGHT PARENTHESIS�

U+00AC NOT SIGN
� U+2192 RIGHTWARDS ARROW
� U+2200 FOR ALL
� U+002C COMMA

� U+003D EQUALS SIGN

Table A.1: Logical constants

and metavariables. We will write variables as lowercase greek letters and typeset
metavariables in boldface.

The set of logical constants consists of the Unicode characters specified in ta-
ble A.1. The set of additional symbols is the complement of the union of the other
sets.

Throughout this section we assume the following:

1. The alphabet � consisting of the symbols listed above and a particular num-
bering function are given.

2. No substitution is defined for any symbols other than the metavariables.

A formula schema of first-order logic is any string. Formula schemata are de-
noted by uppercase calligraphic letters, such as � . A formula of first-order logic is
a formula schema which contains no metavariables; a formula schema that is not a
formula is a proper formula schema.

A formula schema � is said to generate another formula � � , if there is a substi-
tution � such that ��� � � � . If we say that a metavariable stands for, denotes or is a
certain kind of a formula, then only a formula of that kind may be mapped to that
metavariable in the substitution. If we say that a metavariable stands for, denotes or
is a certain kind of a symbol, then only a formula which consists solely of that kind
of a symbol may be mapped to that metavariable in the substitution.

A formula is a term (also known as an expression , iff

• it consists solely of one individual constant or variable, or

117

• it is generated by the schema � f � a � � , where f is an individual constant and a is
a comma-separated list of terms.

A formula is a comma-separated list of terms, iff

• it is a term (in which case the length of the list is �), or

• it is generated by the schema � l � t � , where l is a comma-separated list of terms
and t is a term (in which case the length of the list is n � � , where n is the length
of l).

A formula schema is a term schema if all formulae it generates are terms.
A formula is well-formed, iff

• it is generated by the schema � P � a � � , where P is a predicate symbol and a is a
comma-separated list of terms,

• it is generated by the schema � � aPb ��� , where a and b are terms and P is a
predicate symbol,

• it is generated by the schema � � a � b � � , where a and b are terms,

• it is generated by the schema � � � P � � , where P is a well-formed formula,

• it is generated by the schema � � P � Q � � , where P and Q are well-formed for-
mulae, or

• it is generated by the schema � � ���
 P � � , where � denotes a variable symbol
and P denotes a well-formed formula.

A formula schema is well-formed if all formulae it generates are well-formed.
Parentheses may be omitted from formulae if their recursive structure is clear

even without the parentheses. Generally,
�

binds stronger than � . The subformula
of a � -formula extends as far to the right as is possible.

A variable is free in a term, if

• the term consists solely of that variable, or

• the term is generated by the schema � f � a � � , where f is an individual constant
and a is a comma-separated list of terms, and the variable is free in a.

A variable is free in a comma-separated list of terms, if

118

• the comma-separated list of terms has a length of � and the variable is free in
its only constituent term, or

• the comma-separated list is generated by the schema � l � t � , where l is a comma-
separated list of terms and t is a term, and the variable is free in l or t or both.

A variable is free in a well-formed formula, if

• the formula is generated by the schema � P � a ��� , where P is a predicate symbol
and a is comma-separated list of terms, and the variable is free in a,

• the formula is generated by the schema � � aPb � � , where a and b are terms and
P is a predicate symbol, and the variable is free in a or in b or in both,

• the formula is generated by the schema � � a � b � � , where a and b are terms,
and the variable is free in a or in b or in both,

• the formula is generated by the schema � � � P ��� , where P is a well-formed for-
mula, and the variable is free in P,

• the formula is generated by the schema � � P � Q � � , where P and Q are well-
formed formulae, and the variable is free in P or in Q or in both, or

• the formula is generated by the schema � � � �
 P � � , where � denotes a variable
other than the variable being considered and P denotes a well-formed formula
where the variable being considered is free.

Otherwise, a variable is not free in a term or a well-formed formula.
Occasionally we will introduce shorthand. A shorthand introduction consists of a

shorthand
�

, which is a formula schema and of a definition � , which is either a term
schema or a well-formed formula schema. If the definition is a term schema, then the
formulae generated by the shorthand are terms. If the definition is a well-formed
formula schema, then the formulae generated by the shorthand are well-formed.
Sometimes we will introduce several shorthands by the means of a two-column
table; then each row in the table is a shorthand introduction, the left-hand column
contains the shorthands and the right-hand column contains the definitions.

We will now introduce shorthand notations according to Table A.2.

119

Shorthand Definition

� � � �
 P ��� � � � � �
 � P � �
� � P �

Q � � � � � P � Q � �
� � P � Q � � � � � � � P

� �
Q � � �

� � P � Q � � � � � P � Q � � � Q � P � � �
� � � � � � t� ��� � � t � �
� � � � � � t� ��� � � � ���
� � c � � � t� � � � � c � �

� � � c � l � � � ��� t� ��� � � � c � � � l � � ��� t� � � �
� � � l � u � � ��� t� � � � � � l � � � t� ��� u � � � t� � �
� � � p � l � � � � � t� � � � � p � l � � � t� � ���
� � � upv � � ��� t� � � � � � u � ��� t� � p � v � � � t� � ���
� � � � P � � ��� t� � � � � � � P � ��� t� � � �

� � � P � Q � � � � t� � � � � � P � � � t� ��� � Q �
� � t� � � �

� � � � �
 P � � ��� t� � � � � � �
 P � �
� � � ���
 P � � � � t� ��� � � ���
 � P � ��� t� � � �

Here � , � and � are distinct variables, P and Q are well-defined formulae, t, u and v are terms, p
is a predicate symbol, l is a comma-separated list of terms and c is an individual constant, with the
additional restriction that � must not be free in t.

Table A.2: Shorthand definitions for first-order logic.

120

A.3.2 Truth A model of first-order logic is a tuple � C � P � c � p � , where C is a sequence
of sets C

� � C � ������� , and C
�

is a nonempty set, and each Cn for n � �
is a set of functions

� C � � n � C
�
, P is a sequence of sets P � � P � ������� , and Pn is a set of functions � C � � n ���� ��� � , and c is a sequence of functions c

� � c � ������� , where

ci

 the set of individual constants � Ci

for all i ��� , and p is a sequence of functions p � � p � ������� , where

pi

 the set of predicate symbols � Pi

for all i ��� � ��� � .
We define the interpretation of terms under a model � C � P � c � p � as follows:

• The interpretation of a term consisting solely of one individual constant a is
c
� � a � .

• The interpretation of a term generated by the schema � f � a � � , where f is a term
and a is a formula consisting of one or more terms separated by commas, is
cn � f � � a � � , where a � consists of the interpretations of the terms in a separated by
commas, and n is the number of terms in a.

• The interpretation of a term generated by a shorthand is the interpretation of
the term generated by the definition of the shorthand under the same string
substitution.

We then define the truth value of well-defined formulae under the same model as
follows � :

• The truth value of a formula generated by the schema � P � a � � , where P is a
predicate symbol and a is a formula consisting of one or more terms separated
by commas, is true, if pn � P � � a � � � � and false otherwise, where a � consists of
the interpretations of the terms in a separated by commas, and n is the number
of terms in a.

• The truth value of a formula generated by the schema � � aPb � � , where a and b
are terms and P is a predicate symbol, is true, if p � � P � � c � a ��� c � b � � � � and false
otherwise.

• The truth value of a formula generated by the schema � � a � b ��� , where a and
b are terms, is true if c � a � � c � b � and false otherwise.

121

• The truth value of a formula generated by the schema � � � P � � , where P is a
well-formed formula, is true if the truth value of P is false, and false otherwise.

• The truth value of a formula generated by the schema � � P � Q ��� , where P and
Q are well-formed formulae, is true if the truth value of P is false and when
the truth value of both P and Q is true, and false otherwise.

• The truth value of a formula generated by the schema � � ���
 P � � under the
substitution � , where � denotes a variable and P denotes a well-formed for-
mula, is true if for every individual symbol s the truth value of the formula
generated by � P � ��� s�	� is true, and false otherwise.

• The truth value of a well-formed formula generated by a shorthand is the truth
value of the well-formed formula generated by the definition of the shorthand
under the same string substitution.

If the truth value of a well-formed formula is true or false, then we say that the
well-formed formula is true or false, respectively.

A well-defined formula � is a tautology, denoted by � � , if it is true under all
models of first-order logic. A well-defined formula is a contradiction if it is false
under all models of first-order logic. A well-defined formula is contingent if it is
neither a tautology nor a contradiction.

A well-defined formula generated by � F � is a (semantic) consequence of the well-
defined formulae generated by � F � i (where i is a member of a given nonempty set I),
denoted by � � � F � , where � �

� ��
 � � � I
 � � � F � i � , if in every model where
every formula generated by � F � i is true, also the formula generated by � F � is true.

A.3.3 Inference The axiom schemata of first-order logic are the following well-
formed formula schemata, where P, Q and R are well-formed formulae, a is an
individual constant or a variable, � is a variable,

�
is a variable which is not free in

P, and t and u are terms. � :

� P � � Q � P � � (Ax1)

� � P � � Q � R � � � � � P � Q � � � P � R � � � (Ax2)

� � �
P � P � (Ax3)

� � � �
 P ��� � P � � � a� ��� (Ax4)

� � � �
 P � Q � � � P �	� �
 Q � � (Ax5)

122

� � t � u � P
�
� � t� ��� P

�
� � u��� (Ax6)

� e � e � (Ax7)

Additionally, for every shorthand � P � introduced into the logic with the well-formed
formula schema � Q � as the definition, the formula schema � P � Q � is an axiom
schema of first-order logic, and for every shorthand � t � introduced into the logic
with the term schema � u � as the definition, the formula schema � t � u � is an ax-
iom schema of first-oder logic. Every well-formed formula generated by the axiom
schemata are axioms of first-order logic.

A well-formed formula � of first-order logic is a (syntactic) consequence of the
well-formed formulae � � ������� ��� n, denoted by � � ������� ��� n � � , iff

• it is an axiom of first-order logic,

• it is � i for some i � � � ������� � n � ,
• it is generated by the schema � Q � and � � ������� ��� n � � P � and � � ������� ��� n �

� P � Q � , where P and Q are well-formed formulae, or

• it is generated by the schema � � �
 P � , where � is a variable and � � ������� ��� n �
P.

If � � ������� ��� n are all axioms (or n �
�
), then � is a theorem, denoted by � � .

It can be shown that every theorem is a tautology. Gödel proved the converse in
1930: every tautology is a theorem.

A.4 Set theory

Let � stand for a predicate symbol and let � stand for an individual constant in
first-order logic. Then, set theory is an application of first-order logic where there
are no individual constants apart from � , no function symbols, and no predicate
symbols apart from � , modified suitably as described in this section.

A formula of set theory is a term, iff

• it is a term of first-order logic, or

• it is generated by the schema � � �
 P ��� , where � is a variable and P is a well-
formed formula of set theory.

123

A variable is free in a term of set theory, iff

• it is free in the term by the rules of first-order logic, or

• the term is generated by the schema � � �
 P ��� , where � is a variable distinct
from the variable being considered and P is a well-formed formula of set the-
ory, and the variable being considered is free in P.

We introduce more shorthands according to Table A.3 � , and the axiom schemata
described below � .

A.4.1 Axiom of the universal class The first axiom of set theory asserts that there
is a � -maximal class, the universal class, which we denote � � � .

� ���
 � � � � (Ax8)

We call the elements of the universal class sets, and we call classes that are not sets
proper classes. By definition and by this axiom, there can be no class of proper classes.

A.4.2 Axiom of extensionality The second axiom states that classes are exten-
sional, in other words that classes are determined by their elements.

� ���
 ���
 � � �
 � ��� � � ��� � ��� ����� (Ax9)

The converse, � ���
 �	�
 � ��� � � � �
 � �
� � � ��� � � , is a theorem.

A.4.3 Axiom schema of class comprehension The third axiom schema gives mean-
ing to the class comprehension notation. It states that for each well-formed formula
there is a class that consists of exactly those sets for which the well-formed formula
is true.

� ���
 ��� � � � P
� � �� � � � t � � ��
 P � � (Ax10)

Here P is a well-formed formula.
Note that this axiom does not lead to the Russell paradox, since it does not allow

a proper class to be a member of a class.
Note that by the three axiom schemata described so far, � � �

� ��
 � � � ��� holds.

124

Shorthand Definition

� t � u � � � �
 � � t � � � u �
� � � � � �
 � �� � � �
� � t � � � �
 � �
 � � t � � � � ���
� � t � � � �
 � �
 � � t � � � � � �
� � t ��� � � �
 � � t ���
� � t � u ��� � � �
 � � t

� � � u � �
� t � u � � � �

t � u ���
� � l � u ��� � � l � � �

u � �
� t � u � � � �
 � � t � � � u ���
� t � u � � � �
 � � t � �

� � u � �
� � � � t
 P � � � � �
 � � t � P � �
� ��� � t
 P � � ���
 � � t � P �
� � � � t
 P � � � �
 � � t � P �
� � � � � � �
 P � � � ���
 � �
 � �
 � � � � � � � � P ���

� � � � � � � ��� � �
 P ��� � ���
 � �
 � �
 � �
 � � � � � � � ��� ��� � P � �
� � � � � � �
 P � � � �
 � � � � � � � � P �

� � � � � � � � t
 P � � � � � t
 � � � � � � � � P �
� � t � � � �
 � � t � �

� � t � u � � � � � t ��� � t � u � ���
� � l � u � � � � � l ��� � � l � � t � � �
� t � u � � � �
 � � � t
 � � � u
 � � � � � � � � �

Here � , � , � and � are distinct variables, P is a well-defined formula where � is not free, t, u and v
are terms where � , � , � and � are not free, and l is a comma-separated list of terms.

Table A.3: Shorthand definitions for set theory(cont.)

125

Shorthand Definition

� tuv � � � t � v � � u �
� t �u�	� � �
 � � � t
 � � � u
 �

� � � � � ���
� t � u ��� � � t

�
u�	�

��� � � � ��
 � � � � � ��� �
 � � � � � � � ���
�����
 t � � � � � � � �
 �

� t ���
� � � � � � �
 t � � � � � � � � ��� ���
 � � t ���
� � � � t
 u � � � � � � � �
 � � t � �

� u � �
� � � � � � � � t
 u � � � � � � � � � � ���
 � � � � � � t � � � u � �

� dom t � � � ��� � � � �
 � � � t���
� ran t � � � � � � � � �
 � � � t���
� ���
 P � � � � � � � �
 � � � � P � � � � �

� � � � t
 P � � ���
 � � t � P �
� ��� � � � �
 P � � � �
 � � � � � � � � P �

� ��� � � � � � � ���
 P � � � �
 � � � � � � � ��� � � � P �
� inj t � � � � � � � � � t
 � � � � � � � t
 � � � �

�
�
� �

� t
 u � v � � t � u � v � fun t ��
t �

��� � � � � � � �
 � � � � � � t ���
Here � , � , � and � are distinct variables, P is a well-defined formula where � is not free, t, u and v
are terms where � , � , � and � are not free, and l is a comma-separated list of terms.

Table A.3: (cont.) Shorthand definitions for set theory.

126

A.4.4 Axiom of separation The fourth axiom states that every subclass of a set is
a set.

� ���
 ��� � �
 � � � � � � (Ax11)

Note that this is not a proper axiom schema as in ZFC; this is because we have
the concept of a class that we can use to our advantage.

A.4.5 Construction axioms The fifth axiom starts a series of construction axioms:
they tell us how to “grow” sets. The first of these states that a pair class of sets is
a set, the second states that the union of sets is a set, and the third states that the
powerclass of a set is a set.

� ���
 � �
 ����� � � � � � � � �
� � � � � � � (Ax12)�

��� � �
 �
� � ��� (Ax13)

� ��� � �
 ��� � � � (Ax14)

A.4.6 Axiom of infinity An inductive set is one that contains the empty set, and
for every element t it contains � � ��
 � �

� � � t � � � as an element. We denote the class of
inductive sets with � . The axiom of infinity states that there is at least one inductive
set.

� � ��
 � � � � (Ax15)

A.4.7 Axiom of replacement The axiom of replacement declares that the image
of a set under a function (which may be a proper class) is a set.

� ���
 � � �
 � �
 � � � � � � �
� � � ��� � � � � �
 � � � � � � � � (Ax16)

Note that again, this axiom is not a proper schema thanks to the fact that classes
are proper objects in this axiomatization.

127

A.4.8 Axiom of regularity The axiom of regularity states that all nonempty sets
have a � -minimal member.

� ���
 ��� � � � � �
 � ��� ��� � � ���
 � � � � � � (Ax17)

A.4.9 Axiom of choice The axiom of choice allows us to postulate a function that
selects one element from an arbitrary set.

� ���
 � � � ���
 � �� � � � � � � �
 � � � �
 � � � �
 � � � � � � �
� � � � (Ax18)

A.4.10 Models of set theory A model of first-order logic with equality is a model
of set theory if the axioms (Ax8)–(Ax18) are true in it.

A.4.11 Arithmetic We will define more shorthands according to Table A.4 � .
The following formulae are theorems:

� � � � � (A.1)

� � � ���
 � � � �� � � (A.2)

� � � ���
 � � � ��� � (A.3)

� � � ���
 � � ���
 � � � � � � � � � � � � (A.4)

� � �
 � � � � � � � ���
 � � � � � � � � � ��� � � � � (A.5)

These formulae are, incidentally, the Peano axioms for arithmetic, rephrased for this
set theory. Thus, this set theory includes arithmetic.

Notes

�

This quote is usually attributed to Henri Poincaré, but in fact he never seems to
have said or written it. Gray [52] traced the history of this quote, and his reconstruc-
tion of the events has Pierport treating a badly translated summary of Poincaré’s
talk as a quotation.

�

This definition is from Gödel [48].

128

Shorthand Definition����� � ��� ��
#t
� ��� � 	 �) � �) dom � � t � ran � � � � inj � ��
	�� � � �� & � � � � ��

t � u
� �

t � u
��

t ˙� u
� �

� t � u � ��
t � u

� ��� �) t � � ˙� u � u � � ��
t � u � �

� t � u � ��
tn � � � � �)$��
 � 	 �) � �) � ��	 � � �) ��) � � ��� � � � ��������� �

 �) � � � � & ��� � �
 � 	 � � � 	 � &) � � � � � ��� � � � � � � � ˙� & ��� � t � n � ��
t � n

� � � � �)���
 � 	 �) � � 	 �) � � 	 �) �� 	 �) � � ��� � � ����������� �

 �) � � � � 	 �!� & �
 � 	 � � �) � � � � � ��� � � � � � ˙� & ��� � � � t � n � ��

n � m � � � � 	 �) ��� m � � n � m
��

prn t � � � ���) � � ����� � � � ��� � �)�� � ��) � �) � � � ������� �
��� � � & � � � �#�#� � � 	 � � � 	 � & � � � � � � � & ����������� �

��� � � ��) � �#) � � � ��������� � � � � & � � � � ��� � � n � t � ��
pr
� � ���) ���) pr � � �

min t
��� � 	 t)�
 � 	 t) ��� � ��

stt u
� � � � �) � � ����� � � � ��� ���) � 	! #" � � � � prmin $ � � � � � � � min �$ � � ��� � � t � u �&%� � m � � � � � n � � � � 	 �) m � � � ��� n �

Here � , � , � , � and � are distinct variables, t, u, n and m are terms where � , � , � , � and � are not
free, and n and m is such that n 	 � and m 	 � are theorems.

Table A.4: Shorthand definitions for arithmetic.

129

� I have not seen this definition of strings anywhere before, but the idea of en-
coding strings as prime factorizations of natural numbers is due to Gödel [48] in a
slightly different context. The definitions of length and nth symbol of a string are
also due to Gödel.

� This kind of a truth definition is due to Alfred Tarski [114].

� This axiom system except for the last two axioms and the following rules of
inference are taken from Kurittu [74], but I don’t know their origin. The last two
axiom schemata are taken from [1]; I don’t know their origin.

� The definite descriptor � can be traced back to Principia mathematica [122]. The
intended reading of “ ���
 P” is the unique set � for which P is true. If � is not uniquely
determined by P, the descriptor does denote some class (not necessarily a set), but
the class it denotes is usually inappropriate in the context. In Bernays [11] it would
denote the empty set in that case, but there is no such guarantee by this definition.

� These axiom schemata are adapted from Jech [66], where they are credited as
the Zermelo–Fraenkel axioms.

� The definitions of addition and multiplication are from Jech [66]; I don’t know
their origin.

130

B A summary of AbstractSyntax.hs

This appendix summarizes the AbstractSyntax module of Ebba H.

module AbstractSyntax
where

We define five mutually recursive data types, four of which correspond to the
nonterminals in the abstract syntax given in Chapter 5.

The declarations of the data types list alternatives, much like the corresponding
EBNF specification. Each alternative is given a constructor (for example, Logical-
Negation), which is usually the first identifier in the alternative (prefix notation).
Occasionally an infix constructor can be used: such a constructor needs to be a
symbol string starting with a colon or an identifier enclosed in backquotes. Each
constructor is given signature, the parameters it takes, which are specified by giv-
ing their type. Thus, for example, LogicalAnd is a two-parameter constructor, tak-
ing two Predicates as parameters. A type name enclosed in brackets denotes a list
whose elements are of that type.

data Predicate = Predicate ‘LogicalAnd‘ Predicate�
Predicate ‘LogicalOr‘ Predicate�
Predicate ‘LogicalImplication‘ Predicate�
Predicate ‘LogicalEquivalence‘ Predicate�
LogicalNegation Predicate�
UniversalQuantification Variable Predicate�
ExistentialQuantification Variable Predicate�
Expression ‘SetMembership‘ Expression�
Expression :== Expression�
Subset Expression Expression�
SubstitutedPredicate Substitution Predicate�
MetavariablePredicate Integer [SideCondition]�
PredicateApplication Name [Expression]�
NoPredicate�
IllFormedPredicate String

131

data Variable = SingletonVariable Name�
EmptyVariable�
Frame Substitution�
PairVariable Variable Variable�
MetavariableVariable Integer [SideCondition]

data Expression = IdentifierExpression Name�
OperatorExpression Operator [Expression]�
PairExpression Expression Expression�
SubstitutedExpression Substitution Expression�
Expression ‘CartesianProduct‘ Expression�
SetComprehensionExpression Variable Predicate�
MetavariableExpression Integer [SideCondition]�
FunctionApplication Expression [Expression]�
IllFormedExpression String

data Substitution = Variable := Expression�
[Integer] ‘PSubst‘ [Predicate]�
Skip�
PrecondSubst Predicate Substitution�
BoundedChoice Substitution Substitution�
GuardedSubst Predicate Substitution�
UnboundedChoice Variable Substitution

The last data type records side conditions on metavariables.

data SideCondition = Variable ‘NonfreeInE‘ Expression�
Variable ‘NonfreeInP‘ Predicate�
Substitute Variable Expression�
IsVariable Integer

132

C A description of TypeChecker.hs

This module implements typechecking of B set theory. Much more than the set
theory is not supported at this time.

module TypeChecker (typecheck)
where

Here we have the abstract syntax for types and type predicates.

data Type = TypeOf Expression�
Supertype Expression�
Type ‘Producttype‘ Type�
Powertype Type�
TypeId Name

data TypePredicate = Name ‘InType‘ Expression�
GivenSet Name

The typechecking environment is a list of TypePredicates, although it may not be
the most efficient structure with large inputs. We have two functions for checking
whether some type predicate can be found in the environment.

type Environment = [TypePredicate]

lookupEnv

 Environment � Name � Maybe Expression

isGiven

 Environment � Name � Bool

The process of typechecking is written in monadic style. The typechecking monad
is the type TypecheckM, which stores notices (warnings and error messages) gath-
ered during the typechecking.

A monad is an abstract data type that models actions. A value of a monad type
is a potential action; in other words, it denotes an action. These potential actions can
be composed using

• sequencing (� �), which has the same role in monadic programming as the
semicolon has in many imperative programming languages; and

133

• data-connected sequencing (� � =), which is essentially a way to sequence two
actions while also letting the earlier action communicate a value to the latter
action.

In every monad there are also two ways to construct simple actions:

• The (overloaded) function return takes a value and generates an action that, if
it is performed, passes the parameter value to the next action and does nothing
else.

• The (overloaded) function fail takes a string parameter and generates an action
that, if it is performed, fails. The parameter may be propagated to whoever
catches the exception caused by the failure.

Additionally, most monads have some other ways to construct primitive actions,
and a way to cause an action to be performed.

The typechecking monad is mainly used to thread the notices through the type-
checking process and to make it convenient (via the failure mechanism) to commu-
nicate typing errors.

newtype TypecheckM � = TypecheckM ([String] � (Maybe � , [String]))
instance Monad TypecheckM

where

We have auxiliary functions to produce notices. The function rule takes a for-
mula, a description of the rule to be applied, and produces an action that, if it is
performed, adds a notice containing the formula and the rule description to the (im-
plicit) notices list. The function erule does a similar thing but it is designed to be
used in rules that test equality of types.

rule

 Show f � f � String � TypecheckM ()

erule

 Bool � Type � Type � String � TypecheckM ()

The eitherM combinator function takes two potential action and returns a poten-
tial action that, if it is ever performed, performs the first parameter action, and if
that fails, it performs the second parameter action, too. Thus it runs one or the other
if one of them succeeds, and fails only if both fail.

134

eitherM

 TypecheckM � � TypecheckM � � TypecheckM �
eitherM (TypecheckM m) (TypecheckM m’) = TypecheckM $ � s �

let ms@(mr,) = m s
in if isJust mr

then ms
else m’ s

The function typecheck starts the typechecking process by creating the potential
action of typechecking and then forcing its performance.

typecheck

 Predicate � (Bool, [String])
typecheck p = � ok, reverse l �

where (TypecheckM m) = check
�
GivenSet $ inject “BIG”� p’

(ma, l) = m []
ok = isJust ma
p’ = rewrite p

The following function is one of the two main typechecking functions. This one
operates on a check � p � type judgment, and operates by cases based on the form of
the predicate. We will show here only some cases, ones that we deem interesting.

check

 Environment � Predicate � TypecheckM ()

The following case is straighforward: we just check both component predicates.
The do notation is syntactic sugar for the monadic sequencing operators, de-

signed to look familiar to imperative programmers.

check env f @(p ‘LogicalAnd‘ q) = do rule f “T 1”
check env p
check env q

The next case implements the enhanced typing suggested at the end Subsec-
tion 5.3.4. The function typeQ, defined below, finds types for the variables x and
returns a type environment containing these types. We then check the component
predicate with this new environment.

check env f @(UniversalQuantification x p) = do rule f “T 4 / T 5”
(, env’) � typeQ env f x p
check env’ p

The following case demonstrates the handling of relations between expressions.
We merely translate them into appropriate relations between the appropriate types.

135

check env f @(e :== e’) = do rule f “T 7”

The eq function is the entry point to testing equality of types. It tries the same
rules in both orders of the parameters, since equality is a symmetric relation.

eq

 Environment � Type � Type � TypecheckM ()
eq env e f = eitherM � eqv env False e f � � eqv env True f e �

The eqv function does the real work in checking equality of types. As before, we
show only some interesting cases.

eqv

 Environment � Bool � Type � Type � TypecheckM ()

The first case handles the case of type rule T 9. We lookup the type of the identi-
fier in the environment. If we succeed, we pass it on. If we fail, we fail.

eqv env retro t@(TypeOf (IdentifierExpression x)) u = erule retro t u “T 9” � �
case lookupEnv env x of

Just s � eq env � Supertype s � u
Nothing � fail “Type error”

The final case checks the equality of two type names. If they are lexically equiv-
alent, we check if they denote a given set. If not, we fail, otherwise we succeed
immediately. If they are not lexically equivalent, we fail.

eqv env retro t@(TypeId i) u@(TypeId i’) = do erule retro t u “T 21”
if i == i’

then if isGiven env i
then return ()
else fail “Unknown set”

else fail $ “Types do not match”

The penultimate functions implement the type finding procedure discussed at
the end of Subsection 5.3.4.
findType � � Environment � Name � Predicate � Maybe Expression
findType env x (LogicalAnd p q) = case findType env x p of

Just e � Just e
� findType env x q

findType env x p@(LogicalOr) = findType env x $ rewrite p
findType env x (LogicalImplication (LogicalAnd p q) r) = findType env x � LogicalAnd p � LogicalImplication q r � �
findType env x p@(LogicalEquivalence) = findType env x $ rewrite p
findType (LogicalNegation) = Nothing

136

findType x (SetMembership (IdentifierExpression x’) e)�
x == x’ = Just e�
otherwise = Nothing

findType env x ((:==) (IdentifierExpression x’) (IdentifierExpression x”))�
x == x’ = lookupEnv env x”�
x == x” = lookupEnv env x’�
otherwise = Nothing

findType = Nothing

typeQ � � Show ��� Environment ��� � Variable � Predicate � TypecheckM (Expression, Environment)
typeQ env context v@(SingletonVariable x) p = case findType env x p of

Nothing � fail $ “No type found”
(Just e) � do m2m � “Forbidden self � reference” � � nonfreeM v e �

m2m � “Cannot shadow” � $ mapM � nonfreeM v � env
return � e, � x ‘InType‘ e � :env �

typeQ env context (PairVariable x y) p = do (e, env’) � typeQ env context x p
(f , env”) � typeQ env’ context y p
return � � PairExpression e f � , env” �

The final function translates a certain simple monad (Maybe) into the typecheck-
ing monad. The idea is that if the Maybe action fails, we fail with the given message
but if it succeeds, we succeed with the same return value.

m2m

 String � Maybe � � TypecheckM �
m2m (Just a) = return a
m2m msg Nothing = fail msg

137

D Summary of the ebba-unicode library

D.1 Unicode.hs

This module exports everything the module UnicodeDataDef exports, as well as the
functions described below.

module Unicode (module UnicodeDataDef, unidata, coerce, generalCategory,
splitAtNLF)

where

The coerce function should not really be in this module, but it is handy. It converts
any integral value to any numeric type.

coerce

 (Integral � , Num �) � � � �
coerce = fromInteger � toInteger

The unidata function looks up the Unicode data for the given character.

unidata

 Char � UD

The generalCategory function looks up the general category of the given character.

generalCategory

 Char � GeneralCategory
generalCategory = gc � unidata

The final function splits the given string into its first line and the rest of the string.
It uses the Unicode newline conventions [29] to decide on the location of the first line
break.

splitAtNLF

 String � (String, String)

D.2 UnicodeDataDef.hs

The purpose of this module is to declare the data structure types that the rest of the
library (and its clients) will be needing.

module UnicodeDataDef
where

138

For efficiency reasons, we add a great number of strictness annotations. These
take the form of an exclamation mark before a parameter type for a constructor. The
effect is that when such a value is constructed, the evaluation of that parameter is
immediately forced instead of delayed.

Also for efficiency reasons, we include a custom (parametrized) type for strict ra-
tional numbers. The type parameter is the integer type that will be used to represent
the quotient and the remainder.

data Ratio � = ! � :% ! �

The type Bidi is an enumeration of bidirectional categories.

data Bidi = L�
LRE�
LRO�
R�
AL�
RLE�
RLO�
PDF�
EN�
ES�
ET�
AN�
CS�
NSM�
BN�
B�
S�
WS�
ON

The next type encodes the possible values for the character decomposition map-
ping.

139

data Decomp = NoDecomp�
Decomp ![Int]�
Font ![Int]�
NoBreak ![Int]�
Initial ![Int]�
Medial ![Int]�
Final ![Int]�
Isolated ![Int]�
Circle ![Int]�
Super ![Int]�
Sub ![Int]�
Vertical ![Int]�
Wide ![Int]�
Narrow ![Int]�
Small ![Int]�
Square ![Int]�
Fraction ![Int]�
Compat ![Int]

deriving (Show, Read)

The general category is the most important type. It describes whether the char-
acter is an uppercase letter, opening punctuation or something else.

140

data GeneralCategory = Lu�
Ll�
Lt�
Lm�
Lo�
Mn�
Mc�
Me�
Nd�
Nl�
No�
Pc�
Pd�
Ps�
Pe�
Pi�
Pf�
Po�
Sm�
Sc�
Sk�
So�
Zs�
Zl�
Zp�
Cc�
Cf�
Cs�
Co

deriving (Show, Read, Eq)

The final type is a collection of all data the Unicode character database has to
offer about any given character.

141

data UD = UD {cp :: !Int, cn :: !String, gc :: !GeneralCategory, cc :: !Int, bd :: !Bidi, dc ::
!Decomp, ddv :: !(Maybe Int), dv :: !(Maybe Int), nv :: !(Maybe
(Ratio Int)), m :: !Bool, n1 :: !String, c :: !String, um :: ![Int], lm ::
![Int], tm :: ![Int]}�

NotACharacter Int
deriving (Show, Read)

D.3 Octet.hs

The Octet module contains a simple mechanism for reading octet streams from the
file system.

module Octet
where

An octet is an eight-bit unsigned integer. An octet stream is a list of octets. Note
that Word8 is not standard Haskell!

type Octet = Word8
type OctetStream = [Octet]

The assume8bit function takes a string and converts it into an octet stream, check-
ing that no character in the string lies beyond the 8-bit range.

assume8bit

 String � OctetStream

The standard input stream is available as stdinOF.

stdinOF

 IO OctetFile

The standard output stream is available as stdoutOF.

stdoutOF

 IO OctetFile

The standard error stream is available as stderrOF.

stderrOF

 IO OctetFile

A file can be opened given its file name and open mode (in the style of C’s fopen).

type OpenMode = String

openOF

 String � OpenMode � IO OctetFile

A file can be closed using closeOF.

142

closeOF

 OctetFile � IO ()

The octet currently at the point is returned by peekOctet.

peekOctet

 OctetFile � IO Octet

The point is advanced by one octet by eatOctet.

eatOctet

 OctetFile � IO ()

The octet currently at the point is returned by getOctet. It also advances the point
by one octet after peeking the octet at the point.

getOctet

 OctetFile � IO Octet

If the point has advanced beyond the end of the file, isEOF returns True.

isEOF

 OctetFile � IO Bool

The function getOctets reads the content of the file lazily. After calling this func-
tion, the other functions can no longer be invoked on this file. The use of this func-
tion is discouraged (it uses black magic internally and cannot fully conceal it), but it
is sometimes useful.

getOctets

 OctetFile � IO OctetStream

D.4 UTF.hs

module UTF
where

The following declarations introduce type aliases for two function types.

type UTFDecoder = OctetStream � String
type UTFEncoder = String � OctetStream

Type classes are a mechanism for controlled overloading of functions in Haskell.
The following declaration means that potentially any type � can be made the first
argument of encode and decode — all one needs is an instance declaration. In this case,
the type � is merely a mechanism for indicating which version of those functions is
to be used.

class UTF �
where encode

 � � String � OctetStream

decode

 � � OctetStream � String

143

Here we declare a placeholder type for UTF-8. We also declare it an instance of
the above type class, so that it can be used as the first argument to the functions. At
the same time, we specify which actual functions are to be used as encode and decode
for the case of UTF-8.

data UTF8 = UTF8
instance UTF UTF8

where encode UTF8 = encodeUTF8
decode UTF8 = decodeUTF8

decodeUTF8

 UTFDecoder

encodeUTF8

 UTFEncoder

144

